

1 **Avian influenza virus circulation and immunity in a wild urban duck population prior to**
2 **and during a highly pathogenic H5N1 outbreak**

3

4 Jordan Wight¹, Ishraq Rahman¹, Hannah L. Wallace², Joshua T. Cunningham³, Sheena Roul¹,
5 Gregory J. Robertson³, Rodney S. Russell², Wanhong Xu⁴, Dmytro Zhmendak⁴, Tamiru N.
6 Alkie⁴, Yohannes Berhane^{4,5,6}, Kathryn E. Hargan¹, Andrew S. Lang^{1*}

7

8 ¹ Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and
9 Labrador, Canada

10 ² Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's,
11 Newfoundland and Labrador, Canada

12 ³ Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl,
13 Newfoundland and Labrador, Canada

14 ⁴ National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg,
15 Manitoba, Canada

16 ⁵ Department of Veterinary Pathology, Western College of Veterinary Medicine, University of
17 Saskatchewan, Saskatoon, Canada

18 ⁶ Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada

19

20 * Correspondence: Andrew S. Lang (aslang@mun.ca)

21 Abstract

22 Highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses were first detected in St.
23 John's, Newfoundland, Canada in late 2021, with the virus rapidly spreading across the western
24 hemisphere over the next year. To investigate the patterns of avian influenza virus (AIV)
25 infection and immune responses subsequent to the arrival of H5N1, we sampled the wild urban
26 duck population in St. John's for a period of 16 months after the start of the outbreak and
27 compared these findings to archived samples. Antibody seroprevalence was relatively stable
28 before the outbreak (2011-2014) at 27.6% and 3.9% for anti-AIV (i.e., NP) and H5-specific
29 antibodies, respectively. During the winter of 2022, AIV-NP and H5-specific antibody
30 seroprevalence both reached 100%, signifying a population-wide infection event. As expected,
31 population-level immunity waned over time, and we found that ducks were seropositive for anti-
32 AIV-NP antibodies for around twice as long as for H5-specific antibodies. The population was
33 H5 seronegative to the latter approximately six months after the initial H5N1 incursion. In late
34 February 2023, H5N1 clade 2.3.4.4b viruses were again detected in the duck population as a
35 result of a second incursion into Newfoundland from Eurasia, which resulted in a second
36 population-wide infection event. We observed a clear relationship of increasing antibody levels
37 with decreasing viral RNA loads that allowed for interpretation of the course of infection and
38 immune response in infected individuals and applied these findings to two cases of resampled
39 ducks to infer infection history. Our study highlights the significance of applying both AIV
40 surveillance and seroprevalence monitoring to provide a better understanding of AIV dynamics
41 in wild populations, which may be crucial following the arrival of 2.3.4.4b H5Nx subtypes to
42 assess the threats they pose to both wild and domestic animals, and to humans.

43

44 **Keywords:** highly pathogenic avian influenza virus; H5N1; serology; resident and migratory
45 ducks; immunity

46

47

Introduction

48 Wild birds are the reservoir hosts of avian influenza viruses (AIVs), with waterfowl being
49 one of the main reservoir groups and vectors by which AIVs are spread, along with gulls,
50 shorebirds, and seabirds [1–4]. AIVs are classified as low pathogenic (LPAIV) and highly
51 pathogenic (HPAIV) based on their virulence and the patterns of mortality they cause in chickens
52 [5]. LPAIV infection of waterfowl rarely results in overt disease symptoms, with birds usually
53 recovering within a matter of days. Dabbling ducks (*Anatinae*) infected with HPAIV H5Nx
54 subtypes, similar to LPAIV infection, can be minimally affected while shedding large quantities
55 of virus, with mild disease symptoms and delayed local movements in some cases [6–9]. While
56 many species of diving ducks (*Aythinae*) also appear to be minimally affected, some such as
57 tufted ducks (*Aythya fuligula*) have been shown to be particularly prone to experience
58 symptomatic HPAIV H5Nx infections and can exhibit severe infection outcomes and high rates
59 of mortality [7,10,11]. Recently, mortality in dabbling ducks due to HPAIV infections has been
60 observed, representing a new pattern for HPAIV dynamics in one of the main reservoir hosts
61 [11–13].

62 HPAIV clade 2.3.4.4 H5Nx viruses have been circulating with increasing frequency in
63 wild birds in Eurasia and Africa since 2005 [10,14–16], with the first incursion of an
64 A/goose/Guangdong/1/1996 (Gs/GD) lineage H5N8 clade 2.3.4.4 viruses into North America
65 taking place in 2014 [17]. This virus and a reassortant H5N2 virus did not persist and become
66 established in North American wild bird populations. However, new incursions of clade 2.3.4.4b

67 viruses starting in late 2021 have resulted in the extensive reassortment with North American
68 lineage LPAIVs, widespread circulation of H5Nx viruses throughout North and South America
69 within a wide array of avian hosts, and multiple spillover events into mammals [18–21]. These
70 HPAIVs now seem to be part of the endemic viral population in wild birds globally.

71 AIV surveillance in wild birds has been a global focus for decades, with the aim of
72 understanding viral dynamics and identifying circulating strains in different regions and species.
73 However, this has not been without challenges. Non-gallinaceous birds infected with LPAIVs are
74 usually asymptomatic and test positive for viral RNA for only a very short period, generally 5–11
75 days with considerable variation by species, body condition, exposure dose, viral strain(s), and
76 infection history [22–26]. This provides a very narrow sampling window for detection of active
77 infections, meaning there are certainly infections and outbreaks that go undetected. An
78 increasing number of serological studies have helped address this shortcoming, by which past
79 AIV infection can be documented via detection of anti-AIV antibodies in the peripheral
80 circulation for a period of months [25,27–29]. A combined approach of AIV infection
81 surveillance and serology can therefore help capture AIV dynamics over a longer time frame,
82 allowing interpretation of both active and past infections in populations [9,30,31].

83 Several groups have shown that antibody levels decrease over time following infection of
84 AIV-naïve captive ducks with a variety of different AIVs, as expected. However, after
85 homologous and heterologous challenge, antibody levels rebound in a matter of days and the
86 ducks are often protected from clinical disease [24,25,32]. Unfortunately, the majority of these
87 studies, including all those on HPAIVs [23,29,33–35], have been performed at timescales of
88 weeks, and therefore the duration of protection from subsequent re-infection by HPAIVs is
89 currently unknown.

90 A GsGd lineage clade 2.3.4.4b HPAI H5N1 virus was identified in a great black-backed
91 gull (GBBG, *Larus marinus*) that died in November 2021 in St. John's, Newfoundland and
92 Labrador, Canada, and was found to be closely related to viruses circulating in northwestern
93 Europe in the spring of 2021 [36]. Shortly after this first detection, the virus was identified in an
94 exhibition farm in the area that housed primarily domestic fowl, which resulted in mass mortality
95 [36]. Sampling of wild urban ducks within the area began about a week later and active H5N1
96 infection was detected in the duck population in late December 2021. There was no observed or
97 reported morbidity or mortality of waterfowl in the St. John's area between November 2021 and
98 January 2023 [37].

99 The island of Newfoundland lies off the eastern coast of mainland North America and is
100 within the extreme eastern edge of the Atlantic Americas Flyway [3]. AIV dynamics and subtype
101 diversity in ducks, gulls, and seabirds have been studied in the region since 2007 to understand
102 possible linkages with European strains, and this work included some focus on the wild urban
103 duck population in the St. John's area [38,39]. A broad diversity of AIV subtypes with high rates
104 of strain turnover have been detected in this population, including an H5 virus (A/American
105 black duck/Newfoundland/1181/2009(H5N4)) [38], but no HPAIVs had been detected in the
106 province prior to late 2021. The dynamics of duck movement in this area are well understood
107 through banding programs and associated recaptures and resightings, which have shown this
108 population of ducks is largely composed of non-migratory individuals [38]. Their use of public
109 urban waterbodies means that many are accustomed to humans, allowing capture and recapture
110 or resighting of the same individuals multiple times throughout the year.

111 The aim of this study was to thoroughly investigate patterns of AIV infection and
112 immunity in this duck population over a period of approximately 16 months after the first arrival

113 of GsGd lineage H5N1 to North America in November 2021. We accomplished this goal by
114 employing a combination of AIV surveillance to understand when infection was occurring and
115 serology, specifically of general anti-AIV-NP as well as H5-specific antibodies, to understand
116 immune responses. This work focused on how immunity changed over time while
117 epidemiological information provided context and timing of infection(s) and bird movements.

118 **Materials and Methods**

119 **Ethics statement**

120 This work was carried out under the guidelines specified by the Canadian Council on
121 Animal Care with approved protocols 11-01-AL, 12-01-AL, 13-01-AL, 14-01-AL, 17-05-AL,
122 and 20-05-AL from Memorial University's Institutional Animal Care Committee, biosafety
123 permit S-103 from Memorial University's Institutional Biosafety Committee, and banding and
124 sampling operations under Federal Bird Banding and Scientific Research Permit 10559.

125 **Bird capture and sampling**

126 Wild ducks were caught either by hand or bait trapping at several locations in or near the
127 city of St. John's, Newfoundland, including Bowring Park (47.528862° , -52.745943°),
128 Commonwealth Pond (47.500765° , -52.789646°), Kenny's Pond (47.591366° , -52.715759°),
129 Kent's Pond (47.589212° , -52.722767°), Mundy Pond (47.551419° , -52.741791°), Quidi Vidi
130 Lake (47.579076° , -52.699627°), and Topsail Pond (47.524388° , -52.903371°). Sampling
131 occurred in the fall and early winter months from 2011 to 2014, and at 11 timepoints through
132 2022 and 2023 during the ongoing HPAI outbreaks (see Supplementary Data). Bird age was
133 determined using plumage aspect and cloacal characteristics [40,41]. Age categories included
134 hatch year (HY), after hatch year (AHY), second year (SY), and after second year (ASY). Hatch

135 year birds that have not yet fledged are denoted as local (L). All birds were banded with a metal
136 leg band issued by the Canadian Wildlife Service Bird Banding Office.

137 Capture efforts targeted primarily mallards (MALL, *Anas platyrhynchos*), American
138 black ducks (ABDU, *A. rubripes*), northern pintails (NOPI, *A. acuta*), and occasionally hybrid
139 ducks that were a combination of ABDU/MALL/feral domesticated ducks (*Anas* spp.).

140 Additional species were sampled opportunistically in 2022 and 2023, specifically American
141 wigeon (AMWI, *Mareca americana*), Eurasian wigeon (EUWI, *M. penelope*), and lesser scaup
142 (LESC, *Aythya affinis*). As there were a limited number of ducks that were AIV RNA-positive at
143 the time of capture, we included AIV surveillance and serology data from several seabird species
144 originating from other work to explore a larger dataset for an analysis on the relationship
145 between RNA load and antibody levels. These species were also impacted by outbreaks of HPAI
146 H5N1 that occurred during the summer of 2022. Data for 100 seabirds were included, with
147 Atlantic puffins (ATPU, *Fratercula arctica*), black-legged kittiwakes (BLKI, *Rissa tridactyla*),
148 and common murres (COMU, *Uria aalge*) from Gull Island (47.262509°, -52.773526°) sampled
149 between June and August 2022 and in June 2023, and northern gannets (NOGA, *Morus*
150 *bassanus*) from Cape St. Mary's (46.818668°, -54.182652°) sampled in July 2022.

151 **Observations of wild bird movements**

152 Observations and remarks regarding the patterns of arrival of migratory individuals and
153 timeline and movements of non-resident species were primarily made directly while working in
154 the field, with additional support provided by local experts, other birders in the region, sightings
155 posted to birding social media pages, and submissions to ebird.org [42].

156 **Bird banding and encounter data**

157 To provide further support of this wild urban duck population being comprised of
158 primarily resident individuals, we obtained banding and encounter data (reporting of a bird band)
159 for all dabbling and diving ducks banded within a 20 km radius of St. John's, Newfoundland
160 from 1 January 2010 to 17 May 2023 from the Canadian Wildlife Service Bird Banding Office.

161 **Sampling periods**

162 For analysis purposes, samples collected between 2011 and 2014 were grouped into
163 sampling seasons. Sampling occurred across multiple months between September and March of
164 each period, and are referred to as the 2011-2012, 2012-2013, 2013-2014, and 2014-2015
165 seasons. Samples collected after H5N1 was first detected in 2021 were grouped as follows:
166 winter-spring 2022 (samples collected between January and May 2022), summer-fall 2022
167 (samples collected between July and September 2022), and then separately for samples collected
168 in the months of February, March, and April 2023. Specific details about when each sample was
169 collected can be found in the Supplementary Data.

170 **Serology**

171 Two to three millilitres of blood were drawn from the brachial wing vein of each
172 captured individual. Serum was separated from clotted blood by centrifugation at 3,000 \times g for
173 ten minutes and subsequently stored at -20°C for future analysis. For the 19 samples collected in
174 January and February 2022 and for 28 archived samples, AIV competitive enzyme-linked
175 immunosorbent assays (cELISAs) were performed at the National Centre for Foreign Animal
176 Disease (NCFAD) laboratory as previously described [43]. Serum from 12 of these 19 samples
177 were later re-tested using the IDEXX AI MultiS Screen Ab test (IDEXX Canada, Product # 99-
178 12119) as per the manufacturer's instructions, which detects antibodies against influenza A
179 nucleoprotein (NP) [44], and this assay was used for all samples collected from March 2022

180 onwards and all other archived samples. A sample to negative control ratio (S/N) of < 0.5 was
181 considered positive for influenza antibodies. As some studies have employed a S/N ratio of < 0.7
182 for positivity [28,44,45], this value is shown on relevant figures for comparison purposes. All
183 archived samples collected between 2012 and 2014 were re-tested for the present study to
184 confirm the original results. Samples from the 2011-2012 period were no longer available,
185 therefore the previously published data were used [38]. Due to a lack of serum for 7 individuals
186 sampled in January and February 2022, re-testing using the IDEXX assay could not be
187 performed, therefore analyses using S/N ratios were performed for 76 individuals, instead of all
188 83 ducks sampled between 2022 and 2023. All sera positive for anti-NP antibodies were
189 subsequently tested at the NCFAD for antibodies specifically against subtype H5 [46]. The two
190 seronegative individuals sampled in February 2022 were removed from the week-by-week
191 analysis as they were believed to have not been present at the time of the population-wide
192 infection event (see Discussion). Additionally, the six individuals sampled on 23 August 2022
193 were also removed from this analysis as they were presumed to be primarily migratory
194 individuals, coinciding with the large influx of individuals during this post-breeding migration
195 period.

196 **Swab samples and RNA isolation**

197 Oropharyngeal and cloacal swabs were collected from all individuals from 2022 to 2023
198 and the paired swabs were pooled into a single tube of Multitrans viral transport medium
199 (Starplex Scientific, Product # S160-100) and represent a single sample per individual. Samples
200 were stored in a cooler on ice and an aliquot was removed for RNA isolation within six hours,
201 and samples were subsequently stored at -80°C. RNA was isolated from 140 µL of each sample

202 using the Qiagen Viral RNA Mini Kit (Qiagen, Product # 52906) as per the manufacturer's
203 instructions and stored at -80°C until further analysis.

204 **Screening for influenza A viruses**

205 Real-time RT-PCR was performed using AgPath-ID™ One-Step RT-PCR reagents
206 (Applied Biosystems, Product # 4387424) on a StepOnePlus Real-Time PCR System (Applied
207 Biosystems). All samples were screened for the presence of the influenza A virus (IAV) matrix
208 gene and subsequent positives were screened for the H5 subtype of the haemagglutinin gene.
209 RT-qPCR primers and probes, and cycling conditions were adapted from Spackman (2020) with
210 some modifications. For the initial RT-qPCR targeting the influenza matrix gene, 25 µL
211 reactions were prepared using 12.5 µL of 2X RT-PCR buffer, 1 µL of 25X RT-PCR enzyme
212 mix, 0.25 µL of 20 µM F25 (5' - AGATGAGTCTTCTAACCGAGGTCG – 3'), 0.25 µL of 20
213 µM R124 (5' - TGCAAAAACATCTTCAAGTCTCTG – 3'), 0.25 µL of 20 µM R124M (5' -
214 TGCAAAGACACTTCCAGTCTCTG – 3'), 0.25 µL of 6 µM double quenched probe F64P (5'
215 – [FAM]-TCAGGCCCC[ZEN]CTCAAAGCCGA-[IB] – 3') (IDT Inc., Canada), 1.67 µL of
216 AgPath Detection Enhancer (Applied Biosystems, Product # A44941), 0.83 µL of nuclease-free
217 water, and 8 µL of RNA. Cycling was performed in standard mode, with parameters as follows:
218 45°C for 20 minutes, 95°C for 10 minutes, followed by 45 cycles of 95°C for 5 seconds, and
219 60°C for 1 minute at which time fluorescent signal was detected. A standard curve of IAV RNA
220 as well as no-template controls were included during each run. Thresholds were determined
221 automatically by the StepOnePlus software based on the standard curve, and this threshold was
222 applied after manual confirmation to determine the cycle threshold (Ct) values for each sample.
223 Samples that yielded the characteristic amplification curve and had a Ct \leq 45 were interpreted

224 as positive [48–50], while those that yielded the characteristic amplification curve but did not
225 surpass the threshold were interpreted as inconclusive and denoted as having a Ct > 45.

226 All samples that yielded an amplification curve for IAV matrix RT-qPCR were
227 subsequently screened for the H5 subtype using primers, probes, and cycling conditions adapted
228 from Spackman et al., (2002) with some modifications. The 25 μ L reactions were prepared using
229 12.5 μ L of 2X RT-PCR buffer, 1 μ L of 25X RT-PCR enzyme mix, 0.25 μ L of 20 μ M H5_1456-
230 NA_F (5' – ACGTATGACTATCCACAATACTCA – 3'), 0.25 μ L of 20 μ M H5_1456-EA_F
231 (5' – ACGTATGACTACCCGCAGTATTCA – 3'), 0.125 μ L of 20 μ M H5_1685_R (5' –
232 AGACCAGCTACCATGATTGC – 3'), 0.125 μ L of 20 μ M H5_1685M_R (5' –
233 AGACCAGCTATCATGATTGC – 3'), 0.25 μ L of 6 μ M double quenched probe H5_1637P (5'
234 – [FAM]-TCAACAGTG[ZEN]GCGAGTTCCCTAGCA-[IB] – 3') (IDT Inc., Canada), 2.5 μ L
235 of nuclease-free water, and 8 μ L of RNA. Cycling was performed in standard mode, with
236 parameters as follows: 45°C for 20 minutes, 95°C for 10 minutes, followed by 45 cycles of 94°C
237 for 10 seconds, 57°C for 40 seconds at which time fluorescent signal was detected, and 72°C for
238 5 seconds. Any samples that yielded the characteristic amplification curve were interpreted as
239 positive for H5.

240 Samples that tested negative for H5 were assumed to represent infection with an LPAIV.
241 For these samples, the NEB OneTaq® One-Step RT-PCR Kit (New England Biolabs, Product #
242 E5315S) was used to target the haemagglutinin gene. 25 μ L reactions were prepared using 12.5
243 μ L of 2X OneTaq One-Step Reaction Mix, 1 μ L of 2X OneTaq One-Step Enzyme Mix, 1 μ L of
244 10 μ M HA-1134F (5' - GGRATGRTHGAYGGNTGGTAYGG – 3'), 1 μ L of 10 μ M Bm-NS-
245 890R (5' - ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTC – 3'), 1.5 μ L of nuclease-

246 free water, and 8 μ L of RNA. Cycling parameters were as follows: 48°C for 60 minutes, 95°C
247 for 5 minutes, 7 cycles of 94°C for 15 seconds, 42°C for 30 seconds, and 68°C for 3 minutes,
248 then 35 cycles of 94°C for 15 seconds, 58°C for 30 seconds, and 68°C for 3 minutes, followed by
249 a final extension at 68°C for 7 minutes. PCR products were subjected to electrophoresis for
250 visualization, and amplicons were purified using AMPure XP beads (Beckman Coulter) and
251 subjected to Sanger sequencing at The Hospital for Sick Children (Toronto, Canada).

252 **Classification of individual infection status**

253 We used antibody levels (S/N ratios), AIV RNA load, and the epidemiological data,
254 specifically the known dates of population-wide infection, to classify each individual based on
255 their infection status. Currently infected individuals were those with detectable viral RNA.
256 Recently infected individuals represented those that were negative for AIV RNA but were
257 sampled within six months of the population-wide infection events or had elevated antibody
258 levels (S/N < 0.7). They were subdivided into categories of being infected one, three, or six
259 months previously based on the epidemiological patterns, or recently infected if the time between
260 infection and sampling was unknown. Individuals having low antibody levels (S/N > 0.7) were
261 classified as being either naïve or having antibody levels that had waned over time.

262 **Statistical analysis and data visualization**

263 RStudio v4.1.0 [52] was used to perform data manipulation, statistical analysis, and data
264 visualization using the packages cowplot v1.1.1 [53], data.table v1.14.2 [54], ggplot2 v3.4.0
265 [55], and readxl v1.4.2 [56]. In all tests where a *p*-value was generated, *p* < 0.05 was considered
266 as significant.

267 **Results**

268 **Samples collected and used in the study**

269 A total of 217 serum samples were collected from ducks between 2011 and 2014, with
270 the data from 38 samples from the 2011-2012 season being previously published [38]. After the
271 first cases of HPAIV H5N1 in the province in late 2021, 83 paired swab and serum samples were
272 collected from ducks between January 2022 and April 2023. In total, 300 duck sera are included
273 in this study from 298 individuals, with two ducks recaptured and resampled in 2023. Paired
274 swab and serum samples from 100 seabirds that were sampled during the summers of 2022 and
275 2023 were also included for an analysis on the relationship between viral RNA load and antibody
276 levels, providing a larger dataset than available solely from the ducks.

277 **Movement patterns of banded ducks**

278 In total, 1,045 ducks were banded within the St. John's area (20 km radius) between 1
279 January 2010 to 17 May 2023. Of these banded birds, 176 were reported as being encountered at
280 least once, with 172 (97.7%) being reported in St. John's, two reported elsewhere in
281 Newfoundland, one reported in Labrador, and one reported in Nova Scotia. Of all 176
282 encounters, 104 were reported dead/by hunters, 70 by recapture or resightings, and two were
283 unspecified. This provides additional support that the wild urban duck population comprises
284 primarily resident individuals that spend their entire lives in the same local region.

285 **Changes in population seroprevalence over time**

286 Before the incursion of HPAIV H5N1 into the region in November 2021, the overall
287 mean AIV-NP seroprevalence was 27.6% (range 17.6-52.6%) for the sampling seasons of 2011-
288 2015. Antibodies specifically against H5 were markedly lower at a mean seroprevalence of 3.9%
289 (range 2.2-5.6%) between 2012 and 2014 (**Fig 1**), which reflects the fact that there were no
290 HPAI H5Nx viruses circulating in this region during this time period and that LPAIV H5 strains
291 circulate in this population at low prevalence [38]. In the winter-spring period of 2022, one to

292 four months after the arrival of HPAI H5N1, AIV-NP and H5-specific seroprevalence reached
293 90.9% (20/22) and 81.8% (18/22), respectively. This indicates that after the introduction of
294 H5N1 to the region, most of the population was infected with this virus. During the summer-fall
295 period of 2022, seroprevalence decreased to 45.8% (11/24) and 8.3% (2/24) for AIV-NP and H5-
296 specific antibodies, respectively. Therefore, H5 seropositivity essentially returned to the baseline
297 levels observed before the arrival of H5N1. In February 2023, just over one year after the
298 original incursion, AIV-NP seroprevalence was approaching similar levels as observed over
299 2011-2014 at 42.9% (9/21), while H5-specific seroprevalence had increased to 19% (4/21),
300 likely due to the beginning of circulation of an H5 virus again in the population. Approximately
301 three weeks later in March 2023, AIV-NP seroprevalence rose to 100% (10/10) and H5 RNA
302 was detected in four (40%) of these ducks. Only one of the ducks (10%) was seropositive for H5-
303 specific antibodies at this time. Seven weeks later, at the end of April 2023, all six individuals
304 sampled were seropositive for both AIV-NP and H5-specific antibodies (**Fig 1**).

305 To further understand how immunity in the population changed over time, we
306 investigated the seroprevalence ($n = 75$) over 64 weeks, specifically from 28 January 2022
307 through 25 April 2023, and also tested for AIV infection over this period (**Fig 2**). After the initial
308 incursion of the GsGd lineage H5N1 virus and the population-wide infection event,
309 seroprevalence decreased substantially over time. By approximately six months later, all ducks
310 were seronegative for H5-specific antibodies, while half were still anti-AIV-NP antibody
311 seropositive. AIV-NP antibodies were elevated for roughly twice as long as H5-specific
312 antibodies ($\chi^2 = 4.97$, $df = 9$, $p = 0.0005$) over this period. A change in AIV-NP seropositivity
313 occurred between weeks 32 and 37, corresponding to July and August 2022, when several
314 individuals tested positive for non-H5 AIVs (H9Nx, H11Nx, and two additional strains of

315 unknown HA subtype). This resulted in a slight increase in seropositivity that aligned with
316 detection of LPAIVs through the summer of 2022 to February 2023 (**Fig 2**). In March 2023, H5-
317 subtype viral RNA was again detected, and all birds sampled were AIV-NP seropositive, with
318 only one of these individuals seropositive for H5-specific antibodies at this time. By the end of
319 April 2023, all individuals sampled were seropositive for both AIV-NP and H5-specific
320 antibodies, indicating that an H5 subtype virus had again spread through the population, despite
321 the fact that this population was infected just over a year prior. Overall, using a combination of
322 AIV surveillance and strain subtyping, serology, and epidemiology we were able to construct a
323 robust timeline of AIV infection and immune response in this population for the 16-month period
324 (**Fig 3**).

325 **Immune responses in currently infected individuals**

326 There were five individuals that were actively infected that had Ct values < 40, and these
327 showed a negative relationship between antibody levels and viral RNA load (**Fig 4**). For ducks
328 that were AIV RNA-negative at the time of sampling and where the time since infection was
329 known, specifically those infected one, three, or six months prior to sampling, antibody levels
330 decreased significantly over this time period (**Fig 4**; $F = 5.71$, $df = 1,15$, $p = 0.03$).

331 Including additional AIV prevalence and seroprevalence data obtained from various
332 seabird species further supported the patterns observed in the ducks. Of the combined duck and
333 seabird samples ($n = 176$), 17 individuals (9.7%) were currently infected and showed a clear
334 relationship of increasing antibody levels with decreasing AIV viral RNA load (**Fig 5A**), an
335 expected immunological response. A generalized additive model was used to highlight this
336 relationship, showing the immune response in infected individuals at a population level (**Fig 5B**).

337 **Changes in serology of two recaptured ducks**

338 Over the course of sampling between January 2022 and April 2023, two northern pintails
339 were recaptured and resampled, allowing for comparison of antibody levels between the two
340 timepoints. Both individuals were captured and recaptured at the same location, Bowring Park,
341 and were viral RNA-negative at both sampling time points. The first, a male ASY (band # 1196-
342 13442) was first captured on 28 January 2022 and subsequently recaptured on 7 February 2023,
343 totalling 375 days between samples. The second, a female AHY (band # 1196-13448) was first
344 captured on 31 July 2022 and subsequently recaptured on 7 February 2023, totalling 191 days
345 between samples. We do not know if they were infected with AIV(s) between the sampling
346 events, but antibody levels were lower in both individuals at the time of recapture, although to
347 different degrees (**Fig 6**).

348 **Discussion**

349 In this investigation we used a combination of AIV surveillance, serology, and
350 epidemiology to document AIV infection and immune responses in an urban duck population
351 before the incursion of the GsGd lineage H5N1 virus in late 2021, and over a period of 16
352 months through the ongoing outbreak. Through repeat sampling of the same population, we
353 investigated changes in antibody levels through two population-wide HPAIV infection events
354 and examined patterns of immune response over the course of AIV infection on individual
355 scales. Using this combined information in the context of an urban wild duck population largely
356 composed of non-migratory resident individuals, we were able to generate a robust AIV infection
357 and immunity timeline at a population-wide scale, adding to the growing body of literature about
358 these complex dynamics.

359 **Changes in seroprevalence over time**

360 Over the course of 2011-2014, mean AIV-NP seroprevalence was 27.6%, with some
361 variation between seasons. Sampling over these years typically occurred during the late fall and
362 early winter, during and after typical peak AIV circulation in the region. These data serve to
363 establish a baseline for AIV immunity in this population prior to the incursion of H5N1 into the
364 region. A variety of factors could affect variation in seroprevalence between years, including
365 year-to-year variations among circulating AIV subtypes/strains and population age structure and
366 exposure history. AIV prevalence can follow cyclic patterns, with increased prevalence every
367 several years [57–60]. Prevalence was noticeably higher in 2011-2012, however, these
368 individuals were captured by bait-trapping, which may overestimate true AIV prevalence [61],
369 while ducks were captured by hand in the other years, possibly contributing to this difference.

370 As expected, AIV seroprevalence increased greatly in the population following the arrival
371 of H5N1 in November 2021, when nearly every duck sampled in January 2022 was seropositive.
372 There was nearly homogenous seroprevalence across all sampled sites and the same banded
373 ducks were observed using multiple urban waterbodies in the area. Given this, along with the
374 extremely high proportion of ducks banded locally only ever being encountered in the same area,
375 we consider the ducks in this urban region at this time to represent a single population.
376 Therefore, there was a population-wide infection event after the arrival of the virus from Eurasia.
377 As AIV-infected waterfowl often exhibit reduced local movements, the large number of infected
378 individuals shedding virus into the local environment could have increased the infection rate at
379 this time, facilitating proficient spread throughout the population to cause near homogenous
380 seroprevalence [9,62]. It is possible that the two seronegative individuals sampled in winter-
381 spring 2022, a mallard and an American wigeon, had moved into the area from elsewhere and
382 were therefore not present at the time of the population-wide infection that occurred roughly a

383 month and a half prior to their sampling. Alternatively, although we believe less likely due to an
384 increase of the number of ducks present in February compared to January, they may have been
385 present in the area but were not infected or were infected but did not generate a detectable
386 antibody response.

387 Using repeated sampling of this population for roughly 16 months we found that AIV-NP
388 and H5-specific seroprevalence changed greatly in the months following the H5N1 incursion.
389 Individuals were seropositive for anti-NP antibodies for roughly twice as long as H5-specific
390 antibodies, with the population being H5-seronegative roughly 6 months after the incursion. It is
391 well known that waterfowl, and this duck population specifically [38,39], are frequently infected
392 by LPAIVs, which likely explains the longer period of elevated anti-NP antibodies that are
393 boosted with each subsequent infection. Dabbling ducks using human-dominated landscapes in
394 Atlantic Canada show notably high survival rates and strong annual site fidelity to wintering
395 areas [63], leading to a population with an older age distribution than usual. This older age
396 structure may have contributed to the higher seroprevalence overall and over time, as antibody
397 levels are elevated and persist longer in older individuals [28,64,65]. With low seroprevalence of
398 H5-specific antibodies from 2012-2014, assumed to be due to occasional circulation of LPAI H5
399 viruses, most individuals were likely infected for the first time with an H5 virus, explaining the
400 shorter period in which these specific antibodies persisted.

401 A slight increase in AIV-NP seropositivity was observed between weeks 32 and 37 (late
402 July to early September 2022), when several individuals tested positive for LPAIVs. However, in
403 contrast to the initial HPAIV H5N1 arrival, the circulating LPAIVs did not infect the whole
404 population but seem to have provided a boost in AIV immunity for some individuals. As these
405 positive ducks were not previously banded, we do not know whether they were migratory or

406 resident individuals. However, due to the time at which this infection occurred and the HA
407 subtypes detected, we suspect that these viruses entered into the population via migratory
408 waterfowl, and not through infection with AIVs that persisted in environmental reservoirs
409 [66,67]. A second appreciable change in AIV-NP and H5-specific seropositivity can be seen
410 between weeks 58 and 59 (February 2023) that can likely be attributed to small variations
411 between locations and the circulation of LPAIVs at these locations. Ducks were caught at
412 Bowring Park on week 58, and both Bowring Park and Quidi Vidi on week 59, with the latter
413 location having a much larger population of birds at that time of the year, including several
414 hundred gulls that include some originating from the Arctic and Europe. This was also shortly
415 after a harsh winter storm, when several species of diving ducks (greater and lesser scaup
416 (*Aythya marila*, *A. affinis*), tufted ducks (*A. fuligula*), ring-necked ducks (*A. collaris*), and red-
417 breasted and common mergansers (*Mergus serrator*, *M. merganser*)) that would normally be
418 using coastal marine habitat at this time of the year [68] took shelter at the lake, which may have
419 contributed to this change.

420 On 7 February 2023, a single northern pintail (1/7, 14.3%) was seropositive for both
421 AIV-NP and H5-specific antibodies and a week later AIV RNA was detected in the population,
422 signalling the likely circulation of an H5 virus in the region once again. Based on the declining
423 H5-specific antibody seroprevalence since the original population-wide infection event and the
424 lack of H5 viral RNA detected, H5-specific seropositivity was presumably very low until the
425 time at which this individual tested positive in February 2023. The increased detections of H5-
426 specific antibodies in the following weeks, though in a low number of individuals, signaled low
427 level circulation of an H5 virus in the population during this period.

428 Three weeks later, in March 2023, H5 viral RNA was again detected, and all birds
429 sampled were AIV-NP seropositive. This included a Eurasian wigeon that likely arrived in
430 February 2023 based on sightings of several flocks at this time, and a lesser scaup that likely
431 came into the urban area with other diving ducks to shelter from the harsh winter storm. Only
432 one of these individuals was seropositive for H5-specific antibodies at this time, with the
433 differences likely due to a quicker memory response, an anamnestic response, for AIV-NP
434 antibodies due to frequent infection [27,28,30]. By the end of April 2023, all individuals sampled
435 were seropositive for both AIV-NP and H5-specific antibodies, indicating that an H5 virus had
436 again caused population-wide infection. Although the population was fully infected a year prior,
437 and roughly half of the population still had elevated AIV-NP antibody levels when an H5 virus
438 re-appeared, this was not sufficient to protect against infection. The HPAI H5N1 virus that
439 appeared in March 2023 was different than the original virus from the winter of 2022 and
440 represented a new incursion in the region (Wight et al., unpublished data) with the second
441 infection event of the duck population likely occurring sometime in February 2023. While it is
442 unknown how this new H5N1 entered into the population, the mixing of diving ducks with the
443 urban population may have served as a route of transmission. Hundreds of gulls originating from
444 Arctic, European, and mainland North American breeding populations congregate at Quidi Vidi
445 lake each winter, which is the same location as the first detections of the new H5N1 in the urban
446 duck population (Supplementary Data). Previous work from our group has identified gulls as
447 important vectors by which Eurasian clade AIVs enter into North America [69–71], thereby
448 serving as an alternative explanation for how the new H5N1 may have entered into the urban
449 duck population.

450 The timing of sampling happened to coincide with the start of low-level circulation of
451 this new H5N1 virus in the population before it subsequently resulted in a second population-
452 wide infection event. This re-infection of the population just over a year later could have been
453 due to a variety of factors. The higher virulence and infectivity of HPAIVs compared to LPAIVs
454 likely played an important role in the original and subsequent population-wide infection events
455 [11,13,72–74]. Waning immunity that did not provide protection from re-infection, escape from
456 the immune system due to low cross-reactive antibodies owing to differences between the two
457 viruses, and delay in memory responses that would allow viral infection to occur, may have also
458 played a role.

459 The majority of AIV homologous and heterologous challenge studies have been
460 performed along short time scales, usually a matter of weeks, but a few recent studies have
461 evaluated viral shedding duration coupled with serological responses over much longer time
462 scales. An infection study by Shriner et al. [28] found that snow geese (*Anser caerulescens*)
463 infected with an H4N6 virus exhibited minimal viral shedding and antibody levels increased to a
464 level considered seropositive at 7 days post infection (dpi), peaked at 10 dpi, then waned over the
465 next several months and reached undetectable levels one year after the infection. Other studies
466 on wild gulls have found detectable AIV antibody levels for up to a year, demonstrating that
467 responses in some individuals can be long-lived, likely boosted through re-exposure [29,65].
468 Long-lived responses were also found in a homo- and heterologous challenge study of captive
469 mallards with several different AIVs, detecting AIV-specific antibodies in some individuals
470 more than a year later, showing long term antibody persistence is possible even without boost by
471 re-infection/re-exposure [27]. However, due to the lack of homo- and heterologous challenge
472 studies with HPAIVs in waterfowl along timescales of months to years, periods that are relevant

473 to timing of bird migration, it is currently unknown how long HPAIV-specific antibodies remain
474 elevated and how long individuals are protected from subsequent re-infection.

475 Migratory individuals with lower AIV seroprevalence that arrived in the region as well as
476 AIV-naïve ducks born in the summer of 2022 may have also contributed to the spread of the
477 2023 H5N1 virus among the population. The success at which these viruses spread throughout
478 the population during both events may have also been aided by the time of year in which this
479 occurred. For ducks in the Northern Hemisphere, AIV infections typically peak in the fall of
480 each year [3] and the two H5N1 infection events both occurred in early winter. During this time,
481 elevated levels of antibodies present during the peak fall infection period would be waning and
482 low energy stores due to reduced food availability and colder conditions may have made birds
483 more susceptible to infection [22,50,75–77]. Additionally, increased density of birds due to
484 frozen waters may have increased the likelihood of infection during this time. Following the
485 detection of the newly introduced lineage H5N1 in early 2023, several mute swans (*Cygnus olor*)
486 and a number of American black ducks in St. John's were reported dead, while there was no
487 documented mortality of waterfowl in the region when H5N1 initially infected the population in
488 late-2021/early-2022 [37].

489 **Relationship between viral load and antibody levels**

490 Extending beyond population-scale seropositivity, we used S/N ratios as a measure of
491 antibody levels along with AIV RNA load (based on Ct values) to investigate patterns of
492 immune response over the course of infection on an individual scale. As individuals progress
493 along the course of infection and transition from the viremic to immunologic phase, viral RNA
494 decreases while antibody levels begin to increase. With substantial variations by species, virus,
495 and body condition, previous work has found that AIV shedding often peaks between 1-8 dpi and

496 lasts for 5-11 days, although some individuals may shed virus for several weeks [22–
497 25,32,50,78,79]. The period of viral shedding has also been found to decrease with more
498 frequent infections [64], and therefore there is a very small window in which ducks can be
499 caught and documented with an active infection [26].

500 After classifying individuals based on infection status, we found that recently infected
501 individuals had a range of antibody levels that matched individuals sampled closer to the date of
502 the population-wide infection and having higher levels than those infected many months prior
503 (**Fig 4**). This pattern was further clarified by examining individuals that were infected one, three,
504 and six months prior, with antibody levels in each of these groups declining significantly over
505 time. As these are wild birds, many of which were captured for the first time when sampled, we
506 are unable to determine their previous infection history. In contrast to recently infected
507 individuals, no pattern was observed with the timeline of infection and epidemiology or the
508 antibody levels for naïve or waned birds. Although age of each bird was recorded, there appeared
509 to be no differences in antibody levels for seronegative individuals, i.e., seronegative HY birds
510 did not have lower S/N ratios than AHY, SY, or ASY individuals, agreeing with previous
511 observations [50]. We did not pursue analyses by age structure or between sexes due to the
512 limited sample size of each group for each sampling event. Maternal antibodies passed into the
513 egg may have provided some protection to HY birds, at least for a short period, with one study
514 detecting AIV antibodies for up to 17 days in mallard ducklings post hatching [80]. Although we
515 currently do not know the prevalence at which maternal antibodies are found in this population,
516 the expected short persistence of such maternal antibodies is unlikely to contribute to substantial
517 protection within the population overall.

518 **Immune responses in currently infected individuals**

519 Although only nine ducks were sampled while actively shedding AIV, there was a
520 negative relationship trend for antibody levels versus viral RNA load. This pattern was further
521 supported by inclusion of additional data from seabirds in order to provide a larger dataset of
522 currently infected individuals and the relationship of increasing antibody levels with decreasing
523 viral RNA load is clear (**Fig 5B**). This is an expected immunological response and shows that
524 innate and memory immune mechanisms are quickly responding by generating antibodies as
525 individuals are clearing the infection and leaving the viral shedding phase [30]. This also allowed
526 us to infer the phase of infection at an individual level. For birds recently infected with AIV and
527 therefore already having an elevated antibody titre, their antibody level at the time of sampling
528 may also be confounded by the seroconversion occurring from their ongoing active infection [9].
529 We are unable to determine previous infection history of each individual as we are interpreting
530 this relationship as a whole population, but factors such as age, infection history, as well as
531 species-level differences would be expected to affect antibody levels on an individual scale
532 [28,29,50,65,78].

533 **Changes in serology of two recaptured ducks**

534 Based on HPAIV prevalence and epidemiology over the course of this study, it is
535 unlikely that either of the recaptured northern pintails were infected with HPAIV between the
536 two sampling points. However, the male (1196-13442) was likely infected by an LPAIV at some
537 point between the two sampling events as its antibody levels hardly changed between sampling
538 events, roughly one year apart, and it did not have elevated H5-specific antibodies (**Fig 6**,
539 Supplementary Data). Captive infection studies have shown that AIV antibodies persist for
540 several months, however antibodies have not been found to remain elevated to this degree for
541 over a year, even in older individuals [24,25,28,29,32,65]. In contrast, the second individual

542 (female, 1196-13448) seems unlikely to have been infected with an LPAIV between sampling
543 events and, despite LPAIVs being detected at Bowring Park the same day as its original
544 sampling, it was seronegative (**Fig 6**). In light of previous findings from captive infection
545 studies, even if this individual became infected soon after initial sampling, elevated antibody
546 levels would likely still have been detected when resampled approximately six months later.
547 Although these data come from only two individuals, using the combined AIV prevalence,
548 seroprevalence, and epidemiological approach helps add to our understanding of AIV dynamics
549 in wild populations. Efforts to resample individuals multiple times from locations with known
550 AIV dynamics and population movements would be of substantial interest for future studies to
551 evaluate changes in seroprevalence more thoroughly, particularly on an individual basis, and
552 how this contributes to population level immunity [30,81].

553 **Conclusions**

554 In this study we used a combined approach of screening wild birds for both active AIV
555 infection and for serum antibodies to detect past infections. These data, coupled with known bird
556 movements and epidemiology of the ongoing HPAIV outbreak, allowed a thorough investigation
557 of infection and immunological responses in an urban duck population over a period of 16
558 months following the arrival of HPAIV from Europe. This study was possible due to the known
559 bird movement and AIV history prior to the arrival of HPAIV for this primarily resident duck
560 population that could be repeatedly sampled, and adds to the growing body of literature
561 highlighting the need for more studies of AIV infection and immunity patterns in wild birds
562 [9,30]. Wildlife surveillance of infectious diseases is a critical aspect of preparedness within a
563 One Health framework and is particularly important with respect to HPAIV, which is a
564 multispecies pathogen with impacts far beyond the poultry industry.

565 **Acknowledgments**

566 The authors would like to thank all additional individuals who contributed to sampling
567 efforts including A. Bond (2014), S. Duffy (2013), K. d'Entremont (2022), D. Fifield (2011), D.
568 Fife (2023), S. Avery-Gomm (2013), A. Hedd (2023), R. Hoeg (2022), B. Kelly (2022), A.
569 Kroyer (2014), B. Montevercchi (2022), H. Munro (2014), D. Pirie-Hay (2012-2014), P. Ryan
570 (2012, 2013, 2023), K. Studholme (2022), B. Turner (2023), M. Wallace (2023), S. Wallace
571 (2023), and C. Ward (2022).

572 **Author Contributions**

573 Conceptualization: JW, GJR, ASL

574 Data Curation: JW, IR, WX

575 Formal Analysis: JW, GJR

576 Funding Acquisition: GJR, KH, ASL

577 Investigation: JW, IR, HLW, JTC, SR, GJR, RSR, WX, DZ, TNA, YB, KEH, ASL

578 Methodology: JW, IR, HLW, GJR, TA, WX, DZ, YB, ASL

579 Project Administration: JW, ASL

580 Resources: JW, IR, HLW, JTC, SR, GJR, TNA, YB, KEH, ASL

581 Software: JW

582 Supervision: ASL

583 Validation: JW

584 Visualization: JW

585 Writing – Original Draft Preparation: JW

586 Writing – Review & Editing: JW, IR, HLW, JTC, SR, GJR, RSR, WX, DZ, TNA, YB, KEH,

587 ASL

588 **References**

589 1. Hinshaw VS, Air GM, Gibbs AJ, Graves L, Prescott B, Karunakaran D. Antigenic and
590 genetic characterization of a novel hemagglutinin subtype of influenza A viruses from
591 gulls. *J Virol.* 1982;42: 865–872. doi:10.1128/jvi.42.3.865-872.1982

592 2. Lang AS, Lebarbenchon C, Ramey AM, Robertson GJ, Waldenström J, Wille M. Assessing
593 the Role of Seabirds in the Ecology of Influenza A Viruses. *Avian Diseases.* 2016;60: 378.
594 doi:10.1637/11135-050815-RegR

595 3. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM.
596 Global Patterns of Influenza A Virus in Wild Birds. *Science.* 2006;312: 384–388.
597 doi:10.1126/science.1122438

598 4. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and Ecology of
599 Influenza A Viruses. *Microbiological Reviews.* 1992;56: 152–179.
600 doi:10.1128/mr.56.1.152-179.1992

601 5. Swayne DE, Suarez DL. Highly pathogenic avian influenza. *Revue Scientifique et*
602 *Technique - Office International des Épizooties.* 2000;19: 463–482.

603 6. Gaidet N, Cappelle J, Takekawa JY, Prosser DJ, Iverson SA, Douglas DC, et al. Potential
604 spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates
605 determined from large-scale satellite telemetry: Potential dispersal of H5N1 HPAI virus by
606 wildfowl. *Journal of Applied Ecology.* 2010;47: 1147–1157. doi:10.1111/j.1365-
607 2664.2010.01845.x

608 7. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, et
609 al. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus
610 (H5N1). *Emerg Infect Dis.* 2008;14: 600–607. doi:10.3201/eid1404.071016

611 8. Luczo JM, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The pathogenesis of a
612 North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in
613 surf scoters (*Melanitta perspicillata*). *BMC Vet Res.* 2020;16: 351. doi:10.1186/s12917-
614 020-02579-x

615 9. Teitelbaum CS, Casazza ML, McDwie F, De La Cruz SEW, Overton CT, Hall LA, et al.
616 Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local
617 movement and delayed migration. *Ecosphere.* 2023;14. doi:10.1002/ecs2.4432

618 10. Caliendo V, Leijten L, van de Bildt MWG, Poen MJ, Kok A, Bestebroer T, et al. Long-Term
619 Protective Effect of Serial Infections with H5N8 Highly Pathogenic Avian Influenza Virus
620 in Wild Ducks. Subbarao K, editor. *J Virol.* 2022;96: e01233-22. doi:10.1128/jvi.01233-22

621 11. Kleyheeg E, Slaterus R, Bodewes R, Rijks JM, Spierenburg MAH, Beerens N, et al. Deaths
622 among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak,
623 the Netherlands. *Emerg Infect Dis.* 2017;23: 2050–2054. doi:10.3201/eid2312.171086

624 12. Giacinti JA, Signore AV, Jones MEB, Bourque L, Lair S, Jardine C, et al. Avian influenza
625 viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from
626 Eurasia in 2021/2022. *bioRxiv*; 2023. doi:10.1101/2023.11.23.565566

627 13. Grund C, Hoffmann D, Ulrich R, Naguib M, Schinköthe J, Hoffmann B, et al. A novel
628 European H5N8 influenza A virus has increased virulence in ducks but low zoonotic
629 potential. *Emerging Microbes & Infections*. 2018;7: 1–14. doi:10.1038/s41426-018-0130-1

630 14. Pohlmann A, King J, Fusaro A, Zecchin B, Banyard AC, Brown IH, et al. Has Epizootic
631 Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of
632 Highly Pathogenic Avian Influenza in Europe, 2021. Peiris JSM, editor. *mBio*. 2022;13:
633 e00609-22. doi:10.1128/mbio.00609-22

634 15. Ramey AM, Hill NJ, DeLiberto TJ, Gibbs SEJ, Camille Hopkins M, Lang AS, et al. Highly
635 pathogenic avian influenza is an emerging disease threat to wild birds in North America. *J
636 Wildl Manag*. 2022 [cited 10 Feb 2022]. doi:10.1002/jwmg.22171

637 16. Cattoli G, Monne I, Fusaro A, Joannis TM, Lombin LH, Aly MM, et al. Highly Pathogenic
638 Avian Influenza Virus Subtype H5N1 in Africa: A Comprehensive Phylogenetic Analysis
639 and Molecular Characterization of Isolates. Salzberg SL, editor. *PLoS ONE*. 2009;4: e4842.
640 doi:10.1371/journal.pone.0004842

641 17. Ip HS, Torchetti MK, Crespo R, Kohrs P, DeBruyn P, Mansfield KG, et al. Novel Eurasian
642 Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014.
643 *Emerg Infect Dis*. 2015;21: 886–890. doi:10.3201/eid2105.142020

644 18. Alkie TN, Cox S, Embury-Hyatt C, Stevens B, Pople N, Pybus MJ, et al. Characterization of
645 neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian
646 adaptive mutations in free-living mesocarnivores in Canada. *Emerging Microbes &
647 Infections*. 2023;12: 2186608. doi:10.1080/22221751.2023.2186608

648 19. European Food Safety Authority, European Centre for Disease Prevention and Control,
649 European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A,
650 Gonzales JL, et al. Avian influenza overview December 2022 – March 2023. EFS2.
651 2023;21. doi:10.2903/j.efsa.2023.7917

652 20. Jakobek BT, Berhane Y, Nadeau M-S, Embury-Hyatt C, Lung O, Xu W, et al. Influenza
653 A(H5N1) Virus Infections in 2 Free-Ranging Black Bears (*Ursus americanus*), Quebec,
654 Canada. Emerging Infectious Diseases. 2023;29.

655 21. Puryear W, Sawatzki K, Hill N, Foss A, Stone JJ, Doughty L, et al. Highly Pathogenic Avian
656 Influenza A(H5N1) Virus Outbreak in New England Seals, United States. Emerg Infect
657 Dis. 2023;29: 786–791. doi:10.3201/eid2904.221538

658 22. Arsnoe DM, Ip HS, Owen JC. Influence of Body Condition on Influenza A Virus Infection
659 in Mallard Ducks: Experimental Infection Data. Fouchier RAM, editor. PLoS ONE.
660 2011;6: e22633. doi:10.1371/journal.pone.0022633

661 23. Dannemiller NG, Webb CT, Wilson KR, Bentler KT, Mooers NL, Ellis JW, et al. Impact of
662 body condition on influenza A virus infection dynamics in mallards following a secondary
663 exposure. Waldenström J, editor. PLoS ONE. 2017;12: e0175757.
664 doi:10.1371/journal.pone.0175757

665 24. Fereidouni S, Starick E, Beer M, Wilking H, Kalthoff D, Grund C, et al. Highly Pathogenic
666 Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity
667 Induced by Low Pathogenic Avian Influenza Viruses. Sutherland CJ, editor. PLoS ONE.
668 2009;4: e6706. doi:10.1371/journal.pone.0006706

669 25. Jourdain E, Gunnarsson G, Wahlgren J, Latorre-Margalef N, Bröjer C, Sahlin S, et al.
670 Influenza Virus in a Natural Host, the Mallard: Experimental Infection Data. Chave J,
671 editor. PLoS ONE. 2010;5: e8935. doi:10.1371/journal.pone.0008935

672 26. Poen MJ, Verhagen JH, Manvell RJ, Brown I, Bestebroer TM, van der Vliet S, et al. Lack of
673 virological and serological evidence for continued circulation of highly pathogenic avian
674 influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January
675 2016. Eurosurveillance. 2016;21. doi:10.2807/1560-7917.ES.2016.21.38.30349

676 27. Fereidouni S, Grund C, Hauslaigner R, Lange E, Wilking H, Harder TC, et al. Dynamics of
677 Specific Antibody Responses Induced in Mallards After Infection by or Immunization with
678 Low Pathogenicity Avian Influenza Viruses. Avian Diseases. 2010;54: 79–85.
679 doi:10.1637/9005-073109-reg.1

680 28. Shriner SA, Root JJ, Ellis JW, Bentler KT, VanDalen KK, Gidlewski T, et al. Influenza A
681 virus surveillance, infection and antibody persistence in snow geese (*Anser caerulescens*).
682 Transbounding Emerging Dis. 2022;69: 742–752. doi:10.1111/tbed.14044

683 29. Verhagen JH, van der Jeugd HP, Nolet BA, Slaterus R, Kharitonov SP, de Vries PP, et al.
684 Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8)
685 virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance.
686 2015;20. doi:10.2807/1560-7917.ES2015.20.12.21069

687 30. Tolf C, Latorre-Margalef N, Wille M, Bengtsson D, Gunnarsson G, Grosbois V, et al.
688 Individual Variation in Influenza A Virus Infection Histories and Long-Term Immune

689 Responses in Mallards. Brown JD, editor. PLoS ONE. 2013;8: e61201.

690 doi:10.1371/journal.pone.0061201

691 31. Wille M, Lisovski S, Roshier D, Ferenczi M, Hoye BJ, Leen T, et al. Strong host
692 phylogenetic and ecological effects on host competency for avian influenza in Australian
693 wild birds. Proc R Soc B. 2023;290: 20222237. doi:10.1098/rspb.2022.2237

694 32. Kida H, Yanagawa R, Matsuoka Y. Duck influenza lacking evidence of disease signs and
695 immune response. Infect Immun. 1980;30: 547–553.

696 33. Berhane Y, Leith M, Embury-Hyatt C, Neufeld J, Babiuk S, Hisanaga T, et al. Studying
697 Possible Cross-Protection of Canada Geese Preexposed to North American Low
698 Pathogenicity Avian Influenza Virus Strains (H3N8, H4N6, and H5N2) Against an H5N1
699 Highly Pathogenic Avian Influenza Challenge. Avian Diseases. 2010. doi:10.1637/8841-
700 040309-Reg.1

701 34. Costa TP, Brown JD, Howerth EW, Stallknecht DE, Swayne DE. Homo- and Heterosubtypic
702 Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza
703 Virus Infection in Wood Ducks (*Aix sponsa*). Davis T, editor. PLoS ONE. 2011;6: e15987.
704 doi:10.1371/journal.pone.0015987

705 35. Koethe S, Ulrich L, Ulrich R, Ammler S, Graaf A, Harder TC, et al. Modulation of lethal
706 HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards. Emerging Microbes
707 & Infections. 2020;9: 180–193. doi:10.1080/22221751.2020.1713706

708 36. Caliendo V, Lewis NS, Pohlmann A, Baillie SR, Banyard AC, Beer M, et al. Transatlantic
709 spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North
710 America in 2021. *Sci Rep.* 2022;12: 11729. doi:10.1038/s41598-022-13447-z

711 37. CFIA NEOC GIS Services. High Pathogenicity Avian Influenza in Wildlife. 2023 [cited 24
712 Aug 2023]. Available: [https://cfia-
713 ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdb](https://cfia-ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdb)

714 38. Huang Y, Wille M, Dobbin A, Robertson GJ, Ryan P, Ojkic D, et al. A 4-year study of avian
715 influenza virus prevalence and subtype diversity in ducks of Newfoundland, Canada. *Can J
716 Microbiol.* 2013;59: 701–708. doi:10.1139/cjm-2013-0507

717 39. Huang Y, Wille M, Dobbin A, Walzthöni NM, Robertson GJ, Ojkic D, et al. Genetic
718 Structure of Avian Influenza Viruses from Ducks of the Atlantic Flyway of North America.
719 Tripp R, editor. *PLoS ONE.* 2014;9: e86999. doi:10.1371/journal.pone.0086999

720 40. Ashley EP, North NR, Petrie SA, Bailey RC. Age Determination of American Black Ducks
721 in Winter and Spring. Eadie, editor. *Wildlife Society Bulletin.* 2006;34: 1401–1410.
722 doi:10.2193/0091-7648(2006)34[1401:ADOABD]2.0.CO;2

723 41. Pyle P. *Identification Guide to North American Birds. Part II: Anatidae to Alcidae.* Bolinas,
724 California: Slate Creek Press; 2008.

725 42. eBird. *eBird: An Online Database of Bird Distribution and Abundance.* 2023.

726 43. Yang M, Berhane Y, Salo T, Li M, Hole K, Clavijo A. Development and application of
727 monoclonal antibodies against avian influenza virus nucleoprotein. *Journal of Virological
728 Methods*. 2008;147: 265–274. doi:10.1016/j.jviromet.2007.09.016

729 44. Brown JD, Stallknecht DE, Berghaus RD, Luttrell MP, Velek K, Kistler W, et al. Evaluation
730 of a Commercial Blocking Enzyme-Linked Immunosorbent Assay to Detect Avian
731 Influenza Virus Antibodies in Multiple Experimentally Infected Avian Species. *Clin
732 Vaccine Immunol*. 2009;16: 824–829. doi:10.1128/CVI.00084-09

733 45. Stallknecht DE, Kienzle-Dean C, Davis-Fields N, Jennelle CS, Bowman AS, Nolting JM, et
734 al. Limited Detection of Antibodies to Clade 2.3.4.4 A/Goose/Guangdong/1/1996 Lineage
735 Highly Pathogenic H5 Avian Influenza Virus in North American Waterfowl. *Journal of
736 Wildlife Diseases*. 2020;56: 47. doi:10.7589/2019-01-003

737 46. Hochman O, Xu W, Yang M, Yang C, Ambagala A, Rogiewicz A, et al. Development and
738 Validation of Competitive ELISA for Detection of H5 Hemagglutinin Antibodies. *Poultry*.
739 2023;2: 349–362. doi:10.3390/poultry2030026

740 47. Spackman E, editor. *Animal Influenza Virus: Methods and Protocols*. New York, NY:
741 Springer US; 2020. doi:10.1007/978-1-0716-0346-8

742 48. Ramey AM, Hill NJ, Cline T, Plancarte M, De La Cruz S, Casazza ML, et al. Surveillance
743 for highly pathogenic influenza A viruses in California during 2014–2015 provides insights
744 into viral evolutionary pathways and the spatiotemporal extent of viruses in the Pacific
745 Americas Flyway: Influenza A viruses in California during 2014–2015. *Emerging Microbes
746 & Infections*. 2017;6: 1–10. doi:10.1038/emi.2017.66

747 49. Ramey AM, Scott LC, Ahlstrom CA, Buck EJ, Williams AR, Kim Torchetti M, et al.
748 Molecular detection and characterization of highly pathogenic H5N1 clade 2.3.4.4b avian
749 influenza viruses among hunter-harvested wild birds provides evidence for three
750 independent introductions into Alaska. *Virology*. 2024;589: 109938.
751 doi:10.1016/j.virol.2023.109938

752 50. Teitelbaum CS, Ackerman JT, Hill MA, Satter JM, Casazza ML, De La Cruz SEW, et al.
753 Avian influenza antibody prevalence increases with mercury contamination in wild
754 waterfowl. *Proc R Soc B*. 2022;289: 20221312. doi:10.1098/rspb.2022.1312

755 51. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development
756 of a Real-Time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the
757 Avian H5 and H7 Hemagglutinin Subtypes. *J Clin Microbiol*. 2002;40: 3256–3260.
758 doi:10.1128/JCM.40.9.3256-3260.2002

759 52. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R
760 Foundation for Statistical Computing; 2021. Available: <https://www.R-project.org/>

761 53. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” 2020.
762 Available: <https://CRAN.R-project.org/package=cowplot>

763 54. Dowle M, Srinivasan A. data.table: Extension of `data.frame`. 2021. Available:
764 <https://CRAN.R-project.org/package=data.table>

765 55. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
766 Available: <https://ggplot2.tidyverse.org>

767 56. Wickham H, Bryan J. *readxl: Read Excel Files*. 2023. Available: <https://CRAN.R-project.org/package=readxl>

768

769 57. Diskin ER, Friedman K, Krauss S, Nolting JM, Poulsen RL, Slemons RD, et al. Subtype

770 Diversity of Influenza A Virus in North American Waterfowl: a Multidecade Study. Heise

771 MT, editor. *J Virol*. 2020;94: e02022-19. doi:10.1128/JVI.02022-19

772 58. Hollander LP, Fojtik A, Kienzle-Dean C, Davis-Fields N, Poulsen RL, Davis B, et al.

773 Prevalence of Influenza A Viruses in Ducks Sampled in Northwestern Minnesota and

774 Evidence for Predominance of H3N8 and H4N6 Subtypes in Mallards, 2007–2016. *Avian*

775 *Diseases*. 2018;63: 126. doi:10.1637/11851-041918-Reg.1

776 59. Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, et al. Influenza A

777 Viruses of Migrating Wild Aquatic Birds in North America. *Vector-Borne and Zoonotic*

778 *Diseases*. 2004;4: 177–189. doi:10.1089/vbz.2004.4.177

779 60. Sharp GB, Kawaoka Y, Wright SM, Turner B, Hinshaw V, Webster RG. Wild ducks are the

780 reservoir for only a limited number of influenza A subtypes. *Epidemiol Infect*. 1993;110:

781 161–176. doi:10.1017/S0950268800050780

782 61. Provencher JF, Wilcox AAE, Gibbs S, Howes L-A, Mallory ML, Pybus M, et al. Baiting and

783 Banding: Expert Opinion on How Bait Trapping May Influence the Occurrence of Highly

784 Pathogenic Avian Influenza (HPAI) Among Dabbling Ducks. *Journal of Wildlife Diseases*.

785 2023;59. doi:10.7589/JWD-D-22-00163

786 62. Park AW. Infectious disease in animal metapopulations: the importance of environmental
787 transmission: Infectious Disease in Animal Metapopulations. *Ecology and Evolution*.
788 2012;2: 1398–1407. doi:10.1002/ece3.257

789 63. Peck LE. Survival and Movements of American Black Ducks (*Anas rubripes*) and Mallards
790 (*Anas platyrhynchos*) Wintering in Western Nova Scotia, Canada. Acadia University. 2020.
791 Available: <https://scholar.acadiau.ca/islandora/object/theses:3482>

792 64. Hill SC, Manvell RJ, Schulenburg B, Shell W, Wikramaratna PS, Perrins C, et al. Antibody
793 responses to avian influenza viruses in wild birds broaden with age. *Proc R Soc B*.
794 2016;283: 20162159. doi:10.1098/rspb.2016.2159

795 65. Ineson KM, Hill NJ, Clark DE, MacKenzie KG, Whitney JJ, Laskaris Y, et al. Age and
796 season predict influenza A virus dynamics in urban gulls: consequences for natural hosts in
797 unnatural landscapes. *Ecological Applications*. 2022;32: e2497. doi:10.1002/eap.2497

798 66. Ramey AM, Reeves AB, Drexler JZ, Ackerman JT, De La Cruz S, Lang AS, et al. Influenza
799 A viruses remain infectious for more than seven months in northern wetlands of North
800 America. *Proc R Soc B*. 2020;287: 20201680. doi:10.1098/rspb.2020.1680

801 67. Ramey AM, Reeves AB, Lagassé BJ, Patil V, Hubbard LE, Kolpin DW, et al. Evidence for
802 interannual persistence of infectious influenza A viruses in Alaska wetlands. *Science of The
803 Total Environment*. 2022;803: 150078. doi:10.1016/j.scitotenv.2021.150078

804 68. Baldassarre G. Ducks, Geese, and Swans of North America. Johns Hopkins University Press;
805 2014.

806 69. Huang Y, Wille M, Benkaroun J, Munro H, Bond AL, Fifield DA, et al. Perpetuation and
807 reassortment of gull influenza A viruses in Atlantic North America. *Virology*. 2014;456–
808 457: 353–363. doi:10.1016/j.virol.2014.04.009

809 70. Benkaroun J, Shoham D, Kroyer ANK, Whitney H, Lang AS. Analysis of Influenza A
810 Viruses from Gulls: An Evaluation of Inter-regional Movements and Interactions with other
811 Avian and Mammalian Influenza A Viruses. Tompkins SM, editor. Cogent Biology.
812 2016;2. doi:10.1080/23312025.2016.1234957

813 71. Wille M, Robertson GJ, Whitney H, Ojkic D, Lang AS. Reassortment of American and
814 Eurasian genes in an influenza A virus isolated from a great black-backed gull (*Larus*
815 *marinus*), a species demonstrated to move between these regions. *Arch Virol*. 2011;156:
816 107–115. doi:10.1007/s00705-010-0839-1

817 72. Helin AS, Wille M, Atterby C, Järhult JD, Waldenström J, Chapman JR. A rapid and
818 transient innate immune response to avian influenza infection in mallards. *Molecular*
819 *Immunology*. 2018;95: 64–72. doi:10.1016/j.molimm.2018.01.012

820 73. Hénaux V, Samuel MD. Avian Influenza Shedding Patterns in Waterfowl: Implications for
821 Surveillance, Environmental Transmission, and Disease Spread. *Journal of Wildlife*
822 *Diseases*. 2011;47: 566–578. doi:10.7589/0090-3558-47.3.566

823 74. Van Der Goot JA, De Jong MCM, Koch G, Van Boven M. Comparison of the transmission
824 characteristics of low and high pathogenicity avian influenza A virus (H5N2). *Epidemiol*
825 *Infect*. 2003;131: 1003–1013. doi:10.1017/S0950268803001067

826 75. Moon JA, Haukos DA, Smith Lorenm. Declining Body Condition of Northern Pintails
827 Wintering in the Playa Lakes Region. *The Journal of Wildlife Management*. 2007;71: 218–
828 221. doi:10.2193/2005-596

829 76. Robb JR, Tori GM, Kroll RW. Condition Indices of Live-Trapped American Black Ducks
830 and Mallards. *The Journal of Wildlife Management*. 2001;65: 755–764.
831 doi:10.2307/3803026

832 77. Van Gils JA, Munster VJ, Radersma R, Liefhebber D, Fouchier RAM, Klaassen M.
833 Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic
834 Avian Influenza A Virus. Pizzari T, editor. *PLoS ONE*. 2007;2: e184.
835 doi:10.1371/journal.pone.0000184

836 78. Kent CM, Ramey AM, Ackerman JT, Bahl J, Bevins SN, Bowman AS, et al. Spatiotemporal
837 changes in influenza A virus prevalence among wild waterfowl inhabiting the continental
838 United States throughout the annual cycle. *Sci Rep*. 2022;12: 13083. doi:10.1038/s41598-
839 022-17396-5

840 79. Latorre-Margalef N, Gunnarsson G, Munster VJ, Fouchier RAM, Osterhaus ADME,
841 Elmberg J, et al. Effects of influenza A virus infection on migrating mallard ducks. *Proc R
842 Soc B*. 2009;276: 1029–1036. doi:10.1098/rspb.2008.1501

843 80. Dirsmith KL, Jeffrey Root J, Bentler KT, Sullivan HJ, Liebowitz AB, Petersen LH, et al.
844 Persistence of maternal antibodies to influenza A virus among captive mallards (*Anas
845 platyrhynchos*). *Arch Virol*. 2018;163: 3235–3242. doi:10.1007/s00705-018-3978-4

846 81. Staszewski V, McCoy KD, Tveraa T, Boulinier T. Interannual Dynamics of Antibody Levels
847 in Naturally Infected Long-Lived Colonial Birds. *Ecology*. 2007;88: 3183–3191.
848 doi:10.1890/07-0098.1

849

850 **Figure Legends**

851 **Fig 1.** AIV and H5-specific seropositivity in the urban duck population over time. Sampling
852 occurred in the fall and early winter months between 2011 to 2014, and then at 11 timepoints
853 through 2022-2023 during the ongoing HPAIV H5N1 outbreak. AIV seropositivity data for
854 samples from 2011-2012 were previously published [38] and the H5-specific ELISA was not
855 performed with these since they were no longer available. Only samples that were positive for
856 AIV antibodies were tested for H5-specific antibodies.

857 **Fig 2.** Changes in AIV and H5-specific seropositivity over the course of 16 months after the
858 arrival of H5N1. Sampling began on 28 January 2022 and continued until 25 April 2023. Arrows
859 above the plot correspond to AIV detections in individuals sampled at that time point, with red
860 arrows denoting when HPAIV (H5N1) was detected and blue arrows denoting LPAIV(s) was
861 detected.

862 **Fig 3.** Summary of the AIV infection and immunity timeline since arrival of HPAIV H5N1 in
863 the region.

864 **Fig 4.** Relationship between AIV RNA load and AIV antibody levels for ducks. Each point
865 represents an individual duck ($n = 76$), and colours indicate infection status. Individuals currently
866 infected were those that had detectable AIV RNA loads by RT-qPCR. Samples with low RNA
867 loads that provided expected amplification curves but that did not surpass the cycle threshold
868 value are represented as having a Ct value of 45. Recently infected individuals were classified as
869 such if they were AIV RNA-negative but had elevated antibody levels. For individuals sampled
870 soon after the population-wide infection event at the start of the outbreak, these recently infected
871 ducks are further separated as being infected one, three, or six months prior. Individuals that
872 were seronegative and had low antibody levels (high S/N ratios) were classified as being naïve or

873 that their antibodies had waned. An arrow denotes the expected immunological response shown
874 by the five currently infected individuals with Ct values < 40 , illustrating the observed trend of
875 increasing antibody levels with decreasing viral RNA load. The vertical line at an S/N ratio of
876 0.5 represents the threshold value used to classify seropositivity, with a line at 0.7 also shown as
877 the threshold occasionally used for this assay in other studies.

878 **Fig 5.** Relationship between AIV RNA load and AIV antibody levels for ducks and seabirds.
879 Each point represents an individual and colours indicate infection status. **(A)** Data from all ducks
880 ($n = 76$) from **Fig 4** are included in this plot, along with data for 100 seabirds (42 Atlantic
881 puffins, 16 black-legged kittiwakes, 28 common murres, and 14 northern gannets). Individuals
882 were classified as being currently infected, recently infected, or naïve/waned, using the same
883 classification as in **Fig 4**. An arrow denotes the expected immunological response shown by the
884 seventeen currently infected individuals, illustrating the relationship between increasing antibody
885 levels with decreasing viral RNA load. These same individuals are shown in **(B)**, where a
886 generalized additive model (GAM) was fit showing the relationship between antibody level and
887 viral RNA load, with the gray area indicating standard error of the model. The vertical lines at an
888 S/N ratio of 0.5 represent the threshold value used to classify seropositivity, with lines at 0.7 also
889 shown as the threshold occasionally used for this assay in other studies.

890 **Fig 6.** Antibody levels of two northern pintails at two timepoints. The bird with band # 1196-
891 13442 was recaptured after 375 days and the bird with band # 1196-13448 was recaptured after
892 191 days. Dotted lines connect original capture and recapture values to show the change in
893 antibody levels; these do not represent linear regressions as we do not know if or when they were
894 reinfected with AIV between the sampling events. The vertical line at an S/N ratio of 0.5

895 represents the threshold value used to classify seropositivity, with a line at 0.7 also shown as the
896 threshold occasionally used for this assay in other studies.

897

898 **Table S1.** Detailed records for samples from ducks that were used in this study. Samples from
899 the 2011-2012 period were no longer available, therefore the previously published data [38] were
900 used and are presented as only anti-NP antibody-positive or -negative.

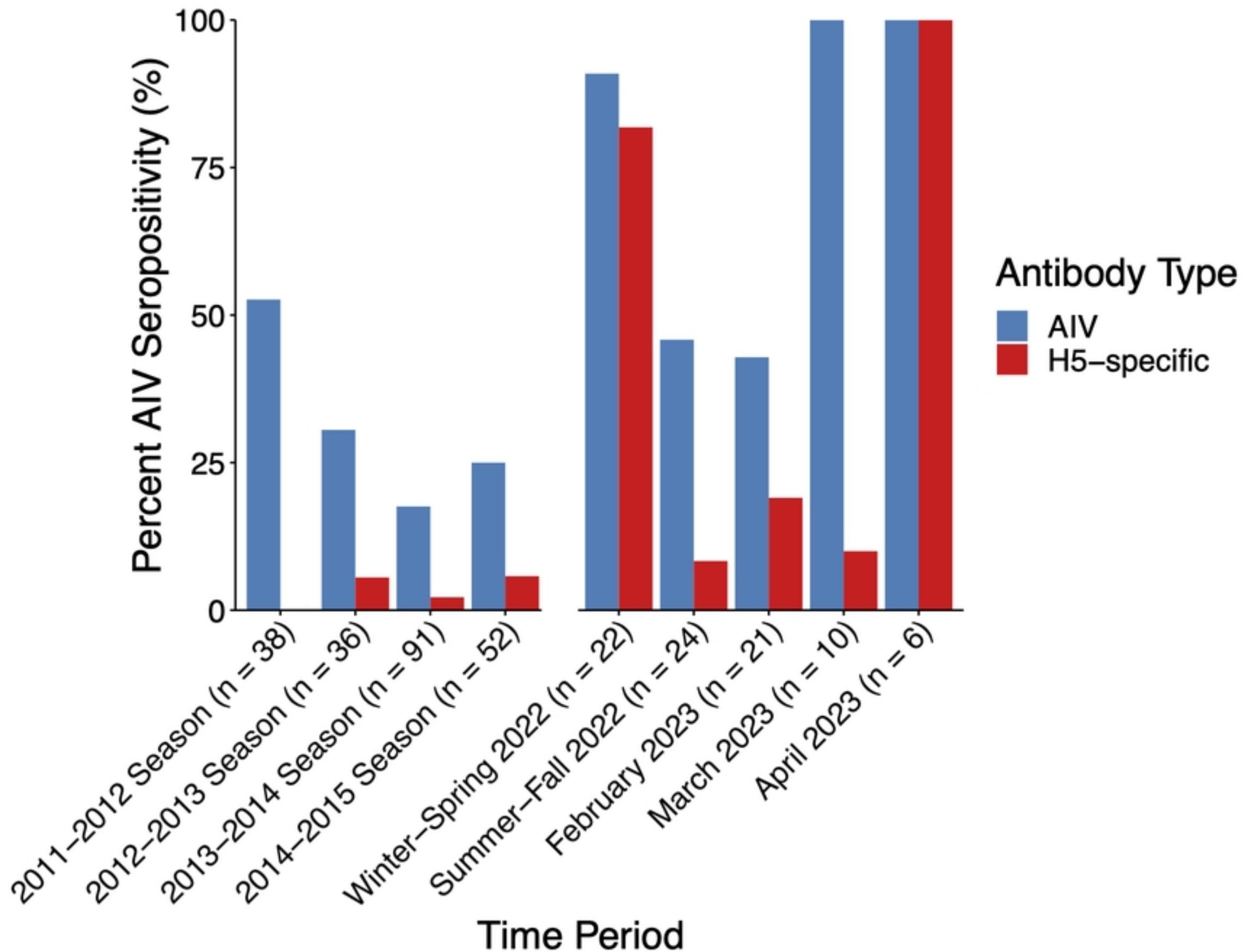


Fig1

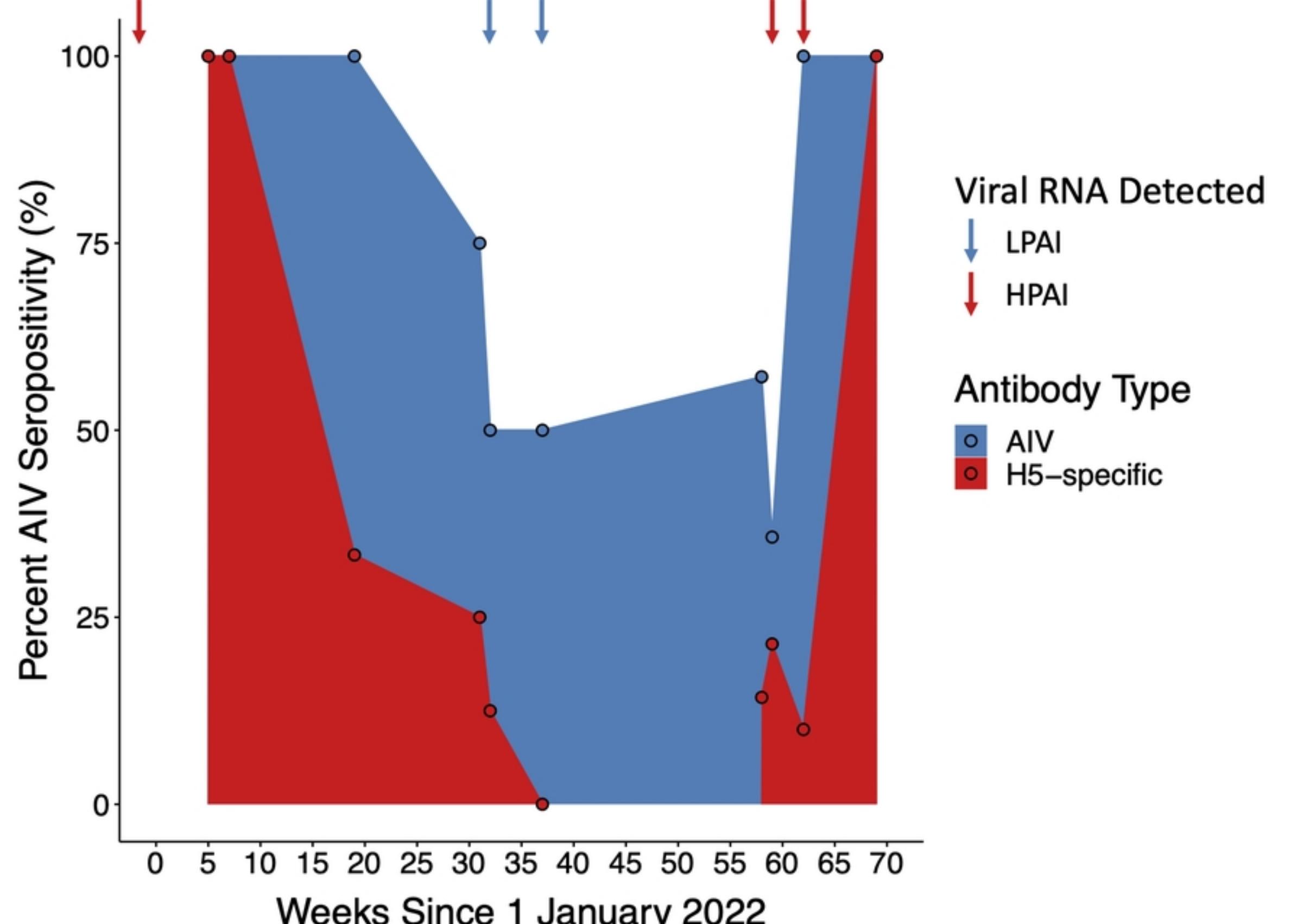


Fig2

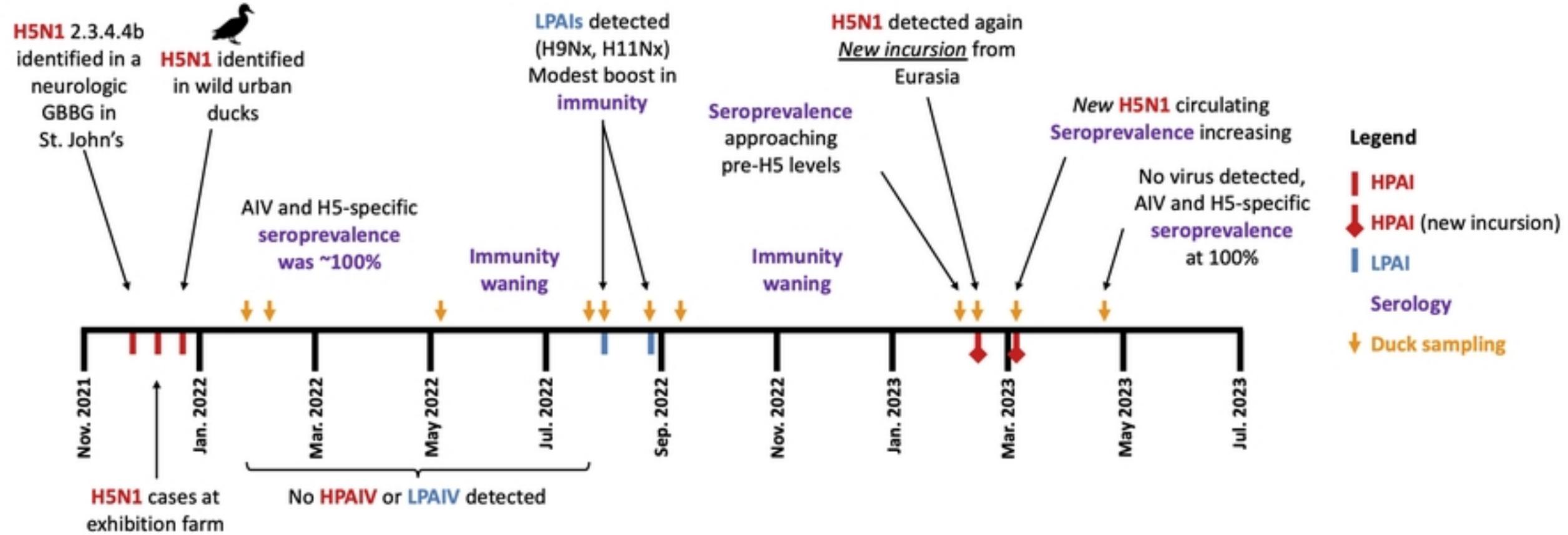


Fig3

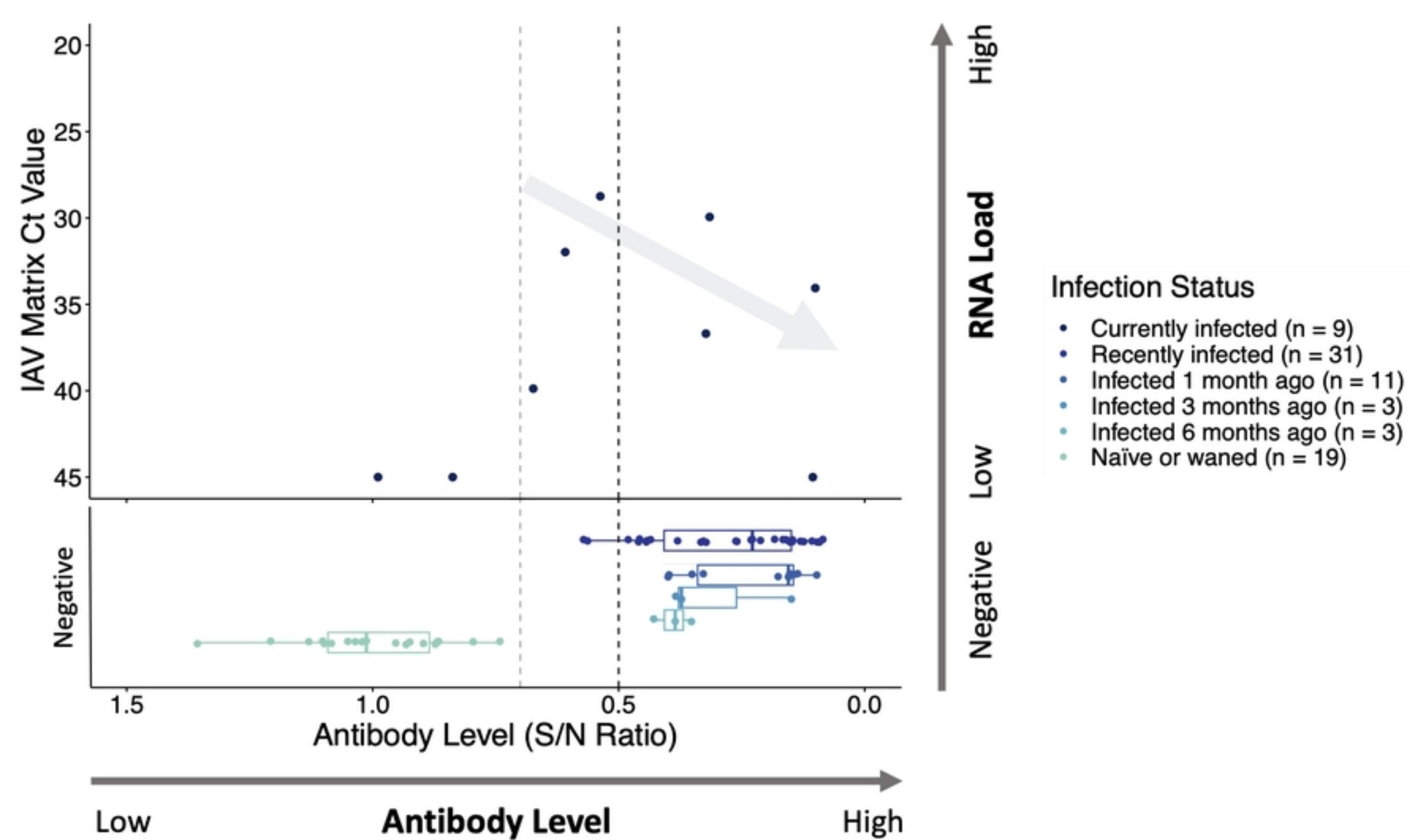


Fig4

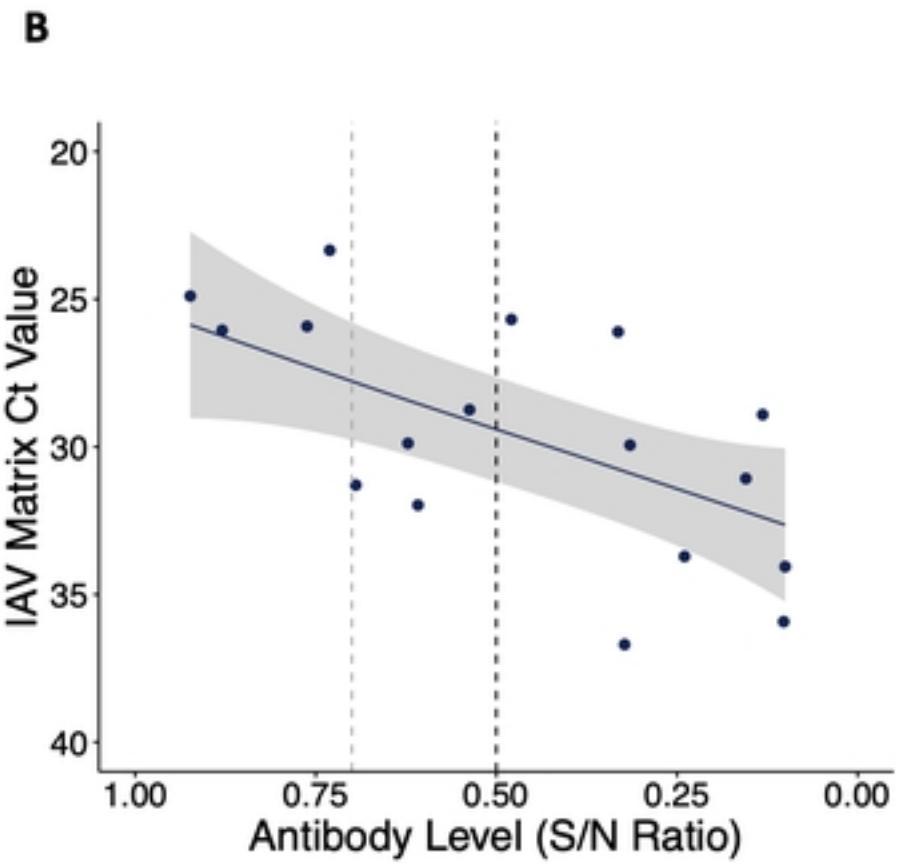
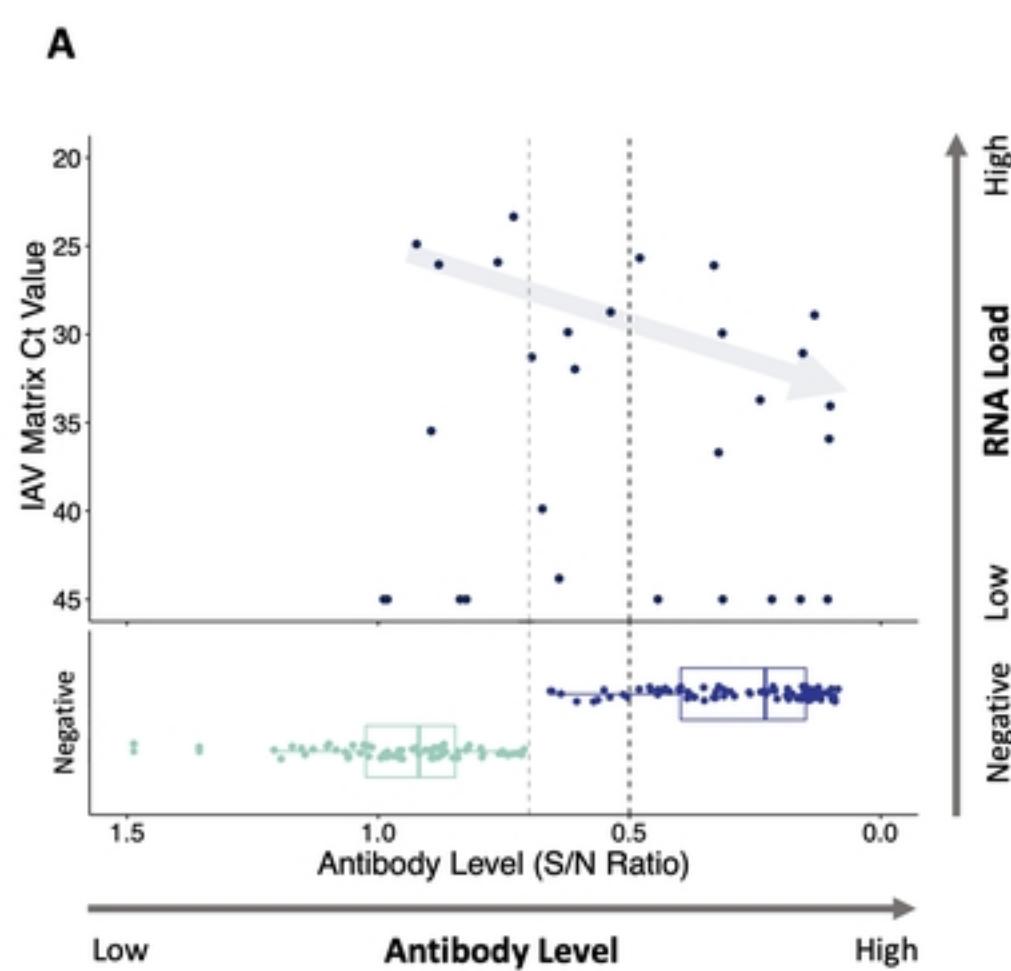



Fig5

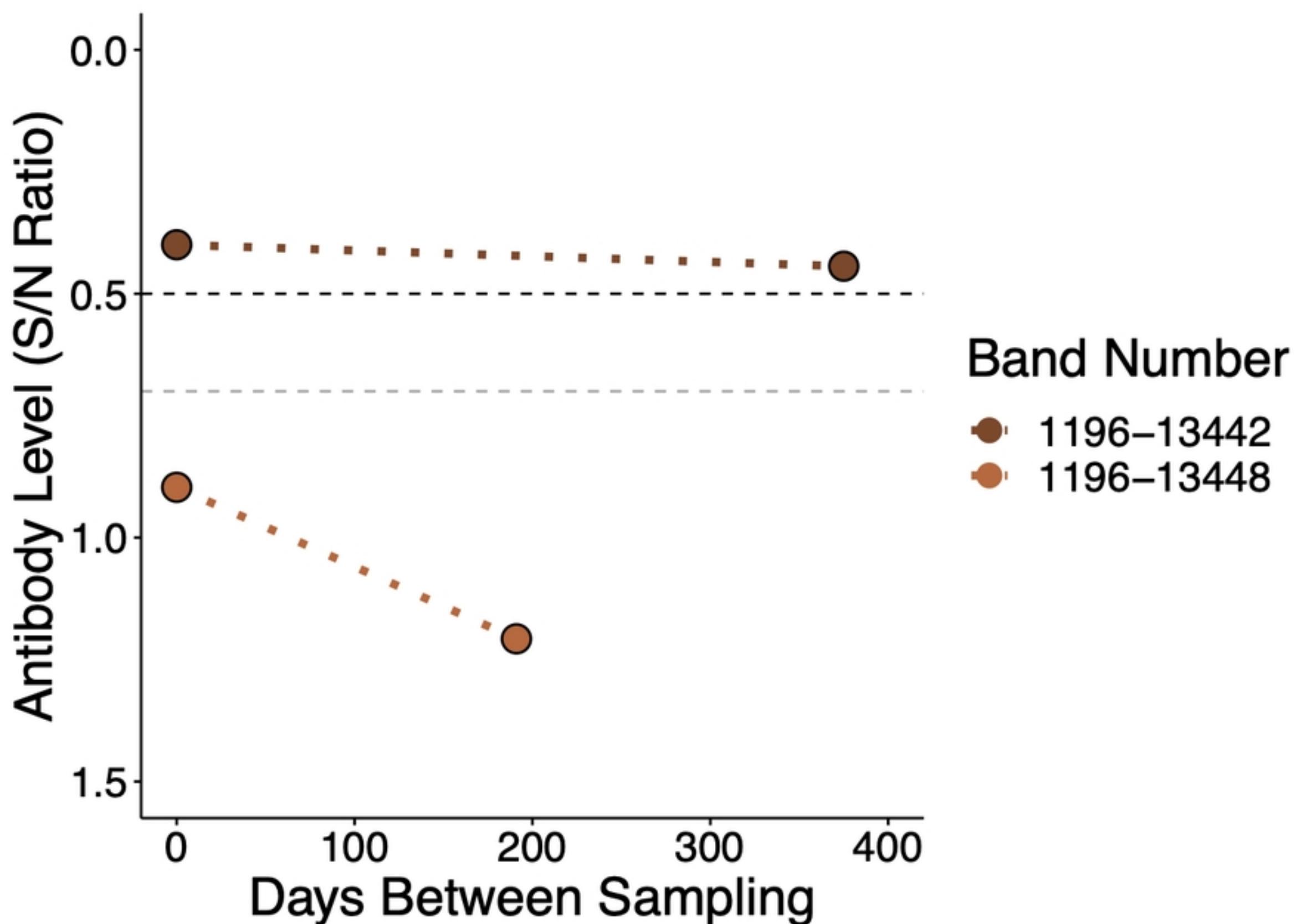


Fig6