

1 **Title**
2 **Evolution and inhibition of the FIKK effector kinase family in *P. falciparum***
3
4

5 **Affiliations**
6 Hugo Belda^{1,10#}, David Bradley^{2,3,4#}, Evangelos Christodoulou⁵, Stephanie D.
7 Nofal^{1,10}, Małgorzata Broncel¹, David Jones¹, Heledd Davies¹, M. Teresa Bertran⁶,
8 Andrew G. Purkiss⁵, Roksana W. Ogrodowicz⁵, Dhira Joshi⁷, Nicola O'Reilly⁷, Louise
9 Walport⁶, Antoine Claessens⁸, Andrew Powell⁹, David House⁹, Svend Kjaer⁵,
10 Christian R. Landry^{2,3,4}, Moritz Treeck^{1,10*}

11
12 ¹ Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute,
13 London NW1 1AT, United Kingdom

14 ² Département de biochimie, de microbiologie et de bio-informatique, Faculté des
15 sciences et de génie, Université Laval, G1V 0A6, Québec, Canada

16 ³ Institut de biologie intégrative et des systems, Université Laval, G1V 0A6, Québec,
17 Canada

18 ⁴ PROTEO, Le groupement Québécois de recherche sur la fonction, l'ingénierie et
19 les applications des protéines, Université Laval, G1V 0A6, Québec, Canada

20 ⁵ Structural Biology Science Technology Platform, The Francis Crick Institute,
21 London NW1 1AT, United Kingdom

22 ⁶ Protein-Protein Interaction Laboratory, The Francis Crick Institute, London NW1
23 1AT, United Kingdom

24 ⁷ Chemical Biology Science Technology Platform, The Francis Crick Institute,
25 London NW1 1AT, United Kingdom

26 ⁸ LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, France

27 ⁹ Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, SG1
28 2NY, United Kingdom

29 ¹⁰ Gulbenkian Institute of Science, Rua Q.ta Grande 6, Oeiras, Portugal

30 #These authors contributed equally to this work

31

32

33 **Corresponding author**

34 * to whom correspondence may be addressed. Email: mtreeck@igc.gulbenkian.pt.

35

36 **Preprint server**

37 Put preprint address

38

39 **Keywords**

40 Malaria, kinase, substrate specificity, tyrosine kinase, pan-kinase inhibitor

41

42

43

44

45

46

47

48

49

50

51 **Abstract**

52

53 Among the ~200 *Plasmodium* species that infect vertebrates, six infect humans. Of
54 these, *P. falciparum* causes >95% of all ~500,000 annual fatalities. Phylogenetically,
55 *P. falciparum* belongs to the *Laverania* subgenus, a group of *Plasmodium* species
56 that infect great apes. Common to *Laverania* species is the family of FIKK kinases.
57 One million years ago, a single FIKK kinase conserved in all *Plasmodium* species
58 gained an export element in the *Laverania* subgenus and expanded into the family of
59 ~20 atypical FIKK kinases, most of which are exported into the host cell. The *fikk*
60 genes are conserved in syntenic loci across the *Laverania*, arguing for a rapid
61 expansion controlling important functions in host cell remodelling and pathogenesis.
62 We provide evidence that the FIKK paralogues evolved specific and mutually
63 exclusive phosphorylation motif preferences, conserved across their *Laverania*
64 orthologues, in a short evolutionary timeframe. Surprisingly, we find that FIKK13 has
65 evolved exclusive tyrosine-phosphorylation preference, which was thought to be
66 absent in *Plasmodium* species. Combining a crystal structure with AlphaFold2
67 predictions, we identify residues that determine kinase-specificity within the FIKK
68 family in a fast-evolving flexible loop. Finally, we show that all expressed members of
69 the FIKK kinase family can be chemically inhibited *in vitro* using a single compound.
70 Such a pan-specific inhibitor of this kinase family important for virulence could
71 reduce the ability of the parasite to gain escape-mutations and resistance.

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99 **Introduction**

100 Malaria is caused by the infection of red blood cells (RBCs) with *Plasmodium*
101 parasites. ~200 million infections and 500,000 deaths are observed annually, with
102 severe cases occurring primarily in children under the age of 5¹. Among the 6
103 *Plasmodium* species infecting humans, *P. falciparum* causes over 95% of all
104 fatalities. This species remodels RBCs to strongly cytoadhere to the host
105 endothelium causing sequestration of infected RBCs (iRBCs), preventing passage
106 through the spleen in which iRBCs can be recognised and destroyed. While
107 benefiting the parasite, cytoadhesion can lead to severe disease through the
108 formation of blood clots in capillaries, reducing oxygen supply to highly vascularised
109 organs such as the brain, lungs, kidneys, or placenta in pregnant women.

110

111 *P. falciparum* exports ~10% of its proteome into the host cell². Exported proteins fulfil
112 a variety of functions in the iRBC³. They facilitate transport and anchoring of the
113 major cytoadhesion ligand *P. falciparum* Erythrocyte Membrane Protein 1 (*PfEMP1*)⁴
114 into parasite-derived structures underneath the erythrocyte membrane (knobs)⁵, the
115 creation of new nutrient permeability pathways in the plasma membrane^{6,7} and the
116 formation of intracytoplasmic membranous structures called Maurer's clefts that help
117 traffic parasite proteins to the host cell surface⁸.

118

119 Among the parasite exported proteins is a family of serine/threonine kinases called
120 the FIKK kinases. FIKKs are exclusive to apicomplexan parasites⁹. While most
121 *Apicomplexa* possess one non-exported FIKK kinase (FIKK8 in *P. falciparum*), gene
122 expansion in *P. falciparum* resulted in a family of 21 paralogues, including 2
123 predicted pseudogenes in the 3D7 reference genome¹⁰. All FIKK kinases, except for
124 FIKK8, are predicted to be exported into the RBC. The expanded FIKK kinase family
125 is found in all *Plasmodium* species of the *Laverania* subgenus, which includes *P.*
126 *falciparum* and *Plasmodium* species infecting great apes^{11,12}, but no other human-
127 infecting species. No *Plasmodium* species outside the *Laverania* contains predicted
128 exported kinases. 10 of the 19 active *P. falciparum* *fikk* genes are conserved in
129 syntenic loci in all *Laverania* species and all *fikk* genes are conserved in syntenic loci
130 in at least 4 of the *Laverania* species (Supplementary Table 1, data from PlasmoDB
131 (www.plasmodb.org)¹³⁻¹⁵). The minimum number of FIKK kinases present in any
132 *Laverania* species is 16, but this number may be higher because of low quality
133 genomes regions of some *Laverania* species. This indicates that *fikk* genes rapidly
134 multiplied and diversified early during *Laverania* evolution. The expansion of the
135 FIKK family was followed by a long period of stasis in terms of the *fikk* copy number,
136 suggesting that FIKK kinases individually play important roles in host-pathogen
137 interactions in *Laverania* hosts.

138

139 At least one FIKK kinase (FIKK4.1) is important for *PfEMP1* surface translocation
140 and cytoadhesion¹⁶, while FIKK4.2 is important for iRBC rigidification¹⁷. We
141 previously observed no reduction in growth upon individual conditional deletion of
142 any exported FIKK kinase¹⁶. This suggested that either exported FIKK kinases play
143 no role in growth under standard cell culture conditions, or that there is a level of
144 redundancy and compensation between FIKK kinases. While it is tempting to
145 speculate an important role for each FIKK based on their conservation across the
146 *Laverania*, redundant functions cannot be ruled out. Determining the degree of
147 redundancy between FIKK kinases is paramount to design experiments
148 understanding their functions during *P. falciparum* infections.

149

150 FIKK kinases contain a variable N-terminus that is unique to paralogues but
151 conserved within orthologous groups, and a conserved C-terminal kinase domain
152 containing the eponymous Phe-Ile-Lys-Lys (F-I-K-K) motif. FIKKs lack the glycine
153 triad involved in binding ATP^{9,18} but at least 14 FIKKs have demonstrated
154 activity^{16,17,19-26}, indicating that they coordinate ATP in a non-classical manner. The
155 unique ATP-binding pocket along with a small gate-keeper residue²⁷ found in most
156 FIKKs may provide opportunities for developing highly specific pan-FIKK inhibitors
157 that target several or all FIKKs simultaneously.

158

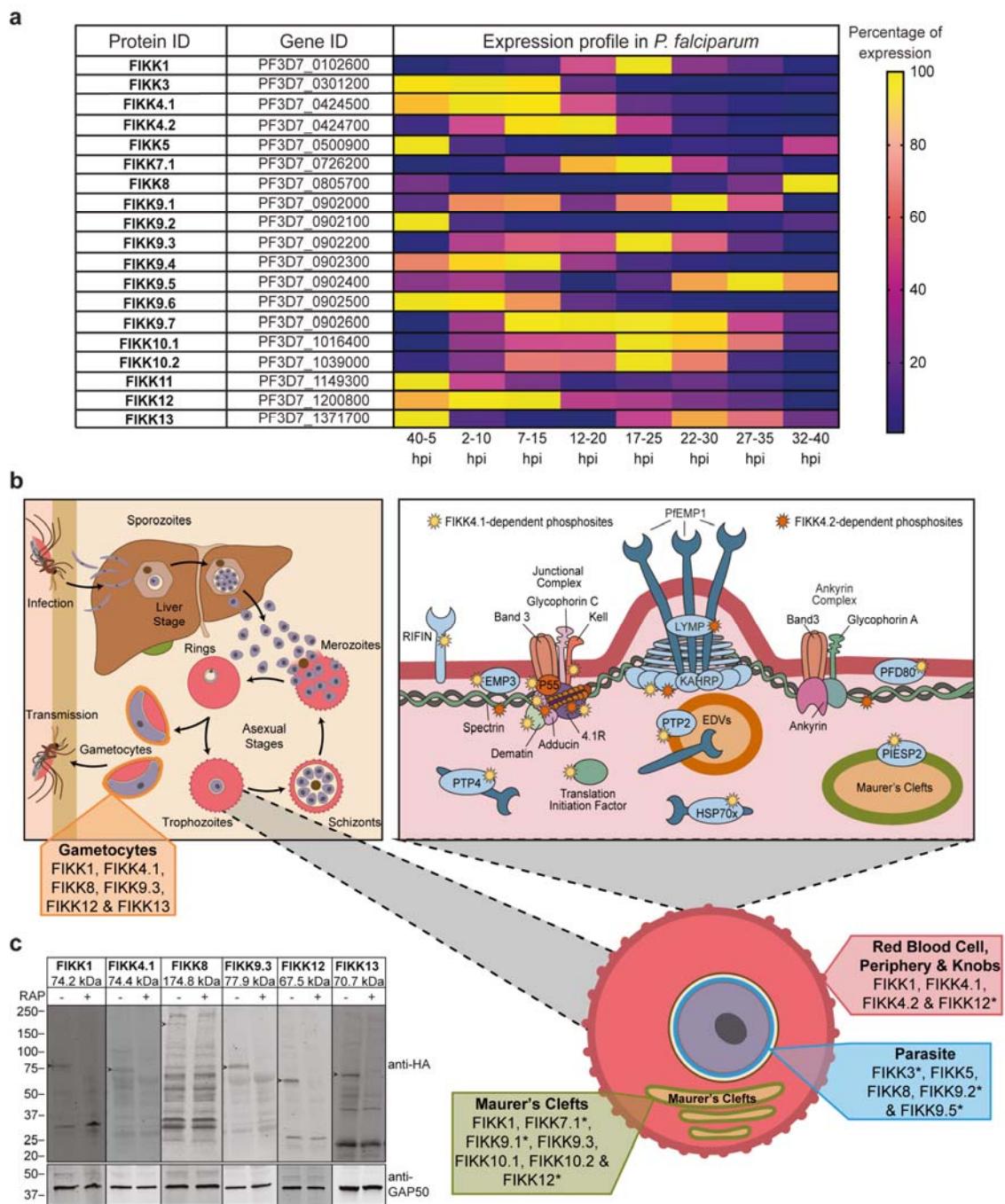
159 Here, we provide evidence that a core set of FIKKs is under strong positive selection
160 and required for human infection. Our data suggest that FIKK kinases specificity
161 underwent a rapid diversification during the expansion of the kinase family, which is
162 partly due to a fast-evolving loop in the kinase's substrate-binding region. This
163 diversification appears conserved among distantly related *Plasmodium* species,
164 suggesting evolutionary constraint linked to important functions in host-pathogen
165 interaction with great apes and humans. Finally, we demonstrate that chemical
166 inhibition of the FIKK kinases is achievable and that their highly conserved kinase
167 domain allows for the development of pan-FIKK inhibitors.

168

169 **Results**

170 **Potential overlapping and non-overlapping functions of the FIKK kinases.**

171 To identify potentially overlapping functions between FIKK kinases, we searched for
172 FIKKs that are expressed at similar timepoints and co-localize. 19 active FIKKs
173 appear to be transcribed in asexual parasite stages (Fig. 1a, Supplementary Table
174 2), although some only at very low levels. This is in line with our previous
175 observation that some FIKKs are barely detectable as HA-tagged variants¹⁶. The
176 main subcellular localisations are punctate staining in the RBC cytosol, likely
177 representing Maurer's clefts or related structures, and the RBC periphery/knobs (Fig.
178 1b). In addition to FIKK8^{16,25}, four FIKKs (FIKK9.2¹⁹, FIKK3, FIKK9.5²⁸ and FIKK5¹⁶)
179 have reported localisations within the parasite, although antibodies raised against
180 FIKK kinases have not yet been verified using available FIKK knockout lines.


181

182 Two of the 21 FIKK kinases (FIKK7.2 and FIKK14) are annotated as pseudokinases
183 in the 3D7 reference genome but not in other genetic backgrounds. This suggests
184 that some FIKKs may still be evolving and dispensable for human infections. To
185 identify other *Pf*FIKKs that may have lost functions in humans, we searched 2,085
186 available field isolate genomes for FIKK kinases with internal stop codons, or
187 deletions (Supplementary Table 3). Three *fikk* genes show internal stop codons in
188 >1% of all sequenced genomes (*fikk7.2*, *fikk9.2*, *fikk14*). 55.16% (1150/2085) and
189 2.73% (57/2085) of all field isolates contain a stop codon in *fikk7.2* or *fikk14* genes,
190 respectively. For *fikk7.2*, 93.7% (1078/1150) of mutations are identical (W413*) and
191 are equally distributed between South-East Asia (SEA) and Africa, suggesting an
192 ancient origin. In contrast, *fikk14* shows different premature stop codons throughout
193 the gene, predominantly in African isolates (94.7% (54/57)), indicating that
194 inactivating mutations in *fikk14* are not systematically eliminated by natural selection.
195 Interestingly, 11.44% (137/1197) and 12.05% (107/888) of African and SEA
196 samples, respectively, have *fikk14* deletions, so the preponderance for stop codons
197 in *fikk14* in African isolates is not observed for gene deletions (Supplementary Table
198 4). *fikk9.2* encodes an active kinase in the 3D7 reference strain, but 4.65% (97/2085)

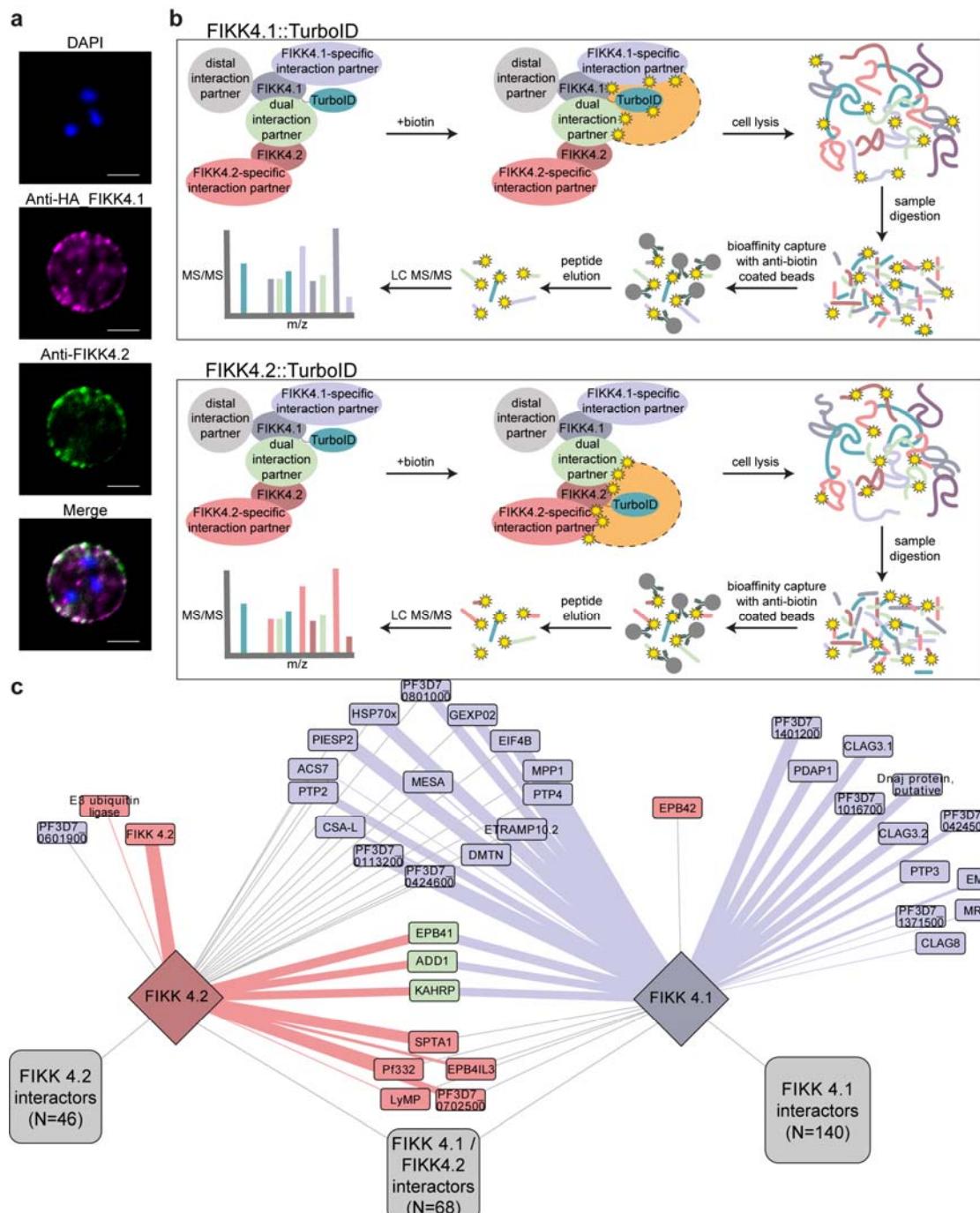
199 of the field isolate genomes contain an internal stop codon, mainly in SEA isolates
200 (86.6% (84/97)). Collectively, these data suggest that a core set of 18 FIKK kinases
201 are under purifying selection, while three FIKK kinases are under relaxed selection in
202 humans, since inactivating mutations can arise in the field. Relaxed selection could
203 come from redundancy among the FIKK kinases. Alternatively, since these kinases
204 likely evolved in the great ape-infecting ancestors of *P. falciparum*, they may have
205 fulfilled important functions which are now expendable during human infection. An
206 argument for the latter hypothesis is the observation that both *fikk7.2* and *fikk14* are
207 predicted to be functional in *P. praefalciparum*, *P. gaboni* and *P. adleri*¹².
208

209 At least 12 FIKK kinases are likely to be expressed in gametocytes²⁹, the sexual
210 stages of the parasite that develop in the RBC and are taken up by a mosquito for
211 onward transmission (Supplementary Table 5). We confirmed the expression of
212 FIKK1, FIKK4.1, FIKK8, FIKK9.3, FIKK12 and FIKK13 in stage III gametocytes using
213 HA-tagged conditional knockout lines¹⁶ (Fig. 1c). Transcriptomic data also suggest
214 that some FIKK kinases may be expressed during liver infection and/or in parasite
215 stages present in the mosquito, although this has not been experimentally tested
216 (Supplementary Table 5).
217

218 Collectively, these data suggest that some FIKK kinases are separated in time and
219 space within the iRBC and therefore likely evolved unique functions. Other FIKK
220 kinases however have similar localisations within the cell and partially overlapping
221 expression timings and could therefore have functional overlaps.

222

Fig. 1. Expression timings and localisations of *P. falciparum* FIKK kinases.


223 **a**, Heatmap built using data from Hoeijmakers *et al.*³⁰ RNA-sequencing dataset
224 available on PlasmoDB (www.PlasmoDB.org), showing % expression for each FIKK
225 kinase during the *P. falciparum* asexual replication cycle. yellow = maximum
226 expression; dark blue = minimum expression. TPM (Transcript Per kilobase Millions)
227 numbers used to calculate % expression relative to maximum expression across the
228 48h lifecycle are available in Supplementary Table 2. **b**, Diagram illustrating *P.*
229 *falciparum* FIKK kinase expression and localisations in iRBCs. Top left panel:
230 illustration of the *P. falciparum* lifecycle. FIKK1, FIKK4.1, FIKK8, FIKK9.3, FIKK12
231 and FIKK13 expressed in gametocytes are shown in orange. Bottom right panel: *P.*
232

233 *falciparum* iRBC showing the localisation of the FIKK kinases. blue: FIKK3, FIKK5,
234 FIKK8, FIKK9.2 and FIKK9.5 in the parasite; green: FIKK1, FIKK7.1, FIKK9.1,
235 FIKK9.3, FIKK10.1, FIKK10.2 and FIKK12 in Maurer's clefts; red: FIKK1, FIKK4.1,
236 FIKK4.2 and FIKK12 at the RBC periphery. “**” indicates localisation data from
237 publications from other laboratories. Top right panel: knob structure at the RBC
238 periphery. Yellow stars show FIKK4.1 substrates and orange stars show FIKK4.2
239 substrates (data from ¹⁶). **c**, Western blots confirming expression of HA-tagged *P.*
240 *falciparum* FIKK kinases in gametocytes stage III. GAP50 antibody (bottom)
241 demonstrates equal loading. Arrows show FIKK bands at expected sizes (shown in
242 the labels at the top). A “+” sign indicates rapamycin treatment.
243

244 **FIKK4.1 and FIKK4.2 have partially overlapping subcellular localisations.**

245 To test whether co-localising FIKKs partially overlap in their function, we explored
246 FIKK4.1 and FIKK4.2 in more depth. These two kinase genes are located in close
247 proximity on chromosome 4, are phylogenetically closely related (Extended Data Fig.
248 1) and originated from a gene duplication event. Both co-localise at the iRBC
249 periphery by immunofluorescence microscopy (IFA) (Fig. 2a) where they
250 phosphorylate host cytoskeleton and exported parasite proteins (Fig. 1b, top right
251 panel)¹⁶. FIKK4.1 deletion reduces PfEMP1 surface translocation by ~50%¹⁶, but this
252 is not observed upon FIKK4.2 deletion³¹. While this demonstrates that FIKK4.1
253 deletion cannot be fully compensated by FIKK4.2, a partial substrate overlap and
254 partial rescue cannot be excluded.
255

256 To gain high-resolution information on their subcellular localisation, we determined
257 their local protein environment by proximity labelling using TurboID fusion
258 proteins^{31,32} (Extended Data Fig. 2) and mass spectrometry (Fig. 2b). Proteins that
259 are found to be biotinylated by either or both FIKK::TurboID fusions were mapped
260 onto a protein network, and then overlaid with our previous data showing if they
261 could be phosphorylated by either of the two FIKKs¹⁶. 91 proteins were biotinylated
262 by FIKK4.1::TurboID and FIKK4.2::TurboID and are therefore in close spatial
263 proximity to both kinases (Fig. 2c). However, each of the two fusion proteins also
264 labels a unique subset of proteins indicating that they are not in identical locations. In
265 support of that, we found no evidence of reciprocal biotinylation of FIKK4.1- and
266 FIKK4.2::TurboID fusions (Supplementary Table 6). Phosphorylation of only three
267 proteins is dependent on both FIKK4.1 and FIKK4.2 (α -adducin, protein 4.1 and
268 KAHRP) but the phosphorylated residues are not overlapping. Phosphorylation of all
269 other proteins in proximity of both kinases is exclusively dependent on only one of
270 the two kinases. These data suggest that FIKK4.1 and FIKK4.2 are located in very
271 close, but not direct proximity and evolved to phosphorylate different targets.

272

273

Fig. 2. Investigation of FIKK4.1 and FIKK4.2 local protein environment.

274

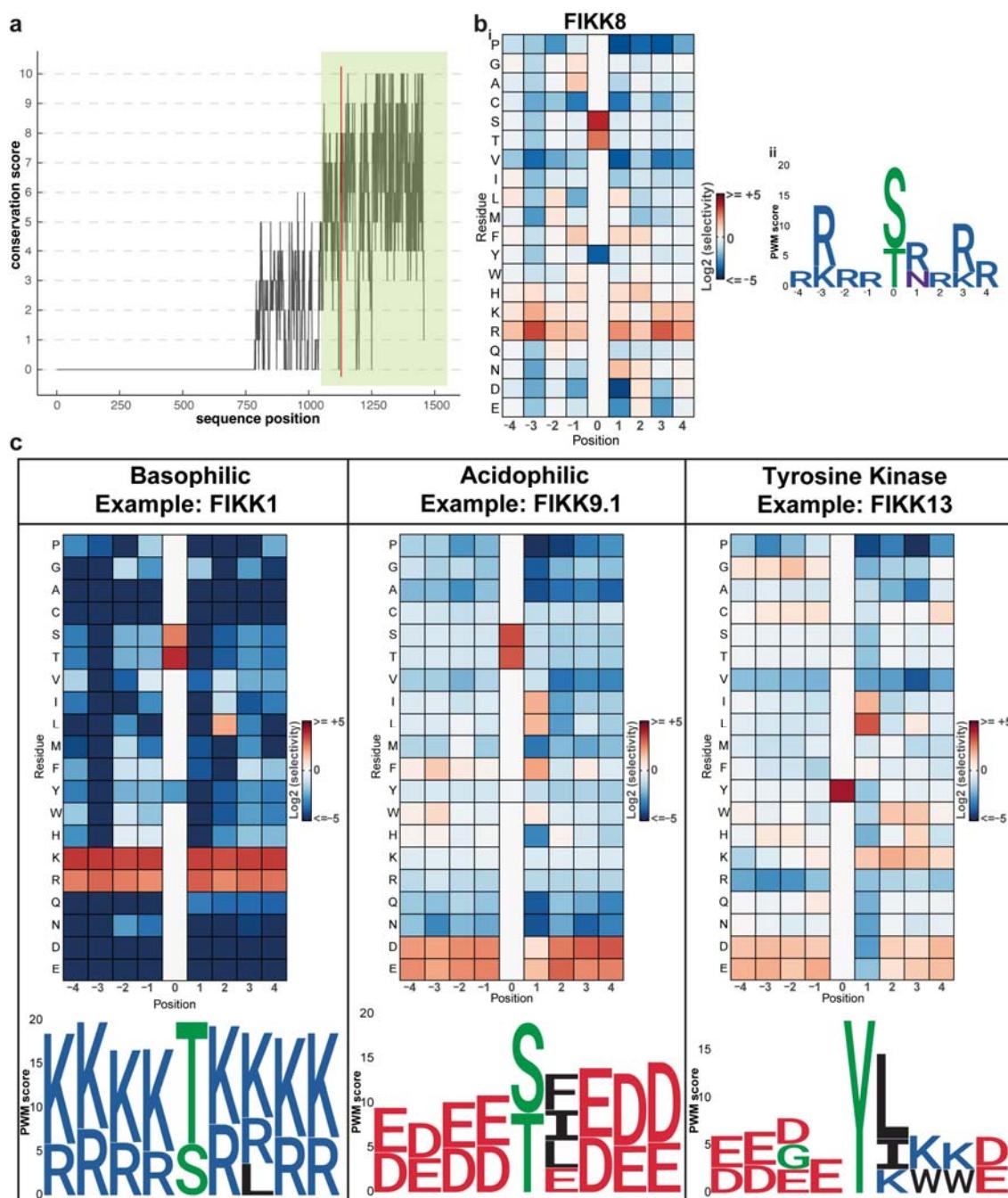
275

276 **a**, Subcellular localisation of FIKK4.1 and FIKK4.2 investigated by
277 immunofluorescence analysis using anti-HA antibodies (magenta) targeting the C-
278 terminally HA-tagged FIKK4.1 and anti-FIKK4.2 antibodies (green). DAPI (blue)
279 is used for nuclear staining. Scale bar = 5 μ m. **b**, Diagram representing the proximity
280 labelling workflow. FIKK4.1 (top panel) and FIKK4.2 (bottom panel) were tagged with
281 a TurboID biotin ligase. Upon addition of biotin, proteins in the vicinity (represented
282 by an orange area with dashed outline) of the bait are biotinylated on lysine residues
represented by yellow stars). iRBCs were lysed in 8M Urea in 50mM HEPES and
proteins were Trypsin-digested into peptides. Biotinylated peptides were enriched

283 using beads coated with two different anti-biotin antibodies and analysed by LC-
284 MS/MS. **c**, Network analysis of FIKK4.1 and FIKK4.2::TurboID data. Connecting
285 lines indicate a protein that is likely in the vicinity of the TurboID-tagged protein. Blue
286 depicts proteins that have been identified as potential FIKK4.1 direct targets in ¹⁶.
287 Red depicts proteins that have been identified as potential FIKK4.2 direct targets and
288 green depicts proteins that have been identified as potential targets of both FIKK4.1
289 and FIKK4.2. Thickness of the connection represents how well the phosphorylation
290 site matches the corresponding *in vitro* preferred phosphorylation motifs (of FIKK4.1
291 or FIKK4.2) from Extended Data Fig. 3 and 4.

292

293 **FIKK kinases evolved unique phosphorylation motifs.**

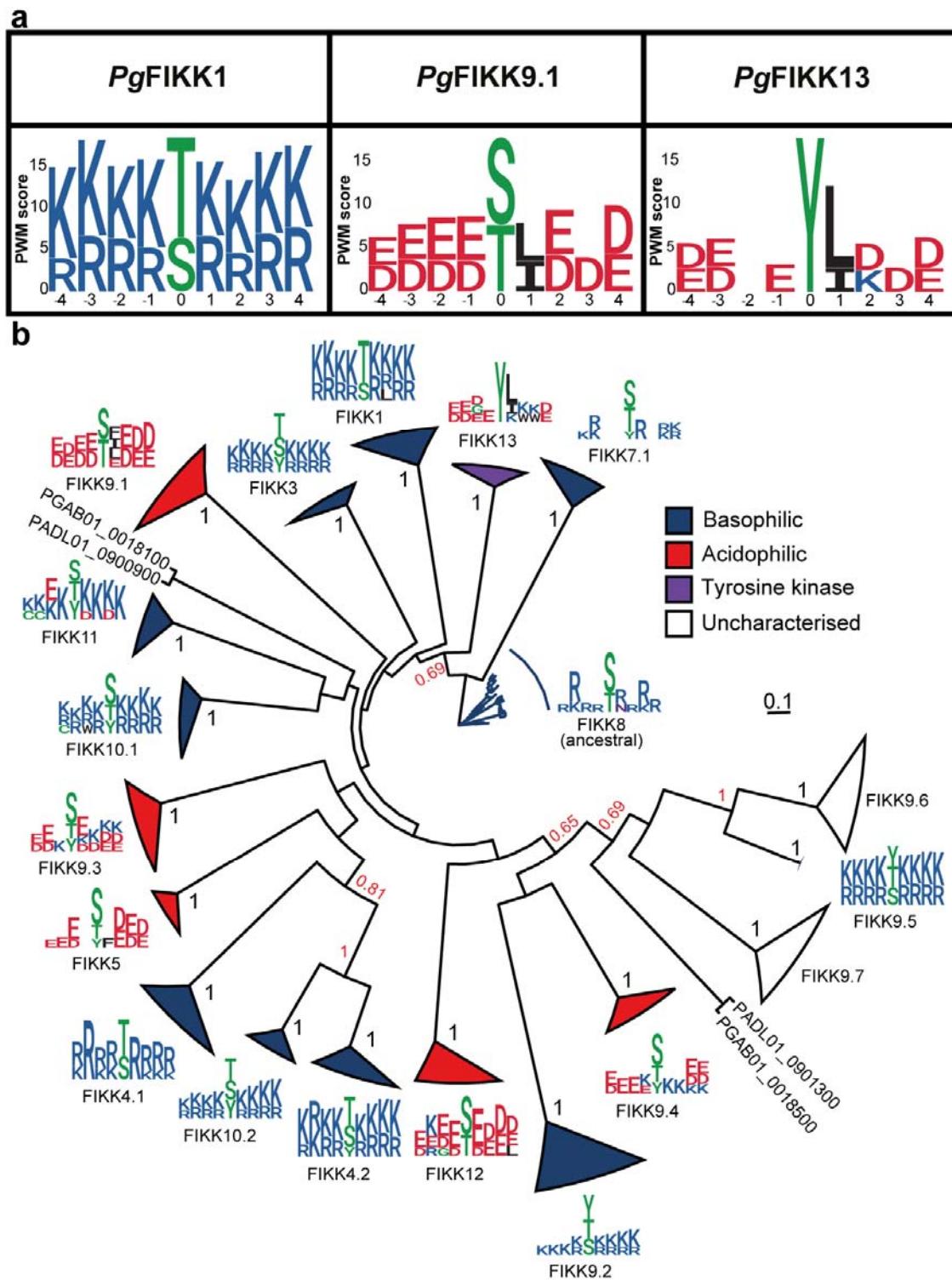

294 To gain insights into how FIKK kinases may have evolved to phosphorylate specific
295 targets we determined their preferred phosphorylation motifs. Most eukaryotic
296 protein kinases preferentially phosphorylate S, T, or Y residues within a specific
297 amino acid sequence context (motif). These motifs are broadly classified into acidic,
298 basic, or proline-directed³⁴. *P. falciparum* kinases phosphorylate S and T residues
299 within acidic and basic motifs. Phosphorylated Y residues and proline-directed motifs
300 are rarely found³⁵ and predicted tyrosine kinases are lacking from the genome.

301 We attempted to recombinantly express the kinase domains of all predicted active
302 *Pf*FIKKs (Fig. 3a) (Extended Data Fig. 3, 4 and Supplementary Table 7) and
303 assessed substrate specificity on S, T and Y residues using OPAL libraries (Oriented
304 Peptide Array Library)³⁶. Of the 19 FIKKs, only FIKK9.6 and FIKK9.7 were refractory
305 to bacterial expression.

306 As previously reported²², FIKK8, which likely represents the closest relative to the
307 ancestral kinase from which all FIKKs evolved in the *Laverania*, shows a preference
308 for basic residues (Fig. 3b_i, Extended Data Fig. 5). Position Weight Matrices (PWMs)
309 indicate especially strong preference for arginine and/or lysine residues in position P-
310 3 and P+3 (Fig. 3b_{ii}). Eleven FIKKs prefer basic and positively charged amino acids
311 surrounding the phosphorylated residue, while five FIKKs favour acidic motifs (Fig.
312 3c, Extended Data Fig. 6, 7). Within both groups, nuanced preferences emerge.
313 FIKK1 strongly prefers a hydrophobic residue in the P+2 position, distinguishing it
314 from other FIKK kinases. FIKK9.3 and FIKK9.4 show a mix of basic and acidic
315 residues in the motif; here assignment to a group was based on the dominant
316 charge.

317 Interestingly, we observed several FIKKs that phosphorylate peptides with a central
318 Y. For some of these (FIKK5, FIKK8, FIKK9.1 or FIKK12) S/T residues in the
319 flanking regions of the central Y may explain the signal, while others (FIKK3,
320 FIKK4.2, FIKK9.2, FIKK9.3, FIKK9.4, FIKK9.5 and FIKK11) exhibited dual specificity.
321 FIKK13 showed exclusively Y phosphorylation activity (Fig. 3c). This is a surprising
322 result considering the absence of known *bona-fide* tyrosine kinases in *Plasmodium*
323 or indeed any *Apicomplexa*³⁷. This result suggests that FIKK13 has evolved from a
324 S/T kinase into a tyrosine kinase, potentially to interact with specific host-cell
325 proteins. To validate this result, we screened a DNA-encoded cyclic peptide library
326 (RaPID selection, Extended Data Fig. 9a)³⁸⁻⁴¹ and enriched four cyclic peptides that
327 bind to FIKK13 (FIKK13_2 $K_D=310\pm290\text{nM}$, FIKK13_3 $K_D=7\pm5\text{nM}$, FIKK13_4
328 $K_D=17\pm0.4\text{nM}$ and FIKK13_5 $K_D=120\pm156\text{nM}$) (Extended Data Fig. 9b and
329 Supplementary Table 8). One peptide (FIKK13_4: cyclic-d(Y)PLRFLSKYHC(S)-G-
330 CONH₂) was identified as an *in vitro* substrate for FIKK13 and phosphorylation
331 depended on the tyrosine residue (Extended Data Fig. 9c, d). This further supports
332 FIKK13 function as a tyrosine kinase.

333 In summary, FIKK kinases evolved divergent substrate specificities from a basophilic
 334 ancestor, thereby expanding the repertoire of proteins the parasite can regulate. The
 335 motif diversity of the FIKK kinases highlights the rapid evolution of this relatively
 336 young protein family¹⁴, likely due to selection pressure to subvert the host machinery.
 337 This contrasts with ancient kinase families such as CK1, MAPK or PKA kinases that
 338 possess more highly conserved phosphorylation motifs⁴²⁻⁴⁵.
 339


340
 341 **Fig. 3. FIKK kinases substrate specificities investigated with random peptide**
 342 **libraries.**

343 **a**, Amino acid sequence conservation in *P. falciparum* FIKK kinases was assessed
 344 using the PRALINE Multiple Sequence Alignment Software⁴⁶. Conservation values

345 reflect the normalised average of BLOSUM62 scores for each alignment column and
346 range from 0 (low conservation) to 10 (high conservation). Sequence position is with
347 respect to *P. falciparum* FIKK8 as the reference sequence. Green shading illustrates
348 the FIKK kinase domain. The eponymous F-I-K-K motif is represented in red. **b_i**,
349 Extended Data Fig. 5 data represented as a heatmap. ^{32}P incorporation values were
350 normalised to 20 (number of possible natural amino acids) and are shown as Log2(x)
351 where negative values (blue cells) indicate disfavoured amino acids and positive
352 values (red cells) indicate favoured amino acids. **b_{ii}**, PWM logo generated with
353 FIKK8 raw OPAL data. PWMs depict the preference of the kinase for all 20 amino
354 acids at every substrate position. For ease of visualisation, the PWM logo displays
355 amino acids with scores above an arbitrary threshold of 2.5 (see Material and
356 Methods). Amino acid colours are set as: Acidic negatively charged (D, E) Red;
357 Basic positively charged (R, K, H) Blue; Polar uncharged (N, Q) Purple; Nonpolar (A,
358 I, L, M, F, V, P) Black; Phosphorylatable or Special (S, T, Y, C, G) Green. **c**, Heat
359 map representation of OPAL data for basophilic FIKK1 (left panel), acidophilic
360 FIKK9.1 (middle panel) and tyrosine kinase FIKK13 (right panel). PWM logos
361 generated from raw OPAL data are displayed below the corresponding heatmaps.
362 OPAL membrane images are available in Extended Data Fig. 8.

363 **FIKK phosphorylation motifs are conserved in distantly related *Laverania*
364 species.**

365 To further confirm the specificity of FIKK13 for tyrosine residues, we expressed its
366 orthologue from *P. gaboni*, the most distantly related *Laverania* species to *P.*
367 *falciparum*, which is estimated to have diverged ~1 million years ago. If *PgFIKK13* is
368 evolving under purifying selection against changes to specificity, it should possess a
369 similar tyrosine-based preferred phosphorylation motif. We also expressed *PgFIKK1*
370 and *PgFIKK9.1* as examples of a basophilic and acidophilic kinases, to test whether
371 the preferences for charges are retained. Strikingly, the motifs of the *P. falciparum*
372 FIKKs are nearly identical to their *P. gaboni* orthologues (Fig. 4a, Extended Data Fig.
373 10). FIKK kinase orthologues are more similar between species than paralogues
374 within the same species (Fig. 4b). Considering the strong motif preference observed
375 for *Pf* and *Pg* FIKK1, 9.1 and 13, this suggests that FIKK kinase substrate specificity
376 is probably conserved across all *Laverania* species. The analysis also shows almost
377 equal divergence between FIKK paralogues in terms of their sequence identity
378 (Extended Data Fig. 11). Therefore, in most cases, the precise evolutionary
379 relationship between paralogues cannot be resolved with confidence, in agreement
380 with the rapid and early diversification of the FIKK kinase family. Exceptions are the
381 pair of recent paralogues FIKK9.5 and FIKK9.6, and the FIKK4.1-FIKK4.2-FIKK10.2
382 clade that are both predicted with high confidence (Fig. 4b, Extended Data Fig. 11).
383 Together with the broad diversity of preferred phosphorylation motifs and their deep
384 conservation between orthologues, it appears that the ancestor to FIKK8 rapidly
385 diversified into the 16+ exported copies that we see in the *Laverania* subgenus.

386

387

388

Fig. 4. FIKK kinases substrate specificities are conserved among *Laverania* species.

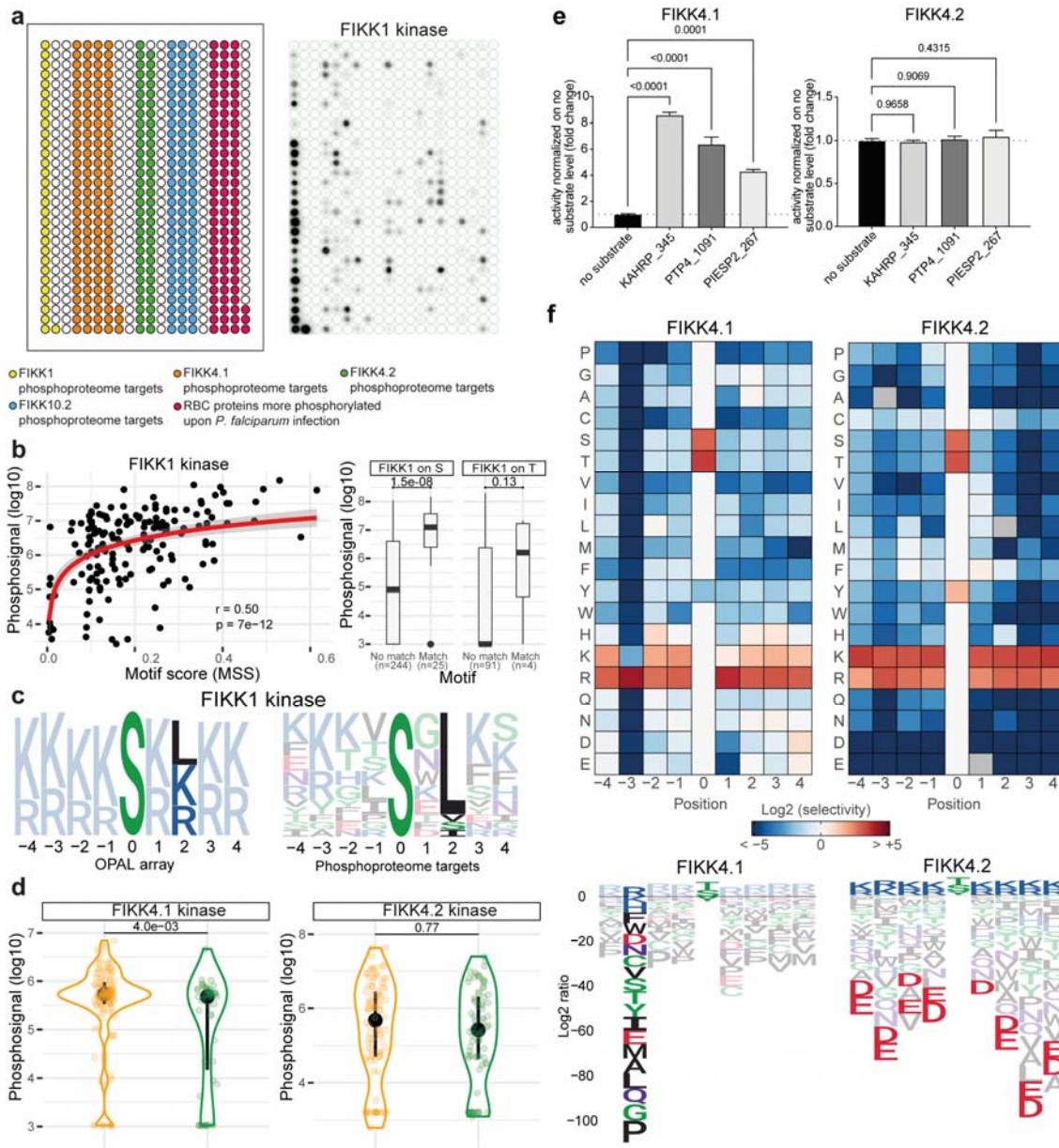
389

390

391

392

a, PWM logo generated with *PgFIKKs* raw OPAL data. See Fig. 3 caption. b, Maximum-likelihood phylogenetic tree of *Laverania* FIKK kinase sequences built using FIKK8 kinases and two avian malaria FIKK kinases (*P. relictum* FIKK kinase PRELSG_0112400 and *P. gallinaceum* FIKK kinase PGAL8A_00108200) as an


393 outgroup. 100 bootstrap replicates were generated to assess branch support⁵⁰. All
394 orthologue clades have maximum branch support (1 out of 1). Branches between
395 paralogues are highlighted in red if they are > 0.5. Triangle length represents the
396 divergence between FIKK kinase sequences within a specific clade. Colour code
397 identifies the kinases substrate specificities as follows, blue = basophilic, red =
398 acidophilic, purple = tyrosine kinase, white = uncharacterised. Sequence logos for
399 each clade are given for the *P. falciparum* kinase copy.
400

401 **Divergent substrate motifs between FIKK kinases in similar subcellular
402 localisations allow distinct regulation of targets.**

403 FIKK1, FIKK4.1 and FIKK4.2, which all localise to the RBC periphery (Fig. 1), share
404 a basic preferred phosphorylation motif, although the specificity maps differ slightly.
405 FIKK1 prefers a hydrophobic leucine residue in the P+2 position, while FIKK4.1 has
406 a strong preference for an arginine residue in the P-3 position (Fig. 3, Extended Data
407 Fig. 6).

408 To test whether the *in vitro* phosphorylation motifs identified here match the targets
409 we previously identified by conditional FIKK deletion and phosphoproteomics in cell
410 culture¹⁶, we performed activity assays on membranes containing 215 peptides
411 predicted to be targets of FIKK1, FIKK4.1 and FIKK4.2. We also included 89
412 peptides that are targeted by FIKK10.2, a basophilic FIKK kinase which localises to
413 the Maurer's clefts, and 93 peptides from host cell proteins found to be more
414 phosphorylated upon *P. falciparum* infection (Fig. 5a) (see Supplementary Table 9
415 for peptides sequences). The membranes were incubated with either recombinant
416 FIKK1, FIKK4.1, FIKK4.2 or FIKK10.2 kinase domains and [γ -32P]-ATP (Fig. 5a,
417 Extended Data Fig. 12a). Phosphorylation motifs from the OPAL libraries of
418 randomised peptides largely correspond to the motifs of natural peptides that are
419 strongly phosphorylated in this assay (Fig. 5b, Extended Data Fig. 12b). This is
420 shown in Fig. 5c for FIKK1 where its basophilicity is confirmed and highly
421 phosphorylated peptides feature a leucine at the P+2 position – a FIKK1 signature –
422 making it the most highly specific kinase from this dataset.

423 FIKK4.1 strongly phosphorylates FIKK4.1 target peptides, while FIKK4.2 cannot
424 clearly discriminate between FIKK4.1 and FIKK4.2 substrates (Fig. 5d). However,
425 three peptides previously identified as FIKK4.1 substrates¹⁶ (KAHRP_345:
426 GSRYSSFSSVN, PTP4_1091: HTRSMSVANTK and PIESP2_267: EIRQESRTLIL)
427 are exclusively phosphorylated by FIKK4.1 but not FIKK4.2 (Fig. 5e). Analysing
428 disfavoured amino acids in the OPAL libraries data (Extended Data Fig. 13) reveals
429 a notable difference between FIKK4.1 and FIKK4.2, with FIKK4.2 disfavouring
430 negatively charged amino acids, whereas FIKK4.1 can accommodate more variety,
431 except in position P-3 (Fig. 5f). This aligns with FIKK4.1's strong arginine preference
432 at P-3, a specificity determinant present in all three peptides tested in Fig. 5d.
433 Collectively, these data show that the FIKK kinases evolved distinct phosphorylation
434 motifs allowing the specific regulation of targets in specific subcellular contexts.

435

436

Fig. 5. Investigation of FIKK1, FIKK4.1 and FIKK4.2 substrate specificities

437

438

membrane. Each dot is filled with only one peptide species. Yellow, peptides corresponding to FIKK1 targets; Orange, peptides corresponding to FIKK4.1 targets; Green, peptides corresponding to FIKK4.2 targets; Blue, peptides corresponding to FIKK10.2 targets; Red, peptides corresponding to host cell proteins found more phosphorylated upon infection by *P. falciparum*. See Supplementary Table 9 for a full list of peptides with sequences. Right: Activity of FIKK1 kinase against the phosphoproteome peptides membrane. **b**, Left: correlation of FIKK1 kinase activity on the phosphoproteome peptide membrane (log10-transformed) against the FIKK1 motif score (matrix similarity score) for each peptide ($n=163$). Pearson's correlation for the $y = \log(x)$ curve. Right: Difference in FIKK1 phosphorylation signal (log10-transformed) between peptides without or with a match to the FIKK1 motif, for peptides with an S ($n=269$, Cohen's D = 1.2, $p=1.5e-08$, Wilcoxon test, one-sided) or

439

440

441

442

443

444

445

446

447

448

449

450 T phosphoacceptor (n=95, Cohen's D = 0.57, p=0.13, Wilcoxon test, one-sided). **c**,
451 Left: specificity logo of FIKK1 kinase for favoured amino acids, derived from the
452 randomised OPAL peptides. Right: FIKK1 specificity logo derived from natural
453 peptides that are phosphorylated by FIKK1 above background levels on the peptide
454 membrane. **d**, Left: FIKK4.1 kinase activity (log10-transformed) against predicted
455 target peptides of FIKK4.1 (orange) and of FIKK4.2 (green) (n=174, Cohen's D =
456 0.57, p=4.0e-03, Wilcoxon test, one-sided). Right: FIKK4.2 kinase activity (log10-
457 transformed) against predicted target peptides of FIKK4.1 (orange) and of FIKK4.2
458 (green) (n=174, Cohen's D = 0.10, p=0.77, Wilcoxon test, one-sided). **e**,
459 Recombinant FIKK4.1 and FIKK4.2 kinase domains activity on substrates
460 KAHRP_345, PTP4_1091 and PIESP2_267. The results are represented as the
461 mean \pm SEM fold change compared with the no substrate luminescent signal obtained
462 using the ADP-Glo assay. Statistical significance was determined using a one-way
463 ANOVA followed by Dunnett's multiple comparison post-test. **f**, PWM logos for
464 FIKK4.1 and FIKK4.2 made using data from Extended Data Fig. 3. Here, values are
465 Log2 transformed so that a positive value depicts favoured amino acids and a
466 negative value depicts disfavoured amino acids. See Fig. 3 caption for colour code.
467 See Extended Data Fig. 13 for Log2 transformed PWM logos for all recombinant
468 FIKK kinases tested.
469

470 **FIKK kinase domain crystal structure informs on specificity determinant 471 residues.**

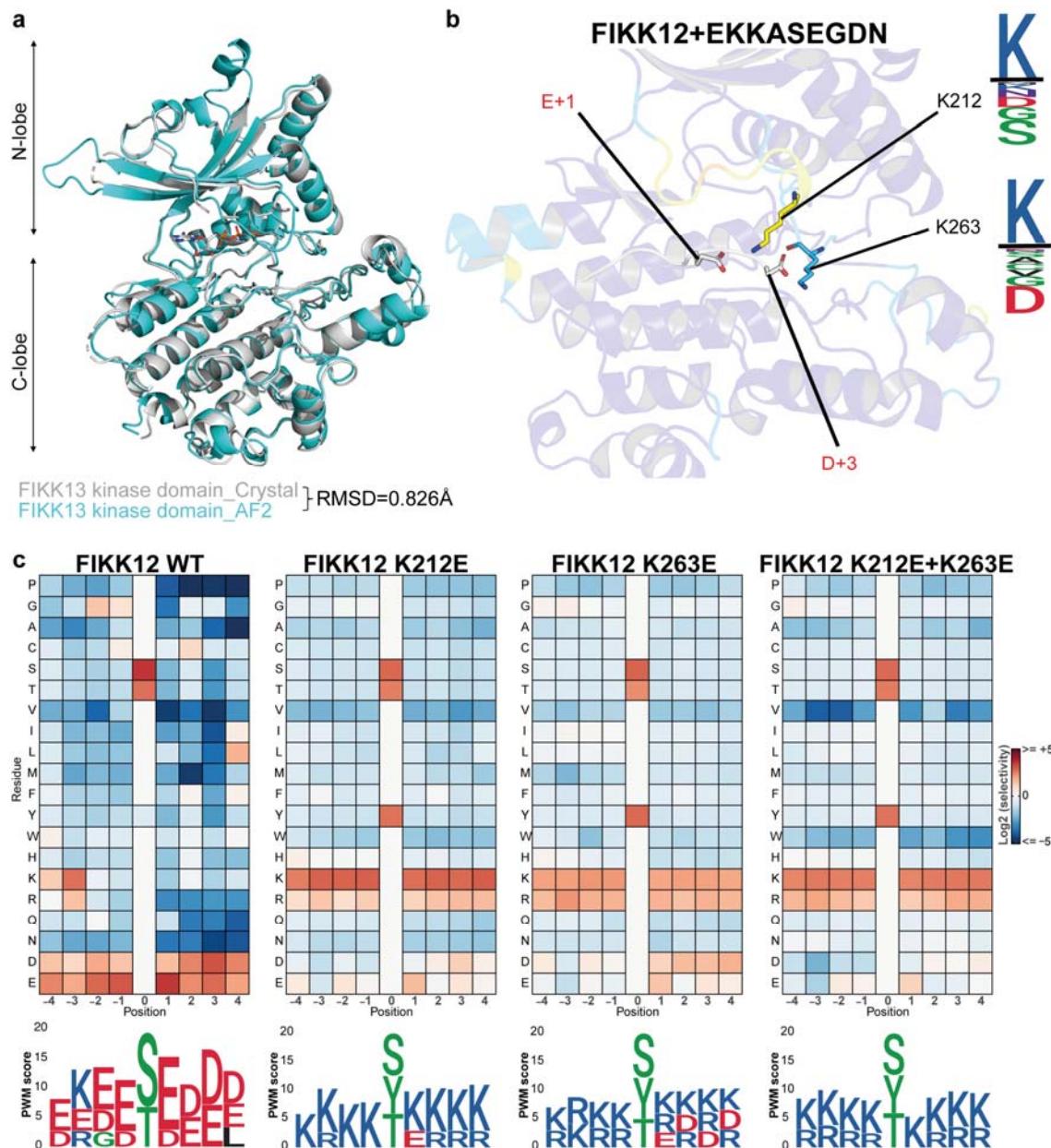
472 We determined the crystal structure of the kinase domain of FIKK13 harbouring a
473 mutation of the catalytic Asp-379 (D379N) to prevent autophosphorylation (Extended
474 Data Fig. 14a) introducing microheterogeneity during production in *E. coli*.
475 Crystallisation was facilitated by two anti-FIKK13 nanobodies generated through
476 llama immunisation (Extended Data Fig. 14c). The kinase domain of FIKK13 was co-
477 crystallised with the non-hydrolysable ATP-analogue ATP \square S and adopts, despite the
478 low sequence identity, the classical bi-lobe fold known from eukaryotic protein
479 kinase (ePKs)⁵¹ with a few notable additions, shown and further described in
480 Extended Data Fig. 14c. An alignment of the AlphaFold2 model and the experimental
481 structure of the FIKK13 kinase domain revealed significant overlap [RMSD = 0.826 \AA]
482 (Fig. 6a) affirming the accuracy of AlphaFold2 models, not only for FIKK13 but likely
483 for other FIKK kinase domains.

484 We were unable to predict the basis for the tyrosine specificity of FIKK13 but used
485 AlphaFold2 models for all FIKKs to predict specificity determinants. Modelling
486 interactions of potential FIKK target peptides¹⁶ or preferred phosphorylation motifs
487 (Fig. 3, Extended Data Fig. 6, 7) predicted specific residues in several FIKKs as
488 specificity determinants: FIKK1 (E517 and E522), FIKK1 (V321), FIKK9.1 (K240),
489 FIKK12 (K212 and K263) (Fig. 6b, Extended Data Fig. 15). To test the predictions,
490 we reversed the charges of the amino acids (positively charged K mutated to
491 negatively charged E and vice versa) or replaced the hydrophobic V321 in FIKK1
492 with a charged D. A single mutation in the FIKK12 kinase domain (K212E or K263E)
493 shifted the substrate specificity from acidophilic to basophilic for all positions in the
494 preferred phosphorylation motif (Fig. 6c). The double mutation (K212E + K263E)
495 achieved total conversion to basophilicity. For FIKK1 and FIKK9.1, the changes in
496 substrate specificity were more subtle with an increased overall preference for
497 oppositely charged residues but no complete inversion (Extended Data Fig. 16a).
498 Mutation of the V321 residue in FIKK1, homologous to K263 in FIKK12, was
499 sufficient for the loss of the leucine specificity at P+2 for this kinase (Extended Data

500 Fig. 16b). A similar effect could be observed for FIKK1 E517K+E522K, but not for the
501 single mutants. Therefore, it could be that E517 and E522 combined are required for
502 optimal positioning of the peptide leading to loss of the L+2 specificity when mutated.
503 Thus, a single mutation in the kinase domain can dramatically change the preferred
504 phosphorylation motif of FIKK12, and to a lesser extent that of FIKK1 and FIKK9.1.
505 In contrast to canonical kinases, where peptide specificity is largely determined by
506 cognate subpockets on the kinase domain⁵²⁻⁵⁵, the determinants identified here map
507 to kinase loop regions. These loop regions are rapidly evolving (Extended Data Fig.
508 17) and likely flexible given their low pLDDT scores in the AF2 models^{56,57}.

509

510


511

512

513

514

515

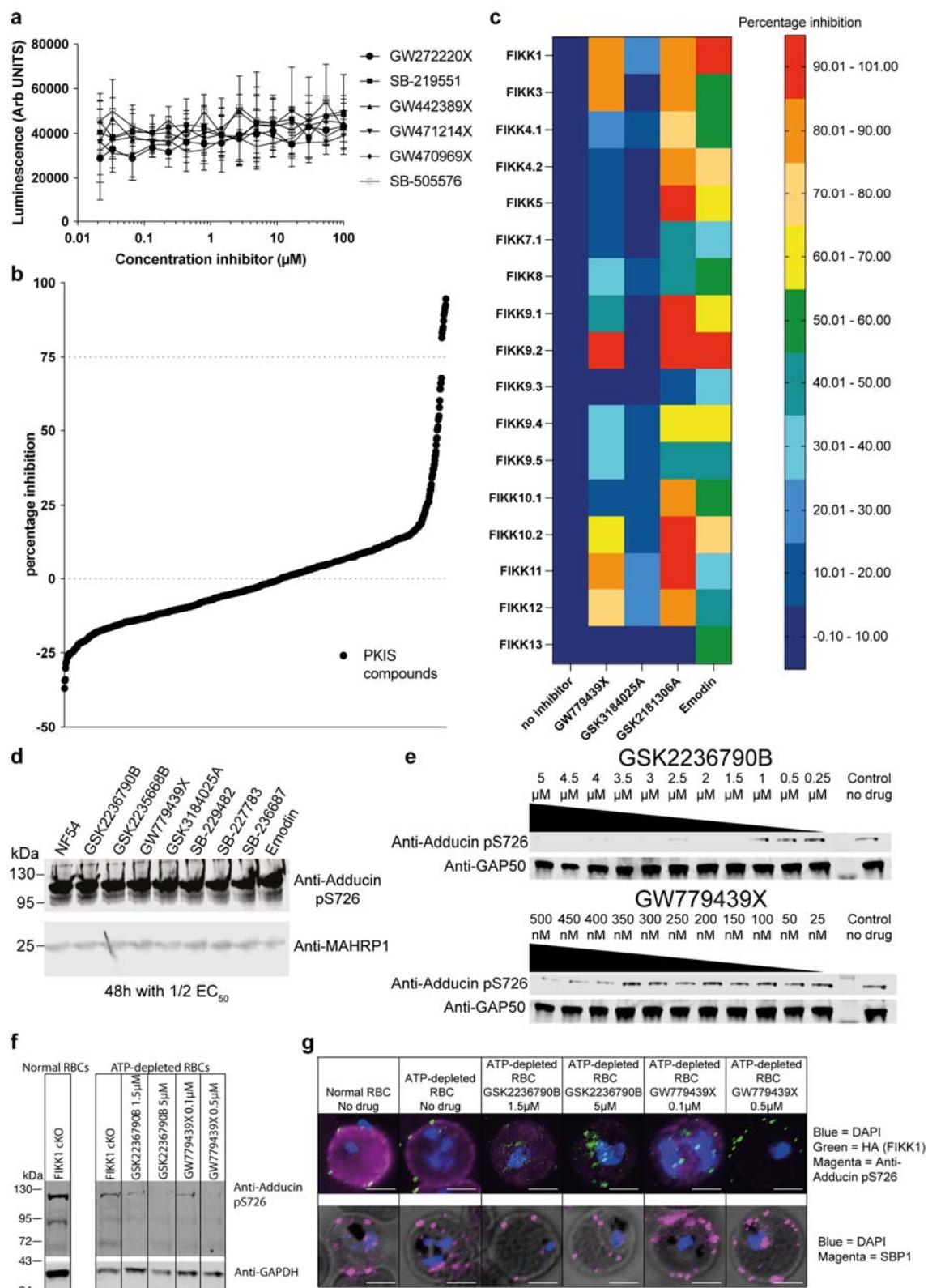
a, Overlay of FIKK13 D379N kinase domain crystal structure with ATP-S (grey) and FIKK13 kinase domain AlphaFold2 structure prediction (cyan). Root Mean Square Deviation (RMSD) was calculated using PyMol⁵⁸. **b**, A target peptide (EKKASEGDN) of FIKK12 was modelled into the substrate-binding groove of the FIKK12 AF2 structure (see Methods). The K212 and K263 kinase residues are predicted to bind to the peptide at the +1 and +3 positions. The sequence logos show the residue conservation between FIKK12 *Plasmodium* sequences (top), and basophilic *Plasmodium* sequences (bottom). **c**, FIKK12 wild type and FIKK12 mutants phosphorylation activity on OPAL membranes represented as heatmaps (see Fig. 3b_i caption). Below is represented the PWM logos (see Fig. 3b_{ii} caption).

531 **Identification of pan-FIKK specific inhibitors *in vitro***

532 The structural analysis of the kinase domain ATP-binding site revealed some
533 features conserved among the FIKK kinases that distinguish them from most
534 eukaryotic kinases: 1) The glycine-loop found in ePKs, known to position ATP for
535 catalysis, is not present in the FIKKs. An equivalent loop exists in the FIKKs, but it
536 has a low degree of conservation among family members and is unstructured in the
537 experimental FIKK13 structure. However, a basic residue (K/R) at the position of Lys-
538 205 is conserved throughout the FIKKs (Extended Data Fig. 18) and could help
539 position the ATP and hence play a role in catalysis. 2) The FIKKs possess the
540 eponymous F-I-K-K motif that plays a role in the binding of ATP, or as in this case,
541 ATP□S. The invariant Phe-228 (Extended Data Fig. 18) is stacked upon the adenine
542 in the back of the nucleotide-binding pocket (Extended Data Fig. 14d). The bulky and
543 hydrophobic nature of the Phe sidechain reduces the size of the back-pocket with
544 the equivalent residues in ePKs often having small side chains such as Ala, or in
545 rare instances Val⁶¹. ATP coordination is likely supported by Lys-230, equivalent to
546 Lys-72 in PKA⁵¹, which coordinates the phosphates of the nucleotide, thereby
547 sensing nucleotide pocket occupation and forms a salt-bridge with the conserved
548 Glu-261 on the C-helix, (Glu-91 in PKA), a hallmark of active ePKs⁵¹. 3) Most FIKK
549 kinases possess a small gatekeeper residue not found in most human kinases⁶².
550 This fundamental, and conserved, difference in nucleotide pocket composition could
551 enable drug development specifically targeting the FIKK family of kinases.

552 We first tested six different Staurosporine analogues, which inhibit the majority of
553 human kinases (>85%) by competing with ATP⁶³⁻⁶⁵ on recombinant FIKK8. None
554 inhibited FIKK8 activity (Fig. 7a), highlighting the distinctive features of the FIKK
555 kinase domain. A screen of the PK1S kinase inhibitor library (containing 868 ATP
556 analogues), developed for human kinases^{66,67}, identified 12 compounds that inhibited
557 the FIKK8 kinase domain activity by =/75% at 10μM concentration (Fig. 7b). The
558 IC₅₀s of these 12 compounds ranged between 11nM and 332nM (Supplementary
559 Table 10). Further biochemical screening revealed structure-activity relationships
560 (SAR) for several analogues, including some close structural analogues with weak
561 FIKK potency that could serve as useful negative control compounds. From this
562 compound set, three compounds were prioritised as inhibitor tools for FIKKs.
563 GW779439X and GSK2181306A are potent FIKK inhibitors from different chemical
564 series. GSK3184025A was selected as a very weakly active (>10μM) compound
565 from the same chemical series as GW779439X (Extended Data Fig. 19). Most
566 recombinant FIKK kinase domains were inhibited *in vitro* by either GW779439X or
567 GSK2181306A (Fig. 7c), while no inhibition was observed with the inactive
568 compounds GSK3184025A.

569 FIKK9.3 and FIKK13 were not inhibited by any compound. The S/T/Y kinase inhibitor
570 Emodin, known to inhibit the *P. vivax* FIKK²⁴ and *P. falciparum* FIKK8²⁵ showed
571 potency against all *Pf*FIKK kinases (Fig. 7c). These results support the feasibility of
572 pan-FIKK inhibition and provide further support that FIKK13 is indeed a tyrosine
573 kinase.


574

575 **Pan-FIKK inhibitors inhibit FIKK1 in cell culture.**

576 In live parasite cultures, GW779439X, GSK2177277A and GSK2181306A inhibited
577 parasite growth [EC₅₀s = 0.31±0.01μM, 0.40±0.01μM and 0.16±0.01μM respectively]
578 (Extended Data Fig. 20a), but not phosphorylation of serine 726 on human adducin
579 (Fig. 7d), which depends on FIKK1¹⁶. As none of the exported *Pf*FIKK kinases were
580 previously found to be individually essential for parasite growth¹⁶, we hypothesised

581 that the compounds engage one or multiple kinases other than the FIKKs at the
582 concentrations used, preventing us from demonstrating their activity on the FIKKs in
583 cell culture. Indeed, *P. knowlesi*, which only expresses one non-exported FIKK
584 kinase not expected to be essential for parasite growth, is equally susceptible to all
585 the compounds (Extended Data Fig. 20b).

586 High ATP concentrations in the RBC (2-5mM)⁶⁹ may compete with the ATP
587 analogues and prevent proof of concept of FIKK inhibition in cell culture. As we could
588 not increase drug concentrations to test on-target activity without killing parasites, we
589 reduced the ATP concentration in the RBC⁷⁰ by pre-treating RBCs with 1228μM
590 iodoacetamide and 2046μM inosine. This resulted in substantial ATP depletion
591 without preventing adducin S726 phosphorylation or parasite development
592 (Extended Data Fig. 21). Under these conditions, adducin S726 phosphorylation, but
593 not protein export (SBP1⁷¹), was inhibited by the compounds (Fig. 7e, f, g),
594 suggesting that they impair FIKK1 and potentially other FIKK kinases activity. Taken
595 together, these data show that the compounds identified as pan-recombinant FIKK
596 inhibitors are active on at least one of the parasite FIKK kinases in live cell culture.
597 This sets a framework for screening better inhibitors working at physiological levels
598 of ATP in RBCs.

599

600 Fig. 7. PKIS library screen allows for the identification of several pan-FIKK
601 kinases inhibitors which target at least one FIKK kinase in ATP-depleted
602 iRBCs.

603 **a**, FIKK8 activity in the presence of increasing concentrations of Staurosporine
604 analogues (GW272220X, SB-219551, GW442389X, GW471214X, GW470969X and
605 SB-505576). n = 6 technical replicates for each inhibitor. Shown is the mean \pm SEM.
606 **b**, Ranked plot showing the results of the PKIS library screen on recombinant FIKK8.
607 A threshold of >75% inhibition was arbitrarily set and identified the 12 most potent
608 PKIS compounds on recombinant FIKK8 kinase domain (n = 2). Each data point
609 represents the mean percentage inhibition in both replicates. **c**, Heatmap
610 representing inhibition (%) of selected compounds on recombinant FIKK kinase
611 domains (n=3 biological replicates). **d**, Western blot showing adducin S726
612 phosphorylation in iRBCs treated with SAR-identified compounds and Emodin at 1/2
613 EC₅₀ for 48 hours. The MAHRP1 antibody (bottom) demonstrates equal loading. **e**,
614 Western blot showing adducin S726 phosphorylation in RBCs pre-treated with
615 1228 μ M iodoacetamide and 2046 μ M inosine, infected with wildtype NF54 *P.*
616 *falciparum* and treated with different concentration of either GSK2236790B or
617 GW778439X. The GAP50 antibody demonstrates equal loading. **f**, Western blot
618 showing adducin S726 phosphorylation in RBCs pre-treated with 1228 μ M
619 iodoacetamide and 2046 μ M inosine, infected with FIKK1 condKO DMSO-treated *P.*
620 *falciparum* and treated with different concentration of either GSK2236790B or
621 GW778439X. GAPDH antibody demonstrates equal loading. **g**, Immunofluorescence
622 assays showing adducin S726 phosphorylation and protein export in ATP-depleted
623 iRBC treated with different concentrations of either GSK2236790B or GW778439X.
624 Protein export is investigated with anti-HA antibodies targeting the C-terminal HA-tag
625 fused to FIKK1 kinase domain and with anti-SBP1 antibodies. DAPI (blue) is used as
626 a nuclear staining. Scale bar = 5 μ m.
627

628 **Discussion:**

629 *Plasmodium* species of the *Laverania* are thought to have evolved ~1 million years
630 ago from the bird-infecting *Plasmodiae*¹². ~50,000 years ago, *P. falciparum* emerged
631 as a human parasite¹⁴, with a severe population bottleneck in the last 5,000-10,000
632 years¹². Several gene families important for host-pathogen interaction evolved
633 specifically in the *Laverania* but their function remains largely elusive.
634 Pseudogenisation of genes within these families in different *Laverania* species
635 suggests that some genes may be remnants of their evolutionary past or indicate a
636 level of redundancy that relaxes selection on current gene copies. Here, we provide
637 strong evidence that most FIKK kinases in *P. falciparum* have diversified in function,
638 are likely essential in human infections and appear under stringent selection within
639 the *Laverania* clade. However, a few kinases are found as pseudogenes in patient
640 isolates, indicating these may be remnants from an ancestor not required for
641 infection of modern humans. We observe notable differences in pseudogenisation
642 between geographical backgrounds, suggesting that the environment might impact
643 FIKK relevance. This is interesting in the light of a recent study which found an
644 association between a SNP in the *fikk4.2* gene and sickle-cell trait which protects
645 from severe *P. falciparum* malaria and is highly prevalent in people of African
646 descent⁷².
647

648 The expansion and diversification of the FIKK kinase family into several members
649 with likely different functions required specialisation of each kinase. This was
650 achieved by different expression timing, subcellular localisation and, as we show
651 here, the evolution of highly specific phosphorylation motifs. By combining molecular
652 docking and mutational analyses, we identified strong specificity determinants for

653 FIKK12, and residues with more moderate effects for FIKK1 and FIKK9.1. These
654 map to rapidly evolving loop regions on the kinase domain, perhaps explaining why
655 the FIKK family was able to functionally diversify rapidly (~1 million years) in terms of
656 its phosphorylation motif specificity.

657
658 Strikingly, we show that FIKK13 is a bona fide tyrosine kinase in *P. falciparum* and *P. gaboni*, and therefore probably in other *Laverania* species. Additionally, several FIKK
659 kinases show dual specificity. This suggests that tyrosine phosphorylation of host,
660 and/ or exported parasite proteins by *Laverania* secreted kinases is not only carried
661 out by hijacking human kinases, as believed so far^{73,74}. Thus, some exported FIKK
662 kinases have likely evolved to specifically interfere with critical host signalling
663 pathways that rely on tyrosine phosphorylation. This could be specifically important
664 for the infection of nucleated cells such as erythroid precursors⁷⁵ and/or liver cells⁷⁶.
665 While a secreted dual specificity kinases (S/T and Y) has been described in the
666 related *Toxoplasma* parasite⁷⁷, the evolution of apparently exclusive tyrosine kinase
667 specificity in FIKK13 from a S/T kinase family has not previously been observed.
668 This is an important finding as it implies that in other species, bona fide tyrosine
669 kinases might have evolved from a recent S/T kinase ancestor, similar to what is
670 observed here for the FIKK family. However, predicting tyrosine kinase activity solely
671 based on sequence or structure remains elusive. The determinants of tyrosine
672 specificity appear to be more difficult to determine than for canonical kinases and it is
673 a remaining challenge to combine computational and experimental approaches to
674 understand the precise molecular relationship between kinase sequence and
675 specificity for all FIKKs and all substrate positions.

676
677 While the diversification of the substrate specificity is underpinned by evolution of the
678 peptide binding area, several conserved features of the FIKK kinases required for
679 ATP-binding may allow the generation of inhibitors which target several or all FIKKs
680 simultaneously. The Phe in the F-I-K-K motif that is strictly conserved across the
681 FIKK kinases, appears to be involved in an unusual coordination of ATP in the
682 kinase active site. In combination with a small gatekeeper residue common across
683 the FIKKs, this feature may allow the design of compounds that specifically inhibit
684 the FIKKs. Here, we identify *in vitro* pan-specific FIKK inhibitors that can interfere
685 with FIKK1 activity in live parasites upon reducing ATP-levels in the RBC,
686 demonstrating that pan-FIKK inhibition is an achievable goal, if inhibitors more
687 specific over human enzymes can be found. Since FIKK kinases are with a high
688 likelihood critical for parasite survival in the host, their collective inhibition represents
689 an interesting strategy for combination therapies. Resistance through mutations in
690 single genes is readily observed against most current drugs⁷⁸, which would not easily
691 be possible for compounds that inhibit a whole family of proteins. The crystal
692 structure solved in this work will allow further investigation of the FIKK family
693 chemical inhibition.

694
695
696
697
698
699
700
701
702

703
704
705
706
707

708 **Extended Data Figures List**

709 **Extended Data Fig. 1.** Phylogenetic tree of *PfFIKK* kinases rooted on FIKK8
710 sequences.

711 **Extended Data Fig. 2.** CRISPR/Cas9 strategy to generate FIKK::TurboID fusion
712 proteins and validation.

713 **Extended Data Fig. 3.** Alignment of *P. falciparum* FIKK protein sequences allows for
714 accurate determination of the FIKK kinase domain starting amino acid.

715 **Extended Data Fig. 4.** Coomassie-stained gel of purified recombinant FIKK kinase
716 domains.

717 **Extended Data Fig. 5.** FIKK8 OPAL membrane.

718 **Extended Data Fig. 6.** Basophilic FIKK kinases preferred phosphorylation motifs.

719 **Extended Data Fig. 7.** Acidophilic FIKK kinases preferred phosphorylation motifs.

720 **Extended Data Fig. 8.** FIKK1, FIKK9.1 and FIKK13 OPAL membranes.

721 **Extended Data Fig. 9.** Identification of a tyrosine-based cyclic peptide as a
722 substrate for FIKK13.

723 **Extended Data Fig. 10.** Heat map representation of OPAL arrays raw data for *P.*
724 *gaboni* FIKK1, FIKK9.1 and FIKK13.

725 **Extended Data Fig. 11.** Protein sequence identity matrix of *P. falciparum* FIKK
726 kinases.

727 **Extended Data Fig. 12.** FIKK4.1, FIKK4.2 and FIKK10.2 activity on the
728 phosphoproteome peptides libraries.

729 **Extended Data Fig. 13.** Log2 transformed PWM logos for all recombinant FIKK
730 kinases tested.

731 **Extended Data Fig. 14.** FIKK13 D379N dead mutant crystal structure informs on
732 ATP binding.

733 **Extended Data Fig. 15.** Target peptides of FIKK1, FIKK9.1, or FIKK12 modelled into
734 the substrate-binding groove of the FIKK AF2 structures.

735 **Extended Data Fig. 16.** Substrate specificity assessment of FIKK1 and FIKK9.1
736 kinase mutants using OPAL arrays.

737 **Extended Data Fig. 17.** Sequence conservation of FIKK specificity determinants.

738 **Extended Data Fig. 18.** Multiple sequence alignment of various kinase domains.

739 **Extended Data Fig. 19.** Structure-Activity Relationship assay identifies closely
740 related compounds with different behaviours towards recombinant FIKK8 kinase
741 domain.

742 **Extended Data Fig. 20.** The three most potent *in vitro* FIKK inhibitors kill
743 *Plasmodium* parasites in culture.

744 **Extended Data Fig. 21.** Optimisation of ATP-depletion conditions.

745
746
747
748
749
750
751
752

753
754
755
756
757
758

759 Supplementary Tables List

760 Supplementary Table 1. FIKK orthologues in *Laverania*.

761 Supplementary Table 2. FIKK transcript levels during *P.falciparum* asexual
762 replication cycle.

763 Supplementary Table 3. STOP codon in *fikk* genes in 2085 field isolate genomes.

764 Supplementary Table 4. *fikk* genes deletions in 2085 field isolate genomes.

765 Supplementary Table 5. Transcription evidence for PfFIKK kinases in Gametocytes
766 and mosquito stages according to Malaria Cell Atlas data.

767 Supplementary Table 6. Table of proteins in the vicinity of FIKK4.1 and/or FIKK4.2
768 identified by Turbold-based proximity labelling.

769 Supplementary Table 7. Start sites of recombinantly expressed FIKK kinase
770 domains.

771 Supplementary Table 8. SPR binding affinities for FIKK13 peptides.

772 Supplementary Table 9. Phosphoproteome peptide library composition.

773 Supplementary Table 10. Half maximal inhibitory concentration (IC50) of the PK15
774 compounds identified as inhibitors of FIKK8 recombinant kinase domain.

775 Supplementary Table 11. Material used for generation of FIKK_Turbold parasite
776 lines.

777 Supplementary Table 12. Recodonised sequences used for FIKK kinase domains
778 expression in *E. coli*

779 Supplementary Table 13. Processed mass spectrometry proximity labelling data.

780 Supplementary Table 14. FIKK13 RaPID selection Next Generation Sequencing
781 Data.

782 Supplementary Table 15. Flow cytometry data for EC50s determination of FIKK
783 inhibitors in *P. falciparum* and *P. knowlesi*.

784 Supplementary Table 16. Flow cytometry data for ATP-depletion optimisation
785 experiment.

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

803
804
805
806
807
808

809 **Material and Methods**

810

811 **FIKK orthologues in *Laverania***

812 To assess the number of FIKK orthologues in each *Laverania* species, the word
813 "FIKK" was entered into the search engine of the PlasmoDB website
814 (www.PlasmoDB.org) (release 66) selecting *Plasmodium adleri* G01, *Plasmodium*
815 *billcollinsi* G01, *Plasmodium blacklocki* G01, *Plasmodium falciparum* 3D7,
816 *Plasmodium gaboni* SY75, *Plasmodium praefalciparum* G01 and *Plasmodium*
817 *reichenowi* CDC genomes. To assess synteny, the JBrowse genome browser of
818 PlasmoDB was used, selecting the "Syntenic Sequences and Genes (Shaded by
819 Orthology)" track. The *P. falciparum* 3D7 genome was used as a reference to
820 evaluate whether the chromosome sequences from the other *Laverania* species
821 were complete. 'no genome information' signifies that chromosome sequence was
822 not available in the database, probably due to degradation of telomeric regions.

823

824 **Field Genomes FIKK Pseudogenisation analysis**

825 To identify genetic variants in *fikk* genes, a global dataset of clinical *P. falciparum*
826 samples was examined, using the Pf3K project release 5
827 (www.malariagen.net/projects/parasite.pf3k)⁷⁹. Out of the 2483 *P. falciparum* clinical
828 samples of diverse geographical origin, 2085 with high quality data were selected
829 (>80% of the genome covered with 10 or more reads). For each isolate genome, *fikk*
830 pseudogenes were defined by the presence of at least one internal STOP codon
831 variant with an alternative allele frequency greater than 0.5 (Alt reads divided by total
832 number of reads of that position). To identify natural genomic deletions that include
833 *fikk* genes, deleted genes were defined as 95% of the gene sequence with coverage
834 under 3 reads. The large majority of deleted FIKK kinases had zero reads over the
835 entire length of the gene, with the rest of the genome being over 10X coverage
836 (typically ~50X). As a complementary approach, we made use of the microarray
837 transcriptomic data from Mok *et al.*⁸⁰. From the 2085 genome samples, 693
838 transcriptomes from the same isolates were also available. A negative Log2 value
839 was defined as 'no expression'.

840

841 **FIKK percentage of expression heatmap**

842 Expression data were taken from Hoeijmakers *et al.* RNA-sequencing dataset
843 available on PlasmoDB release 66 (www.PlasmoDB.org). The dataset gives a TPM
844 (Transcript Per kilobase Millions) value for eight different time windows throughout *P.*
845 *falciparum* 48 hours asexual replication cycle ([40-5hpi]; [2-10hpi]; [7-15hpi]; [12-
846 20hpi]; [17-25hpi]; [22-30hpi]; [27-35hpi]; [32-40hpi]). Percentage of expression was
847 calculated for each *P. falciparum* FIKK kinase using the following formula
848
$$\frac{[TPM \text{ for a time point}]}{[Highest \text{ TPM value}]} \times 100$$
. Percentage of expression values were then plotted in
849 GraphPad PRISM10 and represented as a heatmap with dark blue cells representing
850 no expression and yellow cells representing 100% expression.

851

852 **Human cells**

853 Human RBCs were acquired from the National Health Service Blood and Transplant
854 (NHSBT) service.

855

856 **In vitro maintenance and synchronisation of *Plasmodium* parasites**

857 Human erythrocytes infected with *P. falciparum* asexual stages were cultured at
858 37°C in complete medium. Complete medium consists of 1L RPMI-1640 medium
859 supplemented with 5g Albumax II (ThermoFischer Scientific) to act as a serum
860 substitute, 0.292g L-glutamine, 0.05g hypoxanthine, 2.3g sodium bicarbonate,
861 0.025g gentamycin, 5.957g HEPES and 4g dextrose. A haematocrit of 1-5% was
862 used and the blood was from anonymous donors provided through the UK Blood and
863 Transfusion service. According to standard procedures, parasites were grown in a
864 gas atmosphere consisting of 90% N₂, 5% CO₂ and 5% O₂⁸¹. Thin blood smear fixed
865 in 100% methanol, air-dried and stained with Giemsa were routinely used to assess
866 parasitemia and developmental stages by light microscopy. *P. knowlesi* parasites in
867 the asexual RBC stages were cultured in complete medium supplemented with 10%
868 human serum as described previously⁸². Parasite cultures were synchronised by
869 Percoll (GE Healthcare) for isolation of mature schizont stages parasites. Purified
870 schizonts were incubated in complete medium at 37°C with fresh RBCs for 4 hours
871 in a shaking incubator. Any remaining schizonts were removed with a second Percoll
872 purification leaving only tightly synchronised ring-stage parasites in the flask.

873

874 **Gametocyte induction, culture, FIKK gene excision and harvest**

875 An adapted version of previously described techniques was used to obtain
876 synchronous gametocytes⁸³. Briefly, highly synchronous ring-stage parasites at 8-
877 10% parasitemia were stressed by retaining half the spent culture medium and
878 replenishing the rest with fresh complete medium. The following day, the stressed
879 cultures were spun and the spent culture medium was replaced with complete
880 media. Cultures were left shaking until the following day when all the schizonts had
881 ruptured and reinvaded. A certain proportion of the reinvaded rings should have then
882 committed to gametocytogenesis. This committed parasites were then split into two
883 flasks and treated for 4 hours at 37°C with either 100nM rapamycin (Sigma) or
884 dimethyl sulfoxide (DMSO) (0.1% [vol/vol]) as described previously⁸⁴. Parasites were
885 then washed three times with complete medium and cultured in complete medium
886 supplemented with 10% human serum. From this point onwards, parasite culture
887 medium was exchanged daily with pre-warmed complete medium supplemented with
888 10% human serum and heparin at 20 units/ml to prevent asexual growth. When a
889 majority of stage III gametocytes could be seen on Giemsa smears, the cultures
890 were submitted to Percoll purification allowing isolation of sexual stages which were
891 lysed in 5x SDS-sample buffer for Western Blot analysis of FIKK kinases expression.

892

893 **Immunoblotting**

894 Parasites submitted to Western Blot analysis were first harvested by Percoll
895 purification. 1μl of parasite pellets were then resuspended in 15μl PBS, lysed with 5x
896 SDS-sample buffer (25mM TrisHCl pH 6.8, 10% SDS, 30% Glycerol, 5% β-
897 mercaptoethanol, 0.02% bromophenol blue) and denatured at 95°C for 5 minutes.
898 Samples were then subjected to SDS-PAGE, transferred onto Transblot Turbo™
899 Mini-size nitrocellulose membrane (Biorad) and blocked overnight in 5% skimmed
900 milk in PBS with 0.2% Tween-20 at 4°C. For FIKK kinases expression in
901 gametocytes (Fig. 1c), the membranes were probed with rat anti-HA high affinity

902 (clone 3F10, Roche, 1:1,000) and rabbit anti-GAP50⁸⁵ (a gift from Julian Rayner, 903 1:2,000) antibodies. For Western blots investigating Adducin S726 phosphorylation 904 (Fig. 7 and Extended Data Fig. 21), the membranes were probed with rabbit anti- 905 Adducin pS726 (Abcam, 1:1,500), rabbit anti-MAHRP1 (a gift from J. Rayner and L. 906 Parish; 1:2,000), rabbit anti-GAP50 (1:2,000) or mouse anti-GAPDH (1:10,000) 907 (Monoclonal antibody 7.2 (anti-GAPDH) which was obtained from The European 908 Malaria Reagent Depository (<http://www.malariaresearch.eu>)). Source: Dr. Jana 909 McBride⁸⁶). For Western blots assessing protein biotinylation by FIKK4.1 and 910 FIKK4.2::Turbold (Extended Data Fig. 2b), the membranes were probed with rabbit 911 anti-MAHRP1 (1:2,000) and mouse anti-V5 (Abcam, 1:1,000). Following primary 912 antibody staining, the membranes were incubated with the relevant secondary 913 fluorochrome-conjugated antibodies (LI-COR, 1:20,000) or IRDye® 800CW 914 Streptavidin (1:2,000). The antibody reactions were carried out in 5% skimmed milk 915 in PBS with 0.2% Tween-20 for 1 hour in the dark and membranes were washed 3 916 times between each antibody staining in PBS with 0.2% Tween-20. After a final wash 917 with PBS, the antigen-antibody reactions were visualised using the Odyssey infrared 918 imaging system (LI-COR Biosciences).
919

920 **Transcription evidence of *Pf*FIKK kinases in sexual and mosquito stages**

921 Data were obtained from the Malaria Cell Atlas (www.malariaatlas.org)²⁹. The 922 SmartSeq2 cell view was used and an FIKK kinase was considered expressed if at 923 least two sample analysed showed an expression above 0.
924

925 **Generation of FIKK::Turbold parasite lines**

926 FIKK::Turbold parasite lines were generated using CRISPR/Cas9. Briefly, suitable 927 gRNAs for FIKK4.1 and FIKK4.2 were identified using the Eukaryotic Pathogen 928 CRISPR guide RNA/DNA Design Tool (grna.ctegd.uga.edu)⁸⁷. A pair of 929 complementary oligonucleotides corresponding to the 19 nucleotides closest to the 930 identified PAM sequence was synthesised (IDT), phosphorylated using T4 931 polynucleotide kinase, annealed and ligated into pDC_Cas9_hDHFRyFCU³² 932 digested with BbsI. To generate compatible, sticky ends between the annealed 933 primer pairs encoding the gRNAs and the BbsI digested vector, the forward 934 oligonucleotide had 5'-ATTG added to the 19 nucleotides corresponding to the 935 gRNAs whereas the compatible oligonucleotide had a 5'-AAC overhang added 936 (See Supplementary Table 11). This way, gRNAs targeting *fikk4.1* and *fikk4.2* genes 937 were assembled using oligonucleotide pairs gRNA_4.1_310For/Rev and 938 gRNA_4.2_235For/Rev respectively. Repair templates containing a 5'HR, a 939 recodonised sequence, a linker, a Turbold-coding sequence, a V5-tag and a 3'HR 940 flanked by two Xhol restriction sites were ordered from GeneArt (Supplementary 941 Table 11). For transfection, 60µg repair template plasmid was linearised with Xhol 942 for 4 hours at 37°C before inactivation at 80°C for 20 minutes. 20µg of gRNA 943 plasmid was added and the plasmid mixture was ethanol precipitated, washed and 944 resuspended in 10µl sterile TE buffer (10mM Tris, 1mM EDTA). In parallel, highly 945 synchronised segmented schizonts (48 h.p.i) of NF54::DiCre parasites⁸⁸ were 946 collected by Percoll-enrichment and washed once with complete medium. The DNA 947 constructs in TE buffer were mixed with 90µl P3 Primary cell solution (Lonza) and 948 used to resuspend 20µl segmented schizonts which were subsequently transferred 949 to a transfection cuvette. Transfections were performed by electroporation using the 950 FP158 programme from an Amaxa 4D Electroporator machine (Lonza). Following 951 transfection, the parasites were transferred to pre-warmed flasks containing 2ml

952 complete medium and 300 μ l fresh uRBCs. After 40 minutes of gentle shaking at
953 37°C, 8 ml complete medium were added to the flask. Transfected parasites were
954 incubated for 24 hours, then selection was performed with 2.5nM WR99210
955 (Jacobus Pharmaceuticals) for four days. Following establishment of the transgenic
956 lines, correct modification of the parasite genome was confirmed by PCR using the
957 primers described in Extended Data Fig. 2 and Supplementary Table 11.
958

959 **Phylogenetic tree**

960 All FIKK amino acid sequences were retrieved from the UniProtKB⁸⁹. Heavily
961 truncated sequences (<200 amino acids) were removed manually. The full-length
962 protein sequences were then aligned using the MAFFT L-INS-i algorithm⁹⁰.
963 Alignment positions where more than 20% of sequences contain a gap (-gt 0.8) were
964 removed from the multiple sequence alignment (MSA) using trimAl software⁹¹.
965 A maximum likelihood (ML) estimate of the FIKK phylogeny was generated with IQ-
966 TREE2 software⁹², using the ModelFinder parameter (-m MFP) to automatically
967 detect the best evolutionary model⁹³. Branch support for the ML phylogeny was
968 assessed using 100 replicates of the Felsenstein bootstrap (-b 100)⁵⁰. The
969 phylogenetic tree was visualised using the ggtree package in R⁹⁴ after removing
970 homologues to the FIKK 7.2 and FIKK14 pseudogenes.
971

972 **Immunofluorescence assays**

973 Air-dried blood films were fixed for 5 min in ice-cold methanol and subsequently
974 rehydrated in PBS for 5 min. Slides were blocked in 3% (w/v) bovine serum albumin
975 (BSA) in PBS containing kanamycin (50 μ g/ml) for 1 h and subsequently incubated
976 with primary antibodies in 1% (w/v) BSA in PBS containing kanamycin (50 μ g/ml) for
977 1 h at room temperature. Primary antibodies dilutions were as follow: high affinity rat
978 anti-HA (clone 3F10, Roche; 1:1,000), mouse anti-FIKK4.2 (1:1,000) (Monoclonal
979 antibody 126 (anti-FIKK4.2) was obtained from The European Malaria Reagent
980 Depository (<http://www.malariareserach.eu>). Source: Dr. Odile Mercereau-
981 Pujalon¹⁷), rabbit anti-phosphoAdducin S726 (1:1,500) (Abcam), rabbit anti-SBP1
982 (1:10,000) (gift from T. Spielmann⁹⁵). After three washes with PBS, the coverslips
983 were incubated with the relevant Alexa Fluor secondary antibodies (1:2,000 in PBS
984 with 1% BSA) at room temperature for 1 h in the dark. After three final washes with
985 PBS, the slides were mounted with Prolong Gold antifade reagent (Invitrogen)
986 containing the DNA dye 4 \square , 6-diamidino-2-phenylindole (DAPI), covered with a
987 coverslip and sealed with nail polish. Images were taken using a Ti-E Nikon
988 microscope using a \times 100 TIRF objective at room temperature equipped with an LED-
989 illumination and Orca-Flash4 camera. The images were processed using Nikon
990 Elements software (Nikon).
991

992 **Proximity labelling experiments**

993 We first performed a NF54-FIKK4.2::Turbold comparison at the peptide level. We
994 then repeated the assay with NF54, FIKK4.1::Turbold and FIKK4.2::Turbold. Both
995 experiments were performed following the same protocol and data from both
996 experiments were combined.
997

Cell culture and lysis

998 For all experiments, NF54 WT parasites, used as controls, FIKK4.1::Turbold and
999 FIKK4.2::Turbold parasites were tightly synchronized to a 4-hours window using
1000 Percoll. For each line, parasites were grown in biological triplicate in 200ml of
1001 complete medium containing biotin (0.2mg/L H 819nM) at at least 10% parasitaemia

1002 in 2ml of blood, each replicate being cultured in blood coming from different donors.
1003 iRBCs were harvested at late schizont stage (44-48 hpi) using Percoll.
1004 Subsequently, parasites were washed 3 times with 50ml of complete medium and 5
1005 times with 5ml PBS. Parasites were then lysed in 8M urea in 50mM HEPES pH8.0
1006 containing protease inhibitors (cComplete, Roche). Samples were further solubilised
1007 by sonication with a microtip sonicator on ice for 3 rounds of 30 seconds at an
1008 amplitude of 30%. Lysates were then clarified by centrifugation at 15,000 rpm for 30
1009 minutes at 4°C. The protein concentrations were then calculated using a BCA protein
1010 assay kit (Pierce), first diluting 20µl aliquots from all lysates 1:25 in H₂O to reduce
1011 the concentration of urea and then following the instructions provided in the kit.

1012 *Protein digestion*

1013 4mg of each lysate was then reduced with 5mM dithiothreitol (DTT) for 1 hour at
1014 room temperature and subsequently alkylated in the dark with 10mM iodoacetamide
1015 for 30 minutes at room temperature. Following alkylation, the lysates were diluted
1016 with 50mM HEPES pH8.0 to <2M urea and digested overnight with trypsin
1017 (Promega) at 1:50 (enzyme:protein) at 37°C.

1018 *Sep-Pak desalting*

1019 Samples were cooled on ice for 10 minutes before being acidified with trifluoroacetic
1020 acid (TFA; ThermoFischer Scientific) to a final concentration of 0.4% (vol/vol) and left
1021 on ice for 10 more minutes. All insoluble material was removed by centrifugation
1022 (15,000 rpm, 10 minutes, 4°C) and the supernatants were desalted on Sep-Pak C18
1023 1cc Vac cartridges (Waters) in conjunction with a vacuum manifold. The columns
1024 were first washed with 3ml acetonitrile, conditioned with 1ml of 50% acetonitrile and
1025 0.5% acetic acid in H₂O, and then equilibrated with 3ml of 0.1% TFA in H₂O. The
1026 acidified samples were loaded, desalted with 3ml of 0.1% TFA in H₂O, washed with
1027 1ml of 0.5% acetic acid in H₂O and finally eluted in 1.3ml of 50% acetonitrile and
1028 0.5% acetic acid in H₂O. Each sample was then dried by vacuum centrifugation.

1029 *Charging protein G agarose beads with anti-biotin antibodies*

1030 60µl of protein G agarose bead slurry (ThermoFischer Scientific) were taken per
1031 sample. Beads were washed three times with 10 bead volumes of Biosite buffer⁹⁶
1032 (50mM Tris-HCl pH8.0, 150mM NaCl, 0.5% Triton x100, pH7.2-7.5) at 4°C.
1033 According to supplier recommendations, protein G agarose beads were
1034 functionalised with 100µg antibodies / 100µl slurry with two different anti-biotin
1035 antibodies (150-109A, Bethyl Laboratories; ab53494, Abcam) by adding 300µg of
1036 each antibody to the beads which were incubated rotating overnight at 4°C.

1037 *Immunoprecipitation*

1038 Samples were dissolved in 1.5ml Biosite buffer on ice and pH adjusted with 1-5µl
1039 10M NaOH to 7-7.5 at 4°C. Any undissolved material was removed by spinning at
1040 15,000rpm, 10 minutes, 4°C and peptide BCA assay (Pierce) was performed on the
1041 supernatant to know the peptide concentration in each sample. Protein G agarose
1042 beads functionalised with anti-biotin antibodies were washed three times with 10
1043 bead volumes (3ml) Biosite buffer and equal amount of peptides per sample was
1044 added onto the antibody loaded beads (60µl slurry per sample). The mixture was
1045 incubated rotating for 2 hours at 4°C. Beads were pelleted at 1,500xg for 2 minutes
1046 at 4°C and washed three times with 500µl Biosite buffer, once with 500µl 50mM Tris-
1047 HCl pH8.0 and three times with 500µl H₂O. Peptides were eluted from the beads by
1048 adding 50µl of 0.2% TFA, gently shaken and spun at 1,500xg for 2 minutes at 4°C.
1049 Elution was repeated 4 times for a total volume of 200µl.

1050 *Stage-tip desalting*

1051 All samples were desalted before LC-MS/MS using Empore C18 discs (3M). Briefly,
1052 each stage-tip was packed with one C18 disc, conditioned with 100 μ l of 100%
1053 methanol, followed by 200 μ l of 1% TFA. The samples were loaded onto the stage-tip
1054 in 200 μ l of 0.2% TFA, washed twice with 300 μ l of 1% TFA and eluted with 40 μ l of
1055 40% acetonitrile + 0.1% TFA. The desalted peptides were vacuum dried in
1056 preparation for LC-MS/MS analysis.

1057 *LC-MS/MS*

1058 Samples were loaded onto Evtips according to manufacturer's instructions. After a
1059 wash with 0.1% formic acid in H₂O, samples were loaded onto an Evosep One
1060 system coupled to an Orbitrap Fusion Lumos (ThermoFisher Scientific). A PepSep
1061 15cm column was fitted onto the Evosep One and a predefined gradient for a 44
1062 minutes method was used. The Orbitrap Fusion Lumos was operated in data-
1063 dependent mode with a 1 second cycle time, acquiring IT HCD MS/MS scans in
1064 rapid mode after an OT MS1 survey scan (R=60,000). The target used for MS1 was
1065 4E5 ions whereas MS2 target was 1E4 ions. The maximum ion injection time utilised
1066 for MS2 scans was 300ms, the HCD normalised collision energy was set at 32 and
1067 the dynamic exclusion was set at 15 seconds.

1068 *Data processing*

1069 Acquired raw files were processed with MaxQuant v1.5.2.8⁹⁷.

1070 The Andromeda⁹⁸ search engine was used to identify peptides from the MS/MS
1071 spectra against *Plasmodium falciparum* (PlasmoDB_v46¹³) and *Homo sapiens*
1072 (UniProt, 2020⁸⁹). Acetyl (Protein N-term), Biotin (K), Oxidation (M) were selected as
1073 variable modifications whereas Carbamidomethyl (C) was selected as a fixed
1074 modification. The enzyme specificity was set to Trypsin with a maximum of 3 missed
1075 cleavages. Minimum peptide length was set to 6 amino acids. Biotinylated peptides
1076 search in MaxQuant was enabled by defining a biotin adduct (+226.0776) on lysine
1077 residues as well as three diagnostic ions: fragmented biotin (m/z 227.0849),
1078 immonium ion harbouring biotin with a loss of NH₃ (m/z 310.1584) and an immonium
1079 ion harbouring biotin (m/z 327.1849).

1080 The precursor mass tolerance was set to 20ppm for the first search (used for mass
1081 re-calibration) and to 4.5ppm for the main search. The datasets were filtered on
1082 posterior error probability (PEP) to achieve a 1% false discovery rate on protein,
1083 peptide and site level. Other parameters were used as pre-set in the software.
1084 'Unique and razor peptides' mode was selected to allow identification and
1085 quantification of protein in groups (razor peptides are uniquely assigned to protein
1086 groups and not to individual proteins). Intensity-based absolute quantification (iBAQ)
1087 in MaxQuant was performed using a built-in quantification algorithm⁹⁷ enabling the
1088 'Match between runs' option (time window 0.7 minutes) within replicates.

1089 *Data analysis*

1090 The MaxQuant output files were processed with Perseus v1.5.0.9⁹⁹.

1091 Modified peptides data were filtered to remove contaminants and IDs originating
1092 from reverse decoy sequences. iBAQ intensities were log2 transformed and peptides
1093 with less than one valid value in total were removed. Non-biotinylated peptides
1094 (background) were also removed from the datasets. Additionally, peptides with
1095 intensities only in the NF54 samples were removed as they are likely to represent
1096 background binding to the beads. Replicates were grouped for each condition (NF54
1097 and FIKK4.2::TurboID for the first experiment and NF54, FIKK4.1::TurboID and
1098 FIKK4.2::TurboID for the second experiment) and only peptides with at least two
1099 valid values in at least one group were conserved for further analysis.

1100 Data for the first experiment (NF54 – FIKK4.2::Turbold) and the second experiment
1101 (NF54 – FIKK4.1::Turbold – FIKK4.2::Turbold) are available in Supplementary
1102 Table 13.

1103

1104 **Network**

1105 The network representation of the Turbold data (Fig. 2c) was generated using
1106 Cytoscape v3.10.1¹⁰⁰. Proximal proteins were included in the network if they
1107 contained at least one peptide that was biotinylated in 2 or more of the 3 biological
1108 replicates from either the FIKK4.1 or FIKK4.2 Turbold assays. All proteins in the
1109 vicinity of FIKK4.1 or FIKK4.2 were annotated as potential kinase targets if they were
1110 found to be less phosphorylated upon knock-out (KO) of the respective kinase, using
1111 data published in¹⁶. Regulated phosphosites on candidate substrates were scored
1112 against the FIKK 4.1 or FIKK4.2 kinase specificity models presented in Extended
1113 Data Fig. 6, using a simple scoring function that outputs a normalised summation
1114 between 0 (minimum) and 1 (maximum)¹⁰¹. Data on protein proximity, target status,
1115 and motif scores are given in Supplementary Table 6.

1116

1117 **Recombinant protein expression and purification**

1118 The DNA sequences coding for *P. falciparum* 3D7 and *P. gaboni* SY75 FIKK kinase
1119 domains were obtained from PlasmoDB (<https://plasmodb.org/plasmo/>)¹³ and were
1120 codon optimised for *E. coli* expression (IDT) (<https://eu.idtdna.com/CodonOpt>) (see
1121 Supplementary Table 12 for recodonised FIKK kinase sequences). For FIKK4.2,
1122 blocks of low complexity repeat sequences and the short low complexity downstream
1123 sequence (amino acids 403-928) were removed as per¹⁷. Sequences were
1124 subsequently inserted into a pET-28a vector (Novagen) to produce a N-terminal
1125 thrombin cleavage His₆ tag fusion
1126 (MGSSHHHHHSSGLVPRGSHMASMTGGQQMGRGS, where the sequence in
1127 bold is the His₆ tag, the underlined sequence is the thrombin site and the sequence
1128 in italics is the T7 tag). The insert sequence was verified by DNA sequencing. For
1129 expression in *E. coli*, BL21-Gold (DE3) cells (Stratagene) were transformed with
1130 pET-28a-FIKK vectors, grown over 2 days at 18°C in ZYM-5052 media
1131 supplemented with 50µg.ml⁻¹ kanamycin and harvested by centrifugation. In a typical
1132 preparation, 10g of cells were resuspended in 100ml lysis buffer (50mM Tris-HCl pH
1133 7.5, 500mM NaCl, 1mM TCEP, 20mM imidazole, 10mM MgSO₄, 10% glycerol and 2
1134 protease inhibitor cocktail tablets (cOmplete, EDTA free, Roche)), lysed by
1135 sonication and clarified by centrifugation at 20,000g for 30 min at 4°C. The
1136 supernatant was loaded into a 1ml HisTrap column (GE Healthcare) and the bound
1137 proteins were eluted in 50mM Tris-HCl pH 7.5, 500mM NaCl, 1mM TCEP, 300mM
1138 imidazole and 10% glycerol. After concentration, the samples were loaded on a Hi-
1139 Load Superdex 200 16/600 column (GE Healthcare) equilibrated with 50mM Tris-HCl
1140 pH7.5, 250mM NaCl, 1mM TCEP and 10% glycerol. The fractions containing the
1141 different recombinant FIKK kinase domains were analysed by SDS-PAGE stained by
1142 Coomassie.
1143

1144

1144 **Peptides arrays**

1145 Oriented Peptide Array Libraries (OPAL) and phosphoproteome peptide libraries
1146 synthesis was performed by the Francis Crick Institute Peptide Chemistry Science
1147 Technology platform as described previously^{36,102}. Briefly, peptide arrays were
1148 synthesised on an Intavis ResResSL automated peptide synthesiser (Intavis
1149 Bioanalytical Instruments, Germany) by cycles of N(a)-Fmoc amino acids coupling

1150 via activation of the carboxylic acid groups with diisopropylcarbodiimide in the
1151 presence of ethylciano-(hydroxyamino)-acetate (Oxyma pure) followed by removal of
1152 the temporary α -amino protecting group by piperidine treatment. Subsequent to
1153 chain assembly, side chain protection groups are removed by treatment of
1154 membranes with a deprotection cocktail (20ml 95% trifluoroacetic acid, 3%
1155 triisopropylsilane and 2% H_2O) for 4 hours at room temperature, then washing (4x
1156 dichloromethane, 4x ethanol, 2x H_2O and 1x ethanol) prior to being air dried. For the
1157 phosphoproteome peptide libraries, the final product is a cellulose membrane
1158 containing a library of 11-mer peptides. Sequences of the peptides can be found in
1159 Supplementary Table 9. For the OPAL libraries, the final product is a cellulose
1160 membrane containing a library of 9-mer peptides with the general sequences: A-X-X-
1161 X-X-S-X-X-X-X-A; A-X-X-X-X-T-X-X-X-X-A or A-X-X-X-Y-X-X-X-X-A. For each
1162 peptide, one of the 20 naturally occurring proteogenic amino acids was fixed at each
1163 of the 8 positions surrounding the phosphorylated residue (S, T or Y), with the
1164 remaining positions, represented by X, degenerate (approximately equimolar amount
1165 of the 16 amino acids excluding cysteine, serine, threonine and tyrosine). Cellulose
1166 membranes were placed in an incubation trough and moisten with 5 ml ethanol.
1167 They were subsequently washed twice with 50ml kinase buffer (20mM MOPS, 10mM
1168 magnesium chloride and 10mM manganese chloride, pH7.4, Alfa Aesar) and
1169 incubated overnight in 100ml reaction buffer (kinase buffer + 0.2mg/ml BSA (BSA
1170 Fraction V, Sigma) + 50 μ g/ml kanamycin). The next day, the kinase buffer was
1171 removed and the membranes were incubated at 30°C for 1 hour in 30ml blocking
1172 buffer (kinase buffer + 1mg/ml BSA + 50 μ g/ml kanamycin). After incubation, the
1173 blocking buffer was replaced with 30ml reaction buffer supplemented with 300 μ l
1174 10mM ATP and 125 μ Ci [γ -32P]-ATP (Hartmann Analytics, Germany). The reaction
1175 was started by adding 100nM of the recombinant FIKK kinase domain studied and
1176 left to incubate for 20 min at 30°C with gentle agitation. After incubation, the reaction
1177 buffer was removed and the membranes were washed 10 x 15 min with 100ml 1M
1178 NaCl, 3 x 5 min with 100ml H_2O , 3 x 15 min with 5% H_3PO_4 , 3 x 5 min with 100ml
1179 H_2O and 2 x 2 min with 100ml ethanol. The membranes were left to air dry before
1180 being wrapped up in plastic film and exposed overnight to a PhosphorScreen. The
1181 radioactivity incorporated into each peptide was then determined using a Typhoon
1182 FLA 9500 phosphorimager (GE Healthcare) and quantified with the program
1183 ImageQuant (version 8.2, Cytiva LifeScience). Data corresponding to the “signal
1184 above background” was used.

1185

1186 **Position Weight Matrices (PWMs) generation from OPAL data**

1187 PWMs were constructed from the raw OPAL data using a standard approach
1188 presented in ^{103,104}. First, raw OPAL values for S, T and Y amino acids were replaced
1189 with average (median) values for each corresponding peptide position to control for
1190 the possibility of spurious phosphorylation in flanking region. The OPAL values were
1191 then normalised per position to give a mean PWM score of 1 per amino acid and a
1192 total score of 20 per position. The raw OPAL data from S, T and Y libraries was then
1193 combined to generate a S/T/Y PWM. This was achieved by summing OPAL scores –
1194 after correcting flanking S/T/Y scores – from each of the peptide libraries. The OPAL
1195 data was then normalised as before to yield a mean PWM score of 1 per amino acid
1196 and a total PWM score of 20 per position. The relative scores between S, T and Y at
1197 position was calculated by taking the ratio of the total OPAL scores for the S, T and
1198 Y libraries. For ease of visualisation, the PWM logos display only amino acids with
1199 the scores above the arbitrary threshold of 2.5 using the software package

1200 ggseqlogo¹⁰⁵. These PWM scores were then log2-transformed to generate heatmaps
1201 of the matrix specificity scores.

1202

1203 **FIKK13 peptide RaPID selection**

1204 In vitro selections were carried out with Bio-His-FIKK13 following previously
1205 described protocols. Briefly, initial DNA libraries (including 6-12 degenerate NNK
1206 codons) were transcribed to mRNA using T7 RNA polymerase (37 °C, 16 hr)
1207 (Thermo Scientific) and ligated to a puromycin linker primer
1208 ([5'Phos]CTCCCGCCCCCGTCC[SP18][SP18][SP18][SP18][SP18]CC[Puromycin])
1209 using T4 RNA ligase (30 min, 25 °C) (New England Biolabs). First round translation
1210 was performed on a 150 µL scale, with subsequent rounds performed on a 5 µL
1211 scale. Translations were carried out (30 min, 37 °C then 12 min, 25 °C) using a
1212 custom methionine(-) Flexible In vitro Translation system composed by
1213 PURExpress™ (ΔRF123) Kit (New England Biolabs) solution B, an in-house solution
1214 A (50 mM HEPES-KOH pH 7.6, 2 mM ATP, 2 mM GTP, 1mM CTP, 1mM UTP, 20
1215 mM creatine phosphate, 100 mM potassium acetate, 2 mM spermidine, 6mM
1216 magnesium acetate, 1.5 mg/ml E. coli tRNA mix (Roche), 14 mM DTT) and
1217 additional C1Ac-D-Tyr-tRNA^{fMet}_{CAU} (25 µM). Ribosomes were then dissociated by
1218 addition of EDTA (18 mM final concentration, pH 8) and library mRNA reverse
1219 transcribed using MMLV RTase, Rnase H Minus. The reaction mixture was buffer
1220 exchanged into selection buffer (50 mM Tris Ph 7.5, 50 mM NaCl, 2mM DTT, 10 mM
1221 MgCl₂, 1.5 µM ADP, 0.1% Tween) using 1 mL homemade columns containing pre-
1222 equilibrated Sephadex resin (Cytiva) before the addition of 2X blocking buffer (50
1223 mM Tris pH 7.5, 250 mM NaCl, 2 mM DTT, 10 mM MgCl₂, 1.5 µM ADP, 0.1%
1224 Tween, 4 mg/mL sheared salmon sperm DNA (Invitrogen), 0.1% acetyl-BSA final
1225 (Invitrogen)). Libraries were incubated with negative selection beads (Dynabeads M-
1226 280 streptavidin (Life Technologies)) (3x30 min, 4 °C) followed by incubation with
1227 bead-immobilised His-bio-FIKK13 (200 nM, 4 °C, 30 min) before washing (3x1 bead
1228 volume selection buffer, 4 °C) and elution of retained mRNA/DNA/peptide hybrids in
1229 PCR buffer (95 °C, 5 min). Library recovery was assessed by quantitative real-time
1230 PCR relative to a library standard, negative selection, and the input DNA library.
1231 Recovered library DNA was used as the input library for the subsequent round.
1232 Following 6 rounds of selection, double indexed libraries (Nextera XT indices) were
1233 prepared and sequenced on a MiSeq platform (Illumina) using a v3 chip as single
1234 151 cycle reads. Sequences were ranked by total read numbers and converted into
1235 their corresponding peptides sequences for subsequent analysis (Supplementary
1236 Table 14).

1237

1238 Library DNA:

1239 5'-TAATACGACTCACTATAGGGTTAACCTTAAGAAGGAGATATACATATG
1240 (NNK)nTGCAGCGGCAGCGGCAGCTAGGACGGGGGGCGGAAA

1241

1242 Bead preparation:

1243 To assess the binding capacity of biotinylated FIKK13 to streptavidin, Bio-His-
1244 FIKK13 was incubated with different quantities of magnetic streptavidin beads
1245 (Invitrogen) for 30 min. Beads were then washed three times with cold selection
1246 buffer and protein elution was performed by boiling the beads at 95 °C for 5 minutes.
1247 Samples were then run in an SDS-PAGE gel and stained with Coomassie. Bead
1248 capacity was calculated quantifying the gel bands with FIJI.

1249

1250 **FIKK13 cyclic peptide synthesis**

1251 Peptides were synthesised using NovaPEG Rink Amide resin as C-terminal amides
1252 by standard Fmoc-based solid phase synthesis as previously described, using a
1253 Liberty Blue Peptide Synthesis System (CEM), a SYRO I (Biotage) or a Activotec P-
1254 11 peptide synthesiser. Following synthesis, the N-terminal amine was
1255 chloroacetylated by reaction with 0.5 M chloromethylcarbonyloxysuccinimide (ClAc-
1256 NHS) in DMF (1 hour, RT). Resin was washed (5 x DMF, 5 x DCM) and dried *in*
1257 *vacuo*.

1258 Peptides were cleaved from the resin and globally deprotected with TFA/triisopropyl
1259 silane/1,2-ethanedithiol/H₂O (92.5:2.5:2.5:2.5) for 3 hours at room temperature.
1260 Following filtration, the supernatant was concentrated by centrifugal evaporation and
1261 precipitated with cold diethyl ether. Crude peptides were resuspended in DMSO/H₂O
1262 (95:5) and, following basification with triethylamine to pH 10, were incubated with
1263 rotation for 1 hour at room temperature. Peptides were then acidified with TFA and
1264 purified by HPLC (Shimadzu) using a Merck Chromolith column (200 x 25 mm) with
1265 a 10-50% gradient of H₂O/acetonitrile containing 0.1% TFA. Pure peptides were
1266 lyophilised and dissolved in DMSO for further use. Peptide stock concentrations
1267 were determined by absorbance at 280 nm based on their predicted extinction
1268 coefficients.

1269

1270 **Surface plasmon resonance**

1271 Single cycle kinetics analysis by SPR was carried out using Biacore S200 and a
1272 Biotin CAPture kit, series S (Cytiva). Bio-His-FIKK13 was immobilised on the chip to
1273 yield a response of approximately 1400 RU. 50 mM Tris Ph 7.5, 250 mM NaCl, 2mM
1274 DTT, 10 mM MgCl₂, 1.5 μ M ADP, 0.02% Tween and 0.1 % DMSO was used as
1275 running buffer and experiments were performed at 25 °C. Samples were run with 100
1276 s contact time and data were analysed using the Biacore S200 analysis software.
1277 Data represent the average \pm standard deviation of at least two independent
1278 replicates. SPR data are available in Supplementary Table 8.

1279

1280 **ADP-Glo Assay**

1281 Recombinant FIKK kinase domains activity was measured using the ADP-Glo kinase
1282 assay (Promega), which quantifies the amount of ADP produced during the kinase
1283 reaction. Briefly, the kinase reactions were conducted at room temperature for 1 hour
1284 by mixing 100nM recombinant FIKK kinase domain with 10 μ M ATP and 10 μ M
1285 substrate when specified, in 40 μ l kinase buffer (20mM MOPS, 10mM magnesium
1286 chloride and 10mM manganese chloride, pH 7.4, Alfa Aesar). When kinase inhibition
1287 by ATP analogues was assessed, compounds (diluted in DMSO, final concentration
1288 δ 1%) were tested at 10 μ M, or otherwise specified, by incubation for 15 minutes with
1289 the recombinant kinase domain prior to addition of ATP \pm substrate. ADP-Glo
1290 reagent (40 μ l) was added to stop the kinase reaction and deplete the unconsumed
1291 ATP. After incubation at room temperature for another hour, 80 μ l kinase detection
1292 reagent was added and incubated for 30 minutes at room temperature.
1293 Luminescence was measured using the multi-mode microplate reader FLUOstar
1294 Omega (BMG Labtech).

1295

1296 **Protein sequence identity matrix**

1297 As described above, *Plasmodium falciparum* FIKK amino acid sequences were
1298 retrieved from UniProt and aligned using the MAFFT L-INS-i algorithm⁹⁰.

1299 Heavily gapped alignment positions (more than 20% gapped) were filtered out of the
1300 multiple sequence alignment (MSA) using the trimAl software⁹¹. The sequence
1301 identity of this processed alignment was then calculated using seqidentity
1302 (,normalise=TRUE) function in the R package bio3d¹⁰⁶.

1303
1304 **Phosphoproteome libraries analysis**

1305 Position weight matrices (PWMs) were calculated for each FIKK kinase as described
1306 above. These data were then cross-referenced with the phosphoproteome peptides
1307 presented in Fig. 5. Specifically, each peptide in the array was scored for its match to
1308 the FIKK preferred phosphorylation motif, using a simple matrix similarity score
1309 (MSS) of the PWM against the peptide sequence¹⁰¹. This function outputs a
1310 normalised score that has a minimum of 0 and a maximum of 1. In each case, a
1311 Pearson's correlation coefficient (PCC) is calculated between the motif score (x) and
1312 a log10 transformation of the phosphorylation signal from the phosphoproteome
1313 peptide array (y), from curves of the form $y = \log(x)$.

1314
1315 Peptides from the library were divided into a motif 'match' and 'no match' with
1316 respect to any given FIKK specificity matrix. This was based on a null distribution of
1317 randomised peptide sequences for phosphosites not affected by the FIKK knockout
1318 tested previously¹⁶. Peptides with a motif score (MSS) below an empirical *p*-value of
1319 0.05 were considered a 'Match'. Peptides with a MSS above 0.05 in *p*-value were
1320 considered 'No Match'.

1321
1322 The sequence logo of phosphoproteome targets (e.g. in Fig. 5c) represents the
1323 relative frequency of amino acids among peptides phosphorylated above
1324 background levels ($\log_{10}(\text{signal}) > 4.0$) for the FIKK kinase of interest. Sequence
1325 logos were generated using ggseqlogo¹⁰⁵.

1326
1327 **Expression and purification of *P. falciparum* FIKK13 kinase domain proteins
1328 for crystallisation**

1329 Codon-optimised DNA encoding the kinase domain of *PfFIKK13* residues 149-561
1330 (PlasmoDB PF3D7_1371700) was cloned into pET-47b to produce an HRV 3C
1331 cleavable His₆ N-terminal fusion (MAHHHHHHSAALEVLFQ_↓GPG) with the HRV 3C
1332 cleavage site underlined. The kinase inactive D379N mutant was generated by site
1333 directed mutagenesis using the pET-47-*PfFIKK13*¹⁴⁹⁻⁵⁶¹ construct as a template.
1334 Both constructs were verified by DNA sequencing.

1335 The *PfFIKK13*¹⁴⁹⁻⁵⁶¹ and *PfFIKK13*^{149-561-D379N} were expressed in *E. coli* strain BL21
1336 (DE3) Gold (Agilent). Bacterial cultures were grown in TB at 30°C to an $OD_{600}=1.2$ -
1337 1.5 and isopropyl-β-D-thiogalactoside (IPTG) was added to a final concentration of
1338 0.5mM to the culture grown at 25°C overnight. Cell pellets were harvested,
1339 resuspended in lysis buffer A (50mM HEPES pH7.5, 20mM Imidazole, 0.5M NaCl,
1340 10mM MgCl₂, 10%(v/v) Glycerol, 1mM TCEP) supplemented with 1U/ml Universal
1341 nuclease (Pierce) and 1 Protease inhibitor tablet (cComplete, Roche) per 50ml
1342 solution, and lysed by sonication. The bacterial lysate was centrifuged for 30 minutes
1343 at 80,000xg. The supernatant was applied to a 5ml HisTrap column (Cytiva) and
1344 washed with 10 CV of buffer A. Fractions containing *PfFIKK13*¹⁴⁹⁻⁵⁶¹ and
1345 *PfFIKK13*^{149-561-D379N} were pooled separately and incubated overnight at 4°C with
1346 HRV 3C protease to remove the 6xHis-tag. The next day, *PfFIKK13*¹⁴⁹⁻⁵⁶¹ and
1347 *PfFIKK13*^{149-561-D379N} were concentrated and purified by size-exclusion

1348 chromatography using buffer B (50mM HEPES pH7.5, 250mM NaCl, 2mM MgCl₂,
1349 1mM TCEP and 5%(v/v) glycerol) as running buffer.

1350

1351 **Generation of nanobodies recognising *PfFIKK13*¹⁴⁹⁻⁵⁶¹**

1352 A healthy llama (Arla) was immunised with 3 doses of 200µg of purified *PfFIKK13*¹⁴⁹⁻
1353 ⁵⁶¹ using GERBU as adjuvant followed an established protocol with animal handling
1354 carried out by trained personnel under the Home Office Project Licence PA1FB163A.
1355 The three immunisations took place on Day 0, 28 and 56 and a 150ml blood sample
1356 was harvested 10 days after the 3rd immunisation. The PBMCs were isolated and
1357 total RNA extracted using described methods¹⁰⁷. Total RNA was reverse transcribed
1358 using dT18-oligos. The VHH was PCR-amplified using primers CALL01 and CALL02
1359 and a band of ~700bp excised. The 700bp band was used as template to re-amplify
1360 the VHH using primers VHH-Sfil2 (5'-
1361 GTCCTCGCAACTGCGGCCAGCCGCCATGGCTCAGGTGCAGCTGGTGG-3')
1362 and VHH-Not2 (5'-GGACTAGTGCAGGCCCTGAGGAGACGGTGACCTGGT-3').
1363 The PCR product was digested with *Sfil* and *Not* enzymes (NEB) and ligated into a
1364 pHEN2 vector modified with a triple c-Myc tag¹⁰⁸ which was used to transform
1365 electrocompetent TG1 cells (Lucigen). The resulting Nb-library consisted of 5x10⁷
1366 independent colonies. Phage particles were prepared by super-infection with VCS13
1367 helper phage (Agilent). The phage preparation was concentrated by adding 1/5th
1368 volume of 20%(W/v) PEG6000, 2.5M NaCl and subsequent centrifugation at 4000xg
1369 for 30min.

1370 Nanobodies specific for *PfFIKK13*¹⁴⁹⁻⁵⁶¹ were selected against biotinylated
1371 *PfFIKK13*¹⁴⁹⁻⁵⁶¹ immobilised on either Streptavidin-coated magnetic beads
1372 (DynabeadsTM M280-Streptavidin, ThermoFisher Scientific) or PierceTM NeutrAvidinTM
1373 Coated plates (#15123 ThermoFisher Scientific). Individual clones were isolated by
1374 ELISA using soluble Nbs as primary antibody and detecting with the anti-C-myc
1375 antibody 9E10, followed by anti-mouse-HRP conjugated antibodies (Agilent). The
1376 chromogenic TMB substrate (ThermoFisher Scientific) was added, and colour
1377 development was quenched with 1M HCl. The absorbance was read at 450nm with
1378 620nm used as baseline. ELISA-positive Nb clones were sequenced. A total of 7
1379 different families of Nbs was isolated. Further work was performed with Nb2G9 and
1380 Nb9F10.

1381

1382 **Expression and purification of Nb2G9 and Nb9F10**

1383 Nb2G9 (protein sequence:
1384 QVQLVESGGGLVQAGGSLRLSCAASGRTFSSYSMAWFRQAPGKERENVAVISWS
1385 GSTSYYAESVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGPRTTPQAMGA
1386 VEYDYWGQGTQTVTSS) was found to be compatible with Nb9F10 (protein
1387 sequence:
1388 QEQLVESGGGLVQAGGSLTLSGASSGGTFETYAMGWFRQAPGKEREFAAVSW
1389 SGGSAHYADSVKGRFTISRDVKNTVYLQMNSLKPEDTAVYYCAADRSYGYSSWYH
1390 YPEDALDAWGQGTQTVTSS) in simultaneously binding *PfFIKK13*¹⁴⁹⁻⁵⁶¹ (data not
1391 shown). The DNA encoding Nb2G9 and Nb9F10 were cloned into a modified pET-
1392 21b vector to produce a N-term pelB secretion signal fusion
1393 (MKYLLPTAAAGLLLLAAQPA_↓MA) with a C-term TEV cleavable Avi•Tag/His₈
1394 (AAE₈NLYFQ_↓GLND/FEAQKIEWHE₈HHHHHHHH where the underlined sequence is
1395 the TEV cleavage site, the Avi•Tag in italics and the 8xHis-tag in bold).
1396 Nb2G9 and Nb9F10 were expressed in *E. coli* strain Rosetta2(DE3). Bacterial
1397 cultures were grown in TB at 37°C to a density of OD₆₀₀=1.2-1.5 and protein

1398 expression was induced with 0.5mM IPTG at 30°C overnight. The bacteria were
1399 pelleted by centrifugation at 5,000xg for 30min. The clarified TB medium containing
1400 nanobodies was adjusted to pH8.0, 20mM NaCl and loaded onto a 5ml HiTrap Excel
1401 column (Cytiva) pre-equilibrated in PBS. Bound proteins were eluted with PBS
1402 containing 400mM imidazole pH8.0. The C-term Avi/His₈ tag was removed by TEV
1403 protease cleavage and subsequent size-exclusion chromatography.

1404

1405 **FIKK13/Nb2G9/Nb9F10 complex formation**

1406 Purified *Pf*FIKK13^{149-561_D379N} and Nb2G9 and 9F10 were mixed in a 1:1.2:1.2 molar
1407 ratio and loaded on a Superdex 75 10/300 Increase column (Cytiva) equilibrated in
1408 20mM HEPES pH7.5, 150mM NaCl, 2mM MgCl₂, 0.5mM TCEP to remove the
1409 excess nanobodies. The fractions corresponding to the FIKK13¹⁴⁹⁻
1410 ^{561_D379N}/Nb2G9/Nb9F10 complex peak were pooled, concentrated to 7mg/ml and
1411 used for crystallisation experiments. Additionally, the FIKK13¹⁴⁹⁻
1412 ^{561_D379N}/Nb2G9/Nb9F10/ATP γ S samples were prepared by mixing purified
1413 FIKK13^{149-561_D379N}/Nb2G9/Nb9F10 and ATP γ S in a 1:1.1 molar ratio.

1414

1415 **Crystallisation of *Pf*FIKK13^{149-561_D379N} with Nb2G9, Nb9F10 and ATP γ S**

1416 Crystallisation trials were set up using samples at ~7mg/ml. Initial crystals of the
1417 complex between *Pf*FIKK13^{149-561_D379N} and Nb2G9 and Nb9F10 nanobodies were
1418 grown in 20%(w/v) PEG3350 and 0.2M Sodium thiocyanate (Peg Ion HT screen
1419 condition B1, Hampton Research) and further optimised. Crystals were grown in
1420 sitting drops by vapor diffusion at 20°C, cryoprotected by stepwise addition of
1421 PEG4000 or ethylene glycol to a final concentration of 25% (v/v), and flash-cooled to
1422 100K by direct immersion in liquid nitrogen.

1423 The initial apo (without ATP γ S) structure was solved at low resolution by molecular
1424 replacement using an AlphaFold search ensemble generated at Diamond Light
1425 Source using data obtained from crystals grown in 18%(w/v) PEG3350, 150mM
1426 Sodium thiocyanate and 10mM Calcium chloride as an additive. The model was
1427 rebuilt and refined before molecular replacement into a higher resolution dataset
1428 obtained from crystals grown in 21%(w/v) PEG3350 and 0.1M Sodium thiocyanate.
1429 Crystals of *Pf*FIKK13^{149-561_D379N} in complex with Nb2G9 and Nb9F10 bound to
1430 ATP γ S were obtained from a condition containing 0.1M lithium chloride, 10%(v/v)
1431 Ethylene glycol, 20%(w/v) PEG6000 and 0.1M HEPES pH7.0 (Ligand Friendly
1432 Screen condition C9, Molecular Dimensions) and seeding with apo crystals.

1433

1434 **Kinase-peptide models generation**

1435 Kinase-peptide models were generated using the HADDOCK 2.4 webserver¹⁰⁹
1436 applied to AlphaFold2 predictions of the FIKK kinase domain^{110,111}. Docking was
1437 executed using default parameters with the following alterations. First, residues with
1438 a minimum relative solvent accessibility (RSA) of 5% could be considered as
1439 accessible. Second, the peptide sequence was designated as the molecule type
1440 'Peptide' and defined to be fully flexible at every position. No 'active' or 'passive'
1441 residues were chosen as ambiguous interactions restraints (AIRs)¹¹², but an
1442 unambiguous interaction restraint was specified between the phosphoacceptor (S, T,
1443 or Y) side chain oxygen and the hydroxyl oxygen of the catalytic aspartate residue
1444 (D166 in PDB: 1ATP), at a maximum distance of 5.5 Angstroms.

1445

1446 **PKIS screen and Structure Activity Relationship (SAR) assays**

1447 PKIS and SAR compounds at 1mM in 60nl DMSO were plated in white, opaque, flat-
1448 bottomed, 384-well microplates (Greiner Bio-one). Columns 6 and 18 of the
1449 microplates served as controls. Column 6 = positive control (Recombinant FIKK8
1450 kinase domain + P_o peptide (RRRAPSFYRK)²² + ATP without compounds) Column
1451 18 = negative control (Recombinant FIKK8 kinase domain + P_o peptide – ATP). 3 μ l
1452 kinase at 40nM in kinase reaction buffer (20mM MOPS, 10mM magnesium chloride
1453 and 10mM manganese chloride, pH 7.4, Alfa Aesar) was dispensed in each well
1454 using a MultidropTM Combi Reagent dispenser (ThermoFischer Scientific).
1455 Recombinant FIKK8 kinase domain was left to incubate in the presence of
1456 compounds for 15 minutes at room temperature. 3 μ l P_o peptide + ATP at 20 μ M
1457 each, diluted in kinase reaction buffer, was dispensed in each well except in column
1458 18 in which 3 μ l of peptide without ATP was dispensed. Kinase reaction was left to
1459 occur for 1 hour and was stopped with 6 μ l ADP-Glo reagent. Kinase activity was
1460 assessed after addition of 12 μ l Kinase Detection reagent by measuring
1461 luminescence on a multi-mode microplate reader FLUOstar Omega (BMG Labtech).
1462

1463 ***In vitro* measurement of compounds IC₅₀**

1464 *In vitro* half-maximal inhibitor concentrations of PKIS and SAR compounds was
1465 determined by testing recombinant FIKK8 kinase domain activity in the presence of
1466 increasing concentrations of compounds. White, opaque, flat-bottomed 384-well
1467 microplates (Greiner Bio-One) containing compounds in a range of concentrations
1468 starting from 25 μ M to 0.4nM (1 in 3 serial dilutions) were ordered from GSK in
1469 Stevenage. Compounds were dispensed in the microplates at the required
1470 concentrations in 60nl DMSO. Kinase activity in the presence of the compounds was
1471 measured as described above. Briefly, 3 μ l recombinant FIKK8 kinase domain at
1472 40nM in kinase reaction buffer was dispensed in each well using a MultidropTM
1473 Combi Reagent dispenser (ThermoFischer Scientific). Recombinant FIKK8 kinase
1474 domain was left to incubate in the presence of compounds for 15 minutes at room
1475 temperature. 3 μ l P_o peptide + ATP at 20 μ M each, diluted in kinase reaction buffer,
1476 was dispensed in each well. Kinase reaction was left to occur for 1 hour and was
1477 stopped with 6 μ l ADP-Glo reagent. Kinase activity was assessed after addition of
1478 12 μ l Kinase Detection reagent by measuring luminescence on a multi-mode
1479 microplate reader FLUOstar Omega (BMG Labtech). Data were analysed using
1480 GraphPad Prism version 10 and IC₅₀s were calculated from a four-parameters
1481 logistical fit of the data.
1482

1483 **FIKK inhibitors EC₅₀s determination**

1484 Half maximal effective concentration (EC₅₀) of the different compounds tested was
1485 determined by flow cytometry. Two-fold dilutions of the compounds were plated in
1486 triplicate in 96 well-plates. 200 μ l parasite solution containing 1% NF54 parasitemia
1487 and 2% haematocrit was added to each well and plates were incubated for 72 hours
1488 at 37°C in a sealed gassed chamber. After incubation, parasite growth was assessed
1489 by flow cytometry. Samples (20 μ l) were fixed in 2% paraformaldehyde (PFA) + 0.2%
1490 glutaraldehyde (GA) in PBS for 1 hour in the dark at 4°C. Fixative was subsequently
1491 washed out with PBS and samples were stained with SYBR Green for 30 minutes in
1492 the dark at 37°C. After a final wash, parasitemia was counted by flow cytometry on a
1493 BD LSR Fortessa flow cytometer (Becton Dickinson) using the FACS Diva software.
1494 Data were analysed using the FlowJo 10 analysis software (Becton Dickinson).
1495

1496 **ATP-depletion**

1497 Irreversible depletion of ATP in RBCs was carried out by incubating uRBCs for 2
1498 hours at room temperature in PBS containing various concentrations of inosine and
1499 iodoacetamide⁷⁰ (see Extended Data Fig. 21 for inosine and iodoacetamide
1500 concentrations used). ATP-depleted uRBCs were then washed three times with PBS
1501 and ATP-depletion was evaluated for each dilution using the CellTiter-Glo→
1502 Luminescent Cell Viability assay (Promega) following the instructions provided in the
1503 kit (see Extended Data Fig. 21 for ATP-depletion assessment). ATP-depleted uRBCs
1504 were put in the presence of Percoll-purified mature schizont stage parasites at 1%
1505 haematocrit in complete medium in a shaking incubator at 37°C for 4 hours.
1506 Parasites were allowed to grow for 48 hours before samples were taken for
1507 immunofluorescence, Western blot and flow cytometry assessment of parasite
1508 growth as described above.

1509

1510 **Data availability**

1511 The mass spectrometry proteomics data have been deposited to the
1512 ProteomeXchange Consortium via the PRIDE¹¹³ partner repository with the dataset
1513 identifier PXD048966. The crystal structure of *PfFIKK13*^{149-561_D379N} with Nb2G9,
1514 Nb9F10 and ATPγS is available from the Protein Data Bank under the accession
1515 code Gene sequences and annotations for *P. falciparum* 3D7 were acquired
1516 from PlasmoDB.org (v46)¹³ and human sequences were acquired from Uniprot.org
1517 (2023)⁸⁹. RNA sequencing data from Hoeijmakers *et al.* available on PlasmoDB was
1518 also used. The Pf3K project dataset used to identify genetic variants in fikk genes is
1519 available at the following address (www.malariaagen.net/projects/parasite.pf3k)⁷⁹.
1520 Source data in the form of unprocessed gels and western blots corresponding to
1521 Figs. 1c, 7d, 7e, 7f and Extended Data Figs. 2a, 2b, 4, 21c are available with the
1522 article.

1523

1524 **Code availability**

1525 No custom code deemed central to the conclusions to this manuscript has been
1526 used in this study.

1527

1528

1529 **References**

1530

- 1531 1 WHO. World malaria report 2021. (2021).
- 1532 2 Sargeant, T. J. *et al.* Lineage-specific expansion of proteins exported to erythrocytes
1533 in malaria parasites. *Genome Biol* **7**, R12, doi:10.1186/gb-2006-7-2-r12 (2006).
- 1534 3 Warncke, J. D. & Beck, H. P. Host Cytoskeleton Remodeling throughout the Blood
1535 Stages of *Plasmodium falciparum*. *Microbiol Mol Biol Rev* **83**,
1536 doi:10.1128/MMBR.00013-19 (2019).
- 1537 4 Su, X. Z. *et al.* The large diverse gene family var encodes proteins involved in
1538 cytoadherence and antigenic variation of *Plasmodium falciparum*-infected
1539 erythrocytes. *Cell* **82**, 89-100, doi:10.1016/0092-8674(95)90055-1 (1995).
- 1540 5 Baruch, D. I. *et al.* Cloning the *P. falciparum* gene encoding PfEMP1, a malarial
1541 variant antigen and adherence receptor on the surface of parasitized human
1542 erythrocytes. *Cell* **82**, 77-87, doi:10.1016/0092-8674(95)90054-3 (1995).

1543 6 Nguiragool, W. *et al.* Malaria parasite clag3 genes determine channel-mediated
1544 nutrient uptake by infected red blood cells. *Cell* **145**, 665-677,
1545 doi:10.1016/j.cell.2011.05.002 (2011).

1546 7 Pillai, A. D. *et al.* Solute restriction reveals an essential role for clag3-associated
1547 channels in malaria parasite nutrient acquisition. *Mol Pharmacol* **82**, 1104-1114,
1548 doi:10.1124/mol.112.081224 (2012).

1549 8 Lanzer, M., Wickert, H., Krohne, G., Vincensini, L. & Braun Breton, C. Maurer's clefts:
1550 a novel multi-functional organelle in the cytoplasm of *Plasmodium falciparum*-
1551 infected erythrocytes. *Int J Parasitol* **36**, 23-36, doi:10.1016/j.ijpara.2005.10.001
1552 (2006).

1553 9 Ward, P., Equinet, L., Packer, J. & Doerig, C. Protein kinases of the human malaria
1554 parasite *Plasmodium falciparum*: the kinome of a divergent eukaryote. *BMC*
1555 *Genomics* **5**, 79, doi:10.1186/1471-2164-5-79 (2004).

1556 10 Tewari, R. *et al.* The systematic functional analysis of *Plasmodium* protein kinases
1557 identifies essential regulators of mosquito transmission. *Cell Host Microbe* **8**, 377-
1558 387, doi:10.1016/j.chom.2010.09.006 (2010).

1559 11 Proto, W. R. Unravelling the Laverania. *Nat Rev Microbiol* **14**, 478,
1560 doi:10.1038/nrmicro.2016.109 (2016).

1561 12 Sundararaman, S. A. *et al.* Genomes of cryptic chimpanzee *Plasmodium* species
1562 reveal key evolutionary events leading to human malaria. *Nat Commun* **7**, 11078,
1563 doi:10.1038/ncomms11078 (2016).

1564 13 Aurrecoechea, C. *et al.* PlasmoDB: a functional genomic database for malaria
1565 parasites. *Nucleic Acids Res* **37**, D539-543, doi:10.1093/nar/gkn814 (2009).

1566 14 Otto, T. D. *et al.* Genomes of all known members of a *Plasmodium* subgenus reveal
1567 paths to virulent human malaria. *Nat Microbiol* **3**, 687-697, doi:10.1038/s41564-018-
1568 0162-2 (2018).

1569 15 Amos, B. *et al.* VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics
1570 resource center. *Nucleic Acids Res* **50**, D898-D911, doi:10.1093/nar/gkab929 (2022).

1571 16 Davies, H. *et al.* An exported kinase family mediates species-specific erythrocyte
1572 remodelling and virulence in human malaria. *Nat Microbiol*, doi:10.1038/s41564-
1573 020-0702-4 (2020).

1574 17 Kats, L. M. *et al.* An exported kinase (FIKK4.2) that mediates virulence-associated
1575 changes in *Plasmodium falciparum*-infected red blood cells. *Int J Parasitol* **44**, 319-
1576 328, doi:10.1016/j.ijpara.2014.01.003 (2014).

1577 18 Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features
1578 and deduced phylogeny of the catalytic domains. *Science* **241**, 42-52,
1579 doi:10.1126/science.3291115 (1988).

1580 19 Nunes, M. C., Goldring, J. P., Doerig, C. & Scherf, A. A novel protein kinase family in
1581 *Plasmodium falciparum* is differentially transcribed and secreted to various cellular
1582 compartments of the host cell. *Mol Microbiol* **63**, 391-403, doi:10.1111/j.1365-
1583 2958.2006.05521.x (2007).

1584 20 Nunes, M. C., Okada, M., Scheidig-Benatar, C., Cooke, B. M. & Scherf, A. *Plasmodium*
1585 *falciparum* FIKK kinase members target distinct components of the erythrocyte
1586 membrane. *PLoS One* **5**, e11747, doi:10.1371/journal.pone.0011747 (2010).

1587 21 Brandt, G. S. & Bailey, S. Dematin, a human erythrocyte cytoskeletal protein, is a
1588 substrate for a recombinant FIKK kinase from *Plasmodium falciparum*. *Mol Biochem*
1589 *Parasitol* **191**, 20-23, doi:10.1016/j.molbiopara.2013.08.003 (2013).

1590 22 Osman, K. T. *et al.* Biochemical characterization of FIKK8--A unique protein kinase
1591 from the malaria parasite *Plasmodium falciparum* and other apicomplexans. *Mol*
1592 *Biochem Parasitol* **201**, 85-89, doi:10.1016/j.molbiopara.2015.06.002 (2015).

1593 23 Jaijyan, D. K., Verma, P. K. & Singh, A. P. A novel FIKK kinase regulates the
1594 development of mosquito and liver stages of the malaria. *Sci Rep* **6**, 39285,
1595 doi:10.1038/srep39285 (2016).

1596 24 Lin, B. C. *et al.* FIKK Kinase, a Ser/Thr Kinase Important to Malaria Parasites, Is
1597 Inhibited by Tyrosine Kinase Inhibitors. *ACS Omega* **2**, 6605-6612,
1598 doi:10.1021/acsomega.7b00997 (2017).

1599 25 Lin, B. C. *et al.* The anthraquinone emodin inhibits the non-exported FIKK kinase
1600 from *Plasmodium falciparum*. *Bioorg Chem* **75**, 217-223,
1601 doi:10.1016/j.bioorg.2017.09.011 (2017).

1602 26 D, A. K., Shrivastava, D., Sahasrabuddhe, A. A., Habib, S. & Trivedi, V. *Plasmodium*
1603 *falciparum* FIKK9.1 is a monomeric serine-threonine protein kinase with features to
1604 exploit as a drug target. *Chem Biol Drug Des* **97**, 962-977, doi:10.1111/cbdd.13821
1605 (2021).

1606 27 McRobert, L. *et al.* Gametogenesis in malaria parasites is mediated by the cGMP-
1607 dependent protein kinase. *PLoS Biol* **6**, e139, doi:10.1371/journal.pbio.0060139
1608 (2008).

1609 28 Siddiqui, G., Proellochs, N. I. & Cooke, B. M. Identification of essential exported
1610 *Plasmodium falciparum* protein kinases in malaria-infected red blood cells. *Br J*
1611 *Haematol* **188**, 774-783, doi:10.1111/bjh.16219 (2020).

1612 29 Howick, V. M. *et al.* The Malaria Cell Atlas: Single parasite transcriptomes across the
1613 complete *Plasmodium* life cycle. *Science* **365**, doi:10.1126/science.aaw2619 (2019).

1614 30 Kensche, P. R. *et al.* The nucleosome landscape of *Plasmodium falciparum* reveals
1615 chromatin architecture and dynamics of regulatory sequences. *Nucleic Acids Res* **44**,
1616 2110-2124, doi:10.1093/nar/gkv1214 (2016).

1617 31 Davies, H., Belda, H., Broncel, M., Dalimot, J. & Treeck, M. PerTurbolD, A targeted in
1618 situ method reveals the impact of kinase deletion on its local protein environment in
1619 the cytoadhesion complex of malaria causing parasites. *eLife* **12**,
1620 doi:10.7554/eLife.86367 (2023).

1621 32 Branen, T. C. *et al.* Efficient proximity labeling in living cells and organisms with
1622 Turbold. *Nat Biotechnol* **36**, 880-887, doi:10.1038/nbt.4201 (2018).

1623 33 Knuepfer, E., Napiorkowska, M., van Ooij, C. & Holder, A. A. Generating conditional
1624 gene knockouts in *Plasmodium* - a toolkit to produce stable DiCre recombinase-
1625 expressing parasite lines using CRISPR/Cas9. *Sci Rep* **7**, 3881, doi:10.1038/s41598-
1626 017-03984-3 (2017).

1627 34 Villen, J., Beausoleil, S. A., Gerber, S. A. & Gygi, S. P. Large-scale phosphorylation
1628 analysis of mouse liver. *Proc Natl Acad Sci U S A* **104**, 1488-1493,
1629 doi:10.1073/pnas.0609836104 (2007).

1630 35 Treeck, M., Sanders, J. L., Elias, J. E. & Boothroyd, J. C. The phosphoproteomes of
1631 *Plasmodium falciparum* and *Toxoplasma gondii* reveal unusual adaptations within
1632 and beyond the parasites' boundaries. *Cell Host Microbe* **10**, 410-419,
1633 doi:10.1016/j.chom.2011.09.004 (2011).

1634 36 Rodriguez, M., Li, S. S., Harper, J. W. & Songyang, Z. An oriented peptide array library
1635 (OPAL) strategy to study protein-protein interactions. *J Biol Chem* **279**, 8802-8807,
1636 doi:10.1074/jbc.M311886200 (2004).

1637 37 Miranda-Saavedra, D., Gabaldon, T., Barton, G. J., Langsley, G. & Doerig, C. The
1638 kinomes of apicomplexan parasites. *Microbes Infect* **14**, 796-810,
1639 doi:10.1016/j.micinf.2012.04.007 (2012).

1640 38 Obexer, R., Walport, L. J. & Suga, H. Exploring sequence space: harnessing chemical
1641 and biological diversity towards new peptide leads. *Curr Opin Chem Biol* **38**, 52-61,
1642 doi:10.1016/j.cbpa.2017.02.020 (2017).

1643 39 Suga, H. Max-Bergmann award lecture: A RaPID way to discover bioactive
1644 nonstandard peptides assisted by the flexizyme and FIT systems. *J Pept Sci* **24**,
1645 doi:10.1002/psc.3055 (2018).

1646 40 Huang, Y., Wiedmann, M. M. & Suga, H. RNA Display Methods for the Discovery of
1647 Bioactive Macrocycles. *Chem Rev* **119**, 10360-10391,
1648 doi:10.1021/acs.chemrev.8b00430 (2019).

1649 41 Chowdhury, R. *et al.* Use of cyclic peptides to induce crystallization: case study with
1650 prolyl hydroxylase domain 2. *Sci Rep* **10**, 21964, doi:10.1038/s41598-020-76307-8
1651 (2020).

1652 42 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein
1653 kinase complement of the human genome. *Science* **298**, 1912-1934,
1654 doi:10.1126/science.1075762 (2002).

1655 43 Manning, G. *et al.* The minimal kinome of Giardia lamblia illuminates early kinase
1656 evolution and unique parasite biology. *Genome Biol* **12**, R66, doi:10.1186/gb-2011-
1657 12-7-r66 (2011).

1658 44 Bradley, D. & Beltrao, P. Evolution of protein kinase substrate recognition at the
1659 active site. *PLoS Biol* **17**, e3000341, doi:10.1371/journal.pbio.3000341 (2019).

1660 45 Johnson, J. L. *et al.* An atlas of substrate specificities for the human serine/threonine
1661 kinase. *Nature* **613**, 759-766, doi:10.1038/s41586-022-05575-3 (2023).

1662 46 Heringa, J. Two strategies for sequence comparison: profile-preprocessed and
1663 secondary structure-induced multiple alignment. *Comput Chem* **23**, 341-364,
1664 doi:10.1016/s0097-8485(99)00012-1 (1999).

1665 47 Madeira, F. *et al.* Search and sequence analysis tools services from EMBL-EBI in 2022.
1666 *Nucleic Acids Res* **50**, W276-W279, doi:10.1093/nar/gkac240 (2022).

1667 48 Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview
1668 Version 2--a multiple sequence alignment editor and analysis workbench.
1669 *Bioinformatics* **25**, 1189-1191, doi:10.1093/bioinformatics/btp033 (2009).

1670 49 Livingstone, C. D. & Barton, G. J. Protein sequence alignments: a strategy for the
1671 hierarchical analysis of residue conservation. *Comput Appl Biosci* **9**, 745-756,
1672 doi:10.1093/bioinformatics/9.6.745 (1993).

1673 50 Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap.
1674 *Evolution* **39**, 783-791, doi:10.1111/j.1558-5646.1985.tb00420.x (1985).

1675 51 Knighton, D. R. *et al.* Structure of a peptide inhibitor bound to the catalytic subunit
1676 of cyclic adenosine monophosphate-dependent protein kinase. *Science* **253**, 414-
1677 420, doi:10.1126/science.1862343 (1991).

1678 52 Brinkworth, R. I., Breinl, R. A. & Kobe, B. Structural basis and prediction of substrate
1679 specificity in protein serine/threonine kinases. *Proc Natl Acad Sci U S A* **100**, 74-79,
1680 doi:10.1073/pnas.0134224100 (2003).

1681 53 Ubersax, J. A. & Ferrell, J. E., Jr. Mechanisms of specificity in protein phosphorylation.
1682 *Nat Rev Mol Cell Biol* **8**, 530-541, doi:10.1038/nrm2203 (2007).

1683 54 Miller, C. J. & Turk, B. E. Homing in: Mechanisms of Substrate Targeting by Protein
1684 Kinases. *Trends Biochem Sci* **43**, 380-394, doi:10.1016/j.tibs.2018.02.009 (2018).
1685 55 Bradley, D. *et al.* Sequence and Structure-Based Analysis of Specificity Determinants
1686 in Eukaryotic Protein Kinases. *Cell Rep* **34**, 108602, doi:10.1016/j.celrep.2020.108602
1687 (2021).
1688 56 Guo, H. B. *et al.* AlphaFold2 models indicate that protein sequence determines both
1689 structure and dynamics. *Sci Rep* **12**, 10696, doi:10.1038/s41598-022-14382-9 (2022).
1690 57 Ma, P., Li, D. W. & Bruschweiler, R. Predicting protein flexibility with AlphaFold.
1691 *Proteins* **91**, 847-855, doi:10.1002/prot.26471 (2023).
1692 58 The PyMOL Molecular Graphics System, Version 2.5.4.
1693 59 Reinhardt, R. & Leonard, T. A. A critical evaluation of protein kinase regulation by
1694 activation loop autophosphorylation. *Elife* **12**, doi:10.7554/elife.88210 (2023).
1695 60 Treiber, D. K. & Shah, N. P. Ins and outs of kinase DFG motifs. *Chem Biol* **20**, 745-746,
1696 doi:10.1016/j.chembiol.2013.06.001 (2013).
1697 61 Modi, V. & Dunbrack, R. L., Jr. A Structurally-Validated Multiple Sequence Alignment
1698 of 497 Human Protein Kinase Domains. *Sci Rep* **9**, 19790, doi:10.1038/s41598-019-
1699 56499-4 (2019).
1700 62 Lange, A. *et al.* Targeting the Gatekeeper MET146 of C-Jun N-Terminal Kinase 3
1701 Induces a Bivalent Halogen/Chalcogen Bond. *J Am Chem Soc* **137**, 14640-14652,
1702 doi:10.1021/jacs.5b07090 (2015).
1703 63 Meggio, F. *et al.* Different susceptibility of protein kinases to staurosporine
1704 inhibition. Kinetic studies and molecular bases for the resistance of protein kinase
1705 CK2. *Eur J Biochem* **234**, 317-322, doi:10.1111/j.1432-1033.1995.317_c.x (1995).
1706 64 Karaman, M. W. *et al.* A quantitative analysis of kinase inhibitor selectivity. *Nat
1707 Biotechnol* **26**, 127-132, doi:10.1038/nbt1358 (2008).
1708 65 Tanramluk, D., Schreyer, A., Pitt, W. R. & Blundell, T. L. On the origins of enzyme
1709 inhibitor selectivity and promiscuity: a case study of protein kinase binding to
1710 staurosporine. *Chem Biol Drug Des* **74**, 16-24, doi:10.1111/j.1747-0285.2009.00832.x
1711 (2009).
1712 66 Drewry, D. H., Willson, T. M. & Zuercher, W. J. Seeding collaborations to advance
1713 kinase science with the GSK Published Kinase Inhibitor Set (PKIS). *Curr Top Med
1714 Chem* **14**, 340-342 (2014).
1715 67 Drewry, D. H. *et al.* Progress towards a public chemogenomic set for protein kinases
1716 and a call for contributions. *PLoS One* **12**, e0181585,
1717 doi:10.1371/journal.pone.0181585 (2017).
1718 68 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new
1719 ENDscript server. *Nucleic Acids Res* **42**, W320-324, doi:10.1093/nar/gku316 (2014).
1720 69 Xu, Z., Dou, W., Wang, C. & Sun, Y. Stiffness and ATP recovery of stored red blood
1721 cells in serum. *Microsyst Nanoeng* **5**, 51, doi:10.1038/s41378-019-0097-7 (2019).
1722 70 Lew, V. L. & Ferreira, H. G. in *Current Topics in Membranes and Transport* Vol. 10
1723 (eds Felix Bronner & Arnost Kleinzeller) 217-277 (Academic Press, 1978).
1724 71 Maier, A. G. *et al.* Skeleton-binding protein 1 functions at the parasitophorous
1725 vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected
1726 erythrocyte surface. *Blood* **109**, 1289-1297, doi:10.1182/blood-2006-08-043364
1727 (2007).

1728 72 Hamilton, W. L. *et al.* A fourth locus in the *Plasmodium falciparum* genome associated with sickle haemoglobin. *bioRxiv*, 2023.2009.2014.557461, doi:10.1101/2023.09.14.557461 (2023).

1729 73 Pantaleo, A. *et al.* Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by *P. falciparum* growth. *Proteomics* **10**, 3469-3479, doi:10.1002/pmic.201000269 (2010).

1730 74 Kesely, K. R., Pantaleo, A., Turrini, F. M., Olupot-Olupot, P. & Low, P. S. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents *Plasmodium falciparum* Egress and Terminates Parasitemia. *PLoS One* **11**, e0164895, doi:10.1371/journal.pone.0164895 (2016).

1731 75 Feldman, T. P., Ryan, Y. & Egan, E. S. *Plasmodium falciparum* infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. *Blood Adv* **7**, 5496-5509, doi:10.1182/bloodadvances.2023010844 (2023).

1732 76 Prudencio, M., Rodriguez, A. & Mota, M. M. The silent path to thousands of merozoites: the *Plasmodium* liver stage. *Nat Rev Microbiol* **4**, 849-856, doi:10.1038/nrmicro1529 (2006).

1733 77 Saeij, J. P. *et al.* Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. *Nature* **445**, 324-327, doi:10.1038/nature05395 (2007).

1734 78 Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking *Plasmodium falciparum* parasite biology to the clinic. *Nat Med* **23**, 917-928, doi:10.1038/nm.4381 (2017).

1735 79 MalariaGen *et al.* An open dataset of *Plasmodium falciparum* genome variation in 7,000 worldwide samples. *Wellcome Open Res* **6**, 42, doi:10.12688/wellcomeopenres.16168.2 (2021).

1736 80 Mok, S. *et al.* Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. *Science* **347**, 431-435, doi:10.1126/science.1260403 (2015).

1737 81 Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. *Science* **193**, 673-675 (1976).

1738 82 Moon, R. W. *et al.* Adaptation of the genetically tractable malaria pathogen *Plasmodium knowlesi* to continuous culture in human erythrocytes. *Proc Natl Acad Sci U S A* **110**, 531-536, doi:10.1073/pnas.1216457110 (2013).

1739 83 Fivelman, Q. L. *et al.* Improved synchronous production of *Plasmodium falciparum* gametocytes in vitro. *Mol Biochem Parasitol* **154**, 119-123, doi:10.1016/j.molbiopara.2007.04.008 (2007).

1740 84 Jones, M. L. *et al.* A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in *Plasmodium falciparum*. *Sci Rep* **6**, 21800, doi:10.1038/srep21800 (2016).

1741 85 Jones, M. L., Kitson, E. L. & Rayner, J. C. *Plasmodium falciparum* erythrocyte invasion: A conserved myosin associated complex. *Molecular and Biochemical Parasitology* **147**, 74-84, doi:<https://doi.org/10.1016/j.molbiopara.2006.01.009> (2006).

1742 86 Hall, R. *et al.* Antigens of the erythrocytes stages of the human malaria parasite *Plasmodium falciparum* detected by monoclonal antibodies. *Mol Biochem Parasitol* **7**, 247-265, doi:10.1016/0166-6851(83)90025-7 (1983).

1773 87 Peng, D. & Tarleton, R. EuPaGDT: a web tool tailored to design CRISPR guide RNAs
1774 for eukaryotic pathogens. *Microb Genom* **1**, e000033, doi:10.1099/mgen.0.000033
1775 (2015).

1776 88 Tiburcio, M. *et al.* A Novel Tool for the Generation of Conditional Knockouts To Study
1777 Gene Function across the *Plasmodium falciparum* Life Cycle. *MBio* **10**,
1778 doi:10.1128/mBio.01170-19 (2019).

1779 89 UniProt, C. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic Acids Res*
1780 **51**, D523-D531, doi:10.1093/nar/gkac1052 (2023).

1781 90 Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy
1782 of multiple sequence alignment. *Nucleic Acids Res* **33**, 511-518,
1783 doi:10.1093/nar/gki198 (2005).

1784 91 Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for
1785 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
1786 **25**, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).

1787 92 Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
1788 Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534,
1789 doi:10.1093/molbev/msaa015 (2020).

1790 93 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
1791 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods*
1792 **14**, 587-589, doi:10.1038/nmeth.4285 (2017).

1793 94 Yu, G., Lam, T. T., Zhu, H. & Guan, Y. Two Methods for Mapping and Visualizing
1794 Associated Data on Phylogeny Using Ggtree. *Mol Biol Evol* **35**, 3041-3043,
1795 doi:10.1093/molbev/msy194 (2018).

1796 95 Mesen-Ramirez, P. *et al.* Stable Translocation Intermediates Jam Global Protein
1797 Export in *Plasmodium falciparum* Parasites and Link the PTEX Component EXP2 with
1798 Translocation Activity. *PLoS Pathog* **12**, e1005618, doi:10.1371/journal.ppat.1005618
1799 (2016).

1800 96 Kim, D. I. *et al.* BioSITe: A Method for Direct Detection and Quantitation of Site-
1801 Specific Biotinylation. *J Proteome Res* **17**, 759-769,
1802 doi:10.1021/acs.jproteome.7b00775 (2018).

1803 97 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates,
1804 individualized p.p.b.-range mass accuracies and proteome-wide protein
1805 quantification. *Nat Biotechnol* **26**, 1367-1372, doi:10.1038/nbt.1511 (2008).

1806 98 Cox, J. *et al.* Andromeda: a peptide search engine integrated into the MaxQuant
1807 environment. *J Proteome Res* **10**, 1794-1805, doi:10.1021/pr101065j (2011).

1808 99 Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
1809 (prote)omics data. *Nat Methods* **13**, 731-740, doi:10.1038/nmeth.3901 (2016).

1810 100 Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
1811 biomolecular interaction networks. *Genome Res* **13**, 2498-2504,
1812 doi:10.1101/gr.1239303 (2003).

1813 101 Kel, A. E. *et al.* MATCH: A tool for searching transcription factor binding sites in DNA
1814 sequences. *Nucleic Acids Res* **31**, 3576-3579, doi:10.1093/nar/gkg585 (2003).

1815 102 Turk, B. E., Hutton, J. E. & Cantley, L. C. Determining protein kinase substrate specificity
1816 by parallel solution-phase assay of large numbers of peptide substrates. *Nat Protoc*
1817 **1**, 375-379, doi:10.1038/nprot.2006.57 (2006).

1818 103 Mok, J. *et al.* Deciphering protein kinase specificity through large-scale analysis of
1819 yeast phosphorylation site motifs. *Sci Signal* **3**, ra12, doi:10.1126/scisignal.2000482
1820 (2010).

1821 104 Miller, C. J. *et al.* Comprehensive profiling of the STE20 kinase family defines features
1822 essential for selective substrate targeting and signaling output. *PLoS Biol* **17**,
1823 e2006540, doi:10.1371/journal.pbio.2006540 (2019).

1824 105 Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos.
1825 *Bioinformatics* **33**, 3645-3647, doi:10.1093/bioinformatics/btx469 (2017).

1826 106 Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A. & Caves, L. S. D.
1827 Bio3d: an R package for the comparative analysis of protein structures.
1828 *Bioinformatics* **22**, 2695-2696, doi:10.1093/bioinformatics/btl461 (2006).

1829 107 Pardon, E. *et al.* A general protocol for the generation of Nanobodies for structural
1830 biology. *Nat Protoc* **9**, 674-693, doi:10.1038/nprot.2014.039 (2014).

1831 108 Moutel, S. *et al.* NaLi-H1: A universal synthetic library of humanized nanobodies
1832 providing highly functional antibodies and intrabodies. *eLife* **5**,
1833 doi:10.7554/eLife.16228 (2016).

1834 109 Honorato, R. V. *et al.* Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem.
1835 *Front Mol Biosci* **8**, 729513, doi:10.3389/fmolb.2021.729513 (2021).

1836 110 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
1837 **596**, 583-589, doi:10.1038/s41586-021-03819-2 (2021).

1838 111 Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the
1839 structural coverage of protein-sequence space with high-accuracy models. *Nucleic
1840 Acids Research* **50**, D439-D444, doi:10.1093/nar/gkab1061 (2021).

1841 112 Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein-protein docking
1842 approach based on biochemical or biophysical information. *J Am Chem Soc* **125**,
1843 1731-1737, doi:10.1021/ja026939x (2003).

1844 113 Perez-Riverol, Y. *et al.* The PRIDE database resources in 2022: a hub for mass
1845 spectrometry-based proteomics evidences. *Nucleic Acids Res* **50**, D543-D552,
1846 doi:10.1093/nar/gkab1038 (2022).

1847

1848 Acknowledgments

1849 We thank members of the Treeck, Blackman, Knuepfer and Sateriale labs for critical
1850 discussions. We also thank the Crick Science Technology Platforms (STPs)
1851 (Proteomic and Flow cytometry) for their outstanding technical support and training.
1852 We thank Dr. Julian Rayner and L. Parish for the MAHRP1 and GAP50 antibodies,
1853 Dr. Tobias Spielmann for the SBP1 antibody and the European Malaria Reagent
1854 Depository for the FIKK4.2 and GAPDH antibodies. We thank Dr. Ellen Yeh for
1855 sharing insights on the proximity labelling experiments in malaria infected RBCs. We
1856 thank GSK for its commitment to support fundamental discovery research through
1857 the establishment of the Crick-GSK LinkLabs partnership. We would also like to
1858 thank Hong Lin, Barney Jones and Professor Gary Stephens, University of Reading,
1859 for expert help with generation of nanobodies under the authority of PA1FB163A.
1860 Special thanks to PlasmoDB and VEuPathDB for providing critical resources. M.T.
1861 received funding from the ERC (ERC Grant number: 101044428) and the Francis
1862 Crick Institute (Grant No. CC2132). M.T.B and L.J.W. were supported by the Francis
1863 Crick Institute (CC2030). The Francis Crick Institute and its Science Technology
1864 platforms receive core funding from Cancer Research UK, the UK Medical Research
1865 Council and the Wellcome Trust (Grant No. CC0199). S.D.N. is funded by an Early-

1866 Career Award Wellcome Trust grant (225686/Z/22/Z). C.R.L. and D.B. were
1867 supported by a Canadian Institutes of Health Research Foundation grant number
1868 387697 and a Human Frontier Science Program research grant RGP34/2018 to
1869 C.R.L. C.R.L. holds the Canada Research Chair in Cellular Systems and Synthetic
1870 Biology. D.B. was supported by an EMBO Long-Term Fellowship (LTF) (ALTF 1069-
1871 2019).

1872

1873 **Authors contributions**

1874 H.B. performed the parasite genetic manipulations and phenotypic analysis, the
1875 kinase activity assays on peptides and membranes. D.B. performed the
1876 bioinformatics analysis with input from C.R.L.. S.D.N. and H.B. performed the
1877 gametocyte experiments. H.B., H.D. and M.B. processed the proteomic samples.
1878 H.B., D.B. and M.B. analysed the proteomic data. H.B., E.C. and D.J. expressed and
1879 purified the recombinant proteins. H.B. and D.B. analysed the substrate specificity
1880 data. M.T.B. performed the cyclic peptide screen and SPR under supervision from
1881 L.W. D.Joshi generated the peptide libraries and synthetic peptides under
1882 supervision of N.O'R.. E.C., A.G.P., R.W.O. and S.K. generated protein crystals and
1883 solved the protein crystal structure. D.B designed the FIKK mutants. A.C. performed
1884 the field isolates genome analysis. H.B. performed the inhibitor screens under the
1885 supervision of A.P. and D.H. H.B. and M.T. conceived the study. H.B., D.B., S.D.N.,
1886 H.D., M.T.B., S.K. and M.T. designed figures. H.B., D.B., S.D.N., M.T.B., A.C., S.K.,
1887 C.R.L and M.T. wrote the original manuscript. All authors were involved in critically
1888 reviewing and editing the manuscript.

1889

1890

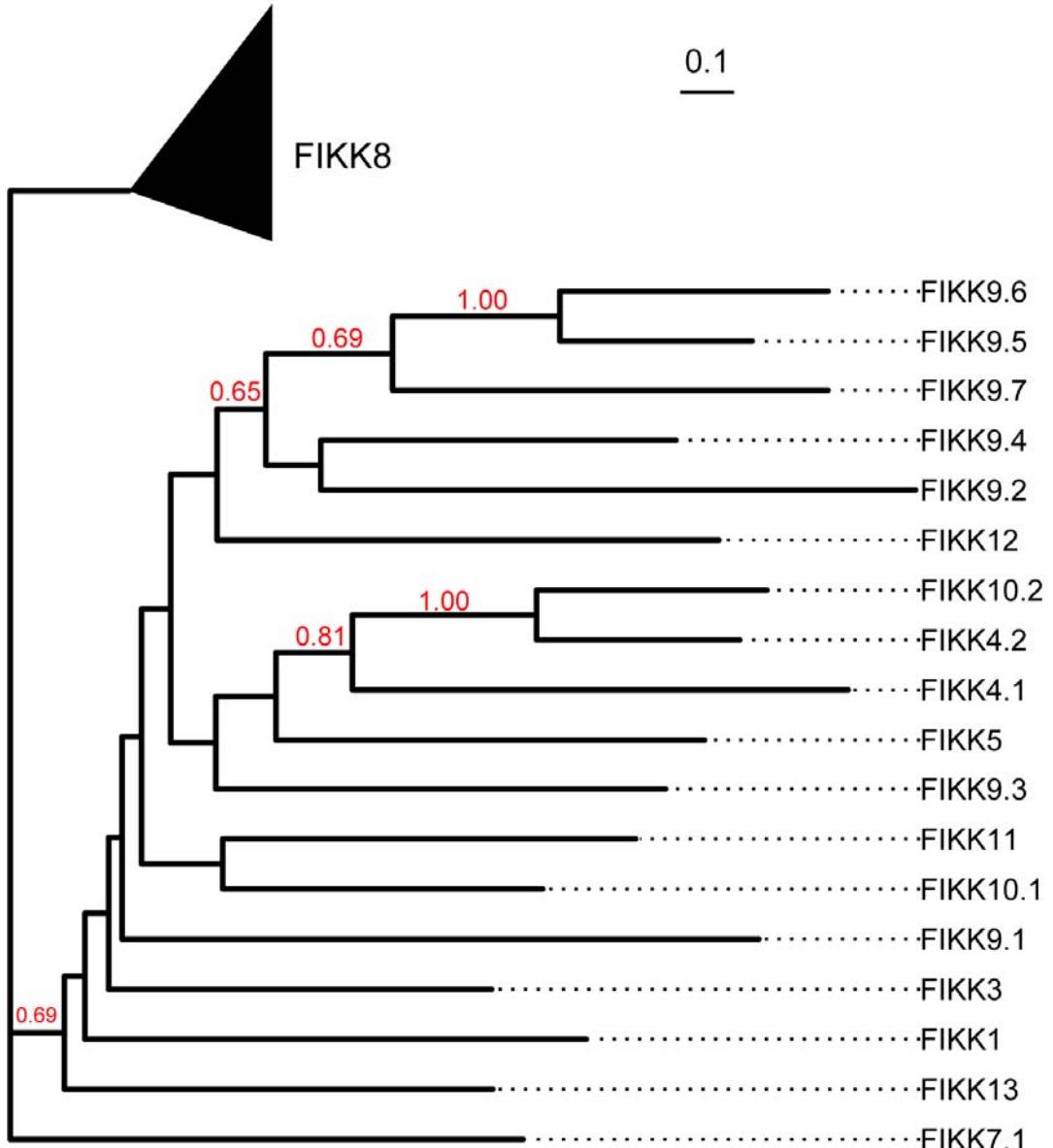
1891

1892

1893

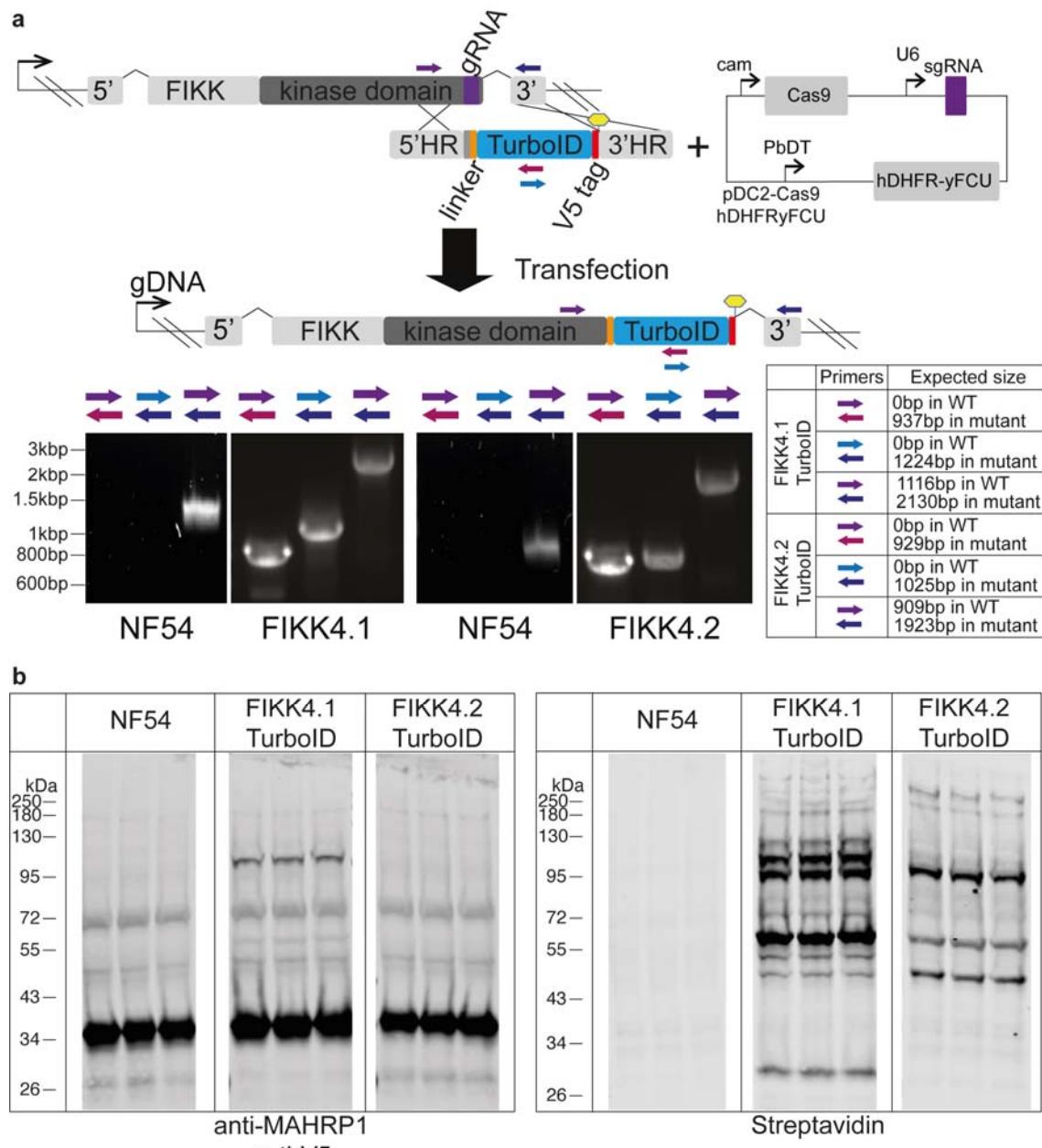
1894

1895


1896

1897

1898


1899

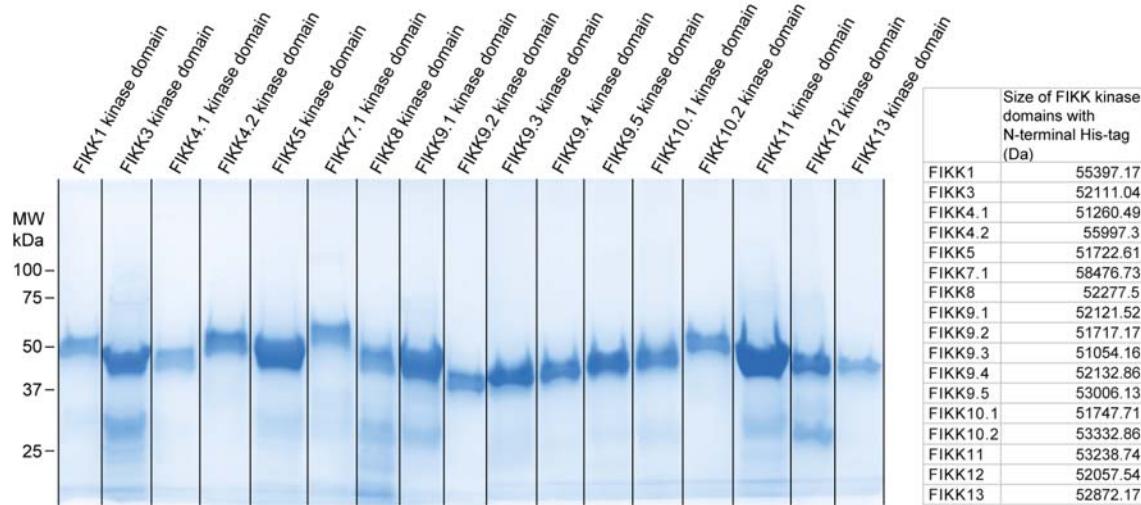
1900

1901
1902
1903
1904
1905
1906

Extended Data Fig. 1. Phylogenetic tree of *Pf*FIKK kinases rooted on FIKK8 sequences. Maximum-likelihood phylogenetic tree of *P. falciparum* FIKK kinase sequences (see Methods). The tree was rooted using known FIKK8 sequences across *Plasmodium* species. Branch support was assessed using 100 bootstrap replicates⁵⁰ and is shown for branches with support > 0.5.

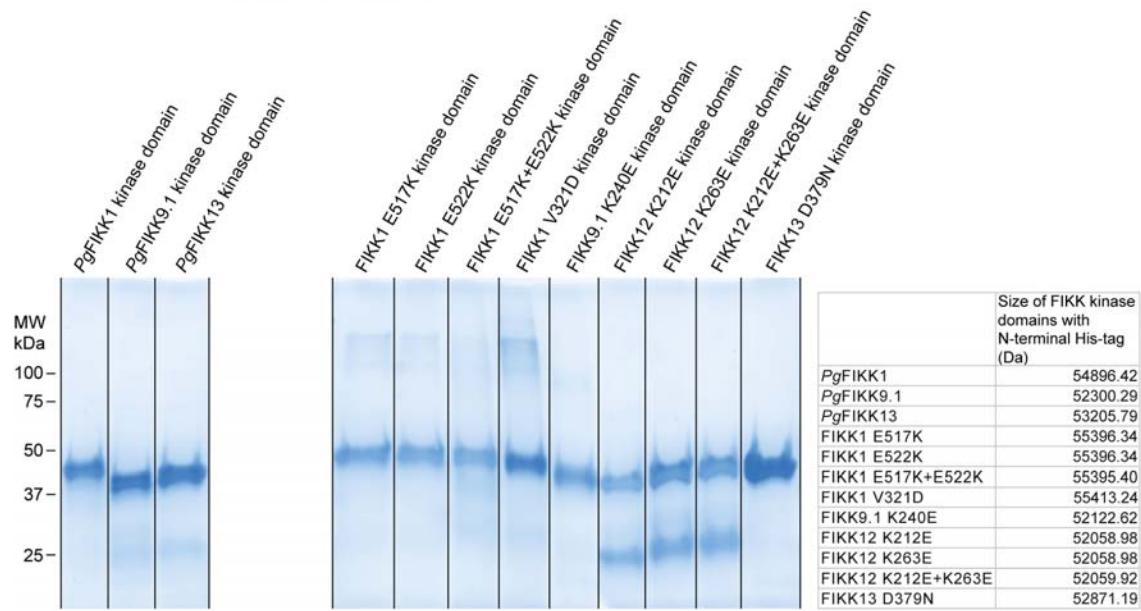
1907
1908 **Extended Data Fig. 2. CRISPR/Cas9 strategy to generate FIKK::TurboID fusion**
1909 **proteins and validation.**

1910 **a**, Diagram illustrating the CRISPR/Cas9 strategy³³ used to insert a TurboID_V5
1911 cassette at the C-terminal end of the *fikk* genes. Homology regions used to edit the
1912 genome are denoted by 5' and 3'HR and the Cas9 guide is denoted as a purple
1913 cassette. Yellow hexagons denote a stop codon. Primers used to investigate
1914 integration into the correct endogenous loci along with the presence of WT parasites
1915 into the mutant population are shown. Expected band size for PCR reactions are
1916 indicated. Material used to generate and validate FIKK::TurboID lines can be found
1917 in Supplementary Table 11. **b**, Western blots of cloned parental NF54,
1918 FIKK4.1::TurboID (111kDa) and FIKK4.2::TurboID (180kDa) fusion lines cultured in
1919 biotin-containing medium for the duration of the parasite asexual lifecycle (48h)


1920 probed with anti-V5 and streptavidin-fluorophore. Anti-MAHRP1 (29kDa) antibody is
1921 used as a loading control.

1922
1923 **Extended Data Fig. 3. Alignment of *P. falciparum* FIKK protein sequences**
1924 **allows for accurate determination of the FIKK kinase domain starting amino**
1925 **acid.**

1926 Alignment of all FIKK kinase sequences from *P. falciparum* using the T-Coffee
1927 multiple sequence alignment program⁴⁷ available in the Jalview software⁴⁸. Encircled
1928 in red are the amino acids chosen as a starting point for recombinant expression of
1929 *P. falciparum* FIKK kinase domains. The ClustalX colour scheme was used to assign
1930 colour to amino acids with the following criteria: Blue – Hydrophobic (A, I, L, M, F, W,
1931 V, C); Red – Positively charged (K, R); Magenta – Negatively charged (D, E); Green
1932 – Polar (N, Q, S, T); Orange – Glycine (G); Yellow – Proline (P); Cyan – Aromatic (H,
1933 Y); White – unconserved amino acids. Below the alignment is indicated the
1934 conservation score which measures the number of physicochemical properties
1935 conserved for each column of the alignment. Its calculation is based on⁴⁹.
1936 Conserved columns are indicated by * (score of 11), conservation score then ranges
1937 between 10 (high conservation) and 0 (no conservation). Hyphens denote gaps.


1938

1939

1940

1941

Extended Data Fig. 4. Coomassie-stained gel of purified recombinant FIKK kinase domains.

Protein ladder is depicted on the left-hand side of the gel in kilodaltons (kDa). Predicted sizes of the purified recombinant kinase domains with N-terminal His-tag are indicated in Dalton in the table.

1942

1943

1944

1945

1946

1947

1948

1949

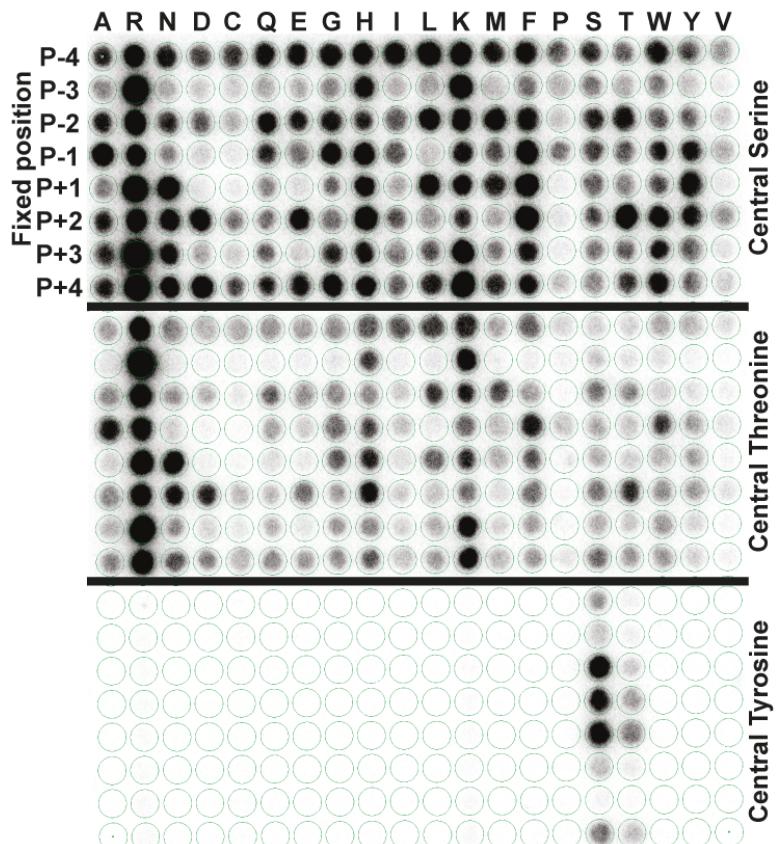
1950

1951

1952

1953

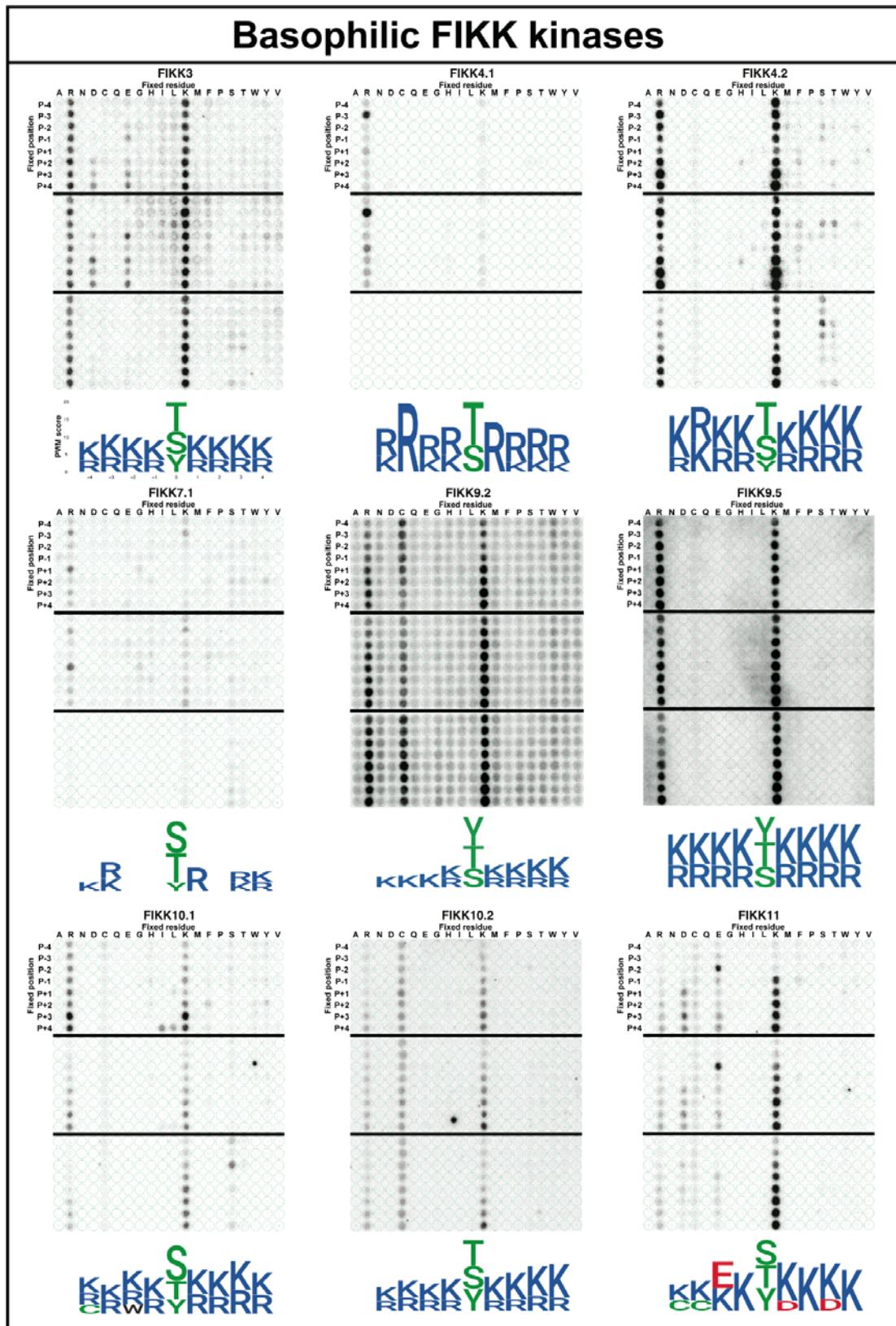
1954

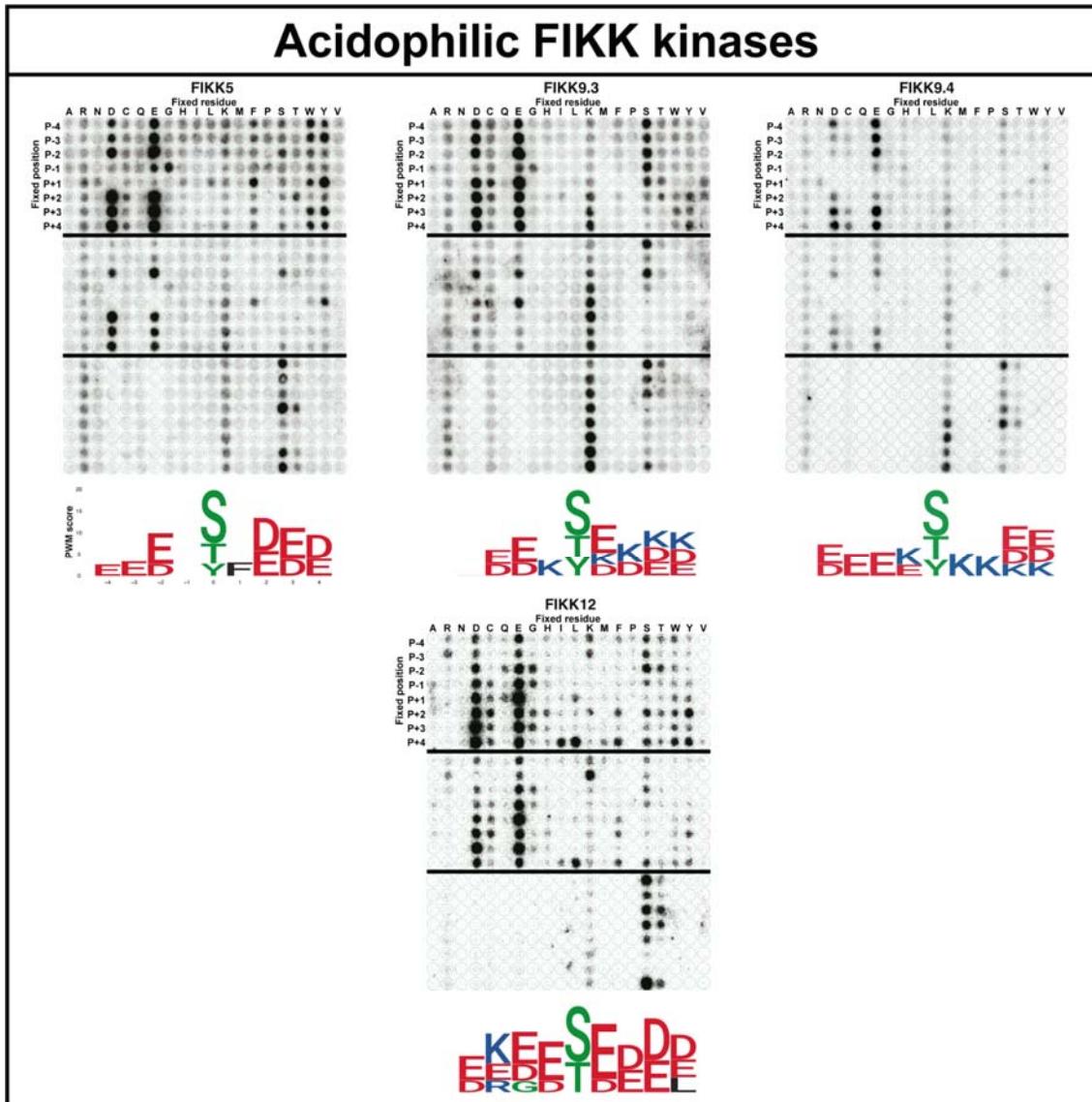

1955

1956

1957

FIKK8

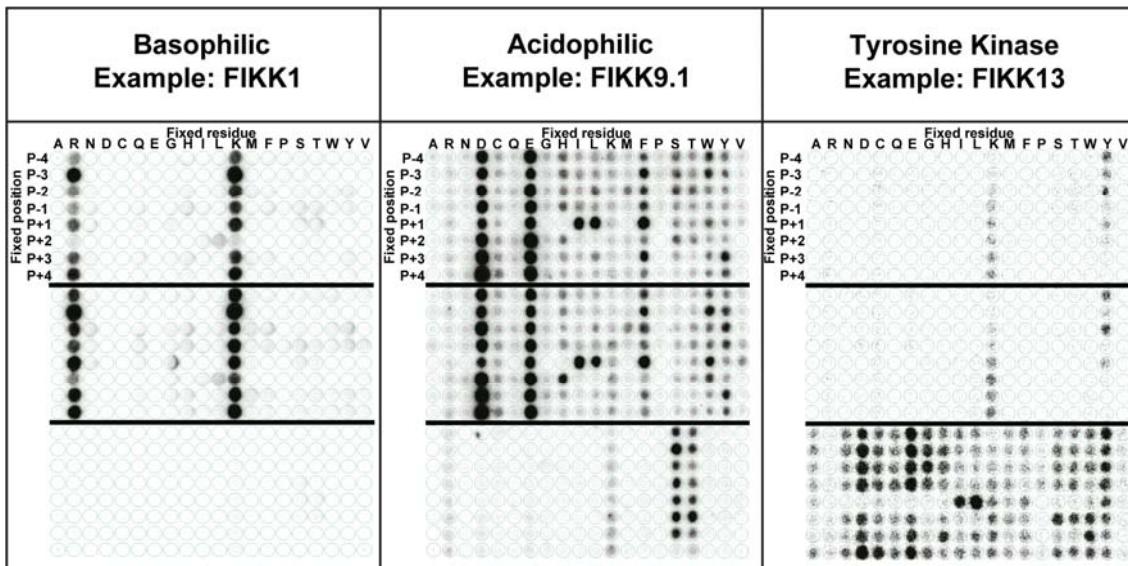

Fixed residue



1958
1959

Extended Data Fig. 5. FIKK8 OPAL membrane.

An OPAL membrane constituted of 9-mer peptides with the general sequences A-X-X-X-X-S-X-X-X-A (top panel), A-X-X-X-X-T-X-X-X-A (middle panel) or A-X-X-X-X-Y-X-X-X-A (bottom panel) was used to assess FIKK8 preferred phosphorylation motif. X represents any natural amino acid except for S, T, Y or C. For each peptide, one the 20 naturally occurring amino acids is fixed at each one of the 8 positions surrounding the phosphorylatable residue (S, T or Y). The membrane was incubated in the presence of recombinant FIKK8 kinase domain and [γ -32P]-ATP. After several washes, the membrane was exposed overnight to a phosphorscreen. The radioactivity incorporated into each peptide was determined by scanning the phosphorscreen with a phosphorimager giving the radiograph visible in this figure. Plotting the intensity pattern of the array enables the identification of preferred phosphorylation motifs (Fig. 3b_{ii}) and reveals amino acids that are less favoured in a peptide sequence.



1977
1978
1979
1980

Extended Data Fig. 7. Acidophilic FIKK kinases preferred phosphorylation motifs.

See Extended Data Fig. 5 caption.

1981

1982

Extended Data Fig. 8. FIKK1, FIKK9.1 and FIKK13 OPAL membranes.

See Extended Data Fig. 5 caption.

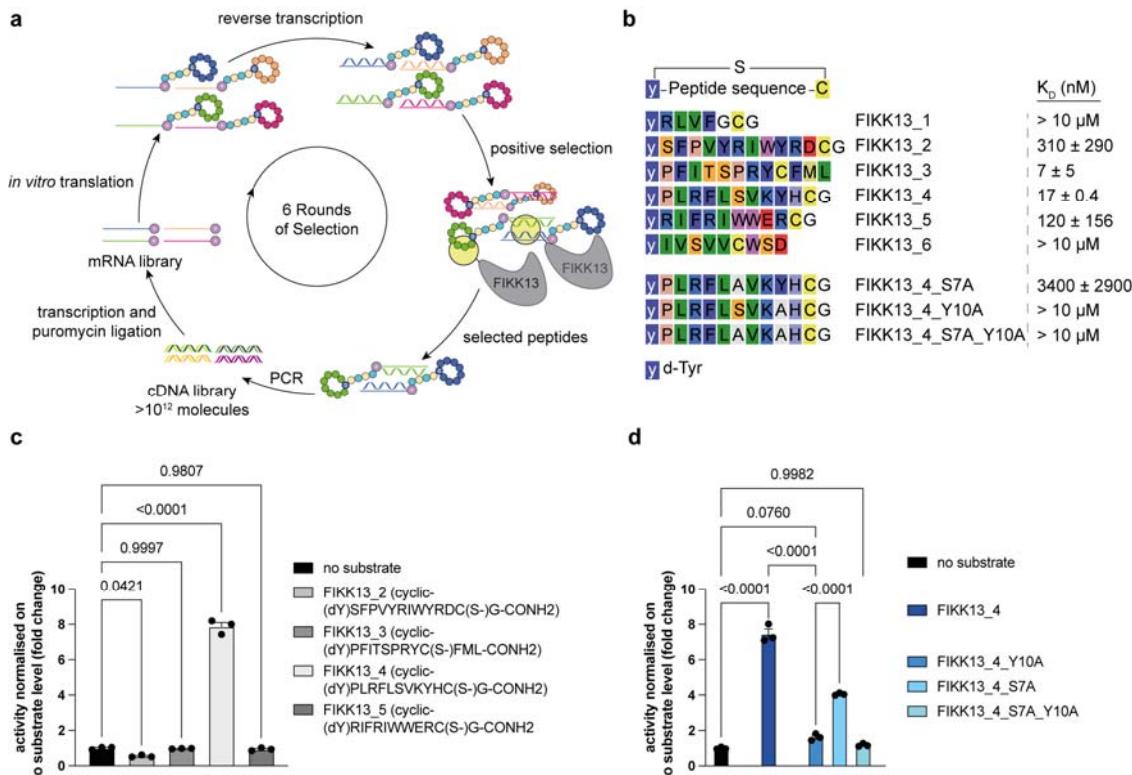
1984

1985

1986

1987

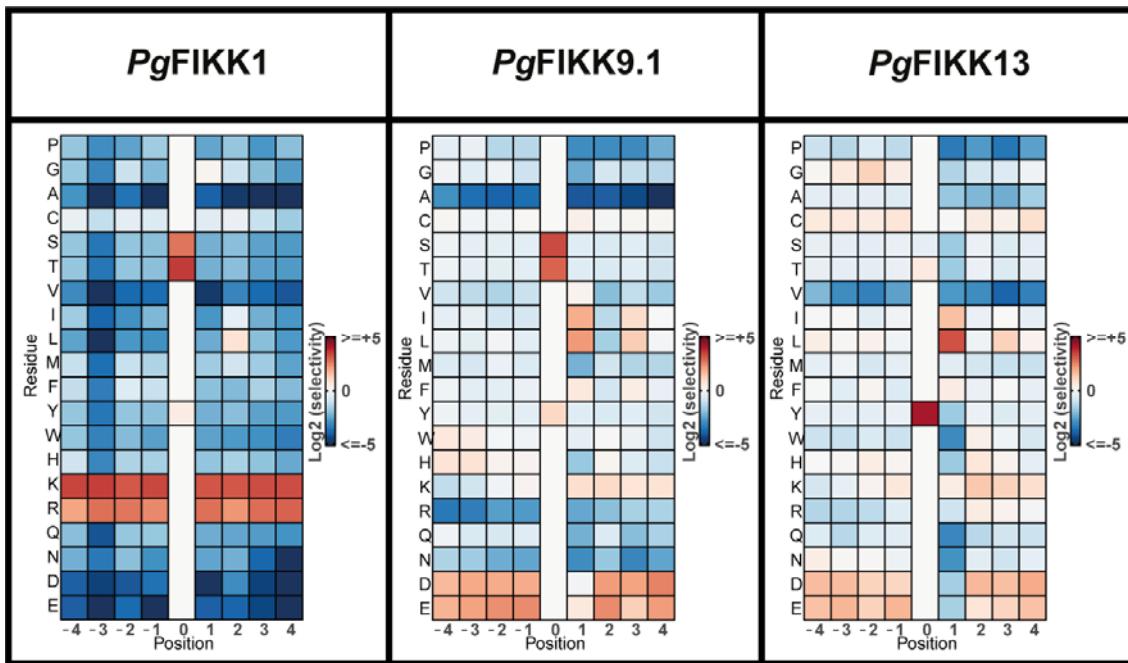
1988


1989

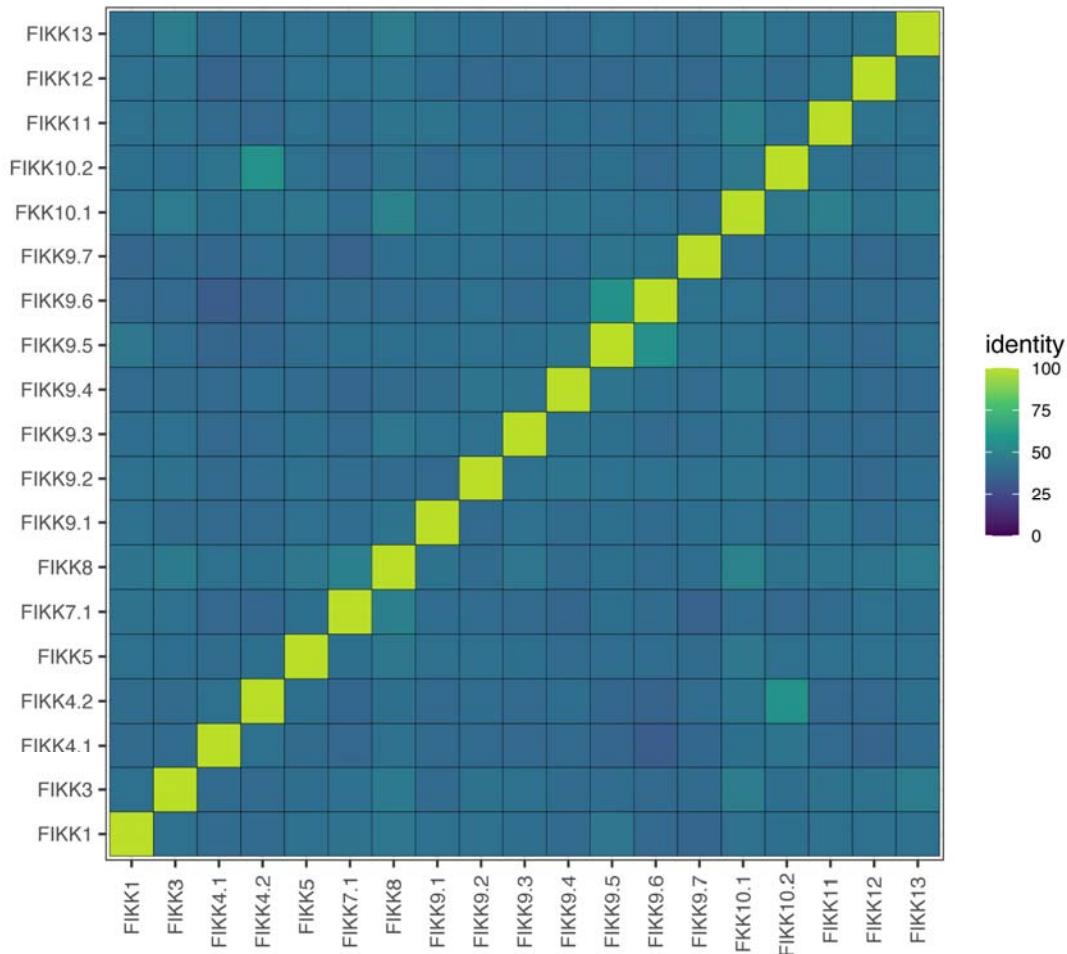
1990

1991

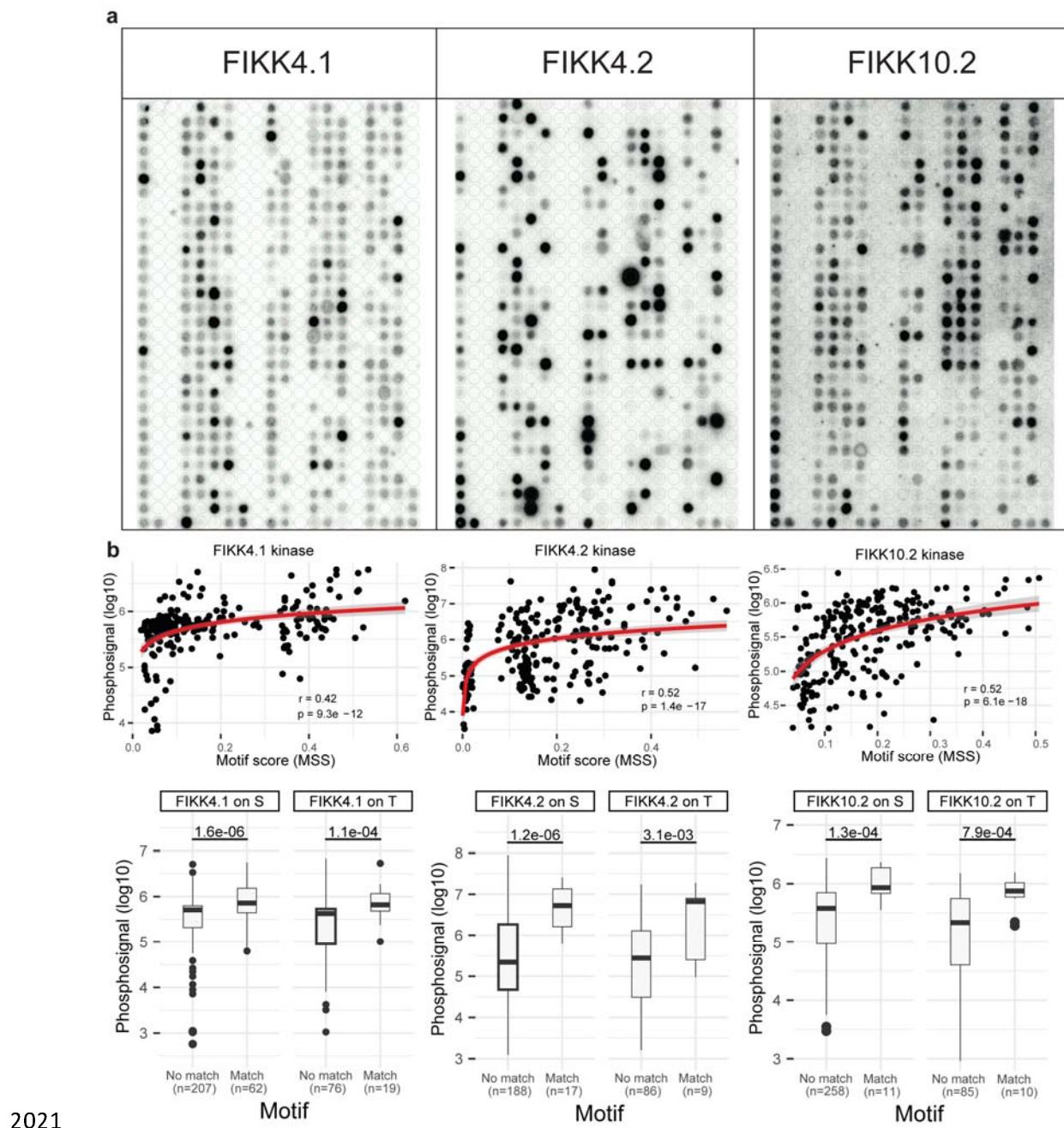
1992


1993

Extended Data Fig. 9. Identification of a tyrosine-based cyclic peptide as a substrate for FIKK13.


1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

a, Scheme of the FIKK13 RaPID selection. **b**, Sequences and binding affinities of the different peptides recovered after 6 rounds of selection and different variants of the parent peptides. Peptides were initialised with d-Tyr and cyclised via a thioether bond between the N-terminus and the cysteine side chain. Binding affinities were measured by SPR (Supplementary Table 8) and show average ± standard deviation of at least 2 independent replicates. **c**, FIKK13 kinase domain phosphorylating activity on cyclic peptide identified in panel **b**. The results are represented as the mean±SEM fold change compared to the no substrate luminescent signal obtained using the ADP-Glo assay. Statistical significance was determined using a one-way ANOVA followed by Dunnett's multiple comparison post-test. n=3 biological independent replicates. **d**, FIKK13 kinase domain phosphorylating activity on FIKK13_4 mutant peptides. The results are represented as the mean±SEM fold change compared to the no substrate luminescent signal obtained using the ADP-Glo assay. Statistical significance was determined using a one-way ANOVA followed by Šidák's multiple comparison post-test. n=3 biological independent replicates.


Extended Data Fig. 10. Heat map representation of OPAL arrays raw data for *P. gaboni* FIKK1, FIKK9.1 and FIKK13.

Heat map representation of OPAL array raw data for *P. gaboni* FIKK1, FIKK9.1 and FIKK13. See Fig. 3 caption.

2017
2018
2019
2020

Extended Data Fig. 11. Protein sequence identity matrix of *P. falciparum* FIKK kinases. Amino acid sequence identity on the basis of the *P. falciparum* multiple sequence alignment after removing poorly aligned regions.

2021

2022

2023

2024

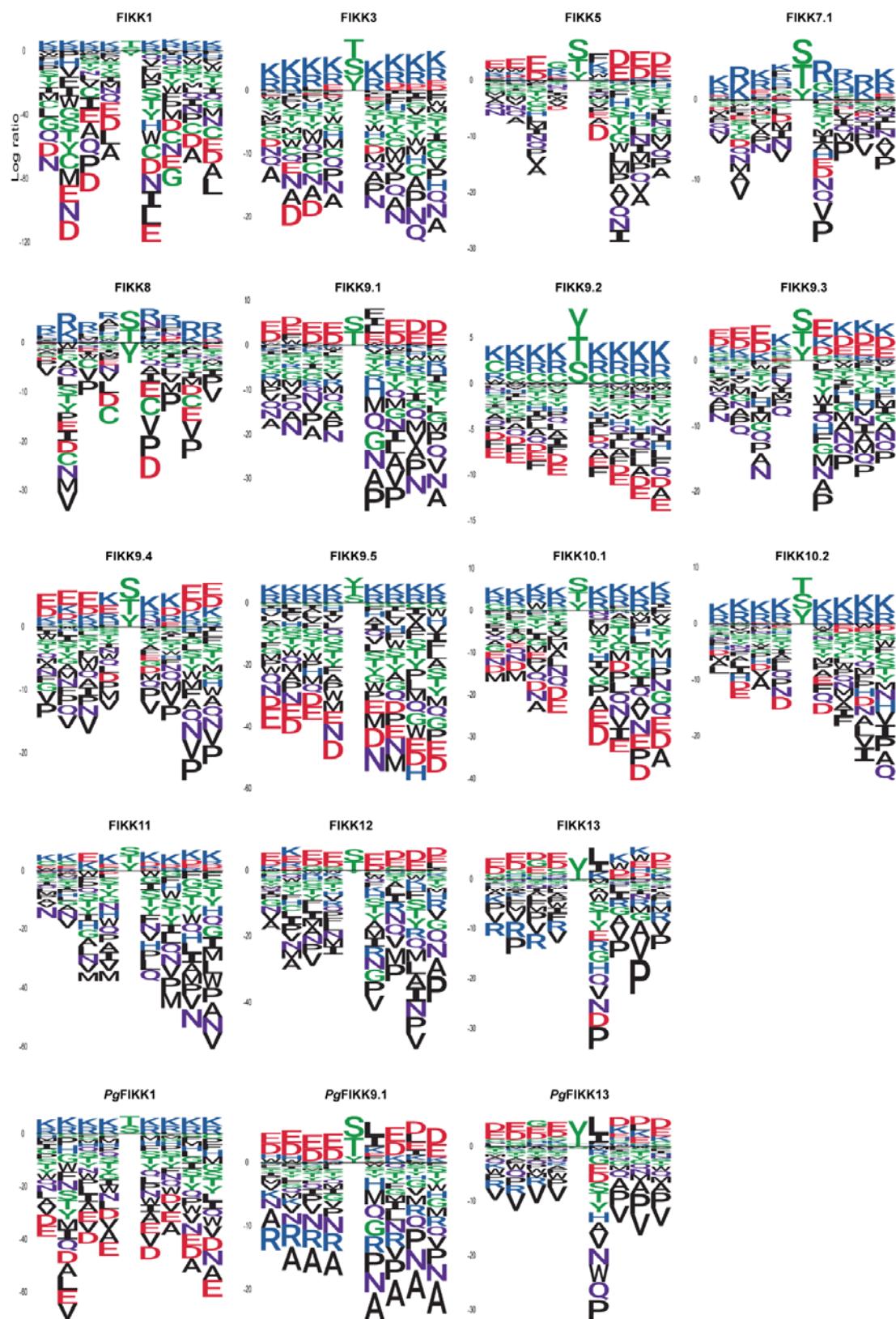
2025

2026

2027

2028

2029


2030

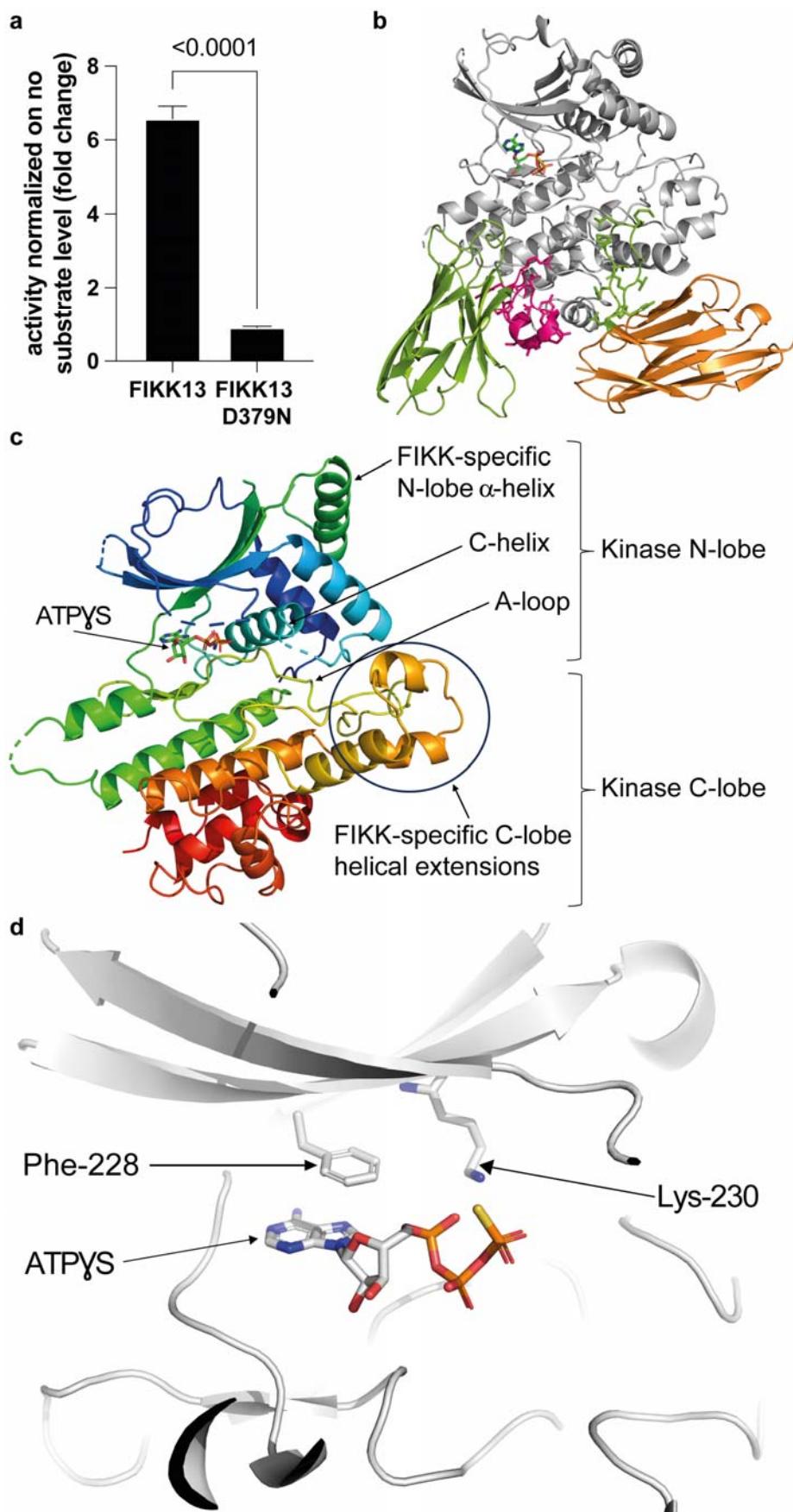
2031

2032

Extended Data Fig. 12. FIKK4.1, FIKK4.2 and FIKK10.2 activity on the phosphoproteome peptides libraries.

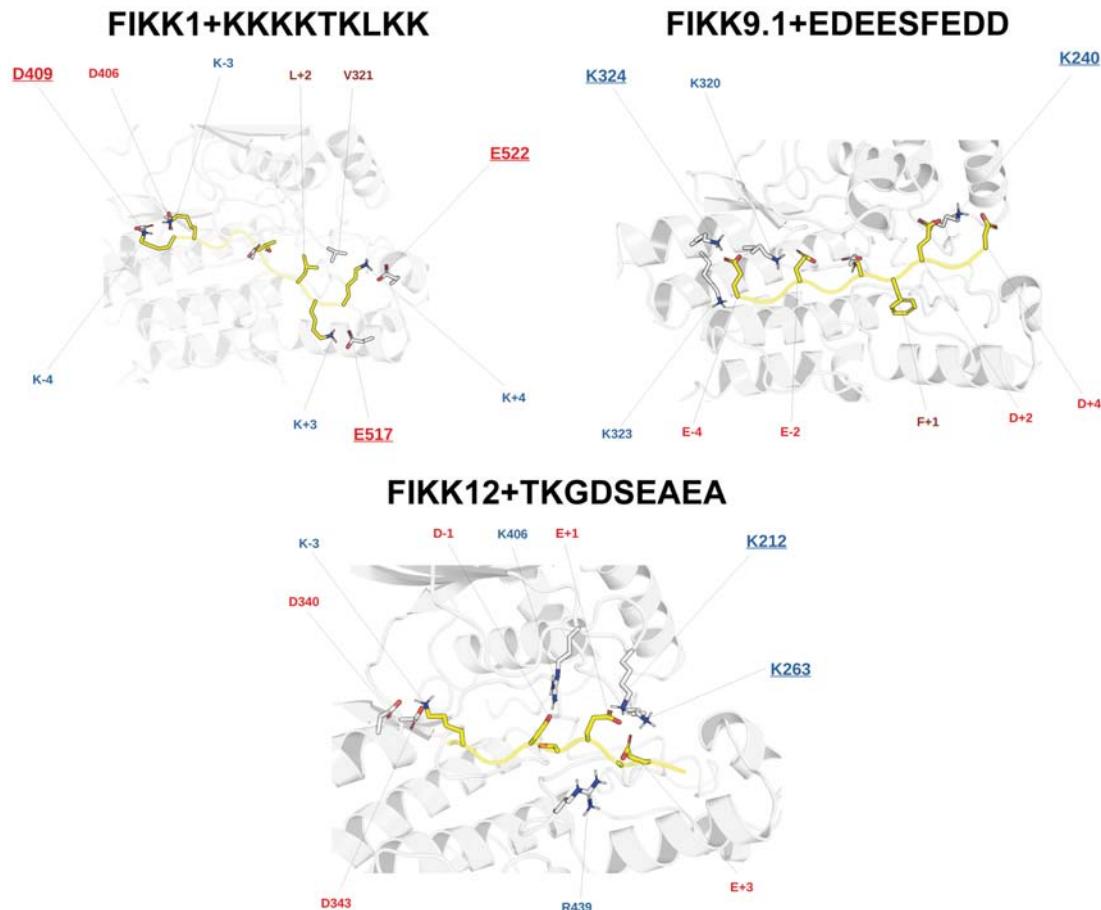
a, Phosphorimager scans of phosphorscreen exposed to phosphoproteome peptide membranes incubated with either recombinant FIKK4.1, FIKK4.2 or FIKK10.2 kinase domains and [γ -32P]-ATP. **b**, Top: correlation of FIKK kinase activity on the phosphoproteome peptide membrane (log10-scaled) against the corresponding FIKK motif score (matrix similarity score) for each peptide. For FIKK 4.1, FIKK 4.2, and FIKK 10.2 kinases. Pearson's correlation for the $y = \log(x)$ curve. Bottom: Difference in FIKK phosphorylation signal (log10-scaled) between peptides without or with a match to the corresponding FIKK motif, for peptides with an S or T phosphoacceptor, for FIKK 4.1, FIKK 4.2, and FIKK 10.2 kinases.

2033

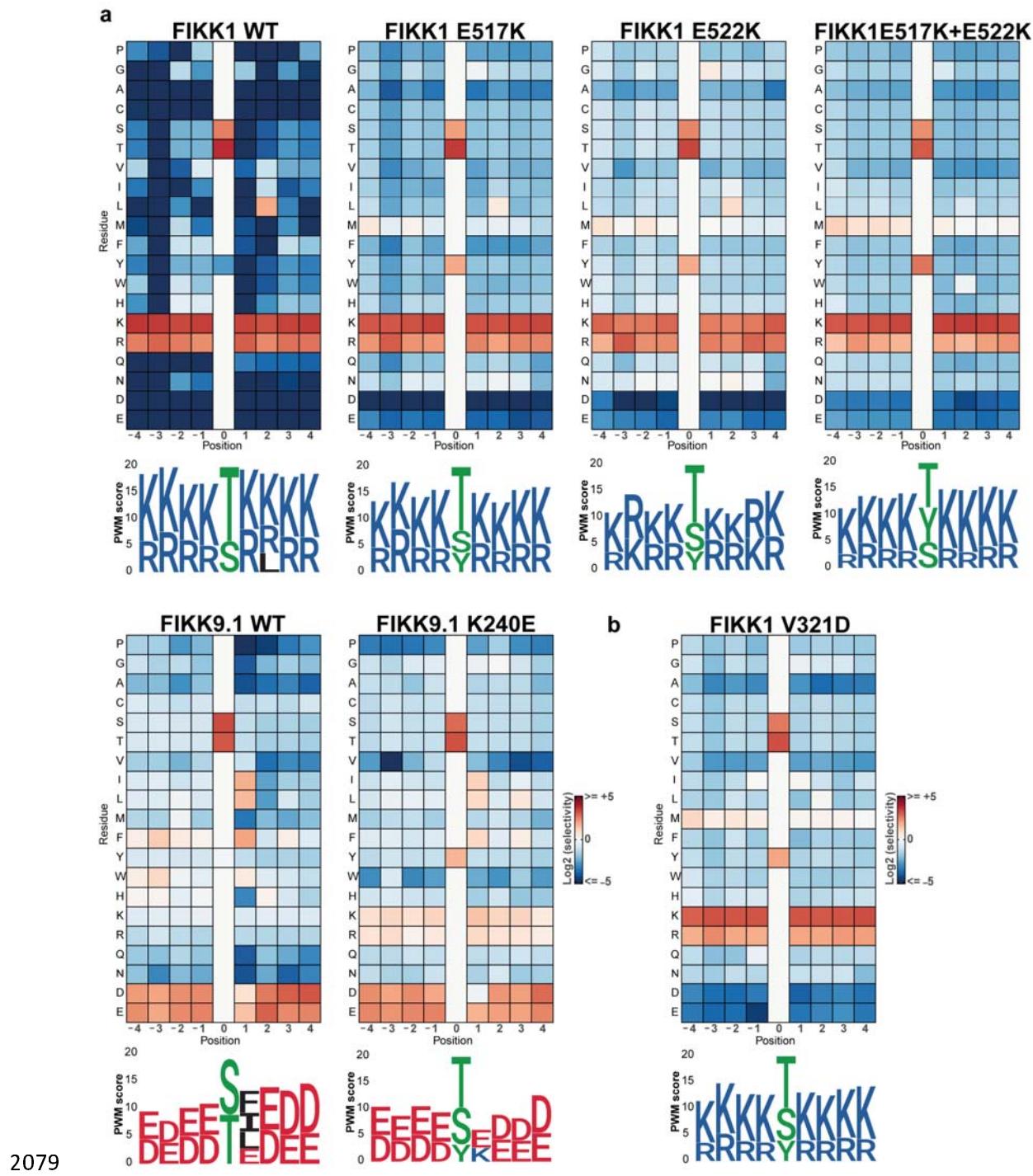

2034

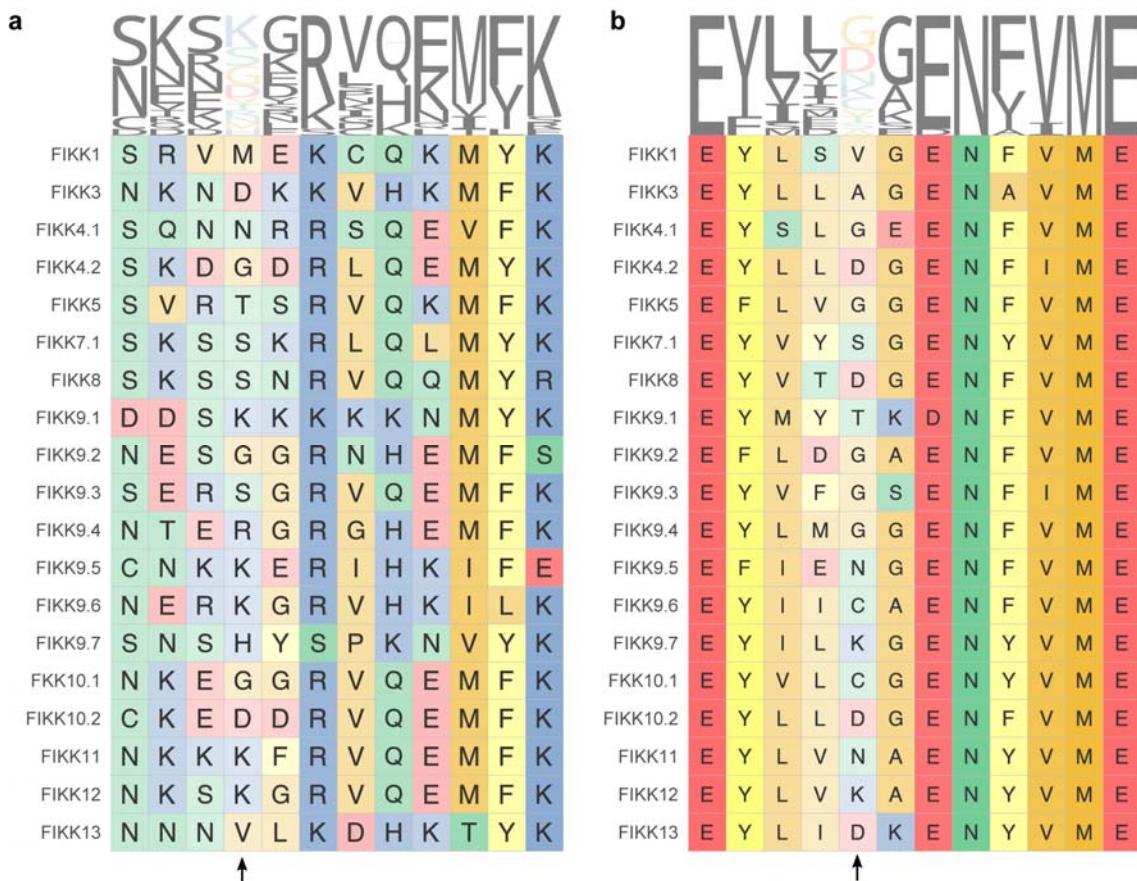
2035

2036

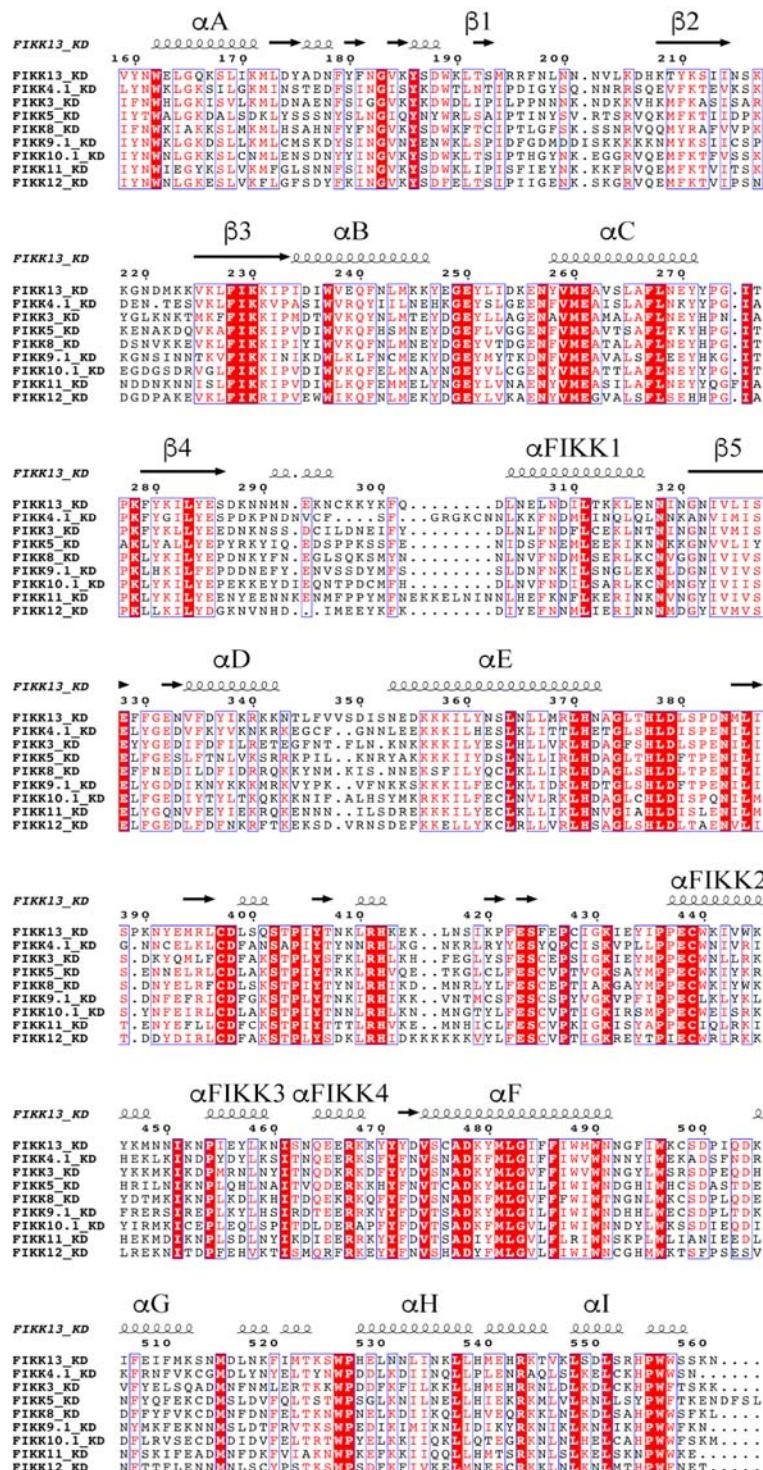

Extended Data Fig. 13. Log2 transformed PWM logos for all recombinant FIKK kinases tested.

See Fig. 5f caption.

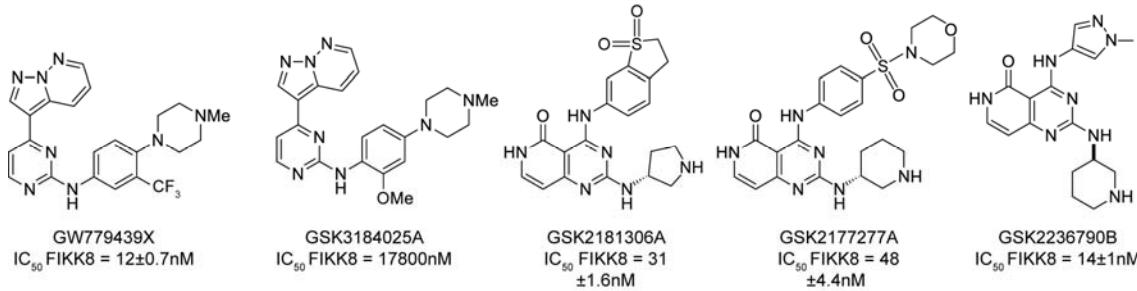



2038 **Extended Data Fig. 14. FIKK13 D379N dead mutant crystal structure informs on**
2039 **ATP binding.**

2040 **a**, Comparison of FIKK13 wild type and FIKK13 D379N phosphorylating activity on
2041 cyclic peptide FIKK13_4 using the ADP-Glo assay. Statistical significance was
2042 determined using a two-tailed t-test. n=3 biological independent replicates. **b**, The
2043 FIKK13 kinase domain – in grey – bound to ATP \square S and complexed with Nb9F10
2044 (olive with its CDR3 in magenta) and Nb2G9 (orange with the CDR3 in olive
2045 wrapping around the C-lobe of the kinase) **c**, FIKK13 D379N crystal structure with
2046 ATP \square S. The N-lobe of the FIKK kinases is compact with more features than ePKs
2047 including two α -helices packed on top of the conserved C-helix. The A-helix, rarely
2048 observed in kinase structures apart from the defining cAMP-dependent kinase
2049 PKA⁵¹, marks the beginning of the N-lobe with the conserved Trp-162 (Extended
2050 Data Fig. 18) buried in a pocket between the narrow ends of the aligned A and B-
2051 helices positioned on top of the C-helix. The arrangement is capped by an FIKK-
2052 specific α -helix inserted between the β 4 and β 5 strands. The mainly α -helical C-lobe
2053 contains, compared to ePKs, three additional α -helices inserted after the activation
2054 loop (A-loop). These helices contact the A-loop directly and may restrict its ability to
2055 change conformation upon phosphorylation as observed in a number of ePKs⁵⁹. The
2056 catalytic machinery of FIKK13 kinase domain is conserved from ePKs with minor
2057 changes; the HRD motif where the Asp acts as a general base during phospho-
2058 transfer, is conserved as ³⁷⁷HLD³⁷⁹. The DFG motif, which can switch between the
2059 active “DFG-in” and inactive “DFG-out” conformation⁶⁰, is present in FIKK13 as
2060 ³⁹⁸DLS⁴⁰⁰, although conserved as DFG in FIKK1 and FIKK9.1 (Extended Data Fig.
2061 18) and adopts the “DFG-in” conformation in the FIKK13 kinase domain structure. **d**,
2062 Close-up representation of the FIKK13 kinase domain ATP-binding pocket
2063 containing the ATP-analogue ATP \square S, focusing on the F-I-K-K motif. The size and
2064 hydrophobicity of Phe-228 restrict the volume of the ATP-binding pocket while the
2065 Lys-230 coordinates the α - and β -phosphates of the nucleotide and forms a salt
2066 bridge with Glu-261 of the C-helix which is a hallmark of active ePKs⁵¹. Taken
2067 together, the first experimentally determined structure of a FIKK kinase reveals
2068 strong resemblance to ePKs with conservation of the essential elements for
2069 catalysis. However, FIKK-specific features, such as the evolution of additional α -
2070 helices in both the N- and C-lobe could point to differences in its regulation.

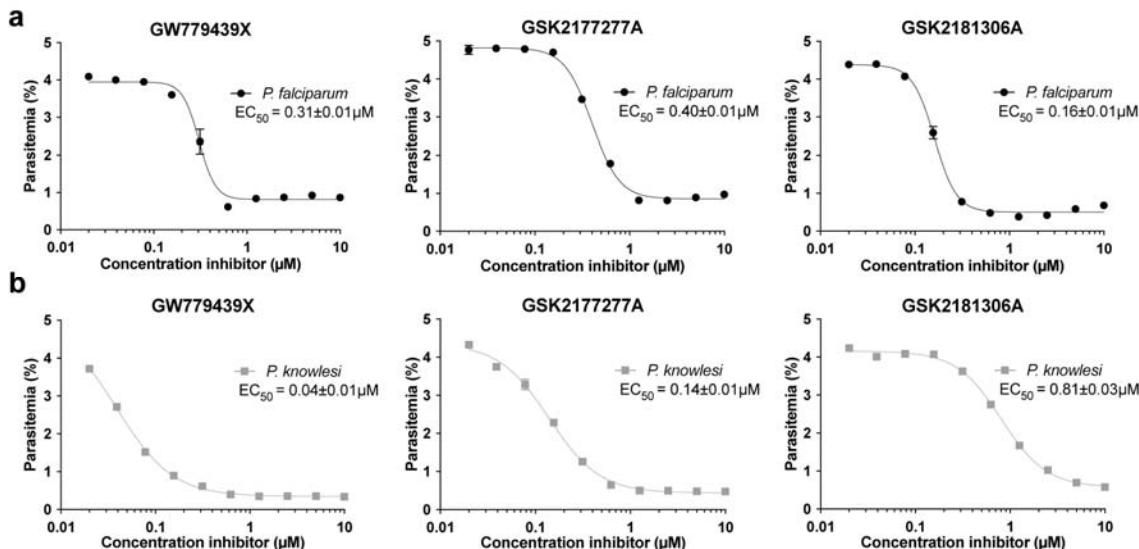

2071
2072 **Extended Data Fig. 15. Target peptides of FIKK1, FIKK9.1, or FIKK12 modelled**
2073 **into the substrate-binding groove of the FIKK AF2 structures** (see Methods).
2074 Peptides may correspond to a likely target peptide of the kinase, or idealised targets
2075 based on the results of the OPAL arrays. FIKK kinase domain coloured in grey and
2076 the substrate peptide is coloured in yellow. Negatively charged amino acids are
2077 coloured in red, positively charged amino acids are coloured in blue, hydrophobic
2078 amino acids are coloured in brown.

2087
2088 **Extended Data Fig. 17. Sequence conservation of FIKK specificity determinants.**
2089
2090 **a**, Conservation of the region surrounding FIKK12 K212 between FIKK paralogues in
2091 *P. falciparum*. The position containing FIKK12 K212 is labelled with an arrow. **b**,
2092 Conservation of the region surrounding FIKK12 K263 between FIKK paralogues in *P.*
2093 *falciparum*. The position containing FIKK12 K263 is labelled with an arrow.


2087
2088 **Extended Data Fig. 17. Sequence conservation of FIKK specificity determinants.**
2089
2090 **a**, Conservation of the region surrounding FIKK12 K212 between FIKK paralogues in
2091 *P. falciparum*. The position containing FIKK12 K212 is labelled with an arrow. **b**,
2092 Conservation of the region surrounding FIKK12 K263 between FIKK paralogues in *P.*
2093 *falciparum*. The position containing FIKK12 K263 is labelled with an arrow.

2094

2095 **Extended Data Fig. 18. Multiple sequence alignment of various kinase**
2096 **domains.**


2097 Alignment generated using ESPriT 3.0⁶⁸. The secondary elements in FIKK13 are
2098 shown above the alignment. The \square -helices and β -strands corresponding to ePKs are
2099 labelled. The \square FIKK (1-4) are additional alpha-helices found in the FIKK family of
2100 kinases, but not in ePKs.

2101
2102 **Extended Data Fig. 19. Structure-Activity Relationship assay identifies closely**
2103 **related compounds with different behaviours towards recombinant FIKK8**
2104 **kinase domain.**

2105 333 compounds were identified from the three original PKIS chemical templates.
2106 IC_{50} on recombinant FIKK8 kinase domain was measured in biological triplicate for
2107 each one of the compounds and are indicated here for the selected ones \pm SD.

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128

2129

2130

2131

Extended Data Fig. 20. The three most potent *in vitro* FIKK inhibitors kill *Plasmodium* parasites in culture.

2132

2133

2134

2135

2136

2137

2138

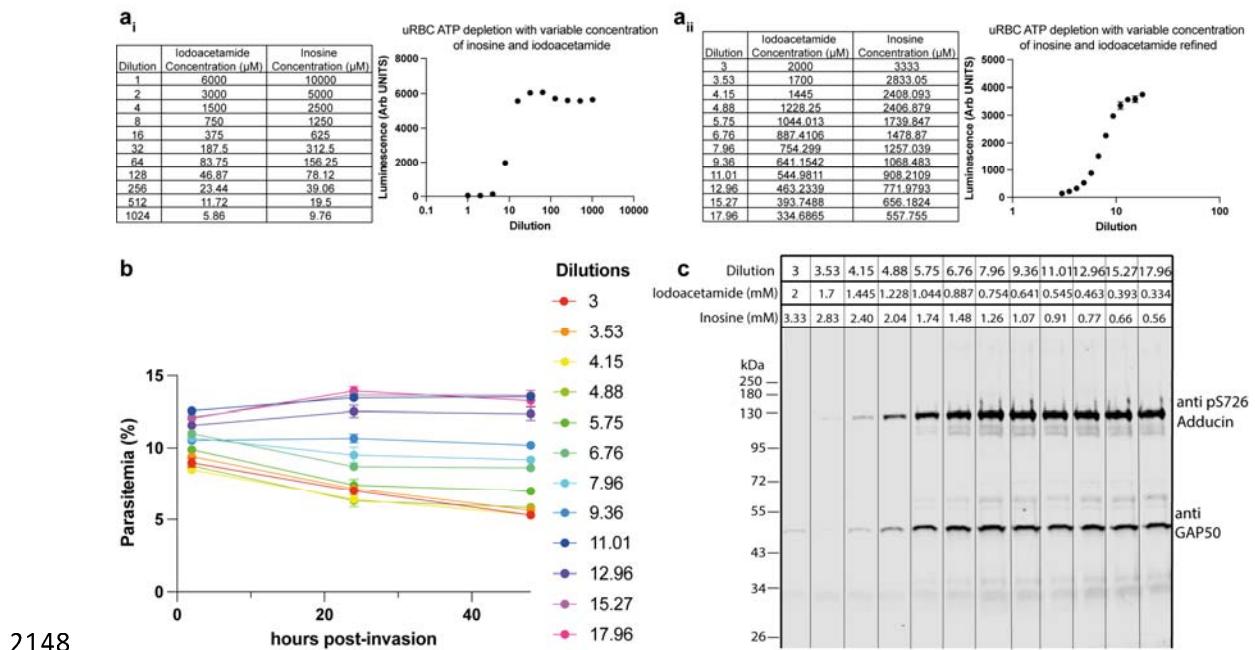
2139

2140

2141

2142

2143


2144

2145

2146

2147

Half maximal effective concentration (EC₅₀) *in vitro* determination for GW779439X, GSK2177277A and GSK2181306A towards *P. falciparum* a and *P. knowlesi* b parasites. Parasitemia was assessed by flow cytometry using SYBR Green staining of the parasite nucleus after a 72 hours incubation period in the presence of different concentrations of compounds (parasitemia indicated in Supplementary Table 15). EC₅₀s were determined using a four-parameter dose-response model with the software PRISM. Data are shown as the mean±SEM for 3 biological replicates. Curves represent dose-response curves of FIKK inhibitors inhibition of *P. falciparum* (black) and *P. knowlesi* (grey).

2148
2149

Extended Data Fig. 21. Optimisation of ATP-depletion conditions.

2150 a, Measurement of intra-erythrocytic ATP concentrations in uRBC using the
2151 CellTiter-Glo® luminescence assay (Promega). (i) Luminescence, relative to intra-
2152 erythrocytic ATP concentration, was measured in uRBC pre-treated with
2153 iodoacetamide and inosine concentrations ranging from 6000μM to 5.86μM and
2154 10000μM to 9.76μM respectively. (ii) Luminescence measured in uRBC pre-treated
2155 with iodoacetamide and inosine concentrations ranging from 2000μM to 334.7μM and
2156 3333μM to 557.8μM respectively corresponding to dilution 3 to 17.96 from (a_i). n
2157 = 3 biological replicates for both (i) and (ii). b, Parasitemia assessed for NF54 iRBCs
2158 pre-treated with different concentrations of iodoacetamide and inosine corresponding
2159 to dilution 3 to 17.96 from (a_{ii}). Parasitemia was assessed by flow cytometry using
2160 SYBR green staining and numerical values of percentages is provided in
2161 Supplementary Table 16. n = 3 biological replicates. c, Western blot investigating
2162 adducin S726 phosphorylation in NF54 iRBCs pre-treated with different
2163 concentrations of iodoacetamide and inosine corresponding to dilution 3 to 17.96
2164 from (a_{ii}). Anti-GAP50 antibody is used here to investigate viability of the parasite.