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Abstract

Advances in precision medicine rely on the accurate identification and analysis of molecular
alterations for personalized diagnostic, prognostic, and therapeutic decision-making. A critical
obstacle is the integration of heterogeneous interpretations of clinically actionable alterations
from various knowledgebases. Here, we present the Personal Omics Interpreter (POI), a web-
based application engineered to aggregate and interpret therapeutic options, including targeted,
immunological, and chemotherapeutic agents, by leveraging personal genomic and
transcriptomic profiles. POI employs the Precision Medicine Knowledgebase (PreMedKB), an
updated harmonized resource we previously reported, to annotate the clinically actionable
somatic variants. It further incorporates a predictive algorithm to broaden therapeutic options
according to established gene-gene interactions and offers insights into phenotypic responses
of chemotherapeutic agents through phasing germline diplotypes. Validated against three
cohort datasets encompassing over 22,000 cancer patients, POI demonstrates consistently high
matching rates (94.7 ~ 95.6%) between patients and suggested therapies, highlighting its

potential in supporting precision-driven informed treatment strategies.
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Background

Precision medicine represents a paradigm shift in healthcare, offering a new approach to
optimize treatment outcomes through the customization of therapeutic interventions according
to the patient’s unique molecular profiles [1]. This shift aims to maximize efficacy and
minimize the occurrence of adverse drug reactions [2]. As the application of omics data
becomes increasingly prevalent in this domain, there arises a growing demand for identifying
and interpreting clinically actionable alterations across both scientific research and clinical
domains [3-5]. This pressing demand stems from the desire to effectively prioritize anti-cancer
drugs based on a comprehensive understanding of the molecular landscape, ensuring targeted

and precise treatment strategies for patients.

Several interpretation tools have been developed to address this demand, primarily
focusing on somatic alterations [6-11]. However, a select few, such as PORI [12], MOAlmanac
[13], CCAS [14], and PanDrugs2.0 [7, 15], have broadened their interpretative scope to
encompass germline variants, RNA outliers, and other relevant factors. These platforms
employ diverse strategies to analyze genomic and transcriptomic characteristics, underscoring
the significant potential of multi-dimensional data interpretation in identifying actionable
therapeutic alterations. Despite these advancements, existing platforms still exhibit certain
limitations, including incomplete coverage of interpreted data types (e.g., RNA expression and
genotype data), limited exploration of cross-omics features, and constrained capabilities in
therapeutic recommendations, such as chemotherapy, beyond targeted therapies [12, 16, 17].
Thus, achieving an accurate interpretation of multi-dimensional molecular changes remains a

substantial challenge in advancing precision medicine.

The gap for a comprehensive platform that integrates genomic and transcriptomic data to
adeptly prioritize anti-cancer drugs individually is evident. First of all, exploring gene
expression-based inference of cancer drug sensitivity has emerged as a promising avenue for
identifying actionable therapeutic alterations based on RNA expression data [18]. Additionally,
accumulating evidence suggests that targeting co-occurring oncogenic driver aberrations holds
promise for robust and durable therapeutic responses, emphasizing the significance of pathway
analysis in interpreting actionable therapeutic alterations [19]. Furthermore, the impact of
germline variants and their genotypes on the efficacy, dosage, and toxicity of conventional
chemotherapy has been recognized, further highlighting their relevance in identifying

actionable therapeutic alterations [20].
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70 Addressing this imperative, we develop the Personal Omics Interpreter (POI), a user-
71  centric tool that utilizes a multiomics integrative strategy to identify clinically actionable
72 alterations for anti-cancer drug prioritization (https://premedkb.cn/poi/#/). POI is designed to
73 accommodate multi-dimensional alterations as input, including somatic and germline single
74  nucleotide variations (SNVs), small insertions and deletions (Indels), copy number variations
75  (CNVs), gene fusions, tumor mutational burden (TMB) and microsatellite instability (MSI),
76  pathogenic germline variants, and aberrantly expressed genes. POI also employs a predictive
77  algorithm that enables the inference of suitable drugs for patients lacking straightforward
78  actionable therapeutic alterations. Extensive validation testing of POI has been conducted using
79  prominent datasets, including the Cancer Genome Atlas (TCGA) multi-cancer datasets and the
80 MSK-IMPACT datasets, as well as our proprietary breast cancer dataset. These results
81  underscore the effectiveness and reliability of POI in aiding precision medicine decision-

82  making and prioritizing anti-cancer drugs across various cancer types.

83
84 Results

85  Architecture of POI

86  POI is a comprehensive clinical interpretation algorithm designed to facilitate the integrated
87  interpretation of genomics and transcriptomics data to prioritize drugs for individual cancer
88  patients. The architecture of POI is depicted in Fig. 1. POI consists of four key components:
89 (1) a backend knowledgebase, named PreMedKB, which serves as a comprehensive data
90  repository comprising information on the ‘“gene-variant-disease-drug” model to facilitate
91  comprehensive interpretation; (2) multiomics profile as input: POI effectively deciphers the
92  genomics variants (somatic and germline SNVs/Indels, CNV, and fusion), genomics signatures
93  (TMB, MSI), and aberrantly expressed genes (transcriptomics alterations) of a patient to
94  prioritize targeted and immunological drugs; (3) modules designed to perform multiple tasks,
95  including the parsing of multiomics profiles, identification of actionable alterations, inference
96  of off-label drugs, and interpretation using harmonized evidence; (4) a user-friendly web

97 interface that generates therapeutic reports of therapeutic interpretations.

98 The overall process of how POI works is shown in Fig. 2. Briefly, POI utilizes a
99  harmonized knowledgebase to perform a comprehensive analysis of multiple feature sets
100  within the patient’s multiomics profiles. POI can provide three classes of clinical evidences for

101  comprehensive annotation of drug biomarkers based on variation types (somatic or germline
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102  variants) and clinical confidences (direct evidence with high confidence or predictive evidence
103 with lower confidence). The clinical evidences include (1) direct evidence: druggable
104  biomarkers with direct clinical evidence; (2) indirect evidence: predictive biomarkers that are
105  found to be involved in cancer-specific pathway(s) and interacted with druggable biomarkers;
106  and (3) drug response: prediction of patient sensitivity to chemotherapeutic drugs based on
107  germline variations and/or combination of germline variations within specific genes (gene
108  haplotypes or diplotypes). After analyzing in POI, the generated report can be obtained,
109  covering essential information such as drug prioritization, actionable alterations, and drug

110  response prediction based on pharmacogenomic replicates and metabolic phenotypes.
111
112 Comprehensive data integration and normalization of PreMedKB

113 PreMedKB encompassed a comprehensive collection of cancer therapy data, including 502
114  diseases, 458 genes, 6,713 variants, and 865 drugs. The semantic network within PreMedKB
115  revealed numerous associations, such as 6,713 gene-variant associations, 2,493 gene-disease
116  associations, 3,168 gene-drug associations, 41,168 variant-drug associations, 51,316 variant-
117  disease associations, and 4,777 drug-disease associations (Fig. 3a). Notably, the involvement
118  of various tissues in the support analysis conducted by POI leads to substantial variation in the
119  number of diseases, drug-disease associations, gene-disease associations, and variant-disease
120  associations across different tissues (Fig. S1). Additionally, PreMedKB focused on diverse
121  variants, including 4,840 SNVs, 733 Indels, 247 fusions, 212 gene expressions, 128 CNVs, 57
122 haplotypes, 38 structural variations (SVs), 5 genomic signatures, and 522 other variant types
123 (Fig. 3b). The rich data coverage expanded the breadth and depth of the knowledgebase,
124 enabling it to provide comprehensive, and accurate information, thereby enhancing the

125  comprehensiveness of the knowledgebase.

126 To facilitate the assessment of aberrant gene expression, a comprehensive RNA reference
127  database was constructed using gene expression data from diverse cancer types within the
128 TCGA RNA expression landscape. The utilization of this reference database on a web server
129  allowed for the evaluation of patients’ gene expression levels, providing insights into the gene
130  expression distribution specific to their cancer type (Fig. S2a). Additionally, Fig. S2b and Fig.
131 S2c¢ illustrated the expression distribution of gene 7P53 across different cancer types and the
132 expression distribution of five key genes associated with breast cancer, respectively. These

133 results exemplified the comprehensive gene expression data coverage in the reference database,
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134  allowing for a deeper understanding of gene expression patterns across different cancers and

135  within specific cancer types.

136 When integrating the knowledge from different authoritative precision medicine
137  databases, heterogeneity exists due to their distinctive structures and contents [11]. To address
138  this, knowledge normalization techniques were employed to eliminate redundancy, enhance
139  data interoperability, establish consistent data standards, and improve data integration
140  capabilities. These efforts aimed to provide users with more comprehensive, accurate, and
141  reliable information from the knowledgebase. Analyzing the four elements individually
142 revealed a significant overlap in database construction (Fig. 3¢), however, approximately 91%
143 of variants, 88% of diseases, 87% of drugs, and 70% of genes remained unique across
144 knowledgebases. Through the normalization of metadata terminologies, we identified mutually
145 interpretable terms among the knowledgebases, leading to a reduction in uniqueness to 77%
146  for variants, 72% for diseases, 60% for drugs, and 27% for genes, which decreased the

147  heterogeneity of knowledge in the PreMedKB.

148 By expanding data coverage and implementing knowledge normalization, the precision,
149  and comprehensiveness of the knowledgebase is greatly improved. This contributes to the
150  comprehensive identification and interpretation of actionable therapeutic alterations, providing

151  valuable insights for precision medicine applications.
152
153  Validation of the effectiveness of POI based on cohort datasets

154  To assess the effectiveness of POI for comprehensive precision drug prioritization based on
155  multiomics data of individual patients, we conducted a thorough evaluation using three cohort
156  datasets: TCGA [21], MSK-IMPACT [22], and Triple-negative Breast Cancer of Fudan
157  Shanghai Cancer Center (FUSCC) cohort [23, 24] (Fig. S3).

158 The TCGA dataset included somatic genomic and transcriptomic information for six
159  categories of patients: somatic variants (10,030 patients), CNV (10,667 patients), fusion (6,306
160  patients), TMB (1,043 patients), MSI (422 patients), and gene expression (702 patients),
161  covering a wide range of tumor types, including primary and metastatic cases. Widely
162  recognized for its extensive sample size and diverse data types, the TCGA dataset served as a
163  cornerstone in cancer research and evaluation. The MSK-IMPACT dataset, generated by
164 Memorial Sloan Kettering Cancer Center (MSKCC), consisted of somatic genomic

165 information for five groups of patients: somatic variants (including SNV and Indels) (10,129
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166  patients), CNV (10,945 patients), fusion gene (1,171 patients), MSI (180 patients), and TMB
167 (988 patients). The MSK-IMPACT dataset was pivotal in clinical oncology, representing a
168  widely utilized resource for understanding metastatic cancer genomics. Finally, the FUSCC
169  dataset, centered on a single tumor type (triple-negative breast cancer, TNBC), offered a rich
170  resource of integrative genomic information, including both somatic and germline genomic
171  data, as well as transcriptomic profiles. The FUSCC dataset can be split into six categories of
172 test files: somatic variants (279 patients), germline variants (279 patients), CNV (401 patients),
173 TMB (57 patients), and gene expression (88 patients). Haplotype/diplotype information and
174  corresponding drug responses were obtained based on germline variants using the PAnno tool
175 [25] in the drug response module. Therefore, the inclusion of these datasets ensures

176 ~ comprehensive validation of the performance of POI.

177 The validation results demonstrated that POI was able to match at least one drug for
178  approximately 95% of patients across the three cohorts (Fig. 4a), where over 39.4% of patients
179  can obtain the reliable drug prioritizations of Level A and Level B. In the TCGA cohort, POI
180  exhibited comparable performance to the latest platform, PORI [12], with drug prioritizations
181  available for approximately 96% of patients. Additionally, in the MSK-IMPACT cohort, POI
182  significantly improved the prioritized drug ratios compared to the original report from MSKCC
183  [26], providing drug prioritizations for approximately 94.7% of patients. The distribution of
184  the highest drug evidence levels in each tissue within the MSK-IMPACT cohort mirrored the
185  results observed in the TCGA cohort. These findings highlight the expanding knowledgebases
186  of POI and its ability to prioritize drugs using pathway inference strategies, even in off-label

187  use cases where no previous drugs were available.

188 Though somatic and CNV input files predominantly contributed to drug prioritizations in
189  the TCGA, MSK-IMPACT, and FUSCC cohorts, other input data types (e.g., RNA,
190  Germline Genotype, Fusion, etc.) could potentially offer an increased range of drug options
191  for patients (Figs. 4b-d). Moreover, the drug response module of POI was validated in the
192 FUSCC cohort, where it suggested an additional 55 types of drugs in addition to prioritizations
193  from other modules (Fig. 4e). This further confirms POI’s capability to propose a more
194  comprehensive set of drugs, including targeted therapy and chemotherapy. Collectively, these
195  results emphasize the promise of POI in delivering comprehensive precision drug
196  prioritizations by parsing multiomics data, offering the possibility of treatment for a wider

197  range of patients.

198
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199  Enhancing anti-cancer drug prioritization through indirect evidence prediction

200  When a patient’s genomic and transcriptomic variants cannot directly match clinical evidence
201  conclusions in PreMedKB, POI employs a strategy of leveraging biological associations within
202  pathways to identify indirect evidence and provide prioritization for patients who do not match

203  atargeted drug.

204 Specifically, POI begins by annotating the patient’s germline and somatic SNVs/Indels,
205 taking into account indicators such as population frequency, predicted deleteriousness of
206  variants, and clinical significance to identify potentially abnormal genes. POI then examines
207  their enrichment in the same pathway as the gene corresponding to the actionable therapeutic
208 alteration, utilizing Hallmark gene pathway information [27]. If the aberrant genes belong to
209  the same pathway and show a high correlation (protein-protein interaction score acquired from
210  the STRING database [28] > 0.99), the corresponding drugs are considered potentially effective,

211  and the evidence level for these inferred drugs is assigned as level E.

212 To assess the effectiveness of indirect evidences provided by POI, we conducted a
213 statistical analysis of drug prioritizations in the cohorts and observed that inferred drugs derived
214  from POI exhibit promising potential in preclinical studies. Taking TCGA’s ovarian cancer
215  patients as an illustrative example, within the test cohort, approximately 71% of patients were
216  eligible for direct drug prioritizations, while 21% were eligible for inferred drug prioritizations,
217  derived from the POI indirect evidence module. The inference process primarily relies on the
218  TP53 mutation status identified by POL. It is important to note that the existing database does
219  not provide specific prioritized drugs for TP53 mutations in ovarian cancer patients.
220  Nevertheless, leveraging pathway associations, POI established a connection between the TP53
221  and BRCAI genes [29]. Remarkably, for ovarian cancer patients harboring BRCA1 germline
222 or somatic mutations, both the FDA and NCCN guidelines offered corresponding drug
223  prioritizations, such as Olaparib. Consequently, approximately 21% (124 individuals) of
224  TCGA ovarian cancer patients can receive the tailored treatment advice (Fig. S4). Moreover,
225  preclinical investigations have already demonstrated the inhibitory effects of POl-inferred
226  drugs on the growth of xenograft tumors derived from ovarian cancer patients with wild-type
227  ATM and TP53 mutant backgrounds [30]. These findings provided additional support for the

228  potential of POl-inferred drugs, underscoring its promise in clinical applications.

229
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230  Web-based interface

231 POl is a user-friendly web server whose workflow consists of three main pages, including a
232 Query Page (input), an Intermediate Page (submission and analysis), and a Report Page (output)
233 where the therapeutic details can be viewed by clicking the row of the tables in the therapeutic

234 overview (Fig. 5).

235 In the Query Page, the user can select clinical information and upload his/her omics data
236  in each module according to the “?” tips (Fig. 5a). Upon clicking the Submit button, the user
237  isdirected to the Intermediate Page, where the report address and associated notes are prompted.
238  (Fig. 5b). Once the computation is complete, the Report Page can be accessed via the provided
239  link. At the top of the Report Page, the basic case information can be viewed, followed by two
240  tables summarizing the drug prioritizations. The therapeutic overview of each drug is presented
241  in three tabs: "Direct Evidence", "Indirect Evidence", and "Drug Response". (Fig. 5¢). Further
242 details of a specific drug’s therapeutic and biomarker information can be explored by selecting
243 the corresponding row in the therapeutic overview. Additionally, the content of the biomarker

244  detail section includes a gene expression distribution for comprehensive analysis.

245 To assist users in understanding the report generation process, POI offers a Demo Report
246  feature, pre-filled with relevant data. Furthermore, three POI report examples with test data are

247  available, providing users with a better grasp of the POI report structure.
248
249  Use case

250 We provide an example from a Chinese woman patient from the FUSCC cohort who had
251  metastatic triple-negative breast carcinoma to showcase the effectiveness of the POI in
252  identifying and interpreting actionable therapeutic alterations from individual patients’
253  multiomics profiles. The detailed reports can be accessed in Example 1 on the website

254  (https://premedkb.cn/poi/#/case/report/examplel).

255 Specifically, the patient’s somatic Variant Call Format (VCF) data, germline VCF, CNV,
256  and gene expression files, which were fed to POI, were obtained from our previous study [23,
257  24]. The POI result report reveals the identification of 26 actionable therapeutic alterations in
258  this particular case, accompanied by corresponding 54 drug prioritizations (therapies) varying

259  from level A to level E.
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260 Within the “Direct Evidence” tab of the report, the combination therapy of Alpelisib and
261  Fulvestrant with evidence Level A was recommended for this patient with PIK3CA mutation,
262  Lapatinib, and Patritumab Deruxtecan with evidence Level B based on the overexpression of
263 ERBB3 gene from gene expression file was recommended. Additionally, there were several
264  drugs, with evidence of Levels C or D, based on distinct mutations (somatic mutation and CNV)

265  in other genes, as indicated by the somatic VCF data.

266 In the “Indirect Evidence” tab, POl employed inference strategies to prioritize drugs based
267  on the association between the genes BRCA1, CDKN2A, and RB1 with key cancer gene TP53
268  in the E2F Targets and P53 Pathway through inference strategies of POI were displayed as

269  assigned evidence Level E.

270 Furthermore, in the “Drug Response” tab, the drug response and related phenotypes
271  were predicted based on the resolved diplotype of the patient from her germline VCF. The
272 chemotherapy drugs were summarized in the table of chemotherapy by dividing them into three

273  categories, including avoid use, use with caution, and routine use.

274
275 Discussion

276  In the domain of precision oncology, the quest for personalized therapy is predicated on the
277  unique molecular signatures of individual patients [31]. Yet, the endeavor to pinpoint optimal
278  treatments is hampered by disparities across oncological knowledgebases, the constraints of
279  manual interpretation, and the insufficient harnessing of genomic data [3]. Despite previous
280  efforts recognizing the importance of including non-somatic variations and adopting
281  multifaceted analytical approaches [12-15], there is still a lack of a comprehensive tool that can
282  prioritize anti-cancer drugs by integrating genomic and transcriptomic data at the individual
283  level. Therefore, we developed POI based on the foundation of PreMedKB [32], a user-friendly
284  system that integrates disease, gene, variant, drug, and clinical evidence information from
285  multiple databases. POI utilizes a harmonized knowledge network and a multi-dimensional
286  interpretation strategy to provide comprehensive drug prioritization. It prioritizes targeted and
287  immunological drugs based on somatic variants, genomics signatures, pathogenic germline
288  variants, and aberrantly expressed genes, thereby aiding in precise treatment selection.
289  Additionally, POI provides repurposing drugs for patients without actionable therapeutic
290 alterations by considering the association of aberrant alterations in specific biological pathways.

291 By integrating comprehensive knowledge, resolving germline diplotypes, and providing

10


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

292 chemotherapy drugs with phenotype prediction, POI enhances the clinical utility of precision
293 oncology. The validation of POI on diverse datasets confirms its effectiveness in identifying

294  actionable therapeutic alterations and expands access to therapeutics.

295 We compared POI (https://premedkb.cn/poi/#/) with five other tools for precision drug
296  prioritization based on omics data of individual patients: PORI [12], MOAlmanac [13], CCAS
297  [33], PanDrugs [15, 34], and Cancer Genome Interpreter (CGI) [8]. We demonstrated that POI
298  outperforms other tools in several aspects, such as input data types, output formats,
299  knowledgebases, evidence levels, drug response prediction, pathway inference, and off-label
300  use cases. POI has three main advantages over other tools. First, POI can analyze a wide range
301  of data types that cover both somatic and germline variants, as well as expression profiles and
302  clinical information. POI can perform tumor-normal paired analysis for more accurate variant
303  calling and expression profiling. This allows POI to identify more comprehensive actionable
304 therapeutic alterations than other tools. Second, POI integrates multiple databases, standardizes
305 knowledge from different sources, and can prioritize potential drugs that do not have direct
306 evidence in existing databases through biological pathway inference. Third, POI provides a
307  comprehensive report that includes drug prioritizations based on different evidence levels from
308  multiple sources, which could help clinicians decide whether patients should use chemotherapy

309  drugs or targeted drugs. We have summarized the detailed comparison results in Table 1.

310 Besides, the integration of different knowledge bases significantly enhances the overall
311  knowledge coverage, leading to the identification of a more extensive range of actionable
312  therapeutic alterations and facilitating the prioritization of a greater number of drugs for
313  individual patients. The validation of database integration using three cancer datasets
314  demonstrated that the annotation results for drug prioritization in patients not only relied on
315  commonly shared drugs across all integrated knowledge bases but also encompassed specific
316  drugsunique to individual or two specific knowledge bases. This observation further highlights
317  the comprehensive nature of treatment-related knowledge within the PreMedKB database (Fig.
318 S5). However, it is important to note that variations in terminology formulation and the
319  inclusion of rare variants within a single database contribute to the distinctive features observed
320 among databases (Fig. 2¢). This variation may be magnified as the reliability of clinical
321  evidence decreases, emphasizing the need for careful consideration and evaluation of the

322  available knowledge sources.

323 Although POI can expand treatment options for patients through more comprehensive

324  actionable therapeutic alterations, its effectiveness needs to be further verified. Direct

11
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325  application of drug prioritizations by POI and other similar online portals to clinical practice is
326  not always possible. Clinical interventions require review by, for example, the Molecular
327  Tumor Board (MTB) and similar bodies, and better integration of the system with the practice
328  of clinical oncologists is necessary [35]. Additionally, the adoption of variant information
329  exchange standards by the community is not complete, and the Association for Molecular
330  Pathology, American Society of Clinical Oncology, and College of American Pathologists
331 (AMP/ASCO/CAP) classification standards used in this study have room for refinement and
332 are only applied by about 70% of investigators [36]. Furthermore, systematic interpretation of
333 results requires rigorous validation of analytical and clinical validity in combination with assay

334  reagents, with the ultimate focus being on clinical utility for precision medicine [37, 38].

335 Looking ahead, the ongoing development and refinement of POI could utilize an open-
336  source community development model [39], promising to advance personalized therapy and
337 improve patient outcomes. By integrating additional omics data, such as proteomics [40] and
338  methylation [14] data, POI can continue to evolve as a valuable tool that expands access to

339  therapeutics and enhances the precision of treatment decisions.

340
341 Conclusions

342  POI serves as a valuable tool for the comprehensive prioritization of anti-cancer drugs by
343  effectively identifying actionable therapeutic alterations in a patient’s multiomics profiles,
344  thereby broadening the availability of targeted therapeutics. The webserver of POI assists
345  researchers and clinicians in navigating the complexities of these profiles, facilitating precise
346  therapy decision-making. Notably, the capability of POI to prioritize drugs based on robust
347  preclinical evidence highlights its potential to provide substantial benefits to patients,
348  particularly in off-label use cases. Ongoing efforts focused on the continuous development and
349  refinement of POI hold great promise for advancing precision medicine and ultimately

350  enhancing patient outcomes.

351

352 Methods

353  Construction of knowledgebase

354  We used our previously reported knowledgebase PreMedKB [32] to provide clinical and

355 biological evidences for interpretation. For facilitating cancer genomics interpretation, most
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356  databases have been updated and cancer-related databases were added in PreMedKB. Here, we

357  briefly described the construction and updating of PreMedKB.
358
359  Data sources

360 PreMedKB serves as the foundation for the POI algorithm and consists of two distinct layers:
361 the meta-knowledgebase layer and the domain knowledgebase layer. The meta-
362  knowledgebase layer encompasses databases related to diseases, genes, variants, and drugs,
363 along with their metadata, including names, synonyms, functions, efc. The domain
364 knowledgebases established relationships among these elements and served as data sources
365 that provided insights into the clinical significance of diseases, genes, variants, and drugs.
366  Notably, the entries within these knowledgebases represented connections between two or

367 more of the elements mentioned above.

368 To ensure a comprehensive integration of clinical evidence conclusions on cancer
369  genomics, the updated version of PreMedKB incorporated reliable data obtained from expertly
370  curated databases, as summarized in Table S1. These data sources were managed as
371  independent databases using MySQL. The construction process involved the design of the
372  entity-relationship diagram for the database, formulation of the data dictionary, implementation
373  of data preprocessing techniques, and subsequent data importation. These coordination
374  strategies closely resembled those employed in the original version of PreMedKB, with the

375  primary distinction lying in the assimilation of updated data sources.
376
377  Meta database construction

378  To enable interoperability and establish connections between research and clinical settings,
379  PreMedKB provides a rich vocabulary in its metadata databases. Standard names and
380 synonyms are retrieved from various data sources. Gene names are standardized using the
381 HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/) [41], NCBI
382  Entrez Gene (https://www.ncbi.nlm.nih.gov/gene/) [42], and Ensembl. Variation information
383  was obtained primarily from dbSNP (https://www.ncbi.nlm.nih.gov/snp/) [43], Clinical
384  Variation Database (ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/) [44], Catalogue of
385  Somatic Mutations in Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic) [45], and
386  gnomAD’s calculated allele frequencies for population frequency annotation. Additionally,

387 ANNOVAR [46] was employed for annotating the functional effects of variations. Disease
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388  metadata, including name, definition, and ontology structure, were harmonized using
389  OncoTree (http://oncotree.mskcc.org/) [47], Mesh (https://meshb-prev.nlm.nih.gov/search)
390 [48], and the NCI Thesaurus (NCIt, https://ncithesaurus.nci.nih.gov/ncitbrowser/) [49, 50].
391  Drug-related information, encompassing structure, pharmacology, pharmacogenomics, clinical
392  stages, and product details, were integrated using resources such as NCIt, ChEBI
393  (https://www.ebi.ac.uk/chebi/) [51], ChEMBL (https://www.ebi.ac.uk/chembl/) [52], and
394  DrugBank (https://go.drugbank.com/) [53].

395
396  Domain knowledgebase integration

397 Domain knowledgebase integration primarily involves three dimensions of information:
398 clinical evidence conclusions, the landscape of the genome and transcriptome profiles, and
399  biological pathway knowledge. Prominent knowledgebases such as OncoKB [54], CIViC [39],
400 My Cancer Genome (MCGQG) [55], CGI [8], PharmGKB [56, 57], and NCCN Drug
401  (https://www.nccn.org/#) provided clinical evidence conclusions regarding target therapies,
402  immunotherapies, chemotherapies, pharmacogenomics, and pathogenic sites in cancer. The
403  landscape of the genome and transcriptome profiles was derived from The Cancer Genome
404  Atlas (TCGA, https://cancergenome.nih.gov/), a valuable resource encompassing diverse
405  integrative cancer genomics data from various human tissues. In this study, we utilized the
406  RNA expression landscape of TCGA [58] to construct a RNA reference database of gene
407  expression levels, facilitating the assessment of abnormal gene expression in patients.
408  Additionally, MsigDB [27] offered biological pathway knowledge associated with hallmark
409  genes, providing an additional dimension for linking existing clinical evidence with patients’

410  omics profiles.

411 The meta-knowledgebases were constructed with comprehensive lexicons for the four
412  main elements: diseases, genes, variants, and drugs. This enabled the matching of nodes in the
413  domain knowledgebases with meta-IDs using lexical matching. To ensure accuracy and
414  consistency, duplicate semantic relationships were eliminated, and nodes were assigned higher

415  confidence ratings accordingly.
416
417  Normalization of clinical evidence levels

418  Given the inherent variability in describing evidence levels within different knowledgebases,

419  aharmonization process involving manual mapping is necessary to establish a unified standard.
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420 It was worth noting that the release of the AMP/ASCO/CAP somatic classification guidelines
421  [59] took place subsequent to the design of the Variant Interpretation for Cancer Consortium
422 (VICC) knowledgebases and was partially influenced by them. While the evidence levels
423 within the knowledgebases exhibit compatibility with the AMP/ASCO/CAP guidelines [59], it
424  was important to acknowledge that they were not entirely identical. Consequently, a
425  comprehensive mapping of the evidence levels provided by each knowledgebase was
426  conducted to align them with the AMP/ASCO/CAP guidelines. For instance, Level A refers to
427  biomarkers that predict response or resistance to FDA-approved therapies or professional
428  guidelines for a specific type of tumor [59]. Detailed descriptions and mappings of each

429  evidence level can be found in Table 2.
430
431  Analysis modules and drug prioritization strategies

432 The analysis module of the POI system consists of three components, based on direct evidence,
433  indirect evidence, and drug response. Genomic and transcriptomic data submitted by users
434 undergo preprocessing and normalization by the POI system. Subsequently, the ANNOVAR
435  tool is employed for variant annotation in VCF files, thereby enhancing the subsequent
436  interpretation process. The clinical information provided by the users, including tumor type,
437  plays a crucial role in facilitating the accurate prioritization of targeted and immunotherapeutic
438  drugs, while reference population information will be utilized to predict the response to
439  chemotherapy drugs and assess the associated phenotypes. These three modules collectively
440  identify and interpret the actionable therapeutic alterations, providing comprehensive and

441  precise guidance for the prioritization of targeted, immunological, and chemotherapeutic drugs.
442
443 Direct evidence

444  Direct evidence pertains to the utilization of clinical and experimental research findings
445  specific to genetic variants associated with particular tumor types and treatments. This evidence
446  is sourced from the integrated domain knowledgebase of PreMedKB (Table S1). POI can
447  identify the actionable therapeutic alterations through the analysis of various patient files,
448  including somatic and germline SNV/Indel, CNV, gene fusions, TMB, MSI, and gene

449  expression data, enabling effective prioritization of targeted and immunological drugs.

450 When handling annotated somatic and germline SNV/Indel, POI employs the following

451  strategy to match them with clinical evidence in PreMedKB. Direct matching is employed for
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452  variants with well-defined amino acids or bases. If the clinical evidence specifies variants only
453  for a specific mutation class in a gene or on a specific exon, direct matching is performed
454  against those known conditions. For instance, in the case of variants in the truncated mutation
455  category, matching is based on the annotated variant category (e.g., stopgain, frameshift
456  insertion, frameshift deletion, frameshift block substitution). In situations where clinical
457  evidence refers to oncogenic mutations without detailed variant information, POI first
458  determines if the patient has a variant considered oncogenic in PreMedKB (integrated across
459  databases) and then determines if it is annotated as pathogenic or likely pathogenic by ClinVar.
460  Wild-type variants, such as KRAS and NRAS genes, are assessed separately after resolving other

461 variants.

462 Genomic signatures, such as TMB and MSI, play a significant role in individual tumor
463  genomes and have implications in oncology treatment. However, given the lack of standardized
464  calculation methods for TMB and MSI, POI offers options of high tumor mutation burden
465 (TMB-H) and high microsatellite instability (MSI-H) on the website rather than performing
466  direct calculations based on user-submitted VCF files. For CNV, POI resolves the gene status
467  inthe CNV file, including “gain”, “loss”, or “neutral”. Regarding gene fusions, POI parses the
468  gene pairs provided in the file.

469 To effectively utilize the patient’s transcriptomic data, POI converts raw read counts into
470  Counts Per Million (CPM). Genes with at least 10 counts and a minimum CPM of 0.5 in both
471  tumor and normal tissues are considered expressed genes, which are used for further analysis.
472 A log2 transformation is applied to the CPM values, with an additional value of 0.01 added to
473  the CPM of each gene to avoid infinite values. A gene is considered as under-expressed if the
474  relative expression of in tumor versus normal tissues (fold change of tumor/normal, log2
475  transformed) is <-3.5, while a gene is considered as over-expressed if its relative expression is
476 > 3.5. The threshold was established and validated using a breast cancer cohort, with the
477  expression status of HER2/ERBB?2 serving as the ground truth (Fig. S6 and Table S2).
478  Additionally, POI calculates the patient’s gene expression in proportion to the TCGA cohort

479  of the same cancer type to further confirm the abnormal expressed gene for drug prioritization.

480 In cases where disease groups share the same ancestry or descent, they are assigned the
481  same clinical evidence, and drug prioritization is directly assigned according to the evidence
482  level normalized by POI. However, if a patient possesses a variant recognized by professional

483  guidelines (Level A), but their cancer type does not share ancestry or descent with the supported
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484  indication in the clinical evidence, the drug prioritization is downgraded from Level A to Level

485 C.
486
487  Indirect evidence

488  POI begins by annotating the patient’s germline and somatic SNVs/Indels, taking into account
489  indicators such as population frequency, predicted deleteriousness of variants, and clinical
490  significance to identify potentially abnormal genes. Variants that meet any two of the three
491  following indicators are identified as potentially aberrant variants or genes. Firstly, rare
492  variants with a frequency of less than 1/1000 in the population, indicating low prevalence in
493  the general population and potential association with specific diseases or genetic disorders [60,
494  61]. Secondly, variants annotated as pathogenic or likely pathogenic in ClinVar [44] are
495  considered. Lastly, variants are classified as pathogenic mutations affecting protein function if
496  at least one of the indicators (SIFT, LRT, MutationTaster, MutationAssessor, FATHMM,
497  PROVEAN, MetaSVM, MetalLR) designates them as such.

498 POI then examines their enrichment in the same pathway as the gene corresponding to the
499  actionable therapeutic alteration, utilizing Hallmark gene pathway information [27]. If the
500 aberrant genes belong to the same pathway and show a high correlation (protein-protein
501  interaction score acquired from STRING database [28] > 0.99), the corresponding drugs are
502  considered potentially effective, and the evidence level for these inferred drugs is assigned as

503  level E.
504
505  Drug response

506  Chemotherapeutic drugs are known for their broad-spectrum efficacy against diverse tumor
507  cell types, making them a crucial component of cancer treatment [62]. Understanding the
508 influence of genetic variations on drug response holds significant potential for refining
509  chemotherapy protocols, mitigating adverse effects, and enhancing therapeutic outcomes for
510  individuals with cancer [63]. Hence, the analysis of germline variation data, particularly gene
511  polymorphisms associated with drug metabolism and drug targets, enables the prediction of
512 patient sensitivity to chemotherapeutic drugs to improve the precision medicine. To accomplish
513  this, our module incorporates our previously developed pharmacogenomics annotation tool
514  PAnno [25] into the POI framework. Through the analysis of germline variants, we infer the
515  genotypes/diplotypes of genes related to chemotherapeutic drugs, enabling the prediction of
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516  patient phenotypes about toxicity, dosage, efficacy, and drug metabolism. Finally, drugs are

517  categorized into three levels: avoid caution, and routine.
518

519  Multiomics data processing of three external cohorts
520 TCGA

521  The TCGA dataset, consisting of genomics and transcriptomics data from 11,005 patients, was
522 downloaded from cBioPortal [21] (https://www.cbioportal.org/), which includes all studies
523  from * tcga pan can atlas 2018: ACC, BLCA, BRCA, CESC, CHOL, COADREAD, DLBC,
524  ESCA, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV,
525  PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, and
526  UVM. The TCGA cohort covered 33 cancer types, normalized by 29 MSKCC tissue codes
527  (Table S4). The data mutaions files were converted to VCF files using the maf2vcf tools
528  (https://github.com/mskcc/vef2maf) developed by MSKCC, and CNA data files were binned
529  into individual CNV files by patient ID, with the gene status divided by the same thresholds
530  used in MSK-IMPACT above. TCGA fusion gene datasets were obtained from ChimerDB 4.0
531  (http://www.kobic.re.kr/chimerdb/) [64], and the MSI datasets were downloaded from the
532 TCGA MSI landscape [65] with MANTIS scores [66] for identifying MSI-H patients (where
533  MSI-H was defined as MANTIS score > 0.4). To identify “TMB-H” patients, the TMB value
534  was calculated based on the mutant allele frequency (MAF) files downloaded through the R
535  package “TCGAmutations” [67]. Furthermore, clinical information and gene expression files

536  were collected through the R package “TCGAbiolinks” [68] for subsequent analysis.
537
538 MSK-IMPACT

539  The MSK-IMPACT dataset is a genomics repository of 10,945 patients, which was obtained
540  from cBioPortal (http://cbioportal.org/msk-impact) [21] and a previous study [26]. The raw
541  data was subsequently partitioned into five categories: somatic mutation, CNV, fusion gene,
542  MSI-H, and TMB-H data (Table S3). The conversion of the data_mutaions file to VCF files
543  for each individual patient was performed utilizing the maf2vcf tools developed by MSKCC,
544  available on GitHub (https://github.com/mskcc/vcf2maf). The CNV files were annotated such
545  that genes with CNA count greater than 2 were labeled as “gain”, those less than -2 were labeled
546  as "loss", otherwise were labeled as “neutral” [69]. The MSISensor scores [70] of the MSK-
547 IMPACT dataset were used to identify “MSI-H” patients (where MSI-H was defined as
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548  MSISensor score > 10) [71], while the TMB was used to identify "TMB-H" patients (where
549  TMB-H was defined as >10 mutations/Mb according to FoundationOne CDx (F1CDx) [72]).
550  Finally, all data files were grouped by unique patient ID for subsequent analysis.

551
552 FUSCC

553  Inthis study, we utilized the FUSCC dataset [23], which consists of 427 patients and integrates
554  various types of omics data, including germline and somatic variations, CNVs, and tumor-
555 normal paired RNA expression profiles (Table S5). Specifically, the germline variations of
556 279 patients were obtained through in-house pipelines and were previously unpublished. The
557  purpose of including these germline variations was to enable comprehensive performance
558  validation of the multiomics data analysis. To identify patients with TMB-H, we calculated
559 TMB values based on the MAF files that were obtained from figshare
560  (http://dx.doi.org/10.6084/m9.figshare.19783498.v5).

561
562  Statistical analysis and validation of external cohorts

563  We performed a comprehensive statistical analysis of the validation results from three external
564  cohorts. The proportion of patients assigned drug prioritization according to the highest level
565  of evidence was independently calculated for each cohort. The results were visualized using
566  stacked bar charts created with the R package ggpubr v0.6.0. Furthermore, a detailed statistical
567  analysis was conducted to examine the different alterations observed in the drug sources within
568  each cohort. The findings of this analysis were effectively presented using an upset plot,
569 utilizing the R package ComplexUpset v1.3.3. Additionally, a specific investigation was
570  carried out on the core modules of the POI system for drug sources within the FUSCC cohort.
571  The results of this investigation were visualized through a Venn diagram created using the R

572 package eulerr v7.0.0.
573
574  Webserver construction

575  POI was employed various technologies in its front-end user interface, including the React
576  framework (https://reactjs.org/), Ant Design (https://ant.design/), and Apache Echarts
577  (https://echarts.apache.org/). The last technology was primarily employed in the Statistics Page

578  to enable the visualization of large amounts of data. In the back-end architecture, the Flask-
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based (https://flask.palletsprojects.com/) web framework was used to receive and process user
requests, while also facilitating communication between the front-end interface and the
underlying database. The REST architecture style was utilized in the development of POI to
reduce the intricacy of development and enhance system scalability. MySQL database

management system was utilized to store and manage all data within the system.

Availability and requirements

Project name: POI

Project home page: https://premedkb.cn/poi/#/homepage
Operating system: Platform-independent

Programming language: Python, MySQL

Other requirements: R version greater than 3.5

License: Crick Non-commercial License Agreement v2.0

Any restrictions on use by non-academics: Commercial use will require a license from the

rights holder. For further information, contact premedkb_poi@groups.outlook.com.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The tool is freely available through the API or the web interface at
https://premedkb.cn/poi/#/homepage. An updated version of PreMedKB for variant

interpretation is included in the software.

The germline variant datasets in the FUSCC cohort are not publicly available due to the

potential compromise of personal privacy.

20


mailto:premedkb_poi@groups.outlook.com
https://premedkb.cn/poi/#/homepage
https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

606  Competing interests
607  The authors declare no competing interests.
608  Funding

609  This study was supported in part by National Key R&D Project of China (2023 YFF0613302,
610 2023YFC3402501, and 2021YFF1201305), the National Natural Science Foundation of China
611 (32370701 and 32170657), Shanghai Municipal Science and Technology Major Project
612  (2023SHZDZXO02), State Key Laboratory of Genetic Engineering (SKLGE-2117), and the 111
613  Project (B13016).

614  Authors’ contributions

615 Y.Y.,L.G,and Y.L. conceived the study. Y.L. and Q.W.C. developed the POI algorithm. Y.L.
616 and Q.C.C. updated the PreMedKB databases. Q.W.C. collected the data used in the software
617  development and performance validation. Q.W.C. and Y.W. contributed to the validation and
618 interpretation of the results. L.Q.S. developed the webserver. Y.L., Q.W.C., and L.Q.S. drafted
619  the manuscript; L.M.S., Y.Z., L.G., and Y.Y. reviewed it. All authors contributed to the article

620  and approved the final manuscript.
621  Acknowledgements

622  We thank Dr. Xin Hu of Precision Cancer Medicine Center of Fudan University Shanghai
623  Cancer Center for the valuable input in our discussions. We are grateful to CFFF (Computing
624  for the Future at Fudan) and the Human Phenome Data Center of Fudan University for

625  computing support.

21


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

626 References

627 1. Picard M. Why do we care more about disease than health? Phenomics 2022, 2:145-155.

628 2. Mateo J, et al. Delivering precision oncology to patients with cancer. Nat Med 2022, 28:658-
629 665.

630 3. Malone ER, et al. Molecular profiling for precision cancer therapies. Genome Med 2020,
631 12:8.

632 4. Morazan-Fernandez D, et al. In silico pipeline to identify tumor-specific antigens for cancer

633 immunotherapy using exome sequencing data. Phenomics 2023, 3:130-137.

634 5. Sosinsky A, et al. Insights for precision oncology from the integration of genomic and
635 clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat Med
636 2024, 30:279-289.

637 6. Perera-Bel J, et al. From somatic variants towards precision oncology: evidence-driven
638 reporting of treatment options in molecular tumor boards. Genome Med 2018, 10:18.

639 7. Pineiro-Yanez E, et al. PanDrugs: a novel method to prioritize anticancer drug treatments
640 according to individual genomic data. Genome Med 2018, 10:41.

641 8. Tamborero D, et al. Cancer Genome Interpreter annotates the biological and clinical
642 relevance of tumor alterations. Genome Med 2018, 10:25.

643 9. Perales-Paton J, et al. vulcanSpot: a tool to prioritize therapeutic vulnerabilities in cancer.
644 Bioinformatics 2019, 35:4846-4848.

645 10. Surun B, et al. ClinVAP: a reporting strategy from variants to therapeutic options.
646 Bioinformatics 2020, 36:2316-2317.

647  11. Wagner AH, et al. A harmonized meta-knowledgebase of clinical interpretations of somatic
648 genomic variants in cancer. Nat Genet 2020, 52:448-457.

649  12.Reisle C, et al. A platform for oncogenomic reporting and interpretation. Nat Commun 2022,
650 13:756.

651  13. Reardon B, et al. Integrating molecular profiles into clinical frameworks through the
652 Molecular Oncology Almanac to prospectively guide precision oncology. Nat Cancer
653 2021, 2:1102-1112.

654  14.Zheng X, et al. CCAS: one-stop and comprehensive annotation system for individual cancer
655 genome at multi-omics level. Front Genet 2022, 13:956781.

656  15. Jimenez-Santos MJ, et al. PanDrugs2: prioritizing cancer therapies using integrated
657 individual multi-omics data. Nucleic Acids Res 2023.

658  16. Good BM, et al. Organizing knowledge to enable personalization of medicine in cancer.
659 Genome Biol 2014, 15:438.

660  17. Schwartzberg L, et al. Precision oncology: who, how, what, when, and when not? 4SCO
661 2017:160-169.

662  18. Chawla S, et al. Gene expression based inference of cancer drug sensitivity. Nat Commun
663 2022, 13:5680.

664  19. Li X, et al. Precision combination therapies based on recurrent oncogenic coalterations.
665 Cancer Discov 2022, 12:1542-1559.

22


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

666
667

668
669

670
671

672
673

674
675

676
677

678
679

680
681

682
683

684
685

686
687

688
689

690
691
692

693
694

695
696

697
698
699

700
701
702
703

704
705

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Thavaneswaran S, et al. Therapeutic implications of germline genetic findings in cancer.
Nat Rev Clin Oncol 2019, 16:386-396.

Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring
multidimensional cancer genomics data. Cancer Discov 2012, 2:401-404.

Zehir A, et al. Mutational landscape of metastatic cancer revealed from prospective clinical
sequencing of 10,000 patients. Nat Med 2017, 23:703-713.

Chen Q, et al. A comprehensive genomic and transcriptomic dataset of triple-negative
breast cancers. Sci Data 2022, 9:587.

Jiang YZ, et al. Genomic and transcriptomic landscape of triple-negative breast cancers:
dubtypes and treatment strategies. Cancer Cell 2019, 35:428-440 e425.

Liu Y, et al. PAnno: a pharmacogenomics annotation tool for clinical genomic testing.
Front Pharmacol 2023, 14:1008330.

Zehir A, et al. Mutational landscape of metastatic cancer revealed from prospective clinical
sequencing of 10,000 patients. Nat Med 2017, 23:703-713.

Liberzon A, et al. The Molecular Signatures Database (MSigDB) hallmark gene set
collection. Cell Syst 2015, 1:417-425.

von Mering C, et al. STRING: known and predicted protein-protein associations, integrated
and transferred across organisms. Nucleic Acids Res 2005, 33:D433-437.

Minami A, et al. Cell cycle regulation via the p53, PTEN, and BRCA1 tumor suppressors.
New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis 2016, 53.

Fok JH, et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation,
chemotherapy and olaparib activity. Nat Commun 2019, 10:5065.

Pich O, et al. The translational challenges of precision oncology. Cancer Cell 2022, 40:458-
478.

Yu Y, et al. PreMedKB: an integrated precision medicine knowledgebase for interpreting
relationships between diseases, genes, variants and drugs. Nucleic Acids Res 2018,
47:D1090-D1101.

Zheng X, et al. CCAS: One-stop and comprehensive annotation system for individual
cancer genome at multi-omics level. Front Genet 2022, 13.

Pifieiro-Yéafiez E, et al. PanDrugs: a novel method to prioritize anticancer drug treatments
according to individual genomic data. Genome Med 2018, 10:41.

Tamborero D, et al. Support systems to guide clinical decision-making in precision
oncology: The Cancer Core Europe Molecular Tumor Board Portal. Nat Med 2020,
26:992-994.

Li MM, et al. Assessments of Somatic Variant Classification Using the Association for
Molecular Pathology/American Society of Clinical Oncology/College of American
Pathologists Guidelines: A Report from the Association for Molecular Pathology. J Mol
Diagn 2023, 25:69-86.

Khoury MJ, et al. Human genome epidemiology: a scientific foundation for using genetic
information to improve health and prevent disease. Oxford University Press; 2004.

23


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

706  38. Goldsack JC, et al. Verification, analytical validation, and clinical validation (V3): the

707 foundation of determining fit-for-purpose for Biometric Monitoring Technologies
708 (BioMeTs). npj Digit Med 2020, 3:55.

709  39. Krysiak K, et al. CIViCdb 2022: evolution of an open-access cancer variant interpretation
710 knowledgebase. Nucleic Acids Res 2022, 51:D1230-D1241.

711  40. Santos A, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol
712 2022, 40:692-702.

713 41. Yates B, et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids
714 Res 2017, 45:D619-D625.

715 42. Pruitt KD, et al. NCBI Reference Sequences (RefSeq): current status, new features and
716 genome annotation policy. Nucleic Acids Res 2012, 40:D130-135.

717  43. Sherry ST, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001,
718 29:308-311.

719  44.Landrum MJ, et al. ClinVar: public archive of interpretations of clinically relevant variants.
720 Nucleic Acids Res 2016, 44:D862-868.

721  45. Tate JG, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids
722 Res 2018, 47:D941-D947.

723 46. Wang K, et al. ANNOVAR: functional annotation of genetic variants from high-throughput
724 sequencing data. Nucleic Acids Res 2010, 38:e164-¢164.

725  47.Kundra R, et al. OncoTree: a cancer classification system for precision oncology. JCO Clin
726 Cancer Inform 2021, 5:221-230.

727  48. Scheible R, et al. A multilingual browser platform for medical subject headings. Stud

728 Health Technol Inform 2022, 289:384-387.

729  49. Sioutos N, et al. NCI Thesaurus: a semantic model integrating cancer-related clinical and
730 molecular information. J Biomed Inform 2007, 40:30-43.

731  50. de Coronado S, et al. NCI Thesaurus: using science-based terminology to integrate cancer
732 research results. Stud Health Technol Inform 2004, 107:33-37.

733 51. Degtyarenko K, et al. ChEBI: a database and ontology for chemical entities of biological
734 interest. Nucleic Acids Res 2008, 36:D344-350.

735  52. Nowotka MM, et al. Using ChEMBL web services for building applications and data
736 processing workflows relevant to drug discovery. Expert Opin Drug Discov 2017,
737 12:757-767.

738  53. Wishart DS, et al. DrugBank 5.0: a major update to the DrugBank database for 2018.
739 Nucleic Acids Res 2018, 46:D1074-D1082.

740  54. Chakravarty D, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol
741 2017, 1:1-16.

742 55. Holt ME, et al. My Cancer Genome: coevolution of precision oncology and a molecular
743 oncology knowledgebase. JCO Clinical Cancer Inform 2021:995-1004.

744  56. Whirl-Carrillo M, et al. Pharmacogenomics knowledge for personalized medicine. Clin
745 Pharmacol Ther 2012, 92:414-417.

746 57. Whirl-Carrillo M, et al. An evidence-based framework for evaluating pharmacogenomics
747 knowledge for personalized medicine. Clin Pharmacol Ther 2021, 110:563-572.

24


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

748  58. Hutter C, Zenklusen JC. The Cancer Genome Atlas: creating lasting value beyond its data.
749 Cell 2018, 173:283-285.

750  59. Li MM, et al. Standards and guidelines for the interpretation and reporting of sequence

751 variants in cancer: a joint consensus recommendation of the Association for Molecular
752 Pathology, American Society of Clinical Oncology, and College of American
753 Pathologists. The J Mol Diagn 2017, 19:4-23.

754  60. Zhang X, et al. Disease-specific variant pathogenicity prediction significantly improves
755 variant interpretation in inherited cardiac conditions. Genet Med 2021, 23:69-79.

756  61.Dong S, et al. Presence of rare variants is associated with poorer survival in Chinese patients
757 with amyotrophic lateral sclerosis. Phenomics 2023, 3:167-181.

758  62. Wei G, et al. Recent progress in nanomedicine for enhanced cancer chemotherapy.
759 Theranostics 2021, 11:6370-6392.

760  63. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature 2015, 526:343-350.

761  64.Jang YE, et al. ChimerDB 4.0: an updated and expanded database of fusion genes. Nucleic
762 Acids Res 2019, 48:D817-D824.

763  65. Bonneville R, et al. Landscape of microsatellite instability across 39 cancer types. JCO
764 Precis Oncol 2017:1-15.

765  66. Kautto EA, et al. Performance evaluation for rapid detection of pan-cancer microsatellite
766 instability with MANTIS. Oncotarget 2017, 8:7452-7463.

767  67. Ellrott K, et al. Scalable open science approach for mutation calling of tumor exomes using
768 multiple genomic pipelines. Cell Sys 2018, 6:271-281. e277.

769  68. Colaprico A, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of
770 TCGA data. Nucleic Acids Res 2016, 44:e71-e71.

771  69. Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S
772 42010, 107:16910-16915.

773 70. Niu B, et al. MSIsensor: microsatellite instability detection using paired tumor-normal

774 sequence data. Bioinformatics 2013, 30:1015-1016.

775  71. Sarfaty M, et al. Microsatellite instability (MSI-H) in metastatic urothelial carcinoma
776 (mUC): A biomarker of divergent responses to systemic therapy. J Clin Oncol 2020,
777 38:566-566.

778  72. Shao C, et al. Prevalence of high tumor mutational burden and association with survival in
779 patients with less common solid tumors. JAMA Netw Open 2020, 3:€2025109-¢20251009.
780

781

25


https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581482; this version posted February 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

782  Figure legends

783  Fig. 1 Architecture of POL.

784 POl consists of three key components: (1) a backend knowledgebase, PreMedKB, which serves
785  as a comprehensive data repository comprising information on the "gene-variant-disease-drug"
786  model to facilitate comprehensive interpretation; (2) specialized modules (POI core steps)
787  designed to perform essential tasks, including the parsing of multiomics profiles, identification
788  of actionable alterations, and interpretation based on harmonized evidence; and (3) a user-
789  friendly web interface that generates therapeutic reports for prioritizing anti-cancer drugs.

790

791  Fig. 2 Flowchart of POI core steps.

792  POI employs a comprehensive analysis of somatic and germline SNV/Indel, CNV, gene
793  fusions, TMB, MSI, and patient gene expression files to identify targeted and chemotherapy
794  drugs. Direct evidence involves precise matching of variants with PreMedKB entries, leading
795  to the identification of actionable therapeutic alterations. The assigned grade (A, B, C, or D)
796  for drug prioritization depends on whether the patient’s tumor type shares ancestry or descent
797  with the supported indication in the clinical evidence. If not, the assigned grade is downgraded
798  accordingly (level A to level C, other levels to level E). Indirect evidence relies on the
799  identification of potential aberrant variants and the assessment of associated actionable
800 therapeutic alterations within the same biological pathway. Inferred drugs in this context are
801 assigned grade E. Furthermore, drug response analysis involves resolving germline
802  genotypes/diplotypes and predicting patient phenotypes based on relevant pharmacogenomic
803 alleles. The drugs are classified into three categories based on their recommended use: avoid,
804  caution, and routine.

805

806  Fig. 3 Comprehensive data integration and normalization of PreMedKB.

807 a Relationships between multiple diseases, genes, variants, and drugs, emphasizing their
808  relevance to tumor therapy. b Bar plots display the number of actionable therapeutic alterations
809  categorized accordingly. ¢ The comparison of element uniqueness across knowledgebases

810  before and after normalization, respectively.

811
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812  Fig. 4 Validation of precision drug prioritization on three external cohorts.

813  Performance validation of precision drug prioritization based on multiomics data from three
814  external cohorts, namely TCGA, MSK-IMPACT, and FUSCC cohort. a Barplot of the
815  distribution of highest levels of drugs that patients received from POI in the three cohorts,
816  including level A, B, C, D and E with no drug. b-d Upset plots of the number of recommended
817  drugs for TCGA MSK-IMPACT, and FUSCC cohorts, respectively. Variants are divided into
818  seven types: single nucleotide variants and indels from somatic mutation (Somatic), copy
819  number variants (CNV), gene fusion (Fusion), high microsatellite instability (MSI), high tumor
820  mutation burden (TMB), RNA gene expression (RNA) variants, and genotype from germline
821  mutation (Germline). Side bar plots represent the aggregate drug species matched to specific
822  variant categories, while top bar plots indicate the count of drug species within each
823  intersection group. e The Venn diagram displays the number of recommended drug species

824  from different modules of POI in FUSCC cohort.

825

826  Fig. 5 Interface of POI web server.

827  The workflow and output of POI web server. a The Query Page allows users to input clinical
828  information and personal omics data in different modules. The Intermediate Page shows the
829  report address and notes after submission. b The Report Page displays the basic information of
830  the case, a summary of drug recommendations in two tables, and a therapeutic overview of

831  each drug in three tabs.
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Tables

Table 1. Comparison of online interpretation tools for drug prioritization.

Type Resource POI PORI [12] MOAImanac [13] CCAS [14] PanDrugs [7, 15] CGI [8]
SNV/ INDEL V v v V v V
CNV v v v v v v
Variant Fusion v Vv Vv Vv
RNA expression Vv Vv V V
Germline variant® vV Vv Vv
Clinical evidence Vv Vv v Vv
Drug response Vv v V
Application Drug repurposing V v v v
fnteraction v v v v v
visualization
Term normalization vV Vv vV Vv
. e (Cal
et . cal * COSMIC = CIViC
. * DiseaseMeth ¢ COSMIC :
. . * CIViC
Knowledgebase Database CORIIE CIVIC * TARGET * Disease * My Cancer e D CIM
. - . My Cancer e COSMIC (0)
Integration * COSMIC OncoKB Genome e OncoKB
Genome * DoCM e DoCM e OncoKB nee
e OncoKB ¢ OncoKB e CGP e PharmGKB
* PharmGKB e« TARGET

2 Contains both direct recommendations based on mutations, and filtering based on germline genotypes to determine drug responses.

b ¢.g., pathway, data of cancer cohort.

¢ Databases that fit this category should contain the relationship between variants and therapeutic evidence.
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Table 2. Harmonizing knowledgebase-specific evidence levels based on AMP/ASCO/CAP guidelines [59].

PreMedKB Therapeutic Evidence CGI CIViC MCG OncoKB  PharmGKB
1. Biomarkers that predict response or resistance to
FDA-approved therapies for a specific type of tumor .. ..
. ) ) . . Clinical Clinical
Level A 2. Biomarkers included in professional guidelines that o A o 1,2,R1 1A, IB
. . : : guidelines guidelines
predict response or resistance to therapies for a specific
type of tumor
Biomarkers that predict response or resistance to MCG
Level B therapies for a specific type of tumor based on well- Late trials B rovided 3A 2A, 2B
powered studies with consensus from experts in the field P
1. Biomarkers that predict response or resistance to
therapies approved by the FDA or professional societies )
. Early trials,
Level C for a different type of tumor C 3B 3
. . . o . .. case reports
2. Biomarkers that serve as inclusion criteria for clinical
trials
Level D Biomarkers th?.t .show plgu51ble therapeutic significance  Preclinical D 4,R2
based on preclinical studies data
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Additional files

Additional file 1. Supplementary figures.

Figure S1. Histogram of the number of diseases.

Figure S2. Gene expression distribution in the RNA reference database.
Figure S3. Overview of the three cohorts.

Figure S4. Preclinical studies provide support for inferred drugs from POIL.
Figure S5. Databases of drug sources for the three external cohorts.

Figure S6. Threshold selection for determining the gene status in the RNA module.

Additional file 2. Supplementary tables.

Table S1. Data sources of the updated PreMedKB.

Table S2. Expression profiles of ERBB2 gene in FUSCC dataset.
Table S3. Cases of the MSK-IMPACT project used in this study.
Table S4. Cases of the TCGA project used in this study.

Table SS. Cases of the FUSCC project used in this study.
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