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 2 

Abstract 18 

Advances in precision medicine rely on the accurate identification and analysis of molecular 19 

alterations for personalized diagnostic, prognostic, and therapeutic decision-making. A critical 20 

obstacle is the integration of heterogeneous interpretations of clinically actionable alterations 21 

from various knowledgebases. Here, we present the Personal Omics Interpreter (POI), a web-22 

based application engineered to aggregate and interpret therapeutic options, including targeted, 23 

immunological, and chemotherapeutic agents, by leveraging personal genomic and 24 

transcriptomic profiles. POI employs the Precision Medicine Knowledgebase (PreMedKB), an 25 

updated harmonized resource we previously reported, to annotate the clinically actionable 26 

somatic variants. It further incorporates a predictive algorithm to broaden therapeutic options 27 

according to established gene-gene interactions and offers insights into phenotypic responses 28 

of chemotherapeutic agents through phasing germline diplotypes. Validated against three 29 

cohort datasets encompassing over 22,000 cancer patients, POI demonstrates consistently high 30 

matching rates (94.7 ~ 95.6%) between patients and suggested therapies, highlighting its 31 

potential in supporting precision-driven informed treatment strategies. 32 
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Background 38 

Precision medicine represents a paradigm shift in healthcare, offering a new approach to 39 

optimize treatment outcomes through the customization of therapeutic interventions according 40 

to the patient’s unique molecular profiles [1]. This shift aims to maximize efficacy and 41 

minimize the occurrence of adverse drug reactions [2]. As the application of omics data 42 

becomes increasingly prevalent in this domain, there arises a growing demand for identifying 43 

and interpreting clinically actionable alterations across both scientific research and clinical 44 

domains [3-5]. This pressing demand stems from the desire to effectively prioritize anti-cancer 45 

drugs based on a comprehensive understanding of the molecular landscape, ensuring targeted 46 

and precise treatment strategies for patients. 47 

Several interpretation tools have been developed to address this demand, primarily 48 

focusing on somatic alterations [6-11]. However, a select few, such as PORI [12], MOAlmanac 49 

[13], CCAS [14], and PanDrugs2.0 [7, 15], have broadened their interpretative scope to 50 

encompass germline variants, RNA outliers, and other relevant factors. These platforms 51 

employ diverse strategies to analyze genomic and transcriptomic characteristics, underscoring 52 

the significant potential of multi-dimensional data interpretation in identifying actionable 53 

therapeutic alterations. Despite these advancements, existing platforms still exhibit certain 54 

limitations, including incomplete coverage of interpreted data types (e.g., RNA expression and 55 

genotype data), limited exploration of cross-omics features, and constrained capabilities in 56 

therapeutic recommendations, such as chemotherapy, beyond targeted therapies [12, 16, 17]. 57 

Thus, achieving an accurate interpretation of multi-dimensional molecular changes remains a 58 

substantial challenge in advancing precision medicine. 59 

The gap for a comprehensive platform that integrates genomic and transcriptomic data to 60 

adeptly prioritize anti-cancer drugs individually is evident. First of all, exploring gene 61 

expression-based inference of cancer drug sensitivity has emerged as a promising avenue for 62 

identifying actionable therapeutic alterations based on RNA expression data [18]. Additionally, 63 

accumulating evidence suggests that targeting co-occurring oncogenic driver aberrations holds 64 

promise for robust and durable therapeutic responses, emphasizing the significance of pathway 65 

analysis in interpreting actionable therapeutic alterations [19]. Furthermore, the impact of 66 

germline variants and their genotypes on the efficacy, dosage, and toxicity of conventional 67 

chemotherapy has been recognized, further highlighting their relevance in identifying 68 

actionable therapeutic alterations [20].  69 
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Addressing this imperative, we develop the Personal Omics Interpreter (POI), a user-70 

centric tool that utilizes a multiomics integrative strategy to identify clinically actionable 71 

alterations for anti-cancer drug prioritization (https://premedkb.cn/poi/#/). POI is designed to 72 

accommodate multi-dimensional alterations as input, including somatic and germline single 73 

nucleotide variations (SNVs), small insertions and deletions (Indels), copy number variations 74 

(CNVs), gene fusions, tumor mutational burden (TMB) and microsatellite instability (MSI), 75 

pathogenic germline variants, and aberrantly expressed genes. POI also employs a predictive 76 

algorithm that enables the inference of suitable drugs for patients lacking straightforward 77 

actionable therapeutic alterations. Extensive validation testing of POI has been conducted using 78 

prominent datasets, including the Cancer Genome Atlas (TCGA) multi-cancer datasets and the 79 

MSK-IMPACT datasets, as well as our proprietary breast cancer dataset. These results 80 

underscore the effectiveness and reliability of POI in aiding precision medicine decision-81 

making and prioritizing anti-cancer drugs across various cancer types. 82 

 83 
Results 84 

Architecture of POI 85 

POI is a comprehensive clinical interpretation algorithm designed to facilitate the integrated 86 

interpretation of genomics and transcriptomics data to prioritize drugs for individual cancer 87 

patients. The architecture of POI is depicted in Fig. 1.  POI consists of four key components: 88 

(1) a backend knowledgebase, named PreMedKB, which serves as a comprehensive data 89 

repository comprising information on the “gene-variant-disease-drug” model to facilitate 90 

comprehensive interpretation; (2) multiomics profile as input: POI effectively deciphers the 91 

genomics variants (somatic and germline SNVs/Indels, CNV, and fusion), genomics signatures 92 

(TMB, MSI), and aberrantly expressed genes (transcriptomics alterations) of a patient to 93 

prioritize targeted and immunological drugs; (3) modules designed to perform multiple tasks, 94 

including the parsing of multiomics profiles, identification of actionable alterations, inference 95 

of off-label drugs, and interpretation using harmonized evidence; (4) a user-friendly web 96 

interface that generates therapeutic reports of therapeutic interpretations. 97 

The overall process of how POI works is shown in Fig. 2. Briefly, POI utilizes a 98 

harmonized knowledgebase to perform a comprehensive analysis of multiple feature sets 99 

within the patient’s multiomics profiles. POI can provide three classes of clinical evidences for 100 

comprehensive annotation of drug biomarkers based on variation types (somatic or germline 101 
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variants) and clinical confidences (direct evidence with high confidence or predictive evidence 102 

with lower confidence). The clinical evidences include (1) direct evidence: druggable 103 

biomarkers with direct clinical evidence; (2) indirect evidence: predictive biomarkers that are 104 

found to be involved in cancer-specific pathway(s) and interacted with druggable biomarkers; 105 

and (3) drug response: prediction of patient sensitivity to chemotherapeutic drugs based on 106 

germline variations and/or combination of germline variations within specific genes (gene 107 

haplotypes or diplotypes). After analyzing in POI, the generated report can be obtained, 108 

covering essential information such as drug prioritization, actionable alterations, and drug 109 

response prediction based on pharmacogenomic replicates and metabolic phenotypes. 110 

 111 

Comprehensive data integration and normalization of PreMedKB 112 

PreMedKB encompassed a comprehensive collection of cancer therapy data, including 502 113 

diseases, 458 genes, 6,713 variants, and 865 drugs. The semantic network within PreMedKB 114 

revealed numerous associations, such as 6,713 gene-variant associations, 2,493 gene-disease 115 

associations, 3,168 gene-drug associations, 41,168 variant-drug associations, 51,316 variant-116 

disease associations, and 4,777 drug-disease associations (Fig. 3a). Notably, the involvement 117 

of various tissues in the support analysis conducted by POI leads to substantial variation in the 118 

number of diseases, drug-disease associations, gene-disease associations, and variant-disease 119 

associations across different tissues (Fig. S1). Additionally, PreMedKB focused on diverse 120 

variants, including 4,840 SNVs, 733 Indels, 247 fusions, 212 gene expressions, 128 CNVs, 57 121 

haplotypes, 38 structural variations (SVs), 5 genomic signatures, and 522 other variant types 122 

(Fig. 3b). The rich data coverage expanded the breadth and depth of the knowledgebase, 123 

enabling it to provide comprehensive, and accurate information, thereby enhancing the 124 

comprehensiveness of the knowledgebase. 125 

To facilitate the assessment of aberrant gene expression, a comprehensive RNA reference 126 

database was constructed using gene expression data from diverse cancer types within the 127 

TCGA RNA expression landscape. The utilization of this reference database on a web server 128 

allowed for the evaluation of patients’ gene expression levels, providing insights into the gene 129 

expression distribution specific to their cancer type (Fig. S2a). Additionally, Fig. S2b and Fig. 130 

S2c illustrated the expression distribution of gene TP53 across different cancer types and the 131 

expression distribution of five key genes associated with breast cancer, respectively. These 132 

results exemplified the comprehensive gene expression data coverage in the reference database, 133 
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allowing for a deeper understanding of gene expression patterns across different cancers and 134 

within specific cancer types. 135 

When integrating the knowledge from different authoritative precision medicine 136 

databases, heterogeneity exists due to their distinctive structures and contents [11]. To address 137 

this, knowledge normalization techniques were employed to eliminate redundancy, enhance 138 

data interoperability, establish consistent data standards, and improve data integration 139 

capabilities. These efforts aimed to provide users with more comprehensive, accurate, and 140 

reliable information from the knowledgebase. Analyzing the four elements individually 141 

revealed a significant overlap in database construction (Fig. 3c), however, approximately 91% 142 

of variants, 88% of diseases, 87% of drugs, and 70% of genes remained unique across 143 

knowledgebases. Through the normalization of metadata terminologies, we identified mutually 144 

interpretable terms among the knowledgebases, leading to a reduction in uniqueness to 77% 145 

for variants, 72% for diseases, 60% for drugs, and 27% for genes, which decreased the 146 

heterogeneity of knowledge in the PreMedKB.  147 

By expanding data coverage and implementing knowledge normalization, the precision, 148 

and comprehensiveness of the knowledgebase is greatly improved. This contributes to the 149 

comprehensive identification and interpretation of actionable therapeutic alterations, providing 150 

valuable insights for precision medicine applications. 151 

 152 

Validation of the effectiveness of POI based on cohort datasets 153 

To assess the effectiveness of POI for comprehensive precision drug prioritization based on 154 

multiomics data of individual patients, we conducted a thorough evaluation using three cohort 155 

datasets: TCGA [21], MSK-IMPACT [22], and Triple-negative Breast Cancer of Fudan 156 

Shanghai Cancer Center (FUSCC) cohort [23, 24] (Fig. S3). 157 

The TCGA dataset included somatic genomic and transcriptomic information for six 158 

categories of patients: somatic variants (10,030 patients), CNV (10,667 patients), fusion (6,306 159 

patients), TMB (1,043 patients), MSI (422 patients), and gene expression (702 patients), 160 

covering a wide range of tumor types, including primary and metastatic cases. Widely 161 

recognized for its extensive sample size and diverse data types, the TCGA dataset served as a 162 

cornerstone in cancer research and evaluation. The MSK-IMPACT dataset, generated by 163 

Memorial Sloan Kettering Cancer Center (MSKCC), consisted of somatic genomic 164 

information for five groups of patients: somatic variants (including SNV and Indels) (10,129 165 
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patients), CNV (10,945 patients), fusion gene (1,171 patients), MSI (180 patients), and TMB 166 

(988 patients). The MSK-IMPACT dataset was pivotal in clinical oncology, representing a 167 

widely utilized resource for understanding metastatic cancer genomics. Finally, the FUSCC 168 

dataset, centered on a single tumor type (triple-negative breast cancer, TNBC), offered a rich 169 

resource of integrative genomic information, including both somatic and germline genomic 170 

data, as well as transcriptomic profiles. The FUSCC dataset can be split into six categories of 171 

test files: somatic variants (279 patients), germline variants (279 patients), CNV (401 patients), 172 

TMB (57 patients), and gene expression (88 patients). Haplotype/diplotype information and 173 

corresponding drug responses were obtained based on germline variants using the PAnno tool 174 

[25] in the drug response module. Therefore, the inclusion of these datasets ensures 175 

comprehensive validation of the performance of POI. 176 

The validation results demonstrated that POI was able to match at least one drug for 177 

approximately 95% of patients across the three cohorts (Fig. 4a), where over 39.4% of patients 178 

can obtain the reliable drug prioritizations of Level A and Level B. In the TCGA cohort, POI 179 

exhibited comparable performance to the latest platform, PORI [12], with drug prioritizations 180 

available for approximately 96% of patients. Additionally, in the MSK-IMPACT cohort, POI 181 

significantly improved the prioritized drug ratios compared to the original report from MSKCC 182 

[26], providing drug prioritizations for approximately 94.7% of patients. The distribution of 183 

the highest drug evidence levels in each tissue within the MSK-IMPACT cohort mirrored the 184 

results observed in the TCGA cohort. These findings highlight the expanding knowledgebases 185 

of POI and its ability to prioritize drugs using pathway inference strategies, even in off-label 186 

use cases where no previous drugs were available.  187 

Though somatic and CNV input files predominantly contributed to drug prioritizations in 188 

the TCGA, MSK-IMPACT, and FUSCC cohorts, other input data types (e.g., RNA, 189 

Germline_Genotype, Fusion, etc.) could potentially offer an increased range of drug options 190 

for patients (Figs. 4b-d). Moreover, the drug response module of POI was validated in the 191 

FUSCC cohort, where it suggested an additional 55 types of drugs in addition to prioritizations 192 

from other modules (Fig. 4e). This further confirms POI’s capability to propose a more 193 

comprehensive set of drugs, including targeted therapy and chemotherapy. Collectively, these 194 

results emphasize the promise of POI in delivering comprehensive precision drug 195 

prioritizations by parsing multiomics data, offering the possibility of treatment for a wider 196 

range of patients. 197 

 198 
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Enhancing anti-cancer drug prioritization through indirect evidence prediction 199 

When a patient’s genomic and transcriptomic variants cannot directly match clinical evidence 200 

conclusions in PreMedKB, POI employs a strategy of leveraging biological associations within 201 

pathways to identify indirect evidence and provide prioritization for patients who do not match 202 

a targeted drug. 203 

Specifically, POI begins by annotating the patient’s germline and somatic SNVs/Indels, 204 

taking into account indicators such as population frequency, predicted deleteriousness of 205 

variants, and clinical significance to identify potentially abnormal genes. POI then examines 206 

their enrichment in the same pathway as the gene corresponding to the actionable therapeutic 207 

alteration, utilizing Hallmark gene pathway information [27]. If the aberrant genes belong to 208 

the same pathway and show a high correlation (protein-protein interaction score acquired from 209 

the STRING database [28] > 0.99), the corresponding drugs are considered potentially effective, 210 

and the evidence level for these inferred drugs is assigned as level E.  211 

To assess the effectiveness of indirect evidences provided by POI, we conducted a 212 

statistical analysis of drug prioritizations in the cohorts and observed that inferred drugs derived 213 

from POI exhibit promising potential in preclinical studies. Taking TCGA’s ovarian cancer 214 

patients as an illustrative example, within the test cohort, approximately 71% of patients were 215 

eligible for direct drug prioritizations, while 21% were eligible for inferred drug prioritizations, 216 

derived from the POI indirect evidence module. The inference process primarily relies on the 217 

TP53 mutation status identified by POI. It is important to note that the existing database does 218 

not provide specific prioritized drugs for TP53 mutations in ovarian cancer patients. 219 

Nevertheless, leveraging pathway associations, POI established a connection between the TP53 220 

and BRCA1 genes [29]. Remarkably, for ovarian cancer patients harboring BRCA1 germline 221 

or somatic mutations, both the FDA and NCCN guidelines offered corresponding drug 222 

prioritizations, such as Olaparib. Consequently, approximately 21% (124 individuals) of 223 

TCGA ovarian cancer patients can receive the tailored treatment advice (Fig. S4). Moreover, 224 

preclinical investigations have already demonstrated the inhibitory effects of POI-inferred 225 

drugs on the growth of xenograft tumors derived from ovarian cancer patients with wild-type 226 

ATM and TP53 mutant backgrounds [30]. These findings provided additional support for the 227 

potential of POI-inferred drugs, underscoring its promise in clinical applications. 228 

 229 
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Web-based interface 230 

POI is a user-friendly web server whose workflow consists of three main pages, including a 231 

Query Page (input), an Intermediate Page (submission and analysis), and a Report Page (output) 232 

where the therapeutic details can be viewed by clicking the row of the tables in the therapeutic 233 

overview (Fig. 5).  234 

In the Query Page, the user can select clinical information and upload his/her omics data 235 

in each module according to the “?” tips (Fig. 5a). Upon clicking the Submit button, the user 236 

is directed to the Intermediate Page, where the report address and associated notes are prompted. 237 

(Fig. 5b). Once the computation is complete, the Report Page can be accessed via the provided 238 

link. At the top of the Report Page, the basic case information can be viewed, followed by two 239 

tables summarizing the drug prioritizations. The therapeutic overview of each drug is presented 240 

in three tabs: "Direct Evidence", "Indirect Evidence", and "Drug Response". (Fig. 5c). Further 241 

details of a specific drug’s therapeutic and biomarker information can be explored by selecting 242 

the corresponding row in the therapeutic overview. Additionally, the content of the biomarker 243 

detail section includes a gene expression distribution for comprehensive analysis.  244 

To assist users in understanding the report generation process, POI offers a Demo Report 245 

feature, pre-filled with relevant data. Furthermore, three POI report examples with test data are 246 

available, providing users with a better grasp of the POI report structure. 247 

 248 

Use case 249 

We provide an example from a Chinese woman patient from the FUSCC cohort who had 250 

metastatic triple-negative breast carcinoma to showcase the effectiveness of the POI in 251 

identifying and interpreting actionable therapeutic alterations from individual patients’ 252 

multiomics profiles. The detailed reports can be accessed in Example 1 on the website 253 

(https://premedkb.cn/poi/#/case/report/example1). 254 

Specifically, the patient’s somatic Variant Call Format (VCF) data, germline VCF, CNV, 255 

and gene expression files, which were fed to POI, were obtained from our previous study [23, 256 

24]. The POI result report reveals the identification of 26 actionable therapeutic alterations in 257 

this particular case, accompanied by corresponding 54 drug prioritizations (therapies) varying 258 

from level A to level E.  259 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.581482doi: bioRxiv preprint 

https://premedkb.cn/poi/#/case/report/example1
https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Within the “Direct Evidence” tab of the report, the combination therapy of Alpelisib and 260 

Fulvestrant with evidence Level A was recommended for this patient with PIK3CA mutation, 261 

Lapatinib, and Patritumab Deruxtecan with evidence Level B based on the overexpression of 262 

ERBB3 gene from gene expression file was recommended. Additionally, there were several 263 

drugs, with evidence of Levels C or D, based on distinct mutations (somatic mutation and CNV) 264 

in other genes, as indicated by the somatic VCF data. 265 

In the “Indirect Evidence” tab, POI employed inference strategies to prioritize drugs based 266 

on the association between the genes BRCA1, CDKN2A, and RB1 with key cancer gene TP53 267 

in the E2F Targets and P53 Pathway through inference strategies of POI were displayed as 268 

assigned evidence Level E. 269 

Furthermore, in the “Drug Response” tab, the drug response and related phenotypes 270 

were predicted based on the resolved diplotype of the patient from her germline VCF. The 271 

chemotherapy drugs were summarized in the table of chemotherapy by dividing them into three 272 

categories, including avoid use, use with caution, and routine use. 273 

 274 

Discussion 275 

In the domain of precision oncology, the quest for personalized therapy is predicated on the 276 

unique molecular signatures of individual patients [31]. Yet, the endeavor to pinpoint optimal 277 

treatments is hampered by disparities across oncological knowledgebases, the constraints of 278 

manual interpretation, and the insufficient harnessing of genomic data [3]. Despite previous 279 

efforts recognizing the importance of including non-somatic variations and adopting 280 

multifaceted analytical approaches [12-15], there is still a lack of a comprehensive tool that can 281 

prioritize anti-cancer drugs by integrating genomic and transcriptomic data at the individual 282 

level. Therefore, we developed POI based on the foundation of PreMedKB [32], a user-friendly 283 

system that integrates disease, gene, variant, drug, and clinical evidence information from 284 

multiple databases. POI utilizes a harmonized knowledge network and a multi-dimensional 285 

interpretation strategy to provide comprehensive drug prioritization. It prioritizes targeted and 286 

immunological drugs based on somatic variants, genomics signatures, pathogenic germline 287 

variants, and aberrantly expressed genes, thereby aiding in precise treatment selection. 288 

Additionally, POI provides repurposing drugs for patients without actionable therapeutic 289 

alterations by considering the association of aberrant alterations in specific biological pathways. 290 

By integrating comprehensive knowledge, resolving germline diplotypes, and providing 291 
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chemotherapy drugs with phenotype prediction, POI enhances the clinical utility of precision 292 

oncology. The validation of POI on diverse datasets confirms its effectiveness in identifying 293 

actionable therapeutic alterations and expands access to therapeutics. 294 

We compared POI (https://premedkb.cn/poi/#/) with five other tools for precision drug 295 

prioritization based on omics data of individual patients: PORI [12], MOAlmanac [13], CCAS 296 

[33], PanDrugs [15, 34], and Cancer Genome Interpreter (CGI) [8]. We demonstrated that POI 297 

outperforms other tools in several aspects, such as input data types, output formats, 298 

knowledgebases, evidence levels, drug response prediction, pathway inference, and off-label 299 

use cases. POI has three main advantages over other tools. First, POI can analyze a wide range 300 

of data types that cover both somatic and germline variants, as well as expression profiles and 301 

clinical information. POI can perform tumor-normal paired analysis for more accurate variant 302 

calling and expression profiling. This allows POI to identify more comprehensive actionable 303 

therapeutic alterations than other tools. Second, POI integrates multiple databases, standardizes 304 

knowledge from different sources, and can prioritize potential drugs that do not have direct 305 

evidence in existing databases through biological pathway inference. Third, POI provides a 306 

comprehensive report that includes drug prioritizations based on different evidence levels from 307 

multiple sources, which could help clinicians decide whether patients should use chemotherapy 308 

drugs or targeted drugs. We have summarized the detailed comparison results in Table 1. 309 

Besides, the integration of different knowledge bases significantly enhances the overall 310 

knowledge coverage, leading to the identification of a more extensive range of actionable 311 

therapeutic alterations and facilitating the prioritization of a greater number of drugs for 312 

individual patients. The validation of database integration using three cancer datasets 313 

demonstrated that the annotation results for drug prioritization in patients not only relied on 314 

commonly shared drugs across all integrated knowledge bases but also encompassed specific 315 

drugs unique to individual or two specific knowledge bases. This observation further highlights 316 

the comprehensive nature of treatment-related knowledge within the PreMedKB database (Fig. 317 

S5). However, it is important to note that variations in terminology formulation and the 318 

inclusion of rare variants within a single database contribute to the distinctive features observed 319 

among databases (Fig. 2c). This variation may be magnified as the reliability of clinical 320 

evidence decreases, emphasizing the need for careful consideration and evaluation of the 321 

available knowledge sources. 322 

Although POI can expand treatment options for patients through more comprehensive 323 

actionable therapeutic alterations, its effectiveness needs to be further verified. Direct 324 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.581482doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

application of drug prioritizations by POI and other similar online portals to clinical practice is 325 

not always possible. Clinical interventions require review by, for example, the Molecular 326 

Tumor Board (MTB) and similar bodies, and better integration of the system with the practice 327 

of clinical oncologists is necessary [35]. Additionally, the adoption of variant information 328 

exchange standards by the community is not complete, and the Association for Molecular 329 

Pathology, American Society of Clinical Oncology, and College of American Pathologists 330 

(AMP/ASCO/CAP) classification standards used in this study have room for refinement and 331 

are only applied by about 70% of investigators [36]. Furthermore, systematic interpretation of 332 

results requires rigorous validation of analytical and clinical validity in combination with assay 333 

reagents, with the ultimate focus being on clinical utility for precision medicine [37, 38].  334 

Looking ahead, the ongoing development and refinement of POI could utilize an open-335 

source community development model [39], promising to advance personalized therapy and 336 

improve patient outcomes. By integrating additional omics data, such as proteomics [40]  and 337 

methylation [14] data, POI can continue to evolve as a valuable tool that expands access to 338 

therapeutics and enhances the precision of treatment decisions. 339 

 340 

Conclusions 341 

POI serves as a valuable tool for the comprehensive prioritization of anti-cancer drugs by 342 

effectively identifying actionable therapeutic alterations in a patient’s multiomics profiles, 343 

thereby broadening the availability of targeted therapeutics. The webserver of POI assists 344 

researchers and clinicians in navigating the complexities of these profiles, facilitating precise 345 

therapy decision-making. Notably, the capability of POI to prioritize drugs based on robust 346 

preclinical evidence highlights its potential to provide substantial benefits to patients, 347 

particularly in off-label use cases. Ongoing efforts focused on the continuous development and 348 

refinement of POI hold great promise for advancing precision medicine and ultimately 349 

enhancing patient outcomes. 350 

 351 

Methods 352 

Construction of knowledgebase  353 

We used our previously reported knowledgebase PreMedKB [32] to provide clinical and 354 

biological evidences for interpretation. For facilitating cancer genomics interpretation, most 355 
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databases have been updated and cancer-related databases were added in PreMedKB. Here, we 356 

briefly described the construction and updating of PreMedKB.  357 

 358 

Data sources 359 

PreMedKB serves as the foundation for the POI algorithm and consists of two distinct layers: 360 

the meta-knowledgebase layer and the domain knowledgebase layer. The meta- 361 

knowledgebase layer encompasses databases related to diseases, genes, variants, and drugs, 362 

along with their metadata, including names, synonyms, functions, etc. The domain 363 

knowledgebases established relationships among these elements and served as data sources 364 

that provided insights into the clinical significance of diseases, genes, variants, and drugs. 365 

Notably, the entries within these knowledgebases represented connections between two or 366 

more of the elements mentioned above. 367 

To ensure a comprehensive integration of clinical evidence conclusions on cancer 368 

genomics, the updated version of PreMedKB incorporated reliable data obtained from expertly 369 

curated databases, as summarized in Table S1. These data sources were managed as 370 

independent databases using MySQL. The construction process involved the design of the 371 

entity-relationship diagram for the database, formulation of the data dictionary, implementation 372 

of data preprocessing techniques, and subsequent data importation. These coordination 373 

strategies closely resembled those employed in the original version of PreMedKB, with the 374 

primary distinction lying in the assimilation of updated data sources. 375 

 376 

Meta database construction 377 

To enable interoperability and establish connections between research and clinical settings, 378 

PreMedKB provides a rich vocabulary in its metadata databases. Standard names and 379 

synonyms are retrieved from various data sources. Gene names are standardized using the  380 

HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/) [41], NCBI 381 

Entrez Gene (https://www.ncbi.nlm.nih.gov/gene/) [42], and Ensembl. Variation information 382 

was obtained primarily from dbSNP (https://www.ncbi.nlm.nih.gov/snp/) [43], Clinical 383 

Variation Database (ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/) [44], Catalogue of 384 

Somatic Mutations in Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic) [45], and 385 

gnomAD’s calculated allele frequencies for population frequency annotation. Additionally, 386 

ANNOVAR [46] was employed for annotating the functional effects of variations. Disease 387 
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metadata, including name, definition, and ontology structure, were harmonized using 388 

OncoTree (http://oncotree.mskcc.org/) [47], Mesh (https://meshb-prev.nlm.nih.gov/search) 389 

[48], and the NCI Thesaurus (NCIt, https://ncithesaurus.nci.nih.gov/ncitbrowser/) [49, 50]. 390 

Drug-related information, encompassing structure, pharmacology, pharmacogenomics, clinical 391 

stages, and product details, were integrated using resources such as NCIt, ChEBI 392 

(https://www.ebi.ac.uk/chebi/) [51], ChEMBL (https://www.ebi.ac.uk/chembl/) [52], and 393 

DrugBank (https://go.drugbank.com/) [53]. 394 

 395 

Domain knowledgebase integration 396 

Domain knowledgebase integration primarily involves three dimensions of information: 397 

clinical evidence conclusions, the landscape of the genome and transcriptome profiles, and 398 

biological pathway knowledge. Prominent knowledgebases such as OncoKB [54], CIViC [39], 399 

My Cancer Genome (MCG) [55], CGI [8], PharmGKB [56, 57], and NCCN Drug 400 

(https://www.nccn.org/#) provided clinical evidence conclusions regarding target therapies, 401 

immunotherapies, chemotherapies, pharmacogenomics, and pathogenic sites in cancer. The 402 

landscape of the genome and transcriptome profiles was derived from The Cancer Genome 403 

Atlas (TCGA, https://cancergenome.nih.gov/), a valuable resource encompassing diverse 404 

integrative cancer genomics data from various human tissues. In this study, we utilized the 405 

RNA expression landscape of TCGA [58] to construct a RNA reference database of gene 406 

expression levels, facilitating the assessment of abnormal gene expression in patients. 407 

Additionally, MsigDB [27] offered biological pathway knowledge associated with hallmark 408 

genes, providing an additional dimension for linking existing clinical evidence with patients’ 409 

omics profiles. 410 

The meta-knowledgebases were constructed with comprehensive lexicons for the four 411 

main elements: diseases, genes, variants, and drugs. This enabled the matching of nodes in the 412 

domain knowledgebases with meta-IDs using lexical matching. To ensure accuracy and 413 

consistency, duplicate semantic relationships were eliminated, and nodes were assigned higher 414 

confidence ratings accordingly. 415 

 416 

Normalization of clinical evidence levels 417 

Given the inherent variability in describing evidence levels within different knowledgebases, 418 

a harmonization process involving manual mapping is necessary to establish a unified standard. 419 
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It was worth noting that the release of the AMP/ASCO/CAP somatic classification guidelines 420 

[59] took place subsequent to the design of the Variant Interpretation for Cancer Consortium 421 

(VICC) knowledgebases and was partially influenced by them. While the evidence levels 422 

within the knowledgebases exhibit compatibility with the AMP/ASCO/CAP guidelines [59], it 423 

was important to acknowledge that they were not entirely identical. Consequently, a 424 

comprehensive mapping of the evidence levels provided by each knowledgebase was 425 

conducted to align them with the AMP/ASCO/CAP guidelines. For instance, Level A refers to 426 

biomarkers that predict response or resistance to FDA-approved therapies or professional 427 

guidelines for a specific type of tumor [59]. Detailed descriptions and mappings of each 428 

evidence level can be found in Table 2. 429 

 430 

Analysis modules and drug prioritization strategies 431 

The analysis module of the POI system consists of three components, based on direct evidence, 432 

indirect evidence, and drug response. Genomic and transcriptomic data submitted by users 433 

undergo preprocessing and normalization by the POI system. Subsequently, the ANNOVAR 434 

tool is employed for variant annotation in VCF files, thereby enhancing the subsequent 435 

interpretation process. The clinical information provided by the users, including tumor type, 436 

plays a crucial role in facilitating the accurate prioritization of targeted and immunotherapeutic 437 

drugs, while reference population information will be utilized to predict the response to 438 

chemotherapy drugs and assess the associated phenotypes. These three modules collectively 439 

identify and interpret the actionable therapeutic alterations, providing comprehensive and 440 

precise guidance for the prioritization of targeted, immunological, and chemotherapeutic drugs. 441 

 442 

Direct evidence  443 

Direct evidence pertains to the utilization of clinical and experimental research findings 444 

specific to genetic variants associated with particular tumor types and treatments. This evidence 445 

is sourced from the integrated domain knowledgebase of PreMedKB (Table S1). POI can 446 

identify the actionable therapeutic alterations through the analysis of various patient files, 447 

including somatic and germline SNV/Indel, CNV, gene fusions, TMB, MSI, and gene 448 

expression data, enabling effective prioritization of targeted and immunological drugs. 449 

When handling annotated somatic and germline SNV/Indel, POI employs the following 450 

strategy to match them with clinical evidence in PreMedKB. Direct matching is employed for 451 
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variants with well-defined amino acids or bases. If the clinical evidence specifies variants only 452 

for a specific mutation class in a gene or on a specific exon, direct matching is performed 453 

against those known conditions. For instance, in the case of variants in the truncated mutation 454 

category, matching is based on the annotated variant category (e.g., stopgain, frameshift 455 

insertion, frameshift deletion, frameshift block substitution). In situations where clinical 456 

evidence refers to oncogenic mutations without detailed variant information, POI first 457 

determines if the patient has a variant considered oncogenic in PreMedKB (integrated across 458 

databases) and then determines if it is annotated as pathogenic or likely pathogenic by ClinVar. 459 

Wild-type variants, such as KRAS and NRAS genes, are assessed separately after resolving other 460 

variants. 461 

Genomic signatures, such as TMB and MSI, play a significant role in individual tumor 462 

genomes and have implications in oncology treatment. However, given the lack of standardized 463 

calculation methods for TMB and MSI, POI offers options of high tumor mutation burden 464 

(TMB-H) and high microsatellite instability (MSI-H) on the website rather than performing 465 

direct calculations based on user-submitted VCF files. For CNV, POI resolves the gene status 466 

in the CNV file, including “gain”, “loss”, or “neutral”. Regarding gene fusions, POI parses the 467 

gene pairs provided in the file. 468 

To effectively utilize the patient’s transcriptomic data, POI converts raw read counts into 469 

Counts Per Million (CPM). Genes with at least 10 counts and a minimum CPM of 0.5 in both 470 

tumor and normal tissues are considered expressed genes, which are used for further analysis. 471 

A log2 transformation is applied to the CPM values, with an additional value of 0.01 added to 472 

the CPM of each gene to avoid infinite values. A gene is considered as under-expressed if the 473 

relative expression of in tumor versus normal tissues (fold change of tumor/normal, log2 474 

transformed) is ≤ -3.5, while a gene is considered as over-expressed if its relative expression is 475 

≥ 3.5. The threshold was established and validated using a breast cancer cohort, with the 476 

expression status of HER2/ERBB2 serving as the ground truth (Fig. S6 and Table S2). 477 

Additionally, POI calculates the patient’s gene expression in proportion to the TCGA cohort 478 

of the same cancer type to further confirm the abnormal expressed gene for drug prioritization. 479 

In cases where disease groups share the same ancestry or descent, they are assigned the 480 

same clinical evidence, and drug prioritization is directly assigned according to the evidence 481 

level normalized by POI. However, if a patient possesses a variant recognized by professional 482 

guidelines (Level A), but their cancer type does not share ancestry or descent with the supported 483 
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indication in the clinical evidence, the drug prioritization is downgraded from Level A to Level 484 

C. 485 

 486 

Indirect evidence 487 

POI begins by annotating the patient’s germline and somatic SNVs/Indels, taking into account 488 

indicators such as population frequency, predicted deleteriousness of variants, and clinical 489 

significance to identify potentially abnormal genes. Variants that meet any two of the three 490 

following indicators are identified as potentially aberrant variants or genes. Firstly, rare 491 

variants with a frequency of less than 1/1000 in the population, indicating low prevalence in 492 

the general population and potential association with specific diseases or genetic disorders [60, 493 

61]. Secondly, variants annotated as pathogenic or likely pathogenic in ClinVar [44] are 494 

considered. Lastly, variants are classified as pathogenic mutations affecting protein function if 495 

at least one of the indicators (SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, 496 

PROVEAN, MetaSVM, MetaLR) designates them as such. 497 

POI then examines their enrichment in the same pathway as the gene corresponding to the 498 

actionable therapeutic alteration, utilizing Hallmark gene pathway information [27]. If the 499 

aberrant genes belong to the same pathway and show a high correlation (protein-protein 500 

interaction score acquired from STRING database [28] > 0.99), the corresponding drugs are 501 

considered potentially effective, and the evidence level for these inferred drugs is assigned as 502 

level E. 503 

 504 

Drug response 505 

Chemotherapeutic drugs are known for their broad-spectrum efficacy against diverse tumor 506 

cell types, making them a crucial component of cancer treatment [62]. Understanding the 507 

influence of genetic variations on drug response holds significant potential for refining 508 

chemotherapy protocols, mitigating adverse effects, and enhancing therapeutic outcomes for 509 

individuals with cancer [63]. Hence, the analysis of germline variation data, particularly gene 510 

polymorphisms associated with drug metabolism and drug targets, enables the prediction of 511 

patient sensitivity to chemotherapeutic drugs to improve the precision medicine. To accomplish 512 

this, our module incorporates our previously developed pharmacogenomics annotation tool 513 

PAnno [25] into the POI framework. Through the analysis of germline variants, we infer the 514 

genotypes/diplotypes of genes related to chemotherapeutic drugs, enabling the prediction of 515 
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patient phenotypes about toxicity, dosage, efficacy, and drug metabolism. Finally, drugs are 516 

categorized into three levels: avoid caution, and routine. 517 

 518 

Multiomics data processing of three external cohorts 519 

TCGA 520 

The TCGA dataset, consisting of genomics and transcriptomics data from 11,005 patients, was 521 

downloaded from cBioPortal [21] (https://www.cbioportal.org/), which includes all studies 522 

from *_tcga_pan_can_atlas_2018: ACC, BLCA, BRCA, CESC, CHOL, COADREAD, DLBC, 523 

ESCA, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV, 524 

PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, and 525 

UVM. The TCGA cohort covered 33 cancer types, normalized by 29 MSKCC tissue codes 526 

(Table S4). The data_mutaions files were converted to VCF files using the maf2vcf tools 527 

(https://github.com/mskcc/vcf2maf) developed by MSKCC, and CNA data files were binned 528 

into individual CNV files by patient ID, with the gene status divided by the same thresholds 529 

used in MSK-IMPACT above. TCGA fusion gene datasets were obtained from ChimerDB 4.0 530 

(http://www.kobic.re.kr/chimerdb/) [64], and the MSI datasets were downloaded from the 531 

TCGA MSI landscape [65] with MANTIS scores [66] for identifying MSI-H patients (where 532 

MSI-H was defined as MANTIS score > 0.4). To identify “TMB-H” patients, the TMB value 533 

was calculated based on the mutant allele frequency (MAF) files downloaded through the R 534 

package “TCGAmutations” [67]. Furthermore, clinical information and gene expression files 535 

were collected through the R package “TCGAbiolinks” [68] for subsequent analysis.  536 

 537 

MSK-IMPACT 538 

The MSK-IMPACT dataset is a genomics repository of 10,945 patients, which was obtained 539 

from cBioPortal (http://cbioportal.org/msk-impact) [21] and a previous study [26]. The raw 540 

data was subsequently partitioned into five categories: somatic mutation, CNV, fusion gene, 541 

MSI-H, and TMB-H data (Table S3). The conversion of the data_mutaions file to VCF files 542 

for each individual patient was performed utilizing the maf2vcf tools developed by MSKCC, 543 

available on GitHub (https://github.com/mskcc/vcf2maf). The CNV files were annotated such 544 

that genes with CNA count greater than 2 were labeled as “gain”, those less than -2 were labeled 545 

as "loss", otherwise were labeled as “neutral” [69]. The MSISensor scores [70] of the MSK-546 

IMPACT dataset were used to identify “MSI-H” patients (where MSI-H was defined as 547 
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MSISensor score > 10) [71], while the TMB was used to identify "TMB-H" patients (where 548 

TMB-H was defined as ≥10 mutations/Mb according to FoundationOne CDx (F1CDx) [72]). 549 

Finally, all data files were grouped by unique patient ID for subsequent analysis. 550 

 551 

FUSCC 552 

In this study, we utilized the FUSCC dataset [23], which consists of 427 patients and integrates 553 

various types of omics data, including germline and somatic variations, CNVs, and tumor-554 

normal paired RNA expression profiles (Table S5). Specifically, the germline variations of 555 

279 patients were obtained through in-house pipelines and were previously unpublished. The 556 

purpose of including these germline variations was to enable comprehensive performance 557 

validation of the multiomics data analysis. To identify patients with TMB-H, we calculated 558 

TMB values based on the MAF files that were obtained from figshare 559 

(http://dx.doi.org/10.6084/m9.figshare.19783498.v5).  560 

 561 

Statistical analysis and validation of external cohorts 562 

We performed a comprehensive statistical analysis of the validation results from three external 563 

cohorts. The proportion of patients assigned drug prioritization according to the highest level 564 

of evidence was independently calculated for each cohort. The results were visualized using 565 

stacked bar charts created with the R package ggpubr v0.6.0. Furthermore, a detailed statistical 566 

analysis was conducted to examine the different alterations observed in the drug sources within 567 

each cohort. The findings of this analysis were effectively presented using an upset plot, 568 

utilizing the R package ComplexUpset v1.3.3. Additionally, a specific investigation was 569 

carried out on the core modules of the POI system for drug sources within the FUSCC cohort. 570 

The results of this investigation were visualized through a Venn diagram created using the R 571 

package eulerr v7.0.0. 572 

 573 

Webserver construction 574 

POI was employed various technologies in its front-end user interface, including the React 575 

framework (https://reactjs.org/), Ant Design (https://ant.design/), and Apache Echarts 576 

(https://echarts.apache.org/). The last technology was primarily employed in the Statistics Page 577 

to enable the visualization of large amounts of data. In the back-end architecture, the Flask-578 
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based (https://flask.palletsprojects.com/) web framework was used to receive and process user 579 

requests, while also facilitating communication between the front-end interface and the 580 

underlying database. The REST architecture style was utilized in the development of POI to 581 

reduce the intricacy of development and enhance system scalability. MySQL database 582 

management system was utilized to store and manage all data within the system. 583 

 584 
Availability and requirements 585 

Project name: POI 586 

Project home page: https://premedkb.cn/poi/#/homepage 587 

Operating system: Platform-independent 588 

Programming language: Python, MySQL 589 

Other requirements: R version greater than 3.5 590 

License: Crick Non-commercial License Agreement v2.0 591 

Any restrictions on use by non-academics: Commercial use will require a license from the 592 

rights holder. For further information, contact premedkb_poi@groups.outlook.com. 593 
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Figure legends 782 

Fig. 1 Architecture of POI. 783 

POI consists of three key components: (1) a backend knowledgebase, PreMedKB, which serves 784 

as a comprehensive data repository comprising information on the "gene-variant-disease-drug" 785 

model to facilitate comprehensive interpretation; (2) specialized modules (POI core steps) 786 

designed to perform essential tasks, including the parsing of multiomics profiles, identification 787 

of actionable alterations, and interpretation based on harmonized evidence; and (3) a user-788 

friendly web interface that generates therapeutic reports for prioritizing anti-cancer drugs. 789 

 790 

Fig. 2 Flowchart of POI core steps. 791 

POI employs a comprehensive analysis of somatic and germline SNV/Indel, CNV, gene 792 

fusions, TMB, MSI, and patient gene expression files to identify targeted and chemotherapy 793 

drugs. Direct evidence involves precise matching of variants with PreMedKB entries, leading 794 

to the identification of actionable therapeutic alterations. The assigned grade (A, B, C, or D) 795 

for drug prioritization depends on whether the patient’s tumor type shares ancestry or descent 796 

with the supported indication in the clinical evidence. If not, the assigned grade is downgraded 797 

accordingly (level A to level C, other levels to level E). Indirect evidence relies on the 798 

identification of potential aberrant variants and the assessment of associated actionable 799 

therapeutic alterations within the same biological pathway. Inferred drugs in this context are 800 

assigned grade E. Furthermore, drug response analysis involves resolving germline 801 

genotypes/diplotypes and predicting patient phenotypes based on relevant pharmacogenomic 802 

alleles. The drugs are classified into three categories based on their recommended use: avoid, 803 

caution, and routine. 804 

 805 

Fig. 3 Comprehensive data integration and normalization of PreMedKB. 806 

a Relationships between multiple diseases, genes, variants, and drugs, emphasizing their 807 

relevance to tumor therapy. b Bar plots display the number of actionable therapeutic alterations 808 

categorized accordingly. c The comparison of element uniqueness across knowledgebases 809 

before and after normalization, respectively.  810 

 811 
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Fig. 4 Validation of precision drug prioritization on three external cohorts. 812 

Performance validation of precision drug prioritization based on multiomics data from three 813 

external cohorts, namely TCGA, MSK-IMPACT, and FUSCC cohort. a Barplot of the 814 

distribution of highest levels of drugs that patients received from POI in the three cohorts, 815 

including level A, B, C, D and E with no drug. b-d Upset plots of the number of recommended 816 

drugs for TCGA MSK-IMPACT, and FUSCC cohorts, respectively. Variants are divided into 817 

seven types: single nucleotide variants and indels from somatic mutation (Somatic), copy 818 

number variants (CNV), gene fusion (Fusion), high microsatellite instability (MSI), high tumor 819 

mutation burden (TMB), RNA gene expression (RNA) variants, and genotype from germline 820 

mutation (Germline). Side bar plots represent the aggregate drug species matched to specific 821 

variant categories, while top bar plots indicate the count of drug species within each 822 

intersection group. e The Venn diagram displays the number of recommended drug species 823 

from different modules of POI in FUSCC cohort. 824 

 825 

Fig. 5 Interface of POI web server. 826 

The workflow and output of POI web server. a The Query Page allows users to input clinical 827 

information and personal omics data in different modules. The Intermediate Page shows the 828 

report address and notes after submission. b The Report Page displays the basic information of 829 

the case, a summary of drug recommendations in two tables, and a therapeutic overview of 830 

each drug in three tabs.   831 

 832 
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Figures  834 

 835 

 836 

Fig. 1 Architecture of POI. 837 
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Fig. 2 Flowchart of POI core steps. 839 
840 
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 841 

Fig. 3 Comprehensive data integration and normalization of PreMedKB. 842 
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 844 

Fig. 4 Validation of precision drug prioritization on three external cohorts. 845 

  846 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.581482doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581482
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 847 

Fig. 5 Interface of POI web server. 848 
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Tables 

Table 1. Comparison of online interpretation tools for drug prioritization. 

Type Resource POI PORI [12] MOAlmanac [13] CCAS [14] PanDrugs [7, 15] CGI [8] 

Variant 

SNV/ INDEL √ √ √ √ √ √ 
CNV √ √ √ √ √ √ 

Fusion √ √ √   √ 
RNA expression √ √  √ √  
Germline varianta √  √  √  

Application 

Clinical evidence √ √ √   √ 
Drug response √    √ √ 

Drug repurposing √ √   √ √ 
Interaction 

visualizationb √ √ √ √ √  

Knowledgebase 

Term normalization √ √  √ √  

Database 
integrationc 

 CGI 
 CIViC 
 COSMIC 
 My Cancer 

Genome 
 OncoKB 
 PharmGKB 

 CGI 
 CIViC 
 COSMIC 
 DoCM 
 OncoKB 

 TARGET 
 COSMIC 

 COSMIC 
 DiseaseMeth 
 Disease 

OncoKB 
 DoCM 
 CGP 

 CGI 
 CIViC 
 COSMIC 
 My Cancer 

Genome 
 OncoKB 
 PharmGKB 
 TARGET 

 CIViC 
 DoCM 
 OncoKB 

a Contains both direct recommendations based on mutations, and filtering based on germline genotypes to determine drug responses. 
b e.g., pathway, data of cancer cohort. 
c Databases that fit this category should contain the relationship between variants and therapeutic evidence.
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Table 2. Harmonizing knowledgebase-specific evidence levels based on AMP/ASCO/CAP guidelines [59]. 

PreMedKB  Therapeutic Evidence CGI CIViC MCG OncoKB PharmGKB 

Level A 

1. Biomarkers that predict response or resistance to 
FDA-approved therapies for a specific type of tumor 
2. Biomarkers included in professional guidelines that 
predict response or resistance to therapies for a specific 
type of tumor 

Clinical 
guidelines A Clinical 

guidelines 1, 2, R1 1A, 1B 

Level B 
Biomarkers that predict response or resistance to 
therapies for a specific type of tumor based on well-
powered studies with consensus from experts in the field 

Late trials B MCG 
provided 3A 2A, 2B 

Level C 

1. Biomarkers that predict response or resistance to 
therapies approved by the FDA or professional societies 
for a different type of tumor 
2. Biomarkers that serve as inclusion criteria for clinical 
trials 

Early trials, 
case reports C  3B 3 

Level D Biomarkers that show plausible therapeutic significance 
based on preclinical studies 

Preclinical 
data D  4, R2  
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Additional files 

Additional file 1. Supplementary figures. 

Figure S1. Histogram of the number of diseases.  

Figure S2. Gene expression distribution in the RNA reference database.  

Figure S3. Overview of the three cohorts.  

Figure S4. Preclinical studies provide support for inferred drugs from POI.  

Figure S5. Databases of drug sources for the three external cohorts.  

Figure S6. Threshold selection for determining the gene status in the RNA module. 

 

Additional file 2. Supplementary tables. 

Table S1. Data sources of the updated PreMedKB.  

Table S2. Expression profiles of ERBB2 gene in FUSCC dataset.  

Table S3. Cases of the MSK-IMPACT project used in this study.  

Table S4. Cases of the TCGA project used in this study.  

Table S5. Cases of the FUSCC project used in this study.  
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