

1 **Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi**
2 **from macrophages.**

3

4 Chinaemerem U. Onyishi^{1,2*}, Gyorgy Fejer³, Subhankar Mukhopadhyay⁴, Siamon Gordon^{5,6},
5 Robin C. May^{1*}

6

7 **Affiliations**

8 ¹ Institute of Microbiology & Infection and School of Biosciences, University of
9 Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

10 ² Molecular Mycology and Immunity Section, Laboratory of Host Immunity and
11 Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National
12 Institutes of Health, Bethesda, MD, USA.

13 ³ School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth,
14 United Kingdom

15 ⁴ Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences,
16 King's College London, SE1 9RT, United Kingdom

17 ⁵ Department of Microbiology and Immunology, College of Medicine, Chang Gung
18 University, Taoyuan, Taiwan

19 ⁶ Sir William Dunn School of Pathology, University of Oxford, Oxford, UK

20 * Corresponding authors: r.c.may@bham.ac.uk ; chinaemerem.onyishi@nih.gov

21

22 Abstract

23 Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed
24 microbes are expelled from phagocytes without discernible damage to either the phagocyte or
25 microbe. Although this phenomenon was first described in the opportunistic fungal pathogen
26 *Cryptococcus neoformans* in 2006, to date, mechanistic studies have been hampered by an
27 inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery
28 that macrophages lacking the scavenger receptor MACrophage Receptor with Collagenous
29 domain (MARCO), exhibit near-total vomocytosis of internalised cryptococci within a few
30 hours of infection. Our findings suggest that MARCO's role in modulating vomocytosis is
31 independent of its role as a phagocytic receptor and instead may be driven by variation in
32 cytoskeletal arrangement between wildtype and MARCO-deficient macrophages.

33

34 Introduction

35 *Cryptococcus neoformans* is an opportunist fungal pathogen that causes life-threatening
36 meningitis, mainly in immunocompromised individuals such as HIV/AIDS patients (1).
37 Infection is thought to begin with the inhalation of the fungi into the lungs where it
38 encounters macrophages of the innate immune system that serve as the first line of defence
39 against infection (1). The interaction between *C. neoformans* and macrophages can lead to a
40 range of outcomes including fungal survival and replication within macrophages (2,3), lateral
41 transfer of cryptococci between macrophages (4,5), lysis of macrophages (6) and
42 vomocytosis, also called nonlytic exocytosis (7,8).

43

44 Vomocytosis is a nonlytic expulsion mechanism where fully phagocytosed fungi are expelled
45 from the macrophage with no evidence of host cell damage (7–9). Vomocytosis occurs
46 through the fusion of *Cryptococcus*-containing phagosome with the plasma membrane in a
47 manner that is modulated by the actin cytoskeleton (10). It has also been shown to require
48 phagosome membrane permeabilization (10) and a failure to fully acidify the phagosome
49 (11,12). Previous studies have identified the mitogen-activated protein kinase ERK5 and the
50 phospholipid binding protein Annexin A2 as regulators of vomocytosis, with ERK5
51 inhibition and Annexin A2 deficiency leading to increased and decreased vomocytosis,
52 respectively (13,14). Moreover, stimulation of macrophages with type 1 interferons (IFN α
53 and IFN β), mimicking viral coinfection, increased cryptococcal vomocytosis (15). Very little
54 else is known about host regulators of vomocytosis.

55

56 Here we present the chance observation that the scavenger receptor MAcrophage Receptor
57 with Collagenous structure (MARCO) is a key modulator of vomocytosis. Typically,
58 vomocytosis rates from wildtype macrophages are between 10-20%, but this number rises
59 close to 100% in *Marco*^{-/-} macrophages. Further investigation indicates that this impact on
60 vomocytosis is likely independent of MARCO's role in phagocytosis but may instead result
61 from the previously documented cytoskeletal dysfunction seen in *Marco*^{-/-} macrophages (16).
62 As well as providing a powerful experimental tool for the future investigations into this
63 phenomenon, this finding also has important implications for interpreting infection assays
64 conducted in *Marco*^{-/-} animals.

65

66 **Results and Discussion**

67 ***Marco*^{-/-} macrophages show increased vomocytosis of non-opsonised *C. neoformans*.**

68 While investigating the role of scavenger receptors in the phagocytosis of *C. neoformans*
69 using a non-transformed GM-CSF dependent alveolar-like macrophage cell line derived from
70 wildtype and *Marco*^{-/-} C57BL/6 mice (17), we observed that, in LPS-stimulated macrophages,
71 MARCO-deficiency led to decreased non-opsonic phagocytosis of *C. neoformans* (Figure
72 1A). Using live cell imaging to observe the interaction between *C. neoformans* and
73 macrophages, we noted a dramatic increase in the vomocytosis of *C. neoformans* from
74 *Marco*^{-/-} macrophages with 80% to 100% of infected macrophages experiencing at least one
75 vomocytosis event (Figure 1B; Supplementary Video 1). No other host or pathogen factor has
76 been found to increase the rate of vomocytosis to such an extent. Not only did *Marco*^{-/-}
77 macrophages show elevated vomocytosis, but 75% of nonlytic expulsion events occurred
78 within the first 1 h 40 mins of the initiation of the timelapse video, with the median time to a
79 vomocytosis event being 0.92 h (55 mins) (Figure 1C; Supplementary Video 2). In contrast,
80 vomocytosis in wildtype macrophages occurred over a wider range of time with the median
81 time to vomocytosis being 10.6 h (10 h:35 mins) (Figure 1C). Figure 1D provides a
82 representative image of non-opsonised *C. neoformans* being expelled from *Marco*^{-/-}
83 macrophages.

84

85 **MARCO-deficiency leads to elevated vomocytosis of 18B7 antibody-opsonised *C.***
86 ***neoformans* and yeast-locked *Candida albicans*, but not heat killed *C. neoformans* or**
87 **latex beads.**

88 To investigate the generality of this phenomena, we infected macrophages with heat-killed *C.*
89 *neoformans*, 7 μ m diameter latex beads, anti-GXM 18B7 antibody-opsonised *C. neoformans*,
90 and a yeast-locked TetOn-NRG1 *C. albicans* strain that constitutively expresses Nrg1
91 transcription factor, thereby preventing yeast to hypha formation (18). In line with previous
92 data showing that inert particles do not undergo vomocytosis (7,8), we observed no
93 vomocytosis of heat-killed *C. neoformans* by either wildtype or *Marco*^{-/-} macrophages out of
94 55 infected macrophages observed (Table 1), and only a single event (amongst 239 infected
95 cells) when macrophages were “infected” with latex beads (Table 2). Notably, *Marco*^{-/-}
96 macrophages showed decreased phagocytosis of heat-killed cryptococci (Supplementary
97 Figure 1A) and latex beads (Supplementary Figure 1B) compared to wildtype cells.

98

99 Next, macrophages were infected with antibody-opsonised fungi to drive uptake via Fc γ Rs.
100 As expected, there was no difference in antibody-opsonised phagocytosis between wildtype
101 and *Marco*^{-/-} macrophages (Figure 2A). However, vomocytosis was elevated in *Marco*^{-/-}
102 macrophages compared to wildtype cells (Figure 2B). Finally, macrophages were infected
103 with a yeast-locked *C. albicans* strain that fail to undergo filamentation and observed over a 6
104 h period. As expected, since phagocytosis of *Candida* is predominantly driven by Dectin-1
105 (19), there was no difference in phagocytosis between wildtype and *Marco*^{-/-} macrophages
106 (Figure 2C). Surprisingly, we observed increased vomocytosis of yeast-locked *Candida* from
107 MARCO-deficient macrophages (Figure 2D and E; Supplementary Video 3). The percentage
108 of *Marco*^{-/-} macrophages that experienced at least one vomocytosis event was not as dramatic
109 as that observed with *Cryptococcus*; however, vomocytosis of wildtype *C. albicans* is rare,
110 happening at a rate of <1% over a 6-hour period (20). Therefore, a rate of 30% over 6 hours
111 in *Marco*^{-/-} cells is significant for this fungal pathogen. Given that elevated vomocytosis was
112 observed when phagocytosis was mediated by non-opsonic receptors (Figure 1B), Fc γ R
113 (Figure 2B) and Dectin-1 (Figure 2D), it seems likely that the role of MARCO in
114 vomocytosis is independent of the mechanism of uptake.

115

116

117 **Treatment of wildtype MPI cells with inhibitors of MARCO does not phenocopy**
118 **increased vomocytosis seen in *Marco*^{-/-} cells.**

119 To explore whether the vomocytosis phenotype seen in *Marco*^{-/-} can be induced in wildtype
120 macrophages, we exposed wildtype cells to polyguanylic acid potassium salt (polyG), a
121 MARCO ligand and inhibitor (21–23), and quantified vomocytosis. Although polyG pre-
122 treatment decreased the phagocytosis of non-opsonised *C. neoformans* (Figure 3A), unlike
123 genetic knockout of MARCO, the inhibition of MARCO using a ligand did not result in an
124 increase in vomocytosis (Figure 3B). Since polyG functions as a competitive inhibitor and
125 likely does not block MARCO-mediated downstream signalling, this suggests that the impact
126 of MARCO on vomocytosis can be mechanistically separated from its ligand-binding
127 activity.

128

129 Next, MARCO receptor on wildtype macrophages was blocked using increasing
130 concentrations of an anti-MARCO ED31 antibody. Anti-MARCO antibody reduced
131 MARCO-mediated phagocytosis in a dose-dependent manner (Figure 3C), without impacting
132 the rate of vomocytosis in wildtype macrophages (Figure 3D). According to the
133 manufacturers, the anti-MARCO ED31 antibody recognises the ligand binding domain of
134 MARCO receptors and can therefore compete for receptor binding with *C. neoformans*
135 without impacting intracellular MARCO signalling (24). Taken together, the role of MARCO
136 in vomocytosis is most likely independent of its role in uptake, hence the inability of
137 inhibitors that act on the ligand binding site to phenocopy the genetic knock out of MARCO
138 receptor.

139

140 **There is a noticeable difference in actin morphology wildtype and *Marco*^{-/-}**
141 **macrophages.**

142 Granucci et al. (16) identified a role for MARCO in cytoskeletal remodelling of microglial
143 and dendritic cells. Moreover, repeated actin polymerization and depolymerisation around
144 phagosomes containing cryptococci leading to the formation of transient actin ‘cages’ has
145 been shown to prevent vomocytosis (10). We therefore wondered whether the actin
146 cytoskeleton may be perturbed in MARCO-deficient macrophages.

147

148

149 Rhodamine-conjugated phalloidin staining of uninfected macrophages revealed wildtype
150 macrophages to be more compact than MARCO-deficient macrophages, which were larger
151 and with expansive ruffle-like structures (Figure 4A, white arrows; Supplementary Figure 2).
152 Similarly, in *C. neoformans* infected macrophages, wildtype macrophages appeared more
153 rounded and had well-formed filopodial protrusions (Figure 4B; yellow arrows). Though
154 *Marco*^{-/-} cells also had instances of filopodial protrusions from the cell periphery (yellow
155 arrows), these macrophages appeared larger, were less organised and had extensive ruffles
156 (Figure 4B, white arrows). Taken together, there is a clear difference in actin organisation
157 between wildtype and *Marco*^{-/-} cells. It is thus possible that MARCO's role in actin
158 remodelling and organisation is one reason for the elevated vomocytosis seen in *Marco*^{-/-}
159 macrophages.

160

161 Our observation raises a number of questions for future investigation. Firstly, given that loss
162 of MARCO leads to elevated vomocytosis, then one role for MARCO may be to sense
163 phagosomal content and prevent premature expulsion, potentially by regulating the formation
164 of actin 'cages' that have been shown to block phagosome fusion with the plasma membrane
165 (10). It is also possible that MARCO activity is linked to the MAPK ERK5, since ERK5
166 activity has been implicated in disruptions in actin cytoskeleton during oncogenic
167 transformation (25,26) and is known to modulate vomocytosis (13). Additionally, MARCO
168 may be upstream of Annexin A2, another host signalling molecule found to modulate
169 vomocytosis (14). Annexin A2 plays a significant role in a range of cellular processes
170 including exocytosis and binding to actin to modulate cytoskeleton arrangement (27,28),
171 processes that have been linked to nonlytic expulsion. Finally, we note that this hitherto
172 undocumented impact of MARCO loss on pathogen expulsion will be important for
173 investigators to consider when using *Marco*^{-/-} cells or animals for a range of other infection
174 assays.

175

176 Conclusion

177 Here we present a novel role for MARCO in modulating the vomocytosis of *C. neoformans*.
178 The increase in vomocytosis observed in *Marco*^{-/-} macrophages is the most dramatic change
179 in vomocytosis rate observed to date. Increased vomocytosis in *Marco*^{-/-} macrophage was also
180 observed when macrophages were infected with a yeast-locked *C. albicans* strain, suggesting
181 that MARCO's modulation of vomocytosis is a broadly relevant phenomenon. Given that
182 MARCO-deficiency still resulted in elevated vomocytosis of antibody-opsonised *C.*

183 *neoformans* and *C. albicans*, we propose that MARCO's role in vomocytosis is independent
184 of the mode of uptake, and instead that MARCO may modulate vomocytosis through its role
185 in actin remodelling. We hope this finding will inspire new research aimed at understanding
186 the mechanism and clinical consequence of vomocytosis during host-pathogen interaction.

187

188

189 **Materials & Methods**

190 **Max Plank Institute (MPI) Cell Culture**

191 Max Plank Institute (MPI) cells are a non-transformed, granulocyte-macrophage colony-
192 stimulating factor (GM-CSF)-dependent murine macrophage cell line that is functionally
193 similar to alveolar macrophages (17,29). MPI cell lines isolated from wildtype and
194 MAcrophage Receptor with COLlagenous structure knockout (*Marco*^{-/-}) mice were cultured in
195 Roswell Park Memorial Institute (RPMI) 1640 medium [ThermoFisher] supplemented with
196 10% heat inactivated FBS [Sigma-Aldrich], 2 mM L-glutamine [Sigma-Aldrich], and 1%
197 Penicillin and Streptomycin solution [Sigma-Aldrich] at 37°C and 5% CO₂. Each flask was
198 further supplemented with 1% vol/vol GM-CSF conditioned RPMI media prepared using a
199 X-63-GMCSF cell line.

200

201 **Phagocytosis Assay**

202 Twenty-four hours before the start of the phagocytosis assay, MPI cells were seeded onto 24-
203 well plates at a density of 2x10⁵ cells/mL in complete culture media supplemented with 1%
204 vol/vol GM-CSF. The cells were then incubated overnight at 37°C and 5% CO₂. The
205 following day, macrophages were stimulated with 10 ng/mL lipopolysaccharide (LPS) from
206 *Escherichia coli* [Sigma-Aldrich; Cat#: L6529] and 1% vol/vol GM-CSF for 24 h. At the
207 same time, an overnight culture of *Cryptococcus neoformans* var. *grubii* KN99α strain, that
208 had previously been biolistically transformed to express green fluorescent protein (GFP)(30),
209 was set up by picking a fungal colony from YPD agar plates (50 g/L YPD broth powder
210 [Sigma-Aldrich], 2% Agar [MP Biomedical]) and resuspending in 3 mL liquid YPD broth
211 (50 g/L YPD broth powder [Sigma-Aldrich]). The culture was then incubated at 25°C
212 overnight under constant rotation (20rpm).

213

214 After overnight LPS stimulation, macrophages were infected with non-opsonised *C.*
215 *neoformans*. To prepare *C. neoformans* for infection, an overnight *C. neoformans* culture was

216 washed two times in 1X PBS, counted using a haemocytometer, and fungi incubated with
217 macrophages at a multiplicity of infection (MOI) of 10:1. The infection was allowed to
218 proceed for 2 h at 37°C and 5% CO₂. Where applicable, macrophages were pre-treated with
219 400 ug/mL polyguanylic acid potassium salt (polyG) [Sigma-Aldrich; Cat#: P4404], rat anti-
220 mouse MARCO ED31 clone monoclonal antibody [BioRad; Cat#: MCA1849], or anti-rat
221 IgG1 isotype control [Invitrogen; Ca#: 14430182] for 30 mins at 37°C prior to infected with
222 non-opsonised *C. neoformans*. In these cases, infection was carried out still in the presence of
223 polyG ligand or antibodies.

224

225 For infection with antibody-opsonised *C. neoformans*, 1x10⁶ yeast cells in 100 µL PBS were
226 opsonized for 1 h using 10 µg/mL anti-capsular 18B7 antibody (a kind gift from Arturo
227 Casadevall, Albert Einstein College of Medicine, New York, NY, USA). For infection with
228 heat-killed *C. neoformans*, fungi were killed by heating at 56°C for 30 mins. After 2 h
229 infection at 37°C, macrophages were washed 4 times with PBS to remove as much
230 extracellular *C. neoformans* as possible.

231

232 To explore vomocytosis of *Candida albicans*, a yeast-locked *C. albicans* strain was used (a
233 kind gift from Hung-Ji Tsai, University of Birmingham, Birmingham, United Kingdom). The
234 yeast-locked TetOn-NRG1 *C. albicans* strain constitutively express the Nrg1 transcription
235 factor, thereby preventing yeast to hypha transition (18). A colony was suspended in 10 mL
236 YPD broth and incubated overnight at 30°C and 180 rpm. Prior to their use in infection, a *C.*
237 *albicans* overnight culture was diluted 1:100 in fresh YPD broth, then incubated at 30°C and
238 180 rpm for 3 h till cells were in exponential phase. Cells in exponential phase were washed
239 with PBS, counted and macrophages were infected at MOI 2:1.

240

241 Time-lapse Imaging

242 After infection, extracellular fungi were removed and fresh media containing 1% vol/vol
243 GM-CSF (with or without relevant inhibitor) was added back into the wells. For infection
244 with *C. albicans*, imaging began immediately following infection. Live-cell imaging was
245 performed using a Zeiss Axio Observer [Zeiss Microscopy] or Nikon Eclipse Ti [Nikon] at
246 20X magnification. Images were acquired every 5 mins for 16 hours at 37°C and 5% CO₂.
247 The resulting videos were analysed using Fiji [ImageJ], at least 200 macrophages were
248 observed, and vomocytosis was scored according to the following guideline:

249 1. One vomocytosis event is the expulsion of internalized cryptococci from an infected
250 macrophage, regardless of the number of cryptococci expelled if they do so
251 simultaneously.

252 2. Vomocytosis events are scored as independent phenomena if they occur in different
253 frames or from different macrophages.

254 3. Vomocytosis events are discounted if the host macrophage subsequently undergoes
255 lysis or apoptosis within 30 min.

256

257 **F-Actin Staining and Confocal Microscopy**

258 Macrophages were seeded on 13 mm cover slips placed into 24-well plates. Staining was
259 performed on macrophages fixed with 4% paraformaldehyde for 10 mins at room
260 temperature and permeabilised with 0.1% Triton X-100 diluted in PBS for 10 mins at room
261 temperature. F-actin filaments were stained using 2 units of rhodamine-conjugated phalloidin
262 stain [Invitrogen; Cat#: R415] diluted in 400 μ l 1% BSA in 1X PBS and incubated for 20
263 mins at room temperature. Cells were washed with PBS, then counter stained with 0.5 μ g/mL
264 DAPI for 5 mins at room temperature to visualize the nucleus. After PBS washes, glass slides
265 were mounted using Fluoromount mounting medium [Sigma; Cat#: F4680]. Z-stack images
266 were acquired using the Zeiss LSM880 Confocal with Airyscan2, laser lines 405, 488, 561
267 and 640 nm, and at 63X oil magnification. Image acquisition was performed using the ZEN
268 Black software [Zeiss Microscopy] and the resulting images were analysed using the Fiji
269 image processing software [ImageJ].

270

271 **Statistics**

272 GraphPad Prism Version 9 for Mac (GraphPad Software, San Diego, CA) was used to
273 generate graphical representations of experimental data. Violin plots were generated using R
274 programming. Inferential statistical tests were performed using Prism. The data sets were
275 assumed to be normally distributed based on results of Shapiro-Wilk test for normality.
276 Consequently, to compare the means between treatments, the following parametric tests were
277 performed: unpaired two sided t-test, one-way ANOVA followed by Tukey's post-hoc test.
278 When data failed the normality test, Mann-Whitney U nonparametric test was used. Variation
279 between treatments was considered statistically significant if p-value < 0.05.

280

281 **Acknowledgments**

282 We thank Hung-Ji Tsai for the provision of yeast-locked *C. albicans* strain. C.U.O is
283 supported by a PhD studentship from the Darwin Trust of Edinburgh. R.C.M. gratefully
284 acknowledges support from the BBSRC and European Research Council Consolidator
285 Award.

286

287 **References**

- 288 1. May RC, Stone NRH, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from
289 environmental saprophyte to global pathogen. *Nat Rev Microbiol.* 2016 Feb;14(2):106–
290 17.
- 291 2. Gilbert AS, Wheeler RT, May RC. Fungal Pathogens: Survival and Replication within
292 Macrophages. *Cold Spring Harb Perspect Med.* 2015 Jul;5(7):a019661.
- 293 3. Diamond RD, Bennett JE. Growth of *Cryptococcus neoformans* Within Human
294 Macrophages In Vitro. *Infect Immun.* 1973 Feb;7(2):231–6.
- 295 4. Ma H, Croudace JE, Lammas DA, May RC. Direct cell-to-cell spread of a pathogenic
296 yeast. *BMC Immunol.* 2007 Aug 16;8:15.
- 297 5. Alvarez M, Casadevall A. Cell-to-cell spread and massive vacuole formation after
298 *Cryptococcus neoformans* infection of murine macrophages. *BMC Immunol.* 2007 Aug
299 16;8:16.
- 300 6. Johnston SA, May RC. *Cryptococcus* interactions with macrophages: evasion and
301 manipulation of the phagosome by a fungal pathogen. *Cellular Microbiology.*
302 2013;15(3):403–11.
- 303 7. Ma H, Croudace JE, Lammas DA, May RC. Expulsion of Live Pathogenic Yeast by
304 Macrophages. *Current Biology.* 2006 Nov 7;16(21):2156–60.
- 305 8. Alvarez M, Casadevall A. Phagosome Extrusion and Host-Cell Survival after
306 *Cryptococcus neoformans* Phagocytosis by Macrophages. *Current Biology.* 2006 Nov
307 7;16(21):2161–5.
- 308 9. Seoane PI, May RC. Vomocytosis: What we know so far. *Cellular Microbiology.* 2019
309 Nov 15;22(2):e13145.
- 310 10. Johnston SA, May RC. The Human Fungal Pathogen *Cryptococcus neoformans* Escapes
311 Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3
312 Complex-Mediated Actin Polymerisation. *PLOS Pathogens.* 2010 Aug
313 12;6(8):e1001041.
- 314 11. Smith LM, Dixon EF, May RC. The fungal pathogen *Cryptococcus neoformans*
315 manipulates macrophage phagosome maturation. *Cellular Microbiology.*
316 2015;17(5):702–13.
- 317 12. Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, et al.
318 *Cryptococcus neoformans* urease affects the outcome of intracellular pathogenesis by

319 modulating phagolysosomal pH. May RC, editor. PLoS Pathog. 2018 Jun
320 15;14(6):e1007144.

321 13. Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, et al.
322 Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP
323 kinase ERK5. Sci Adv. 2017 Aug;3(8):e1700898.

324 14. Stukes S, Coelho C, Rivera J, Jedlicka AE, Hajjar KA, Casadevall A. The Membrane
325 Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Non-lytic
326 Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection. J
327 Immunol. 2016 Aug 15;197(4):1252–61.

328 15. Seoane PI, Taylor-Smith LM, Stirling D, Bell LCK, Noursadeghi M, Bailey D, et al.
329 Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by
330 macrophages. PLOS Pathogens. 2020 Feb 27;16(2):e1008240.

331 16. Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, et al. The
332 scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and
333 microglia. Blood. 2003 Oct 15;102(8):2940–7.

334 17. Fejer G, Wegner MD, Györy I, Cohen I, Engelhard P, Voronov E, et al. Nontransformed,
335 GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage
336 functions. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2191–8.

337 18. Ost KS, O'Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, et al. Adaptive
338 immunity induces mutualism between commensal eukaryotes. Nature. 2021
339 Aug;596(7870):114–8.

340 19. Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of
341 Candida albicans yeast but not filaments. EMBO J. 2005 Mar 23;24(6):1277–86.

342 20. Bain JM, Lewis LE, Okai B, Quinn J, Gow NAR, Erwig LP. Non-lytic
343 expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol. 2012
344 Sep;49(9):677–8.

345 21. Kanno S, Hirano S, Sakamoto T, Furuyama A, Takase H, Kato H, et al. Scavenger
346 receptor MARCO contributes to cellular internalization of exosomes by dynamin-
347 dependent endocytosis and macropinocytosis. Sci Rep. 2020 Dec 11;10(1):21795.

348 22. Kanno S, Furuyama A, Hirano S. A Murine Scavenger Receptor MARCO Recognizes
349 Polystyrene Nanoparticles. Toxicological Sciences. 2007 Jun 1;97(2):398–406.

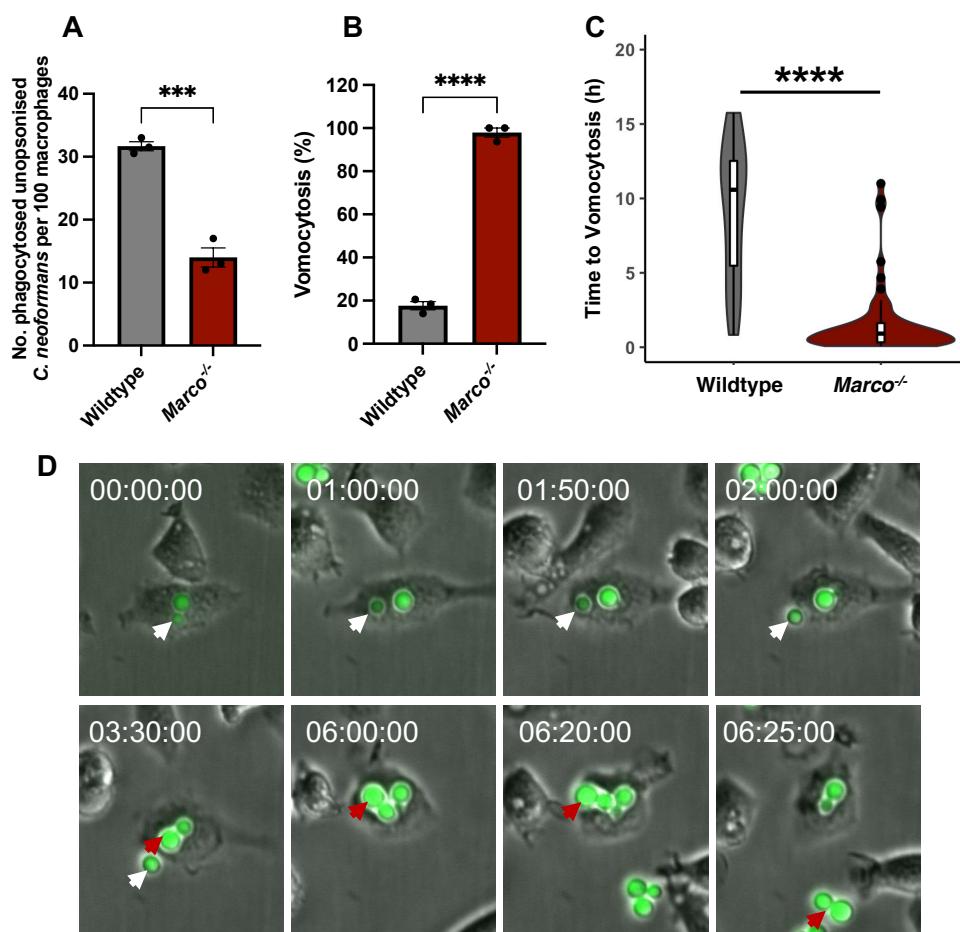
350 23. Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A,
351 et al. Structure of the Human Macrophage MARCO Receptor and Characterization of Its
352 Bacteria-binding Region*. Journal of Biological Chemistry. 1998 Feb 20;273(8):4530–8.

353 24. van der Laan LJW, Döpp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, et al.
354 Regulation and Functional Involvement of Macrophage Scavenger Receptor MARCO in
355 Clearance of Bacteria In Vivo. The Journal of Immunology. 1999 Jan 15;162(2):939–47.

356 25. Barros JC, Marshall CJ. Activation of either ERK1/2 or ERK5 MAP kinase pathways can
357 lead to disruption of the actin cytoskeleton. *Journal of Cell Science*. 2005 Apr
358 15;118(8):1663–71.

359 26. Schramp M, Ying O, Kim TY, Martin GS. ERK5 promotes Src-induced podosome
360 formation by limiting Rho activation. *Journal of Cell Biology*. 2008 Jun 23;181(7):1195–
361 210.

362 27. Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2.
363 *EMBO J*. 2006 May 3;25(9):1816–26.


364 28. Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the exocytotic process
365 in chromaffin cells. *Journal of Neurochemistry*. 2016;137(6):890–6.

366 29. Maler MD, Nielsen PJ, Stichling N, Cohen I, Ruzsics Z, Wood C, et al. Key Role of the
367 Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate
368 Responses of Macrophages. *mBio*. 2017 Aug;8(4):e00670-17.

369 30. Voelz K, Johnston SA, Rutherford JC, May RC. Automated Analysis of Cryptococcal
370 Macrophage Parasitism Using GFP-Tagged Cryptococci. *PLOS ONE*. 2010 Dec
371 31;5(12):e15968.

372

373 **Figures and Tables**

374

375 **Figure 1:** Macrophages were stimulated overnight with LPS then infected with non-opsonised
376 *Cryptococcus neoformans*. **(A)** Phagocytosis was quantified as the number of internalised cryptococci
377 per 100 macrophages. **(B)** Vomocytosis was quantified over a 16 h period and presented as the
378 percentage of infected macrophages that experienced one or more vomocytosis events. At least 200
379 macrophages were observed. Data is presented as mean \pm SEM; ***p<0.001, ****p<0.0001 in an
380 unpaired two sided t-test. **(C)** The time at which individual vomocytosis events took place was
381 quantified and expressed as decimals. Wildtype (n=32); *Marco*^{-/-} (n=56). A violin plot with an
382 overlapping box plot was created using the ggplot2 package on R; ***p<0.0001 in a Mann-Whitney
383 test. **(D)** Representative image showing vomocytosis of GFP-expressing *C. neoformans* from *Marco*^{-/-}
384 macrophages. Time is presented in hh:mm:ss; white and red arrows follow the course of expulsion
385 events. Data is representative of three independent experiments.

386

387

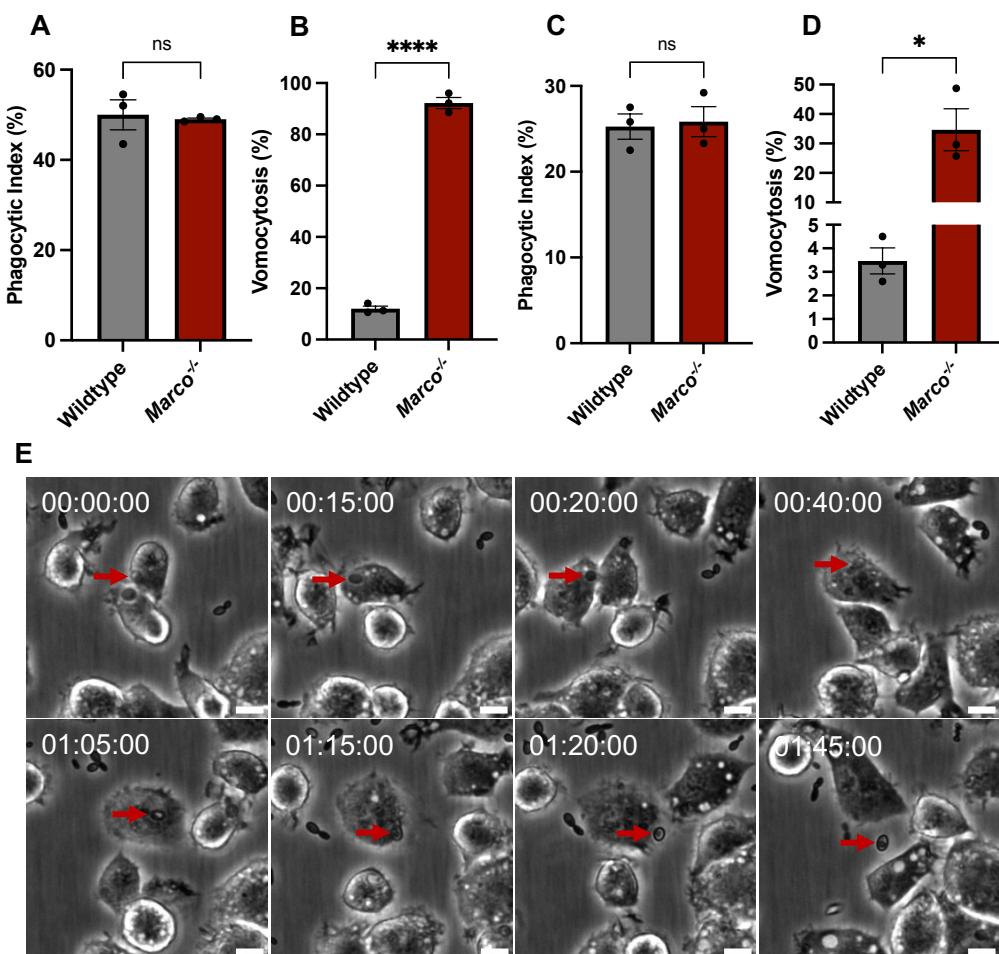
388

389

390 **Table 1: Quantification of the vomocytosis of heat-killed *C. neoformans* in wildtype and**
391 ***Marco*^{-/-} macrophages.**

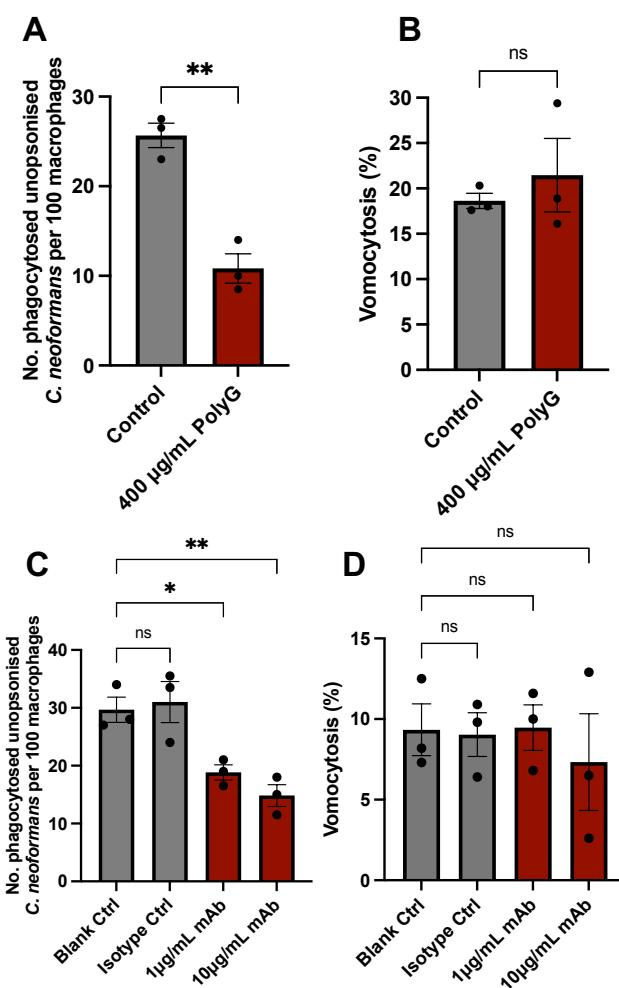
	# infected macrophages counted	# vomocytosis events observed
Wildtype	39	0
<i>Marco</i>^{-/-}	16	0

392


393

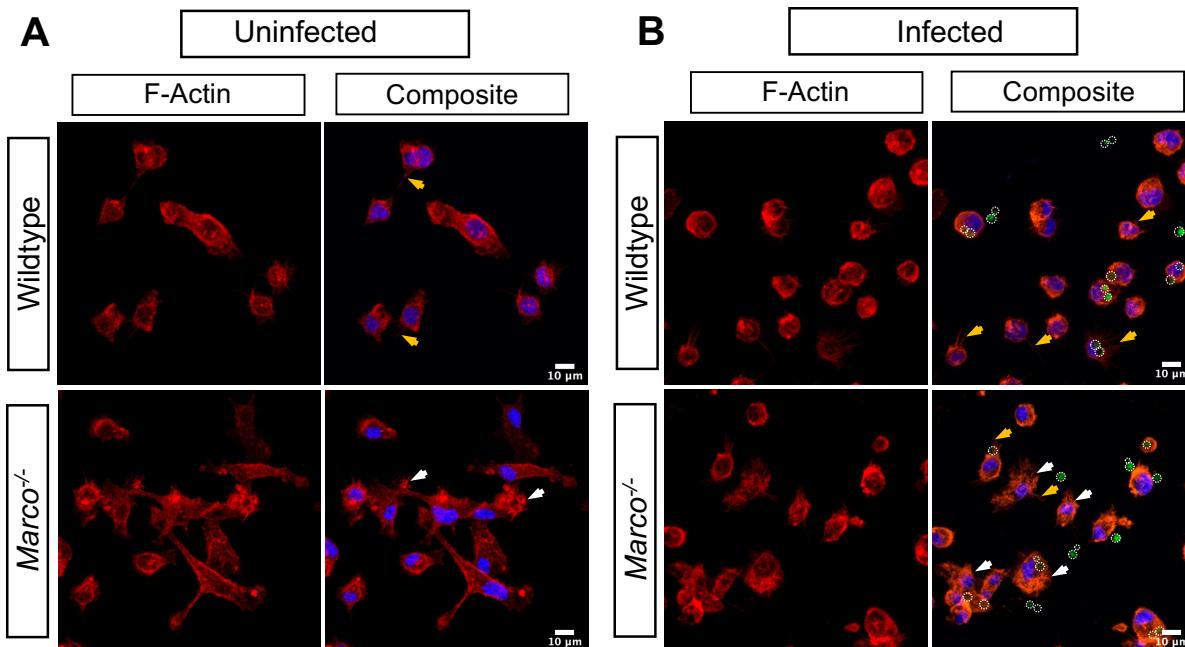
394 **Table 2: Quantification of the vomocytosis of latex beads in wildtype and *Marco*^{-/-}**
395 **macrophages.**

	# infected macrophages counted	# vomocytosis events observed
Wildtype	203	1
<i>Marco</i>^{-/-}	36	0


396

397

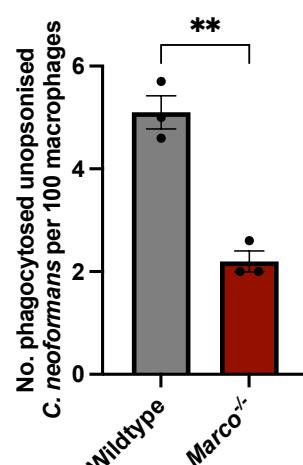
398


399 **Figure 2: (A, B)** Wildtype and *Marco*^{-/-} macrophages were stimulated with 10 ng/mL LPS overnight,
400 then infected with anti-GXM 18B7 antibody opsonised *C. neoformans*. After 2 h infection, images
401 were acquired every 5 mins for 16 h. **(C, D)** LPS stimulated macrophages were infected with a yeast-
402 locked TetO-NRG1 *C. albicans* strain that constitutively expresses Nrg1 transcription factor, thereby
403 preventing yeast to hyphae transition. Images were acquired every 5 mins for 6 h. **(A, C)** Phagocytic
404 index (%) represents the percentage of macrophages that phagocytosed one or more fungal cells. **(B,**
405 **D)** Vomocytosis (%) is the percentage of infected macrophages that experienced at least one
406 expulsion events. At least 200 macrophages were observed per condition. Data is representative of
407 two independent experiments. Data shown as mean \pm SEM; ns, not significant; *p<0.05;
408 ***p<0.0001 in a t-test. **(E)** Representative image showing vomocytosis of *C. albicans* from *Marco*^{-/-}
409 MPI cells. Time is presented in hh:mm:ss; red arrows follow the course of a vomocytosis event;
410 scale bar = 10 μ m.

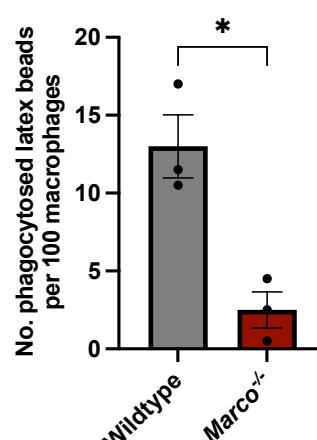
411

412 **Figure 3:** Wildtype macrophages were stimulated overnight with 10 ng/mL LPS. The following day,
413 cells were pre-treated with polyguanylic acid (polyG) (A, B) or anti-MARCO ED31 monoclonal
414 antibody (mAb) for 30 mins (C, D) then infected with *C. neoformans* still in the presence of polyG or
415 anti-MARCO mAb. Images were acquired every 5 mins for 16 h. (A, C) The number of internalised
416 fungi at the beginning of the timelapse video was quantified. (B, D) Vomocytosis (%) is the
417 percentage of infected macrophages that experienced at least one vomocytosis events. At least 200
418 macrophages were quantified per condition. Data is representative of two independent experiments.
419 Data shown as mean \pm SEM; ns, not significant; *, p<0.5; **p<0.01 in an unpaired two-sided t-test
420 (A, B) and a one-way ANOVA followed by Tukey's post-hoc test (C, D).

421

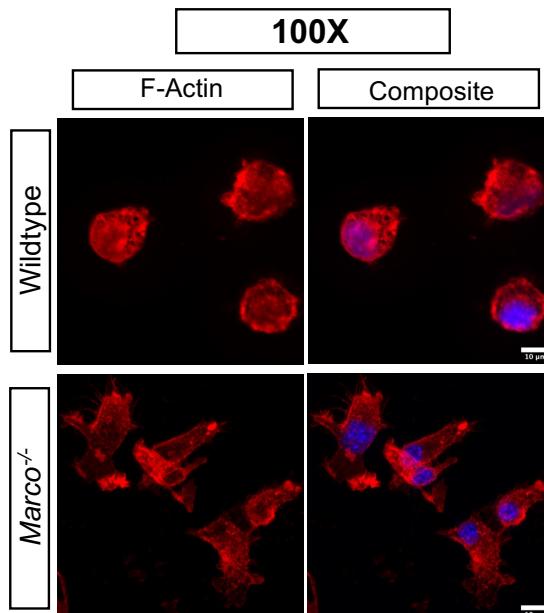

422

423 **Figure 4:** Wildtype and *Marco^{-/-}* macrophages were stimulated with 10 ng/mL LPS overnight, left
424 uninfected (A) or infected with GFP expressing *C. neoformans* (B). Prior to confocal microscopy
425 imaging, macrophages were fixed, permeabilised and F-actin was stained with rhodamine-conjugated
426 phalloidin. Cells were counter-stained with DAPI to visualize the nucleus, then mounted onto glass
427 slides using Fluoromount mounting medium. Z-stack images were acquired using the Zeiss LSM880
428 using 63X Oil magnification. Z-stack maximum intensity projection was applied onto the images. Red
429 = F-actin (Phalloidin); Blue = Nucleus; Green with white dashed circle = *C. neoformans*. White
430 arrows show examples of macrophages with ruffle-like structures; Yellow arrows show examples of
431 filopodial protrusions. Scale bar = 10 μ m


432

433

A: Heat-Killed



B: Latex Beads

434

435 **Supplementary Figure 1:** Wildtype and *Marco*^{-/-} macrophages were infected with **(A)** *C. neoformans*
436 killed by heating at 56°C for 30 mins or **(B)** 7 µm latex beads. After 2 h infection, images were
437 acquired every 5 mins for 16 h. The number of internalised cryptococci or latex bead per 100
438 macrophages was quantified. At least 200 macrophages were observed per condition. Data shown as
439 mean ± SEM; *p<0.05; **p<0.01 in a t-test. Data is representative of two independent experiments.
440

441
442 **Supplementary Figure 2:** Wildtype and *Marco*^{-/-} macrophages were stimulated with 10 ng/mL LPS
443 overnight, then stained with rhodamine-conjugated phalloidin to visualize F-actin distribution. Z-stack
444 images were acquired on the Zeiss LSM880 using 100X Oil magnification. Z-stack maximum
445 intensity projection was applied onto the images. Red = F-actin (Phalloidin); Blue = Nucleus. Scale
446 bar = 10 µm

447
448 **Supplementary Video 1:** Representative video showing vomocytosis of *C. neoformans* from *Marco*^{-/-}
449 macrophages. Video corresponds to Figure 1D. Time shown as: hh:mm:ss
450
451 **Supplementary Video 2:** Example video showing rapid time-to-vomocytosis in *Marco*^{-/-}
452 macrophages. Time shown as: hh:mm:ss
453
454 **Supplementary Video 3:** Representative video showing vomocytosis of *C. albicans* from *Marco*^{-/-}
455 macrophages. Video corresponds to Figure 2E. Time shown as: hh:mm:ss
456