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Summary

The response to signaling pathways is highly context-specific, and identifying the transcription factors and mechanisms that are
responsible is very challenging. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show here that this
information is encoded in cis-regulatory sequences and can be learned from high-resolution binding data of signaling
transcription factors. Using interpretable deep learning, we show that the binding levels of TEAD4 and YAP1 are enhanced in a
distance-dependent manner by cell type-specific transcription factors, including TFAP2C. We also discovered that strictly spaced
Tead double motifs are widespread highly active canonical response elements that mediate cooperativity by promoting labile
TEAD4 protein-protein interactions on DNA. These syntax rules and mechanisms apply genome-wide and allow us to predict
how small sequence changes alter the activity of enhancers in vivo. This illustrates the power of interpretable deep learning to
decode canonical and cell type-specific sequence rules of signaling pathways.
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Introduction

Signaling pathways are critical for cell fate decisions during
development, the generation of cell types in vitro, and
therapeutic interventions, which often target specific
signaling pathways1. While signal transduction components
are typically well studied, how signaling pathways regulate
target genes in a cell-type-specific fashion is a fundamental
gap in knowledge. Once a signal is transduced into the
nucleus, activated transcription factors (TFs) recognize
specific DNA sequence motifs or find obligate partner TFs
with DNA binding specificity, but which of the cis-regulatory
sequences become active enhancers and regulate target
genes is poorly understood2,3. Thus, signaling pathways are
critical for gene regulation, but their target specificity is one
of the least understood areas of enhancer biology, making it
difficult to predict the activity of enhancers or modify their
function during development through targeted mutations3–7.

A critical question is how signaling TFs interact with other
sequence-specific TFs present in that cell type. Signaling
pathways are reiteratively used during development, and
target genes are regulated depending on cell-type-specific
TFs2,8. Indeed, cell-type-specific TFs help determine where
signaling TFs bind9–13, suggesting that signaling pathways rely
on TF cooperativity to regulate target genes. However, which
TFs can become such partners and which molecular
mechanisms are used to help the binding of signaling TFs is
poorly understood14.

Here, we hypothesized that this TF cooperativity is DNA
sequence-driven and thus can be studied by measuring the
binding of TFs on DNA and identifying the underlying
sequence rules using interpretable deep learning. During
training, deep learning models accurately learn sequence
rules within genomic regions in an inherently combinatorial
manner de novo until they can predict the data from
sequence alone15–21. The key step is then to interrogate the
model and extract the learned sequence rules using
interpretation tools15. This reveals the learned TF motifs,
including measurements of their relative affinities and the
syntax rules, thus the distance relationships by which motifs
cooperate with each other15,17,20,22,23.

Interpretable deep learning should, therefore, allow us to
identify potential syntax rules by which cell type-specific TFs
contribute to the response to signaling while also providing
clues on the mechanisms. For example, TF cooperativity that
depends on two motifs being spaced at a specific distance is
known from the enhanceosome model, where
protein-protein interactions stabilize the complex24–26. On the
other hand, strictly spaced motifs are not frequently
observed in the genome, raising the question of whether TF
binding cooperativity may also occur through more flexible
motif syntax27–29. For example, we previously found that a TF
may enhance the binding of another TF through soft motif
syntax, which occurs at variable motif distances within ~150
bp but is stronger at closer distances15,20.

Whether such syntax rules exist for signaling TFs has
previously been difficult to decipher. ChIP-seq binding data
tend to be of low resolution and display low levels of signal
when the TF binds indirectly through a partner TF10,11,13.
Likewise, individually manipulating enhancer sequences in
vivo limits throughput, and the effects can be difficult to
interpret since they may be enhancer-specific or caused by
the inadvertent disruption of other important sequences30,31.
Large-scale reporter assays, on the other hand, have
produced conflicting results on whether motif syntax is
important and have not revealed whether synergistic effects
of motifs are mediated through cooperative binding16,27,32–36.
For these reasons, TF binding cooperativity downstream of
signaling pathways has not been systematically studied from
a sequence perspective.

To discover these potential sequence rules, we performed
the TF binding experiments at the highest resolution and
leveraged our previously developed deep learning model
BPNet to predict the data at base resolution from genomic
sequences of 1-kb15,20,22,37,38. This approach optimally resolves
sequence rules between closely spaced motifs within
enhancers15. Since the model does not predict enhancer
activity or target genes, we evaluated and validated these
downstream aspects using traditional methods.

As a model system, we studied the Hippo signaling pathway
in mouse trophoblast stem cells (TSCs). Hippo signaling is
critical for specifying trophoblast versus inner cell mass cell
fate in the early mouse embryo39–44. When cells of the
embryo sense that they are facing the outside, i.e., less cell
density, they polarize and inactivate the Hippo pathway. This
causes YAP1 to translocate to the nucleus and bind to TEAD4,
which, like all TEAD family members, binds to a consensus
Tead motif40,42,45. In addition to the Hippo pathway, additional
TFs are known to be important for TSC identity, including
CDX2, TFAP2C, and GATA346–53, making TSCs an ideal system
to dissect the interactions between Hippo signaling TFs and
cell type-specific TFs in enhancer activation.
We found that the Hippo pathway effector YAP1 indeed
depends on TF cooperativity, whose genome-wide syntax
rules can be uncovered by interpretable deep learning. While
YAP1 binds directly to TEAD4, the interactions with other TFs
are sequence-driven and occur through two distinct
mechanisms that manifest themselves through soft or strict
motif syntax. We show and experimentally validate that
TFAP2C enhances YAP1/TEAD4 binding through
distance-dependent soft motif syntax, while two TEAD4
proteins also cooperate through labile protein-protein
interactions in the presence of a strictly-spaced Tead double
motif. This highly cooperative and active motif is surprisingly
widespread and has been missed as a canonical element of
the Hippo pathway because it is highly variable in sequence.
This demonstrates how deep learning models can uncover
precise sequence rules by which signaling TFs mediate cell
type-specific effects.
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Results

Deep learning model reveals binding motifs for Hippo TFs
We generated genome-wide, high-resolution binding data
for the Hippo signaling TFs (TEAD4 and YAP1) and the
potential TSC-specific partner TFs (CDX2, TFAP2C, and
GATA3) by using a ChIP-exo technique called ChIP-nexus37, in
which an exonuclease step generates narrow and sharp
binding footprints (Figures 1A, S1A). We used TSCs derived
from mouse blastocysts54 and confirmed that they retain
features of endogenous trophectoderm cells by reintegrating
them into the trophectoderm layer of blastocyst embryos in
an aggregation assay (Figure S1B). The ChIP-nexus binding
data revealed that YAP1 and TEAD4 were more correlated
with each other than any other TF pair (Figure 1B),
consistent with YAP1 binding to DNA through TEAD455–57.

We then trained the deep learning model BPNet to predict
the base-resolution binding profiles of all TFs from 187,775
reproducibly bound genomic regions (Figure 1C) by
separating chromosomes into training, validation, and test
groups to confirm model accuracy15. For all TFs, we obtained
high prediction accuracy for the read counts, as well as
footprint positions on par with the similarity between
replicate experiments (Figures S1C-D). We confirmed the
results through cross-validation on different chromosome
combinations, ensuring model stability (Figure S1E).

After model validation, we extracted the learned motifs15.
Using an attribution method58, we assigned contribution
scores to all bases in the input sequences and then
summarized de novo learned motifs as a contribution weight
matrix (CWM)59. The CWMs are then used to label motif
instances in each genomic region (Figure 1C). Since this
mapping approach relies on contribution scores, the mapped
motifs depend on the surrounding genomic context learned
by the model, thereby outperforming traditional mapping
techniques that entirely rely on match scores from a position
weight matrix (PWM)15.

As a result, the mapped motifs are highly congruent with
experimentally derived TF footprints, as illustrated by
putative enhancers for Fgfr142,60 (Figure 1D), Amotl2, Pard3b
and Krt8/1861–63 (Figures S1F-H). These genomic regions were
not seen by the model during training, yet the predicted
ChIP-nexus profiles are very similar to the experimental data,
with footprints found around mapped motifs (Figures 1D,
S1F-G). Notably, BPNet also predicted clear ChIP-nexus

binding footprints for YAP1, which lacks a DNA binding
domain57,64(Figures 1D, S1F-H). This is consistent with the
potential of neural networks to denoise data65.

Among the discovered motifs were the known consensus
motifs of the profiled TFs (Figure 1E) and two unexpected
motifs: a Tead double motif and a Gata3 double motif (Figure
1E). These motifs are directly bound by the corresponding
TFs, as confirmed by the sharpness of the average
ChIP-nexus footprints (Figure 1F). Interestingly, YAP1 also
showed sharp binding footprints on both Tead motifs in the
averaged experimental data. This is consistent with the sharp
binding footprint of YAP1 in the predictions and suggests a
tight physical association between YAP1 and TEAD4 on DNA.
In addition, we identified motifs for TFs that we did not
profile, including AP-1 (Jun/Fos), CTCF, and ELF5 (Figure S1E),
suggesting that they help the profiled TFs bind.

We next focused on YAP1 binding and analyzed whether and
how much, on average, each motif contributes to the YAP1
binding predictions (Figure 1G). The Tead motifs, which we
will refer to as Tead single and Tead double motifs, both had
a strong contribution, as expected, but the AP-1 and Tfap2c
motifs also had a sizable contribution to YAP1 binding
(Figures 1G). TFAP2C has a well-established role in
trophectoderm specification46,47,53,66–68, and AP-1 cooperates
with TEAD and YAP in cancer cell lines69–72. These data
support the model’s learned contribution of the AP-1 and
Tfap2c motifs to YAP1 binding and suggest that AP-1 has an
earlier role in trophoblast cells than previously implicated73.

However, we noted that the model did not assign all motifs
the same importance (Figure 1G). For example, CDX2 and
GATA3 were profiled because they are critical for trophoblast
identity49–51, yet neither motif was predicted to help TEAD4
and YAP1 bind. To internally validate these results, we used a
second interpretation method, in silico synthetic analysis, to
systematically test the sequence rules learned by the model
(Figure 1G). We injected a Tead single motif with or without
other motifs into a randomized sequence background and let
the model predict how much any given motif enhanced the
binding of YAP1 to the Tead single motif. The results were
similar to the previously extracted contribution scores
(Figure 1G, left), which validates our model interpretation
and lets us conclude that there are learnable rules by which
cell type-specific TFs contribute to the binding of signaling
TFs.
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Figure 1: BPNet suggests combinatorial binding motifs for Hippo TFs
A) Experimental design to map the high-resolution binding of signaling and cell type-specific TFs in mouse trophoblast stem cells. B) Spearman
correlations of the ChIP-nexus read counts between TFs at non-promoter binding regions show that YAP1 and TEAD4 binding are highly
correlated. C) Schematic of the multi-task BPNet model trained to predict ChIP-nexus TF binding footprints based on DNA sequence alone. The
interpretation tools DeepLIFT and TF-MoDISco identify and map the motifs for each TF. D) The similarity between experimentally observed and
BPNet-predicted binding for each TF at the withheld Fgfr1 enhancer (mm10-chr8:25503600-2550400) illustrates BPNet's predictive accuracy.
Experimental and predicted data each show the + strand on top and the - strand at the bottom. BPNet-mapped motifs for this region are shown
below. E) Learned motifs are shown as frequency-based position weight matrix (PWM) and contribution weight matrix (CWM), where the base
height reflects the contribution to the TF binding predictions. The two motif representations are highly similar for all TFs. F) Average ChIP-nexus
binding footprints of all TFs at BPNet-mapped motifs. The binding profiles are centered on motifs and shown as read per million (RPM) by
positive values on the + strand on top and negative values on the - strand at the bottom. Sharp footprints typically indicate direct binding of the
TF to the motif. YAP1 also has sharp footprints on the two Tead motifs despite binding indirectly. G) Contribution of each motif to YAP1 binding
as extracted from the trained BPNet model. Average profile contribution scores as derived by DeepLIFT are shown for each motif in blue (left),
while the average binding enhancement of YAP1 as derived from in silico experiments in a randomized background are shown in olive (right).
Briefly, upon injecting Tead single motif (ACATTCCTG) into randomized sequences, other TF motifs were injected at a given distance away for up
to 150 bp, and the average predicted YAP1 binding enhancement over no added side query motif was calculated (right plot).

YAP1 binding correlates with markers of enhancer activity
Having analyzed TSC-specific YAP1 binding, we wanted to
investigate whether high YAP1 binding levels are indicative of
enhancer activation. We expect YAP1 to be a strong activator
based on previous molecular evidence74–76, but many other
TFs have transactivation domains, and thus, it is unclear how
much YAP1 contributes to enhancer activation at a
genome-wide level.

Since no individual assay unambiguously measures enhancer
activity77, we performed experiments in TSCs to profile
multiple markers of active enhancers: ChIP-nexus for RNA
Polymerase II (Pol II), TT-seq to capture enhancer

transcription, ATAC-seq to measure chromatin accessibility,
and ChIP-seq for H3K27ac found on nucleosomes flanking
active cell-specific enhancers with TF-bound motifs78–80

(Figure S2A).

Based on these data, active enhancers are indeed associated
with particularly high levels of YAP1 binding, as illustrated at
an enhancer downstream of the Bmp7 gene (Figures 2A,
S2E-H). TFAP2C, TEAD4, and YAP1 show strong binding
footprints, and the contribution scores show that Tfap2c and
Tead single motifs were used by BPNet to predict YAP1
binding (Figure 2A). This region possesses all the
characteristic features of active enhancers, with central
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ATAC-seq accessibility, flanking H3K27ac signal, Pol II
occupancy, and bidirectional nascent RNA transcription
(Figure 2A).

We identified thousands of active enhancers in this way and
focused on active enhancers near important trophoblast
genes for further characterization. Named after the
corresponding gene, these include a Rin3, Ezr, Cited2,
Amotl2, Bmp7, Dst, and Tjp1 enhancer, respectively. They
were validated by cloning the minimal central region into a
luciferase reporter assay and measuring their activity in TSCs
(Figure S2B).

To visualize the global correlation between YAP1 binding and
the markers of enhancer activity, we selected all TEAD4
peaks containing its mapped motifs; we then compared the

5,000 regions with the highest YAP1 binding to 5,000 regions
with median levels of YAP1 binding (Figure 2B). The top YAP1
bound regions showed strong H3K27ac signal, Pol II binding,
and nascent transcription adjacent to the central region,
while no strong evidence of enhancer activity was observed
for the more lowly bound set (Figure 2B).

Finally, we directly examined the correlation between each
TF’s binding and enhancer activity markers (H3K27ac, Pol II,
and nascent RNA) (Figure 2C). Using each TF’s top 4,000
non-promoter ChIP-nexus peaks containing their motifs, we
found that among all TFs, YAP1 binding correlated best with
the enhancer activity markers. Given the strong
transactivation potential of YAP174–76,81, we conclude that
YAP1 binding is an important determinant for enhancer
activation in TSCs.

Figure 2: YAP1 binding correlates with enhancer activity markers
A) An example of an active enhancer ~100 kb downstream of the Bmp7 gene, showing ChIP-nexus TF binding for TFAP2C, TEAD4, and YAP1
alongside BPNet-mapped motifs Tead and Tfap2c and predicted YAP1 binding contribution. The additional tracks are the fragment coverage for
ATAC-seq, H3K27ac ChIP-seq, stranded Pol II ChIP-nexus data, and nascent-RNA-seq derived from TT-seq. B) Profile heatmaps of TEAD4 and YAP1
ChIP-nexus data at the 5,000 TEAD4 peaks with the highest YAP1 binding (top) and 5,000 peaks with median YAP1 binding (bottom). Each row
represents a region with normalized signal intensity. Note the active enhancer signature of H3K27ac ChIP-seq, Pol II ChIP-nexus, and stranded
Nascent-RNA reads at the regions with the highest YAP1 (top). C) A heatmap depicting Spearman correlations between ChIP-nexus TF binding
and enhancer activity markers (H3K27ac, Pol II, and nascent RNA) at the top 4000 non-promoter peaks containing their corresponding motif.
YAP1 correlates best, followed by TFAP2C.

Enhancer activation involves DNA distance-dependent TF
cooperativity
If the binding of YAP1 can both determine enhancer
activation and be enhanced by cell-specific TFs, we would
expect the corresponding motifs of cell-specific TFs to
activate transcription synergistically. Synergistic activation by
two motifs has been documented16,82–84, but the mechanisms
are not clear and could vary. Hence, it is important to
understand whether YAP1’s cooperativity with cell
type-specific TFs is mechanistically connected to its ability to
drive enhancer activation. To address this, we experimentally

tested whether the BPNet-derived syntax rules regulate
enhancer activity.

We focused on Tead single (to which YAP1 binds through
TEAD4) and Tfap2c motifs since this motif pair is frequently
found at active enhancers (Figure 2). Additionally, genes near
these active enhancers are enriched for cell fate
commitment and GTPase regulation (Figure S2C), consistent
with previous studies42,50,53,66.

We first tested for synergistic activation by performing
luciferase assays using the 200 bp minimal Bmp7 enhancer,
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which has a Tead single and Tfap2c motif (shown in Figure
2A). We perturbed combinations of these motifs by mutating
the two bases of each motif that contributed most to the
predictions and confirming through our model that this led
to decreased YAP1 binding (Figure S2D). Luciferase assays
showed that mutating either motif alone was sufficient to
strongly reduce the activity while mutating both almost
completely abolished the activity (Figure 3A). Thus, each
motif in the Bmp7 enhancer produced only moderate activity
alone, while together, they resulted in activity that exceeded
the sum of each motif’s effect. These results show that the
Tead single and Tfap2c motifs mediate activation
synergistically, presumably at least in part by increasing YAP1
binding.

To understand the syntax rules by which Tead single and
Tfap2c motifs recruit YAP1, we tested for soft motif syntax by
determining whether shorter distances between the motif
pair have a bigger impact on YAP1 binding than longer
distances. We found that short distances of <70 bp were
strongly overrepresented over longer distances in our
genomic regions (Figure 3B, S3A). Moreover, when we
examined genomic regions with spacings up to 160 bp, we
found that closer distances showed visually stronger
contribution scores toward YAP1 binding (Figures 3C, S3C-D).
This confirms that TFAP2C enhances YAP1 binding in a
distance-dependent manner.

We next investigated whether TFAP2C directly helps the
recruitment of YAP1 or whether the effect on YAP1 binding is
mediated through binding cooperativity between TEAD4 and
TFAP2C (Figure 3D). To distinguish between these
possibilities, we performed in silico experiments in
randomized sequences, where we injected Tead single and
Tfap2c motifs at distances up to 150 bp and recorded
BPNet’s predicted binding enhancement of TEAD4, YAP1, or
TFAP2C due to the nearby motif. This revealed that YAP1 and
TEAD4 binding both depend on the distance of the nearby

Tfap2c motif, causing both an over 2.5-fold increase in
binding when the Tfap2c motif is close (Figures 3D, S3B).
Notably, the reverse was not necessarily true: TFAP2C
binding was not substantially increased (<1.5-fold) in the
presence of a nearby Tead single motif (Figure 3D) but
showed some increase in the presence of a Tead double
motif (Figures S3B, S3D). The distance dependence and
directionality by which the Tfap2c motif enhances YAP1
binding is characteristic of soft motif syntax15.

To validate the Tead single-Tfap2c soft motif syntax, we
performed luciferase reporter experiments on the Rin3, Dst,
and Adcy7 enhancers. Using BPNet predictions as a guide for
designing experiments, we changed the distances between
the Tead single and Tfap2c motifs by deleting a motif
through minimal mutations and introducing a new motif at a
different location. In all three cases, the reporter activity of
the enhancer changed in the expected direction. For
example, when we moved the Tead single motif in the
minimal Rin3 enhancer further away from the Tfap2c motif
(from 20 bp away to 60 bp away), BPNet predicted lower
TEAD4 binding (Figure 3E). This lower binding mirrored the
lower activity measured in the luciferase assay (Figure 3F).
Moving the two motifs closer to each other increased the
luciferase reporter activity of the minimal Dst and Adcy7
enhancers (Figure S3E).

To confirm that these distance effects are also observed in
the genomic context, we performed CRISPR-Cas9-induced
mutations using homologous recombination on the
endogenous Rin3 enhancer (Figure S3F). ChIP experiments
on this edited cell line confirmed the reduced TEAD4
binding, H3K27ac, and Pol II levels at the Rin3 enhancer
(Figure 3G), while other enhancers remained unchanged
(Figure S3G). This demonstrates that changing the distance
between motifs through controlled minimal mutations
measurably affects enhancer activation in an in vivo
endogenous context.
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Figure 3: Enhancer activation involves DNA distance-dependent cooperativity
A) Luciferase assay, performed across three biological replicates, using 200 bp of the Bmp7 enhancer (mm10-chr2:172,760,183-172,760,382)
shows that the Tead single and Tfap2c motifs function synergistically, producing reporter activity greater than the sum each individual motif B)
Tead single and Tfap2c motifs important for YAP1 binding are enriched at short distances, calculated as the odds ratio of the frequencies
observed for wild-type over permuted regions. Significance was denoted by *p < 10−5 using Pearson’s chi-squared test. C) Heatmap showing
BPNet contribution scores of YAP1 binding across regions with one Tead single and one Tfap2c motif, ordered by the distance between the
motifs (up to 160 bp). The contribution from the Tfap2c and Tead single motif decreases with larger distances. D) During in silico analysis, motifs
are injected into randomized sequences, and BPNet is used to predict the average enhancement of TF binding to its motif (center) in the
presence of a side motif 15. The results show a strong distance-dependent enhancement of TEAD4 and YAP1 binding in the presence of a Tfap2c
motif. E) Predicted TEAD4 binding at the wild-type Rin3 enhancer where the Tfap2c and Tead single motifs are 20 bp apart (left) and after the
distance was increased to 60 bp between motifs (right). The motif was moved by inserting a new motif further away and mutating the most
important bases within the Tead single motif at its original position. F) Luciferase assays of the wild type and mutated 200 bp minimal Rin3
enhancer were performed in three biological replicates and normalized to the empty vector control. Significance was determined by a student’s
t-test (p < 0.05). G) After mutating the endogenous Rin3 enhancer in the same way through sequential CRISPR, TEAD4 ChIP-nexus binding (left),
H3K27ac ChIP-seq levels (center), and Pol II ChIP-nexus occupancy (right) were all reduced compared to wild-type experiments (WT).
Measurements are normalized reads per million (RPM) for ChIP-nexus, mean of log2(H3K27ac/WCE reads) in a 2 kb window for ChIP-seq data.

The Tead double motif is a canonical element of the Hippo
pathway
Having observed TF binding cooperativity with soft syntax,
we next examined whether BPNet also learned examples of
strict syntax. Indeed, the double motifs for TEAD4 and GATA3
(Figure 1E) could be strictly spaced composite motifs, where
two protein domains bind cooperatively through
protein-protein interactions24,85,86. In support of this, a
different palindromic GATA motif is bound by two GATA zinc
fingers87,88. However, we were particularly interested in the
Tead double motif and its role in the Hippo signaling
pathway.

Close inspection of the literature revealed an interesting
conundrum. The Tead double motif has typically not been

identified when using traditional analysis approaches on
genomics data42,89 and is not considered a canonical response
element of the Hippo pathway42,90,91. However, it has been
discovered multiple times in the past76,92–95. The first
characterization occurred on the SV40 enhancer, but its
identity remained unclear since it did not resemble the Tead
single motif96–100. Even when the Tead double motif was later
independently discovered in Drosophila and cancer
cells76,92–94, it was unknown how widespread its role might be
in mediating the response to Hippo signaling.

In contrast to previous studies, which identified the motif
only rarely and in low numbers, we discovered and mapped
thousands of Tead double motifs in TSCs. These are not
spurious motifs since they have sharp TEAD4 ChIP-nexus
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footprints and thus are bound in vivo (Figure 4A). This
suggests that BPNet is uniquely suited to robustly discover
such motifs. Notably, BPNet learns motifs through its
contribution to TF binding rather than relying on statistical
overrepresentation15. Indeed, the optimal spacing of the
Tead double motif is not found more frequently than other
spacings in the genome, e.g., a relative spacing of +2 bp is
more frequent (Figure 4B). Moreover, BPNet has been shown
to learn relative motif affinities17,20,23,101 and thus might be
adept at learning degenerate versions of a motif.

Consistent with degeneracy, we found that our mapped Tead
double motifs had an unusually large number of mismatches
to the consensus (Figure 4C). Among the mapped Tead single
motifs (67,241), the vast majority fall into 21 commonly
occurring patterns, with high-affinity motifs being the most
frequent (Figure 4C left). In contrast, only 1,049 (6%) of the
mapped Tead double motifs fall into 38 sequence patterns
with 10 or more instances. Thus, the exact sequence pattern
of the Tead double motif is highly variable (Figure 4C right).
Furthermore, the sequence patterns with the highest
predicted affinity are not the most frequent (Figure 4C). The
highly variable pattern of the Tead double motif explains why
degenerate versions, e.g., the one on the SV40 enhancer
(Figure S4A), are difficult to identify using traditional motif
discovery methods, while BPNet learns that they are
widespread despite their variability.

Having confirmed the surprisingly widespread occurrence of
the Tead double motif, we next tested whether the motif
mediates enhancer activation (Figures 4D-E). Using the
Cited2 enhancer, we replaced its high-affinity Tead single
motif with a Tead double motif of either higher or lower
affinity. BPNet predicted that the strong Tead double motif
caused a large increase in TEAD4 binding, while the weaker
one caused a reduction in binding (Figure 4D). When assayed
in a luciferase assay, the strong Tead double motif caused an
over 8-fold increase in activity compared to the wild-type
Tead single motif. Interestingly, even the weak Tead double
motif with low TEAD4 binding showed increased activity
(~1.9 fold) over the Tead single motif (Figure 4E). This shows
that the Tead double motif is active even at lower affinity.

Finally, we asked whether the Tead double motif is specific
for TSCs or whether it is also bound by TEAD family members
in other cell types. When we analyzed BPNet models trained
on TEAD1-4 ChIP-seq data from the ENCODE portal102,103

(https://www.encodeproject.org/)), we found that BPNet
discovered the Tead double motif in diverse human cell types
(Figure S4B). This suggests that the Tead double motif has
often been missed because it is variable but that it is, in fact,
a widespread canonical motif of the Hippo pathway.

Figure 4: The Tead doublemotif is widespread, highly variable, and active
A) BPNet-mapped Tead single and double motifs are bound by TEAD4 in TSCs in vivo, as sharp ChIP–nexus footprints are consistently observed
on the + strand (blue) and the - strand (red) for both motifs on regions with ChIP–nexus reads. Distance in bp is shown relative to the left side of
the motifs. B) BPNet predicts higher TEAD4 binding when two high-affinity Tead single motifs have the optimal spacing compared to other
spacer lengths, although the optimal spacing is not more frequent (number # of regions shown in red). Predictions were performed after
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injecting the different motif spaced sequences into random sequences and summed signal in a 50 bp window of the injected motif and averaged
across all random sequences. C) The Tead single and double motifs were grouped into sequence patterns shown, where pattern frequency was
in the top 90th percentile and equal to or more than 10. The contribution weighted matrix (CWM) logo of the same sequences is shown on top
for clarity. Regions were sorted by relative motif affinities (on the left in green), and their frequency is shown (on the right in purple).
High-affinity Tead single motifs occur most frequently, while Tead double motifs do not (red arrow). D) At the Cited2 enhancer, a single Tead
motif was replaced with a Tead double motif, either a strong or a weak one, and the TEAD4 binding profile was predicted by BPNet (200 bp
centered on the left side of the motif is shown). E) Luciferase assay of the 200 bp minimal Cited2 enhancer
(mm10-chr10:17,579,590-17,579,789) normalized over the empty vector control. Experiments were performed with three different motifs, each
with three biological replicates.

TEAD4 cooperativity through labile protein-protein
interactions
The high binding and activity of the Tead double motif likely
stems from two TEAD4 molecules binding cooperatively,
consistent with previous gel shift assays92–94,97. In the simplest
scenario, the binding is cooperative because the ternary
complex is stabilized on DNA through protein-protein
interactions, as observed in crystal structures of other TFs
interacting on DNA104–110. However, the exact nature of this
cooperativity and how it manifests in the genome in vivo is
not well understood. We therefore, explored the
genome-wide rules of cooperativity learned by BPNet while
simultaneously conducting all-atom molecular dynamics
(MD) simulations to characterize this type of binding
cooperativity from a structural perspective (Figure 5).

The MD simulations were performed by placing two TEAD4
binding domains (PDB:5GZB)111 on DNA containing the
high-affinity Tead double motif from the Tjp1 enhancer
(Figure 5A). This ternary complex remained stable during the
simulations over 500 ns, allowing us to quantify the
protein-DNA and protein-protein interactions over time
(measured as buried surface area Å²) (Figure 5B) and identify
the interacting amino acid residues, which we found to be an
integral part of the TEA DNA-binding domain and highly
conserved between TEAD family members and across
evolution (Figure 5C). As a control, we performed MD
simulations after mutating the Tead motif on either side and
after changing the spacing between the two Tead motifs
through a 1-bp deletion or 1-bp addition in the middle
(Figures 5A and S4D-F), red line histogram) since BPNet
predicted that the TEAD4 binding footprint was strongest on
the correctly spaced Tead double motif (Figure 5D).
We found that in the presence of the correctly spaced
high-affinity Tead double motif, the two TEAD4 molecules
showed the strongest protein-protein interactions between
(Figures 5E, S4D-F). Notably, these interactions changed
dynamically on the scale of ~100 nanoseconds (Video:
supplemental file 1) and varied in their molecular details
over time (Figure 5E). For comparison, 100 nanoseconds are
much faster than the 10s of microseconds seen for stable
protein-protein complexes112. Furthermore, the measured
interaction strength is lower than that between the
c-Jun-ATF-2 or RelA-p50 dimers in the enhanceosome crystal
structure but similar to the other protein-protein
interactions in that structure (Figure S4C). This suggests that
the Tead double motif serves as a DNA template that
facilitates labile interactions between the two TEAD4 binding
domains on DNA24,113.

To probe for further similarities between our structural and
deep learning models, we derived relative motif affinities
from each model. This investigation was prompted by an
unexpected observation in the MD simulations: although we
used a high-affinity Tead double motif with identical core
Tead motifs on each side, we found that in the given
orientation, the left motif had stronger interactions with
TEAD4 than the right motif (turquoise versus blue histogram,
Figure 5E). Therefore, we tested whether BPNet had learned
a similar binding asymmetry for the same sequence. When
we mutated each Tead motif of the Tead double motif, BPNet
predicted higher TEAD4 binding on the left side than the
right (Figures 5F, S4G), consistent with the MD simulations
(Figure S4D). This asymmetry was experimentally validated
using luciferase assays in the context of the Tjp1 enhancer
(Figure 5G). As an additional example, we analyzed the
low-affinity Tead double motif in the context of the Amotl2
enhancer (Figures S4E, S4H-I), which showed a similar
asymmetry that we then validated by luciferase assays
(Figure S4J).

We next leveraged BPNet's ability to accurately predict
TEAD4 binding on individual Tead motifs versus the entire
Tead double motif to analyze the cooperative binding
behavior genome-wide. We did not observe a consistent
asymmetry between the two sides of the double motif,
indicating that the contribution strength from each side
varies. However, we found that Tead double motifs showed
consistently strong cooperativity, with an average of ~4-fold
higher TEAD4 binding than expected from an additive model
of two single Tead motifs (Figure 5H).

To test whether the cooperativity was general or specific to
TSCs where the Hippo pathway is active, we performed
TEAD4 ChIP-nexus experiments in mouse embryonic stem
cells (ESCs) where YAP1 is not nuclear40. We then trained an
independent BPNet model as before but only on TEAD4
ChIP-nexus data in ESCs. We found that TEAD4 binding was
lower with fewer bound instances of the Tead double motif,
but we still observed cooperativity with a >2-fold increase
over the additive signal (Figures 5I, S4K). This confirms that
some of the cooperativity on the Tead double motif is
mediated through TEAD4 without requiring YAP1, consistent
with the MD model.

In summary, despite being derived independently by very
different methods, the MD and BPNet models revealed
similar rules on the cooperative binding of TEAD4 on the
Tead double motif. Both revealed similar binding strengths
for the individual Tead motifs, showing the strongest
cooperativity when combined at optimal spacing in the Tead
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double motif. This is striking, as MD modeling explains TEAD4
cooperativity via labile protein-protein interactions, while
the BPNet model exhibits this same cooperativity through

predictions of TEAD4 binding across thousands of Tead
double motifs genome-wide.

Figure 5. BPNet and MD simulations reveal quantitative details of TEAD4 cooperative binding at double motifs
A) Using the known structure of human TEAD4 bound to a single motif111, we constructed a model of two TEAD4 DNA binding domains
simultaneously bound to a high-affinity double motif (top). The graphic (below) shows which interactions were measured to quantify binding
strength. A video of the simulation, showing the dynamics of the protein-protein interaction, is included as supplemental file 1. B) Residues
involved in interprotein interactions in the TEAD4 DNA binding domain over the course of the simulation. A representative frame magnified
shows hydrogen bonding between R64 and E48. Residues closer than 4 Å in at least 20% of simulation frames are shown. C) The residues
involved in protein-protein interactions are conserved across orthologs of Drosophila Scalloped, mouse TEAD4, and human TEAD4, as measured
by multiple sequence alignment of Clustal Omega using UniProt id (P30052, Q62296, Q15561). D) When injected into random sequences, BPNet
predicts lower TEAD4 footprints across the 1-bp deletion, suggesting optimal spacing is important for the cooperativity as in the MD simulations
on the right. E) Buried surface area distributions from two MD simulations of TEAD4 models. The values from the canonical, high-affinity double
motif (GCATTCCCGACATTCCC) are shown as solid areas, and the corresponding values from a 1-bp deletion (GCATTCCCxACATTCCC) are shown as
a red line. The protein-protein interaction values are lower when simulating the 1-bp deletion of the TEAD4 double motif, suggesting lower
cooperativity between TEAD4 proteins at suboptimal spacing. The mean protein-DNA interaction also decreases in the deletion, suggesting that
the whole complex is less stably bound to the DNA. F) BPNet predicted TEAD4 binding on the wild-type double motif (GCATTCCCGACATTCCC)
and on the same sequence where either the left (GCGGTCCCGACATTCCC), the right (GCATTCCCGACCGTCCC), or both (GCGGTCCCGACCGTCCC)
Tead single motif component of Tead double are mutated. Predictions were performed after injecting the motif sequences into random
sequences and summed signals in a 100 bp window of the injected motif and averaged across all random sequences. G) Normalized luciferase
assay of the 200 bp genomic region (mm10-chr7:65,430,487-65,430,686) consisting of the motif or its mutant variants, as described in D), were
performed as three biological replicates. H) All CWM-mapped Tead double motifs grouped by sequence were injected into random sequences
either as a whole or each half to predict the sum signal in a 50 bp window, averaged across all random sequences, and ordered TEAD4 binding in
mouse TSCs. I) same as in Figure H), but derived Tead double motifs and predictions were in mouse ESCs.

A redesigned enhancer shows that the Tead double motif
increases gene activation in mouse embryos
As a final validation, we confirmed that the Tead double
motif mediates the response to the Hippo pathway in vivo.
Since the Hippo pathway is inactive and YAP1 is nuclear in
cells outside the embryo, we added the Tead double motif to
an endogenous enhancer in TSCs and reintegrated these cells

into mouse embryos. We selected the Ezr enhancer because
it contains a Tead single motif, has all the hallmarks of being
an active TSC enhancer (Figure S2F), and its target gene Ezr
encodes an actin-associated protein that is highly expressed
in TSCs53,114,115. We hypothesized that replacing the Tead
single motif with a high-affinity Tead double motif would
increase the enhancer’s activity in vivo.
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While it is typically easy to destroy the activity of an
enhancer by mutating relevant TF motifs34, it is more
challenging to engineer mutations that increase the activity
since sequence changes can have unexpected side
effects30,31. However, deep learning models are ideal for
exploring and evaluating possible mutations, as shown in
Drosophila16,116. We, therefore, used BPNet to replace the
Tead single motif with a Tead double motif while maximizing
TEAD4 binding (Figure 6A, left).

We then used CRISPR-Cas9-induced homologous
recombination to edit the endogenous enhancer in our TSCs
(Figure S5A). We performed TEAD4 ChIP-nexus experiments
on the edited cells and found that the TEAD4 binding
footprint indeed matched the one predicted by BPNet
(Figure 6A, right, and Figure S5B). We also tested the
modified enhancer sequence in the luciferase assay and
found it to increase enhancer activity compared to the
wild-type sequence (Figure S5C). The increase was moderate
(~1.5-fold), likely because the wild-type enhancer activity
was already high to begin with. To test whether this change
affects the expression of Ezr, we performed RNA-seq on the
edited cells with the Tead double motif and the wild-type
cells with the Tead single motif. This revealed a moderate
(1.5 fold), statistically significant increase in Ezr transcript
levels in the edited cells (Figure 6B).

We next tested whether this edit increases Ezr expression in
mouse embryos. We marked the edited TSCs (and wild-type
TSCs as control) with Td-Tomato, aggregated these cells with
early mouse embryos at the 4-8 cell stage, and analyzed the
embryos when they reached the blastocyst stage, where the
outer trophectoderm (TE) cells are clearly distinguishable
from the inner cell mass (ICM) by their expression of Cdx2.
We performed HCR-FISH to precisely quantify the expression
of Ezr and Cdx2 in these embryos (Figures 6C, S5D-F).

Ezr transcripts were specifically increased in edited cells but
not wild-type cells, and only when they became TE cells with
nuclear YAP1 (Figure 6C, right). Not all added TSCs
maintained their TE identity but occasionally lost Cdx2
expression and acquired ICM identity (Figure S5E), consistent
with cell fate plasticity at this stage43. Notably, when the
edited cells lost TE identity, Ezr transcripts were no longer
increased. These findings show that the increased activity of
the Tead double motif is specific to the cell type with active
YAP1. They also demonstrate that, with the help of BPNet’s
powerful predictive framework, enhancers can be
manipulated toward cell type-specific activities and functions
in vivo.

Figure 6: Enhancer design using BPNet and CRISPR-Cas9 increases target gene activity in mouse embryos
A) At the Ezr enhancer in mouse TSCs, the Tead single motif in the wild-type (WT) sequence was mutated (Mut) into a strong Tead double motif
through CRISPR-Cas9 mediated homologous recombination. BPNet predicts increased TEAD4 binding (left), which was confirmed with
ChIP-nexus experiments (right), normalized to reads per million (RPM). (mm10-chr17:6,827,705-6,827,905). The lime box represents the motif
width. B) RNA-seq data normalized to transcript per million (TPM) in wild-type (WT) and mutant (Mut) cells. The p values for differential
expression were derived using the edgeR package applied to three independent biological replicates. C) HCR-FISH was performed on aggregated
mouse blastocyst embryos with wild-type (WT) or mutant (edited Ezrup) cells for probes Cdx2, Ezr, and td-Tomato. D) Quantification of average
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Ezr counts (average Cdx2 counts shown in Figure S5E). Ezr transcripts were significantly increased for edited cells but not for wild-type cells
among Cdx2+ trophectoderm (TE) lineage cells (student’s t-test p < 0.05).

Discussion

Here, we demonstrate how interpretable deep learning of
high-resolution binding data identifies the cell-type-specific
TFs that govern the transcriptional response of a signaling
pathway. Using the Hippo pathway in mouse trophoblast
stem cells as a model system, we show that the downstream
component, nuclear YAP1, directly binds to TEAD4 as
expected but that the other TF partners can be identified
through the sequence rules that predict YAP1/TEAD4 binding
levels. Since the deep learning model learns the rules de
novo inside a “black box,” contributing TF motifs can be
discovered even when the corresponding TF is not profiled.
For example, in addition to TFAP2C, we found that AP-1 was
also predicted to strongly contribute to YAP1 binding,
consistent with evidence from other cell types69–72. The input
from these partner TFs is predictive for enhancer activation
and target gene expression and can be validated
experimentally in vivo. Taken together, these results
demonstrate that the target gene specificity of signaling
pathways is read out by cis-regulatory sequences and that
deep learning models are well suited to learn the complex
sequence rules by which this occurs.

The extracted genome-wide sequence rules also provide
insights into the mechanisms by which TFs boost the activity
of signaling pathways. The syntax rules by which each TF
motif enhances YAP1/TEAD4 binding levels as a function of
distance fall into two categories: soft and strict motif syntax.
This suggests that signaling pathways use at least two types
of TF binding cooperativity. Both require DNA sequence as a
template and require either no direct interactions or only
very labile interactions between the cooperating TFs, which
has implications for learning the rules of the cis-regulatory
code across cell types. Our study also illustrates the power
and limitations of using deep learning to derive the complex
cis-regulatory rules that drive enhancer activation.

The first type of cooperativity by which signaling pathways
receive input from cell type-specific TFs is through soft motif
syntax, which we have characterized and validated for YAP1
and TFAP2C. In this type of TF cooperativity, binding
enhancement occurs when the motifs are spaced within
~150 bp and are strongest the closer the motifs are. Such
sequence rules point to nucleosome-mediated
cooperativity15,20,26,117–121 and may reflect the likelihood by
which two motifs are covered by the same nucleosome.
Although the mechanism is not well understood, it does not
require specific interactions between TFs, which explains
how signaling TFs can receive input from a wide variety of
TFs in different cell types.

While nucleosome-mediated cooperativity is a flexible
mechanism, we nevertheless found that some TFs had a
much stronger contribution to YAP1 binding than others,
suggesting that specific properties make them better partner
TFs. The ability of TFs to bind and remove nucleosomes is

such a key property15,20, but not all TFs that open chromatin
necessarily help other TFs bind, and TFs could also contribute
to YAP1 binding by activating transcription or forming
condensates20,122. TFAP2C likely enhances TEAD4 binding by
pioneering chromatin123,124, but it also interacts with
co-activators to mediate activation125 and could help YAP1
form condensates75,81. Regardless of the mechanism, the
input will likely also depend on the TF’s changing
concentration over time, thus providing a means by which
the input of TFs changes gradually during developmental
transitions.

Although we set out to characterize the cell type-specific
input to Hippo signaling, we also discovered a previously
overlooked canonical response element of the pathway:
Tead double motifs. These motifs use strict motif syntax and
are much more widespread than previously observed. They
are highly variable in sequence and mediate strong
cooperativity even with many mismatches to the consensus;
thus are an example of weak motifs with strong syntax126. As
shown with MD simulations, this strong cooperativity results
from DNA-mediated cooperativity, where the correctly
spaced double motif brings two TEAD4 proteins in proximity
to facilitate labile protein-protein interactions. We propose
that such labile interactions are well suited for this type of
cooperativity since they are strong enough to stabilize the
complex but weak enough to be highly dependent on
matching DNA sequences and thus read out the
cis-regulatory code.

We note that this type of cooperativity is difficult to discover
on a larger scale. Such labile protein-protein interactions
cannot easily be predicted based on protein structures, and
the sequence degeneracy of these motifs makes it
challenging to discover them in the genome. This explains
why the Tead double motif has occasionally been discovered
in the past at low numbers yet has, as of now, not been
considered a canonical element of the Hippo pathway. This
type of cooperativity must, therefore, be discovered
experimentally, either in vitro85 or through interpretable
deep learning of genomics data, as we have done here. The
improved discovery of TF motifs and syntax rules is,
therefore, a key strength of this approach.
Another key strength of deep learning models is their
predictive accuracy, which we leveraged here to design our
experiments. Since BPNet accurately predicts the
experimental outcome for sequences it has never seen
during training, we can perform minimal mutations and
predict the outcome of many experimental designs before
choosing ones to pursue. In this manner, we changed a Tead
single motif into a Tead double motif in an endogenous
enhancer and showed that this increases the target gene
expression in a cell type-specific manner in vivo. In the
future, such focused sequence manipulations could be used
to study and evaluate the potential impact of naturally
occurring sequence variants and could help create enhancers
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with specific desired properties while minimizing side
effects6.

A limitation of our approach is that it depends on
high-quality binding data in the cell type of interest. While
lower resolution data (ChIP-seq) can also be modeled by
BPNet 15,127(see analysis of TEAD ENCODE data), it remains
uncertain whether all relevant sequence rules were learned
and extracted from the model. Even with the best data,
careful analysis may reveal some limitations of the model.
For example, we noticed that YAP1 binding correlates better

with enhancer activity markers than TEAD4 binding, yet the
model interrogation suggested that YAP1 binding is mostly
boosted through increased binding of TEAD4. Therefore,
additional sequence rules may boost YAP1 binding, e.g.,
through enhancer-enhancer interactions75,81, which we did
not model. We also did not model how enhancers regulate
specific target genes, which is an important problem but
beyond the scope of this study. In the future, it will be
interesting to model how our derived enhancer rules are
integrated into the larger genome context.

Data and code availability

The raw and processed data for ChIP-nexus, ChIP-seq,
ATAC-seq, TT-seq, and RNA-seq experiments have been
deposited in GEO under series accession number GSE252463
and will be available following review. A web-accessible
directory of the genomic datasets used in the paper can be
viewed on the UCSC Genome Browser: Link.

The ChIP-nexus protocol and the data processing description
can be found at
https://research.stowers.org/zeitlingerlab/protocols.html.
The trained BPNet model will be available at Zenodo and
Kipoi following review. Original data, including MD
simulation trajectories and microscopy images, can be
accessed from the Stowers Original Data Repository at
http://www.stowers.org/research/publications/libpb-2440
following review. All code used to process and analyze the
data can be accessed at
https://github.com/zeitlingerlab/Dalal_hippo_signaling_202
4.
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Methods

Mouse stem cell culture
Mouse trophoblast stem cells (TSCs) were a gift from Vijay
Pratap Singh and were maintained in a feeder-free culture as
described54. Briefly, feeder conditioned medium (Feeder-CM)
was prepared by culturing γ-irradiated MEFs (mouse
embryonic fibroblasts) in TS medium (RPMI 1640 medium,
FBS 20%, 50 μg/mL of Penicillin and streptomycin (100×), 1
mM of Sodium pyruvate (100 mM), 0.1 mM of
β-Mercaptoethanol (20 mM), 2 mM GlutaMAX (200 mM) for
72 h and then filtered with a 0.45 μm filter. 70% Feeder-CM
plus 30% TS medium (70cond) supplemented with growth
factor FGF4 (R&D System) and heparin (Sigma) (70cond +
1.5x F4H Medium) was used to maintain TSCs in feeder-free
conditions. Mouse embryonic stem cells (ESCs) were
cultured and maintained as previously described15.

ChIP-nexus, PAtCh-Cap, and ChIP–seq experiments
For each ChIP-nexus experiment, 10e6 TSCs were used. Cells
were washed with PBS and cross-linked with 1%
formaldehyde (Fisher Scientific) in PBS for 10 min at RT. The
reaction was quenched with 125 mM glycine. Fixed cells
were washed twice with cold PBS and resuspended in cold
lysis buffer (15 mM HEPES pH 7.5, 140 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.5%
N-lauroylsarcosine, 0.1% sodium deoxycholate and 0.1%
SDS), incubated for 10 min on ice and sonicated with a
Bioruptor Pico (Diagenode) for five cycles of 30s on and 30s
off. The ChIP-nexus procedure and data processing were
performed as previously described37, except that the
ChIP-nexus adapter mix contained four fixed barcodes (ACTG,
CTGA, GACT, and TGAC), and PCR library amplification was
performed directly after circularization of the purified DNA
fragments (without the addition of the oligo and BamHI
digestion). PAtCh-Cap was performed as previously
described128 with 10% of sheared chromatin from 10e6 TSCs.
ChIP-seq experiments, including a whole cell extract (WCE)
control, were performed as described129 with 10e6 TSCs per
ChIP. For each ChIP, 5-10 μg of antibody was coupled to
50-100 μl of Protein A or Protein G Dynabeads (Invitrogen).
The following antibodies were used: anti-TFAP2C (R & D
systems, no. AF5059), anti-TEAD4 (Abcam, no. ab58310),
anti-CDX2 (Bethyl Laboratories, no. A300-692A), anti-GATA3
(Cell Signaling, no. 5852T), anti-YAP1 (Cell Signaling, no.
14074S), anti-Pol II (Cell Signaling, no. D8L4Y), anti-H3K27ac
(ChIP-seq) (Active motif, no. 39135). For all experiments, at
least two biological replicates were prepared–that is, the
experiments were performed on different days, starting with
cells from a different passage number. Single-end sequencing
was performed on an Illumina NextSeq 500 instrument (75
cycles). The full ChIP-nexus protocol can be found on the
Zeitlinger lab website at
https://research.stowers.org/zeitlingerlab/protocols.html.

Luciferase assays
Selected genomic regions of range 175-200 bp were
synthesized using GeneArt Strings DNA fragments along with
restriction enzyme sites for with Kpn1 (NEB, R0142) and XhoI
(NEB, R0146) to clone in pNL3.2 vector. pNL3.2 vectors

(Promega) were digested and cloned using an Infusion
master mix (Takara) upstream of the luciferase gene. Stellar
competent cells (Takara) were used for transformation and
downstream miniprep (Qiagen), following the
manufacturer's protocol. The cloned sequences were
confirmed using the Sanger sequencing method. 2.5e5 TSCs
were used to transfect a total of 500 ng DNA with
lipofectamine2000 in a ratio of 1:2 (DNA to
lipofectamine2000), following the manufacturer's protocol.
Cells were co-transfected with 1:100 ratio of control
(pGL4.54[luc2/TK]) and reporter construct
(pNL3.2[NlucP/minP]). Cells were transfected in suspension
for 15-20 min and resuspended with media to grow in each
well of the 24-well plate.

Luciferase assays were performed using a Dual-Glo luciferase
assay system (Promega). After 24h, cells were harvested, and
the NanoDLR assay protocol was followed per the
manufacturer's instructions to take luminescence
measurements with SpectraMax iD3 Plate Reader. Reporter
luminescence signals were normalized according to their
corresponding control luminescence signals, resulting in
relative luciferase activity. Replicate luciferase assay
experiments were performed independently three times
(supplemental table 1 (sheet 2)).

TT-seq experiments
TT-seq experiments were performed in three biological
replicates on TSCs across three biological replicates, as
described in130

https://www.protocols.io/view/transient-transcriptome-sequ
encing-experimental-pr-3byl42y22vo5/v1. Libraries were
prepared using TruSeq Stranded Total RNA Library Prep Kit
with Ribo-Zero Gold Set to degrade rRNA. Approximately
10e6 cells were seeded in a 100 cm dish (~80% confluency)
and incubated with 500 µM of 4sU (Sigma) at 37°C, 5% CO2

for 15 min. The cells were then collected by adding 4.5 ml of
TRIzol lysis reagent (Life Technologies Corp), incubated for 5
min on ice, flash-frozen, and stored at −80°C. In the
biotinylation of the 4sU labeled RNA step,
acid-phenol-chloroform (ThermoFisher) was used instead of
chloroform.

ATAC-seq experiments
For each ATAC-seq experiment, 1e5 or 2e5 TSCs were
harvested, washed with PBS, and resuspended in ATAC
Resuspension Buffer (RSB, 10 mM Tris-HCl pH 8.0, 10 mM
NaCl, 3mM MgCl2) with 0.1% IGEPAL CA-630. Tn5
transposition was performed as previously described131,132.
Briefly, the cells were incubated for 3 min on ice in ATAC RSB
supplemented with 0.1% IGEPAL CA-630, 0.1% Tween-20,
and 0.01% Digitonin (Promega, G9441). The reaction was
quenched with ATAC RSB with 0.1% Tween-20 and
centrifugation. Tagmentation took place at 37°C and 1000
rpm for 30 min in a 50 μl reaction volume containing 10 μl of
5x Tagmentation Buffer (50 mM Tris-HCl pH 7.5, 25 mM
MgCl2, 50% DMF), 0.5 μl 10% Tween-20, 0.5 μl 1% Digitonin,
1-2 μM assembled transposome and water. Tn5 transposase
was purified in-house, as previously described133. Tn5 was
loaded with previously reported oligonucleotides
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Tn5ME-A/Tn5mC1.1-A1block and
Tn5ME-B/Tn5mC1.1-A1block134,135 by mixing equal amounts
of purified Tn5 protein and annealed oligonucleotides for 30
min at RT. After tagmentation, the DNA fragments were
purified using the Monarch PCR & DNA Cleanup Kit (NEB).
Libraries were constructed using Illumina Nextera Dual
Indexing, and qPCR was used to prevent over-amplification
as described131. At least three biological replicates were
generated, and paired-end sequencing was performed on an
Illumina NextSeq 500 instrument (2 x 75 bp).

RNA-seq experiments
TSCs wild-type and CRISPR-Cas9 edited cells were grown
separately in wells of a 6-well plate and harvested at 80%
confluency (~2e6 cells) using 500 μl of TRIzol reagent (Life
Technologies Corp). The lysate was incubated for 5 min on
ice, flash-frozen, and stored at -80°C. For RNA extraction, the
lysate was quickly thawed at 65°C, cooled on ice for 5 min,
and vortexed. Then, 100 μl of chloroform was added per 0.5
mL of TRIzol lysis reagent, shaken vigorously for 15 sec, and
incubated for 3 min. The sample was centrifuged at 4°C and
7000 x g for 25 min, and the upper colorless aqueous phase
was transferred to a new tube. 250 μl of isopropanol was
then added, incubated for 10 min at 4°C, and centrifuged at
4°C and 12,000 x g for 10 min. The total RNA precipitate
formed a white gel-like pellet at the bottom of the tube,
which was washed with 75% ethanol, air-dried for 5-10 min,
and resuspended in 20 μl of RNase-free water. DNase
treatment was performed using the TURBO DNase kit per
the manufacturer's instructions: adding 1 μl of TURBO DNase
and 2 μl of DNase buffer to the dissolved RNA and incubating
at 37°C for 30 min. To inactivate TURBO DNase, the RNA
samples were extracted with phenol/chloroform (Sigma).
The sample was centrifuged at 4°C and 7000 x g for 25 min,
and the upper colorless aqueous phase was transferred to a
new tube. 250 μl of isopropanol was added, incubated for 10
min at 4°C, and centrifuged at 4°C and 12,000 x g for 10 min.
The total RNA precipitate formed a white gel-like pellet at
the bottom of the tube, which was washed with 75%
ethanol, air-dried for 5-10 min, and resuspended in 20 μl of
RNase-free water. The samples were incubated in a water
bath or heat block set at 55-60°C for 10-15 min. The RNA
concentration was determined using a NanoDrop
spectrophotometer, and the RNA integrity was checked on a
2100 Bioanalyzer using an Agilent RNA 6000 Nano Kit.
mRNA-stranded libraries were prepared using a TruSeq
poly-A Stranded mRNA Library Prep Kit and sequenced on an
Illumina NextSeq 2000 P2 platform with 2 x 100 bp
single-end reads. Three biological replicates were performed
for wild-type and CRISPR-Cas9 edited cells.

CRISPR-Cas9 experiments
In the first CRISPR TSC line, the Tead double motif on
chr17:6,827,802-6,827,811 (mm10) was mutated from
ACATTCCAGA (wild type) to GCATTCCAGGAATTCCA (mutant).
In a second CRISPR TSC line, the Tead single motif
(CACATTCCTA) on chr12:102,262,024-102,262,033 (mm10)
was first inserted at 60 bp downstream from the TFAP2C
motif (GGGCCCCAGGGCC) and then in a second round of
CRISPR-Cas9 editing Tead single motif was mutated from

CACATTCCTA (wild-type) to CACCGTCCTA (mutant) at its
original position. crRNA target sites were designed using the
IDT target predictor tool by evaluating the predicted
on-target efficiency score and off-target potential. Alt-R
CRISPR-Cas9 crRNA was designed to contain ~40 bases of
homology from the targeted cut site (gRNA and ssODN
sequences are shown in supplemental table 1 (sheet 1)).
Equimolar amounts (stock of 100 µm) of Alt-R crRNA and
tracrRNA-ATTO550 were mixed to form gRNA at a final
concentration of 50 µM. The mixture was heated at 95°C for
5 min and cooled at RT. The single-stranded donor
oligonucleotides (ssODN) were designed to contain ~40
bases of homology from the targeted cut site (crRNA and
ssODN sequences were designed using the IDT software
tool). A ribonucleoprotein (RNP) complex was formed by
combining 150 pmol of gRNA (crRNA+tracrRNA) and
125 pmol of Cas9 HiFi v3 protein (IDT) with hybridization for
20 min at RT. The RNP was combined with 100 pmol of
ssODN donor and 100 pmol of electroporation enhancer v2
and delivered to 1.5e5 cells by Neon electroporation (1,400 V,
10 ms, 3 pulses; Neon Transfection System, MPK5000, Life
Technologies). Immediately after electroporation, cells were
cultured in 0.5 µM Alt-R HDR enhancer V2 of 0.69 mM. After
24h, cells were washed with PBS before FACS sorting on S6
FACSymphony. Single cells were directly sorted into 96-well
plates. Cells were screened for the expected mutations
through paired-end sequencing on an Illumina MiSeq
instrument (250 cycles). On-target indel frequency and
expected mutations were analyzed using CRIS.py136. Clones
with the intended homozygous mutation and sequence
alignments >90% were chosen for further experiments,
except for the 2nd CRISPR line, where we found one Indel
and SNP within 500 bp of the original Tead single motif
position, but these changes were predicted to be neutral by
BPNet.

Mice strains and superovulation
C57BL/6J (B6) strain of mice were used from the Stowers
Institute for Medical Research (SIMR) core production
colony. Three to four-week-old females were superovulated
using 5IU of PMSG (Genway Biotech), followed by 5IU HCG
(Sigma Aldrich) 46-48 h later. Following HCG, females were
paired with B6 males and checked for a copulatory plug the
next morning, indicating successful mating. Fertilized
embryos were collected from the plugged females at 1.5 dpc
(2-cell stage) by flushing M2 (Millipore) through the
infundibulum and out the uterine horn using a blunt needle.
Embryos were then incubated overnight at 37°C under 5%
CO2 in humidified air in 4-well culture dishes containing
KSOM media (Millipore). Experiments were approved by the
SIMR IACUC and were performed following the committees’
guiding principles.

Lentivirus transduction of fluorescent td-Tomato in TSCs
Two days (48 h) before the transduction of wild-type or
CRISPR-Cas9 edited (putative Ezr region edits) TSCs, cells
were seeded at 1 X 105 cells per well in triplicate with 3 ml of
media per well of 6-well plate. On the day of transduction,
cells were small-sized colonies of about 30-40% confluence;
the old media were removed and washed once with PBS and
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replaced with 2 ml of media. The cells were infected with
prepackaged lentiviral particles (constitutive reporter vector
expressing tdTomato fluorescent protein gene driven by EF1a
promoter (Takara) at MOI of 20 (Stock: 3.5e10 TU/ml) along
with polybrene (4ug/ml) (Sigma) for 24h before being
replaced with a fresh medium. Four days after transduction,
the td-Tomato-positive cells were selected using puromycin
antibiotic selection (1µg/ml) (InvivoGen) and were kept
under selection until the positive colonies reached 60-80%
confluence. Once cells reached 80% confluence, the positive
cells were FACS sorted on S6 FACSymphony, expanded, and
used for embryo aggregation experiments.

Aggregation assays to obtain chimeric embryos
To prepare the aggregation plates, six indentations on the
bottom of the 35 x 10 mm plates were made using an
aggregation needle (BLS) sterilized with 70% alcohol and
added a drop of KSOM. All drops of KSOM were covered with
mineral oil (Sigma). On the morning of the aggregation, the
embryos (8-16 cell stage) were washed through M2 and then
placed in drops of Tyrode’s solution (Sigma). After about 30
sec, the zona pellucida began to dissolve. Once the zona was
dissolved, the embryos were picked up and rinsed through a
drop of M2 to neutralize the Tyrode’s solution, then placed in
a drop of KSOM. Embryos were moved from this dish to the
aggregate plates, placing an embryo into each indentation.
Clumps of td-Tomato transduced TSCs were then picked up
with a mouth pipette and moved onto each embryo in the
aggregate plate. Once settled and in contact with the
embryo, the aggregation plates were cultured in an
incubator at 37°C under 5% CO2 in humidified air for 46-48 h
until the embryos reached the blastocyst stage. Chimeric
blastocysts were fixed with 4% paraformaldehyde
(ThermoFisher) for 20 min and washed three times with PBS
before mounting them on a glass bottom plate (Cellvis)
coated with poly-L-lysine (Sigma). Embryos were imaged
with a Zeiss LSM800, an upright confocal laser scanning
microscope.

Immunofluorescence stainings of chimeric embryos
A few fixed chimeric blastocysts were used for
immunofluorescence stainings. The embryos were washed
three times with PBS-T (PBS with 0.1% Triton X-100) and
incubated in PBS-T for one hour or longer at 4°C. Embryos
were then washed two times with PBS for 10 min each and
incubated with 300µl of superblock solution (ThermoFisher)
for 90 min at RT, before adding the primary antibodies: CDX2
(BioGenex-MU392A-5UC) and Nanog (Cell Signaling, 8822S)
with 10 μg/ml of DAPI from BioLegend:422801. The CDX2
antibody came with a signal enhancing reagent, which was
used to replace 75% of the superblock solution while
incubating with the primary antibody. The embryos were
incubated overnight at 4°C, covered from light. The next day,
the samples were washed for 10 min each three times with
PBST (0.1% Triton X-100) at RT and once with PBS at RT.
Secondary antibodies were added (biotium:20015,20047) in
special PBS (ThermoFisher) at a 1:300 dilution with DAPI 2 µl
in 1 ml of 10 µg/ml (BioLegend) and kept on light rotation for
2 h at RT. Samples were then washed three times with PBS
for 10 min. Samples were imaged immediately or kept for up

to a week at 4°C before imaging. Imaging was performed
with an upright confocal laser scanning microscope (Zeiss
LSM800) with 40x magnification. Maximum intensity Z
projections and adjustments to the brightness and contrast
were performed in ImageJ/FIJI 137. Samples larger than the
field of view were taken as tiled images and stitched with the
Grid/Collection Stitching plugin in ImageJ.

HCR-FISH on chimeric embryos
Embryos were fixed in 4% paraformaldehyde for 20 min and
washed three times in PBS + 0.2% Triton-X for 10 min each.
RNA FISH experiments were performed using HCR v3.0
(Molecular Instrument Inc.). The RNA sequences that were
used to design probes are listed along with the chosen
amplifiers and probe set size: Ezr (NM_009510.2, B4,32),
CDX2 (NM_007673.3, B1,29), tdTomato (B5,16). The
following amplifiers with Alexa fluorophore were used: 488,
546, and 647. The fixed embryos were serially dehydrated
into methanol and stored at −20°C until use. To rehydrate
the embryos, they were washed in PBS + 0.1% Triton-X
(PBST). Embryos were incubated in the hybridization buffer
for 30 min at 37°C, then in the hybridization buffer
containing the probes at 37°C for 16h. Embryos were washed
5 times with the wash buffer for 5 min each, then 2 times in
5x SSCT (5x SSC + 0.1% Tween 20). Amplifiers were
snap-cooled by heating at 95°C for 90s and cooled to RT for
30 min under dark conditions. Embryos were incubated in an
amplification buffer for 30 min at RT before adding the
amplifiers and incubating the embryos for 80 min at RT in a
humid chamber under dark conditions. Embryos were
washed 4 times in 5x SSCT for 5 min each, stained with DAPI
(10 ug/ml) from BioLegend in 5x SSCT for 30 min, and then
washed two times in 5x SSCT. Embryos were stored in 5x SSC
at 4°C until imaging. Images of labeled chimeric blastocysts
were acquired with an Orca Flash 4.0 sCMOS at full
resolution on a Nikon Eclipse Ti2 microscope equipped with a
Yokagawa CSU W1 Spinning Disk Confocal with 50 µm
pinholes. A Nikon 40x long working distance water
immersion objective, NA 1.15, was used to acquire all
channels with exposure times of DAPI: 20ms, Alexa488:
200ms, Alexa546: 250ms, and Alexa647: 250ms.

Molecular dynamics simulations
System preparation and simulation procedure: Canonical
B-form DNA was created for each simulated sequence using
Avogadro 1.2.0138. The TEAD4 structure was taken from PDB
5GZB111, and selenomethionine residues were replaced with
regular methionine by simply renaming the selenium atom
to sulfur. In order to align the protein structure from 5GZB
onto the created DNA structures, we aligned the phosphorus
atoms from the 4th to 10th residue on chain B of the PDB
(which correspond to the bases CATTCCT) to the
corresponding atoms on the created DNA. Since we
simulated TEAD4 dimers, we performed this alignment twice,
once for each binding site. This alignment was accomplished
using VMD 1.9.3.139. We combined the two translated copies
of the TEAD4 protein and the synthetic DNA sequence into
one system using AmberTools20 (Case 2020). We used the
ff19SB force field for protein atoms140, the bsc1 force field for
DNA141, and the OPC for water and ions142. Systems were
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solvated in truncated octahedra of water with a 12 Å padding
between the solute and cell edge. Systems were
charge-neutralized with K+ ions, and additional K+ and Cl-
ions were added to bring the system to a concentration of
approximately 150 mM KCl. Systems were minimized using
NAMD 2.13143. During minimization, a cutoff distance of 9 Å
was used, and solvent bonds were held rigid, though all
solute bonds were unrestrained. A timestep of 1 fs was used,
and PME electrostatics was applied with a grid spacing of 1
Å. Ten thousand steps of minimization were performed. For
thermalization, we used a GPU-enabled build of NAMD
2.14143. The same parameters were used as in the
minimization, except for the introduction of a Langevin
piston to maintain the system pressure at 1 atm and a
harmonic collective variable restraint144 to prevent the ends
of the DNA from fraying during the simulation. This restraint
was applied between H1 from the terminal guanine and N3
of the terminal cytosine. (The DNA ends with a GC pair on
each end, and both ends of the DNA were restrained in the
same way.) A force constant of 1 kcal/mol/Å² was applied to
maintain this distance at 2 Å. During thermalization, all
velocities were started from zero and gradually warmed by
applying a Langevin thermostat to raise the system
temperature to 310 K during a ten ps simulation. The
thermalized systems were equilibrated for ten ns, the only
difference in configuration from the thermalization
simulation being the timestep (increased from 1 fs to 2 fs)
and the use of rigid bonds (all bonds, including hydrogen,
was made rigid during equilibration and production.
Coordinates were saved for every ps for both equilibration
and production runs. We have provided dehydrated
trajectories along with all analysis scripts in Python
(Python.org), D (dlang.org), and VMD139 in one folder, which
will be provided upon peer-reviewed publication of this work
or on request. Complete, hydrated trajectories, totaling
approximately 5 TB of data, are available upon reasonable
request.

ChIP-nexus data processing
ChIP-nexus and PAtCh–Cap single-end sequencing reads
were pre-processed by trimming off fixed and random
barcodes and reassigning them to FASTQ read names.
ChIP-nexus adapter fragments were trimmed from the 3’ end
of the fragments using cutadapt (v.2.5)145. ChIP-nexus and
PAtCh–Cap reads were aligned using bowtie (v.1.1.2)146 and
its bowtie to the Mus Musculus genome assembly mm10.
Aligned ChIP-nexus and PAtCh–Cap BAM files were
deduplicated based on unique fragment coordinates and
barcode assignments. ChIP-nexus coverage was normalized
was acquired through reads per million (RPM) normalization,
where the ChIP-nexus sample coverage was scaled by the
total number of reads divided by 106. ChIP-nexus peaks were
mapped using MACS2(v.2.2.6)147 with parameters designed
to restimulate the full fragment length coverage instead of
the single stop base coverage (--keep-dup=all -f=BAM
--shift=-75 --extsize=150). ChIP-nexus peaks were filtered for
reproducibility in a pairwise fashion using the Irreproducible
Discovery Rate framework (IDR) (v.2.0.3)148. The IDR
framework selected the peaks used for downstream analysis
from the largest pairwise comparison.

ChIP-seq data processing
ChIP-seq single-end sequencing reads were aligned to the
Mus Musculus genome assembly mm10 using bowtie2
(v.2.4.2)146. Aligned ChIP-seq BAM files were deduplicated
based on unique fragment coordinates and fragments
extended based on the average experiment fragment length
as determined with an Agilent 2100 Bioanalyzer. Normalized
ChIP-seq coverage was acquired using the deepTools
subfeature bamCompare (v.3.1.3)149 using parameters to
generate RPKM or log2 fold-change scaling
(--scaleFactorsMethod=None --normalizeUsingRPKM
--binSize=50) or (--scaleFactorsMethod=readCount
--operation=log2 --binSize=50). ChIP-seq peaks were mapped
using MACS2 (v.2.2.6)147 with default parameters and an
applied background coverage using the associated WCE
ChIP-seq control experiment. ChIP-seq peaks were filtered
for pairwise reproducibility using the Irreproducible
Discovery Rate framework (IDR) (v.2.0.3)148.

TT-seq data processing
TT-seq 75 bp paired-end sequencing reads were aligned
using STAR(v.2.7.3)150 to the Mus Musculus genome assembly
mm10 with the following parameters:
outFilterMismatchNmax 2, outFilterMultimapScoreRange 0.
SAMtools (v.1.14)151 were then used to keep alignments with
mapping quality greater than 255 (-q 255), and only proper
pairs (-f 2) were selected. Strand-specific BAM files for each
replicate and combined were generated using the following
parameters (samtools view -b -f 128 -F 16; -b -f 80; -b -f 144;
-b -f 64 -F 16) and (samtools merge plus_128.bam with
plus_80.bam and minus_144.bam with minus_64.bam).
Normalized TT-seq coverage was generated using
bamCoverage (v.3.1.3)152 parameter Reads Per Kilobase per
Million mapped reads (RPKM).

ATAC-seq data processing
ATAC-seq paired-end sequencing reads were aligned using
bowtie2 (v.2.3.5.1)146 to the Mus Musculus genome assembly
mm10. Normalized ATAC-seq coverage was acquired through
RPKM normalization along with following parameters: -bs=50
--minFragmentLength 10 --maxFragmentLength 1000
--ignoreDuplicate --extendReads

RNA-seq data processing
RNA-seq 100 bp single-end sequencing reads were aligned to
the Mus Musculus genome assembly mm10 using STAR
(v.2.7.3)150 with the following parameters: outSAMtype BAM
SortedByCoordinate, outSAMprimaryFlag OneBestScore
,outFilterMultimapNmax 20, outFilterMismatchNoverLmax
0.1, outFilterType BySJout ,alignSJoverhangMin 8,
alignSJDBoverhangMin 1,outFilterMismatchNmax
999,alignIntronMin 20,alignIntronMax
1000000,alignMatesGapMax 1000000,limitBAMsortRAM
10000000000 ,outSAMattributes NH HI MD AS nM,
quantMode TranscriptomeSAM GeneCounts.
Rsem-calculate-expression (v1.3.0)153 was used to generate
an expression table with the following parameters:
no-bam-output, estimate-rspd, strandedness reverse.
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HCR-FISH image analysis
Images were analyzed in Python 3.9. 3D masks were created
with the DAPI label using the Cellpose deep learning
package154. After a small Gaussian blur of width 1x2x2 pixels,
Cellpose segmentation was performed with the cyto model
with a diameter of 60 and minimum cell size of 10000. The
trophoblast cells were segmented well with this method in
3D, but the crowded inner cell mass cells were frequently
corrected by hand using Napari
(doi:10.5281/zenodo.3555620). The masked DAPI was
expanded by 4 pixels in the xy direction to encompass more
of the cytoplasm HCR label in each cell. The small HCR
puncta were found by first performing a gaussian blur of
2x5x5 width, then a Laplace filter using Gaussian derivatives
with sigma = 0.1, 0.5, 0.5. Finally, the local maximum peaks
in intensity are found using the Scikit-image peak_local_max
function with a threshold of 11 for the CDX2 channel and 15
for both Ezrin and tdTomato channels. The number of HCR
puncta found inside each masked cell was recorded. A
threshold was determined to categorize a cell as CDX2
positive (greater than 5 HCR puncta) or tdTomato positive
(greater than 15 HCR puncta). The threshold for tdTomato is
greater because the HCR hairpin signal is sometimes found
on the outside surface of the blastocyst, forming brighter
and larger puncta compared to the interior cell signal, which
would cause too many cells to be categorized as tdTomato
positive. All thresholds are held constant between all images
of blastocysts.

Molecular dynamics analysis and visualization
Solvent-accessible surface areas were calculated using
VMD139, with a 1.5 Å radius around all atoms. The buried
surface area between the two systems was calculated by
subtracting the surface area of the combined system from
the sum of the surface areas of each component system.
Plots were generated using Matplotlib155, Scipy156, and
NumPy157 with Python 3.10 (python.org). Figures were
generated with Tachyon143 in VMD; trajectory frames were
aligned using a frame-by-frame aligner developed
previously158. Secondary structures were determined using
STRIDE159.

BPNet model training
BPNet (v.0.0.23) architecture and software were applied as
previously described15. Model inputs were 1000 bp genomic
sequences centered on the ChIP-nexus peaks of TF of
interest. Model outputs were the predicted counts (total
reads across each region) and predicted profile (coverage
signal across each region) for TFAP2C, TEAD4, CDX2, YAP1,
and GATA3 ChIP-nexus experiments. ~150K IDR-reproducible
peaks from TFAP2C, TEAD4, CDX2, YAP1, and GATA3
ChIP-nexus experiments were pooled and used as model
inputs. Validation datasets were peaks across chr5,6,7,19;
test datasets were peaks across chr1,8,9, and peaks across
chrX and Y chromosomes were excluded from the analysis.
The remaining regions were used for model training.
Hyper-parameters were the default BPNet architecture. The
trained model performance was assessed by comparing (1)
area under the PrecisionRecall Curves (auPRC) for profiles
over different bins of resolution between observed

ChIP-nexus profiles and predicted BPNet profiles (Figure S1C)
and (2) counts correlations of observed ChIP-nexus signals to
predicted BPNet signals for each TF (Figure S1D) as
previously described15. The auPRC values were benchmarked
alongside replicate-replicate, observed random, and
observed-average observed profile comparisons to establish
an in-context understanding of predicted profile accuracy. All
BPNet models were implemented and trained using Keras
(v2.2.4), TensorFlow1 backend (v.1.70), and the Adam
optimizer150. The training used an NVIDIA® TITAN RTX GPU
with CUDA v9.0 and cuDNN v7.0.5 drivers. To obtain the Tead
double motifs in ESCs for analysis Figure 5G, TEAD4
ChIP-nexus experiments were pooled and used as model
inputs to train a single TF model; ~15K IDR-reproducible
peaks were used. Validation peak datasets across chr
1,7,3,14, test peak datasets across chr2,8,9, and peaks across
chromosomes X and Y were excluded from the analysis.
Hyper-parameters, model performances, and BPNet
implementation were performed as described above.
PAtCh-Cap control in ESCs was from15. We performed
DeepLIFT and TF-MoDISco on the trained model to generate
an ESCs-specific Tead motif set. For analysis in Figure 5G, we
used Tead double motifs from fold 1. Additional models were
trained with the same architecture as part of three-fold
validation (fold 2 and fold 3). Spearman counts correlation
values (top right) were determined by comparing the
observed ChIP-nexus counts with BPNet's predicted counts
at TEAD4 ChIP-nexus peaks in ESCs (Figure S5L).

Motif extraction, curation, and island generation
DeepLIFT (v0.6.9.0, derived from the Kundaje Lab fork of
DeepExplain (https://github.com/kundajelab/DeepExplain)58

was applied to the trained BPNet model to generate the
contribution of each base across a given input sequence to
the predicted output counts and profile signals. Contribution
scores for counts and profile outputs were generated for all 5
TF tasks. TF-MoDISco (v0.4.2.2)59 was then applied for each
TF separately. Regions of high counts contribution were
identified, clustered based on within-group contribution and
sequence similarity, and then consolidated into motifs. The
Tfap2c, Tead, Cdx2, Gata3, and Yap1 motifs were manually
identified based on their similarity to the known motif and
the sharp average ChIP-nexus binding footprint of the
corresponding TF. Once motifs were characterized and
confirmed, they were used to label genomic instances by
CWM scanning as previously described15. Briefly, a motif was
mapped based on both Jaccardian similarity to the
TF-MoDISco contribution weight matrix (CWM) and sufficient
total absolute contribution across the mapped motif. Then,
motifs were filtered for redundant assignment of
palindromic sequences and overlapping peaks. To obtain
regions of mapped motif combinations with enhancers for
downstream measurement of enhancer activity to get
specific mapped motif pairs, 'motif islands' were generated
as described20. Each island starts as a 500 bp (enhancer
window) region centered on the motif and gets clustered
and merged with another nearby motif island if they overlap.
In this manner, islands get extended if a motif is within less
than 500 bp. The motif islands, by their motif combinations
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with motif numbers, read sums of TFs binding and enhancer
activity (provided in supplemental table 1 (sheet 3)).

Visualization of YAP1 binding and enhancer activity markers
To visualize the correlation between YAP1 binding and the
markers of enhancer activity, we selected regions using the
following criteria: BPNet-mapped motifs that were absent of
ERVs, were within TEAD4 peaks, and showed TEAD4 binding.
At those regions, we calculated the total ChIP-nexus read
counts for YAP1, selected regions above the median value,
and sorted based on the total read counts. These regions
were then divided into the top 5000 regions with high YAP1
reads and the 5000 regions with median YAP1 binding. We
used this set to calculate normalized reads and generate the
TEAD4, YAP1, H3K27ac, Pol II, and Nascent-RNA heatmap.

Motif pair interaction analysis
We selected mapped regions with only one motif pair from
the motif islands set for the following motif-pair
combinations: Tfap2c-Tead, Cdx2-Tead, Gata3-Tead4, and
Tfap2c-Tead double. We then sorted the regions by the
distance between the two motifs and included distances less
than 160 bp for display. YAP1 contribution scores from the
binding model were used to make heatmaps in ggplot. The in
silico motif interaction analysis and odds ratio calculations
for the co-occurrence likelihood of motif pairs were
performed as described15.

Enhancer regions selection for reporter assay
This analysis was to predict TFAP2C and TEAD4 binding on
genomic regions with different motif distances and how this
changes upon editing the distance between the motifs. From
our islands, we selected regions with one Tead single and
one Tfap2c motif within less than 200 bp and resized them
to 400 bp putative enhancers, and recorded the coordinates
of Tfap2c and Tead4 motifs within the putative enhancers for
mutations. We then identified the nearest genes using the
biomaRt package. For each putative enhancer, we generated
sequences for wild-type, mutated motif for each at its
original position by mutating the two most contributing
nucleotides to the least contributing within that motif. Then,
we inserted the same motif at distances in multiples of 10 or
15 within a 400 bp window. These sequences were
combined into an array to predict TF binding and
contributions at a motif range of 50 bp. The resulting unique

enhancer values were exported in R for plotting. The
luciferase assay and CRISPR regions were selected by high
binding of TEAD4, TFAP2C, and YAP1 at these putative
enhancers and by context-relevant gene targets.

Extracting regions with different Tead double motif
spacings
To map regions in the mm10 genome with different Tead
double motif spacings, we used pattern matching (with no
mismatches) to identify instances of a single Tead motif
(RMATTCCWD). Then, regions with two motifs within 23 bp
were identified, and the frequencies by which each motif
spacing occurred were recorded. Thus, for a motif spacing of
2, the matched sequence is RMATTCCNNRMATTCCNN. The
predicted TEAD4 binding signal was then calculated for all
motifs injected into randomized sequences and averaged
over 256 iterations. The results from each spacing were then
averaged.

Teadmotifs variant analysis
To assess the distribution of motif variant frequency,
identical sequence patterns of CWM-mapped Tead single
and double motif patterns were grouped, analyzed and
visualized. To obtain a robust representation, only patterns
that occurred in the top 90th percentile and occurred at
least 10 times were considered. After injecting each
sequence pattern into 256 random sequences, BPNet was
used to predict TEAD4 binding. The average predicted signal
for each pattern, along with the pattern frequency, was
plotted using ggplot.

Genome-wide TEAD4 binding cooperativity on Tead double
motifs
This analysis aimed to investigate the potential synergy
between each side (each Tead motif) of the Tead double
motifs. We selected regions that did not overlap with either
ERVs or promoter regions, extracted the sequences of the
Tead double motifs, and oriented them in the 5’>3’ direction.
We then split the motif sequences into two half-sites, each
corresponding to a Tead single motif. We then predicted the
binding of TEAD4 at the half-sites and the complete double
motifs injected into random sequences. The values for the
two half-sites were summed and compared to those for the
complete double motifs as a measure of synergy between
the two half-sites of TEAD4 double motifs.
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Supplementary Figures
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Figure S1 | BPNet accurately learns the profile and counts information for TFs important in TSCs (related to Figure 1)

A) All pairwise comparisons Pearson correlation values of TF ChIP-nexus experiments between replicates. The coverage for each replicate was
calculated across a 200 bp window centered on the MACS2-called peaks for each TF. Because ChIP-nexus provides strand-specific information,
the absolute value of the counts from the negative strand, which would otherwise be negative, was taken and added to the counts across the
positive strand to determine the total region counts for a given replicate. B) Upon performing aggregation assay at the blastocyst stage of
mouse embryos, integrated TSCs expressing td-Tomato lentivirus construct get integrated with the outer trophectoderm (TE) layer cells, thus
closely resembling the fate of the neighboring cells from where they were derived (left). Immunofluorescence staining on an aggregated embryo
reveals an overlap between CDX2, a marker for the trophectoderm layer, and td-Tomato cells, in contrast to NANOG, a marker for the inner cell
mass, suggests a preference for TSCs to aggregate with TE cells (right). C) Area under the Precision-Recall Curves (auPRC) shows that BPNet
accurately predicts the profile positions. The ability of BPNet to identify positions of high ChIP-nexus signal is assessed at various resolutions up
to 100 bp. Replicate experiments, average ChIP-nexus profiles, and randomized profiles are shown as controls. D) BPNet predicts ChIP-nexus
counts with high accuracy. Spearman counts correlation values were determined by comparing the observed ChIP-nexus counts with BPNet's
predicted counts at ChIP-nexus peaks for each TF of interest. E) The representative short motifs discovered with TF-MoDISco contain known
motifs, motifs for TF we had not profiled, and known motifs new in this context. Additional models trained with the same architecture returned
the same set of motifs as part of three-fold validation (fold 2 and fold 3). All sequence logos share the same y-axis. F-H) Comparing
experimentally generated TF binding with BPNet-predicted TF binding at the putative Amotl2 enhancer (F), Pard3b enhancer (G), and Krt8/18
enhancer (H) illustrates BPNet's predictive accuracy. Each color is a different TF, where the top track is the experimental ChIP-nexus data, and
the bottom track is the predicted binding. Motifs were identified and mapped by BPNet. Putative Amotl2 and Pard3b enhancers were on the
withheld chromosome during BPNet training. The putative Krt8/18 enhancer shows predictive accuracy of the fuzzy profile of YAP1, which is an
indirect binder.

Figure S2 | TSCs specific enhancers show activity markers with TFs-bound motifs. (related to Figures 2 and 3)

A) Pearson correlation values were determined for all pairwise comparisons between replicates of ATAC-seq, H3K27ac ChIP-seq, Pol II
ChIP-nexus, and TT-seq experiments. For Pol II ChIP-nexus, coverage for each replicate was calculated across a 200 bp window centered on the
MACS2-called peaks. Because ChIP-nexus provides strand-specific information, the absolute value of the counts from the negative strand, which
would otherwise be negative, was taken and added to the counts across the positive strand to determine the total region counts for a given
replicate. For ATAC-seq, counts for each replicate were calculated across a 600 bp window centered on the MACS2-called peaks. For ChIP-seq,
counts for each replicate were calculated across a 1000 bp window centered on the MACS2-called peaks. For TT-seq, counts for each replicate
were calculated across a 500 bp window centered on the MACS2-called peaks of Pol II. B) Luciferase assay of the wild-type 175 bp or 200 bp
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minimal putative enhancers consisting of either the Tead single and Tfap2c motif pair or the Tead double motif was performed thrice as
biological replicates and normalized over the empty vector control. C) The Tead single and Tfap2c motif-pair islands mapped within 160 bp
distance were used to find the nearest gene and perform gene ontology analysis using the clusterProfiler package. D) Average YAP1 predicted
signal summed across 200 bp window (as portrayed in grey color in the graphic) of putative Bmp7 enhancer with mapped Tead single and
Tfap2c motif in wild-type, individual motif mutated, and both motif mutated sequences. E-H) The genome track of putative active enhancers for
genes E) Rin3, F) Ezr, G) Cited2, H) Amotl2 with mapped motifs, normalized ChIP-nexus TFs binding profiles, and normalized read pileups of
enhancer activity markers.

Figure S3 | The distance-dependent cooperativity of TEAD4 with TFAP2C is motif-specific and directional (related to Figure 3).
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A) Mapped motifs enriched at short distances, calculated as the odds ratio of the frequencies observed for wild-type over permuted regions.
Significance was denoted by *p < 10−5 using Pearson's chi-squared test. B) In the in silico analysis, motifs are injected into randomized
sequences, and BPNet is used to predict the average enhancement of TF binding to its motif (center) in the presence of a side motif15. The
results show no distance-dependent TEAD4 and YAP1 binding enhancement in the presence of Gata3 or Cdx2 motifs. We see mutual binding
enhancement of TEAD4, YAP1, and TFAP2C at a closed range distance with the Tead double-Tfap2c motif pair. C) Heatmap showing BPNet
contribution scores of TFAP2C binding across regions with one Tead single and one Tfap2c motif, ordered by the distance between the motifs
(up to 160 bp). There is no visually strong contribution from the Tead single motif. D) Heatmap showing BPNet contribution scores of TFs across
motif-pair islands of Tead single-Gata3, Tead single-Cdx2, and Tead double-Tfap2c, ordered by the distance between the motifs (up to 160 bp).
E) Luciferase assay of the wild type and mutated 200 bp minimal putative enhancer of Dst (mm10-chr1:33981020-33981269) and Adcy7
(mm10-chr8:88284750-88284999) were performed thrice as biological replicates and normalized over the empty vector control. Significance
was determined by a student's t-test (p < 0.05). Increasing the distance between Tead single and Tfap2c decreases activity and vice-versa. F)
Sanger sequencing chromatogram at the putative Rin3 enhancer with mapped and moved motifs, where the wild-type sequence has a distance
of 20 bp between Tfap2c and Tead single motif. The sequential CRISPR, where the Tead single motif was inserted away from the Tfap2c motif to
generate mutant cells with a new distance of 60 bp between Tfap2c and the Tead single motif. Then, the most important nucleotide (highlighted
in the green box) within the Tead single motif at the original position was mutated to abolish TEAD4 binding. G) Pairwise comparisons between
WT and CRISPR clone cells show high Pearson correlations for TEAD4 and Pol II ChIP-nexus and H3K27ac ChIP-seq for control enhancers (green
dots) from the luciferase assay (Figure S2B) and the selected Rin3 enhancer (CRISPR site in red dot) were consistent between the two replicates.
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Figure S4 | BPNet and MD simulations reveal quantitative details of TEAD4 cooperative binding at Tead double motifs
(related to Figures 4 and 5)

A) BPNet predicted TEAD4 ChIP-nexus footprint at minimal SV40 enhancer (100 bp) consisting of TEF-1 (Tead single) and TEF-1-TEF-1 (Tead
double) motif sequence patterns. B) The contribution weight matrix (CWM) of Tead double motifs of either human TEAD4, TEAD1, or both
(shown in brackets) when trained as a single TF model in various human cell lines obtained from ENCODE Consortium highlights the nucleotide
contribution to TEAD binding predictions. We show here data generated by the lab of Richard Myers, HAIB, with the following identifiers:
ENCSR934WOF; ENCSR497JLX, ENCSR285HHZ, ENCSR800JRG, ENCSR000BUQ, ENCSR000BRY, ENCSR000BUD and deep learning model trained by
Anshul Kundaje's lab. C) The predicted enhanceosome structure from110 shows mostly weak interactions that are likely to be transient, with only
two pairs of TFs (highlighted in the grey box) having a buried surface area over 200 Å². These weak interactions are of a similar magnitude to the
120 Å² buried surface area between the two Tead4 proteins in the wild-type simulations (B, C, D, orange fill). D) Buried surface area distributions
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from four MD simulations of TEAD4 models. The values from the high-affinity double motif are shown as solid areas, and the left and right motif
mutations are in shades of red. Upon disruption of the left component of the Tead double motif, the protein-protein interactions are weakened.
Interestingly, upon mutating the right component, the left protein dissociates from the nucleobases in its motif entirely and forms a stable dimer
with the remaining TEAD4 molecule. These two mechanisms point to the same conclusion: Weakening either motif disrupts the whole complex.
E) An MD simulation with a low-affinity double motif of putative Amotl2 enhancer tells a similar story to the mutated high-affinity motif (Figure
S4D). The areas of measured interactions between protein-DNA on two Tead components of the low-affinity double motif are shown. The
protein-nucleobase interactions are weakened (red line), and the protein-protein interaction becomes slightly weaker (red line), suggesting that
the whole complex is less stable than the high-affinity double motif (solid area). F) Buried surface area calculations from a high-affinity double
motif (solid area) and single base insertion led to a less labile complex that did not show the large protein-protein interaction areas we saw
during the wild-type simulation. G) BPNet predictions of TEAD4 footprint on the wild-type and either left or right mutated sequences of the
high-affinity double motif from putative Tjp1 enhancer. Mutated nucleotides for left or right sequences are highlighted and were chosen based
on the lowest contribution score at the position. H) ​​BPNet predictions of TEAD4 footprint on the wild-type and either left or right mutated
sequences of the low-affinity double motif from putative Amotl2 enhancer. Mutated nucleotides for left or right sequences are highlighted and
were chosen based on the lowest contribution score at the position. I) The contribution score sum was calculated at the low-affinity Tead double
motif and on either side of the Tead component of the double motif. J) Luciferase assay of the wild type and mutated 175 bp minimal putative
enhancer of Amotl2 (mm10- chr9:102,726,395-102,726,570) were performed in three biological replicates and normalized to the empty vector
control. Significance was determined by a student's t-test (p < 0.05). K) The metapeak of observed and predicted TEAD4 binding at the mapped
Tead double motifs shows BPNet learned double motifs in two cell types. Tead double motifs (TSCs:- ~14k and ESCs:- ~1k) were from fold 1 of
their respective trained models. L) The Tead double motifs were discovered with TF-MoDISco with additional models trained with the same
architecture as part of three-fold validation (fold 2 and fold 3). Spearman counts correlation values (top right) were determined by comparing
the observed ChIP-nexus counts with BPNet's predicted counts at TEAD4 ChIP-nexus peaks in ESCs.
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Figure S5 | The edited Tead double motif within the Ezr enhancer shows increased TEAD4 binding, activity, and cell-specific
gene expression (related to Figure 6)
A) Sanger sequencing chromatogram at the Ezr enhancer with wild-type (WT) Tead single motif replaced/edited with the Tead double motif via
homology-directed CRISPR-Cas9. B) Pairwise comparisons for TEAD4 ChIP-nexus between WT and CRISPR clone cells show high Pearson
correlations for control enhancers (green dots) from the luciferase assay (Figure S2B), and the selected Ezr enhancer (CRISPR site in red dot)
were consistent between the two replicates. C) Luciferase assay of the wild type and mutated 200 bp minimal Ezr enhancer were performed in
three biological replicates and normalized to the empty vector control. Significance was determined by a student’s t-test (p < 0.05). D) HCR-FISH
was performed on aggregated mouse blastocyst embryos with wild-type (WT) or mutant (edited Ezrup) cells for probes Cdx2, Ezr, and td-Tomato
for quantification. The nuclei masks were made with Cellpose and Napari software using the DAPI channel, which was used on other channels to
quantify average Cdx2 counts to distinguish cells between inner cell mass and trophectoderm layer (shown in E), and td-Tomato stain was used
to distinguish between native vs aggregated cells). E) Average quantification of Cdx2 counts. Student’s t-test was performed between
endogenous and integrated cells of edited Ezrup and wild-type cell population (p > 0.05). F) The aggregated embryos with wild-type cells show an
overall lower expression of average Cdx2 or Ezr expression with respect to embryo size (number of cells per blastocyst) than mutant (edited
Ezrup) cells. All quantification was made per blastocyst to account for differences in expression.
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