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CNVeil enables accurate and robust tumor
subclone identification and copy number
estimation from single-cell DNA sequencing data
Weiman Yuan1†, Can Luo1†, Yunfei Hu2, Liting Zhang3, Zihang Wen4, Yichen Henrry Liu2, Xian
Mallory3 and Xin Maizie Zhou1,2*

Abstract

Single-cell DNA sequencing (scDNA-seq) has significantly advanced cancer research by enabling precise detection of
chromosomal aberrations, such as copy number variations (CNVs), at a single-cell level. These variations are crucial
for understanding tumor progression and heterogeneity among tumor subclones. However, accurate CNV inference
in scDNA-seq has been constrained by several factors, including low coverage, sequencing errors, and data
variability. To address these challenges, we introduce CNVeil, a robust quantitative algorithm designed to accurately
reveal CNV profiles while overcoming the inherent noise and bias in scDNA-seq data. CNVeil incorporates a unique
bias correction method using normal cell profiles identified by a PCA-based Gini coefficient, effectively mitigating
sequencing bias. Subsequently, a multi-level hierarchical clustering, based on selected highly variable bins, is
employed to initially identify coarse subclones for robust ploidy estimation and further identify fine subclones for
segmentation. To infer the CNV segmentation landscape, a novel change rate-based across-cell breakpoint
identification approach is specifically designed to diminish the effects of low coverage and data variability on a
per-cell basis. Finally, a consensus segmentation is utilized to further standardize read depth for the inference of the
final CNV profile. In comprehensive benchmarking experiments, where we compared CNVeil with seven
state-of-the-art CNV detection tools, CNVeil exhibited exceptional performance across a diverse set of simulated
and real scDNA-seq data in cancer genomics. CNVeil excelled in subclone identification, segmentation, and CNV
profiling. In light of these results, we anticipate that CNVeil will significantly contribute to single-cell CNV analysis,
offering enhanced insights into chromosomal aberrations and genomic complexity.
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Introduction
Copy number variations (CNVs) are variations that
alter the number of copies of genomic regions. They
are frequent somatic mutations that play a crucial
role in cancer as well as a variety of other genetic
diseases [1–4]. These variations manifest themselves
not only within primary tumor sites but also during
metastasis [3,5]. This phenomenon poses challenges to
standardized treatment and emphasizes the need for
tailored therapeutic strategies [6]. Customizing treat-
ments based on subclone structure shows potential
in mitigating the risk of cancer recurrence, as it ad-
dresses not only the predominant pathogenic gene al-
terations [7–10]. Further advancement of tumor treat-
ment necessitates a more sophisticated cellular analy-
sis to discern and comprehend the nuances of tumor
diversity.
Single-cell DNA sequencing (scDNA-seq) provides

a detailed view of the genome at the individual cell
level [11, 12], enhancing the comprehension of a tu-
mor’s clonal architecture. This biotechnological ap-
proach, by individually analyzing targeted cells, facil-
itates a more precise analysis of CNVs and captures
the pathogenic evolution of tumor subclones [13, 14].
In contrast to bulk sequencing, which characterizes the
genomic landscape at the population level, scDNA-seq
avoids the averaging effect that could obscure distinc-
tive CNV profiles [15–17]. While single-cell RNA se-
quencing (scRNA-seq) primarily offers insights into the
expressed regions of the genome rather than its en-
tirety, scDNA-seq investigates the complete genome,
offering an accurate depiction of CNVs [18–21]. How-
ever, scDNA-seq is vulnerable to sequencing errors
and biases that may introduce distortions to the data.
These errors, coupled with the typically low and non-
uniform depth of coverage per cell, which is induced
by the non-linear amplification and dropout events
during the library preparation and sequencing proce-
dures [4, 22], can impede the detection of CNVs. This
underscores the imperative for meticulous approaches
to accurately unveil CNV profiles.
To date, several methods have been developed to

investigate single-cell CNVs from scDNA-seq data.
HMMcopy [23] was initially introduced to detect CNVs
from the bulk sample and is also applicable for scDNA-
seq data. It employs an eleven-state Hidden Markov
Model (HMM) that incorporates GC content correc-
tion to mitigate false positives. Similarly, Ginkgo [24]
addresses data bias by examining the relationship be-
tween GC content and read depth. Developed in 2015,
it stands out as the first CNV inference tool explicitly
designed for scDNA-seq data, utilizing circular binary
segmentation (CBS) for CNV detection. The following
year, AneuFinder [25] also leveraged an HMM for CNV

detection in scDNA-seq data, coupled with quality
control through multivariate clustering. These meth-
ods, either employing the HMM or CBS algorithm, fo-
cus on segmenting the genome at the individual cell
level. Between 2020 and 2022, several multiple-cell-
based methods, including SCOPE [19], CHISEL [26],
and SeCNV [27], have become available. These meth-
ods exploit the principle that cells from the same sub-
clone are likely to share common CNV breakpoints,
enabling the inference of CNVs by overcoming the
challenges posed by low and non-uniform coverage at
the single-cell level. Multiple-cell-based methods han-
dle the scDNA-seq data more effectively by leverag-
ing shared information among individual cells. The-
oretically, multiple-cell-based methods are expected
to achieve better performance than single-cell-based
methods. SCOPE clusters cells through a generalized
likelihood ratio test and optimizes the segmentation
count using a modified Bayesian Information Crite-
rion (BIC). SeCNV partitions the genome into seg-
ments by minimizing the structural entropy from a
depth congruent map. Both SCOPE and SeCNV in-
corporate strategies for identifying normal cells within
noisy datasets to establish a baseline for bias correc-
tion; SCOPE utilizes the Gini coefficient, while SeCNV
utilizes the coefficient of variation (CV). CHISEL
advances allele-specific CNV detection, incorporating
phasing and Expectation-Maximization algorithms to
address high allelic dropout issues. Recently, a deep
learning-based convolutional autoencoder framework,
rcCAE [28], was introduced for noise reduction and
genome segmentation, aiming to infer CNV in scDNA-
seq data.
Although most existing methods for inferring CNV

from scDNA-seq data show promise in certain scenar-
ios, their performance is not consistently robust across
all cells. Often, these methods are sensitive to data
variability induced by the complexity inherent in can-
cer data. To address these challenges, we introduce
CNVeil, a robust quantitative algorithm designed to
accurately reveal CNV profiles while overcoming the
inherent noise and bias in scDNA-seq data. CNVeil
offers several innovative and beneficial features and
performance. (1) It implements a PCA-based Gini co-
efficient to select normal cells as normal controls to
normalize the read depth. (2) CNVeil defines and se-
lects highly variable bins as a feature vector to classify
normal and tumor cells. (3) It performs different lev-
els of clustering to either estimate optimal ploidy or
conduct cross-cell breakpoint and segmentation iden-
tification. (4) CNVeil standardizes the read depth by
utilizing cross-cell segmentation to maintain genuine
genomic aberrations while minimizing the impact of
artifact noise. (5) It achieves better subclone identi-
fication, segmentation, and CNV profiling across all
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datasets. (6) It shows robust performance across all
cells and bins.

Results
CNVeil revealed CNV profile reliably on simulated
datasets
To evaluate CNVeil and benchmark existing tools, the
lack of ground truth data as a gold standard for most
datasets is the most challenging issue. We thus first
employed SimSCSnTree [29] to simulate datasets, pro-
viding a gold standard. SimSCSnTree stochastically
simulates a tree and imputes CNAs on the tree. Specif-
ically, SimSCSnTree allows users to decide multiple
factors such as ploidy of the cells, tree structure, num-
ber of clones, number of cells, size of the CNAs, ratio
between amplification and deletion, whether there is
whole genome duplication, and so on. For the exper-
imental design of our simulations, we generated four
different datasets by tuning the average ploidy vary-
ing from 1.5 to 5. The number of tumor cells in each
dataset was 96, 97, 95, and 100 respectively (Table 1).
In addition, we also simulated 50 normal cells as neg-
ative control, intermixed with tumor cells as input for
all CNV profiling tools. More simulation details are
outlined in the methods section.
When assessing the CNV profile generated by each

tool against the gold standard, we employed two dif-
ferent evaluation modes: segmentation mode and CNV
mode. In segmentation mode, our comparison focused
solely on the position of breakpoints (segmentation
boundaries). If a tool accurately identified the break-
point where the copy number changed, it was consid-
ered a correct breakpoint. In stringent CNV mode, an
inference was regarded as correct if the tool identi-
fied both the correct breakpoint and the correct copy
number for the left and right bins of the breakpoint.
The evaluation was specifically applied to tumor cells.
More details on the evaluation are also outlined in the
methods section.
Overall, CNVeil demonstrated superior and robust

performance when compared to the other six tools,
rcCAE, SeCNV, SCOPE, AneuFinder, Ginkgo, and
HMMcopy, across all four datasets. CHISEL was ex-
cluded from this analysis since SNP information was
not incorporated into the simulated datasets. Specifi-
cally in the violin plot (Figure 2), CNVeil consistently
achieved the highest average recall, precision, and F1
across various conditions, while maintaining a rela-
tively low variation across all cells. In an exceptional
condition where the dataset’s ploidy was 1.5, SCOPE
had the best recall for segmentation, followed by CN-
Veil. Notably, we observed that existing tools exhib-
ited significantly lower recall or higher variance in both
segmentation and CNV evaluation when dealing with

datasets featuring extremely low (1.5) and high (5.0)
ploidy. In contrast, CNVeil maintained a high and ro-
bust performance, demonstrating its ability to adapt
to changes in dataset ploidy. This superior ability was
due to the fact that CNVeil employed a novel PCA-
based Gini coefficient for identifying normal cells to
correct bias and conducted an initial clustering of nor-
mal and tumor cells based on highly variable bins. CN-
Veil precisely detected all 50 normal cells through the
PCA-based Gini coefficient procedure and the initial
clustering step (Table S1).
We further used heatmaps to demonstrate the esti-

mated copy numbers across all cells in all seven tools
for each dataset. To ensure a fair and transparent com-
parison, we systematically ordered cells based on the
gold standard. In the extremely high ploidy dataset
(Figure 3), CNVeil maintained a highly similar CNV
profile with the gold standard, while the other six tools
either underestimated the ploidy of a significant num-
ber of tumor cells or did not infer correct copy num-
bers in many bins across the genome. In the extremely
low ploidy dataset (Figure S1), CNVeil still maintained
a highly similar CNV profile with the gold standard,
however, other tools tended to overestimate the ploidy
of a significant number of tumor or normal cells. In
terms of the other two datasets (ploidy = 3 and 4.0,
Figure S2-S3), CNVeil consistently generated the most
comparable CNV profile to the gold standard, followed
by SCOPE, Ginkgo, SeCNV, and AneuFinder.

Evaluation on the scDNA-seq data of breast cancer
patient T10
We next benchmarked CNVeil and seven existing tools
using real scDNA-seq data obtained from a breast can-
cer patient identified as T10 [30]. The dataset for pa-
tient T10 comprised 100 single cells in total (Table
1). Specifically, this dataset incorporated correspond-
ing fluorescence-activated cell sorting (FACS) of the
single cell data [31], which revealed four distinct cell
subclones: A1 (hyperdiploid, ploidy = 2.85 ), A2 (hy-
perdiploid, ploidy = 3.1), H (hypodiploid, ploidy =
1.7), and D (diploid, ploidy = 2). FACS thus suggested
a polygenomic tumor in T10.
The heatmaps in Figure 4 illustrate the estimated

copy numbers across all cells in all eight tools. To en-
sure a fair and transparent comparison, we ordered all
heatmaps in a consistent cell order based on the or-
der of reported subclones in FACS. We observed that
CNVeil, SeCNV, SCOPE, AneuFinder, and Ginkgo ex-
hibited a generally similar CNV profile pattern. These
five tools all identified a normal cell subclone, one sub-
clone of hypodiploid cancer cells, and two subclones
of hyperdiploid cancer cells, in order, in accordance
with the FACS data. Specifically for the normal cell
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identification, CNVeil successfully identified 41 nor-
mal cells by the PCA-based Gini coefficient and 45
out of 45 gold normal cells through the initial clus-
tering (Table S1). Upon closer examination, SeCNV,
SCOPE, AneuFinder, and Ginkgo identified a few
diploid cells as either hypodiploid or hyperdiploid. Ad-
ditionally, SeCNV, AneuFinder, and Ginkgo identified
a few hyperdiploid cells with unusually high ploidy lev-
els. AneuFinder and Ginkgo also exhibited a few out-
lier bins that were not appropriately processed either
during the preprocessing step or in subsequent stages.
Among these five tools, CNVeil presented a clearer and
more accurate CNV profile. We also observed that the
copy number profiles of the two hyperdiploid subpop-
ulations were remarkably similar, suggesting that the
relapse originated from the same subclone present in
the primary tumor. HMMcopy also identified four sub-
clones, however, it tended to overestimate the ploidy
values for the diploid and hypodiploid subclones. The
outcomes from rcCAE and CHISEL deviated signifi-
cantly from the anticipated results.
To further evaluate the performance of all tools

quantitatively, we adopted CNV calls from array com-
parative genomic hybridization (aCGH) of purified
bulk samples from the same patient T10 [30] as the
gold standard. The aCGH data provided relative copy
number information for each bulk sample. For each
FACS-identified subclone, a corresponding gold stan-
dard CNV profile was established based on the product
of the subclone’s ploidy and the relative copy num-
ber from aCGH data. By comparing estimated CNV
profiles by each tool with the gold standard and us-
ing mean squared error (MSE) as the evaluation met-
ric Figure (5), CNVeil demonstrated the lowest MSE
among all eight tools across the four subclones.

Evaluation on the scDNA-seq data of breast cancer
patients T16
We also extended the analysis to another breast can-
cer patient, identified as T16 [31]. This dataset com-
prises 52 cells from primary tumor sites and 48 cells
from metastatic tumor sites (Table 1). Both sites in-
clude a mixture of tumor and normal cells. Compared
to T10, T16 demonstrated more homogeneous tumor
subclones in both primary tumor and metastasis, in-
dicating a monogenomic tumor.
The heatmaps in Figure 6 reveal that most tools

demonstrated similar characteristics as what we ob-
served in T10. Overall, CNVeil, SeCNV, SCOPE,
AneuFinder, and Ginkgo showed a generally similar
CNV profile pattern, distinguishing between a nor-
mal cell subclone and one subclone of hyperdiploid
cancer cells. However, SeCNV, SCOPE, AneuFinder,
and Ginkgo exhibited a few cells with incorrect ploidy

and outlier bins across the genome. Upon careful in-
spection, CNVeil, SeCNV, SCOPE, AneuFinder, and
Ginkgo all successfully identified two tumor subclones:
primary and metastasis subclones (trisomic state).
However, there were some disagreements regarding the
copy number, especially on chromosomes 4, 5, and 7.
CNVeil, SeCNV, AneuFinder, and Ginkgo predomi-
nantly predicted a copy number of 3 or 4 for most
bins on chromosomes 4 and 5, whereas SCOPE pre-
dicted a copy number of 2. Similarly, for chromosome
7, CNVeil, SeCNV, AneuFinder, and Ginkgo predicted
a copy number of 7, whereas SCOPE predicted a copy
number of 5 or 6. In general, SCOPE tended to un-
derestimate the copy numbers compared to CNVeil,
SeCNV, and AneuFinder on T16 tumor cells. Con-
versely, the heatmap by HMMcopy showed a separa-
tion between normal and tumor cells, but it overesti-
mated the ploidy of the normal cells to be 3. CHISEL
showed a chaotic CNV profile, where there was no clear
separation between normal and tumor cells. rcCAE
failed to separate normal and tumor cells and underes-
timated the ploidy across all cells. In summary, CNVeil
still demonstrated the best CNV profiles for subclone
identification and segmentation.

Evaluation on the scDNA-seq data of
triple-negative cancer patient KTN302
We further applied the analysis to the scDNA-seq data
of a triple-negative breast cancer patient, KTN302,
whose treatment stages were well-documented [32].
This dataset includes 47 cells from the pre-treatment
stage and 45 cells from the mid-treatment stage (Table
1).
To again ensure a fair and transparent compari-

son, we systematically ordered and organized cells
in heatmaps based on the pre-treatment and mid-
treatment stages (Figure 7). We observed that CNVeil
successfully detected a normal cell population from the
mid-treatment stage and two subclones of aneuploid
cells in the pre-treatment tumors. Although SCOPE
showed a chaotic CNV profile at the mid-treatment
stage, it was able to differentiate the tumor subclone
from the normal cell population. Nevertheless, it is cru-
cial to note that the KTN302 data is highly noisy.
Therefore, SCOPE had to utilize mid-stage informa-
tion as prior knowledge to select normal cells, achiev-
ing a reasonable outcome. When stage information was
not provided to SCOPE, its CNV profile in the mid-
treatment stage revealed many incorrect hyperdiploid
cells (Figure S4). SeCNV, AneuFinder, and Ginkgo
all exhibited numerous inaccuracies, including both
hyperdiploid and hypodiploid cells during the mid-
treatment stage, along with a few hypodiploid cells in
the pre-treatment stage. These results indicated that

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.581409doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581409
http://creativecommons.org/licenses/by/4.0/


Page 5 of 21

when the scDNA-seq data was highly noisy, existing
tools often failed to identify normal cells and correct
bias, or they needed prior knowledge to assist these
steps. CNVeil addressed this challenge by employing
a novel PCA-based Gini coefficient to identify normal
cells for bias correction. Moreover, CNVeil performed
an initial normal-tumor cell clustering based on highly
variable bins for robust ploidy estimation. CNVeil ac-
curately detected 9 normal cells by PCA-based Gini
coefficient and 43 out of 44 normal cells through the
initial clustering (Table S1). This underscores CNVeil’s
robustness and adaptability in various analytical sce-
narios. HMMcopy tended to overestimate the ploidy
for the majority of cells in the mid-treatment stages.
CHISEL showed an excessively noisy heatmap, while
rcCAE exhibited an overly simplistic and smooth CNV
profile.

CPU time and memory analysis
To provide users with an understanding of the effi-
ciency of each tool in terms of CPU time and mem-
ory consumption, we recorded CPU time and memory
usage across all benchmarked datasets (Figure 8 and
Table S2). All tools utilized the single-cell BAM files
as input and the CPU time was measured until each
tool produced the final CNV profile. The memory us-
age was the peak memory during the whole procedure.
Ginkgo is a web-based application and was excluded
from this analysis.
CNVeil consumed CPU time within the range of 50

to 140 minutes, while maintaining a memory usage of
less than 10 GB memory for real datasets. In terms
of simulated datasets, CNVeil demonstrated efficient
performance, requiring approximately 10 minutes of
CPU time and utilizing less than 2 GB of memory.
Overall, CNVeil ranked second or third places in terms
of CPU time and memory usage across all datasets
among all tools.
Furthermore, these CPU time and memory usage

were measured while running CNVeil with 5 threads.
In real practice, users with additional computational
resources can enhance run-time efficiency by increas-
ing the number of threads number. For example, when
employing 20 threads, CNVeil completed tasks within
8 minutes for real data and 1 minute for simulation
data, with a peak memory usage under 45 GB.

Discussion
Here, we introduce CNVeil, a robust quantitative al-
gorithm designed to accurately reveal CNV profiles
from scDNA-seq data. To enhance the effectiveness of
bias correction and address the challenges of the high
noise in individual cells, CNVeil employs an innovative
PCA-based Gini coefficient analysis to select normal

cells. Variables such as subclonal ploidy, cell-specific
ploidy, and the number of normal cells in the tumor
sample determine the nature of the sample. Existing
tools face challenges in accurately inferring ploidy for
specific cells, largely due to sample variability induced
by the complex nature inherent in cancer data. This
often results in either underestimation or overestima-
tion of copy numbers in certain cells. To address these
challenges, CNVeil performs a multi-level hierarchical
clustering, focusing on selected highly variable bins,
to identify the normal subclone and different tumor
subclones for robust ploidy estimation. For each cell,
disregarding the variances of read depth in each bin,
the product of cell-specific ploidy and normalized read
depth yields the absolute copy number. However, ex-
isting methods for copy number inference are signifi-
cantly impacted by the influence of variance and nor-
malized read depth. To tackle this challenge, CNVeil
incorporates a cross-cell consensus segmentation-based
standardization to further normalize cell-specific read
depth by reducing variance. Specifically, to identify the
consensus segmentation, CNVeil refines subclones and
introduces a novel change rate-based across-cell break-
point identification approach to mitigate the effects of
low coverage and data variability on a per-cell basis.

Methods
CNVeil workflow
The overall workflow of CNVeil consists of six intercon-
nected and conceptual modules: a) Read count matrix
construction; b) Data normalization by noise reduction
and bias correction; c) Initial normal-tumor cell classi-
fication; e) Tumor subclones identification and ploidy
estimation; f) Fine clustering and across-cell break-
point and segmentation identification; h) Infer final
CNV states. These are described in the following sec-
tions.

Read count matrix construction and removal of

outlier bins and cells. Taking single-cell DNA se-
quencing data as input, CNVeil first aligns reads to the
reference genome hg38 with BWA [33]. Those reads
that cannot be uniquely aligned are removed. The
genome is then divided into user-defined consecutive
bins (500kb by default) and reads within a bin are ag-
gregated (counted) to mitigate the impact of variable
amplification and sequence sampling. The output is a
cell-bin read count matrix. We denote the raw read
count matrix as RD ∈ Rn×m, where n is the number
of cells and m is the number of genomic bins.
CNVeil drops the outlier bins with extreme GC con-

tents (<20% or >80%), and the outlier bins with map-
pability below 90%. Cells with mapped reads propor-
tion (the ratio of the number of reads mapped to refer-
ence to the number of all reads) less than a threshold
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(0.3 by default) are also removed as outliers for quality
control.

Data normalization by noise reduction and bias

correction. In single-cell cancer genomics studies,
diploid cells often serve as normal controls for read
depth normalization [19,27]. Nevertheless, information
regarding case-control labeling and cell ploidy might
not always be readily available. Cell-specific Gini co-
efficients to quantify the variability within individual
cells can be used to select normal cells out of the entire
cell population by empirical evidence [19]. However,
noise within read depth signals presents a significant
challenge in this analysis [4]. To overcome this, CN-
Veil employs a Principal Component Analysis (PCA)
based Gini coefficients to discern the substantive sig-
nal from the pervasive noise, thereby identifying bins
marked by notable variance to compute Gini coeffi-
cients. To achieve this, CNVeil first performs PCA [34]
on the read count matrix RD, generating a matrix of
principal components. CNVeil focuses on the first com-
ponent, PC[:, 1], which carries the largest data fluctu-
ation information. CNVeil then selects the bins that
have higher weights along the first component. Con-
sider the read depth vector for a specific cell i and a
weight vector w, the weighted sum for selected bins
based on high PCA scores can be denoted as:

w1RDi,j1 + w2RDi,j2 + · · ·+ wkRDi,jk (1)

where j1, j2, . . . , jk are the indices of bins chosen by
PCA, {j1, j2, . . . , jk} ⊆ {1, 2, 3, . . . ,M}. Each weight
wj corresponds to the importance of the j-th bin in
the PCA score ranking. Bins contribute more to the
first component, to be specific, the first 40% will be
saved for the analysis.
The PCA-based Gini coefficient for each cell i is com-

puted as follows:

Ginipcai =

∑k
p=1

∑k
p=1

∣∣RDi,jp −RDi,hp

∣∣
2k

∑k
p=1 RDi,jp

,

for i = 1, 2, . . . , n.

(2)

In this context, cells exhibiting a PCA-based Gini
coefficient below 0.12 are classified as normal cells. In
several real data, we observed PCA-based Gini coeffi-
cient served as a more effective metric to differentiate
normal cells than Gini coefficient. In practice, CNVeil
does not require the identification of all diploid cells
from the cell population, only requiring a subset of all
normal cells to serve as normal controls. After obtain-
ing normal cells, CNVeil corrects for the bias of each
bin and generates the normalized read count matrix.

This process normalizes the read depth of each cell by a
bias scale from normal controls, thus achieving unifor-
mity across the data. The bias scale can be computed
by the equation:

S =
1

n′

n′∑
i′=1

RDi′,:

median{RDi′,j | j = 1, 2, . . . ,m}
(3)

where RDi′,: is a vector representing read depth
across all bins for normal cell i′, and n′ is the num-
ber of normal cells. S is the bias scale vector, and Sj

is the bias scale for bin j. To normalize read depth by
bin-wise, the operation can be mathematically repre-
sented as follows:

RD′
i,j =

RDi,j

Sj
, for i = 1, 2, . . . , n,

and j = 1, 2, . . . ,m.

(4)

where RD′ is the matrix of normalized read depths.
This scale captures the typical deviation patterns in-

herent in normal cells. Deploying this bias scale across
the data adjusts for systemic biases. At the end of this
module, CNVeil generates a normalized read depth
matrix RD′ that is noise-reduced and bias-corrected.
This matrix serves as the input for the subsequent
modules.

Hierachical clustering for different levels of cell

clusters. CNVeil employs the agglomerative clustering
algorithm [35] to perform different levels of cell clus-
tering including normal-tumor cell clustering, tumor
cell subclone identification, and fine clustering within
subclones. For each cell, if we disregard the variances
of read depth in each bin, the absolute copy number is
the product of cell-specific ploidy and normalized read
depth. Thus, to infer CNV states, we aim to perform
different levels of clustering to either estimate optimal
ploidy or conduct cross-cell breakpoint and segmenta-
tion identification to further standardize read depth.
The main idea behind agglomerative clustering is to

initialize each cell as an individual cluster and then
iteratively merge clusters based on their similarity
measure until only one big cluster containing all the
cells remains in the final stage. This process creates a
tree-like structure, commonly known as a dendrogram,
which can be cut at different heights to obtain differ-
ent clustering results. The height of a certain level in a
dendrogram represents the linkage distance of clusters
at that level. Intuitively, cutting the dendrogram at a
lower height generates a more granular clustering re-
sult, while at a higher height generates a more coarser
clustering result. Ward’s linkage distance is used in
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CNVeil pipeline to measure the linkage distance. It
can be calculated as

d(Ci, Cj) =

√
|Ci| · |Cj |
|Ci|+ |Cj |

· dcentroid(Ci, Cj) (5)

Where d(Ci,Cj) is the Ward’s linkage distance between
clusters Ci and Cj , |Ci| and |Cj | are the sizes of clus-
ters Ci and Cj which are defined by the number of
cells within each cluster, and dcentroid(Ci,Cj) is the
Euclidean distance between the centroids of clusters
Ci and Cj .

Initial normal-tumor cell classfication. To perform
the agglomerative algorithm for the initial normal-
tumor cell clustering, CNVeil specifically selects the
highly variable bins (across cells) as the feature vector
to represent each cell, instead of using all consecutive
bins. Highly variable bins exhibit significant variability
in their read depth levels across cells.
To select highly variable bins, CNVeil takes the nor-

malized read depth matrix RD′ as input and computes
the variance across cells for each bin, thereby identify-
ing those bins that exhibit significant variability. The
variance for a given bin j can be expressed as:

Var(j) =
1

n− 1

n∑
i=1

(RD′
i,j −RD′

:,j)
2 (6)

whereRD′
:,j is the average read depth for bin j, i is the

cell index, and n is the number of cells. CNVeil iden-
tifies top 10% of these bins with the highest variance
as highly variable bins. These bins are of particular
interest because they often contribute to the biologi-
cal diversity and heterogeneity observed among indi-
vidual cells. Highly variable bins can serve as poten-
tial marker bins for specific cell types. The normalized
read depth matrix composed of only highly variable
bins is denoted as RD′

HVB . CNVeil, therefore, taking
RD′

HVB as input, uses agglomerative clustering to sep-
arate all cells into two clusters at the initial stage by
setting the number of clusters equal to 2.
Next, CNVeil utilizes a numerical optimization

method to determine the optimal ploidy level for each
cluster. The cluster that is determined to have ploidy
level close to 2 will be regarded as normal cell cluster,
while the other will be treated as a tumor cell clus-
ter. Specifically, CNVeil picks the cluster-level ploidy
that minimizes the squared error that is quantified be-
tween the predicted CNVs and their nearest integer
values across all bins. Identifying the optimal ploidy
that results in the least discrepancy allows CNVeil to
accurately infer the genomic state of the cell cluster

under examination. The numerical optimization pro-
cedure is described below.
CNVeil defines a candidate ploidy set Ploidy =

[1.50, 1.55, . . . , 5.50], which ranges from 1.50 to 5.50
with a step size of 0.05. |P | = K. The Scaled Copy
Number Profile (SCNP) is given by:

SCNP k = RD′ ×Ploidyk (7)

where RD′ is a vector that represents the average read
depth across all cells for each bin. The Sum of Squares
(SoS) is calculated as:

SoSk =
m∑
j=1

(SCNP k
j − round(SCNP k

j ))
2,

k = 1, 2, . . . , 81.

(8)

The optimal ploidy level for each cluster, represented
by ploidy∗ or Ploidy[k], can be achieved by the value
of k that minimizes the Sum of Squares (SoS):

ploidy∗ = argmin
k

SoS(k) (9)

At this module, CNVeil performs agglomerative clus-
tering relying on highly variable bins to differentiate
cells into two clusters and further utilizes the numer-
ical optimization method to determine the optimal
ploidy level for each cluster to classify normal and tu-
mor cell clusters.

Tumor subclones identification and ploidy estima-

tion. In practice, a patient’s tumor cells may con-
tain multiple subclones, which could either share sim-
ilar ploidy levels or have distinct ploidy levels [36–38].
Therefore, it is important to identify tumor subclones
and estimate each subclone’s ploidy level reliably.
However, ploidy estimation based on a small number
of cells (for example, less than 5) may lack accuracy
due to the inherent noise present in single-cell sequenc-
ing data. It is more likely to recover the actual ploidy
level when a larger amount of cells that share the same
ploidy level are provided [39]. Hence, in this step, when
performing hierarchical clustering, we try to maximize
the size of each cluster under the constraint that cells
in one cluster share the same ploidy level. Quantita-
tively, an estimation of the minimal Ward’s distance
between any two tumor subclones that have different
ploidy values was empirically drawn from the exper-
iments of multiple real datasets (T10, T16, KTN302,
etc). This minimal distance is denoted as Dp and is
estimated to be around 30. The choice of Dp is af-
fected by the number of highly variable bins. Given
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the distance constraint Dp, the agglomerative cluster-

ing is applied to the tumor cells subset of the matrix

RD′
HVB , generating multiple ploidy-consistent tumor

subclones. Subsequently, the aforementioned numeri-

cal optimization method is applied to each subclone

to estimate the optimal ploidy ploidy∗, which will be

used to infer CNV states in the last module.

Fine clustering and across-cell breakpoint and seg-

mentation identification. Cells within the same sub-

clone share the same cellular breakpoints and a com-

mon evolutionary history [6, 40]. To enhance segmen-

tation accuracy by addressing the challenges posed

by investigating each cell independently, CNVeil in-

troduces a cross-cell consensus segmentation approach

for identifying breakpoints and segmentation across

the genome. To maximize cell-level variation for break-

points, CNVeil further performs fine clustering on each

tumor subclone before performing cross-sample break-

point detection.

Similar to the preceding round of coarse clustering

to identify tumor subclones, an empirical threshold Db

is determined. This threshold represents the minimal

Ward’s distance between any two cell clusters that

have different breakpoint profiles (where CNV state

changes) and is estimated to be approximately 14.

Given Db, another round of agglomerative clustering is

applied to the tumor subset of the matrix RD′
HVB to

generate more refined clusters. At the end of this step,

each generated cluster is expected to share a common

breakpoint profile.

Next, CNVeil performs cross-cell breakpoint detec-

tion within each cell cluster. This algorithm assesses

the statistical significance of change points by aggre-

gating read depth across cells within two target win-

dows around each point and determining the signifi-

cant changes between target windows across all points.

For each cell cluster, CNVeil takes the normalized read

depth matrix as the input, represented by a p×m ma-

trix (p is the number of cells in each cluster and m is

the number of genomic bins). Given m bins, (m − 1)

boundary points of all bins could be potential change

points. We denote these (m−1) points as a set Sb. CN-

Veil then uses a sliding window of size p×w (w is the

window size, and it is set as 6 bins by default) to inves-

tigate the read depth changes around those potential

change points. Specifically, for the boundary point be-

tween bink and bink+1, CNVeil calculates the median

read depth in the left window (from binmax(k−w+1,1)

to bink) as MRDleft and the median read depth from

the right window (from bink+1 to binmin(k+1+w,m)) as

MRDright.

MRDleft(i, j) = median
({

RD′
i,j | i = 1, . . . , p and

j = max(k − w + 1, 1), . . . , k})
MRDright(i, j) = median

({
RD′

i,j | i = 1, . . . , p and

j = k + 1, . . . ,min(k + 1 + w,m)})
(10)

Next, CNVeil calculates the read depth change rate
as below:

∆ = |MRDleft −MRDright| (11)

CNVeil collects ∆ for each boundary point in ev-
ery cell cluster, generating a set of read depth change
rates denoted as S∆. The changing rate threshold t∆
is established as the 90% quantile of S∆. Any bound-
ary point in Sb where the changing rate exceeds the
threshold t∆ is identified and collected as a change
point.
Within each cluster, a chaining algorithm is then ap-

plied to chain the change points into multiple disjoint
regions. The chaining algorithm establishes an edge be-
tween any two change points if their distance is equal
to one bin size, generating a network of multiple dis-
joint components. Each component forms a region that
encompasses a real breakpoint in our assumption.
To control the false discovery rate of breakpoints,

regions that contain less than six change points are
excluded from the subsequent analysis since they are
likely the artifact of sequencing noise. Finally, CN-
Veil selects the middle change point in each region as
the predicted breakpoint. CNVeil repeats the cross-
cell breakpoint detection procedure for each cell clus-
ter and generates a unique breakpoint profile for each
cluster.
Finally, the segmentation is established by defining

a segment as the consecutive bins between every two
predicted breakpoints. CNVeil also performs fine clus-
tering and across-cell breakpoints and segmentation
identification for the initial normal cell cluster with
the same approach.

Infer final CNV states. In the final module of the
pipeline, the objective of CNVeil is to infer the copy
number state for each bin of each cell. As we discussed
before, for each cell, if we disregard the variances of
read depth in each bin, the product of cell-specific
ploidy and normalized read depth is the absolute copy
number. To further normalize the read depth and min-
imize variance, CNVeil utilizes the cross-cell segmen-
tation achieved in the previous module to standardize
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each normalized read depth RD′
ij as below:

RD′′
i,j = r × R̃D′

u,v + (1− r)×RD′
i,j ,

for i ∈ u, j ∈ v
(12)

where RD′
i,j is the normalized read depth for the

i-th cell and j-th bin, and R̃D′
u,v is the median read

depth for the v-th segment in the u-th fine cell clus-
ter. RD′′

i,j is the standardized read depth, and r is the
standardization factor (0.5 by default). By standard-
izing, CNVeil ensures RD′′

ij faithfully represents gen-
uine genomic aberrations while minimizing the impact
of artifact noise.

The Final Copy Number Profile (FCNP) is then in-
ferred as:

FCNPi,j = RD′′
i,j × ploidy∗ (13)

CNVeil uses subclone ploidy∗ to represent cell-specific
ploidy because 1) ploidy∗ is the optimal ploidy when
maximizing the size of each cluster under the con-
straint that cells in one cluster share the same ploidy
level; 2) although there is variability in read depth
across all bins for each cell within the subclone, the
cell-specific ploidy does not exhibit significant variabil-
ity.

Simulated data by simSCSnTree. We employed Sim-
SCSnTree to generate simulated datasets with a gold
standard. The simulation process executed by Sim-
SCSnTree is intricately designed in three primary
steps, reflecting the complexities inherent in cancer ge-
nomics.

Step 1: Phylogenetic tree construction and genomic

variation modeling.In the initial step, a phylogenetic
tree is crafted using SimSCSnTree, with each node rep-
resenting a distinct genome segment, and the connect-
ing edges denoting genetic variations (CNVs). Built
upon the hg19 reference genome, it ensures our simula-
tion mirrors actual genomic structures and sequences.
The outcome produces two critical numpy (.npy) files:
one delineating the CNVs alongside the tree structure
and another storing intermediate information essential
for the subsequent simulation step.

SimSCSnTree controls the characteristics of the tree
and the final CNV profile by multiple parameters, such
as the multiplier of the mean CNV on the root, the rate
of deletion, the mean, and median of the tree width
distribution, etc. For example, to generate the tree for
a dataset with an average ploidy of 1.5, we used the
command below:

python ./SimSCSnTree/main.par.overlapping.py \

-S ./SimSCSnTree/wgsim-master \

-r ./simulate_ploidy1.5 \

-t reference_hg19.fa \

-n 100 -p 1 -X 4 -W 0 -m 5000000 -e 20000000 \

-d 1 -c 8 -E 1 -F 8 -H 0.000001

where -n is number of cells, -p is number of proces-
sors, -X is the multiplier of the mean CNV on root,
-W denotes whether there is whole chromosome am-
plification (0 indicating no), -m is the minimum copy
number size, -e is the parameter for the exponential
distribution for copy number size beyond the minimum
one, -d is the rate of deletion, -c is the average number
of copy number variations to be added on a branch, -E
is the whole amplification copy number addition, -F is
the mean of the tree width distribution, and -H is the
standard deviation of the tree width distribution.
To generate a dataset of other ploidy, the user needs

to adjust the corresponding parameters. To reproduce
all four simulated datasets in this paper, users can refer
to our GitHub for more details.

Step 2: Read sampling from the simulated genome

building upon the tree. In the second step, reads are
sampled from the genome at selected nodes of the tree.
This phase is critical in translating theoretical genomic
information into practical sequencing data. By utiliz-
ing the .npy files generated from the first step, this
phase simulated the sequencing process, closely resem-
bling real-world sequencing techniques.
For example, to simulate reads from the tree gener-

ated by step1, we used the command below:

python ./SimSCSnTree/main.par.overlapping.py \

-p 10 -k 1 \

-r ./simulate_ploidy1.5/ \

-S ./SimSCSnTree/wgsim-master/ \

--template-ref genome_hg19.fa \

--Lorenz-y 0.28 -n 100 -L -1 -Y 0.8 -v 0.01 -l 70

where -p is the number of processors, -k denotes
whether to skip step 1 (1 for skip), –Lorenz-y is the
value on the y-axis of the Lorenz curve, -n is num-
ber of cells, -l is the read length, -v is the average
coverage of the sequence, -L controls the levels to be
sequenced, and -Y specifies a range of nodes to se-
quence. the above command for step 2 was employed
for generating all four simulated datasets in this paper.

Step 3: Extract the gold standard set. The ground
truth data for CNVs obtained from this simulation
served as the gold standard against which the accu-
racy and effectiveness of various CNV inference tools
can be assessed. The ground truth was extracted from
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different nodes (tumor subclones), that contain a set of
breakpoints (where the copy number changes) and the
left and right copy numbers for each breakpoint. Simi-
larly, the callset from each CNV inference tool was also
reformatted into a set of breakpoints and neighboring
copy numbers for a fair comparison and evaluation.

Evaluation against gold standard in simulated

datasets.In simulated data, we compared the callset
by each tool with the gold standard set using two eval-
uation modes: segmentation mode and CNV mode.
In segmentation evaluation mode, we required the

position of the called breakpoint and gold standard
breakpoint to approximately align. The called break-
point matches the gold standard breakpoint if they
satisfy the below conditions:{

chromosomecalled = chromosomegold

|poscalled − posgold| < 2Mb
(14)

In stringent CNV evaluation mode, we required both
the breakpoints and the copy number on the left and
right bins of the breakpoint to match between the
called event and the gold standard. The called event
matches the gold standard if they satisfy the below
conditions:

chromosomecalled = chromosomegold

|poscalled − posgold| < 2Mb

leftCNcalled = leftCNgold

rightCNcalled = rightCNgold

(15)

Following an N-to-N matching procedure between
each callset and the gold standard set, breakpoints
from the callset matched to any breakpoint in the
gold standard set are classified as true positives (TPs),
while the remaining breakpoints from the callset are
considered false positives (FPs). Conversely, break-
points from the gold standard set without a matching
counterpart in the callset are classified as false nega-
tives (FNs). The evaluation matrices are calculated as
below:

recall = TP/(TP + FN)

precision = TP/(TP + FP )

F1 = 2 ∗ recall ∗ precision/(recall + precision)

(16)

Code availability
All code is available at
https://github.com/maiziezhoulab/CNVeil. We
implemented both python and R version of CNVeil for
users. The computation cost was benchmarked in the
Python version.
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Figure 1: CNVeil workflow. The main workflow of CNVeil consists of six interconnected and conceptual
modules: 1) Read count matrix construction (Preprocessing); 2) Data normalization by noise reduction and
bias correction (Preprocessing); 3) Initial normal-tumor cell classification (CNV profiling); 4) Tumor sub-
clones identification and ploidy estimation (CNV profiling); 5) Fine clustering and across-cell breakpoint and
segmentation identification (CNV profiling); 6 Infer final CNV states (CNV profiling). A detailed description
for each module is available in the method section.
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Figure 2: Segmentation and CNV evaluation against the gold standard in simulated datasets.
(a) Violin plots illustrating recall, precision, and F1 scores for segmentation evaluation using six tools across
four simulated datasets with varying ploidy values: 1.5, 3.0, 4.0, and 5.0. (b) Violin plots illustrating recall,
precision, and F1 scores for CNV evaluation using six tools across four simulated datasets with varying ploidy
values: 1.5, 3.0, 4.0, and 5.0. Tools are shown in chronological order by publication year.
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Figure 3: Comparison of inferred copy number profiles of single cells from the simulated dataset
with a ploidy of 5.0. (a) Established copy number profiles by the gold standard. (b-h) Inferred copy
number profiles by CNVeil, rcCAE, SeCNV, SCOPE, AneuFinder, Ginkgo, and HMMcopy. We ordered all
heatmaps in a consistent cell order aligned with the gold standard which includes a normal cell subclone and
a tumor subclone. Tools are shown in chronological order by publication year.
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Figure 4: Comparison of inferred copy number profiles of single cells from the breast cancer pa-
tient T10. (a-h) Inferred copy number profiles by CNVeil, rcCAE, SeCNV, CHISEL, SCOPE, AneuFinder,
Ginkgo, and HMMcopy. We ordered all heatmaps in a consistent cell order based on the order of reported
subclones in FACS: normal cell subclone, one subclone of hypodiploid cancer cells, and two subclones of
hyperdiploid cancer cells. Tools are shown in chronological order by publication year.
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Figure 5: Orthogonal validation of single-cell copy number profiles by aCGH of purified bulk
samples by FACS from T10). (a) Mean square error (MSE) plots for eight tools. (b) MSE plots for seven
tools and CHISEL is excluded. The tools are ordered by average MSE in descending order.
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Figure 6: Comparison of inferred copy number profiles of single cells from the breast cancer pa-
tient T16. (a-h) Inferred copy number profiles by CNVeil, rcCAE, SeCNV, CHISEL, SCOPE, AneuFinder,
Ginkgo, and HMMcopy. We ordered all heatmaps in a consistent cell order based on the hierarchical cluster-
ing results of the CNV profile by SCOPE. Tools are shown in chronological order by publication year.
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Figure 7: Comparison of inferred copy number profiles of single cells from a triple negative
breast cancer patient KTN302. (a-h) Inferred copy number profiles by CNVeil, rcCAE, SeCNV, CHISEL,
SCOPE, AneuFinder, Ginkgo, and HMMcopy. We ordered all heatmaps in a consistent cell order based on
the pre-treatment and mid-treatment stages. Tools are shown in chronological order by publication year.
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Figure 8: Comparison of different tools’ CPU time and memory usage across datasets. (a) CPU
time in minutes (Mins) for eight tools across seven datasets. (b) Memory cost in gigabytes (GB) for eight
tools across seven datasets. Tools are shown in chronological order by publication year.
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CNV callers Version Resource Link

CNVeil default This paper https://github.com/maiziezhoulab/CNVeil

rcCAE default Yu et al. 2023 https://github.com/zhyu-lab/rccae

SeCNV default Wang et al. 2022 https://github.com/deepomicslab/SeCNV

CHISEL 1.0.0 Zaccaria et al. 2019 https://github.com/raphael-group/chisel

SCOPE 1.10.0 Wang et al. 2019 https://github.com/rujinwang/SCOPE

AneuFinder 1.27.1 Bakker et al. 2016 https://github.com/ataudt/aneufinder

Ginkgo default Garvin 2015 https://github.com/robertaboukhalil/ginkgo

HMMcopy 1.40.0 Shah et al. 2006 https://github.com/shahcompbio/HMMcopy

Dataset Number of Cells Identifier Link

T10 100 SRA: SRA018951 https://www.ncbi.nlm.nih.gov/sra/SRX021401[accn]

T16P 52 SRA: SRA018951 https://www.ncbi.nlm.nih.gov/sra/SRX037035[accn]

T16M 48 SRA: SRA018951 https://www.ncbi.nlm.nih.gov/sra/SRX037132[accn]

KTN302 (pre-treatment) 47 SRA: SRP114962 https://www.ncbi.nlm.nih.gov/sra/SRX3069874[accn]

KTN302 (mid-treatment) 45 SRA: SRP114962 https://www.ncbi.nlm.nih.gov/sra/SRX3069873[accn]

Simulation
(ploidy = 1.5, 2, 3, 4, 5) [96, 50, 97 95, 100] https://github.com/compbiofan/SimSCSnTree

Gold Standard Number of Sectors Identifier Link

aCGH of breast cancer 14 GEO: GSE16607 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16607

Table 1: Resource for different tools, datasets, and the gold standard. Top panel: The CNV inference
methods used in this paper. The tool version number, cited article, and tool links are shown in the table.
Bottom panels: The real and simulated scDNA-seq datasets and the aCGH gold standard used in this paper.
The number of cells, identifiers, and links for each dataset are shown in the table. For simulated datasets, the
corresponding simulator is listed.
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