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Abstract

Single cell RNA sequencing (scRNA-seq) data is widely used to study cancer cell states and their
heterogeneity. However, the tumour microenvironment is usually a mixture of healthy and cancerous cells
and it can be difficult to fully separate these two populations based on transcriptomics alone. If available,
somatic single nucleotide variants (SNVs) observed in the scRNA-seq data could be used to identify the
cancer population. However, calling somatic SNVs in scRNA-seq data is a challenging task, as most
variants seen in the short read data are not somatic, but can instead be germline variants, RNA edits or
transcription, sequencing or processing errors. Additionally, only variants present in actively transcribed
regions for each individual cell will be seen in the data. To address these challenges, we develop CCLONE
(Cancer Cell Labelling On Noisy Expression), an interpretable tool adapted to handle the uncertainty and
sparsity of SNVs called from scRNA-seq data. CCLONE jointly identifies cancer clonal populations, and
their associated variants. We apply CCLONE on two acute myeloid leukaemia datasets and one lung
adenocarcinoma dataset and show that CCLONE captures both genetic clones and somatic events for
multiple patients. These results show how CCLONE can be used to gather insight into the course of the
disease and the origin of cancer cells in scRNA-seq data.

1 Introduction

Cancer is a multistep process driven by somatic mutations in which healthy cells progressively evolve
into cancerous states. Quantifying how cancer cell states differ from healthy states helps us understand
this disease and provides potential therapeutic targets. Single cell RNA sequencing (scRNA-seq) has
emerged as a powerful tool to study cancer cell states and their heterogeneity. However, the sampled
tumour microenvironment is usually a mixture of healthy and cancerous cells [1], and fully separating
these two populations can be difficult based on transcriptomics alone. Measuring mutational status and
gene expression in the same single cell would allow us to more accurately identify the cancer population
through mutations and relate that information to the observed transcriptional states. However, sequencing
the entire genome and transcriptome of the same individual cell is costly and has low throughput [2–4].
Another option is to sequence only targeted genetic regions containing somatic mutations alongside the
transcriptome [5–8], but this requires prior knowledge on the position of these mutations in each sample.
These positions are usually inferred from preceding bulk DNA sequencing or through panel testing of
known cancer associated genes. These current approaches require an adapted experimental design
and carry additional costs and delays, which highlights the need for computational methods that can
automatically and at large-scale, be applied to the prevalent uni-modal scRNA-seq datasets.

In the past, large copy number variants (CNVs) have been used to identify cancer populations in
scRNA-seq data [9–11]. Since in that case the mutations cover large areas of the genome, the tools can
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leverage the read data across multiple adjacent regions to identify the CNVs. Mitochondrial variants (MVs)
with high heteroplasmy have also proven helpful to study the cell lineage in cancer and healthy tissue due
to the high mutation rate of the mitochondrial genome, large number of mitochondria per cell, and strong
expression of mitochondrial genes [12–14]. However, not all cancers have CNVs or high heteroplasmy
MVs and these events are found at different frequencies in different cancer types. In the absence of CNVs
and usable MVs, recovery of cell lineages from scRNA-seq data has not been addressed up to date.

Single nucleotide variants (SNVs) observed directly in scRNA-seq reads could help identify cancer
cells. However, calling SNVs confidently from scRNA-seq data is a challenging task. First, only variants
present in actively transcribed regions will be seen in the data. Even then, we might not catch these
variants in every cell due to the low average coverage of individual positions and of allelic dropout. Fur-
thermore, when calling variants against the human reference genome, most variants seen in scRNA-seq
reads are not somatic mutations but can be germline variants, RNA edits or transcription, sequencing or
processing errors. In other words we will completely or partially miss most somatic SNVs, and most iden-
tified SNVs will not be somatic. Because of the high uncertainty of this data, SNV calls from scRNA-seq
data are often very strictly filtered to ensure that mostly true somatic variants remain to identify the cancer
cells [15]. This strict filtering can come at the cost of the identification of cancer cells in several lineages
if they do not contain well covered high-confidence somatic variants. We hypothesised that by using
methods which account for the uncertainty in the data, we could incorporate more variants (including low
confidence variants) for identification of the clonal structure.

In this work, we show that SNVs called directly from scRNA-seq data can be used to identify cancer
clonal populations. We introduce CCLONE (Cancer Cell Labelling On Noisy Expression), a tool adapted
to handle the uncertainty in this big data. CCLONE is a fully automated tool that can be applied on new or
existing scRNA-seq samples. We validate our results on three single-cell datasets with known cell clonal
identities inferred based on targeted amplification of known SNVs, MVs and CNVs. The first two datasets
present 19 patients with acute myeloid leukaemia (AML) [14,16], which is a cancer typically characterised
by a low mutation load [17]. The third dataset presents 7 lung adenocarcinoma patients [18] which is
typically characterised by a much higher mutational load [19]. For multiple patients, our method is able
to reproduce the known clonal structure without using any prior information on the samples. The method
also returns a set of SNVs enriched in each identified clone along with their expected allele frequency
(i.e., homo/hetero-zygocity) in each clone. We show that these variants enhance interpretability of the
results and points to real somatic events which inform about the course of disease evolution and the
origin of cancer cells.

2 Results

In this section we first introduce and describe the CCLONE workflow. We then validate the tool on
the AML and lung adenocarcinoma datasets, and show examples where the method helps get a better
understanding of the analysed samples. Lastly, we show how the method’s likelihood of success depends
on the data quality and the resulting capture of sufficient somatic variants.

Overview of CCLONE workflow.

For a fixed set of run parameters, the CCLONE workflow includes three main steps; i) variant calling
and filtering, ii) clonal assignment using a weighted non-negative matrix factorisation, iii) statistical eval-
uation of the results. CCLONE runs this workflow for multiple sets of parameters and returns the most
statistically favourable result as the final output.

As input, CCLONE takes annotated variant call data from scRNA-seq data (Figure 1.A). Cancer driver
variants, passenger variants, or somatic variants found only in healthy clones can all be used to identify
the clones. Ideally, the set of selected variants would contain as many somatic events as possible and
as few non-somatic variants as possible. Therefore, assuming variant calling with no prior information on
somatic events (such as we get from the bcftools variant calling pipeline [20]), CCLONE filters the likely
non-somatic variants to maximise the signal-to-noise ratio (Figure 1.B). RNA edits, whose occurrence
patterns are highly cell type specific [21], and thus a potential confounder in the data, are filtered out
based on reference annotation in REDIdb [22]. Variants with very low coverage, or very low minor allele
frequency (MAF) cannot reliably be leveraged to identify genetic clones and are also filtered out. Het-
erozygous germline variants are expected to be found equally in all cells. However, their occurrence can
be associated to somatic events if they are located within regions either lost through a deletion or loss of
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Figure 1: Overview of CCLONE workflow. (A) Variants are called from single cell short read data. The
short reads differ from the reference in two positions (outlined in red and blue). For every variant, we
keep the number of alternative and reference counts, and extract variant annotation. (B) We filter the
variants based on database annotation as well as coverage and frequency. Because the best filtering
threshold might differ between samples, we try different thresholds resulting in multiple variant subsets.
(C) We use a weighted NMF to discover the hidden clonal structure in the variant call data. For this, the
read count data is transformed into the observation matrix M corresponding to the discretized VAF, and
a weight matrix W that reflects the confidence that we have in each value in M. The wNMF is calculated
for every variant subset and a range of number of factors K. (D) To select the best result, we first select
the best number of factors K according to the elbow method on the weighted sum of errors. To select
the best variant subset, we compare the computed cell factors (matrix C) for every subset, and select the
wNMF output with the largest (i.e., closest to 0 for negative values) orthogonality score s between the
factors (Equation 4) as this reflects a clearer separation between the clones.

heterozygosity event (LOH), or not expressed through strong imbalance in allelic expression (potentially
due to a somatic variant in the regulatory region). Because of high variability between cancers, types
of mutations and clone population size, a different filtering threshold might maximise the signal-to-noise
ratio for different samples. To allow the model to make use of as many mutational events as possible,
while excluding as many non-somatic variants as possible, we try different filtering thresholds and later
allow the model to select the most informative set (Figure 1.B).

After filtering, we want to recover the hidden clonal structure from the cell-variant call matrix M (Meth-
ods 4.2.1.). We expect somatic variants to co-occur within genetic clones, but the variant call data is still
both noisy and sparse. Non-negative matrix factorisation (NMF) has been widely used to capture hidden
structure in noisy scRNA-seq data [23, 24]. However, NMF assumes that the data is complete, while we
will only observe a variant if the position is covered, i.e. actively expressed in that cell. To account for this,
we use instead a weighted NMF (wNMF), that uses a weight matrix W to reflect how confident we are in
each value of the variants call matrix M (Figure 1.C, Methods 4.2.1.) based on each variants’ coverage
in each cell. In wNMF, we try to learn the hidden factor matrices C (cell factors) and V (variant factors)
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that minimise the weighted sum of squared errors E of recovering the input data matrix M :

E =

ncells∑
i=1

nvars∑
j=1

(
K∑

k=1

Mij − CikVkj)
2Wij (1)

We allow the model to choose the number of factors K to reflect the number of genetic clones clearly
distinguishable in our variant call data based on the elbow method on E (Figure 1.D, S1 shows the elbow
on real data and Supplementary note A for discussion of the elbow method) [25].

We run the wNMF on all variant subsets and then allow the model to select the most informative set.
Because the different subsets contain variants with different properties (different minimal MAF, inclusion
/ exclusion of germline variants), and thus different levels of expected uncertainty, the sum of squared
error E is not directly comparable between the subsets. Here, we use instead the assumption that if
the clones are clearly distinguishable in the variant data and captured by the model, then the cell factors
reflecting these clones should be clearly separated i.e. uncorrelated. We select the best result based on
the orthogonality score of the cell factors (Figure 1.D, Supplementary note B).

If the model succeeds, the cell factors should give us the final clonal assignments of that patient.
The variant factors reflect the variants enriched in these clones and can be used to find disease relevant
mutational events. The factors are not directly assigned a label of healthy or cancer, but must then be
labelled through prior knowledge. In this work, we use the presence or absence of either known healthy or
cancer cell types in each cell factor to label the factors (Supplementary note C). We consider the model to
be successful if the factors can be clearly labelled as healthy and cancer. This ensures that the captured
factors correspond to cancer and healthy clones, and that the separation between the two is well defined
in the data. Alternatives to this approach are discussed in Supplementary note D.

Application on AML patients datasets

We validate CCLONE on two AML single cell datasets. AML is usually characterised by a low mu-
tation load. These mutations cause a block in differentiation of the hematopoietic stem cells (HSCs)
resulting in the malignant expansion of aberrant progenitor cells called "blasts" [26]. This population is
fuelled by leukemic stem cells (LSCs) that are transcriptionally similar to normal HSCs and difficult to
target. Because of the low mutation load and presence of difficult to identify LSCs, AML provides a good
test case on which to validate our method. The first analysed dataset contains 4 patients sequenced
with SmartSeq2 [14], and the second dataset contains 15 patients sequenced with 10X [16] (Figure S2
shows the cell types and patient labels on UMAP). In both of these datasets, the cell labels as healthy
or cancer could previously be recovered in some patients (respectively 2 and 11 patients) based on MVs
and targeted amplification of known somatic SNVs in [14] and additionally through CNV in [16]. The two
additional Smart-Seq2 patients had partial cell labels based on a single nuclear somatic variant. We call
these previously recovered cancer and healthy cell labels "reference labels" in the following sections. The
two datasets also allow us to compare the success rate with data from different sequencing technologies.

CCLONE identifies cancer cells

CCLONE successfully identified cancer cells in all four SmartSeq2 patients (patients P1-P4 in Figure
2.A) and seven of the 10X patients (patients A1, A2, A6, A7 and A13-A15 in Figure 2.B). We use the T
cells and Blasts to label the factors (Supplementary note C). Cells with similar weights for the healthy and
cancer factors (difference in weights < .3) are labelled as undetermined. The method clearly groups the
aberrant progenitors and the T cells in separate factors as expected for genetic clones in AML, while the
stem cell populations are a mixture of healthy and cancer cells. We compare the labels for the patients
where we have both reference cell labels and new labels (Figure 2.C.). We find a nearly complete overlap
between the labels for patients A1, A2 and P2 (Figure 2.C.).

For patient P1, A13 and A6, we are identifying a subset of the cells labelled as cancer in the reference.
As cancer is continuously evolving through acquisition of new mutations, we likely have multiple cancer
clones present in parallel in the sample. It is possible that our method identifies a subclone of the refer-
ence, as shown in the example of patient P1 (Figure 2.D and E). Here, the reference differentiates healthy
cells, and the cancer population containing the preleukemic clone and two cancer subclones. Comparing
the wNMF cell factors to the reference labels, we see that the reference healthy cells are predominantly
assigned to factor 1, while the two cancer clones are assigned to factor 0. The preleukemic population is
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split between the two factors. The preleukemic cells assigned to factor 1 have much lower variant allele
frequency (VAF) of the two MVs mt:7527DEL and mt:1159G>A than the other preleukemic and leukemic
cells. This indicated that the preleukemic population might in reality correspond to two distinct subclones.

Figure 2: Cell factors capture genetic clones. (A-B) Cell assignments to healthy or cancer based on
the wNMF cell factors plotted on the UMAP for the AML Smart-Seq2 dataset [14] in A and the AML 10X
dataset [16] in B. (C) When present, we compare our cancer cell labels to the reference cancer cell labels
from each dataset, and return the precision and recall for every patient. Note that reference cell labels are
not available for all patients. (D) Heatmap comparing the wNMF cell factors to the reference cell labels
and to the VAF of the variants used to separate the preleukemic population from the healthy one. (E)
Cancer cell factor 1 of patient P1 coloured on the UMAP. Cells from patients P2-P4 are shown in grey for
ease of comparison. (F-J) Cancer cell factors for patient P3, P4, A7, A14 and A15 coloured on the UMAP.
Cells from the other patients of the dataset are shown in grey for ease of comparison.

For patient P3 and P4 the reference is based on a single low-coverage nuclear variant each. For P3
there is no agreement between the reference and new labels. The reference labels are based only on
a single IDH2 variant that is present in a subset of the mature myeloid cells. This variant is depleted in
the subset of these cells that we identify as cancer cells (Figure 2.F and S3). This points towards there
being two distinct genetic clones, each of which is captured by one approach. The IDH2 mutated cells are
transcriptionally similar to monocytes, which could be either healthy or cancer. However, the population
that we identify as cancer is transcriptionally very aberrant (for example expressing HBZ), indicating that
they must be cancer cells that were missed previously. For patient P4 (Figure 2.G), the reference is based
on a single very low coverage variant, and likely missed in many cancer cells (Figure S4). Here, CCLONE
provides more complete cancer cell labels and potentially now captures all cancer cells instead of only a
subset.

For patients A7, A14 and A15 we have no reference cell labels, but CCLONE could still identify a
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cancer population based on SNVs (Figures 2.H-J). These patients had no well-covered known leukemic
SNVs and additionally no usable CNVs or MVs. This highlights the advantages of using a method that
does not rely on prior knowledge of existing somatic SNVs, and consequently is not restricted to a small
subset of the observed SNVs. Patients P3 and P4 are other examples where previous methods based on
MVs and known leukemic SNVs are not sufficient to fully label the cancer cells. We further validate the
clones based on known cancer and healthy cells within clones (Figure S5).

In this work, we do not use the MVs, nor directly call the CNVs for use with CCLONE. This means that
we are potentially using a different set of somatic events than the reference to characterise the cancer
cells. This can explain why we do not find the same exact same clones as the reference if the different
variant subsets are found in different subclones.

CCLONE finds cancer associated variants

On top of the cell factors, the wNMF also returns variant factors. To find clone-associated variants,
we extract the variants with the largest difference in weight between the factors (>.3) and covered in at
least 20% of the cells assigned to each clone. For the AML Smart-Seq2 patients, we have a whole exome
(WE) cancer and control sample which we can use to validate and understand the variant factors.

The clone-associated variants of patient P1 are shown in Figure 3.A. Four of the SNVs associated
with the cancer factor are supported by the WE, indicating that CCLONE is capturing somatic events. For
P1 these four variants are also the only variants enriched in the WE cancer (Figure S6) and with sufficient
coverage in the single cell data. A lot of the variants with high difference in weight between the clones are
not found in WE, indicating that these could either correspond to variants characterising small subclones
or some other genomic signal manifested in the noisy and imperfectly filtered variant calls. The VAFs of
these variants show a very clear difference between the clones, and they co-occur with the known somatic
SNVs, thus they can also be used by the wNMF to identify the clones. Patient P4 shows similar patterns
to patient P1 (Figure S4).

For some patients, we observe that variants observed at VAF close to 0.5 in the healthy populations
are either lost (VAF≈0) or fixated (VAF≈1) in the cancer population (Patient A1, in Figure 3.B, A2 in Figure
S7 and P3 in Figure S3). In these cases the method could be capturing CNV deletions or LOH, resulting
in the loss of one allele and the heterozygosity of the germline SNVs overlapping that region. Figure 3.B
shows the example of patient A1, where the monosomy on chromosome 17 was also captured by the
wNMF. The other events on chromosome 7 and 11 point to further losses in those regions, one of which
could correspond to the known deletion on chromosome 7. Another example of a patient where the wNMF
potentially captures CNVs is patient P3 (Figure S3). The variants separating the cancer subclone from
the other cells are predominantly germline variants (found in both WE cancer and control), and variants
heterozygous in the healthy population are again either lost of fixated in the subclone.

For patient P2 (Figure 3.C), we find a very high number of variants associated with each clone, and
those associated with clone 1 are found in both WE samples while those associated with clone 0 are
found in none. Both of these variants subsets are enriched in known germline SNVs (dbSNP common).
The extremely high number of likely germline variants clearly separating both factors point towards this
patient potentially having cellular mosaicism. Such blood microchimerism can arise naturally if the patient
had a twin through exchange of hematopoietic stem cells in utero, or after pregnancy [27, 28]. This
was overlooked in previous analysis, and the reference cell labels reflect the separation between "donor"
(factor 0) and patient cells (factor 1). Here, considering both cell factors and variant factors jointly allows
us to get a more complete picture of the data. Excluding the donor cells, and rerunning variant filtering and
wNMF, we find two clones, corresponding in parts to the separation between preleukemic and leukemic
in the original publication [14] (Figure 3.D). The final labels for patient P2 are shown on the UMAP in
Figure 3.E. The main disagreement between the reference preleukemic and leukemic labels and our
assignments are in cells with low or no coverage for the leukemic variants used to label the reference
(Figure 3.D), indicating that CCLONE is helping us refine the labels and now identifies all leukemic cells.
This separation between healthy and cancer for P2 could only be identified after excluding the donor
cells and the associate variant, as the signal-to-noise ratio for this pattern was otherwise too low. This
highlights the importance of variant set selection.

The VAF plots of selected variants for all additional AML 10X patients are shown in Figure S7, and for
patients P2 excluding donor cells in Figure S8.
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Figure 3: Variant factors capture somatic mutation events. (A) VAF for selected variants for the
cells of patient P1. The cells are sorted by cell factors and the subset of variants are selected based on
difference of weight between the variant factors (>.3). Grey values have too low coverage (≤2 reads for
scRNA and ≤5 for whole exome data). (B) VAF of selected variants (difference of weight > .3) for patient
A1. The reference clonal tree was extracted from [16], and is based on their method CloneTracer. (C)
VAF of selected variants (difference of weight > .3) for patient P2. The enriched variants in each factor
are shown on two separate heatmaps for ease of visualisation of the different frequencies of observing
these variants in the WE samples. Factor 0 (variants shown on right heatmap) corresponds to donor
cells, and the variants characterising these cells are almost never found in the whole exome cancer or
control, compared to the variants found in factor 1. (D) After excluding the donor cells and recalculating
the wNMF, we compare the wNMF cell factors to the reference cell labels and to the VAF of the variants
used to identify the leukemic population for P2. (E) Final CCLONE cell assignments for P2.

Data quality and mutation load determine success

CCLONE does not succeed in recovering clonal structure for all AML patients. The model needs
multiple co-occurring somatic events to identify the clones, and these might not be found at sufficient
frequency for all the patients. In particular, we see a much higher rate of success for the Smart-Seq2
patients, than for the 10X ones. This is likely due to the higher sequencing depth, and to the fact that
Smart-Seq2 is not 3’ biased, resulting in a higher rate of capture for somatic events not located in the 3’
end. We thus capture a much higher number of variants for the Smart-Seq2 patients than for the 10X
patients (Figure 4.A). Overall, we expect the method to work better at higher sequencing depths as we
have higher odds of capturing somatic events across cells. The exception is given by patients A1 and
A2 that are characterised by multiple large CNVs captured by the method. To simulate the success rate
at lower sequencing depth, we subsample counts from our variant calls and rerun CCLONE. We then
compare the results on the subsampled counts to the full counts in Figure 4.B. (S9 for recall and number
of variants kept). As expected the precision significantly declines at lower simulated sequencing depths,
although with high variability between patients, reflecting the variation in clarity of the signal.

In total, we recover cancer clones in 11 of 19 AML patients, even if the captured clone does not always
cover all cancer cells (Figure S5). This is a success rate approaching the combined use of targeted
amplification of known SNVs, MVs and CNVs (success for 15 patients). This success rate is particularly
notable if we take into account the significantly higher ease of application of CCLONE to new and existing
datasets.

As the success of the wNMF is correlated with the number of captured somatic events, we hypoth-
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esised that for tumours with higher mutation load we might still succeed in capturing the clones at low
sequencing depth. To test this, we applied CCLONE on a 10X lung adenocarcinoma [18] with 1.5x104-
1.5x105 reads per cell, shown in yellow in Figure 4.A. Here, the reference cancer cell labels are equivalent
to the ones used in the original study and based on CNVs. The wNMF needs the presence of at least
2 genetic populations at sufficient frequencies to find patterns of variant co-occurrence. Because of this,
we exclude patients that have almost only (>97%) tumour cell types, leaving us with 7 patients (Supple-
mentary Figure S10). Figure S11 shows the cell types and patient labels on a UMAP. CCLONE succeeds
in identifying the cancer population in 3 of the 7 analysed patients (Figure S12 shows the labels on the
UMAP) and the cancer cell labels have a high overlap with the reference for p019 and p023, and cor-
respond to a subset of the cells for p033 (in yellow on Figure 1C and S5). This success rate is lower
than expected. Nonetheless, the method still succeeds for some patients, and the VAF plots of selected
variants (Figure S13) helps us identify likely somatic events.

Figure 4: Method success is dependent on the quality of the data. (A) Total number of called variants
as a function of the number of reads per cell for each patient. Here we include all called variants covered
in 10% or more of the cells. Note the log scale on the x axis. (B) For every patient we randomly subsample
counts from the reference and alternative count matrices, and rerun the wNMF on the subsets. Comparing
the cancer cell labels between the full dataset and the subset, we get the precision as a function of the
percentage of sampled counts. The values are plotted in grey if the number of variants with sufficient
coverage is lower than 100.

Computational efficiency

The two most computational expensive steps of CCLONE are variant calling and wNMF. We report
the runtime on a Dual Xeon E5-2650v2 (8cores/2.6GHz) and 15 GB of memory for variant calling with
Cellsnp-lite in Figure S14, and for the wNMF in Figure S15. The runtime of both steps scales linearly with
the input size.

For a 10X patient with 10000 cells, variant calling with Cellsnp-lite over all chromosomes in parallel,
we estimate to take about 48 hours. Depending on the number of variants, subsequent analysis of the
variant calls with CCLONE we estimate to take up to 12 hours.

Data and software availability

The raw sequencing data of the two AML datasets are available at the European Genome-Phenome
Archive with the accession ids EGAS00001003414 [14] and EGAS00001007078 [16]. All notebooks
necessary to reproduce the results reported in this paper and the anonymised variant call data is available
on our GitHub Page: https://github.com/ValerieMarot/clonal_tracing_notebooks . A python package of the
CCLONE pipeline can be found at https://github.com/ValerieMarot/clonal_tracing_package .
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3 Discussion

In this manuscript, we show that cancer cells can be identified from SNVs called directly from scRNA-
seq data. These calls tend to contain many non-somatic variants and often have very low to no coverage
in individual cells. We introduce CCLONE, a method adapted to work with uncertain variant calls. We
validated the method on 2 AML datasets (19 patients) and a lung adenocarcinoma dataset, and show that
the method captures genetic clones. The interpretable output of the method also allows us to find disease
associated variants pointing to somatic events. By jointly considering all cells and all variants to find
patterns of co-occurrence, CCLONE can identify patterns that might be missed by other methods. This
is nicely exemplified by patient P2, where the cellular mosaicism was missed by the MutaSeq analysis,
even though the same clones were identified. Another example is patient P3, where our approach finds a
different cancer subclone that was overlooked in previous analysis.

Per default, CCLONE takes all variants called from scRNA-seq data as input, and automatically tries
to find the most informative variant subset. This approach avoids more complicated and costly variant
filtering procedures and makes the method easy to apply on new samples. Nevertheless, the set of
variants used as input to the wNMF will influence its output. Including too many non-somatic variants
causes a reduction of the signal-to-noise ratio, and might result in losing the clear separation of clones.
On the other hand a too strict filtering can result in the exclusion of somatic events and loss of signal.
Another issue can arise from the presence of correlated non-somatic variants such as cell type specific
RNA edits. Here the wNMF would cluster according to these variants and the resulting clones will not
reflect genetic information. This highlights the importance of sensible filtering criteria of the variants
subset used as input. In the absence of prior knowledge (such as identified through panel testing of
known disease genes or WE data), we propose to try different filtering thresholds for the variants used as
input to the wNMF and afterwards determine the best result based on the metric introduced in Equation
4. Another solution would be to include only variants that are very likely of somatic origin, either through
prior knowledge or through filtering and statistical testing [29, 30]. However, allowing the model to make
use of likely germline variants if they are informative can result in the capture of CNVs, as was the case
for patient A1. Furthermore, excluding all uncertain variants could come at the cost of resolution for cells
that do not have coverage for the small subset of selected variants, as shown on the unreliable reference
for patient P3 and P4.

CCLONE relies on finding groups of variants that tend to co-occur within genetic clones (i.e. the
healthy or cancer populations). Therefore, the mutational load of the analysed sample, as well as the
capture rate of these variants are crucial determinants of CCLONE’s success for a specific sample. The
capture rate depends both on the mean sequencing depth and also on the properties and biases of the
used sequencing technologies. As shown in section "Data quality and mutation load determines success"
3’ biased technologies such as 10X will miss more variants than technologies with coverage over the full
length of the transcript. For cancer samples with low mutational load, such as is expected for most
AML patients, we recommend higher sequencing depth (≈ 1e6) and coverage over the full length of the
transcript. For cancer types with very high mutational load, the co-occurring variants might still be found
at lower sequencing depths with 3’ biased technologies, although very low sequencing depth can still
result in missing the existing signal.

The wNMF step of CCLONE tries to find groups of co-occurring variants across cells in an unsuper-
vised manner. The smaller the group of co-occurring variants and the smaller the clonal cell populations,
the smaller the decrease in error E. One consequence of this, is that very small clones can be missed by
the wNMF, as the decrease in E approaches background noise. To ensure that both the healthy and can-
cer populations have sufficient size to be captured by the wNMF, we restrict our analysis to patients that
have both sufficient healthy and cancer cell types. We recommend each clonal population to be present
at frequencies of at least 10% when running CCLONE on new data. Alternatively, prior knowledge during
variant selection can also help enhance the signal-to-noise ratio to allow for the identification of smaller
clones. In this work, we further use these cell types to annotate and validate the factors, highlighting
again the need for sufficient cells of these cell types in the sample. Other prior knowledge on the anal-
ysed samples (such as known somatic events present in the data) could be used instead in the absence
of this information.

Cancer is continuously evolving through acquisition of new somatic mutations and clonal expansion.
Therefore there is an inherent uncertainty in any attempt to group the cells into separate groups of healthy
and cancer cells. Depending on the time of acquisition of each somatic variant, these variants might be
present in all, or in different subsets of the cancer cells. This imbalance between variants found in different
subclones might be particularly pronounced if the cancer acquires a mutator phenotype, resulting in a
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higher mutation rate in the corresponding clone [1]. In the presence of multiple subclones with different
somatic variants, the subset of variants used as input to the wNMF will then determine which of these
we identify. As a result, for early cancer clones, the wNMF is not guaranteed to identify all cancer cells.
This is exemplified by patients P1, P3 and A6, where we identify a subset of all cancer cells as the cancer
population (Figure 2C and S4). For patients P1 and P3, we could show that the identified subset of cells
corresponds to a genetically distinct population of cells, indicating that we are capturing a subclone of the
cancer population.

CCLONE’s success rate (11 of 19 AML patients) in using SNVs seen in scRNA-seq data for iden-
tification of clonal structure in cancer samples motivates further computational developments in this di-
rection. These types of approaches that require no previous knowledge about existing mutations can
provide clonal insight into existing datasets, potentially avoiding the cost of additional experiments (such
as WE sequencing) for samples where the clonal structure can be recovered from variants observed in
the scRNA-seq data alone. In the future, one could consider other probabilistic approaches of handling
uncertainty in the variant call data. These could include efficient ways of incorporating prior knowledge
(e.g. through known somatic events) into semi-supervised classification algorithms. In this work we fo-
cused on extracting the information present in the uncertain SNVs and showing that this layer contains
usable clonal information. Future methods could also combine the different information layers provided
from nuclear SNVs, CNVs and MVs. This could help us get a more complete picture of the mutational
journey of healthy cells towards cancerous states.

4 Methods

4.1 Processing of raw data

4.1.1 Preparing the raw data and variant calling

The raw data was aligned to reference genome hg38 [31] with Star version 2.7.8a [32] for the MutaSeq
data and Cell Ranger version 7.1.0 for the two 10X datasets. Variants were called single cells with Cellsnp-
lite version 1.2.3 [33]. We annotate the variants with VEP [34] with custom annotation of common dbSNP
germline variants (MAF≥ 0.01 in at least one major population) [35] and RNA edits found in REDIdb [22].

4.1.2 Variant filtering

To minimise potential artefacts in variant calling, we filter all variants found in repeat regions, according
to RepeatMasker [36]. We filter all variants annotated as RNA edits. We remove all low coverage variants
found with cov ≥ 2 in less than 10% of the cells.

To allow flexibility in filtering of germline variants and low coverage variants, we create 6 different
variant subsets corresponding to the combination of different thresholds. These thresholds are exclusion
/ inclusion of germline variants and exclusion of variants with MAF of 2%, 5% or 10%. We then run the
wNMF on each subset and later choose the most informative subset.

4.2 Clustering of cells and variants

4.2.1 Input

The NMF takes as input an observation matrix M and a weight matrix W (both of dimension ncells, nvars).
M is chosen to represent our best estimation of the true VAF, while W reflects the confidence we have in
each value of M .

When working with nuclear variants, M contains the discretized (into three values 0, 0.5, 1 (corre-
sponding to homozygous reference, heterozygous, and homozygous variant observations) VAF for every
variant in every cells. We count an allele as observed, if we see at least two UMIs (or 2 reads for non-UMI
technology) matching that allele, and an allelic frequency ≥ 0.05. We have:

Mij =


1 if we see only ALT reads
0.5 if we see both REF and ALT reads
0 if we see only REF reads
0 if we see none of REF or ALT (i.e. not expressed)

(2)
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Observing only REF or ALT in a cell can either indicate that the cell does not have that variant, or it can
be due to imbalances in allelic expression. To reflect this, we define W as:

Wij =


0.5 if we see only ALT reads
1 if we see both REF and ALT reads
0.5 if we see only REF reads
0 if we see none of REF or ALT

(3)

4.2.2 wNMF

In NMF, we factorise the observation matrix M , into two matrices C of size (nobs, K) and V of size (K,
nvars), with the constraint that these matrices have no negative elements. In wNMF, we further weight
each value in M by its weight defined in W according to Equation 1.

Since the solution to Equation 1 is not unique, we find the optimal C and V matrices via an EM
procedure; first C is (randomly) assigned and V is found by a non-negative least squares solver. Then
V is fixed and C is solved analogously. We iterate these two steps until convergence (default of 1000
EM iterations). Figure S16 demonstrates the robustness of the final solution with respect to the initial
(random) initialisation on real data.

Ideally, the number of latent factors K would reflect the number of co-occurring variant groups clearly
identifiable from the data. If this information is known, the corresponding K can be used as input to the
wNMF. In the absence of prior knowledge, we try to determine the best number of factors based on the
elbow method on E (Equation 1). We run the wNMF for a range of K (default of 1 to 5), and get the error
E for each of these. The decrease in E should be high while the new factors still capture bigger groups of
co-occurring variants and level off when the new factors describe small groups or single variants. We use
the kneedle algorithm [25] to automatically find the elbow. E as a function of K and the chosen elbow are
shown in Figure S1 for all patients analysed in this work.

4.2.3 Bootstrapping

The method to fit our wNMF does not guarantee finding a global minimum of the cost function, and the
final factor matrices can vary over multiple rounds with random initialisation. To test its robustness with
respect to noise in input data, we bootstrap the wNMF by randomly subsampling 90% of the variants and
recomputing the factor matrices, with default of 10 bootstrap. We then align the results and get the mean
and variance of the 10 bootstrap matrices. The mean C and V matrices gives us the final assignments,
while the variance of the bootstrap matrices indicate how robust these assignments are over multiple
bootstrap iterations.

4.2.4 Selection of result

We run our wNMF on the different variant subsets, and select the best output as final result. Because
the variant subsets include different number of variants which can have different properties (different
types of event included, different MAF), the weighted sum of squared errors E is not directly comparable.
Instead, we compare the cell factors C that have the same dimension for all subsets. We expect the cell
factors to reflect our genetic clones, and for each cell to be predominantly assigned to one clone. Hence,
the best result is chosen as the one with the largest (i.e., closest to 0 for negative values) orthogonality
score s between the clones:

s = −
K∑
i ̸=j

C.i · C.j

||C.i|| ||C.j ||
(4)

, where C.i and C.j indicate the i-th and j-th columns of C respectively, and the nominator presents the
inner product between them. The denominator presents the norm of the vectors.

5 Funding and Acknowledgements

Thanks to Philip Bischoff (Charité) for sharing the raw data of the lung adenocarcinoma cohort. Thanks
to Melanie Fattohi (MDC) and Colin Cess (MDC) for proofreading. Thanks to Martin R. Siegert and to all
IT of the MDC for maintenance of a high-quality HPC system and great support.

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.581377doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581377
http://creativecommons.org/licenses/by-nc/4.0/


This study was supported by the Bundesministerium für Bildung und Forschung (BMBF) grant for ‘ju-
nior consortia in systems medicine’ to LH and LV (project number 01ZX1911). Additionally, LH and DB are
supported by the Deutsche Forschungsgemeinschaft (DFG) SFB1588 grant (project number 493872418).

References

[1] Douglas Hanahan et al. Hallmarks of Cancer: The Next Generation. Cell, 144(5):646–674, March
2011. Publisher: Elsevier.

[2] Siddharth S. Dey et al. Integrated genome and transcriptome sequencing of the same cell. Nature
Biotechnology, 33(3):285–289, Mar 2015.

[3] Lih Feng Cheow et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.
Nature Methods, 13(10):833–836, Oct 2016.

[4] Iain C. Macaulay et al. G&t-seq: parallel sequencing of single-cell genomes and transcriptomes.
Nature Methods, 12(6):519–522, Jun 2015.

[5] A. S. Nam et al. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature,
571(7765):355–360, Jul 2019.

[6] D. Van Egeren et al. Reconstructing the Lineage Histories and Differentiation Trajectories of Individ-
ual Cancer Cells in Myeloproliferative Neoplasms. Cell Stem Cell, 28(3):514–523, Mar 2021.

[7] Allegra A. Petti et al. A general approach for detecting expressed mutations in aml cells using single
cell rna-sequencing. Nature Communications, 10(1):3660, Aug 2019.

[8] Alba Rodriguez-Meira et al. Unravelling intratumoral heterogeneity through high-sensitivity single-
cell mutational analysis and parallel rna sequencing. Molecular Cell, 73(6):1292–1305.e8, 2019.

[9] Ruli Gao et al. Delineating copy number and clonal substructure in human tumors from single-cell
transcriptomes. Nature Biotechnology, 39(5):599–608, May 2021.

[10] Teng Gao et al. Haplotype-aware analysis of somatic copy number variations from single-cell tran-
scriptomes. Nature Biotechnology, 41(3):417–426, Mar 2023.

[11] J. Fan et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-
cell RNA-seq data. Genome Res, 28(8):1217–1227, Aug 2018.

[12] Leif S. Ludwig et al. Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell
Genomics. Cell, 176(6):1325–1339.e22, March 2019.

[13] Aaron Wing Cheung Kwok et al. Mquad enables clonal substructure discovery using single cell
mitochondrial variants. Nature Communications, 13(1):1205, Mar 2022.

[14] Lars Velten et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from
single-cell transcriptomics. Nature Communications, 12(1):1366, March 2021.

[15] Keren Yizhak et al. Rna sequence analysis reveals macroscopic somatic clonal expansion across
normal tissues. Science, 364(6444):eaaw0726, 2019.

[16] Sergi Beneyto-Calabuig et al. Clonally resolved single-cell multi-omics identifies routes of cellular
differentiation in acute myeloid leukemia. Cell Stem Cell, 30(5):706–721.e8, May 2023.

[17] T. J. Ley et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N
Engl J Med, 368(22):2059–2074, May 2013.

[18] P. Bischoff et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in
lung adenocarcinoma. Oncogene, 40(50):6748–6758, Dec 2021.

[19] Kyle Ellrott et al. Scalable open science approach for mutation calling of tumor exomes using multiple
genomic pipelines. Cell Systems, 6(3):271–281.e7, 2018.

12

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.581377doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581377
http://creativecommons.org/licenses/by-nc/4.0/


[20] H. Li et al. A statistical framework for SNP calling, mutation discovery, association mapping and
population genetical parameter estimation from sequencing data. Bioinformatics, 27(21):2987–2993,
Nov 2011.

[21] W. H. Cuddleston et al. Cellular and genetic drivers of RNA editing variation in the human brain. Nat
Commun, 13(1):2997, May 2022.

[22] E. Picardi et al. REDIdb: the RNA editing database. Nucleic Acids Res, 35(Database issue):D173–
177, Jan 2007.

[23] X. Zhu et al. Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factoriza-
tion. PeerJ, 5:e2888, 2017.

[24] P. Wu et al. A robust semi-supervised NMF model for single cell RNA-seq data. PeerJ, 8:e10091,
2020.

[25] Ville Satopaa et al. Finding a "kneedle" in a haystack: Detecting knee points in system behavior. In
2011 31st International Conference on Distributed Computing Systems Workshops, pages 166–171,
2011.

[26] A. G. X. Zeng et al. A cellular hierarchy framework for understanding heterogeneity and predicting
drug response in acute myeloid leukemia. Nat Med, 28(6):1212–1223, Jun 2022.

[27] C. Drexler et al. Blood group chimerism. Curr Opin Hematol, 13(6):484–489, Nov 2006.

[28] S. Shrivastava et al. Microchimerism: A new concept. J Oral Maxillofac Pathol, 23(2):311, 2019.

[29] F. Muyas et al. De novo detection of somatic mutations in high-throughput single-cell profiling data
sets. Nat Biotechnol, Jul 2023.

[30] J. Dou et al. Single-nucleotide variant calling in single-cell sequencing data with Monopogen. Nat
Biotechnol, Aug 2023.

[31] E. S. Lander et al. Initial sequencing and analysis of the human genome. Nature, 409(6822):860–
921, Feb 2001.

[32] A. Dobin et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21, Jan 2013.

[33] X. Huang et al. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics, 37(23):4569–
4571, Dec 2021.

[34] W. McLaren et al. The Ensembl Variant Effect Predictor. Genome Biol, 17(1):122, Jun 2016.

[35] S. T. Sherry et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1):308–
311, Jan 2001.

[36] Smit et al. Repeatmasker open-3.0., 1996-2010.

13

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.581377doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581377
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Discussion
	Methods
	Processing of raw data
	Preparing the raw data and variant calling
	Variant filtering

	Clustering of cells and variants
	Input
	wNMF
	Bootstrapping
	Selection of result


	Funding and Acknowledgements

