

1 Expansion microscopy reveals unique ultrastructural features of
2 pathogenic budding yeast species

3
4 Md. Hashim Reza^{1*}, Srijana Dutta¹, Rohit Goyal^{1#}, Hiral Shah^{2#}, Gautam Dey^{2*}, Kaustuv
5 Sanyal^{1*}

6
7
8 ¹Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru
9 Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.

10 ²Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, 69117,
11 Germany.

12
13 *Corresponding authors:
14 hashimreza@jncasr.ac.in
15 gautam.dey@embl.de
16 sanyal@jncasr.ac.in

17
18 #: These authors contributed equally: Rohit Goyal, Hiral Shah

19
20
21
22
23
24
25
26
27
28 **Keywords (3-6)**

29 Ultrastructure expansion microscopy, *Candida albicans*, Spindle pole bodies, nucleolus,
30 mitochondria, Microtubules, Fungal pathogens

32 **Abstract**

33 *Candida albicans* is the most prevalent fungal pathogen isolated from patients with
34 candidemia. As is the case for many other fungi, the complex life cycle of *C. albicans* has been
35 challenging to study with high-resolution microscopy techniques due to its small size. We
36 employed ultrastructure expansion microscopy (U-ExM) to directly visualise sub-cellular
37 structures at high resolution in the *C. albicans* yeast and during its transition to hyphal growth.
38 NHS-ester pan-labelling in combination with immunofluorescence (IF) provided the first
39 comprehensive map of nucleolar and mitochondrial dynamics through the *C. albicans* cell
40 cycle. Analysis of microtubules (MTs) and spindle pole bodies (SPBs) stained with marker
41 proteins suggests that contrary to the pole-to-pole arrangement observed
42 in *Saccharomyces cerevisiae*, *C. albicans* yeast cells display a unique side-by-side
43 arrangement of SPBs with a short mitotic spindle and longer astral MTs (aMTs) at the pre-
44 anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of
45 several medically relevant human fungal pathogens, revealing that the side-by-side SPB
46 configuration is a plausible conserved feature shared by many fungal species. We highlight the
47 power of U-ExM to investigate sub-cellular organisation and organellar dynamics at high
48 resolution and low cost in poorly studied, medically relevant microbial pathogens.

49

50

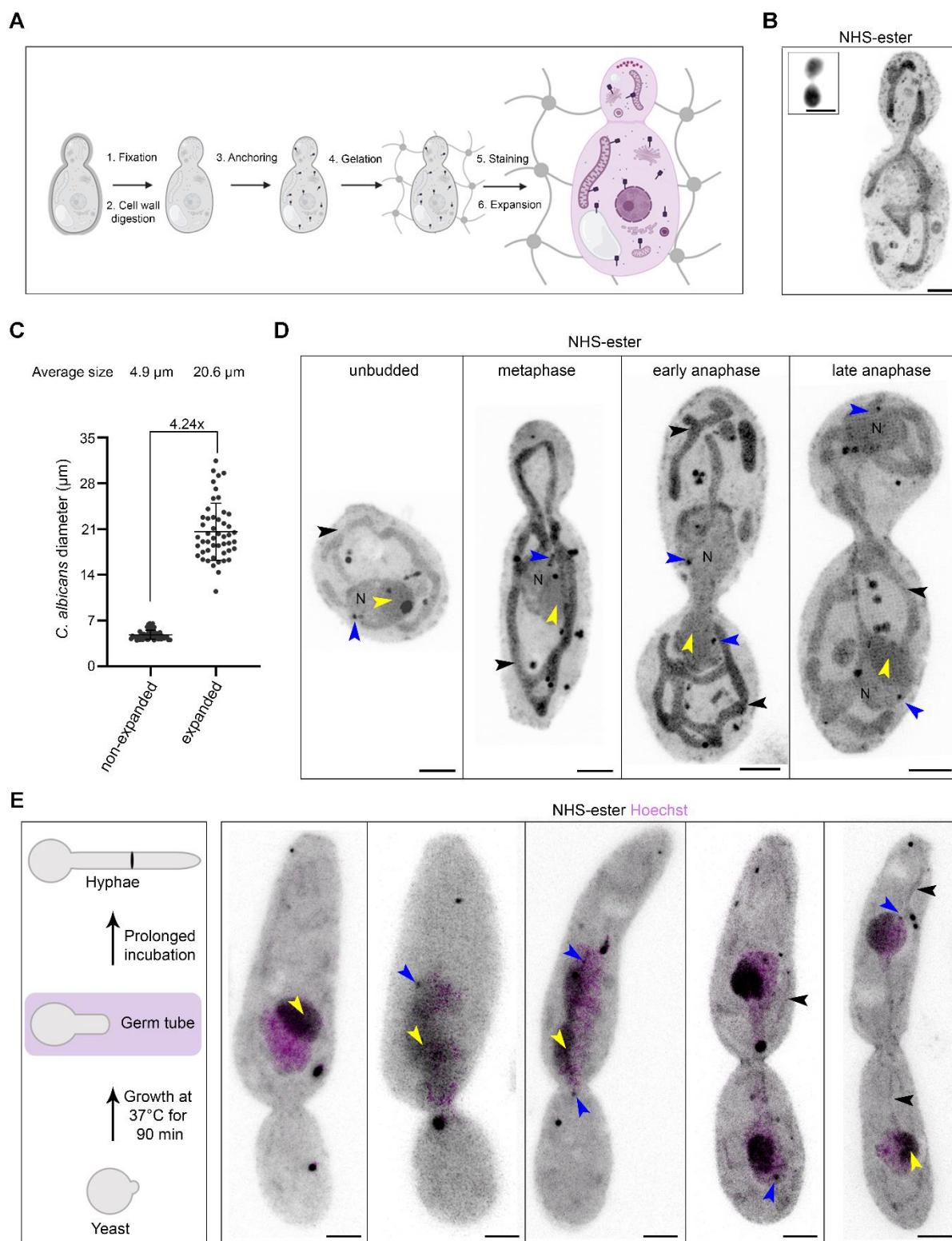
51

52 **Introduction**

53 Since the first documented use of lenses to discover microbial life forms (Porter, 1976),
54 various advancements have been brought about to improve the resolution of imaging.
55 Conventional fluorescence microscopy is limited by low spatial resolution due to the
56 diffraction limit of light that ranges from 200-300 nm laterally. Additionally, imaging cellular
57 sub-compartments of fungi is limited due to the smaller-sized organelles, often beyond the
58 diffraction limit of conventional fluorescence microscopes. The advent of super-resolution
59 microscopy techniques, like structured illumination microscopy (SIM), photo-activated
60 localisation microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)
61 have been able to achieve a resolution in the range of 50 - 120 nm (Betzig et al., 2006, Rust et
62 al., 2006). The complexities associated with image acquisition and processing, coupled with
63 the high cost of the microscopes, limit the throughput and benefits of super-resolution
64 microscopy. The discovery of expansion microscopy (ExM), which relies on the isotropic
65 physical expansion of biological samples rather than altered optics, enables super-resolution
66 imaging using a diffraction-limited microscope (Chen et al., 2015). To date, the application of
67 ExM to visualize ultrastructure in fungi is limited only to a few species including
68 *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Aspergillus fumigatus*, and *Ustilago*
69 *maydis* (Chen et al., 2021, Götz et al., 2020, Hinterndorfer et al., 2022). This is largely due to
70 a complex cell wall composition which prevents uniform expansion of the cell content in fungal
71 species.

72 A common human microbiome resident, *Candida albicans* can transition from its
73 otherwise commensal lifestyle to a pathogenic state (Mayer et al., 2013). *C. albicans* can switch
74 between various morphotypes including yeast and hyphae. The yeast-hyphal transition is
75 necessary for *C. albicans* pathogenicity, enabling tissue invasion and subsequent tissue damage
76 during candidiasis (Sudbery et al., 2004, Lohse and Johnson, 2009). Additionally, plasticity
77 with respect to ploidy, single nucleotide polymorphism (SNP), loss of heterozygosity (LOH),
78 copy number variations (CNVs) and chromosomal instability (CIN) events, all make *C.*
79 *albicans* a successful pathogen (Legrand et al., 2019, Selmecki et al., 2010). Of late, *C. albicans*
80 has gained significant attention as a model organism for the study of nuclear division owing to
81 attributes such as a dynamic genome, cryptic heterochromatin machinery (Sreekumar et al.,
82 2019), and unique centromere properties (Legrand et al., 2019, Guin et al., 2020). While
83 kinetochore proteins and their organisation have been studied in *C. albicans*, information
84 regarding the spatial and molecular organisation of spindle pole bodies (SPBs) is largely

85 lacking. SPBs, the functional equivalent of metazoan microtubule organising centres
86 (MTOCs), nucleate nuclear and astral microtubules (aMTs) which segregate sister chromatids
87 and position the spindle during the cell cycle, respectively (Markus et al., 2012, Palmer et al.,
88 1992, Shaw et al., 1997, Sullivan and Huffaker, 1992). Positioning and alignment of the mitotic
89 spindle along the polarity axis is vital for asymmetric cell division. The fungal kingdom
90 displays remarkable diversity in the positioning of the mitotic spindle during the pre-anaphase
91 stage of the cell cycle (Finley et al., 2008, Kopecka et al., 2001, Kozubowski et al., 2013,
92 Maekawa et al., 2017, Markus et al., 2012, Martin et al., 2004, Mochizuki et al., 1987, Pereira
93 et al., 2001, Winey and Bloom, 2012, Yamaguchi et al., 2009). In *S. cerevisiae*, the nucleus
94 migrates to the bud neck with the mitotic spindle aligned to the bud axis at the pre-anaphase
95 stage to achieve chromosomal division (Markus et al., 2012, Pereira and Yamashita, 2011,
96 Winey and Bloom, 2012). However, both the nucleus and the mitotic spindle are positioned
97 away from the bud neck in the pre-anaphase cells of *C. albicans* (Finley et al., 2008, Martin et
98 al., 2004). This difference in SPB-dependent regulation of chromatid segregation further hints
99 towards a distinctive feature of *C. albicans* cell biology that requires further exploration.


100 In this study, we established a working cell expansion protocol for *C. albicans* and
101 succeeded in visualising sub-cellular structures in both planktonic yeast cells and hyphal germ
102 tubes using NHS-ester pan-labelling (M'Saad and Bewersdorf, 2020) combined with
103 immunofluorescence. We provide a characterisation of the mitotic cycle at ultrastructural
104 resolution, revealing a unique configuration of SPBs in *C. albicans*. Finally, we demonstrate
105 the applicability of U-ExM to six other important fungal pathogens.

106

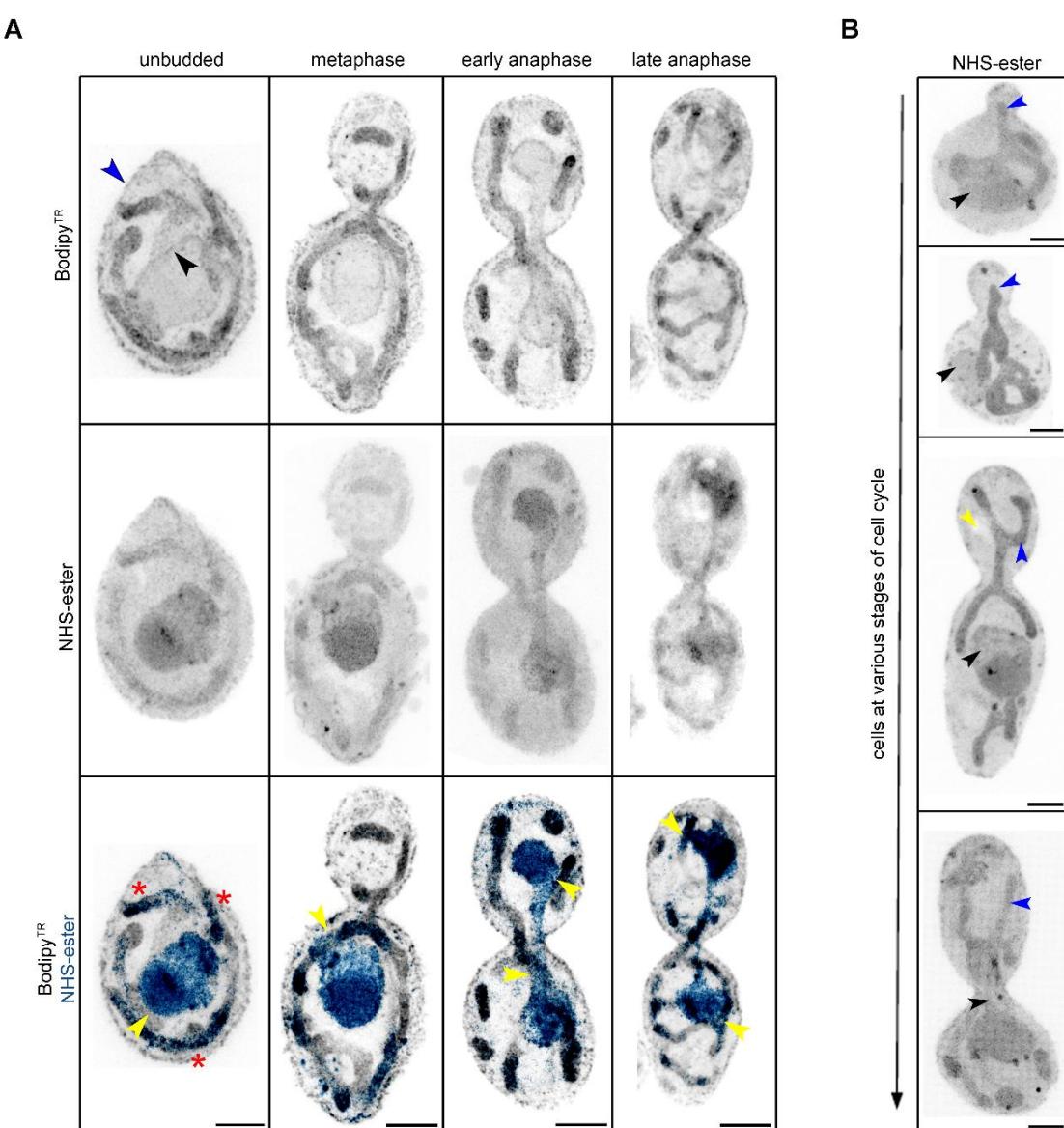
107 **Results**

108 **U-ExM reveals changes in the cellular ultrastructure during the yeast-hyphal transition 109 in *C. albicans***

110 In most organisms with a cell wall, the nanoscale isotropic expansion that is critical to
111 the U-ExM technique relies heavily on a post-fixation strategy to evenly digest the wall.
112 Therefore, we optimised the digestion of the cell wall in the human fungal pathogen *C.*
113 *albicans*. Log-phase chemically fixed cells were digested with Zymolyase 20T in a buffer
114 containing 1.2 M sorbitol to prevent cell lysis. Post-digestion, cells were subjected to
115 anchoring, followed by gelation, denaturation, and expansion (**Fig. 1A**).

116

117 **Figure 1. Pan-labelling of proteome displays sub-cellular organisation in expanded**
 118 ***Candida albicans* cells.** (A) Schematic displaying different steps of ultrastructure expansion
 119 microscopy (U-ExM) protocol in *C. albicans*, which includes fixation (1), cell wall digestion
 120 (2), anchoring (3), gelation (4), staining (5), and expansion (6). (B) Representative confocal
 121 image of *C. albicans* cells post-expansion, pan-labelled with NHS-ester and displayed as
 122 maximum intensity projections. The inset shows a non-expanded cell. Scale bar 5 μm. (C)
 123 Scatter plot displaying the 4.24x expansion factor based on measurement of the diameter

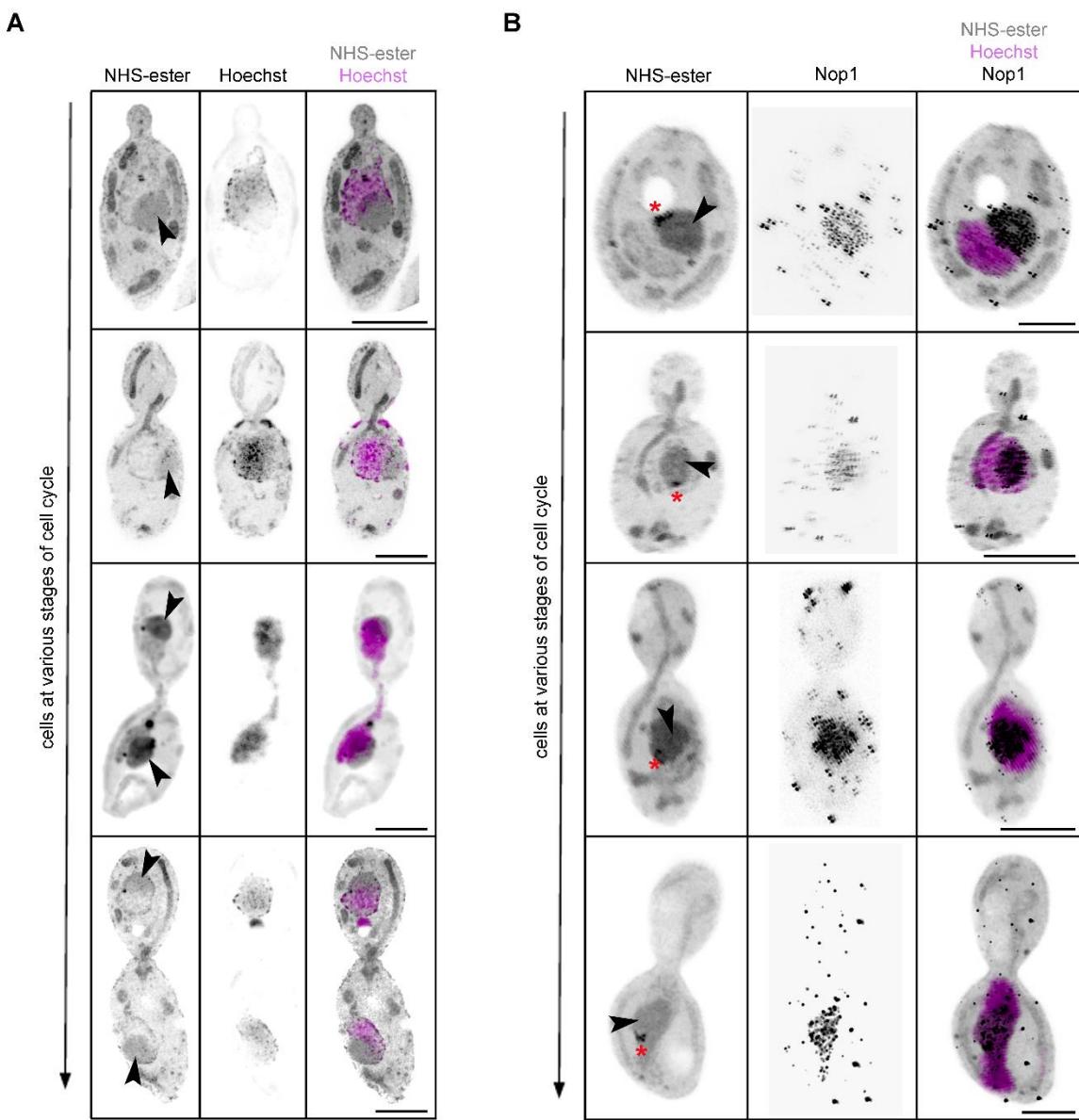

124 (longer axis) of unbudded cells of *C. albicans* before ($n=54$) and after ($n=49$) expansion. Error
125 bars show mean \pm SD. (D) Representative images of *C. albicans* pan-labelled with NHS-ester
126 showing sub-cellular organisation at various stages of the cell cycle. The black and blue
127 arrowheads represent mitochondria and SPBs, respectively. The nucleus is marked with N and
128 the nucleolus is marked with a yellow arrowhead. Scale bar 5 μ m. (E) Schematic showing
129 morphogenetic changes during the yeast-to-hyphal transition. Cells at the germ tube stage
130 (magenta) were taken forward for U-ExM. Representative images of *C. albicans* pan-labelled
131 with NHS-ester (grey) and co-stained with Hoechst (magenta) showing sub-cellular
132 organisation at various stages of the cell cycle after hyphal induction. The black, blue, and
133 yellow arrowheads represent mitochondria, SPBs, and nucleolus respectively. Scale bar 5 μ m.
134

135 The gels were stained with an NHS-ester compound which non-specifically labels the
136 proteome and enables visualisation of the protein density map of a cell (Kozubowski et al.,
137 2013) (**Fig. 1B**). Next, we examined the degree of isotropic expansion and calculated the
138 expansion factor. We measured the diameter of the *C. albicans* cell before (4.85 μ m) and after
139 expansion (20.6 μ m) revealing that *C. albicans* could be expanded \sim 4.24-fold (**Fig. 1C**). This
140 is in line with the reported fold expansion for *S. cerevisiae* and *S. pombe* (Hinterdorfer et al.,
141 2022). NHS-ester labelling highlighted specific organelles like mitochondria and nuclei. This
142 experiment also enabled us to visualise the nucleolus as a region of higher protein density
143 within the nucleus, and the SPBs as dark-stained punctate signals at the nuclear periphery and
144 positioned away from the nucleolus (**Fig. 1D**).

145 *C. albicans* possesses a remarkable ability to switch between various morphological
146 states, such as from unicellular yeast to hyphae, which are critical for virulence (Sudbery et al.,
147 2004). We, therefore, sought to find if *C. albicans* hyphal cells can also be expanded and
148 whether these cells display any structural variations from the yeast form. After hyphal induction
149 by the addition of fetal bovine serum, the cells were fixed, digested, and expanded, as explained
150 above. Pan-labelling revealed similar sub-cellular structures (nucleus, nucleolus, mitochondria,
151 and SPBs) in hyphae as seen in the budding yeast (**Fig. 1E**). We observed a striking difference
152 in both the number and shape of mitochondria in hyphae compared to yeast cells (**Fig. 1E**). By
153 combining NHS-ester with Hoechst staining, we could capture the process of nuclear migration
154 to the germ tube, elongated nuclei, nuclei connected by a mitotic bridge and finally segregated
155 into two cells (**Fig. 1E**). We conclude that *C. albicans* can be fully expanded using U-ExM and
156 that pan-labelling enables the identification of various sub-cellular structures and stages of cell
157 division both in yeast and hyphal cells.
158

159 **Analysis of U-ExM images suggests organellar segregation patterns during the cell cycle
160 are evolutionarily conserved**

161 The cell cycle-dependent morphology of the mitochondrial network plays a central role
162 in the growth and fitness of organisms by influencing metabolism and regulating various
163 signalling cascades (Giacomello et al., 2020). Having seen a mitochondrial-like tubular
164 network upon pan-labelling, we confirmed if these organelles were indeed mitochondria. For
165 this, we co-stained *C. albicans* cells with the NHS-ester 405 and Bodipy^{TR} Ceramide. Bodipy^{TR}
166 selectively stains lipid-rich organelles like the Golgi complex and mitochondria (Adisa et al.,
167 2003). Indeed, co-staining confirmed the dense tubular network as mitochondria (**Fig. 2A**).
168



169
170 **Figure 2. The tubular mitochondrial network segregates into daughter cells before**
171 **nuclear segregation in *C. albicans*.** (A) Maximum intensity projection of *C. albicans* cells co-
172 stained with Bodipy^{TR} (grey) and NHS-ester (blue), at various stages of the cell cycle. The blue
173 and black arrowheads mark the cell and nuclear membrane, respectively. The yellow
174 arrowheads mark regions of close association of mitochondria with the nucleus. Red asterisks

175 mark the mitochondria labelled with both Bodipy^{TR} and NHS-ester. Scale bar 5 μ m. (B)
176 Maximum intensity projection of *C. albicans* cells stained with NHS-ester (grey), during the
177 cell cycle displays segregation of mitochondria (blue arrowheads) before nuclear (black
178 arrowheads) segregation between the two cells. The yellow arrowhead marks the unlabelled
179 vacuole in the cell. Scale bar 5 μ m.
180

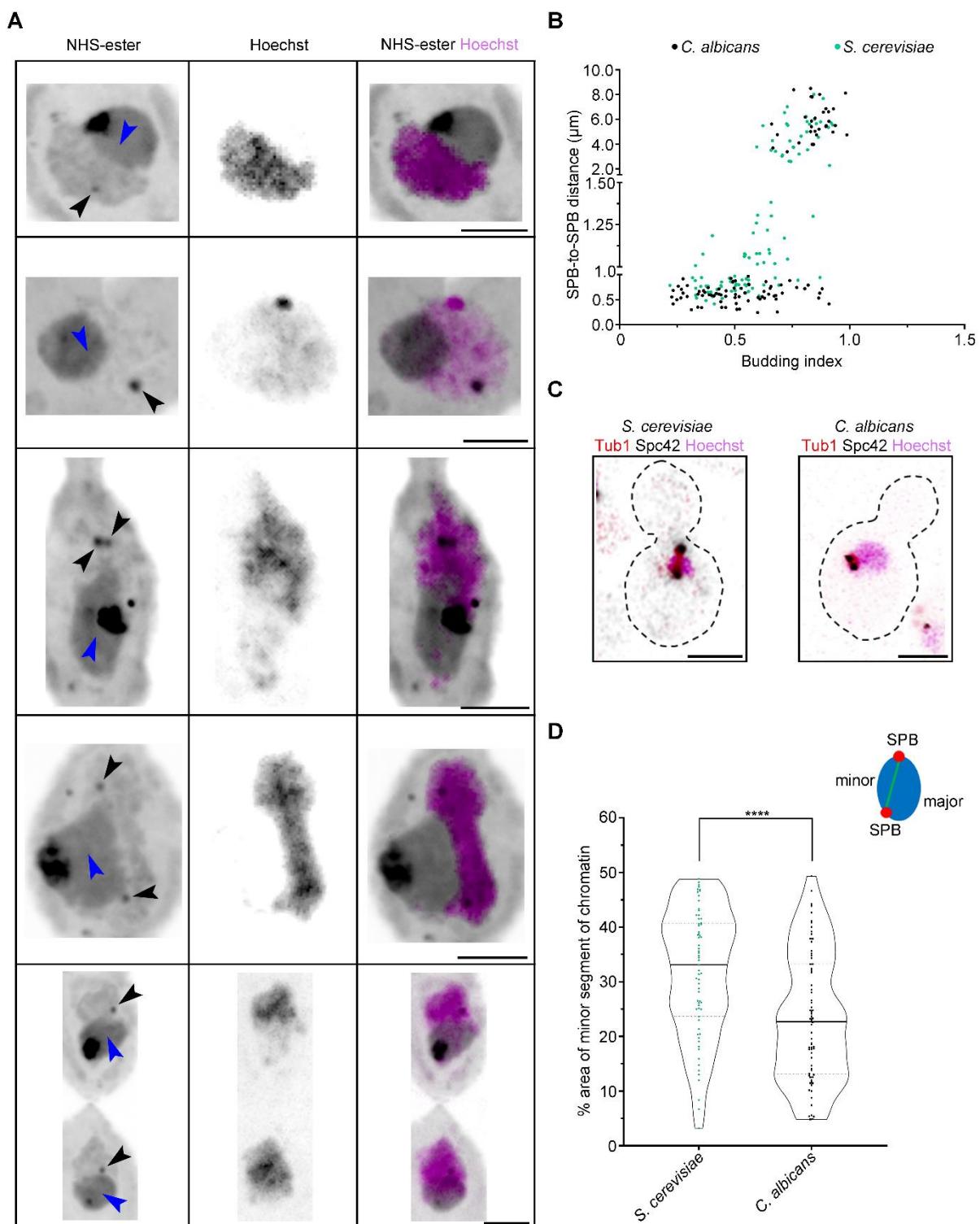
181 *C. albicans* displayed a tubular mitochondrial network at all stages of the cell cycle
182 (**Fig. 2A**). A closer examination of U-ExM images also suggested a close association of
183 mitochondria with the nucleus during the cell cycle (**Figs 1D, 2A**), hinting towards a likely
184 crosstalk between these two organelles. Recently, a preferred order of organelle inheritance
185 was shown in *S. cerevisiae*, wherein mitochondria are inherited before the migration of the
186 nucleus into the daughter bud (Li et al., 2021). The analysis of the mitochondrial network and
187 unstained vacuole during the cell cycle suggested that like *S. cerevisiae*, *C. albicans* cells
188 consistently inherit both mitochondria and vacuoles before the migration of the nucleus during
189 the cell cycle (**Fig. 2B**).

190 The NHS-ester pan-labelling also enabled us to focus closely on nuclear structures. We
191 found a strong NHS-ester staining within the nucleus, which corresponded to the nucleolus
192 (**Fig. 3A**). This was evidenced by Hoechst staining, which is mostly excluded from the
193 nucleolus and stains chromatin (**Fig. 3A**). We also noticed a darkly stained region within the
194 nucleolus of unknown identity (**Fig. 3B**). *C. albicans* did not exhibit a typical crescent-shaped
195 nucleolus during interphase (**Fig. 3A**) as reported for *S. cerevisiae* (Girke and Seufert, 2019).

196

197 **Figure 3. Nucleolar segregation during the cell cycle in *C. albicans*.** (A) Maximum intensity
198 projection of *C. albicans* cells co-stained with Hoechst (magenta) and NHS-ester (grey) during
199 cell division. The black arrowheads mark the nucleolus. Scale bar 10 μ m. (B) Maximum
200 intensity projection of *C. albicans* cells co-stained with NHS-ester (grey), Hoechst (magenta)
201 and Nop1 Abs (black) at various stages of the cell cycle. Scale bar 10 μ m. The black arrowheads
202 mark the nucleolus. The red asterisks represent a darker stained region within the nucleolus.
203 Scale bar 10 μ m.

204

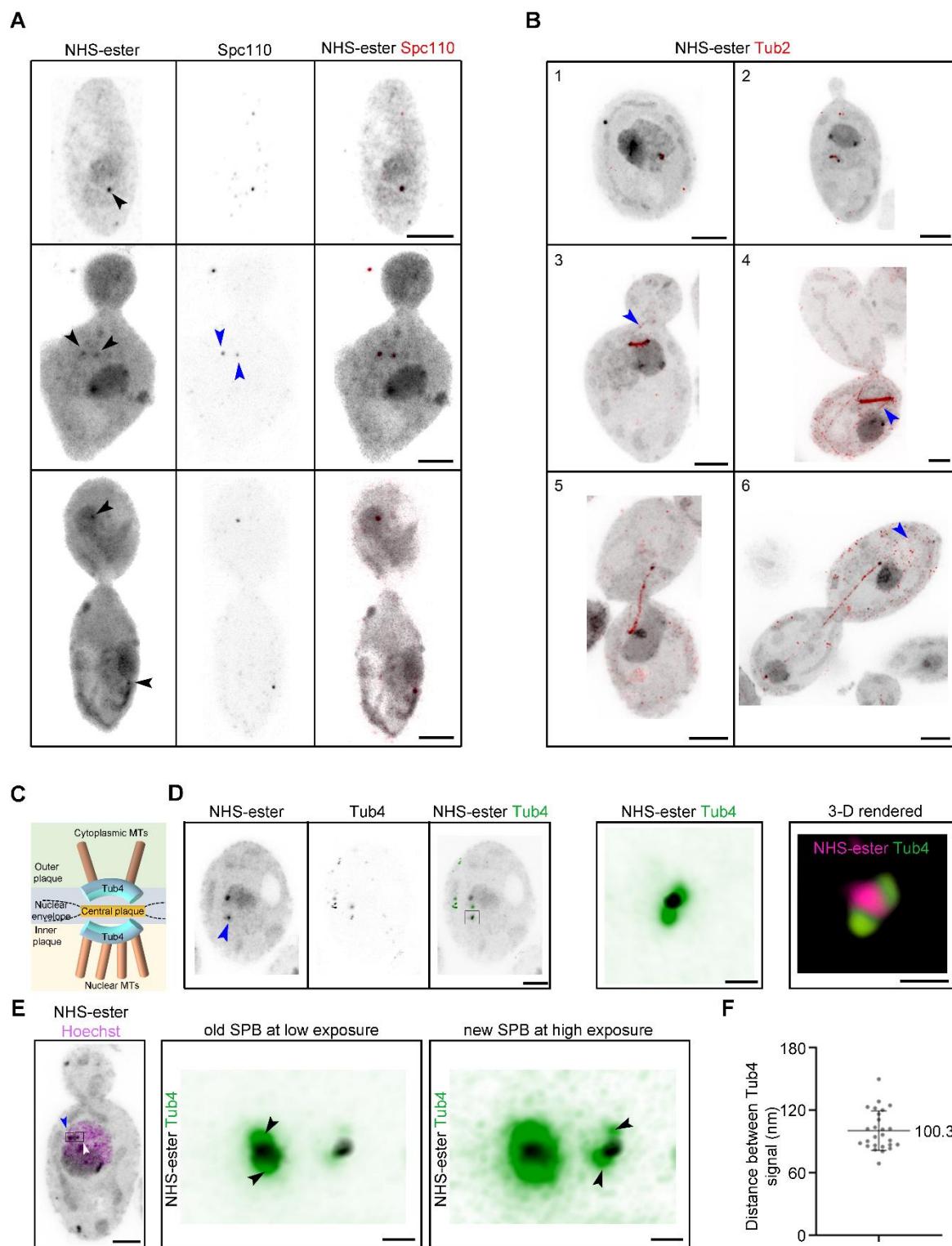

205 Co-staining with NHS-ester and Hoechst helped us observe nucleolar segregation
206 during the cell cycle in *C. albicans*. The nucleolus remained closely associated with the
207 Hoechst-stained chromatin mass and segregated alongside bulk chromatin (Fig. 3A). This
208 resembles nucleolar segregation dynamics seen in *S. cerevisiae* and in hyphal-induced *C.*
209 *albicans* cells (Finley and Berman, 2005, Girke and Seufert, 2019, Granot and Snyder, 1991).
210 We also validated the dark-stained region to be nucleolus by staining Nop1. Nop1 is a

211 component of the small subunit processome complex and is required for the processing of pre-
212 18s rRNA and localises to the nucleolus. Indeed, anti-Nop1 antibodies co-localised with the
213 higher NHS ester-stained region within the nucleus during the cell cycle (**Fig. 3B**). Importantly,
214 within the nucleolus, anti-Nop1 immunostaining revealed regions of higher and lower
215 fluorescent intensities (**Fig. 3B**), reflecting differential intensities of Nop1. Taken together,
216 NHS-ester pan-labelling provides an expansive view of the cellular landscape at various stages
217 of the cell cycle in *C. albicans*.

218

219 **U-ExM provides insight into the organisation, assembly and inheritance of SPBs in *C. albicans***

221 SPBs nucleate microtubules, regulating nuclear positioning and spindle alignment
222 during cell division. While the role of SPBs during the cell cycle is well known for the model
223 yeasts *S. cerevisiae* and *S. pombe*, the organisation, assembly, and inheritance of SPBs are
224 poorly understood in pathogenic fungi like *C. albicans*. Densely packed with proteins, SPBs in
225 most species tend to be visible as a bright punctate structure in NHS-ester labelling (Shah et
226 al., 2023, M'Saad and Bewersdorf, 2020) and also tend to be positioned away from the
227 nucleolus in *Cryptococcus neoformans*, *Exophiala dermatitidis* and *S. cerevisiae* (Yamaguchi
228 et al., 2010, Yamaguchi et al., 2003, Jin et al., 2000, Yang et al., 1989). In line with this, we
229 also observed a bright punctate signal positioned away from the nucleolus and co-localising
230 with chromatin (Hoechst staining) in *C. albicans* (**Figs 1D, S1A**).


231

232 **Figure S1. SPB positioning during cell division in *C. albicans*.** (A) Zoomed image showing
233 the nucleus, co-stained with NHS-ester (grey) and Hoechst (magenta) during the cell cycle.
234 The black arrowheads mark the position of the spindle pole bodies (SPBs) away from the
235 nucleolus (blue arrowheads). Scale bar 5 μm . (B) Scatter plot displaying SPB-to-SPB distance
236 with respect to the budding index in *C. albicans* (black) and *S. cerevisiae* (green). SPB-to-SPB
237 distance above 2 μm represents an anaphase spindle. $n > 100$ cells. (C) Maximum intensity
238 projection of *S. cerevisiae*, tagged with GFP-Tub1 and Spc42-mCherry, and *C. albicans* tagged
239 with Tub2-GFP and Tub4-mCherry and co-stained with Hoechst during the pre-anaphase stage.

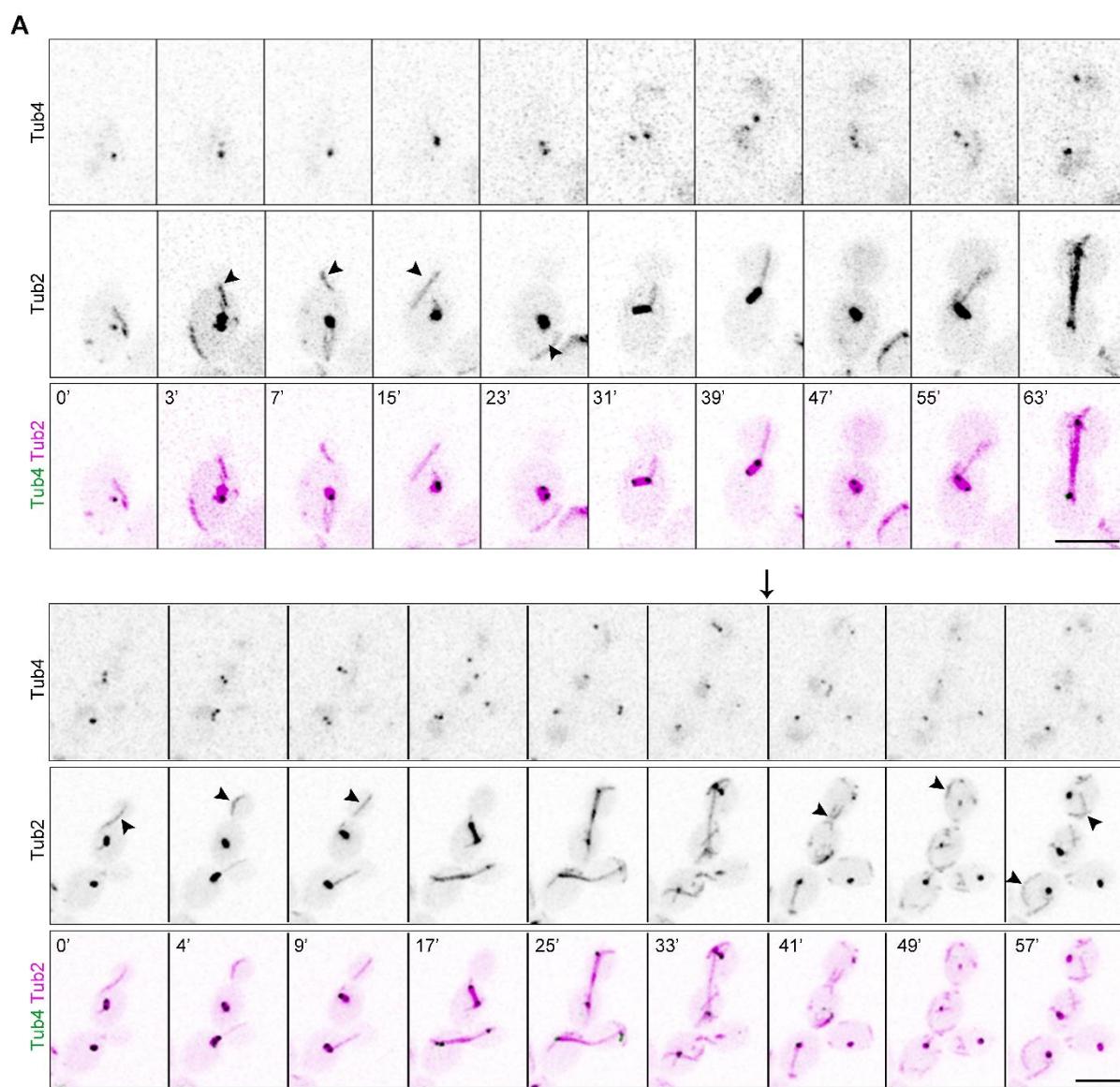
240 Scale bar 2.5 μ m. (D) Cartoon showing the mitotic spindle (green) between the two SPBs (red)
241 dividing the Hoechst-stained chromatin (blue) area into two unequal segments (minor and
242 major) as visually observed in a 2D-projected image. Violin plot showing percent area covered
243 by the minor segment of Hoechst-stained chromatin in *C. albicans* and *S. cerevisiae*. $n > 70$
244 cells. Statistical analysis was done by Unpaired *t*-test with Welch's correction (**p<0.0001).

245

246 To validate the identity of bright punctate structures as SPBs, we tagged Spc110, an
247 inner plaque component of the SPB, with GFP and carried out IF using anti-GFP antibodies
248 after the expansion of cells. Co-staining of Spc110 with NHS-ester confirmed these structures
249 as SPB throughout the cell cycle (**Fig. 4A**).

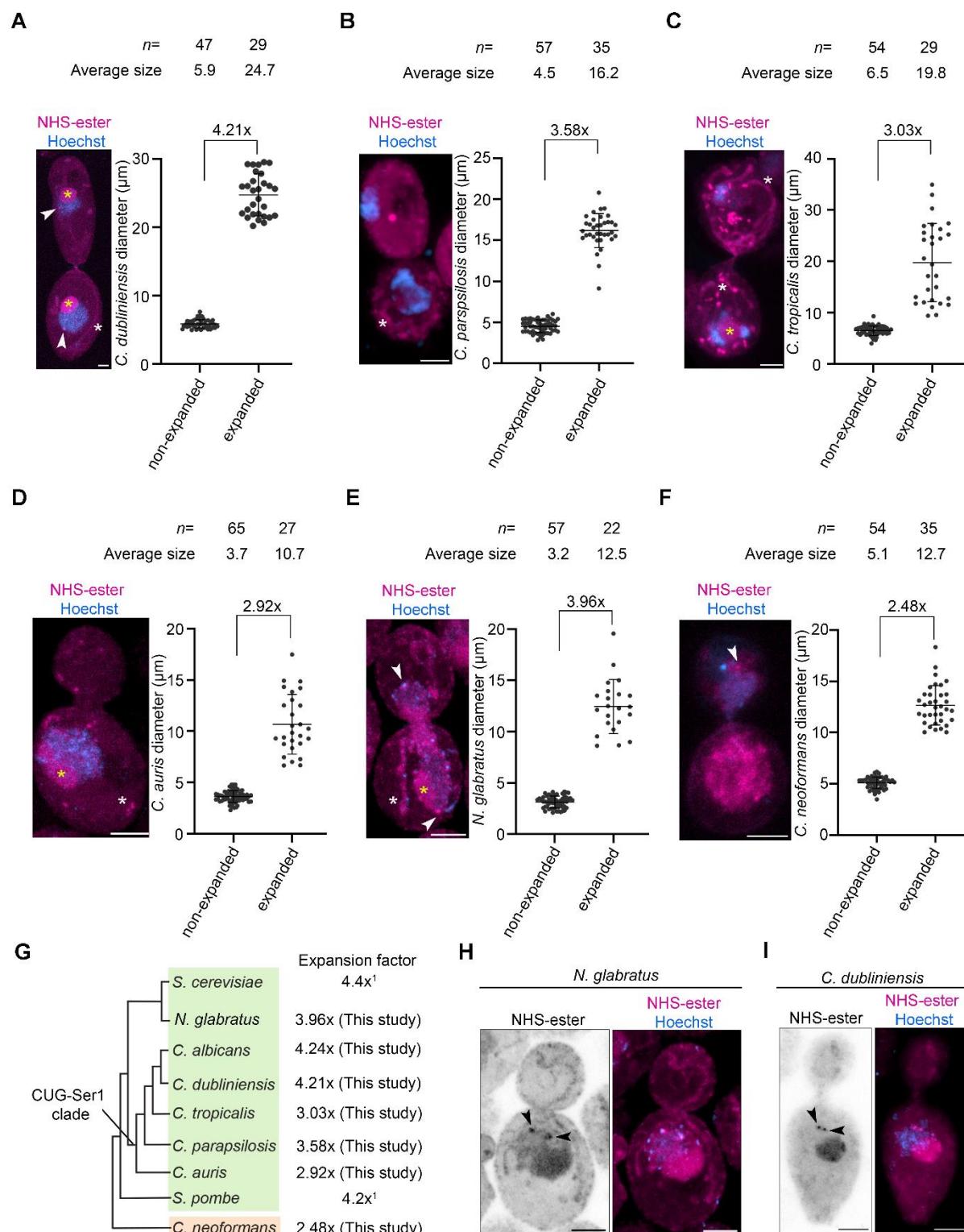
251 **Figure 4. SPB organisation in *C. albicans*.** (A) Maximum intensity projection of *C. albicans*
252 cells co-stained with NHS-ester (grey) and anti-GFP (Spc110-GFP, red) through the cell cycle.
253 The black and blue arrowheads mark the position of the SPBs stained with NHS and the
254 position of the SPBs stained with anti-GFP, respectively. Scale bar 5 μ m. (B) Maximum
255 intensity projection of *C. albicans* cells co-stained with NHS-ester (grey) and anti-GFP (Tub2-
256 GFP, red), at various stages of the cell cycle (1, 2, 3, 4, 5, and 6). The blue arrowheads mark
257 the astral microtubules (aMTs). Scale bar 5 μ m. (C) Schematic showing the spatial position of
258 Tub4 at the SPB as reported from *S. cerevisiae*. (D) A representative maximum-intensity

259 projection of *C. albicans* cells co-stained with NHS-ester (grey) and anti-GFP (Tub4-GFP, red)
260 in unbudded cell. Scale bar 5 μ m. Inset, a magnified region depicted by a black-bordered square
261 and a 3-D rendered image of the magnified region is also shown. Scale bar 125 nm. (E)
262 Maximum-intensity projection of *C. albicans* cells co-stained with NHS-ester (grey) and
263 Hoechst (magenta) at the pre-anaphase stage of the cell cycle. Scale bar 5 μ m. The blue and
264 white arrowhead represents the old and new SPBs, based on signal intensity. Inset, a magnified
265 region is shown for the two SPBs. The first inset highlights the Tub4 arrangement (black
266 arrowheads) at the old SPB, visible at low-intensity exposure. The second inset highlights the
267 Tub4 arrangement (black arrowheads) at the new SPB visible only at high-intensity exposure.
268 Scale bar 125 nm. (F) Scatter plot displaying the distance between two Tub4 fluorescent signals
269 rescaled after expansion (N=2, n=26). The error bar shows mean \pm SD.
270


271 Importantly, immunostaining revealed an asymmetry between both SPBs, which was
272 evident till the cells progressed into anaphase (Fig. 4A). This differential staining was also
273 observed upon NHS-ester labelling, going on to show that similar to *S. cerevisiae* (Liakopoulos
274 et al., 2003), the old SPB in *C. albicans* has a higher protein density. We also validated these
275 structures to be the MT nucleation centres by immunostaining tubulin in a strain carrying Tub2-
276 GFP (Fig. 4B). U-ExM revealed the structural changes in the mitotic spindle during the cell
277 cycle, with the spindle being compact at early cell cycle stages, evident from intense staining
278 (stages 1-4, Fig. 4B). As the cells enter into anaphase, the mitotic spindle shows low staining,
279 due to the presence of fewer kinetochore MTs (stages 5-6, Fig. 4B), as reported for *S. cerevisiae*
280 (Winey and O'Toole, 2001).

281 The SPB structure and its duplication during the cell cycle are well-studied in two
282 model yeasts, *S. cerevisiae* and *S. pombe* (Cavanaugh and Jaspersen, 2017). The SPB is divided
283 into inner, central, and outer plaque in *S. cerevisiae*. The central plaque anchors the outer and
284 inner plaques which nucleate astral/cytoplasmic and nuclear microtubules, respectively. One
285 of the applications of isotropic expansion is the decrowding of the intracellular space which
286 provides the tool to study the effective spatial resolution of proteins. To investigate the effective
287 resolution of two plaques of SPB in *C. albicans*, we resorted to γ -tubulin homolog, Tub4,
288 positioned on both inner and outer plaques (Fig. 4C). GFP-tagged Tub4-expressing *C. albicans*
289 cells were expanded and probed with anti-GFP antibodies. Using Airyscan imaging, we could
290 obtain two Tub4 fluorescence signals, representing the inner and outer plaques in unbudded
291 cells (Fig. 4D). We were also able to detect four Tub4 dots, two from each SPB, post-SPB
292 duplication (Fig. 4E). The more intense old SPB, evident from NHS-ester labelling, showed
293 symmetric Tub4 signals between the inner and outer plaque. However, we observed a
294 difference in the signal intensity between the two Tub4 signals for the less intense new SPB
295 (Fig. 4E). We estimated the distance between the two Tub4 signals after 2D-projection and

296 found them to be separated by 100.3 ± 5.3 nm, after rescaling with the expansion factor.
297 Altogether, using U-ExM, we could study SPB asymmetry and estimate the distance between
298 the outer and inner plaque by resolving Tub4 fluorescent signals in *C. albicans*.


299 Separation of the duplicated SPBs, followed by their movement to the diametrically
300 opposite sides of the nuclear envelope, is a prerequisite for the formation of a bipolar mitotic
301 spindle in *S. cerevisiae* (Cavanaugh and Jaspersen, 2017). To study the SPB separation
302 dynamics in *C. albicans*, we tagged the spindle with Tub2-GFP and SPBs with Tub4-mCherry.
303 For comparison, spindle and SPBs were tagged with GFP-Tub1 and Spc42-mCherry,
304 respectively in *S. cerevisiae*. We looked at the distribution of the pre-anaphase spindle length
305 with respect to the budding index. We found that the spindle in *C. albicans* was restricted to a
306 length of <1 μm when compared to the 1-1.5 μm spindle in *S. cerevisiae* (Fig. S1B), resulting
307 in unequal partitioning of the 2D-projected chromatin-covered nuclear area (major and minor
308 segments) (Fig. S1C). To validate this, we measured the proportion of chromatin covered by
309 the minor segment (see materials and methods) in pre-anaphase cells. In *C. albicans*, the minor
310 segment constitutes 23% of the chromatin area, whereas in *S. cerevisiae* we observed a 32%
311 coverage (Fig. S1D), suggesting a side-by-side arrangement of SPBs in *C. albicans* as opposed
312 to a pole-to-pole arrangement in *S. cerevisiae*. The U-ExM images with tubulin staining also
313 suggested very long aMTs positioned all along the cell cortex (Supplementary Movie 1). *C.*
314 *albicans* exhibits free cytoplasmic MTs (cMTs) and their presence is cell cycle-dependent
315 (Finley and Berman, 2005, Lin et al., 2016). The appearance of free cMTs mirrors the
316 depolymerization of MTs during telophase (Fig. S2A). These free cMTs persist till SPBs are
317 duplicated and decline as cells enter metaphase (Fig. S2A). In summary, *C. albicans* shows an
318 atypical arrangement of duplicated SPBs with shorter pre-anaphase spindles along with the
319 presence of long aMTs and free cMTs, suggesting different MT dynamics and regulation
320 compared to *S. cerevisiae*.

321

337 facilitated near-complete expansion, except for *Candida auris*, *Candida tropicalis*, and *C. 338 neoformans*. *C. neoformans* required an additional Triton X-100 treatment before the cell wall 339 digestion for increased efficiency.

340

342 **Figure 5. Expansion followed by pan-labelling reveals sub-cellular organisation in human**
 343 **fungal pathogens. (A-F) Confocal images of human fungal pathogens post-expansion, co-**

344 stained with NHS-ester (magenta) and Hoechst (blue) and displayed as maximum intensity
345 projection (*left*). Corresponding scatter plot (*right*) displaying the expansion factor based on
346 measurement of the diameter of unbudded cells for these species before and after expansion.
347 Error bars show mean \pm SD. The white arrowheads represent SPBs. The nucleolus and
348 mitochondria are labelled with yellow and white asterisks, respectively. Scale bar 5 μ m. (G)
349 Cladogram showing the human fungal pathogens used in this study for U-ExM, Ascomycota
350 (green) and Basidiomycota (orange). The expansion factor for these fungal pathogens is
351 mentioned along with the well-known budding and fission yeast, *S. cerevisiae* and *S. pombe*
352 (1: (Hinterndorfer et al., 2022)), respectively. (H) Representative confocal image of *N.*
353 *glabratu*s post-expansion, pan-labelled with NHS-ester (magenta) and Hoechst (blue) and
354 displayed as maximum intensity projection. The black arrowheads show sideward SPB
355 arrangements ($n=19$, budding index= 0.33-0.69). (I) Representative confocal image of *C.*
356 *dubliniensis* post-expansion, pan-labelled with NHS-ester (magenta) and Hoechst (blue) and
357 displayed as maximum intensity projection. The black arrowheads show sideward SPB
358 arrangements ($n=12$, budding index= 0.47-0.75). Scale bar 5 μ m.
359

360 We demonstrate that *Candida dubliniensis* and *Candida parapsilosis*, two CUG clade
361 species, related to *C. albicans*, could be expanded 4.21 and 3.58-fold, respectively (**Figs 5A,**
362 **B**). *C. tropicalis* and *C. auris*, also belonging to the CUG-Ser1 clade showed an expansion
363 factor of 3.03 and 2.92, respectively (**Figs 5C, D**). While, the ascomycete, *Nakaseomyces*
364 *glabratu*s which belongs to the WGD clade could be expanded by 3.96-fold, the basidiomycete
365 *C. neoformans* showed an expansion factor of 2.48-fold only (**Figs 5E, F**). We could observe
366 various sub-cellular structures like nuclei, nucleolus, SPBs, and mitochondria in the expanded
367 human fungal pathogens. Together, we demonstrate a successful optimisation of the expansion
368 of *C. dubliniensis*, *C. parapsilosis*, and *N. glabratu*s (**Fig. 5G**). The differences in several sub-
369 cellular structures were evident across the species. Mitochondria in *C. dubliniensis* and *N.*
370 *glabratu*s were tubular, while *C. tropicalis* displayed both tubular and fragmented
371 mitochondrial networks (**Figs 5A-F**). Having seen a side-by-side arrangement of SPBs in *C.*
372 *albicans*, we were curious to know the SPB arrangements in *C. dubliniensis* and *N. glabratu*s.
373 Remarkably, we observed a side-by-side arrangement of SPBs in both these species (**Figs 5H,**
374 **I**). Thus, U-ExM followed by pan-labelling identified the conservation in side-by-side SPB
375 arrangements in these two species.
376

377 **Discussion**

378 In this work, we optimised the U-ExM protocol in the human fungal pathogen *Candida*
379 *albicans*, a model system to study cell division and host-pathogen interactions. Expansion
380 together with pan-labelling of the proteome facilitated the monitoring of organellar segregation
381 dynamics during cell division of *C. albicans* in both yeast and hyphal forms. With a 4-fold

382 expansion, we could successfully resolve the inner and outer plaques of the SPBs. We extended
383 this protocol to expand its application to some of the non-model medically relevant human
384 fungal pathogens. We establish U-ExM as a powerful tool to study the cell biology of model
385 and non-model fungal systems.

386 Dual dye staining revealed the tubular mitochondria migrating before the nucleus into
387 the daughter cell in *C. albicans*, while the nucleolus moves in conjunction with chromatin
388 during the cell cycle, as evident from immunostaining of Nop1. This highlights the
389 compatibility of U-ExM with dual dye and immunostaining. Unlike the well-studied model
390 organism *S. cerevisiae*, a non-crescent-shaped nucleolus was observed with seemingly large
391 occupancy in the *C. albicans* nucleus. Important for ribosome biogenesis and regulation, a
392 change in size, number and structure of nucleolus is often associated with various cellular
393 metabolic states (McCann and Baserga, 2014). While nutrient restriction leads to a reduction
394 in size (Matos-Perdomo and Machín, 2019), metabolically active cells have enlarged nucleolus
395 (Weeks et al., 2019). Whether a difference in the lifestyle between pathogenic (*C. albicans*)
396 and non-pathogenic (*S. cerevisiae*) organisms relates to a differential nucleolar shape and
397 occupancy, is an area for further research.

398 U-ExM is an excellent tool for studying differential protein occupancy which becomes
399 pronounced due to a dilution of fluorescence intensity upon expansion (Götz et al., 2020). This
400 was evident for SPB proteins, Spc110 and Tub4, which revealed a difference in protein density
401 between the old and new SPBs. The asymmetric Tub4 distribution was also apparent between
402 the inner and outer plaque at the newly formed SPBs. Unlike *S. cerevisiae*, *C. albicans* does
403 not show any noticeable asymmetric distribution of Tub4 between the two plaques during
404 interphase and in the old SPBs, post-duplication by U-ExM. A shorter Tub4-to-Tub4 distance
405 in *C. albicans* further hints towards an SPB organisation distinct from *S. cerevisiae* (Burns et
406 al., 2015, Byers and Goetsch, 1974, Hinterndorfer et al., 2022). *C. albicans* displaying a side-
407 by-side SPB arrangement in pre-anaphase unlike the pole-to-pole arrangement seen in *S.*
408 *cerevisiae*, further hints towards a difference in SPB separation events. Thus, we could obtain
409 a pronounced view of SPB dynamics and critically analyse the differences in SPB features in
410 *C. albicans* using U-ExM, overcoming the limitations of conventional microscopy.

411 In this study, we show that the U-ExM protocol can be applied to six other human fungal
412 pathogens, belonging to Ascomycota and Basidiomycota fungal phyla. The cell wall of *C.*
413 *albicans* is known to have more β -1,6-glucans compared to *S. cerevisiae* (Brown and Gordon,
414 2005), which is reflected in the timing of cell wall digestion, with *C. albicans* requiring a longer
415 time for complete cell wall digestion than *S. cerevisiae* (Hinterndorfer et al., 2022). In our

416 study, a 4-fold expansion could not be achieved for *C. auris*, *C. tropicalis*, and *C. neoformans*.
417 Composed of α -1,3-glucan, β -1,3 and β -1,6-glucan, chitin, chitosan, mannoproteins and GPI-
418 anchored proteins (Garcia-Rubio et al., 2020), the two-layered cell wall of *C. neoformans* is
419 further surrounded by an exopolysaccharide capsule (Garcia-Rubio et al., 2020). This vastly
420 differs from the cell wall properties of *C. albicans* and related *Candida* species, explaining the
421 reduction in the expansion factor observed. On the other hand, the *C. auris* and *C. tropicalis*
422 isolates used in this study are resistant and tolerant to fluconazole (National Culture Collection
423 of Pathogenic Fungi (nccpf.in)), respectively, which is implicated with increased levels of cell
424 wall chitin (Shahi et al., 2022). This could be the likely reason for the inefficiency in achieving
425 a 4-fold expansion despite *C. auris* and *C. tropicalis* being related species to *C. albicans*.

426 The unique side-by-side arrangement of SPBs observed in this study for *C. albicans*
427 was also reflected by the NHS-labelled SPBs in *C. dubliniensis* and *N. glabratus*. This
428 demonstrates the importance of U-ExM in the study of various cell biological processes in the
429 absence or relative ease of techniques available for native tagging, live-cell microscopy, and
430 standardised transformation protocols of various non-model organisms. Our analysis suggests
431 that despite being a member of the WGD clade, *N. glabratus* SPBs do not follow segregation
432 dynamics akin to *S. cerevisiae*. This divergence in SPB dynamics between WGD species calls
433 for further studies as molecular details regarding the role of SPBs in asymmetric cell division,
434 inheritance and evolution in fungal pathogens are still lacking.

435

436 **Materials and Methods**

437

438 **Yeast strains and culture**

439 All the strains used in this study are specified in Supplementary Table S1.

440

441 **Reagents used in the study**

442 The following primary antibodies were used in this study: anti-Nop1 (Anti-Fibrillarin
443 antibody [38F3] - Nucleolar Marker (ab4566)) used at 1:500, anti-GFP (mouse) (Roche,
444 11814460001) used at 1:500. The following secondary antibodies were used in this study:
445 Alexa fluor 488 goat anti-mouse IgG (Invitrogen, A11001). The secondary antibodies were
446 used at 1:500 dilution. The following NHS-ester dyes were used in the present study: DylightTM
447 405 NHS-ester (Thermo Fisher Scientific, 46400), DylightTM 594 NHS-ester (Thermo Fisher
448 Scientific, 46412), and Alexa FluorTM 647 carboxylic acid, Succinimidyl ester (Thermo Fisher

449 Scientific, A20006), all used at 1:500. Bodipy^{TR} Ceramide (Invitrogen D7540), Formaldehyde
450 (Fischer Scientific, 24008), Acrylamide (Merck, A4058), N, N'-Methylenebisacrylamide
451 (Merck, M1533), Sodium acrylate (Merck, 408220-256), Ammonium persulphate (APS)
452 (HiMedia, MB003), TEMED (Merck, T7024), Hoechst 33342 (Sigma, B2261).

453

454 **Yeast culture, fixation, and cell wall digestion**

455 Briefly, log-phase cells (approximate 1 optical density at 600 nm) were first fixed with
456 3.7% formaldehyde for 15 min at 30°C with intermittent shaking. 1 OD equivalent cells were
457 taken forward for subsequent cell wall digestion. For *C. albicans*, *C. tropicalis*, *N. glabratus*,
458 *C. dubliniensis* and *C. parapsilosis*, cells were washed twice with PEM buffer (100 mM PIPES,
459 1 mM EGTA, 1 mM MgSO₄, pH to 9.0) at 5,000 rpm for 5 min and 15 min for *C. auris*, and
460 once with PEM-S (1.2 M sorbitol in PEM) at 5,000 rpm for 5 min and 15 min for *C. auris*. The
461 fixed cells resuspended in 100 µL of PEM-S buffer were enzymatically digested with a final
462 concentration of 2.5 mg/mL Zymolyase 20T at 30°C for 45 min in the case of *C. albicans*, *C.*
463 *dubliniensis*, and *C. tropicalis* and 1 h in case of *C. auris*, *C. parapsilosis* and *N. glabratus*.
464 Cells were washed once with PEM-S buffer at 5,000 rpm for 5 min and 15 min for *C. auris* and
465 the resuspended cells were proceeded for anchoring.

466 For *C. neoformans*, 1 OD equivalent cells were washed with PEM and PEM-S buffer as
467 mentioned. Cells were then resuspended in 500 µL of PEM-S buffer with 0.2% Triton X-100
468 and incubated at 30°C for 30 min at 100 rpm. It was followed by digestion using 25 mg of
469 Lysing enzyme (Sigma, L1412) dissolved in 500 µL of PEM-S buffer and incubated at 30°C
470 for 6 h at 100 rpm. Digested cells were taken forward for anchoring.

471

472 **Yeast-to-hyphal induction**

473 Briefly, log-phase *C. albicans* cells (approximate 1 optical density at 600 nm) were
474 added to pre-warmed media (at 37°C) containing 9 mL of YPD+uridine (10 µg/mL) and 1 mL
475 of Fetal bovine serum (Thermo Fisher Scientific, 10270106). The cells were grown at 37°C for
476 90 min at 180 rpm for the induction of germ tube formation. The cells were fixed and proceeded
477 for U-ExM as described earlier. Post-germ tube formation, cells were pelleted down at 5,000
478 rpm for 15 min for every step involving centrifugation.

479

480 **Ultrastructure Expansion microscopy (U-ExM)**

481 U-ExM was performed as previously described (Hinterndorfer et al., 2022), with a few
482 modifications. The digested cells were kept for anchoring in acrylamide (AA)/formaldehyde

483 (FA) (1% AA, 0.7% FA diluted in 1x PBS) overnight at 37°C, 12 rpm on a Rotaspin. The next
484 morning, a 6 mm coverslip was coated with poly-L-lysine (Sigma, P8920) for 1 h at room
485 temperature. The anchored cells were then allowed to attach to the Poly-L-lysine coated
486 coverslip for 1 h. Gelation was performed on ice using a cocktail of monomer solution (19%
487 (wt/v) sodium acrylate, 10% (v/v) acrylamide, 0.1% (v/v) N, N'- methylenebisacrylamide in
488 PBS), TEMED (0.5% v/v) and APS (0.5% v/v). The cells were incubated for 10 min on ice.
489 The gel was kept for polymerization for 1 h at 37°C in a moist chamber. Next, the gel was
490 transferred to 1 mL denaturation buffer (50 mM Tris pH 9.0, 200 mM NaCl, 200 mM SDS, pH
491 to 9.0) and incubated at 95°C for 1 h 30 min at 300 rpm. After denaturation, the gel was
492 expanded with three subsequent washes with water, 15 min each. The gel diameter was
493 measured after expansion to determine the expansion factor. The gels expanded in the range of
494 3.7-4.4 fold. The gel was shrunk with three washes of 1x PBS for 10 min each. Pan-labelling
495 for U-ExM was done using Dylight™ 405 NHS-ester/ DyLight™ 594 NHS-ester/ Alexa
496 Fluor™ 647 carboxylic acid in 1x PBS overnight at 4°C.

497

498 **Immunofluorescence staining**

499 For Nop1 and GFP immunostaining, the gel was stained using anti-Nop1 and anti-GFP
500 as the primary antibody at 1:500 and incubated overnight at 4°C. The gel was washed thrice
501 with PBS with 0.1% Tween 20 for 30 min at room temperature. Gel was then incubated with
502 goat anti-mouse-IgG coupled to Alexa Fluor 488 secondary antibody at 1:500 and incubated at
503 37°C for 3 h in the dark. The antibody dilutions were prepared in 3% BSA in 1x PBS with 0.1%
504 Tween 20. The gel was washed thrice with PBS with 0.1% Tween 20 for 30 min at room
505 temperature. The gel was expanded with three subsequent washes with water before imaging.

506

507 **Sample mounting and imaging**

508 For microscopy, Poly-L-lysine coated Ibidi chamber slides (2 well – Ibidi 80287) or
509 MatTek glass bottom dishes (P35G-0-14-C) or Cellvis (2 Chambered Coverglass system-C2-
510 1.5H-N) were used. Gels were cut to an appropriate size to fit the glass bottom chambers and
511 were overlaid with water to prevent drying or any shrinkage during imaging. The gels were
512 imaged using the Zeiss LSM980 Airyfast confocal microscope using a Plan-Apochromat
513 63x/1.4 Oil DIC M2pb7 objective or LSM880 Airyfast confocal microscope using a Plan-
514 Apochromat 63x/1.4 Oil DIC M27 or 100x/1.4 Oil DIC M27 objectives.

515 For Figures 1E, 4 A-F, and 5 A-H, the gels were imaged with a Zeiss LSM880 AiryFast
516 confocal microscope using a 63x oil-immersion objective (NA 1.42) at a step size of 0.3 μ m.

517 For U-ExM images, scale bars have not been rescaled for the gel expansion factor.

518

519 **Quantification of Tub4 distance in expanded *C. albicans* cells**

520 The Tub4 distance between the inner and outer plaque of the SPB was quantified as the
521 distance between the maximum intensities of both the signals which corresponded to the two
522 plaques. The Tub4-to-Tub4 distance was normalized with the expansion factor.

523

524 **Quantification of SPB-to-SPB distance and nuclear partitioning by the spindle**

525 The budding index for non-expanded cells was calculated by measuring the ratio of the
526 diameter of the daughter and mother bud. The SPB-to-SPB distance was measured as the
527 distance between the centre of two Tub4-mCherry (*C. albicans*) and Spc42-mCherry (*S.*
528 *cerevisiae*) signals. Both budding indices and SPB-to-SPB distances were calculated using a
529 straight-line selection tool from Fiji. SPB-to-SPB distance and budding index were calculated
530 for cells having two SPB signals thus excluding the unbudded cells and small-budded cells
531 with single SPB puncta. To understand the proximal arrangement of SPBs on the nucleus, the
532 Hoechst-stained nucleus was divided into two segments by a straight line covering the spindle
533 and passing through the SPBs. The area of the minor segment of the Hoechst-stained region
534 and the whole region was calculated using the Freehand selection tool of Fiji and the percentage
535 of area covered by the minor segment was used as data points.

536

537 **Statistical analysis**

538 Statistical analysis was done using GraphPad Prism 8.4.0 software. Student's Unpaired
539 *t*-test followed by Welch's correction for comparing two groups.

540

541 **Acknowledgements**

542 We thank the members of GD and KS lab for the valuable discussions and
543 comments. We thank the European Molecular Biology Laboratory (EMBL) Advanced Light
544 Microscopy Facility (ALMF) for the technical input. We thank B. Suma and S. Patil at the
545 imaging facility at JNCASR.

546

547 **Competing Interests**

548 The authors declare no competing or financial interests.

549

550 ***Author contributions***

551 Conceptualization: MHR, GD, KS; Methodology: HS, MHR, SD, RG; Validation:
552 MHR, SD, RG, HS, GD, KS; Formal analysis: MHR, SD, RG, HS; Writing-original draft:
553 MHR, SD, RG, HS, GD, KS; Writing-review & editing: MHR, SD, RG, HS, GD, KS;
554 Visualization: MHR, SD, RG, HS; Supervision: GD, KS; Funding acquisition: MHR, GD, KS.

555

556 ***Funding***

557 This work was supported by the EMBL Corporate Partnership Programme Fellowship
558 and EMBO Scientific Exchange Grant 10212 to MHR. Financial support from the DBT-RA
559 Program in Biotechnology and Life Sciences is gratefully acknowledged by MHR. SD and RG
560 acknowledge the intramural financial support from JNCASR. The award of JC Bose
561 Fellowship (JCB/2020/000021) of Science and Engineering Research Board, Department of
562 Science and Technology, Govt. of India and intramural funding support from Jawaharlal Nehru
563 Centre for Advanced Scientific Research to KS is acknowledged. GD and HS acknowledge the
564 European Molecular Biology Laboratory for support. GD is funded by the European Union
565 (ERC, KaryodynEVO, 101078291). HS is supported by the EMBL Interdisciplinary
566 Postdoctoral Fellowship (EIPOD4) programme under Marie Skłodowska-Curie Actions
567 Cofund (grant agreement number 847543).

568

569 ***Data availability***

570 All data on the results can be found within the article and supporting information.

571

572 **Supplementary Table S1: List of strains used in this study**

573

574

S. No.	Strains	Genotype	Source
1.	<i>C. albicans</i> CaPJ121 (<i>CSA6-mCherry</i> in <i>SPC110-GFP</i>)	CaPJ118 <i>SPC110/SPC110-GFP::HIS1</i>	(Jaitly et al., 2022)
2.	<i>C. albicans</i> CaPJ170	SN148 <i>ADHI/adh1::PTDH3-cartTA SAT1 RPS1/RPS1::PTET-GtwB-URA3</i>	(Jaitly et al., 2022)
3.	<i>C. albicans</i> CaPJ171	CaPJ170 <i>TUB4/TUB4-GFP::HIS1</i>	(Jaitly et al., 2022)
4.	<i>C. albicans</i> CaPJ172	CaPJ170 <i>TUB4/TUB4-GFP::HIS1 TUB1/TUB1-mCherry::ARG4</i>	(Jaitly et al., 2022)
5.	<i>C. albicans</i> CaRG278	CaPJ170 <i>TUB4/TUB4-mCherry::ARG4 TUB2/TUB2-GFP::HIS1</i>	This study
6.	<i>Nakaseomyces glabratus</i> CBS138		https://wi.knaw.nl/fungal_table
7.	<i>Candida dubliniensis</i> CdUM4B	<i>ura3Δ1::FRT/ ura3Δ2::FRT</i>	(Staib et al., 2001)
8.	<i>Candida parapsilosis</i> NRRL Y-8312		https://nrrl.ncaur.usda.gov/cgi-bin/usda/fungi/report.html?nrrlcodes=Y%2d831
9.	<i>Candida auris</i> NCCPF470145		National Culture Collection of Pathogenic Fungi (nccpf.in)
10.	<i>Candida tropicalis</i> CtKS200	<i>ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT MIF2/MIF2-GFP (HIS1)</i>	(Chatterjee et al., 2016)
11.	<i>Cryptococcus neofromans</i> CNV114	<i>MATa GFP-H4::NAT mCherry-CSE4::NEO</i>	(Kozubowski et al., 2013)
12.	MHR35	<i>MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0::URA3 GFP-TUB1 Spc42-mCherry::KanMX4</i>	(Reza et al., 2022)

575

576 *References*

577 ADISA, A., RUG, M., KLONIS, N., FOLEY, M., COWMAN, A. F. & TILLEY, L. 2003. The
578 signal sequence of exported protein-1 directs the green fluorescent protein to the
579 Parasitophorous vacuole of transfected Malaria parasites. *Journal of Biological*
580 *Chemistry*, 278, 6532-6542.

581 BETZIG, E., PATTERSON, G. H., SOUGRAT, R., LINDWASSER, O. W., OLENYCH, S.,
582 BONIFACINO, J. S., DAVIDSON, M. W., LIPPINCOTT-SCHWARTZ, J. & HESS,
583 H. F. 2006. Imaging intracellular fluorescent proteins at nanometer resolution.
584 *Science*, 313, 1642-5.

585 BROWN, G. D. & GORDON, S. 2005. Immune recognition of fungal beta-glucans. *Cell*
586 *Microbiol*, 7, 471-9.

587 BURNS, S., AVENA, J. S., UNRUH, J. R., YU, Z., SMITH, S. E., SLAUGHTER, B. D.,
588 WINEY, M. & JASPERSEN, S. L. 2015. Structured illumination with particle
589 averaging reveals novel roles for yeast centrosome components during duplication.
590 *eLife*, 4, e08586.

591 BYERS, B. & GOETSCH, L. 1974. Duplication of spindle plaques and integration of the
592 yeast cell cycle. *Cold Spring Harbor Symposia on Quantitative Biology*, 38, 123-131.

593 CAVANAUGH, A. M. & JASPERSEN, S. L. 2017. Big lessons from little yeast: budding and
594 fission yeast centrosome structure, duplication, and function. *Annu Rev Genet*, 51,
595 361-383.

596 CHATTERJEE, G., SANKARANARAYANAN, S. R., GUIN, K., THATTIKOTA, Y.,
597 PADMANABHAN, S., SIDDHARTHAN, R. & SANYAL, K. 2016. Repeat-
598 associated fission yeast-like regional centromeres in the ascomycetous budding yeast
599 *Candida tropicalis*. *PLOS Genetics*, 12, e1005839.

600 CHEN, F., TILLBERG, P. W. & BOYDEN, E. S. 2015. Expansion microscopy. *Science*, 347,
601 543-548.

602 CHEN, L., YAO, L., ZHANG, L., FEI, Y., MI, L. & MA, J. 2021. Applications of super
603 resolution expansion microscopy in yeast. *Frontiers in Physics*, 9.

604 FINLEY, K. R. & BERMAN, J. 2005. Microtubules in *Candida albicans* hyphae drive
605 nuclear dynamics and connect cell cycle progression to morphogenesis. *Eukaryotic*
606 *Cell*, 4, 1697-1711.

607 FINLEY, K. R., BOUCHONVILLE, K. J., QUICK, A. & BERMAN, J. 2008. Dynein-
608 dependent nuclear dynamics affect morphogenesis in *Candida albicans* by means of
609 the Bub2p spindle checkpoint. *J Cell Sci*, 121, 466-76.

610 GARCIA-RUBIO, R., DE OLIVEIRA, H. C., RIVERA, J. & TREVIJANO-CONTADOR, N.
611 2020. The fungal cell wall: *Candida*, *Cryptococcus*, and *Aspergillus* species. *Frontiers*
612 *in Microbiology*, 10.

613 GIACOMELLO, M., PYAKUREL, A., GLYTSOU, C. & SCORRANO, L. 2020. The cell
614 biology of mitochondrial membrane dynamics. *Nature Reviews Molecular Cell*
615 *Biology*, 21, 204-224.

616 GIRKE, P. & SEUFERT, W. 2019. Compositional reorganization of the nucleolus in budding
617 yeast mitosis. *Mol Biol Cell*, 30, 591-606.

618 GÖTZ, R., PANZER, S., TRINKS, N., EILTS, J., WAGENER, J., TURRÀ, D., DI PIETRO,
619 A., SAUER, M. & TERPITZ, U. 2020. Expansion microscopy for cell biology
620 analysis in fungi. *Frontiers in Microbiology*, 11.

621 GRANOT, D. & SNYDER, M. 1991. Segregation of the nucleolus during mitosis in budding
622 and fission yeast. *Cell Motil Cytoskeleton*, 20, 47-54.

623 GUIN, K., SREEKUMAR, L. & SANYAL, K. 2020. Implications of the evolutionary
624 trajectory of centromeres in the fungal kingdom. *Annual Review of Microbiology*, 74,
625 835-853.

626 HINTERNDORFER, K., LAPORTE, M. H., MIKUS, F., TAFUR, L., BOURGOINT, C.,
627 PROUTEAU, M., DEY, G., LOEWITH, R., GUICHARD, P. & HAMEL, V. 2022.
628 Ultrastructure expansion microscopy reveals the cellular architecture of budding and
629 fission yeast. *J Cell Sci*, 135.

630 JAITLY, P., LEGRAND, M., DAS, A., PATEL, T., CHAUVEL, M., MAUFRAIS, C.,
631 D'ENFERT, C. & SANYAL, K. 2022. A phylogenetically-restricted essential cell
632 cycle progression factor in the human pathogen *Candida albicans*. *Nat Commun*, 13,
633 4256.

634 JIN, Q. W., FUCHS, J. & LOIDL, J. 2000. Centromere clustering is a major determinant of
635 yeast interphase nuclear organization. *J Cell Sci*, 113 (Pt 11), 1903-12.

636 KOPECKA, M., GABRIEL, M., TAKEO, K., YAMAGUCHI, M., SVOBODA, A.,
637 OHKUSU, M., HATA, K. & YOSHIDA, S. 2001. Microtubules and actin
638 cytoskeleton in *Cryptococcus neoformans* compared with ascomycetous budding and
639 fission yeasts. *Eur J Cell Biol*, 80, 303-11.

640 KOZUBOWSKI, L., YADAV, V., CHATTERJEE, G., SRIDHAR, S., YAMAGUCHI, M.,
641 KAWAMOTO, S., BOSE, I., HEITMAN, J. & SANYAL, K. 2013. Ordered
642 kinetochore assembly in the human-pathogenic basidiomycetous yeast *Cryptococcus*
643 *neoformans*. *mBio*, 4, e00614-13.

644 LEGRAND, M., JAITLY, P., FERI, A., D'ENFERT, C. & SANYAL, K. 2019. *Candida*
645 *albicans*: An emerging yeast model to study eukaryotic genome plasticity. *Trends*
646 *Genet*, 35, 292-307.

647 LI, K. W., LU, M. S., IWAMOTO, Y., DRUBIN, D. G. & PEDERSEN, R. T. A. 2021. A
648 preferred sequence for organelle inheritance during polarized cell growth. *J Cell Sci*,
649 134.

650 LIAKOPoulos, D., KUSCH, J., GRAVA, S., VOGEL, J. & BARRAL, Y. 2003.
651 Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper
652 spindle alignment. *Cell*, 112, 561-74.

653 LIN, T. C., NEUNER, A., FLEMMING, D., LIU, P., CHINEN, T., JÄKLE, U., ARKOWITZ,
654 R. & SCHIEBEL, E. 2016. MOZART1 and γ -tubulin complex receptors are both
655 required to turn γ -TuSC into an active microtubule nucleation template. *J Cell Biol*,
656 215, 823-840.

657 LOHSE, M. B. & JOHNSON, A. D. 2009. White-opaque switching in *Candida albicans*.
658 *Curr Opin Microbiol*, 12, 650-4.

659 M'SAAD, O. & BEWERSDORF, J. 2020. Light microscopy of proteins in their
660 ultrastructural context. *Nat Commun*, 11, 3850.

661 MAEKAWA, H., NEUNER, A., RUTHNICK, D., SCHIEBEL, E., PEREIRA, G. &
662 KANEKO, Y. 2017. Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle
663 pole body in the methylotrophic yeast *Ogataea polymorpha*. *Elife*, 6.

664 MARKUS, S. M., KALUTKIEWICZ, K. A. & LEE, W. L. 2012. Astral microtubule
665 asymmetry provides directional cues for spindle positioning in budding yeast. *Exp*
666 *Cell Res*, 318, 1400-6.

667 MARTIN, R., WALTHER, A. & WENDLAND, J. 2004. Deletion of the dynein heavy-chain
668 gene *DYN1* leads to aberrant nuclear positioning and defective hyphal development in
669 *Candida albicans*. *Eukaryot Cell*, 3, 1574-88.

670 MATOS-PERDOMO, E. & MACHÍN, F. 2019. Nucleolar and ribosomal DNA structure
671 under stress: Yeast lessons for aging and cancer. *Cells*, 8.

672 MAYER, F. L., WILSON, D. & HUBE, B. 2013. *Candida albicans* pathogenicity
673 mechanisms. *Virulence*, 4, 119-28.

674 MCCANN, K. L. & BASERGA, S. J. 2014. Driving nucleolar assembly. *Genes Dev*, 28, 211-
675 3.

676 MOCHIZUKI, T., TANAKA, S. & WATANABE, S. 1987. Ultrastructure of the mitotic
677 apparatus in *Cryptococcus neoformans*. *J Med Vet Mycol*, 25, 223-33.

678 PALMER, R. E., SULLIVAN, D. S., HUFFAKER, T. & KOSHLAND, D. 1992. Role of
679 astral microtubules and actin in spindle orientation and migration in the budding
680 yeast, *Saccharomyces cerevisiae*. *J Cell Biol*, 119, 583-93.

681 PEREIRA, G., TANAKA, T. U., NASMYTH, K. & SCHIEBEL, E. 2001. Modes of spindle
682 pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein
683 complex. *EMBO J*, 20, 6359-70.

684 PEREIRA, G. & YAMASHITA, Y. M. 2011. Fly meets yeast: checking the correct orientation
685 of cell division. *Trends Cell Biol*, 21, 526-33.

686 PORTER, J. R. 1976. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria.
687 *Bacteriol Rev*, 40, 260-9.

688 REZA, M. H., AGGARWAL, R., VERMA, J., CHOWDHURY, R., MANJITHAYA, R. &
689 SANYAL, K. 2022. A moonlighting function of Atg11 in spindle positioning. *bioRxiv*,
690 2021.12.15.472744.

691 RUST, M. J., BATES, M. & ZHUANG, X. 2006. Sub-diffraction-limit imaging by stochastic
692 optical reconstruction microscopy (STORM). *Nat Methods*, 3, 793-5.

693 SELMECKI, A., FORCHE, A. & BERMAN, J. 2010. Genomic plasticity of the human
694 fungal pathogen *Candida albicans*. *Eukaryot Cell*, 9, 991-1008.

695 SHAH, H., OLIVETTA, M., BHICKTA, C., RONCHI, P., TRUPINIC, M., TROMER, E.,
696 TOLIĆ, I., SCHWAB, Y., DUDIN, O. & DEY, G. 2023. *Life cycle-coupled evolution
697 of mitosis in close relatives of animals*.

698 SHAHI, G., KUMAR, M., SKWARECKI, A. S., EDMONDSON, M., BANERJEE, A.,
699 USHER, J., GOW, N. A. R., MILEWSKI, S. & PRASAD, R. 2022. Fluconazole
700 resistant *Candida auris* clinical isolates have increased levels of cell wall chitin and
701 increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. *Cell Surf*, 8,
702 100076.

703 SHAW, S. L., YEH, E., MADDOX, P., SALMON, E. D. & BLOOM, K. 1997. Astral
704 microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle
705 orientation and nuclear migration into the bud. *J Cell Biol*, 139, 985-94.

706 SREEKUMAR, L., JAITLEY, P., CHEN, Y., THIMMAPPA, B. C., SANYAL, A. & SANYAL,
707 K. 2019. Cis- and Trans-chromosomal interactions define pericentric boundaries in
708 the absence of conventional heterochromatin. *Genetics*, 212, 1121-1132.

709 STAIB, P., MORAN, G. P., SULLIVAN, D. J., COLEMAN, D. C. & MORSCHHÄUSER, J.
710 2001. Isogenic strain construction and gene targeting in *Candida dubliniensis*. *J
711 Bacteriol*, 183, 2859-65.

712 SUDBERY, P., GOW, N. & BERMAN, J. 2004. The distinct morphogenic states of *Candida
713 albicans*. *Trends Microbiol*, 12, 317-24.

714 SULLIVAN, D. S. & HUFFAKER, T. C. 1992. Astral microtubules are not required for
715 anaphase B in *Saccharomyces cerevisiae*. *J Cell Biol*, 119, 379-88.

716 WEEKS, S. E., METGE, B. J. & SAMANT, R. S. 2019. The nucleolus: a central response
717 hub for the stressors that drive cancer progression. *Cell Mol Life Sci*, 76, 4511-4524.

718 WINEY, M. & BLOOM, K. 2012. Mitotic spindle form and function. *Genetics*, 190, 1197-
719 224.

720 WINEY, M. & O'TOOLE, E. T. 2001. The spindle cycle in budding yeast. *Nature Cell
721 Biology*, 3, E23-E27.

722 YAMAGUCHI, M., BISWAS, S. K., KUWABARA, Y., OHKUSU, M., SHIMIZU, M. &
723 TAKEO, K. 2010. The spindle pole body of the pathogenic yeast *Cryptococcus
724 neoformans*: variation in morphology and positional relationship with the nucleolus
725 and the bud in interphase cells. *J Electron Microsc (Tokyo)*, 59, 165-72.

726 YAMAGUCHI, M., BISWAS, S. K., OHKUSU, M. & TAKEO, K. 2009. Dynamics of the
727 spindle pole body of the pathogenic yeast *Cryptococcus neoformans* examined by
728 freeze-substitution electron microscopy. *FEMS Microbiol Lett*, 296, 257-65.

729 YAMAGUCHI, M., KUWABARA, Y., SHIMIZU, M., FURUKAWA, H., NISHIOKA, H. &
730 TAKEO, K. 2003. The spindle pole body of the pathogenic yeast *Exophiala*
731 *dermatitidis*: variation in morphology and positional relationship to the nucleolus and
732 the bud in interphase cells. *Eur J Cell Biol*, 82, 531-8.

733 YANG, C. H., LAMBIE, E. J., HARDIN, J., CRAFT, J. & SNYDER, M. 1989. Higher order
734 structure is present in the yeast nucleus: autoantibody probes demonstrate that the
735 nucleolus lies opposite the spindle pole body. *Chromosoma*, 98, 123-8.

736