

Gene expression differences associated with intrinsic hindfoot muscle loss in the jerboa, *Jaculus jaculus*

Mai P. Tran^{*1}, Daniel Ochoa Reyes^{*1}, Alexander J. Weitzel¹, Aditya Saxena¹, Michael Hiller^{2,3,4},
Kimberly L. Cooper¹

¹Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093.

²LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.

³Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.
⁴Goethe University Frankfurt, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.

*These authors contributed equally.

Abstract

Vertebrate animals that run or jump across sparsely vegetated habitats, such as horses and jerboas, have reduced the number of distal limb bones, and many have lost most or all distal limb muscle. We previously showed that nascent muscles are present in the jerboa hindfoot at birth and that these myofibers are rapidly and completely lost soon after by a process that shares features with pathological skeletal muscle atrophy. Here, we apply an intra- and inter-species approach, comparing jerboa and mouse muscles, to identify gene expression differences associated with the initiation and progression of jerboa hindfoot muscle loss. We show evidence for reduced Hepatocyte Growth Factor (HGF) and Fibroblast Growth Factor (FGF) signaling and an imbalance in nitric oxide signaling; all are pathways that are necessary for skeletal muscle development and regeneration. We also find evidence for phagosome formation, which hints at how myofibers may be removed by autophagy or by non-professional phagocytes without evidence for cell death or immune cell activation. Last, we show significant overlap between genes associated with jerboa hindfoot muscle loss and genes that are differentially expressed in a variety of human muscle pathologies and rodent models of muscle loss disorders. All together, these data provide molecular insight into the mechanism of evolutionary and developmental muscle loss in jerboa hindfeet.

34

35 **Introduction**

36 Skeletal muscles produce force, pulling on the levers of bone to move the vertebrate
37 body. Since locomotion is diverse across species (e.g., flying, running, jumping, swimming), so
38 too are the sizes, shapes, and numbers of muscles that control bone movements. Many species
39 that run or jump, such as large hooved mammals and saltatorial rodents, have substantially
40 reduced the number of distal limb muscles that are no longer necessary for grasping and
41 climbing. We previously showed that the three-toed jerboa (*Jaculus jaculus*), a desert adapted
42 bipedal rodent, has lost all intrinsic muscles of the hindfoot over both evolutionary and
43 developmental timescales (Tran et al., 2019). Although newborn jerboas have formed nascent
44 myofibers of a single *m. flexor digitorum brevis* and three pinnate *m. interossei*, these myofibers
45 begin to disappear by postnatal day 4 (P4) and are entirely absent in adults (Figure 1A, B).

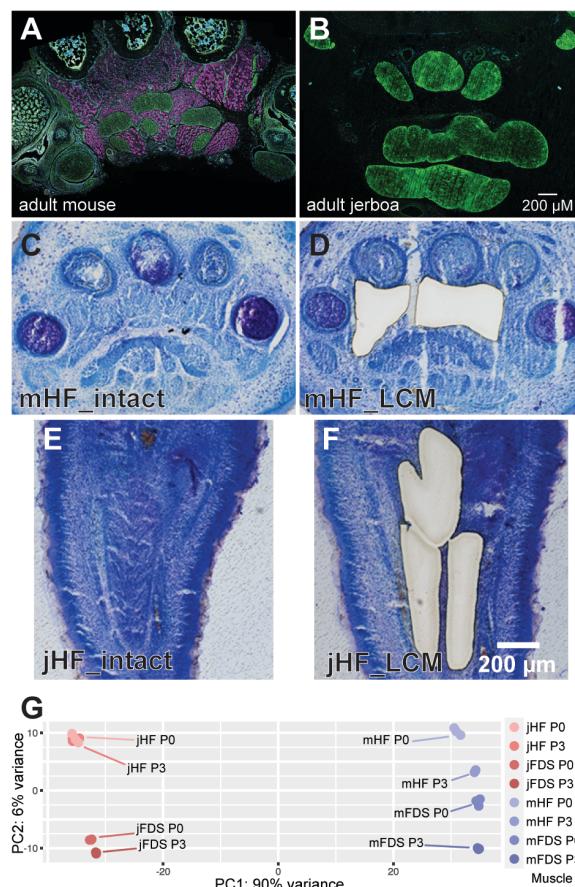
46 Surprisingly, we found no evidence of apoptotic or necrotic cell death and no stimulation
47 of a local immune response during stages of peak myofiber loss, countering well-supported
48 models of developmental tissue remodeling (Tran et al., 2019). Instead, it appears that the
49 immature contractile apparatus is disassembled in a stereotyped manner with Desmin being the
50 earliest protein to become disorganized. The step-wise disassembly of the sarcomere, which is
51 similar to its orderly disassembly during skeletal muscle atrophy, was associated with
52 upregulation of E3 ubiquitin ligases that are also a hallmark of atrophy, *MuRF1* and *Atrogin-1*.
53 However, skeletal muscle atrophy is typically considered a pathology associated with disuse,
54 injury, starvation, or disease and typically causes a reduction in the size of individual myofibers
55 but not their number (Moschella and Ontell, 1987).

56 Here, we implement an intersectional cross-species differential RNA-sequencing
57 approach to broaden our understanding of molecular mechanisms that might be important for
58 initiating and driving the unusual ‘atrophy-like’ process of muscle loss in the jerboa hindfoot. We
59 use the laboratory mouse (*Mus musculus*) as a reference species; mice and jerboas diverged
60 from a last common ancestor about 50 million years ago, and mice retained intrinsic hindfoot
61 musculature typical of most other rodents. To account for gene expression divergence over
62 such a long timescale that is likely unrelated to the mechanism of muscle loss in jerboas, we
63 also sequenced RNA extracted from an analogous forelimb muscle that is retained in both
64 species.

65 By intersecting gene expression differences within and between species at two
66 timepoints, we identified sets of genes associated with the initiation and progression of jerboa
67 hindfoot muscle loss. Among the significantly enriched genetic networks and pathways, we find
68 evidence for lower Hepatocyte Growth Factor (HGF) and Fibroblast Growth Factor (FGF)

69 signaling in jerboa hindfoot muscle than in other muscles that are retained. There is also
70 evidence for an imbalance in the nitric oxide/arginine cycle suggesting lower nitric oxide
71 signaling in jerboa hindfoot muscle. In addition to these pathways, which are known to be critical
72 for muscle development, maintenance, and/or repair, we find evidence for phagosome formation
73 suggesting a mechanism whereby remnants of nascent muscle may be removed either by
74 autophagy or by non-professional phagocytic cells. Finally, we show significant overlap between
75 our dataset and several human muscle degenerative disorders and rodent models of muscle
76 disease lending further support to suggest that evolutionary muscle loss resembles a
77 pathological state.

78


79 **Results**

80 *Sample selection and experimental design*

81 We showed previously that there was no significant difference in the number of
82 myofibers located within the third interosseous muscle between postnatal day 0 (P0, birth) and
83 P2 in either jerboa or mouse (Tran et al., 2019). However, whereas there is a significant
84 increase over two-day intervals from P2 to P8 in mice, there is substantial variance between
85 individual jumboas at P4 and a subsequent decrease until almost all myofibers are lost by P8.
86 We further showed that the largely nascent and immature structure of the skeletal muscle
87 sarcomere is most similar in the intrinsic hindfoot muscle of mouse and jerboa at P0, preceding
88 degeneration in the jerboa. We therefore chose to isolate and sequence mRNA of the intrinsic
89 hindfoot muscles at P0 and at P3 to capture molecular events at the initiation and during the
90 process of degeneration but prior to tissue loss.

91 Unlike the larger muscles of the proximal limb, the intrinsic hindfoot muscles are very
92 small making it extremely difficult to manually dissect tissue for transcriptome analysis. We
93 therefore used laser capture microdissection (LCM) to isolate and enrich the intrinsic muscles
94 from sections of P0 and P3 jerboa and mouse hindfeet (Figure 1C-F). To obtain sufficient
95 material for sequencing and analyses, we pooled samples collected from the right and left
96 hindfeet of six individuals for each of three biological replicates of each species and time point.

97

Figure 1: Sample morphology and preparation for differential mRNA expression analyses (A, B)

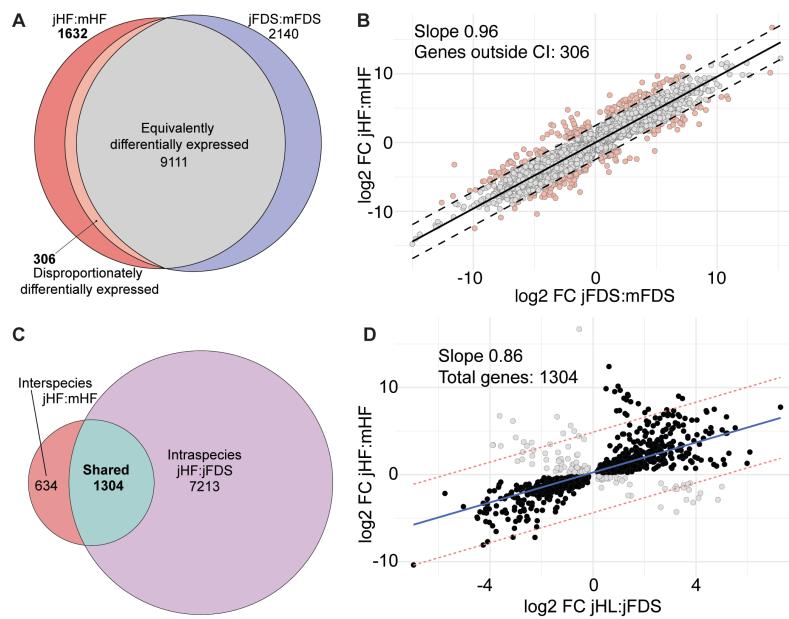
Transverse section through the mid-foot of adult mouse and jerboa hindfeet with immunofluorescent detection of pro-Collagen I (tendon, green) and skeletal muscle Myosin Heavy Chain (magenta). (C-F) Representative toluidine blue-stained plantar sections of mouse (mHF) or jerboa hindfoot (jHF) at P0 that are intact (C, E) or after laser capture microdissection (LCM) of intrinsic hindfoot muscle (D, F). (G) Principal components analysis of all jerboa and mouse hindfoot and flexor digitorum superficialis (FDS) transcriptomes.

98

99 We then developed an experimental design to identify gene expression differences that
100 might provide molecular evidence in support of a mechanism of muscle loss. As we showed
101 previously for limb growth cartilages (Saxena et al., 2022), direct comparison of the homologous
102 intrinsic hindfoot muscles of jerboa and mouse will identify the plethora of expression
103 differences that accumulated since the two species diverged from their last common ancestor
104 about 50 million years ago, most of which are likely unrelated to muscle loss in jerboas. Yet
105 substantial expression diversity among different healthy skeletal muscles within an individual
106 mouse or rat (Terry et al., 2018) suggests it would also be difficult to rely solely on direct
107 comparison to a ‘typical developing’ jerboa muscle. Our approach therefore uses both within-
108 species and between-species comparisons of jerboa hindfoot muscle that will be lost to muscles

109 that will be retained in order to identify gene expression differences that are robustly associated
110 with muscle loss.

111 We first sought an analogous forelimb muscle that is retained in both species. The
112 intrinsic muscles of the hand are even smaller than in the hindfoot and thus more difficult to
113 isolate in sufficient quantity. We therefore chose the *flexor digitorum superficialis* (FDS), which
114 originates in the forelimb autopod during embryogenesis and later translocates to the fetal
115 forearm (Huang et al., 2013). It is therefore evolutionarily and developmentally analogous to the
116 intrinsic hindfoot muscles and also much larger and easy to manually dissect. We extracted
117 mRNA from the FDS of one individual per three biological replicates of stage-matched (P0 and
118 P3) jerboas and mice. We then processed all samples using the Illumina TruSeq Stranded
119 mRNA Library Preparation Kit with polyA-enrichment and sample indexing and sequenced pools
120 of indexed libraries using the Illumina HiSeq 4000 High Output platform.


121

122 *Differential expression analyses and filtering*

123 For differential expression analyses that compare species transcriptomes directly, it is
124 important to use a strongly supported 1:1 orthologous index of transcripts. We therefore applied
125 TOGA, a method that uses a whole genome alignment to annotate coding genes, identifies
126 (co)orthologous genes, and detects genes with reading frame inactivating mutations (Kirilenko
127 et al., 2023). Using the *Mus musculus* genome (mm10) as reference and the revised *Jaculus*
128 *jaculus* genome (mJacJac1.mat.Y.cur) as query, we annotated 16,667 1:1 orthologous
129 transcripts in the two genomes from which we selected the longest isoform as representative of
130 the gene body. We mapped sequenced reads from each biological replicate to the respective
131 indexed genome. Principal component analysis (PCA) and sample-to-sample distance show
132 segregation between experimental groups first by species and then by muscle type: jerboa
133 hindfoot (jHF), jerboa FDS (jFDS), mouse hindfoot (mHF), mouse FDS (mFDS) (Figure 1G).

134 We then used DESeq2 to quantify differential expression between the hindfoot and FDS
135 muscles of the jerboa at each stage (intra-species). We also quantified differential expression
136 between jerboa and mouse hindfoot muscles and between jerboa and mouse FDS (inter-
137 species) at each stage accounting for species specific transcript length normalization (Saxena
138 et al., 2022). Statistically significant differentially expressed 1:1 orthologous transcripts in each
139 pairwise analysis are defined as those with a p-adjusted (padj) value less than 0.05
140 (Supplementary Table 1). We did not apply a fold-change threshold, because genes with
141 different functions (e.g., transcription factors versus enzymes) are likely differentially sensitive to
142 altered expression levels.

143 To identify gene expression differences between species (inter-species) that are
144 associated with jerboa hindfoot muscle loss, we first selected all genes that are significantly
145 differentially expressed between jerboa and mouse in the hindfoot but not in the FDS (1,632 at
146 P0; Figure 2A). We then plotted the \log_2 fold-change values for all genes that are significantly
147 differentially expressed between species in both muscles (Figure 2B). The slope of the linear
148 regression is 0.96 ($R^2=0.86$), suggesting these genes have expression differences between
149 species that are largely the same in both locations and likely unrelated to muscle loss specific to
150 the jerboa hindfoot. However, 306 genes lie outside the 99% confidence interval; we therefore
151

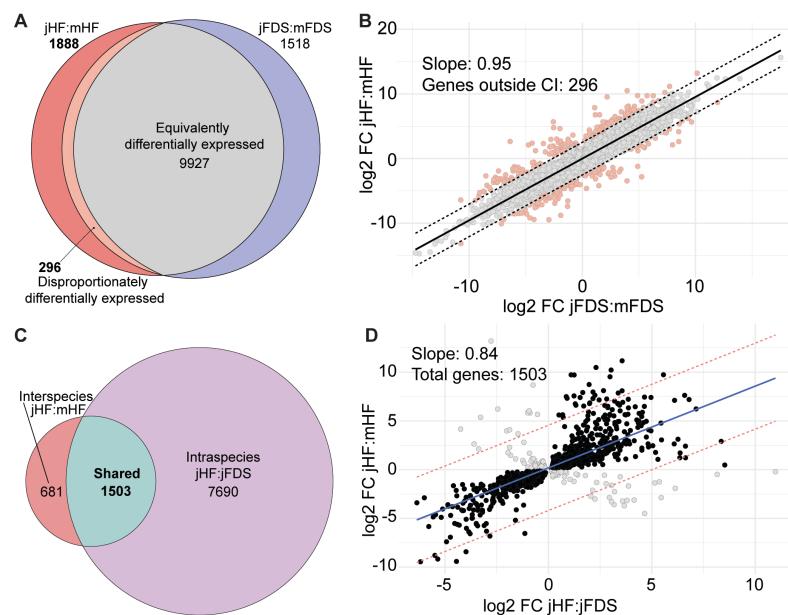
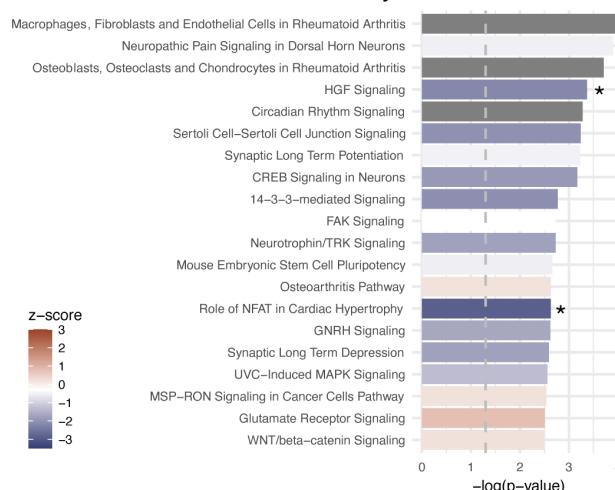


Figure 2: Identification of genes associated with the initiation of jerboa hindfoot muscle loss at P0 (A)
Intersection of all genes that are differentially expressed between jerboa and mouse hindfoot muscle and between jerboa and mouse FDS. The orange sliver of 'disproportionately differentially expressed' genes lie outside of the 99% confidence interval of the regression of jerboa:mouse FDS versus hindfoot shown in (B). (C) The intersection of interspecies and intraspecies expression differences reveals genes that are differentially expressed in both comparisons. (D) A majority of differential expression correlates in the two comparisons; anti-correlated genes (gray dots) were removed.

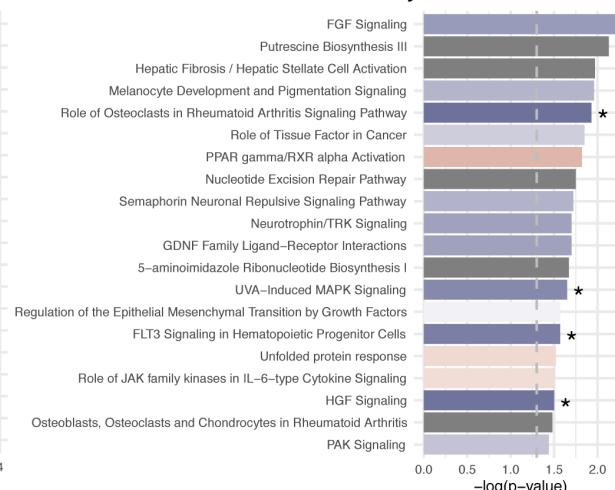
152
153 consider their expression differences between species to be 'disproportionate' in the two
154 muscles. Combining the genes that are differentially expressed at P0 in hindfoot but not FDS
155 with those that are disproportionately differentially expressed in hindfoot compared to FDS gives
156 us 1,938 genes associated with muscle loss after the interspecies comparison. An identical
157 filtering of samples collected from P3 muscles reveals 2,184 significantly differentially expressed
158 genes are associated with muscle loss after the interspecies comparison at this later stage
159 (Figure 3A, B).

160 We next used the difference in developmental outcome of muscles within jerboas as a
161 'second pass' filter to identify genes that are also differentially expressed between jerboa
162 hindfoot muscles that will be lost and FDS muscles that are retained (Figure 2C, 3C). We found
163 correlations between the inter- and intraspecies expression differences with slope 0.86
164 ($R^2=0.42$) at P0 and 0.84 ($R^2=0.48$) at P3 (Figure 2D, 3D). We then selected all genes with
165 consistent expression differences in the same direction in jerboa hindfoot muscle that is lost
166 compared to mouse hindfoot and jerboa FDS muscles that are retained. Altogether, these inter-
167 and intraspecies analyses identified 1162 genes associated with jerboa hindfoot muscle loss at
168 P0 and 1382 genes at P3 (black dots in Figure 2D and 3D; Supplementary Table 2), which we
169 used for all subsequent candidate gene and network and pathway analyses. Comparing the two
170 timepoints, we find that 749 genes are differentially expressed only at P0, 969 are differentially
171 expressed only at P3, and 413 genes are differentially expressed at both timepoints. Among
172 these that are consistent, all but two differ in the same fold-change direction at both stages
173 (Supplementary Figure 1).

174


Figure 3: Identification of genes associated with the progression of jerboa hindfoot muscle loss at P3 **(A)** Intersection of all genes that are differentially expressed between jerboa and mouse hindfoot muscle and between jerboa and mouse FDS. The orange sliver of 'disproportionately differentially expressed' genes lie outside of the 99% confidence interval of the regression of jerboa:mouse FDS versus hindfoot shown in **(B)**. **(C)** The intersection of interspecies and intraspecies expression differences reveals genes that are differentially expressed in both comparisons. **(D)** A majority of differential expression correlates in the two comparisons; anti-correlated genes (gray dots) were removed.

175


176 *Mechanistic insights from gene expression differences and pathway enrichment analyses*

177 These gene sets provide an opportunity to explore possible mechanisms of evolutionary
178 and developmental muscle loss in the jerboa hindfoot. We first implemented a network and
179 pathway enrichment analysis of all genes associated with jerboa hindfoot muscle loss at P0 and
180 at P3 using Ingenuity Pathway Analysis (IPA, Qiagen). Canonical pathway analysis of well-
181 characterized metabolic and cell signaling pathways in IPA showed significant enrichment [-
182 log(p-value) > 1.3] for 118 pathways at P0 and 32 pathways at P3. The 20 most significantly
183 enriched pathways at each time point are presented in Figure 4, and all significant pathways are
184 in Supplementary Table 3. Here, we focus on a few notable differentially expressed genes and
185 pathways that functionally relate to muscle development, regeneration, and/or maintenance,
186 providing insight into the possible molecular mechanisms of jerboa hindfoot muscle loss.

A P0 Enriched Canonical Pathways

B P3 Enriched Canonical Pathways

Figure 4: The top twenty most significantly enriched canonical pathways among genes associated with jerboa hindfoot muscle loss at P0 (A) and at P3 (B). Vertical dashed lines mark the threshold for significance [-log(0.05)=1.3]. Asterisks mark pathways that reach significance for 'activation' (z-score >2) or inhibition (z-score<-2) reported within the Ingenuity Pathway Analysis.

187

188 We previously observed no evidence of cell death by a variety of markers and no
189 macrophages in the vicinity of jerboa hindfoot muscles during degeneration (Tran et al., 2019). It
190 is therefore unclear how nascent myofibers disappear after showing signs of 'atrophy-like'
191 degeneration. Here, we show that IPA calls the 'Phagosome Formation' canonical pathway as
192 significantly enriched at both P0 and P3, and the 'Unfolded Protein Response' pathway as
193 enriched at P3. Absence of evidence for professional phagocytic cells (e.g., macrophages and
194 dendritic cells) in our previous work suggests that phagosomes might form in another cell type.

195 It is possible the enriched phagosome formation pathway reflects myofiber autophagy, whereby
196 muscle cells may degrade and recycle their own damaged proteins (Xia et al., 2021), which
197 could be consistent with the Unfolded Protein Response. Alternatively, phagosomes may form
198 within fibroblasts that we previously observed intermingled with highly degenerating muscle by
199 electron microscopy and immunofluorescence (Tran et al., 2019). If so, this would suggest these
200 are non-professional phagocytic cells that might consume the remains of myofibers.

201 The 'HGF Signaling' pathway appears to be significantly inhibited (z-score <-2) in jerboa
202 hindfoot muscle at both P0 and P3 based on differential expression of networked molecules.
203 This result stands out as notable due to the well-established importance of the HGF ligand and
204 c-Met receptor to multiple aspects of muscle cell biology. Homozygous *c-met* loss-of-function
205 mice lack all limb muscle, as well as muscles of the diaphragm and tip of the tongue, due to
206 defective muscle precursor migration (Bladt et al., 1995). In embryonic chickens, exogenous
207 HGF is sufficient to stimulate muscle precursor migration and also prevents myogenic
208 differentiation (Scaal et al., 1999). The importance of HGF/c-Met signaling is not limited to
209 embryogenesis; HGF is released by injured adult muscle and stimulates the c-Met receptor
210 expressed by satellite cells (Tatsumi et al., 1998; Miller et al., 2000). Satellite cells are quiescent
211 muscle stem cells nestled between the muscle and basal lamina, which are activated by HGF
212 signaling to re-enter the cell cycle and become migratory. These cells then fuse to one another
213 to form new myofibers or to injured myofibers for repair. Thus, HGF signaling is also essential to
214 the earliest stages of muscle regeneration after injury. Furthermore, evidence suggests that
215 HGF can inhibit or reverse skeletal muscle atrophy induced by denervation and that cMet
216 inhibition after nerve injury further increases expression of the E3 ubiquitin ligases, *Murf1* and
217 *Atrogin1* (Choi et al., 2018). Altogether, these findings suggest that evidence for HGF pathway
218 inhibition is consistent with a putative role in the rapid loss of jerboa hindfoot muscle.

219 'FGF Signaling' is the most significantly enriched pathway at P3 with a z-score trending
220 toward significant inhibition. At least six ligands and two receptors of this highly pleiotropic
221 growth factor pathway are expressed in the skeletal muscle lineage of mouse and/or rat
222 (Hannon et al., 1996; Kästner et al., 2000), though most loss-of-function mice have normal or
223 minimally affected skeletal muscle possibly due to redundancies (Pawlikowski et al., 2017). An
224 exception, *Fgf6*, appears to be necessary for an early postnatal expansion of the muscle stem
225 cell pool, which may affect muscle regeneration after injury (Floss et al., 1997; Zofkie et al.,
226 2021). Notably, *Fgf6* ligand expression in jerboa hindfoot muscle is 4.7-fold lower than in mouse
227 hindfoot and 6.8-fold lower than in jerboa FDS. Although *Fgf6* is also significantly differentially

228 expressed in jerboa hindfoot at P0 (3.3-fold and 4.1-fold lower than mouse hindfoot and jerboa
229 FDS, respectively), the FGF signaling pathway is not significantly enriched at this earlier stage.

230 Considering also the largest fold-change differences in each dataset reveals that *Nitric*
231 *oxide synthase 1 (Nos1/nNos)* is expressed a hundred to a thousand-fold lower at P0 in jerboa
232 hindfoot muscle when compared to either mouse hindfoot muscle (\log_2 fold-change = -10.4; padj
233 = 1.7E-17) or jerboa FDS (\log_2 fold-change = -7.0; padj = 2.7E-07) (Figure 2; Supplementary
234 Table 2). IPA calls the 'nNos Signaling in Skeletal Muscle Cells' canonical pathway as
235 significantly enriched at P0 (- \log_{10} p-value=1.33). Nitric oxide (NO) is a gaseous molecule with
236 important functions in many tissues (Lundberg and Weitzberg, 2022). In skeletal muscle, NO
237 regulates key aspects of cell biology and physiology, including early stages of myogenesis,
238 muscle force production, metabolism, and repair after muscle injury (Stamler and Meissner,
239 2001). Nitric oxide is produced by the catalytic activity of *Nos1*, which converts L-Arginine to NO
240 and L- Citrulline. As evidence of the importance of NO signaling in muscle maintenance and
241 repair, *Nos1* activity is reduced in multiple muscle degenerative disorders with a variety of
242 genetic underpinnings (Brennan et al., 1995; Chao et al., 1996; Crosbie et al., 2002).

243 Furthermore, *Nos1*^{-/-} knockout mice have a smaller myofiber cross-sectional area, reduced force
244 production, and show ultrastructural damage to the sarcomere after exercise (De Palma et al.,
245 2014). Interestingly, *Argininosuccinate synthase 1 (Ass1)* has one of the largest fold-change
246 differences among genes that are expressed higher in jerboa hindfoot muscle at both P0 (\log_2
247 fold-change >4.7) and at P3 (\log_2 fold-change >5.6) when compared to muscles that are
248 retained in each species. *Ass1* catalyzes a key step in the biosynthesis of cellular L-Arginine
249 from L-Citrulline, the secondary product of *Nos1* activity (Wu and Morris, 1998). Together, this
250 suggests that an imbalance in the nitric oxide/arginine cycle might also contribute to jerboa
251 hindfoot muscle loss.

252

253 *Comparison of genes associated with evolutionary muscle loss and models of pathological*
254 *muscle loss*

255 Pathological muscle loss can result from disease causing mutations or in response to
256 denervation, disuse, cancer, fasting, or aging. Are the molecular mechanisms of muscle loss in
257 the jerboa hindfoot broadly similar to pathological muscle loss or similar to a narrower subset of
258 disorders? To answer this question, we selected twenty-four publicly accessible differential
259 expression (RNA-Seq or microarray) datasets that compared human biopsies or mouse or rat
260 models of pathological muscle loss to healthy control skeletal muscle. Datasets were included

261 only if the full list of differentially expressed genes reported were accessible without requiring
262 reanalysis of the raw data.

263 We first identified differentially expressed genes ($p\text{-adj}<0.05$) within each of the mouse,
264 rat, and human datasets that were assigned the same name (and unique ENMUSG for mouse
265 genes) as in our 1:1 jerboa/mouse orthologous reference set. Three datasets were excluded at
266 this point because fewer than 50 differentially expressed genes remained after filtering for
267 jerboa/mouse orthologs. Using the 16,667 jerboa and mouse 1:1 orthologs as the total number
268 of genes, we performed a Fisher's exact test with Benjamini-Hochberg multiple hypothesis
269 correction to identify significant overlap between each disease/pathology dataset and the sets of
270 genes associated with jerboa hindfoot muscle loss at P0 and at P3 (Table 1). Of the 21
271 pathology datasets, we found that four overlap significantly with jerboa hindfoot muscle loss at
272 P0, five overlap significantly with jerboa hindfoot muscle loss at P3, and fourteen do not
273 significantly overlap with jerboa hindfoot muscle loss at either developmental stage.

274 Two pathology models overlap significantly at both timepoints: human critical illness
275 myopathy (CIM) and the *mdx* mouse model of Duchenne's muscular dystrophy (Llano-Diez et
276 al., 2019; Ralston et al., 2021). Critical illness myopathy (CIM), also known as acute
277 quadriplegic myopathy, is the significant depletion of skeletal muscle mass and compromised
278 performance in individuals receiving intensive care (Latronico et al., 1996; De Jonghe et al.,
279 2002). The underlying mechanisms of CIM are not fully understood but involve processes such
280 as activation of protein degradation pathways, decreased expression of myofibrillar proteins,
281 reduced excitability of cell membranes, mitochondrial dysfunction, and altered excitation-
282 contraction coupling (Shepherd et al., 2017). Duchenne's muscular dystrophy (DMD), on the
283 other hand, is one of the most well-characterized and severe forms of hereditary muscular
284 dystrophy. DMD is caused by mutations in *Dystrophin*, a large protein component of the
285 complex linking and stabilizing the myofiber cytoskeleton to the extracellular matrix. The *mdx*
286 mouse model has a spontaneous mutation that prematurely terminates *Dystrophin* translation
287 (Bulfield et al., 1984; Ryder-Cook et al., 1988; Sicinski et al., 1989), and it is one of the most
288 widely used rodent models of human DMD.

289 At P0 but not P3, we see overlap with a botulinum toxin rat model of atrophy one week
290 after treatment, and with a rat skeletal muscle injury model (Mukund et al., 2014; Ren et al.,
291 2021). Injection of BT was used to inhibit motor neuron activity, thus mimicking conditions of
292 muscle inactivity often seen in multiple neuromuscular disorders or bed-ridden patients (Mukund
293 et al., 2014). The authors performed a long-term study of BT-induced muscle loss from one
294 week to up to a year after BT injection and reported that the most dramatic transcriptome

295 changes (1989 genes) occurred within one week compared to four weeks or longer. The
296 transcriptional differences reported after mechanical injury to the rat tibialis anterior were
297 observed within hours of wounding (Ren et al., 2021).

298 At P3 but not P0, we see significant overlap between genes associated with jerboa
299 hindfoot muscle loss and differentially expressed genes in two independent mouse models of
300 cancer cachexia (Blackwell et al., 2018; Hunt et al., 2021) and a symptomatic model of spinal
301 muscular atrophy (Doktor et al., 2017). Cancer-induced cachexia is a highly complex metabolic
302 syndrome characterized by progressive muscle wasting (Fearon et al., 2012). Notable clinical
303 manifestations of cachexia include loss of weight, inflammation, resistance to insulin, and
304 heightened breakdown of muscle proteins (Fearon et al., 2012). In both mouse models, cancer-
305 induced muscular atrophy was caused by injection of Lewis lung carcinoma (LLC) mouse tumor
306 cells, which lead to the reduction in size of type 2B myofibers with no change in the number of
307 myofibers or the relative distribution of different myofiber types (Hunt et al., 2021).

308 Spinal muscular atrophy is a neuromuscular disease caused by deficiency of the
309 'Survival of Motor Neurons' (SMN) protein, which leads to progressive muscle weakness and
310 often causes death in infancy. In a mouse model of severe SMA, animals have a rapid disease
311 progression and a median lifespan of 10 days. Transcriptome analyses at P1 (pre-symptomatic)
312 and P5 (symptomatic) identified hundreds of differentially expressed genes in SMA skeletal
313 muscle compared to control (Doktor et al., 2017). We find significant overlap between our P3
314 jerboa hindfoot muscle loss dataset and the symptomatic P5 SMA mouse dataset. Together,
315 these intersections lend support to a hypothesis that jerboa hindfoot muscle loss progresses
316 with a gene expression profile similar to pathological atrophy. That only a subset of pathologies
317 overlap with jerboa hindfoot muscle loss is consistent with observations that different causes of
318 skeletal muscle atrophy also have minimal overlap with one another (Hunt et al., 2021).

319

320 **Conclusions and Limitations**

321 Individual muscles and groups of muscles have been lost repeatedly throughout
322 vertebrate phylogeny as evolution has reshaped the musculoskeletal system to enable a variety
323 of types of locomotion. We previously reported that the cellular mechanisms of intrinsic hindfoot
324 muscle loss in neonatal jerboas, which is histologically similar to intrinsic hindfoot muscle loss in
325 fetal horses (Cunningham, 1883), have atrophy-like characteristics. Here we applied a
326 comparative transcriptomics approach comparing gene expression in jerboa hindfoot muscles to
327 both mouse hindfoot muscles (inter-species) and to jerboa forelimb muscle (intra-species),
328 which are retained to adulthood. Genes we identified with consistent expression differences

329 (same fold-change direction) in these multi-way comparisons are therefore 'associated with
330 jerboa hindfoot muscle loss'. The complete datasets are available in Supplementary Tables 1
331 and 2.

332 Correlation of gene expression differences between inter- and intraspecies analyses and
333 between stages of muscle loss (Supplementary Figure 1) supports the logic of our experimental
334 design, but we acknowledge that the datasets are likely incomplete and include false positives.
335 Furthermore, these are snapshots of gene expression differences that include genes that may
336 be causative and others that are certainly a consequence of the primary mechanism of muscle
337 loss due to the interconnected effects of expression perturbation (Cowen et al., 2017).
338 Nevertheless, these datasets provide evidence for molecular mechanisms of evolutionary loss
339 of distal limb skeletal muscles.

340 Although application of pathway enrichment analyses to these datasets is limited by the
341 current knowledge base of gene functions, it does provide valuable insight into the putative
342 molecular mechanisms of a biological phenomenon. Here, we have drawn attention to a few
343 enriched pathways (HGF, FGF, and NO) with well-documented importance to muscle
344 development, maintenance, and/or repair; all enriched pathways are available in Supplementary
345 Table 3. As with all such 'omics' datasets, it will be important to repeat these analyses as the
346 functional annotation of all genes continues to expand, thus enabling broader and deeper
347 insight into putative molecular mechanisms of a variety of biological processes.

348 Finally, we set out to determine if these differential expression analyses would provide
349 further support for a hypothesis that the mechanism of jerboa hindfoot muscle loss, occurring
350 over both evolutionary and developmental timescales, shares substantial similarities with
351 instances of pathological muscle loss. At one or both stages of jerboa hindfoot muscle loss, we
352 found significant overlap with seven out of 21 of the analyzed disease and injury states,
353 consistent with our prior histological and ultrastructural observations. However, we emphasize
354 that statistically significant overlap is evidence for *correlation* of the gene expression differences
355 observed in jerboa hindfoot muscle and certain muscle pathologies, but this should not be
356 interpreted to suggest that the *causes* are the same. Rather, these correlations with specific
357 pathology states demonstrate striking and perhaps surprising similarity between evolutionary
358 and pathological states while also serving as entry points to gain further insight into the
359 mechanisms of muscle loss in a variety of contexts.

360
361
362

Dataset	DE genes	Orthologous DE genes	P0 overlap p-value	P0 overlap FDR	P3 overlap p-value	P3 overlap FDR	Citations
LLC-induced cancer cachexia mice – 4wk	4313	3664	0.2800	0.4200	0.0082	0.0360	(Blackwell et al., 2018)
Chemotherapy (Folfiri) induced cachexia mice	513	429	0.0350	0.1050	0.1700	0.3990	(Barreto et al., 2016)
Spinal muscular atrophy mice – presymptomatic (P1)	725	595	0.0130	0.0550	0.1300	0.3900	(Doktor et al., 2017)
Spinal muscular atrophy mice – symptomatic (P5)	940	821	0.6900	0.7250	0.0086	0.0360	(Doktor et al., 2017)
Rat muscle 1 week after botulinum toxin injection	1889	1765	0.0048	0.0250	0.1800	0.3990	(Mukund et al., 2014)
Rat muscle 4 weeks after botulinum toxin injection	393	345	0.6000	0.6960	0.3200	0.5170	(Mukund et al., 2014)
Rat muscle 2 months after denervation	117	104	0.9400	0.9400	0.7600	0.8900	(Kostrominova et al., 2005)
Kennedy disease, HSA-AR mouse model	145	131	0.3000	0.4200	0.2800	0.4900	(Mo et al., 2010)
Kennedy disease, AR97Q mouse model	198	183	0.0860	0.1910	0.8300	0.8900	(Mo et al., 2010)
Kennedy disease, AR113Q mouse model	152	138	0.6300	0.6960	0.8900	0.8900	(Mo et al., 2010)
Human critical illness myopathy	4743	4221	0.0023	0.0160	0.0003	0.0060	(Llano-Diez et al., 2019)
Aging induced atrophy in mice	610	468	0.1000	0.1910	0.8000	0.8900	(Hunt et al., 2021)
Dexamethasone induced atrophy in mice	5696	5035	0.2800	0.4200	0.1900	0.3990	(Hunt et al., 2021)
Lewis lung carcinoma induced atrophy in mice	1097	926	0.0330	0.1050	0.0078	0.0360	(Hunt et al., 2021)
Impact injury in rat	495	438	0.0002	0.0020	0.7300	0.8900	(Ren et al., 2021)
Human Duschenne muscular dystrophy	81	73	0.0570	0.1500	0.8500	0.8900	(Haslett et al 2002)
Dystrophin-deficient (<i>mdx</i>) mice – 30 weeks old	600	559	0.1200	0.2100	0.8300	0.8900	(Signorelli et al. 2023)
Dystrophin-deficient (<i>mdx</i>) mice – 2 weeks old	3650	3212	0.0940	0.1910	0.1000	0.3500	(Ralston et al. 2021)
Dystrophin-deficient (<i>mdx</i>) mice – 5 weeks old	6670	5858	2.40E-06	0.0000504	0.0016	0.0170	(Ralston et al. 2021)
Dysferlin-deficient mouse (LGMD model)	127	105	0.4500	0.5910	0.2500	0.4770	(Wenzel et al. 2005)
Human limb girdle muscular dystrophy type 2A	63	58	0.5800	0.6960	0.8700	0.8900	(Sáenz et al. 2008)

Table 1: Values for the Fisher's Exact Test of overlap between genes associated with jerboa hindfoot muscle loss at P0 or at P3 and datasets obtained from rodent disease models or human pathologies. Significant values are bold and highlighted.

385 **Materials and Methods**

386 *Animals*

387 Jerboas were housed and reared as previously described (Jordan et al., 2011). Outbred
388 CD1 mice were obtained from Charles River Laboratories (MA, USA), housed in standard
389 conditions, and fed a breeder's diet. All animal care and use protocols for mice and jerboas
390 were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of
391 California, San Diego.

392

393 *Laser capture microdissection of hindfoot muscles and bulk dissection of FDS*

394 Mouse and jerboa feet were fresh frozen in blocks of OCT freezing media, and blocks
395 were stored at -80°C until cryosectioned. Blocks were sectioned at 30 µm thickness, and
396 sections were transferred to PEN (polyethylene naphthalate) MembraneSlides (Zeiss). Sections
397 were stained and dehydrated using the Arcturus HistoGene LCM Frozen Section Staining Kit
398 following manufacturer's protocol (ThermoFisher). Sections were subjected to laser
399 microdissection using Zeiss PALM MicroBeam microscope according to manufacturer's
400 instructions. Immediately after capture, we added extraction buffer from the PicoPure RNA
401 Isolation kit and incubated samples for 30 minutes at 42°C prior to storage at -80°C until RNA
402 isolation. Tissues were pooled from six animals (right and left limbs) per biological replicate and
403 three biological replicates were prepared per species and stage (mouse and jerboa, P0 and P3).
404 To isolate the FDS muscle in each species, we removed and skinned each forelimb, located the
405 tendons of the *m. flexor digitorum superficialis*, and followed the tendon to the muscle in the
406 forearm. We then severed the muscle at each tendon. Each biological replicate for the FDS is
407 one animal (right and left FDS). Samples were incubated overnight in RNAlater (Invitrogen) prior
408 to storage at -80°C until RNA isolation.

409

410 *mRNA isolation and sequencing*

411 mRNA extraction was performed using the PicoPure RNA Isolation Kit (Thermo Fisher)
412 according to the manufacturer's instructions. RNA quality and concentration were determined
413 using Agilent TapeStation (Agilent Technologies, Santa Clara, CA). RIN^e scores from
414 TapeStation analysis for all samples used were at minimum 7.0. Libraries were prepared using
415 the Illumina TruSeq Stranded mRNA Library Preparation Kit using a polyA-enrichment strategy
416 and sample indexing. Two pools of mouse and jerboa samples were loaded onto each lane of
417 Illumina HiSeq 4000 High Output flow cell and sequenced in a 1 × 75 bp single read format.

418 RNA sequencing was completed at the Institute for Genomic Medicine core facility at UC San
419 Diego (La Jolla, CA).

420

421 *RNA-Seq read mapping and differential expression*

422 Adaptors and low quality bases were trimmed from sequences by using Trimmomatic
423 with default parameters (Bolger et al., 2014). Quality control of sequences in FASTQ and BAM
424 format was assessed with the FastQC software (Babraham Bioinformatics,
425 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). We then used the STAR aligner to
426 map reads to the respective genome (mouse mm10 or jerboa mJacJac1.mat.Y.cur) (Dobin et
427 al., 2013). Each genome was annotated using a 1:1 jerboa to mouse orthologous gene
428 annotation set generated using TOGA (Kirilenko et al., 2023). Trimmomatic, FastQC, and
429 STAR analysis were performed on Amazon Web Services EC2. Read counts associated with
430 each specific transcript were used to carry out analysis of differential expression with DESeq2
431 (Love et al., 2014) with an additional transcript length normalization for each species in the
432 interspecies comparison of homologous muscle (Saxena et al., 2022).

433

434 *Data Intersections and Filtration*

435 The output of DESeq2 resulted in eight individual files: (jHF:mHF), (jFDS:mFDS),
436 (jHF:jFDS), (mHF:mFDS) at each of P0 and P3. These initially contained expression values for
437 17,641 genes (all 1:1 orthologues plus genes designated as present in single copy in mouse
438 and jerboa genomes but predicted non-functional in jerboa – one to zero). To these, we joined a
439 column containing the gene name from a metadata .tsv file linking ENMUST to gene name. This
440 .tsv file lacked the identities of 3 genes, *Tusc3*, *Kmt5b*, and *Wdfy1* that were added manually.
441 The gene sets were then subset to contain only the 16,667 1:1 orthologous genes. Next, the 1:1
442 gene sets were subset to contain only genes with a p-adjusted value less than 0.05, resulting in:

443 • jFDS:mFDS P0 = 11557 differentially expressed 1:1 orthologs
444 • jFDS:mFDS P3 = 11741 “ “
445 • jHF:mHF P0 = 11049 “ “
446 • jHF:mHF P3 = 12111 “ “
447 • jHF:jFDS P0 = 8517 “ “
448 • jHF:jFDS P3 = 9193 “ “
449 • mHF:mFDS P0 = 7496 “ “
450 • mHF:mFDS P3 = 8359 “ “

451

452 Each of the following steps was replicated identically for data collected at the P0 and P3
453 timepoints. For interspecies comparisons, the gene set for jHF:mHF was intersected with
454 jFDS:mFDS in order to obtain a list of genes that are significantly differentially expressed only
455 between the hindfoot muscle of the two species (1632 at P0, 1888 at P3), as well as a set of
456 genes that are differentially expressed between the hindfoot muscle and also between the FDS
457 muscle of the two species (9417 at P0, 10223 at P3). After plotting \log_2 fold-change differential
458 expression values for jFDS:mFDS versus jHF:mHF, we determined the 99% confidence interval
459 to identify disproportionately differentially expressed genes that lie outside of this interval (306 at
460 P0, 296 at P3). These disproportionately differentially expressed genes were added to the
461 'hindfoot only' differentially expressed genes to create the interspecies differential expression
462 dataset (1938 genes at P0, 2184 genes at P3).

463 Next, the interspecies datasets were each intersected with the same stage intraspecies
464 (jHF:jFDS) dataset to find genes commonly differentially expressed when jerboa hindfoot
465 muscle is compared to both muscles that are retained. This intersection resulted in 1,304 genes
466 at P0 and 1,503 genes at P3. Genes with expression differences that were anti-correlated (e.g.,
467 positive \log_2 fold-change in the interspecies comparison but negative \log_2 fold-change in the
468 intraspecies comparison) were removed, resulting in final datasets of significant differentially
469 expressed genes associated with jerboa hindfoot muscle loss (1,162 genes at P0 and 1,382
470 genes at P3). All graphs, data filtering, and statistical analyses reported in this manuscript were
471 generated using the R-stats package.

472

473 *Ingenuity Pathway Analysis (Qiagen)*

474 The reference file for use in IPA included only genes with a read count value greater
475 than 1 in at least one of the 24 replicate samples: 3 jFDS, 3 mFDS, 3 jHF, 3 mHF at P0 and P3.
476 This reference file contained 16,264 of the 16,667 1:1 orthologous genes. Graphs were made
477 for canonical pathways from IPA generated data (Supplementary Table 3).

478

479 *Significance of overlap with other muscle atrophy models*

480 We took each gene list from the original cited authors' reported DESeq2 or microarray
481 analysis output. We then selected genes with a differential expression adjusted p-value
482 (DESeq2) or p-value (microarray) less than 0.05. Gene lists were then converted to ENSMUSG
483 using g:Profiler gene ID Conversion function (<https://biit.cs.ut.ee/gprofiler/convert>). Genes with
484 no associated ENSMUSG or an ENSMUSG not found in our jerboa to mouse 1:1 orthology
485 dataset were removed from consideration. We performed all Fisher's exact tests using the

486 GeneOverlap package in R to determine statistical significance of overlapping genes (Shen).
487 We used the jerboa to mouse 1:1 orthology dataset (16,667 genes) as the total gene set for
488 Fisher's exact tests. Adjusted p-values for multiple comparisons were calculated in R using the
489 Benjamini & Hochberg method.

490

491 **Data Accessibility**

492 The data discussed in this publication have been deposited in NCBI's Gene Expression
493 Omnibus (Tran *et al.*, 2023) and are accessible through GEO Series accession number
494 GSE235932 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235932>).
495 Supplementary Excel tables are available at [10.5281/zenodo.1068555](https://doi.org/10.5281/zenodo.1068555)

496

497 **Acknowledgements**

498 We thank Dr. Uri Manor and Dr. Tong Zhang in the Biophotonics Core at the Salk
499 Institute for Biological Studies for assistance and usage of the Zeiss PALM MicroBeam
500 microscope. Illumina HiSeq library sequencing was completed by the Institute for Genomic
501 Medicine Genomics Center at UC San Diego, and the Center for Computational Biology at UC
502 San Diego provided bioinformatic assistance. We would also like to thank Dr. Kavitha Mukund
503 for advice on bioinformatic tools and Dr Ronghui Xu and Dr. Lin Liu for statistical advice. This
504 work was supported by the National Institute for Arthritis and Musculoskeletal and Skin
505 Diseases under award number AR074609 and by the Wu Tsai Human Performance Alliance
506 and the Joe and Clara Tsai Foundation. MPT was supported by the Cellular and Molecular
507 Genetics Training Grant at UC San Diego, funded by the National Institute for General Medical
508 Sciences under award number T32GM724039.

509

510 **References**

511 Barreto R, Wanig DL, Gao H, Liu Y, Zimmers TA, Bonetto A. 2016. Chemotherapy-related
512 cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and
513 p38 MAPKs. *Oncotarget* 7:43442–43460.

514 Blackwell TA, Cervenka I, Khatri B, Brown JL, Rosa-Caldwell ME, Lee DE, Perry RA, Brown LA,
515 Haynie WS, Wiggs MP, Bottje WG, Washington TA, Kong BC, Ruas JL, Greene NP.
516 2018. Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-
517 cachexia in tumor-bearing mice. *Physiological Genomics* 50:1071–1082.

518 Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. 1995. Essential role for the c-met
519 receptor in the migration of myogenic precursor cells into the limb bud. *Nature* 376:768–
520 771.

521 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
522 data. *Bioinformatics* 30:2114–2120.

523 Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS. 1995. Nitric oxide synthase complexed with
524 dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular
525 dystrophy. *Cell* 82:743–752.

526 Bulfield G, Siller WG, Wight PA, Moore KJ. 1984. X chromosome-linked muscular dystrophy
527 (mdx) in the mouse. *Proceedings of the National Academy of Sciences* 81:1189–1192.

528 Chao DS, Gorospe JR, Brenman JE, Rafael JA, Peters MF, Froehner SC, Hoffman EP,
529 Chamberlain JS, Bredt DS. 1996. Selective loss of sarcolemmal nitric oxide synthase in
530 Becker muscular dystrophy. *Journal of Experimental Medicine* 184:609–618.

531 Choi W, Lee J, Lee J, Ko KR, Kim S. 2018. Hepatocyte Growth Factor Regulates the miR-206-
532 HDAC4 Cascade to Control Neurogenic Muscle Atrophy following Surgical Denervation
533 in Mice. *Mol Ther Nucleic Acids* 12:568–577.

534 Cowen L, Ideker T, Raphael BJ, Sharan R. 2017. Network propagation: a universal amplifier of
535 genetic associations. *Nat Rev Genet* 18:551–562.

536 Crosbie RH, Barresi R, Campbell KP. 2002. Loss of sarcolemma nNOS in sarcoglycan-deficient
537 muscle. *The FASEB Journal* 16:1786–1791.

538 Cunningham DJ. 1883. The development of the suspensory ligament of the fetlock in the foetal
539 horse, ox, roe-deer, and sambre-deer. *Journal of Anatomy and Physiology* 18:1–12.

540 De Jonghe B, Sharshar T, Lefaucheur J-P, Authier F-J, Durand-Zaleski I, Boussarsar M, Cerf C,
541 Renaud E, Mesrati F, Carlet J, Raphaël J-C, Outin H, Bastuji-Garin S, for the Groupe de
542 Réflexion et d'Etude des Neuromyopathies en Réanimation. 2002. Paresis Acquired in
543 the Intensive Care UnitA Prospective Multicenter Study. *JAMA* 288:2859–2867.

544 De Palma C, Morisi F, Pambianco S, Assi E, Touvier T, Russo S, Perrotta C, Romanello V,
545 Carnio S, Cappello V, Pellegrino P, Moscheni C, Bassi MT, Sandri M, Cervia D,
546 Clementi E. 2014. Deficient nitric oxide signalling impairs skeletal muscle growth and
547 performance: involvement of mitochondrial dysregulation. *Skeletal Muscle* 4:22.

548 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
549 TR. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29:15–21.

550 Doktor TK, Hua Y, Andersen HS, Brøner S, Liu YH, Wieckowska A, Dembic M, Bruun GH,
551 Krainer AR, Andresen BS. 2017. RNA-sequencing of a mouse-model of spinal muscular
552 atrophy reveals tissue-wide changes in splicing of U12-dependent introns. *Nucleic Acids
553 Research* 45:395–416.

554 Fearon KCH, Glass DJ, Guttridge DC. 2012. Cancer Cachexia: Mediators, Signaling, and
555 Metabolic Pathways. *Cell Metab* 16:153–166.

556 Floss T, Arnold H-H, Braun T. 1997. A role for FGF-6 in skeletal muscle regeneration. *Genes
557 Dev* 11:2040–2051.

558 Hannon K, Kudla AJ, McAvoy MJ, Clase KL, Olwin BB. 1996. Differentially expressed fibroblast
559 growth factors regulate skeletal muscle development through autocrine and paracrine
560 mechanisms. *J Cell Biol* 132:1151–1159.

561 Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel
562 LM. 2002. Gene expression comparison of biopsies from Duchenne muscular dystrophy
563 (DMD) and normal skeletal muscle. *Proc Natl Acad Sci U S A* 99:15000–15005.

564 Huang AH, Riordan TJ, Wang L, Eyal S, Zelzer E, Brigande JV, Schweitzer R. 2013. Re-
565 positioning forelimb superficialis muscles: tendon attachment and muscle activity enable
566 active relocation of functional myofibers. *Dev Cell* 26:544–551.

567 Hunt LC, Graca FA, Pagala V, Wang Y-D, Li Y, Yuan Z-F, Fan Y, Labelle M, Peng J, Demontis
568 F. 2021. Integrated genomic and proteomic analyses identify stimulus-dependent
569 molecular changes associated with distinct modes of skeletal muscle atrophy. *Cell Rep*
570 37:109971.

571 Jordan B, Vercammen P, Cooper KL. 2011. Husbandry and breeding of the lesser Egyptian
572 Jerboa, *Jaculus jaculus*. *Cold Spring Harb Protoc* 2011:1457–1461.

573 Kästner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z. 2000. Gene expression patterns of the
574 fibroblast growth factors and their receptors during myogenesis of rat satellite cells. *J
575 Histochem Cytochem* 48:1079–1096.

576 Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed A-
577 W, Kontopoulos D-G, Hilgers L, Lindblad-Toh K, Karlsson EK, Zoonomia Consortium‡,
578 Hiller M. 2023. Integrating gene annotation with orthology inference at scale. *Science*
579 380:eabn3107.

580 Kostrominova TY, Dow DE, Dennis RG, Miller RA, Faulkner JA. 2005. Comparison of gene
581 expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal
582 muscles. *Physiological Genomics* 22:227–243.

583 Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G, Tonin P, DeMaria G, Antonini L,
584 Rizzuto N, Candiani A. 1996. Critical illness myopathy and neuropathy. *Lancet*
585 347:1579–1582.

586 Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. 2019. RNA-sequencing
587 reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and
588 chaperone expression in patients with critical illness myopathy. *Skeletal Muscle* 9:9.

589 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
590 RNA-seq data with DESeq2. *Genome Biol* 15:550.

591 Lundberg JO, Weitzberg E. 2022. Nitric oxide signaling in health and disease. *Cell* 185:2853–
592 2878.

593 Miller KJ, Thaloor D, Matteson S, Pavlath GK. 2000. Hepatocyte growth factor affects satellite
594 cell activation and differentiation in regenerating skeletal muscle. *Am J Physiol Cell
595 Physiol* 278:C174-181.

596 Mo K, Razak Z, Rao P, Yu Z, Adachi H, Katsuno M, Sobue G, Lieberman AP, Westwood JT,
597 Monks DA. 2010. Microarray Analysis of Gene Expression by Skeletal Muscle of Three
598 Mouse Models of Kennedy Disease/Spinal Bulbar Muscular Atrophy. PLOS ONE
599 5:e12922.

600 Moschella MC, Ontell M. 1987. Transient and chronic neonatal denervation of murine muscle: a
601 procedure to modify the phenotypic expression of muscular dystrophy. J Neurosci
602 7:2145–2152.

603 Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. 2014. Systems
604 analysis of transcriptional data provides insights into muscle's biological response to
605 botulinum toxin. Muscle & Nerve 50:744–758.

606 Pawlikowski B, Vogler TO, Gadek K, Olwin BB. 2017. Regulation of skeletal muscle stem cells
607 by fibroblast growth factors. Dev Dyn 246:359–367.

608 Ralston E, Gutierrez-Cruz G, Kenea A, Brooks SR. 2021. Transcriptomic analysis of mdx
609 mouse muscles reveals a signature of early human Duchenne muscular dystrophy.
610 :2021.07.16.452553. Available from:
611 <https://www.biorxiv.org/content/10.1101/2021.07.16.452553v1>

612 Ren K, Wang L, Wang L, Du Q, Cao J, Jin Q, An G, Li N, Dang L, Tian Y, Wang Y, Sun J. 2021.
613 Investigating Transcriptional Dynamics Changes and Time-Dependent Marker Gene
614 Expression in the Early Period After Skeletal Muscle Injury in Rats. Frontiers in Genetics
615 [Internet] 12. Available from:
616 <https://www.frontiersin.org/articles/10.3389/fgene.2021.650874>

617 Ryder-Cook AS, Sicinski P, Thomas K, Davies KE, Worton RG, Barnard EA, Darlison MG,
618 Barnard PJ. 1988. Localization of the mdx mutation within the mouse dystrophin gene.
619 EMBO J 7:3017–3021.

620 Sáenz A, Azpitarte M, Armañanzas R, Leturcq F, Alzualde A, Inza I, García-Bragado F, Herran
621 GD Ia, Corcuera J, Cabello A, Navarro C, Torre CD Ia, Gallardo E, Illa I, Munain AL de.
622 2008. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A. PLOS ONE
623 3:e3750.

624 Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich
625 JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. 2022. Interspecies
626 transcriptomics identify genes that underlie disproportionate foot growth in jerboas.
627 Current Biology 32:289-303.e6.

628 Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B. 1999. SF/HGF is a
629 mediator between limb patterning and muscle development. Development 126:4885–
630 4893.

631 Shen L. GeneOverlap: Test and visualize gene overlaps. R package version 1.20.0. Available
632 from: <http://shenlab-sinai.github.io/shenlab-sinai/>.

633 Shepherd S, Batra A, Lerner DP. 2017. Review of Critical Illness Myopathy and Neuropathy.
634 The Neurohospitalist 7:41–48.

635 Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ. 1989. The
636 Molecular Basis of Muscular Dystrophy in the mdx Mouse: a Point Mutation. *Science*
637 244:1578–1580.

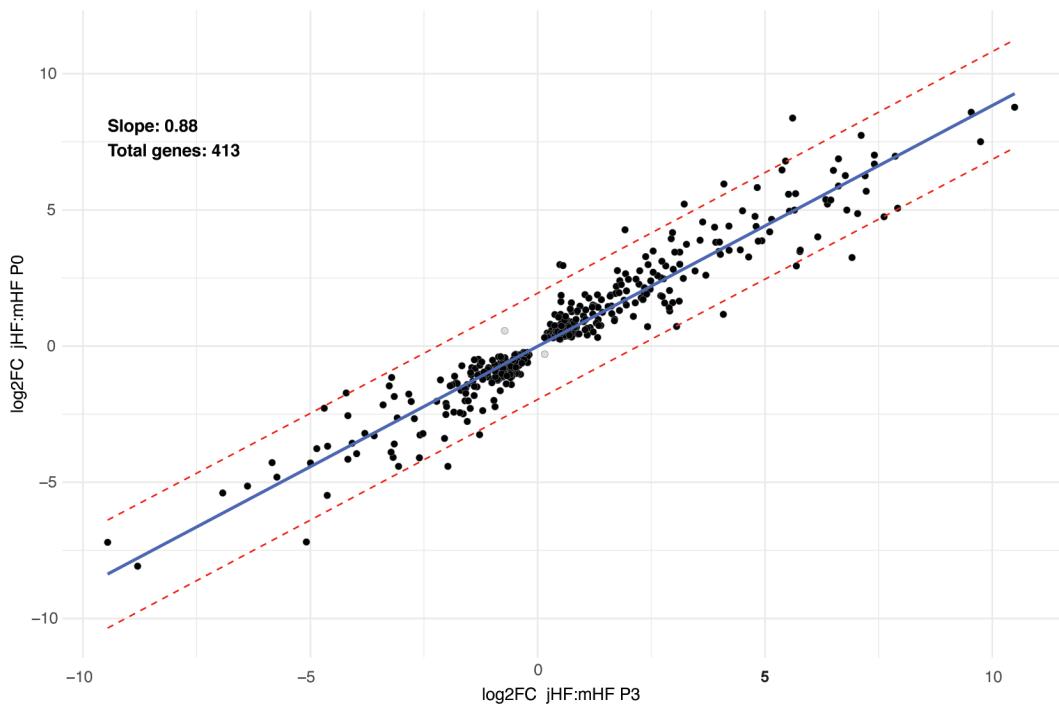
638 Signorelli M, Tsonaka R, Aartsma-Rus A, Spitali P. 2023. Multiomic characterization of disease
639 progression in mice lacking dystrophin. *PLOS ONE* 18:e0283869.

640 Stamler JS, Meissner G. 2001. Physiology of Nitric Oxide in Skeletal Muscle. *Physiological*
641 *Reviews* 81:209–237.

642 Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE. 1998. HGF/SF Is Present in Normal
643 Adult Skeletal Muscle and Is Capable of Activating Satellite Cells. *Developmental*
644 *Biology* 194:114–128.

645 Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J, Wallace MJ, Riley LA, Douglas
646 CM, Gutierrez-Monreal MA, Lahens NF, Gong MC, Andrade F, Esser KA, Hughes ME.
647 2018. Transcriptional profiling reveals extraordinary diversity among skeletal muscle
648 tissues. *eLife* 7:e34613.

649 Tran MP, Tsutsumi R, Erberich JM, Chen KD, Flores MD, Cooper KL. 2019. Evolutionary loss of
650 foot muscle during development with characteristics of atrophy and no evidence of cell
651 death. *eLife* 8:e50645.


652 Wenzel K, Zabojsczca J, Carl M, Taubert S, Lass A, Harris CL, Ho M, Schulz H, Hummel O,
653 Hubner N, Osterziel KJ, Spuler S. 2005. Increased Susceptibility to Complement Attack
654 due to Down-Regulation of Decay-Accelerating Factor/CD55 in Dysferlin-Deficient
655 Muscular Dystrophy12. *The Journal of Immunology* 175:6219–6225.

656 Wu G, Morris SM. 1998. Arginine metabolism: nitric oxide and beyond. *Biochem J* 336:1–17.

657 Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. 2021. The Role of Autophagy in
658 Skeletal Muscle Diseases. *Frontiers in Physiology* [Internet] 12. Available from:
659 <https://www.frontiersin.org/articles/10.3389/fphys.2021.638983>

660 Zofkie W, Southard SM, Braun T, Lepper C. 2021. Fibroblast growth factor 6 regulates sizing of
661 the muscle stem cell pool. *Stem Cell Reports* 16:2913–2927.

662

Supplementary Figure 1: Strong correlation of gene expression differences between jerboa and mouse hindfoot muscle at P0 and at P3. Only two genes (gray dots) are anti-correlated.