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Abstract 
 For the brain to compute object motion in the world during self-motion, it must 
discount the global patterns of image motion (optic flow) caused by self-motion. Optic 
flow parsing is a proposed visual mechanism for computing object motion in the world, 
and studies in both humans and monkeys have demonstrated perceptual biases 
consistent with the operation of a flow parsing mechanism. However, the neural basis of 
flow parsing remains unknown.  We demonstrate, at both the individual unit and 
population levels, that neural activity in macaque area MT is biased by peripheral optic 
flow in a manner that can at least partially account for perceptual biases induced by flow 
parsing. These effects cannot be explained by conventional surround suppression 
mechanisms or choice-related activity, and have a substantial neural latency. Together, 
our findings establish the first neural basis for the computation of scene-relative object 
motion based on flow parsing. 
 

Introduction 
 As we move through the world, our eyes are presented with a structured pattern 
of image motion called optic flow (Gibson, 1950; Longuet-Higgins and Prazdny, 1980). 
Optic flow is a rich source of self-motion information and can be used to estimate one’s 
heading (Britten, 2008; Van den Berg, 1992; Warren et al., 1991). However, optic flow 
complicates the interpretation of object motion. During self-motion, an object’s motion 
on the retina reflects a vector sum of image motion caused by the object’s movement in 
the world and optic flow due to the observer’s self-motion. To estimate object motion in 
the world, the brain must discount optic flow resulting from self-motion. 
 One mechanism for computing object motion during self-motion is known as optic 
flow parsing (Niehorster and Li, 2017; Rushton and Warren, 2005; Warren and Rushton, 
2007; 2009a). According to the flow-parsing hypothesis, the visual system subtracts the 
optic flow due to self-motion such that any remaining motion represents object motion in 
the world (Figure 1A, B). If the visual system performs flow parsing, an observer’s 
perception of an object’s motion should be biased relative to its retinal motion (Warren 
and Rushton, 2009a), with the bias being a repulsion away from the optic flow vector at 
the location of the object.  
 Human psychophysical experiments have demonstrated that optic flow biases 
object motion perception in a manner consistent with flow parsing (Foulkes et al., 2013; 
Matsumiya and Ando, 2009; Niehorster and Li, 2017; Rogers et al., 2017; Warren and 
Rushton, 2007; 2009a; b). The direction of the induced bias is predicted by flow parsing, 
although the magnitude of bias is typically smaller than expected (flow-parsing gain <1, 
Niehorster and Li, 2017). As predicted, larger biases are observed when the object is 
more eccentric in the visual field (Warren and Rushton, 2009a), and the direction of the 
induced bias is opposite for forward and backward self-motion (Rogers et al., 2017). 
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Perceptual biases also grow with self-motion speed, as expected by the flow parsing 
hypothesis (Niehorster and Li, 2017; Peltier et al., 2020). Flow parsing effects are seen 
even when optic flow is confined to the visual hemi-field opposite to that which contains 
the object of interest (Warren and Rushton, 2009a), suggesting a global component of 
the flow-parsing mechanism. 
 We have recently shown that motion perception of macaque monkeys 
demonstrates flow parsing, including all of the key features of human behavior 
described above (Peltier et al., 2020). Although biologically-plausible computational 
models have been proposed (Layton and Fajen, 2016b; Layton and Niehorster, 2019), 
the neural mechanisms underlying optic flow parsing remain unknown. Because the 
behavioral effects of flow-parsing are highly location-specific (Peltier et al., 2020), a 
brain area that represents the outcome of a flow-parsing mechanism is likely to contain 
a retinotopic motion map. The middle temporal (MT) area is a strong candidate given its 
retinotopic visual representation and its robust direction and speed tuning (Albright et 
al., 1984; Maunsell and Van Essen, 1983b; Nover et al., 2005; Van Essen et al., 1981). 
MT activity is correlated with perceived motion for ambiguous motion stimuli (Britten et 
al., 1996), plaid motion (Rodman and Albright, 1989; Stoner and Albright, 1992), illusory 
motion (Krekelberg et al., 2003; Luo et al., 2019), and implied motion (Kourtzi and 
Kanwisher, 2000; Schlack and Albright, 2007). Thus, we hypothesized that MT activity 
may reflect perceptual biases induced by flow parsing. Furthermore, MT has reciprocal 
connections with the dorsal subdivision of the medial superior temporal area (MSTd) 
(Maunsell and Van Essen, 1983a), an area that is highly selective for radial optic flow 
patterns and is causally linked to heading perception (Britten and Van Wezel, 2002; 
Celebrini and Newsome, 1995; Duffy and Wurtz, 1991; Gu et al., 2012; Gu et al., 2006). 
This connection with MSTd may allow MT to compensate for self-motion and represent 
object motion in the world. 
 If population activity in area MT accounts for the behavioral effects of flow 
parsing, one would expect the population activity profile to shift with the direction of self-
motion simulated by optic flow (Figure 1C). This predicts that the effect of optic flow on 
a neuron’s response would depend systematically on the neuron’s preferred direction 
(dashed lines, Fig. 1C). To identify a neural mechanism for flow parsing, we recorded 
from small neural populations in area MT while monkeys performed a direction 
discrimination task in the presence of different optic flow backgrounds. We find that 
optic flow modulates the responses of individual units in a manner consistent with the 
predicted shift of the population response (Fig. 1C). Moreover, single-session 
population decoding shows that even small populations of MT neurons can account for 
a substantial portion of the behavioral effects of flow parsing. Together, our findings 
demonstrate a novel mechanism for computing scene-relative object motion based on 
flow parsing. 
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Methods 
Subjects and surgery 
 Two male rhesus monkeys (Macaca mulatta) participated in the experiment. A 
head restraint device was implanted according to standard aseptic surgical procedures 
under gas anesthesia. A Delrin (Dupont) ring was attached to the skull with dental 
acrylic cement and anchored with bone screws and titanium inverted T- bolts (see Gu et 
al., 2006 for details). To monitor eye movements, a scleral search coil was implanted 
under the conjunctiva of one eye. 
 To guide electrodes to area MT, a Delrin recording grid was fastened inside the 
head-restraint ring using dental acrylic. The recording grid (2 × 4 × 0.5 cm) contained a 
dense array of holes spaced 0.8 mm apart. Under anesthesia and using sterile 
technique, small burr holes (~0.5 mm diameter) were drilled vertically through the 
recording grid to allow electrodes to penetrate the brain through transdural guide tubes. 
All surgical procedures and experimental protocols were approved by the University 
Committee on Animal Resources at the University of Rochester. 
 
Experimental apparatus 
 Monkeys were seated in custom-built primate chairs with their heads restrained. 
The chair was fastened onto a six degree-of-freedom motion platform (MOOG 
6DOF2000E); however, in these experiments, the platform remained stationary. A field 
coil frame (C-N-C Engineering) was mounted to the top of the motion platform to 
monitor eye movements using the scleral search coil technique. 
 Visual stimuli were rear-projected onto a 60 × 60 cm tangent screen using a 
projector (Christie Digital Mirage S+3K) that was mounted on the motion platform. The 
screen was affixed to the front of the field coil frame, roughly 30 cm in front of the 
monkey (monkey M: 31.7 cm from eyes to screen; monkey P: 33.0 cm from eyes to 
screen). As a result, the screen subtended approximately 90 × 90° of visual angle. To 
restrict the monkey’s field of view to visual stimuli on the screen, the sides and top of 
the field coil frame were covered with black matte material. 
 
Electrophysiological recordings 
Electrode positioning system 
 Extracellular neural activity was recorded using V-Probe multi-site linear 
electrode arrays (Plexon). The probes had 24 channels with 50 µm spacing between 
channels. The position of the probe was controlled using the EPS electrode positioning 
system and the Flex MT microdrive mounting system (Alpha Omega). The Flex MT 
mounting ring was secured to the monkey’s head restraint, and a microdrive tower was 
mounted onto this ring. This tower held the V-Probe and guide tube, while connecting to 
the EPS system to drive the electrode array. The sterilized V-Probe was front-loaded 
into a transdural guide tube and then secured to the microdrive tower. The tower was 
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then affixed to the mounting ring in a position that aligned the guide tube vertically with 
the appropriate grid hole. The guide tube was then lowered manually through the grid 
hole until the resistance of the dura mater was felt. The entire tower, including the guide 
tube and electrode array, was then lowered ~2-3 mm, allowing the guide tube to 
puncture the dura mater. 
 
Neural signal processing system 
 Neural signals were amplified and bandpass filtered (350 Hz – 3446 Hz, 
Blackrock Microsystems). Spike waveforms and raster plots for all channels were 
monitored online. Spike detection thresholds were set manually for each channel to 
capture multi-unit activity with a spontaneous firing rate of ~50-100 spikes/second. The 
raw voltage signals from the probe were digitized and stored to disk at 30 kHz for offline 
analysis. Because spike thresholding was performed again offline before spike sorting 
and analysis, the manual spike thresholds were set online simply to map receptive fields 
and to tailor stimuli to neuronal preferences. 
 Neural signals were analyzed offline using Plexon Offline Sorter to determine a 
spike detection threshold and to perform spike sorting. Waveforms corresponding to 
candidate neural events were detected when the raw voltage trace reached local 
minima at least 3 standard deviations below the mean of the signal for each channel. 
Waveform snippets were extracted as 48 samples over 1.6 ms and aligned such that 16 
samples were taken before the threshold was reached. These waveforms were then 
sorted in a 2-dimensional feature space using the built-in t-distribution expectation-
maximization scanning method. As there was a tendency of the Plexon Offline Sorter to 
overestimate the number of unique units, the sorting of each channel was reviewed 
manually in a 2-dimensional feature space and units were merged as necessary. Each 
channel yielded one multi-unit with possibly one or more single units. The vast majority 
of recordings were multi-units; note, however, that multiunit signals in area MT typically 
show robust tuning properties that are closely matched with single units at the same 
location (DeAngelis and Newsome, 1999) 
 
Identifying the location of area MT 
 The location of area MT was initially estimated from structural MRI scans and a 
standard macaque atlas (Van Essen et al., 2001). Area MT was identified as a region in 
the posterior bank of the superior temporal sulcus (STS), typically centered ~16 mm 
lateral to the midline and ~3 mm posterior to the interaural plane. Before using a V-
Probe, tungsten microelectrodes (FHC) were used to identify MT by mapping the 
response properties in locations corresponding to the region identified by MRI. 
Electrode penetrations were informed by the pattern of activity as the electrode passed 
through gray matter and white matter, as well as the response properties of neurons to 
visual stimuli. As the electrode approached the STS, it typically encountered neurons 
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with large receptive fields that were selective for direction of visual motion, characteristic 
of the dorsal division of the medial superior temporal (MSTd) area (Duffy and Wurtz, 
1991). This activity was typically followed by a very quiet region, indicative of the lumen 
of the STS, and then area MT as the next region of gray matter. Receptive fields in MT 
were markedly smaller than those in MSTd, and their sizes scaled approximately 
linearly with receptive field eccentricity (Albright and Desimone, 1987). Across MT, 
neurons typically exhibited tuning to direction, speed, disparity, and receptive field 
location that changed gradually with the depth of the electrode, consistent with the 
previously documented organization of MT (Albright et al., 1984; DeAngelis and 
Newsome, 1999). 
 In recording experiments, the V-Probe was lowered until activity characteristic of 
MT was centered on the probe’s channels, after which the probe was left to settle for 1-
1.5 hours. As the brain settled around the probe, the MT activity sometimes shifted 
toward shallower channels. This tendency was combatted by retracting the probe 10-50 
µm at a time to keep MT centered on the channels. 
 
Visual stimuli 
 Visual stimuli simulated the motion of an independently moving object during 
forward or backward self-motion. Stimuli were generated by software written in Visual 
C++, using the OpenGL 3D graphics rendering library. An OpenGL camera located at 
the same position as each of the animal’s eyes generated the planar image projection 
shown to each eye. To simulate depth in the stimulus, the stimulus was rendered 
stereoscopically as a red/green anaglyph, and the animal viewed it through red and 
green filters (Kodak Wratten2 #29 and #61, respectively). Visual stimuli lasted for 2 s in 
all recording sessions except for the first three sessions in one monkey; in these 
experiments, the stimulus duration was 1.2 s.   
 
Object motion 
 Object motion was represented by random dots moving coherently within a 
circular aperture positioned approximately in the middle of the receptive fields of the 
recorded MT units, as determined with the receptive field mapping protocol described 
below. This patch of random dots (hereafter typically referred to as the “object”) was 
rendered at the same distance as the fixation point (i.e., centered within the plane of the 
screen), and its size was determined to be the approximate size of the receptive fields 
of several channels sampled online. The object was a nearly flat disk, with a front-to-
back simulated visual depth of 0.1 cm. Dots within the object were triangles 0.15 cm 
wide and 0.15 cm tall, and they were distributed with a density of 20 dots/cm3. 
 Object motion within a stationary aperture was used so that the object stayed on 
the receptive field throughout the trial, reducing response modulations due to varying 
luminance within the receptive field or stimulation of the inhibitory surround. The 
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stationary aperture ensured that any observed difference in firing rate between object 
motion directions was due to motion within the aperture and not to changes in position 
of the object’s boundaries. We also measured behavior in some sessions using moving 
objects in which the object boundary translated, and we observed no qualitative 
differences in biases or discrimination thresholds induced by optic flow. Thus, flow 
parsing appears to function similarly for “objects” with either stationary or moving 
boundaries. 
 The object moved in the fronto-parallel plane in one of 11 directions centered 
around straight upward. For monkey M, object directions ranged from -40° to +40° 
around straight upward, spaced linearly in steps of 8°. For monkey P, object directions 
ranged from -20° to +20°, spaced in steps of 4°. Linear spacing of object directions was 
used to allow for equal resolution in measuring perceptual biases within the range of 
tested directions. The 11 object directions were interleaved randomly within a single 
block of trials. In conditions with simulated self-motion, the object moved in depth with 
the OpenGL camera, staying at the same depth relative to the moving camera, and thus 
keeping the location and size of the object fixed on the retina. The direction and speed 
of object motion were therefore defined in screen coordinates. Since the fixation target 
remained fixed on the screen during simulated self-motion, any given direction of object 
motion was identical on the retina (assuming perfect fixation) for the different optic flow 
conditions. Thus, any observed differences in firing rate between optic flow conditions 
could be attributed to the surrounding pattern of optic flow. 
 Dots within the object moved coherently, following a Gaussian velocity profile 
with a standard deviation equal to 1/6th of the duration of the visual stimulus (σ = 0.2 s 
for 1.2-s trials, 0.33 s for 2-s trials), hitting the peak speed around the middle of the trial. 
Generally, this velocity profile was scaled such that the peak speed was 10°/s, selected 
because it is approximately the median preferred speed of MT neurons (Nover et al., 
2005). However, in sessions where there were channels on the V-Probe that did not 
respond at all to slow speeds, the peak speed was increased to 16°/s or 20°/s. 
 
Self-motion 
 A three-dimensional cloud of background dots surrounded the object, extending 
in depth from 5 cm to 55 cm from the eyes. Patterned motion of these background dots 
was used to visually simulate self-motion (see Movie #1).  Each simulated self-motion 
was a pre-programmed straight trajectory (forward or backward) that was not under 
control of the subject. During simulated self-motion, the depth range of the dots (relative 
to the OpenGL camera) remained fixed through the use of near and far clipping planes 
in OpenGL. The background dots were triangles with height and width of 0.1 cm, 
distributed with a density of 0.002 dots/cm3. In the first four sessions with monkey P, the 
background dots were points 3 × 3 pixels in size, and their retinal projections did not 
vary in size according to their distance from the monkey. In subsequent sessions, these 
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fixed-size dots were replaced with triangles whose image sizes varied inversely with 
their distance from the monkey. This added a monocular depth cue to the optic flow, 
simulating self-motion more realistically. 
 In most trials, background motion was generated by placing an OpenGL camera 
at the location of the monkey’s eye and moving the camera along the trajectory of the 
simulated self-motion. In the forward self-motion condition, the background dots 
expanded radially from the central fixation point, simulating forward self-motion. In the 
backward condition, the background dots contracted toward the fixation point, 
simulating backward self-motion. In a set of control trials (stationary condition), the 
background dots were static for the duration of the trial to indicate no self-motion. These 
three self-motion conditions were crossed with the 11 object directions, and all 
conditions were randomly interleaved within a single block of trials. 
 Self-motion speed followed a Gaussian velocity profile with a standard deviation 
equal to 1/6 of the trial duration (σ = 0.2 s for 1.2-s trials, 0.33 s for 2-s trials), hitting the 
peak speed around the middle of the trial. This velocity profile was identical in shape 
and timing to the object’s velocity profile; therefore, object speed and simulated self-
motion speed are proportional throughout the trial. 
 Self-motion speed, along with the object’s horizontal location and speed, 
determines the image velocity of the flow vector at the location of the object (Longuet-
Higgins and Prazdny, 1980), and thus the predicted perceptual bias due to flow-parsing 
(Peltier et al., 2020). In our experiments, the speed of self-motion was chosen for a 
given object location and speed to keep the predicted perceptual bias at a specified 
value. Self-motion was, therefore, faster in sessions with objects that were less 
horizontally eccentric and in sessions with faster object motion. The predicted bias was 
specified for each session, and it was set to be either ±10° or ±15° so that the total 
predicted shift between forward and backward self-motion would be either 20° or 30° 
(assuming perfect flow parsing with a gain of unity). For monkey M, the predicted bias 
was ±10° in all experiments. Because monkey P generally exhibited smaller biases that 
decreased toward 0 over an extended period of training (Suppl Figure 1B), faster self-
motion was used in later experiments to elicit a robust perceptual bias. For monkey P, 
the predicted bias was ±10° in early experiments and ±15° in several later experiments. 
 A circular mask was placed around the object to block out background dots 
directly surrounding the object. The purpose of the mask was to prevent the monkey 
from making judgments of object motion based solely on local motion comparisons 
between the object and the immediately surrounding optic flow. The background mask 
also limited the effect of center-surround interactions on MT responses. The size of the 
mask was determined by a mask ratio parameter, which is the ratio of the mask’s 
diameter to the object’s diameter. In these experiments, the mask ratio stayed constant 
within each session and ranged between 2 and 3 across sessions. 
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Experimental protocol 
Preliminary measurements 

Manual mapping of MT: Once the V-Probe had settled in area MT, the receptive 
field and tuning properties of several channels spanning the length of the probe were 
examined individually using manually controlled patches of random dots. The 
parameters of the patch were manipulated to determine approximate receptive field 
location and size, as well as estimates of preferences for direction, speed, and disparity. 

Tuning protocols: Quantitative measurements were then taken of direction 
tuning, speed tuning, and receptive field location and size. While the activity from all 
channels was saved for offline analysis, the activity of four channels distributed along 
the length of the probe was monitored online during these tuning measurements. The 
tuning of these four channels was used to inform stimulus parameter selection in 
subsequent tuning protocols. 
 Direction tuning was measured with patches of random dots that drifted 
coherently in one of 8 directions separated by 45°, in order to determine the direction 
preferences of all neurons. The estimated preferred direction (determined by eye from 
the online tuning curve) was set to be the stimulus direction in subsequent tuning 
measurements. When preferred directions varied substantially across channels in a 
recording session, an intermediate direction (chosen to activate the most units) was 
selected as the preferred direction. If preferred directions differed so much that an 
intermediate direction would not elicit responses from any channels, subsequent tuning 
measurements were taken more than once, testing responses to two different directions 
that together could drive responses from most, if not all, channels. 
 Speed tuning was measured with patches of random dots that moved coherently 
in the preferred direction at 0, 0.5, 1, 2, 4, 8, 16, and 32°/s. The preferred speed was 
estimated manually from tuning curves plotted online from neural activity recorded on 
the four selected channels, and it was used as the stimulus speed in subsequent tuning 
measurements. If there appeared to be substantial variation in speed preferences, an 
intermediate speed was used. It never occurred that a single speed could not be found 
that would elicit a response from all four of the channels monitored online. 
 The spatial profile of the receptive field was measured with patches of random 
dots presented at locations on a 4 × 4 grid. The grid was centered on the manually 
estimated receptive field center and covered an area twice as wide and as long as the 
manually estimated diameter of the receptive field. Responses were fitted with a 2-
dimensional Gaussian function to estimate the center and size of the receptive field. 
The mean of the receptive field centers of the four channels that could be viewed online 
determined the location of the object during the size tuning measurement and the flow-
parsing experiment. 
 Size tuning was measured with patches of random dots that moved in the 
preferred direction and speed with patch diameters of 2, 4, 8, 16, 32, and 64° of visual 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581050
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

10 
 

angle. The approximate mean optimal stimulus size among the four channels viewed 
online determined the object’s size in the flow-parsing experiment. Optimal sizes varied 
from 8° to 32° in diameter depending on stimulus eccentricity, with a median diameter of 
20°. 
 
Flow-parsing task 
 The animal’s task was to judge whether a patch of dots (the “object”) moved 
rightward or leftward, relative to vertical, in the presence of optic flow simulating forward 
or backward self-motion (see Suppl. Figure 2 and Fig. 2 of (Peltier et al., 2020) for more 
details). At the beginning of each trial, a fixation target appeared in the center of a blank 
screen. The monkey had to maintain fixation within a 2.5-2.8° (full width) box 
surrounding the fixation target for the duration of the trial. 215 ms after fixation was 
achieved, the visual stimulus appeared. The object and background dots appeared 
simultaneously, started to move following the Gaussian velocity profile described above, 
and then disappeared when the object motion and self-motion concluded. At this time, 
the fixation point disappeared and two choice targets appeared 10° to the left and right 
of center. The monkeys indicated whether they perceived leftward or rightward object 
motion (relative to the vertical reference) with a saccadic eye movement to one of the 
two choice targets. Correct responses, based on the direction of object motion in screen 
coordinates, were followed by a liquid reward (0.2-0.4 ml). 
 The presence of optic flow was expected to bias the monkey’s reports of object 
direction if it was performing a flow-parsing operation (Peltier et al., 2020). As a result, 
the monkey’s report of object motion direction in the stationary condition could flip from 
rightward to leftward or vice versa during self-motion. This reversal could occur in 
conditions for which the object’s motion in screen coordinates is rightward while the 
object’s motion in world coordinates is leftward, or vice versa (see (Peltier et al., 2020) 
for more details). This corresponds to conditions in which the horizontal component of 
the optic flow vector implied at the location of the object is in the same direction and 
greater in magnitude than the horizontal component of object motion (assuming a flow 
parsing gain of unity). To avoid reinforcing perceptual reports in one coordinate frame 
over the other, subjects received a reward randomly on 70% of these trials (see Figure 
12 of (Peltier et al., 2020)). On all other trials, in which object directions were consistent 
in screen and world coordinates, subjects were rewarded on 95% of correct trials. 
 
Data Analyses 
Behavioral analyses 
 For each experimental session, a psychometric function was computed for each 
optic flow condition to represent the proportion of rightward choices as a function of 
object direction. The probability of a rightward choice given the object direction was 
calculated as a cumulative Gaussian distribution, given by: 
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 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 | 𝜃𝜃) =  1
2
�1 + erf �𝜃𝜃−𝜇𝜇

𝜎𝜎√2
�� (1) 

where θ is the object’s direction of motion, µ is the mean of the Gaussian distribution, σ 
is the standard deviation of the distribution, and erf(x) is the Gauss error function given 
by: 
 erf(𝑥𝑥) = 2

√𝜋𝜋
∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑𝑥𝑥
0  (2) 

Parameters µ and σ were optimized to minimize the sum squared error between the 
predicted proportion of rightward choices and the recorded proportion of rightward 
choices. To calculate confidence intervals around each µ, 200 bootstrapped samples of 
the behavioral data were computed. Each sample was fitted with a cumulative Gaussian 
function, and a 95% confidence interval was computed using percentiles of the 
bootstrap distribution. Incorporating a lapse rate into fits of the psychometric function 
was not found to improve the fits and was thus not included in the main analysis. 
 The mean of the Gaussian distribution, µ, represents the object motion on the 
screen at which the monkey makes 50% rightward choices and 50% leftward choices, 
also known as the point of subjective equality (PSE). The effect of optic flow on 
perceived object motion was measured as the shift in PSE between forward and 
backward optic flow conditions, given by: 
 𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =  sign(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) × (𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (3) 
where sign(ObjXLocation) is +1 for objects located in the right visual field and -1 for 
objects located in the left visual field, and PSEforward and PSEbackward are the PSEs of the 
psychometric function for the forward and backward optic flow conditions, respectively. 
The expected effect of flow parsing depends on the direction of optic flow vectors that 
would have been at the location of the object had they not been masked, which 
depends on the object’s location in the visual field. Thus, the sign of the PSE shift 
depends on the object’s horizontal location such that it is positive if it is in the direction 
predicted by flow parsing. Confidence intervals on PSE shifts were computed using the 
same bootstrapped samples used to compute PSE confidence intervals. For each of the 
200 samples, the PSE shift was computed, and a 95% confidence interval was 
computed using percentiles of the bootstrap distribution. 
 PSE shifts were compared to the shifts that are predicted by flow-parsing through 
the computation of a flow-parsing gain (FP gain), given by 
 𝐹𝐹𝐹𝐹 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 (4) 

where PSEshiftobserved denotes the measured PSE shift (Equation 3) and PSEshiftpredicted 
denotes the PSE shift predicted by perfect flow parsing. The computation of predicted 
PSE shift is described in detail elsewhere (Peltier et al., 2020). Flow-parsing gain will be 
0 if optic flow does not produce any perceptual biases, meaning that the subject is 
reporting object motion in retinal coordinates. Flow-parsing gain will be 1 if the biases 
induced by optic flow match those that are predicted by the flow-parsing hypothesis, 
indicating that the subject is fully compensating for self-motion and reporting object 
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motion in world coordinates. 
 
Neural analyses 
Unit inclusion criteria 
 Exclusion of units without direction tuning: Units were included in analysis only if 
they exhibited statistically significant direction tuning. For each unit, firing rates collected 
in the direction tuning protocol were compared using a Kruskal-Wallis one-way analysis 
of variance to test whether the distributions of responses elicited by each direction all 
came from the same distribution. If the distributions of firing rates did not differ 
significantly between directions (p > 0.05), the unit was determined not to have 
significant direction tuning and it was excluded from subsequent analyses. 
 Exclusion of units without structured receptive fields: Firing rates recorded during 
the receptive field (RF) mapping protocol were fitted with a 2-dimensional (2D) 
Gaussian function. A unit’s firing rate at location (x, y) is modeled as: 

 𝑅𝑅(𝑥𝑥, 𝑦𝑦) = 𝑏𝑏 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �− �(𝑥𝑥−𝑥𝑥0)2

2𝜎𝜎𝑥𝑥2
+ (𝑦𝑦−𝑦𝑦0)2

2𝜎𝜎𝑦𝑦2
�� (5) 

where b is the spontaneous firing rate, A is the response amplitude, x0 is the horizontal 
location of the RF center, σx is the horizontal extent, y0 is the vertical location of the RF 
center, and σy is the vertical extent. Parameters were optimized to minimize the sum 
squared error between measured and predicted firing rates. If a Spearman’s rank 
correlation between measured and the predicted firing rates failed to reach significance 
(permutation test, p < 0.05), the unit was excluded from further analysis. 
 Because the stimuli used to map MT receptive fields were approximately half the 
diameter of the receptive field, RF sizes are generally overestimated using this RF 
mapping protocol. To account for this spatial blurring effect, deconvolution of the fitted 
receptive fields was performed to compute a more accurate receptive field size. The 2-
dimensional Gaussian fits were extrapolated onto a spatial domain that was double the 
length and width of the RF mapping grid, using Equation 5. Then, the horizontal and 
vertical components of the receptive field were deconvolved separately. For the 
horizontal component, a cross-section was taken at the peak vertical value. This 1-
dimensional Gaussian function was then deconvolved with a boxcar function having the 
width of the RF mapping stimulus. The result was then fitted with a Gaussian function, 
given by: 
 𝑅𝑅(𝑥𝑥) = 𝑏𝑏 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �− 𝑥𝑥−𝜇𝜇

2𝜎𝜎2
� (6) 

where b is the baseline, A is the amplitude, µ is the center location of the RF, and σ is 
the standard deviation of the Gaussian RF profile. The σ parameter from this fit was 
used as the adjusted σx for the 2-dimensional receptive field. Similarly, an adjusted σy 
was computed by deconvolving a cross-section taken at the peak horizontal value and 
fitting the output with a Gaussian function. Deconvolution typically reduced σ values by 
about 25%. 
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 Exclusion of units based on receptive field overlap with the optic flow 
background: The purpose of the background mask was to prevent units from 
responding directly to the background optic flow, so units were excluded from analysis if 
their receptive fields had substantial overlap with the background optic flow field. We 
quantified the amount of overlap between receptive fields and the background mask 
with a metric called Receptive Field Inside Mask (RFIM). To capture the entire receptive 
field, we used the fitted parameters from Equation 5 to compute the receptive field over 
a region 3 times as wide and as tall as the range of locations tested in the RF mapping 
protocol. The receptive field was computed with 0.5º resolution, using parameters b, A, 
x0, and y0 from the pre-deconvolved fit along with σx and σy from the deconvolved fit. 
The minimum value of the extended receptive field was subtracted from all points to 
make the minimum of the receptive field zero. 
 The location of the background mask was represented as a bit mask of the same 
size and resolution as the modeled receptive field, with values of 1 representing points 
within the mask and values of 0 representing points overlapping with optic flow. The 
overlap between the receptive field and background mask was computed as the 
pointwise product of the fitted receptive field and the bit mask. The products were then 
summed over all points and normalized by the entire area of the receptive field. This 
computation of RFIM is given by: 

 𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
∑ ∑ �𝑅𝑅𝑅𝑅�𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑗𝑗)�×𝐵𝐵𝐵𝐵�𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑗𝑗)��𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝑅𝑅𝑅𝑅�𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑗𝑗)�𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

 (7) 

where RF(x(i), y(j)) is the value of the unit’s receptive field at point (x(i), y(j)) minus the 
minimum value and BM(x(i), y(j)) is the value of the bit mask at the same point. 
 This computation of RFIM assigns a higher weight to locations that elicit higher 
firing rates, representing the center of the receptive field, and less weight to locations at 
the edge or outside the receptive field. Units were excluded from analysis if RFIM was 
less than 0.75, indicating that less than 75% of the response density fit within the 
background mask. Varying this criterion for RFIM from 0.6 to 0.9 had little impact on 
decoding results. 
 
Spike counting window 
 Unless specified otherwise, firing rates were calculated by summing spike counts 
within a 1000-ms window centered on the peak of the population response. The peak 
population response occurred approximately 1200 ms after the stimulus onset, 110 ms 
after the peak object speed was reached. The window was therefore determined to be 
700 ms to 1700 ms after stimulus onset, thus capturing most of the visually driven 
responses while excluding transient responses to the onset of the stimulus (see Figure 
5A). As described below, a different analysis window was utilized for the computation of 
Flow Modulation Index and decoding analyses, based on the observed time course of 
FMI (Figure 5C). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581050
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

14 
 

 
Surround suppression index (SSI) 
 Firing rates recorded during the size tuning protocol were fitted with two tuning 
curves. The first was a single error function (DeAngelis and Newsome, 1999; DeAngelis 
and Uka, 2003) representing a unit’s response to stimulus diameter, w, given by: 
 𝑅𝑅(𝑤𝑤) = 𝑅𝑅0 + 𝐴𝐴𝑒𝑒 ∗ erf �𝑤𝑤

𝛼𝛼
� (8) 

where R0 is the baseline response, Ae is the excitation amplitude, α affects the slope of 
the tuning curve, and erf(x) represents the Gauss error function (Equation 2). Equation 
8 best represents the size tuning of a unit without surround suppression, as there is no 
peak representing a preferred stimulus size. 
 The second function used to fit size tuning curves was a difference-of-error (DoE) 
functions (DeAngelis and Newsome, 1999; DeAngelis and Uka, 2003), given by: 
 𝑅𝑅(𝑤𝑤) = 𝑅𝑅0 + 𝐴𝐴𝑒𝑒 ∗ erf �𝑤𝑤

𝛼𝛼
� − 𝐴𝐴𝑖𝑖 ∗ erf � 𝑤𝑤

𝛼𝛼+𝛽𝛽
� (9) 

Here, parameters R0, Ae, and α, as well as the error function erf(x), are as defined in 
Equation 8. Ai represents the amplitude of inhibition, and β affects the slope of 
inhibition. The DoE function best characterizes the size tuning of units with surround 
suppression, as they produce a peak response for an intermediate stimulus size, with 
decreasing responses for larger stimuli. 
 The errors of the fits from Equations 8 and 9 were compared using a sequential F 
test, and a unit was determined to have significant surround suppression if the DoE 
function yielded a significantly better fit than the single error function (p < 0.05). If the 
DoE function produced a better fit, the unit’s optimal stimulus size was determined as 
the peak of the DoE fit. If there was no significant surround suppression, the unit’s 
optimal stimulus size was taken to be the size at which the single error function fit 
reached 90% of its maximal value (DeAngelis and Uka, 2003). A surround suppression 
index (SSI) was calculated for each unit as follows: 
 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑅𝑅0
 (10) 

where Roptimal denotes the unit’s response to its optimal stimulus size, Rlargest represents 
its response to the largest presented stimulus, and R0 is the unit’s baseline response 
without any stimulus. SSI will be close to 1 for units that exhibit strong surround 
suppression, and it will be 0 for units that do not exhibit any surround suppression. Units 
that did not exhibit significant surround suppression, based on the sequential F-test,  
were assigned an SSI of 0. 
 
Horizontal direction discrimination index (HDDI) 
 The selectivity of MT units for direction during the discrimination task (i.e., a 
preference for rightward or leftward object motion) was computed as a horizontal-
direction discrimination index (HDDI), calculated as follows (adapted from DeAngelis 
and Uka, 2003; Prince et al., 2002): 
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 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 1
𝑁𝑁
∑

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑖𝑖)−𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)

�𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑖𝑖)−𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖)�+𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)

𝑁𝑁
𝑖𝑖=1  (11) 

For each pair of the N = 5 object motion directions symmetric around 0 (e.g. ±4 
degrees), the difference in mean firing rate between rightward (Rright) and leftward (Rleft) 
object directions was calculated among trials in which there was no self-motion. This 
difference was then normalized by the sum of the magnitude of the difference and the 
average standard deviation of firing rates between rightward and leftward object 
directions (σavg), also calculated from stationary background trials. This value was 
averaged over the 5 pairs of directions to determine the HDDI. HDDI ranges from -1 to 
1, with negative values assigned to units that respond more strongly to leftward motion 
and positive values assigned to units that respond more strongly to rightward motion. 
 
Flow-modulation index (FMI) 
 The effect of optic flow on a unit’s response was computed as a flow modulation 
index (FMI), given by: 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 1
𝑁𝑁
∑

sign(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)×�𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)−𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)�

�𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)−𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)�+𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)

𝑁𝑁
𝑖𝑖=1  (12) 

For each of the N = 11 object directions used in the experiment, we calculated the 
difference in mean firing rate between forward (Rforward) and backward (Rbackward) self-
motion conditions. This difference was normalized by the magnitude of the difference 
added to the average standard deviation in firing rates between forward and backward 
self-motion conditions. This normalized difference was averaged over the 11 object 
directions to compute the FMI. FMI ranges from -1 to 1, with the magnitude of the value 
indicating the strength of the effect of optic flow on firing rates. As with the computation 
of PSE shifts, the horizontal position of the object (ObjXLocation) is incorporated into 
calculation of the FMI because the expected effect of optic flow on neural responses 
depends on the direction of optic flow surrounding the object, which depends on the 
object’s location. 
 Because FMI is computed as an average across the different object directions, it 
will only tend to be substantially different from zero if there is a fairly consistent 
difference in response between forward and backward optic flow conditions across the 
different object directions. However, because the range of object directions used in the 
discrimination task is restricted (to ±20° for monkey P and ±40° for monkey M), we 
expect a consistent difference in response between the two self-motion directions for 
neurons with direction preferences that are substantially away from the vertical task 
reference (e.g., dashed vertical lines in Figure 1C). 
 After observing that FMI developed more slowly than HDDI (Figure 5B,C), we 
determined a new time window to compute FMI that was shifted toward later times than 
other spike rate analyses. We calculated a time course of FMI for each unit by splitting 
trials into 50-ms windows and computing FMI within each window. Because the strength 
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of FMI effects is related to HDDI (Figure 3D), we separated units into two groups based 
on whether HDDI was greater than or less than 0, and we computed an average FMI 
time course for each group. The difference in time course between groups was 
calculated, and the absolute value of that difference was computed. We determined the 
time window with the strongest FMI information as the full width of the difference time 
course at half maximum. This window was 850-1150 ms after stimulus onset for 
sessions with 1200-ms trials and 1250-1750 ms after stimulus onset for sessions with 
2000-ms trials. 
 
Dissociating effects of optic flow and choice on neural responses 

FMI measures differences in response associated with self-motion direction 
indicated by optic flow.  However, the perceptual biases induced by optic flow mean that 
choices are correlated with self-motion direction. Thus, it is possible that neural effects 
captured by FMI simply reflect a correlation of neural responses with choices. To 
dissociate the contributions of choice and self-motion direction to MT responses, we 
took advantage of the subset of object directions for which monkeys made both choices 
for each self-motion direction.  This allowed a conditioning analysis to measure distinct 
effects of choice and self-motion direction, analogous to that used previously (Nogueira 
et al., 2017; Sasaki et al., 2020).  

To quantify choice-related activity in individual units, we computed the well-
established choice probability (CP) metric (Britten et al., 1996). For each distinct 
combination of object direction and self-motion direction (forward/backward), the 
distribution of responses was z-scored and then divided into two groups based on 
whether the animal made a leftward or rightward saccade to indicate their choice. 
Because this was done separately for each self-motion direction, effects of optic flow on 
the CP metric were removed. Z-scored responses were then pooled across unique 
stimulus conditions as long as there were at least 3 choices made toward each target 
location. ROC analysis was then applied to the pooled z-scores for the two choice 
groups, and CP was defined as the area under the ROC curve. For our purposes, CP 
was not referenced to each neuron’s preferred direction; rather CP > 0.5 corresponds to 
a preference for rightward choices and CP < 0.5 corresponds to a preference for 
leftward choices. This avoids potential issues with defining the “preferred” stimulus 
when choice effects are large (Zaidel et al., 2017). 

We used an analogous ROC-based metric to quantify response modulations 
related to the direction of self-motion simulated by optic flow. This ‘flow probability’ (FP) 
metric is computed like CP, but swapping the roles of variables that represent choice 
(left vs. right) and self-motion direction (forward vs. backward). For each distinct 
combination of object direction and choice, responses were z-scored and sorted into 
two groups based on self-motion direction. If there were at least 3 trials for forward and 
backward self-motion, normalized responses from that condition were pooled with other 
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conditions that met the same criteria. ROC analysis was applied to the pooled z-scores 
that were sorted by self-motion direction. The resulting metric was then multiplied by 
sign(ObjXLocation), such that it’s sign would be expected to match the sign of FMI if 
FMI is driven solely by effects of self-motion direction. Thus, FP provides a metric 
similar to FMI but removes any response modulations that depend on choice. 
 
Time course analyses 
 To observe the temporal dynamics of MT responses to combined object motion 
and optic flow, we analyzed the time course of the normalized population response, 
FMI, and HDDI. Only units recorded during sessions with 2-s trials were included in the 
time course analyses (669/727 units). Data were pooled across monkeys. 
 First, we computed a peristimulus time histogram (PSTH) of the population 
response to vertical object motion. Separate PSTHs were calculated for each self-
motion condition. Firing rates were calculated by taking a moving sum of the spike trains 
for a given self-motion direction with a window width of 50 ms. Each unit’s firing rates 
were normalized (across all self-motion conditions) so that the unit’s peak response was 
assigned a value of one. A PSTH was computed for each unit from these normalized 
responses, and the population PSTH was computed as the mean PSTH across units. 
Spontaneous firing rates were not subtracted when normalizing each unit’s responses, 
and the mean normalized baseline response was 0.28. To test for a difference in 
normalized response between stationary and self-motion trials, we performed a rank-
sum test on the distributions of stationary and self-motion (combining forward and 
backward) responses for each of the 2501 time points from the onset of the stimulus to 
500 ms after stimulus offset. A time point was considered to have a significant 
difference in response between stationary and self-motion conditions if the rank-sum 
test revealed a significant difference with a Bonferroni correction for multiple 
comparisons (p < 0.05/2501 = 2.00 × 10-5). 
 A time course of HDDI was computed by calculating HDDI for each unit in 50-ms 
bins. Units were grouped according to the cosine (horizontal component) of their 
preferred direction in intervals of 0.25, and the mean HDDI time course was computed 
for each group. Periods of significant directional responses were defined as time 
windows in which the distribution of HDDIs differed between the group of units that 
preferred rightward motion (cos(preferred direction) > 0.75) and the group that preferred 
leftward motion (cos(preferred direction) < -0.75). We used rank-sum tests to compare 
the distributions of HDDI between groups within each of the 51 time windows from 
stimulus onset to 500 ms after stimulus offset. A time window was determined to have a 
directional response if the rank-sum test reached significance with a Bonferroni 
correction for multiple comparisons (p < 0.05/51 = 9.80 × 10-4). 
 Similarly, a time course of FMI was computed by calculating FMI for each unit in 
50-ms bins. Units were grouped according to HDDI in intervals of 0.2, and the mean 
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FMI time course was calculated within each group. Periods of significant optic flow 
modulation were defined as time windows in which FMI among units with the strongest 
positive HDDI (HDDI > 0.6) differed from FMI among units with the strongest negative 
HDDI (HDDI < -0.6). Rank-sum tests compared the distributions of FMI between groups 
in each of the 51 time windows from stimulus onset to 500 ms after stimulus offset, and 
a Bonferroni correction for multiple comparisons (p < 0.05/51 = 9.80 × 10-4) was 
implemented to assess statistical significance. 
 
Population decoding 
Decoding procedure 
 To investigate how well area MT carries information about choice and object 
motion, logistic regression models were trained to classify each of these variables from 
a linear combination of the responses of a population of simultaneously recorded MT 
units. These linear classifiers were implemented in Matlab using the function ‘fitclinear’ 
with a logistic regression learner and 10-fold cross-validation. Classifiers assigned a 
weight to the activity of each unit, indicating how strongly the unit contributed to the 
decoder’s predictions along with its sign. The weights correspond to the components 
(one per unit) of a vector of decoding weights. Decoding results were robust to 
variations in the type of decoder used (logistic regression, support vector machine, 
Fisher linear discriminant), and the type of cross-validation (5-fold, 10-fold, none). Thus, 
we only present results for the logistic regression decoder with 10-fold-cross-validation. 
 A separate linear classifier was trained to decode each variable of interest. First, 
we trained a linear decoder to predict the monkey’s choice on each trial (choice 
decoder), with rightward choices coded as +1 and leftward choices coded as -1. 
Second, we trained a classifier to decode stimulus direction in screen coordinates 
(stimulusscreen decoder). For this decoder, the stimulus was coded as the sign of the 
object’s direction relative to vertical on the display: +1 for rightward object motion, -1 for 
leftward object motion. Since straight upward motion does not have a sign, trials in 
which the object moved straight upward were not included in training this model. 
However, firing rates from these trials were used to predict stimulus direction once the 
decoder was trained. Finally, we trained a linear classifier to decode the stimulus in 
world coordinates (stimulusworld decoder). The object direction in world coordinates was 
computed as the vector difference of the object direction on the screen and the optic 
flow vector that would have appeared at the (x, y, z) location of the center of the object. 
Positive values of object direction (rightward object motion in the world) were coded as 
+1, while negative values (leftward object motion in the world) were coded as -1. 
 In addition to these three main decoders, a variation of the stimulus decoders 
was trained only on trials in which no self-motion was simulated (stationary background 
dots), such that there can be no distinction between world and screed coordinates in the 
training set. The decoder was then tested on both stationary trials and trials with self-
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motion. Since this stimulusNoSM decoder did not have access to neural responses when 
there was forward/backward optic flow, it served as a control. We also trained an 
analogous decoder to classify the monkey’s choices based only on responses in the no 
self-motion condition (choiceNoSM decoder). If this choiceNoSM decoder could predict 
choice biases seen in behavior during the self-motion conditions, it would suggest that 
choice-related activity alone is sufficient to account for the effects of background optic 
flow on MT responses. 
 
Analysis of decoding results 
 Trained linear classifiers predicted stimulus or choice direction on held out trials, 
using 10-fold cross-validation. The reports of the decoders were analyzed in the same 
manner as the behavioral data, by tabulating the proportion of “rightward” choices of the 
decoder and plotting this proportion as a function of stimulus direction in either world or 
screen coordinates.  This produced a set of “psychometric” curves for each decoder, 
and PSE shifts and FP gains were computed from these decoder psychometric 
functions in the same way that behavior was analyzed. The FP gains from each 
decoder were compared to those from the other decoders and to the monkey’s 
behavioral FP gains. Spearman’s rank correlations were computed between pairs of 
decoders to determine whether the PSE shifts produced by two decoders covary across 
recording sessions. Wilcoxon signed-rank tests were used to assess whether two 
decoders produced PSE shifts (or FP gains) across sessions that come from 
distributions with different medians. 
 Multiple linear regression was used to determine what features of a unit’s tuning 
contribute to its individual decoding weight for each different type of decoder. The 
regressors were HDDI, to represent a unit’s strength of direction tuning, and FMI, to 
represent the strength of a unit’s modulation in the presence of optic flow. We took the 
components of the vector of decoding weights for a particular decoder, with each 
component corresponding to a single unit, and regressed them against the HDDI and 
FMI values for each unit. Prior to regressions, decoder weights were normalized within 
each session by computing their z-scores. Linear regressions were computed using 
Matlab’s fitlm function, after combining data across recording sessions for each animal. 
This yielded, for each type of decoder, a regression coefficient that captured the 
relationship between decoding weights and HDDI/FMI values, as well as a regression 
coefficient that reflected the interaction between decoding weights and HDDI/FMI 
values. Regression coefficients that are significantly different from 0 indicate a variable 
or interaction that plays a significant role in predicting the neural weights for that 
decoder. 

Results 
 Two macaque monkeys performed a fine discrimination of object motion direction 
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in the presence of optic flow simulating forward or backward self-motion (Figure 1A,B; 
20 sessions for monkey M, 19 sessions for monkey P). We first examine the perceptual 
biases that were induced by optic flow. We next describe the effect of optic flow on the 
responses of 727 units that were recorded from area MT during the discrimination task. 
Finally, we used within-session population decoding approaches to examine whether 
MT activity can account for the behavioral effects, and whether it can represent object 
motion in screen or world coordinates. Note that, since the fixation target remains 
centered on the screen during simulated self-motion, screen coordinates and retinal 
coordinates would be isomorphic if the eyes remain perfectly fixated during stimulus 
presentation. Since fixation cannot be perfect, we adopt the terminology of screen 
coordinates. 
 
Perceived object motion direction is biased in the presence of optic flow 
 The proportion of rightward choices, relative to vertical, was plotted as a function 
of object motion direction (in screen coordinates) to construct a psychometric function 
for each optic flow condition. Choices were biased in the presence of optic flow, and the 
direction of the bias depended on the location of the object (Figure 2 A,B). When the 
object was in the right visual hemi-field (Figure 2A), choices were biased leftward during 
simulated forward self-motion and rightward during backward self-motion. This effect is 
consistent with the flow-parsing hypothesis, as forward self-motion produces optic flow 
vectors in the right visual hemi-field with a rightward component, such that subtraction 
of these vectors is expected to produce a leftward perceptual bias (Fig. 1A, right panel). 
Backward self-motion, conversely, produces optic flow vectors in the right hemi-field 
with a leftward component, such that subtraction should induce a rightward bias (Fig. 
1B, right panel). When the object to be discriminated was in the left visual hemi-field 
(Figure 2B), biases induced by optic flow were reversed, as expected from the flow-
parsing hypothesis. 
 The effect of optic flow on perceived direction of object motion was quantified for 
each session by computing a PSE shift, which is the difference in PSE between forward 
and backward self-motion, multiplied by the sign of the object’s horizontal location in the 
visual field (Eqn. 3). When computed this way, a positive PSE shift always indicates a 
perceptual shift in the direction that is predicted by flow-parsing. The PSE shifts for the 
sessions in Figure 2A, B are 12.7° and 26.8°, respectively. For perfect flow parsing, the 
PSE shifts for these two sessions are expected to be 30° and 20°, respectively (interval 
between dashed vertical lines, Fig. 2 A, B). 
 Since stimulus conditions and expected PSE shifts varied across sessions and 
animals, we computed a flow-parsing gain (FP gain) as the ratio between the observed 
PSE shift and the expected PSE shift. The FP gain should be 1 if the monkey’s 
perceptual reports reflect complete subtraction of background optic flow, 0 if no flow-
parsing occurs at all, and intermediate if the monkey’s behavior reflects partial 
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subtraction of optic flow. FP gains may also be greater than 1 if the monkey 
overcompensates for self-motion. 
 The distribution of FP gains measured during 39 recording sessions (20 for 
monkey M, 19 for monkey P) is shown in Figure 2C. Median FP gains were 1.14 for 
monkey M and 0.32 for monkey P, and this difference was significant (Wilcoxon rank-
sum test, Z = 4.5097, p = 6.493 × 10-6). While both monkeys’ FP gains were significantly 
greater than 0 (Wilcoxon signed-rank test, monkey M: Z = 3.920, p = 8.858 × 10-5; 
monkey P: Z = 3.823, p = 1.318 × 10-4), monkey P’s FP gains were significantly less 
than 1 (Wilcoxon signed-rank test, Z = -3.662, p = 2.502 × 10-4). This shows that 
monkey P exhibited partial flow-parsing, consistent with previous results in humans 
(Dokka et al., 2015; Fajen et al., 2013; Layton and Niehorster, 2019; Niehorster and Li, 
2017). In contrast, monkey M’s median FP gain was marginally greater than 1 (Z = 
1.904, p = 0.0569), suggesting some overcompensation for self-motion when judging 
object motion. 
 As documented previously (Peltier et al., 2020), FP gains for both monkeys 
decreased over time during training, likely due to the reward regimen used (see 
Discussion). For monkey M (Suppl. Fig. 1A), flow-parsing gains started well above 1, 
signifying a large overcompensation for self-motion, but decreased toward 1 by the time 
recording sessions commenced. For Monkey P (Suppl. Fig. 1B), FP gains started closer 
to 1 and decreased over time, stabilizing around ~0.3. Interestingly, when the object 
was moved to the opposite hemi-field (Suppl. Fig. 1B, leftward-facing triangles), flow-
parsing gains increased toward their original values and subsequently declined again. 
For both animals, FP gain were relatively stable during the period of time when 
recording sessions took place (colors in Suppl. Fig. 1).  
 
Effect of optic flow on MT responses depend on motion direction preference 
 We next examined whether a neural correlate of these perceptual biases is 
manifest in the activity of neurons in area MT. While monkeys performed the 
discrimination task described above, 24-channel linear electrode arrays were used to 
record activity from area MT (see Methods). In order to be included in analyses, units 
had to be directionally tuned, needed to have a receptive field that could be well-fit with 
a 2-dimensional Gaussian function, and were required to have less than 25% overlap 
between the receptive field and the background optic flow (see Methods for details). Of 
the 974 units recorded over 39 sessions, 727 units met these inclusion criteria (317 
units from 19 sessions in monkey P, 410 units from 20 sessions in monkey M). The 
scarcity of well-isolated single units (18/727) did not allow us to analyze them separately 
from multi-units, so all units were pooled in the analysis. Average receptive fields for 
each recording session are shown in Suppl. Fig. 3. 
 Direction tuning curves of two example units, recorded during the same session 
of the discrimination task, are shown in Figure 3 A,B. In this session, the target object 
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was in the left visual field. The tuning curve of a unit that preferred leftward object 
motion (Figure 3A) was modulated by optic flow such that backward optic flow 
enhanced firing rates relative to forward optic flow. The tuning curve of a unit that 
preferred rightward object motion (Figure 3B) shows the opposite pattern; firing rates 
were greater during forward self-motion than backward self-motion. Although these 
units were presented with the same optic flow patterns, they exhibited opposite effects 
of optic flow on responses to object motion. Crucially, the effects shown by both units 
are in the directions expected if optic flow shifts the population activity profile, as 
illustrated in Figure 1C. 
 We quantified response modulations caused by background optic flow by 
computing a flow modulation index (FMI, Eqn. 12). FMI is a normalized measure of the 
difference in response between forward and backward self-motion conditions, averaged 
across object motion directions. The sign of FMI is adjusted according to the location of 
the object relative to the fixation target (Eqn. 12), such that data could be combined 
across recordings in the left and right hemi-fields. 
 If flow parsing causes a shift of population activity in MT that explains perceptual 
biases (Figure 1C), the firing rates of individual units should be affected differently 
depending on their preferred directions. Specifically, FMI should be positive for leftward-
preferring neurons and negative for rightward-preferring neurons; neurons preferring 
near-vertical directions should have FMI values closer to zero, as a shift of the 
population activity has less effect on these neurons (Figure 1C). Indeed, this pattern 
was observed across the populations of MT neurons recorded in each animal. Figure 
3C demonstrates a roughly sinusoidal relationship between FMI and preferred direction, 
and a circular-linear correlation reveals a highly significant relationship for each animal 
(monkey M: rcircular = 0.263, p = 6.96 × 10-7; monkey P: rcircular = 0.611, p < 1 × 10-14). 
While there is clearly considerable variability in this relationship across the population of 
MT units, this pattern is consistent with a shift in the MT population response that could 
account for the perceptual biases induced by flow parsing. 
 As a complementary analysis, we would also expect FMI to depend on the 
strength of MT units’ selectivity for leftward vs. rightward motion, given that the task 
involves discriminating the horizontal component of motion. We quantified selectivity for 
leftward vs. rightward motion with a quantity called the horizontal direction 
discrimination index (HDDI, see Methods, Eqn. 11). A positive HDDI indicates a 
rightward direction preference, while a negative HDDI indicates a leftward preference. 
The magnitude of the HDDI indicates the strength of directional selectivity over the 
range measured during the discrimination task. FMI is plotted as a function of HDDI in 
Figure 3D, revealing the expected linear relationship. FMI and HDDI are strongly 
correlated (Spearman’s rank correlation, monkey M: rs = -0.244, p = 6.40 × 10-7; 
monkey P: rs = -0.706, p = 1 × 10-48), indicating that neurons that better discriminate 
horizontal motion are more affected by optic flow. 
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Distinguishing effects of background optic flow from choice-related responses 
 We have shown that background optic flow modulates MT responses in a 
manner that depends systematically on the direction preference of neurons relative to 
the vertical discrimination boundary.  However, since optic flow also biases choices of 
the monkeys, one possibility is that neural response modulations simply reflect choice-
related activity in MT (Britten et al., 1996; Nienborg et al., 2012; Purushothaman and 
Bradley, 2005; Uka and DeAngelis, 2004), rather than a mechanism of flow parsing per 
se. Thus, it is unclear whether FMI primarily reflects effects of background optic flow, 
effects of choice, or a mixture of the two. To address this issue, we applied a method 
(Nogueira et al., 2017; Sasaki et al., 2020) for dissociating effects of stimulus context 
(background optic flow direction) and choice on neural responses (see Methods for 
details). In brief, for a subset of object directions that produced choices in both 
directions for each optic flow condition, we used a z-scoring and conditioning approach 
to measure the effect of optic flow direction on neural responses while conditioning on 
choice (flow probability, FP), and to measure the effect of choice on neural responses 
while conditioning on optic flow direction (choice probability, CP). If we see effects of 
either optic flow or choice after conditioning on choice and optic flow, respectively, then 
these effects cannot be accounted for by the conditioned variable.   
 Figure 4 A,B shows that flow probability (FP) exhibits a clear, systematic 
dependence on preferred direction (circular-linear correlation, monkey M: rcircular = 0.323, 
p = 5.45 × 10-10; monkey P: rcircular = 0.587, p < 1 × 10-14) and HDDI (Spearman’s rank 
correlation, monkey M: rs = -0.248, p = 3.83 × 10-7; monkey P: rs = -0.691, p = 4.4 × 10-

46) that is very similar to the dependencies of FMI in Fig. 3C,D. In contrast, choice 
probability (CP) shows an inconsistent dependence on direction preference (circular-
linear correlation, monkey M: rcircular = 0.312, p = 1.56 × 10-4; monkey P: rcircular = 0.108, 
p = 0.155) and exhibits a weak correlation with HDDI that has the opposite sign 
compared to FP (monkey M: rs = 0.119, p = 0.015; monkey P: rs = 0.125, p = 0.026). 
Further analysis shows that FP is strongly correlated with FMI, whereas CP is 
uncorrelated with FMI and weakly negatively correlated with FP (Suppl. Fig. 4). These 
findings demonstrate that background optic flow induces contextual modulations of MT 
responses that cannot be simply explained by choice-related activity. 
 
Strength of optic flow modulation cannot be explained by surround suppression 
 One might expect that effects of optic flow on MT responses are related to 
interactions between an MT neuron’s classical receptive field and its inhibitory surround. 
For many MT neurons, responses to a stimulus in the classical receptive field are 
suppressed by motion in the surround (Allman et al., 1985), with suppression being 
strongest when the velocity of surround motion matches the cell’s preference. Could this 
form of directional surround suppression account for some or all of the observed effects 
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of background optic flow on MT responses? 
 In our experimental design, we attempted to minimize contributions of surround 
suppression by masking out a region of the background flow field at least twice as large 
as the receptive field. Nevertheless, if masking was not completely effective, we might 
expect neurons with larger optic flow modulations to have stronger surround 
suppression. The absolute value of FMI is plotted as a function of surround suppression 
index (SSI) in Suppl. Fig. 5A. We performed a multiple linear regression of the absolute 
value of FMI onto SSI and monkey identity. We found no significant main effect of SSI 
(t(723) = -0.918, p = 0.359), as well as no interactive effect of SSI and monkey identity 
(t(723) = -1.35, p = 0.177), demonstrating that neurons with greater flow modulation do 
not generally have stronger surround suppression. The only significant effect was a 
main effect of monkey identity (β = -0.0623, t(723) = -4.42, p = 1.16 × 10-5), indicating 
that |FMI| values were significantly greater in monkey P than in monkey M. Treating 
each animal separately, there was no correlation between SSI and |FMI| for monkey P 
(Spearman rank correlation: rs = -0.0284, p = 0.615), and a significant negative 
correlation for monkey M (rs = -0.193, p = 8.31 × 10-5). This negative correlation 
indicates that units with stronger surround suppression had weaker flow modulation, 
which runs counter to the notion that flow modulation arises from surround suppression. 
Similar results were obtained when plotting FP against SSI (Suppl. Fig. 5B). The lack of 
positive correlation between SSI and FMI suggests that optic flow modulates MT 
responses via a mechanism that is distinct from conventional surround suppression, 
perhaps through feedback from higher-level areas that encode optic flow, such as 
MSTd or VIP (see Discussion). 
 
HDDI and FMI develop with different time courses 
 If neural correlates of flow parsing in area MT rely on feedback or some other 
mechanism that requires additional processing time, there may be a delay in the effect 
of optic flow on MT responses. To explore this issue, we analyzed the time courses of 
response properties of the MT population (Figure 5). Figure 5A shows the normalized 
population response to vertical object motion, computed using a moving 50-ms analysis 
window. Each unit’s firing rates were normalized (without subtracting spontaneous 
activity) such that the unit’s peak response (across all three self-motion conditions) was 
1, and a population PSTH was then computed.  
 There was a robust transient response when dots appeared at the start of the 
trial, with a peak 160 ms after stimulus onset. This transient is presumably a response 
to the luminance onset of the dots, since motion begins sometime later. After the 
transient response, normalized response shows a broad central peak that roughly 
follows the temporal profile of stimulus velocity, peaking ~1100 ms after stimulus onset. 
The time course of population response is practically indistinguishable between optic 
flow conditions (Fig. 5A, colored curves). Rank-sum tests revealed that there was no 
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time point at which normalized responses differed significantly between the stationary 
and forward or backward self-motion conditions (p > 0.05; which is much greater than 
the threshold for significance after correction for multiple comparisons, which is p = 2.00 
× 10-5). This indicates that optic flow did not elicit a net change in average response 
across the entire MT population. This likely occurs because forward and backward optic 
flow have opposite effects on MT units that prefer rightward and leftward directions (see 
Fig. 1C), and because rightward and leftward tuned neurons are roughly equal in 
number. 
 Figure 5B illustrates the time course of HDDI, with neurons grouped according to 
direction preference. As expected from the definition of HDDI, there is a clear 
separation in the HDDI time course between units that preferred rightward motion 
(shades of blue) and units that preferred leftward motion (shades of red). Approximately 
600 ms after stimulus onset, units that preferred rightward motion developed positive 
HDDIs while units that prefer leftward motion developed negative HDDIs. This 
directionally selective response persists throughout most of the remainder of the 
stimulus period. 
 We identified periods of significant directional responses as time windows in 
which the distribution of HDDIs differed between the group of units that preferred 
rightward motion (cos(preferred direction) > 0.75; Figure 5B, darkest blue curve) and the 
group that preferred leftward motion (cos(preferred direction) < -0.75; Figure 5B, darkest 
red curve). We compared the distributions of HDDI between groups within each time 
window, with significance assessed by a Wilcoxon rank-sum test with Bonferroni 
correction for multiple comparisons, p < 9.80 × 10-4). There was a significant directional 
response from 600 to 1850 ms after stimulus onset, as well as a much weaker but 
significant reversal of selectivity in the ~500 ms after stimulus offset. This reversal may 
be an adaptation effect, as shown previously following stimulus extinction (Kohn and 
Movshon, 2003; Van Wezel and Britten, 2002).  
 For comparison, Figure 5C illustrates the time course of FMI during the trial, with 
neurons grouped according to HDDI value. Strikingly, the time courses of FMI for 
rightward- and leftward-preferring units separate much later, during the second half of 
the visual stimulus presentation. We defined periods of significant optic flow modulation 
as time windows in which FMI for units with HDDI > 0.6 (Figure 5C, darkest blue curve) 
differed from FMI for units with HDDI < -0.6 (Figure 5C, darkest red curve). Rank-sum 
tests with Bonferroni correction for multiple comparisons (p < 9.80 × 10-4) revealed a 
main period of significant optic flow modulation ~1300-1700 ms after stimulus onset. A 
weaker but significant reversal effect was also seen after stimulus offset, which may 
again be caused by response adaptation to the stimulus. 
 The fact that optic flow modulation of MT responses arose ~700 ms after 
directional selectivity suggests that effects of optic flow on MT responses are mediated 
through additional pathways that are not necessary for the generation of direction 
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selectivity. Flow modulation may be mediated through feedback from higher-level areas, 
such as MSTd or VIP, that respond selectively to optic flow (see Discussion). 
 
Single-session decoding of MT population responses 
 The fact that MT activity is modulated by background optic flow indicates that MT 
neurons represent more than just an object’s retinal velocity. Moreover, the dependence 
on direction preference (Fig. 3C,4A) is consistent with the hypothesis that background 
optic flow shifts the population hill of activity in the direction necessary to account for 
behavioral biases (Fig. 1C). However, it is unclear thus far whether the response 
modulations induced by optic flow are sufficiently strong to account for behavioral 
effects. To address this issue, we used logistic regression to perform within-session, 
trial-by-trial population decoding of MT responses. Decoders were trained to predict one 
of three variables: a stimulusscreen decoder was trained to decode the direction of object 
motion in screen coordinates; a stimulusworld decoder was trained to decode the 
direction of object motion in the world; and a choice decoder was trained to classify 
trials according to the monkey’s choice on each trial. In each case, decoders were 
trained, using 10-fold cross-validation, on data from all three self-motion conditions, and 
decoder performance was evaluated on held-out data (see Methods for details). 
Decoders were trained on spike counts computed over a time window from 1250-1750 
ms after stimulus onset, as this time window revealed the largest FMI values (Figure 
5C). The number of units included in decoding for each session ranged from 8 to 26, 
with a median of 19 units. For each type of decoder of MT responses, predicted 
psychometric curves, constructed from the choices generated by the decoder given the 
activity of the simultaneously recorded cells, were constructed for the 3 optic flow 
conditions, and FP gains were computed. This allows us to directly compare the FP 
gains of behavior with those predicted by the different decoders. 
 Psychometric functions from an example session for monkey P are shown in 
Figure 6A, and reveal a behavioral FP gain of 0.68. For this session, the stimulusworld 
decoder (Figure 6B) predicts a largely similar pattern of biases, with a predicted FP gain 
of 0.48. Thus, decoding of just a small population of MT units (N=21 in this case) can 
account for most of the behavioral biases and overall sensitivity of the monkey’s 
performance in this session. By comparison, the stimulusscreen decoder (Figure 6C) 
predicts much smaller PSE shifts, corresponding to a FP gain of 0.10. Thus, the same 
population of MT neurons can be decoded to obtain reasonable estimates of motion in 
either screen coordinates or world coordinates.  
 Figure 6D-F shows similar results for an example recording session from monkey 
M (N=22 units). In this case, the FP gains are 1.48 for behavior, 0.65 for the 
stimulusworld decoder and 0.03 for the stimulusscreen decoder. The diversity of effects of 
optic flow on MT responses (Fig. 3C, 4A) likely allows units to be weighted differently 
between decoders to produce PSE shifts that vary according to the decoded variable, 
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thus counterbalancing biases if there are systematic shifts in the tuning curves.  
 
Comparison between behavioral effects and decoder performance 
 For the stimulusworld decoder, Fig. 7A summarizes flow parsing effects across 
sessions for each animal. The median FP gains of the stimulusworld decoder are 0.45 for 
monkey M and 0.35 for monkey P, which are not significantly different from each other 
(Wilcoxon rank-sum test, Z = -1.03, p = 0.31). Pooling FP gains across monkeys, the 
median FP gain (0.41) is significantly less than 1 (Wilcoxon signed-rank test, Z = -5.43, 
p = 5.68 × 10-8) and significantly greater than zero (Z = 5.42, p =  × 10-8), indicating that 
the stimulusworld decoder does not perfectly represent object motion in world coordinates 
for either animal.  
 Given that behavioral FP gains differed subtantially between monkeys, perhaps 
the more relevant question is whether performance of the stimulusworld decoder can 
account for behavioral performance, as summarized in Fig. 7A. For monkey P, there is 
no significant difference between median FP gains for behavior and the stimulusworld 
decoder (Wilcoxon signed-rank test, Z = -0.16, p = 0.87), indicating that neural effects of 
flow parsing in MT are sufficient to account for behavioral biases in this animal. 
Moreover, there is a significant correlation across sessions between FP gains for 
behavior and the stimulusworld decoder for monkey P (Spearman rank correlation, rs = 
0.56, p = 0.014), indicating that variations in the neural effects account for some of the 
variations in behavior across sessions. By contrast, for monkey M, the median 
behavioral FP gain is significantly greater than the median FP gain of the stimulusworld 
decoder (Wilcoxon signed-rank test, Z = 3.92, p = 8.86 × 10-5), and there is no 
significant correlation between these measures across sessions (rs = 0.3098, p = 
0.1835). Thus, while a linear decoder of stimulusworld predicts a partial shift (~40%) 
toward a world-centered reference frame for both animals, this neural effect was able to 
fully account for behavioral biases in monkey P, but not in monkey M (see Discussion). 
 We also examined the performance of a decoder that attempts to classify object 
motion direction in screen coordinates. If this stimulusscreen decoder performs perfectly, it 
should yield FP gains equal to 0, regardless of whether perception is biased by optic 
flow. Median FP gains for the stimulusscreen decoder were 0.032 for monkey M and 
0.098 for monkey P, and these values did not differ significantly between animals 
(Wilcoxon rank-sum test, Z = 1.05, p = 0.29). Pooled across animals, the median FP 
gain was 0.0324, which is significantly greater than 0 (Wilcoxon signed-rank test, Z = 
2.71, p = 6.78 × 10-3). FP gains for the stimulusscreen decoder were significantly less than 
behavioral FP gains for both animals (Wilcoxon signed-rank test, monkey M: Z = 3.92, p 
= 8.85 × 10-5; monkey P: Z = 3.82, p = 1.32 × 10-4; Figure 7B). We found a modest but 
significant correlation between FP gains for behavior and the stimulusscreen decoder for 
monkey P (Spearman rank correlation: rs = 0.54, p = 0.02) but not for monkey M (rs = 
0.33, p = 0.15). 
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FP gains significantly greater than zero for the stimulusscreen decoder suggest that 
effects of optic flow on MT responses are sufficiently pervasive that they cannot 
completely be discounted by a linear decoder to estimate motion in screen coordinates 
(although it is certainly possible that the stimulusscreen decoder would perform more 
ideally if based on larger populations of neurons than we recorded within each session). 
We observed similar effects when the decoder of motion direction was trained only on 
trials without background optic flow (stimulusNoSM decoder). Because the median FP 
gains of the stimulusNoSM decoder did not differ between animals (Wilcoxon rank-sum 
test, Z = -0.58, p = 0.56), we again pooled data across animals. The median pooled FP 
gain (0.10) of the stimulusNoSM decoder was significantly greater than 0 (Wilcoxon 
signed-rank test, Z = 2.51, p = 0.012), indicating that this result was not simply driven by 
other variables (e.g., choice) that may covary with optic flow conditions.  
 Finally, we also trained a decoder to predict the choices of the animal, rather 
than stimulus direction. We found that the median FP gain for behavior was significantly 
greater than the median value for the choice decoder (monkey M: Z = 3.92, p = 8.86 × 
10-5; monkey P: Z = 3.06, p = 0.002; pooled: Z = 5.18, p = 2.25×10-7). MT activity 
accounted for 58.3% of the behavioral effect for monkey P and 42.4% for monkey M. FP 
gains were also significantly correlated across sessions between behavior and the 
choice decoder (monkey M: rs = 0.65, p = 0.0025; monkey P: rs = 0.64, p = 0.0040), 
suggesting that MT activity can account for a substantial fraction of session-to-session 
variability in perceptual FP gains. Because choices are strongly related to the optic flow 
condition in behavior, the predictive capacity of the choice decoder could rely on either 
response modulations that are associated with choice or with background optic flow. To 
gain further insight, we trained a classifier to decode choice from just trials without self-
motion (choiceNoSM decoder), as this condition affords the decoder with choice-related 
signals but not signals related to optic flow condition.  This choiceNoSM decoder yields 
median FP gains (monkey M: -0.021; monkey P: 0.098) that are significantly less than 
those of the choice decoder trained on all conditions (Wilcoxon signed-rank test, 
monkey M: Z = 3.77, p = 1.63 × 10-4; monkey P: Z = 2.01, p = 0.044). These findings 
suggest that performance of the choice decoder is mainly driven by effects of 
background optic flow on MT responses, and this finding is consistent with the analysis 
of Figure 4, which shows that flow probability, but not choice probability, is 
systematically related to the direction preferences of MT neurons. 
 
Relationships between decoding weights and neural selectivity 
 The fact that these decoders can be trained to represent different variables 
suggests that different weights are assigned to the units depending on the decoded 
variable. To gain further insight into how neurons with different properties contribute to 
decoder performance, we used linear regression to examine relationships between 
decoding weights, HDDI, and FMI. The stimulusscreen decoder should place more weight 
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on units with strong direction selectivity in screen coordinates (high magnitude of HDDI). 
However, because the computation of object motion in screen coordinates does not rely 
on information about optic flow, the stimulusscreen decoder should not selectively weight 
units according to FMI. A multiple regression analysis of the stimulusscreen decoder’s 
weights, wStimulusScreen, revealed that HDDI was significantly predictive of neuronal 
decoding weights (monkey M: β = 0.902, t(406) = 10.13, p = 1.188 × 10-21; monkey P: β 
= 0.726, t(311) = 6.33, p = 8.725 × 10-10), but FMI was not (monkey M: t(406) = -1.04, p 
= 0.299; monkey P: t(311) = 0.72, p = 0.472). This finding is consistent with the 
expectation that performance of the stimulusscreen decoder should not depend on 
modulations by background optic flow. 
 In contrast, computing object motion in world coordinates requires information 
about optic flow. Therefore, the stimulusworld decoder should significantly weight units 
based on the magnitude of both HDDI and FMI. Indeed our multiple regression analysis 
revealed that FMI was highly predictive of decoder weights, wStimulusWorld, for both 
animals (monkey M: β = -1.437, t(406) = -6.87, p = 2.38 × 10-11; monkey P: β = -1.871, 
t(311) = -8.26, p = 4.39 × 10-15). HDDI was significantly predictive of wStimulusWorld for one 
animal (monkey M: β = 0.7571, t(406) = 8.732, p = 6.609 × 10-17) but not the other 
(monkey P: t(311) = -0.0909, p = 0.9277). There was a marginally significant interaction 
effect between HDDI and FMI on wStimulusWorld for monkey M (β = 0.709, t(406) = 1.840, p 
= 0.066) but not for monkey P (t(311) = -0.616, p = 0.539). The significant contribution 
of FMI to decoding weights for the stimulusworld decoder demonstrates that units with 
strong response modulations by optic flow contribute to representing object motion in 
world coordinates.  Very similar results were obtained using FP instead of FMI in this 
analysis, as expected given the strong correlation between FP and FMI measures 
(Suppl. Fig. 4A). In contrast, when FMI was replaced with CP in this analysis, there 
were no significant contributions (p>0.5) of CP to predicting either wStimulusScreen or 
wStimulusWorld. This analysis further demonstrates that the capacity of MT population 
responses to predict perceptual biases associated with optic flow does not simply rely 
on choice-related activity. 

Discussion 
 Flow parsing has been proposed as a strategy for solving a crucial problem in 
vision: discounting the visual consequences of self-motion in order to compute object 
motion relative to the world (Rushton and Warren, 2005; Warren and Rushton, 2007; 
2009a). Despite extensive psychophysical evidence for flow parsing in humans, the 
neural mechanisms underlying this process were unknown. We demonstrate here a 
neural basis for flow parsing in macaque area MT. Responses of MT units are 
modulated by surrounding optic flow in a systematic manner that depends on preferred 
direction. This effect is consistent with the hypothesis that optic flow shifts the 
population profile of activity in MT, leading to the observed behavioral biases. Crucially, 
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these effects cannot be explained by choice-related activity or conventional surround 
suppression, as discussed further below. Consistent with the effects seen in individual 
units, single-session population decoding predicts biases in the same direction as seen 
in behavior, although weaker in magnitude. Together, these findings provide the first 
evidence of a mechanism for flow parsing at the level of single neurons and neural 
population activity. 
 
Systematic effects of optic flow on MT responses 
 We hypothesized that MT might reflect flow parsing via a shift of the population 
hill of activity as illustrated in Fig. 1C. Such a shift predicts that the response 
modulations induced by optic flow should depend systematically on direction preference 
relative to the reference direction of the task (which is vertical here). Indeed, our data 
(Fig. 3C, 4A) confirm this prediction, indicating that responses in area MT can account, 
at least partially, for the biases observed in behavior. However, results were variable, as 
many units showed little to no effect of optic flow. This variability suggests that a pure 
shift of the population hill of activity is likely too simple an explanation. Rather, some 
subpopulations of MT units may shift their representation of object motion toward world 
coordinates while others do not. Such diversity might enable MT to represent object 
motion in more than one coordinate frame, allowing for flexible readout according to 
task demands. In future work, it would be interesting to determine whether MT neurons 
with weak and strong modulations by optic flow have different projection targets. 
 For MT units that are modulated by optic flow, these changes typically manifest 
as differences in response between forward and backward optic flow that are fairly 
consistent across object motion directions (e.g., Fig. 3A,B). One possible explanation is 
that optic flow shifts direction-tuning curves in a manner consistent with representing 
object motion in the world. Another possibility is that MT responses are gain modulated 
by optic flow, such that optic flow acts to multiplicatively scale MT tuning curves. Due to 
the limited range of object directions presented in this experiment, our data do not allow 
us to clearly distinguish between these possibilities. In an ongoing study, we are 
measuring the full direction tuning curves of MT units in the presence of optic flow, such 
that we can better quantify how optic flow acts to modulate MT responses. 
 
Potential confounds of surround suppression and choice-related activity 
 Our findings demonstrate that optic flow surrounding a target object modulates 
neural responses in area MT and biases reports of motion direction. Here, we address 
two potentially less interesting explanations for these effects: non-classical surround 
suppression and choice-related modulations. 
 It is well established that receptive fields of many MT neurons have a non-
classical surround that suppresses responses when surrounding stimuli have similar 
properties to the stimulus that activates the neuron (Allman et al., 1985; Born, 2000; 
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Bradley and Andersen, 1998; DeAngelis and Uka, 2003). To limit involvement of the 
conventional surround, we employed a mask that was typically at least 2-fold larger than 
the classical receptive field. We also excluded units whose receptive fields overlapped 
with the surrounding optic flow (see Methods). Nevertheless, it is still possible that our 
findings could be a result of surround suppression. To assess this, we measured the 
size tuning of MT units, and we found no significant correlation between the magnitude 
of either FMI or FP and a quantitative measure of surround suppression (Suppl. Fig. 5). 
Thus, conventional surround suppression cannot account for our findings. 

Another potential confound is choice-related activity. It is well-established that 
responses of MT neurons are weakly correlated with perceptual decisions (Britten et al., 
1996; Purushothaman and Bradley, 2005; Uka and DeAngelis, 2004); as such, it is 
possible that the response modulations observed in MT simply reflect an effect of optic 
flow on choices, which subsequently modulates MT responses. To address this issue, 
we adapted an analysis (Sasaki et al., 2020) to isolate the effects of choice from the 
effects of background optic flow in the response of MT neurons (see Methods, Fig. 4, 
and Suppl. Fig. 4). This demonstrates clearly that flow-related modulations (Fig. 4 A, B), 
but not choice-related modulations (Fig. 4 C, D), are systematically related to direction 
preferences in MT. In addition, we demonstrate that decoding weights for the 
stimulusworld decoder are correlated with both the FMI and FP values of individual units, 
whereas these decoding weights are not correlated with CP values. Thus, our findings 
cannot be simply explained by choice-related activity, and instead suggest a modulation 
of MT responses that is specific to the inferred optic flow vector at the location of the 
target object. 
 
Comparison of behavioral and decoder biases 
 During recording sessions, the two animals had different magnitudes of 
behavioral effects. While monkey M showed a flow-parsing gain close to unity, monkey 
P had biases that were substantially smaller than predicted by perfect flow parsing (Fig. 
2C). The incomplete compensation for self-motion exhibited by monkey P has been 
observed previously in humans (Dokka et al., 2015; Fajen et al., 2013; Layton and 
Niehorster, 2019; Niehorster and Li, 2017). In addition, both monkeys demonstrated a 
substantial decrease in flow-parsing gains over time, mainly during the training period 
prior to commencement of recordings (Suppl. Fig. 1, see also (Peltier et al., 2020)). For 
monkey P, flow-parsing gain decreased from near unity toward values < 0.5. In contrast, 
monkey M had flow-parsing gains that were initially much greater than unity, declined 
sharply toward unity prior to recordings, and declined gradually during recordings such 
that the final values were less than unity. A likely explanation for this reduction in flow-
parsing gains over time is the variable reward scheme that we used (see (Peltier et al., 
2020) for further discussion). Ideally, one would reward animals around their intrinsic 
perceptual biases, such that there is not pressure to decrease perceptual biases to 
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maximize reward. In ongoing work, we have developed a Bayesian adaptive technique 
to estimate perceptual biases online, but this was not available when the present study 
was conducted. 
 For decoders trained to classify object direction in world coordinates, we found 
that single-session decoding in both animals predicted flow-parsing gains near 0.5, on 
average (Fig. 7A). For monkey P, decoder performance was sufficient to account for the 
flow-parsing gains seen in behavior; in contrast, for monkey M, decoder effects were 
substantially weaker than behavioral effects (Fig. 7A). It is possible that flow-parsing 
acts at multiple stages of motion processing, as suggested by human neuroimaging 
studies (Field et al., 2020; Kozhemiako et al., 2020; Pitzalis et al., 2020), and that 
effects on areas downstream of MT account for the larger behavioral effects in monkey 
M. However, it is also possible that decoding from larger neural populations in area MT 
could predict the larger biases seen in monkey M. 
 It may seem surprising that the visual system would compensate for self-motion 
at a relatively early processing stage such as area MT, which has often been thought to 
represent retinal image motion.  However, it is important to point out that retinal motion 
information is not lost in MT.  Due to the diversity of effects of background optic flow in 
MT units, population responses could be weighted differently to read out motion in 
either world or screen coordinates. Indeed, we find that decoding weights are correlated 
with FMI values for the stimulusworld decoder but not the stimulusscreen decoder.  
Correspondingly, we find that decoders trained to recover direction in screen 
coordinates are much less biased by optic flow (Fig. 7B). Thus, the representation we 
observe in MT may allow downstream areas to flexibly decode object motion in different 
reference frames. 
 Furthermore, flow parsing should only be done if an observer infers that there is 
an independently moving object in the scene. This was generally the case in our study 
because recording sites were selected to have receptive fields located closer to the 
horizontal meridian. Since the direction reference for the task was always vertical, optic 
flow vectors at the location of the target patch were typically close to orthogonal to the 
task reference. Recent psychophysical work shows that motion perception can 
transition from integration to segmentation depending on the similarity of an object’s 
motion to the background (Shivkumar et al., 2023). Thus, it is possible that flow parsing 
effects in MT would be modulated by causal inference regarding the likelihood of 
independent object motion, which is an ongoing topic of exploration in the laboratory. 
 
Potential neural networks of flow-parsing 
 As discussed above, decoding results from MT typically account for less than the 
full behavioral effects of flow parsing, suggesting that additional contributions to flow 
parsing may arise downstream of MT. Relevant to this, flow modulation effects were 
substantially slower (~700 ms) to develop than directional responses (Fig. 5 B, C). 
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While the reasons for such a long delay are unclear, it may reflect computations that are 
done downstream and then fed back to MT to modulate population responses. MT is 
known to receive feedback from areas that are involved in computing heading, such as 
areas MSTd (Bradley et al., 1996; Duffy and Wurtz, 1995; Fetsch et al., 2012; Gu et al., 
2008; Gu et al., 2006) and VIP (Bremmer et al., 2002; Chen et al., 2011; 2013; Zhang 
and Britten, 2004; 2010). Another downstream area of interest is area V6, which is 
reported to contain subpopulations of neurons that represent motion in head-centered 
reference frames (Fattori et al., 2009; Galletti et al., 1995). The origin of the long delay 
of neural flow parsing effects in MT deserves further study. It is worth noting that other 
previous studies have examined how rotational optic flow modulates MT responses, and 
those effects were not found to have such a long delay (Kim et al., 2015; 2017). 
 Computational models of heading perception (Hatsopoulos and Warren, 1991; 
Layton and Browning, 2014; Layton and Fajen, 2016a; Layton et al., 2012; Perrone, 
1992; 2012; Perrone and Stone, 1994; 1998; Royden, 1997) and flow parsing (Layton 
and Fajen, 2016b; Layton and Niehorster, 2019; Royden and Holloway, 2014) have 
primarily focused on the relationship between MT and MSTd. These models consist of a 
layer of small MT-like operators that are selective for motion direction and speed. These 
operators transmit their responses to a layer of large MSTd-like templates, whose 
receptive fields are built from the combination of MT operators with receptive fields 
spanning the template. The estimated heading is typically the preferred heading of the 
most active MSTd template, or a combination of the most active templates. In a model 
that was specifically designed to implement flow parsing (Layton and Fajen, 2016b), 
feedback from the MSTd layer to the MT layer enhances the activity of MT units with a 
preferred direction that disagrees with the most active MSTd template. It is currently 
unclear whether this type of model is consistent with our physiological findings or not. 
However, simultaneous recordings from MT and MSTd may be valuable for testing 
specific predictions of this type of model. Furthermore, it would be valuable to examine 
how reversible inactivation of MSTd affects flow-parsing behavior as well as the 
response modulations of MT neurons. Having established a starting point for 
understanding the neural computations of flow parsing, subsequent studies can be 
targeted to unraveling the relevant neural circuits. 
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Figure Captions 
Figure 1. Illustration of expected perceptual biases from flow parsing and a 
potential neural correlate. (A) Schematic illustration of a stimulus condition presenting 
forward self-motion (green dots) and upward object motion on the screen (yellow dots). 
Right: If flow parsing occurs, the rightward flow vector at the location of the object (solid 
green arrow) would be subtracted, leading to a leftward bias in perceived object 
direction (black arrow). The yellow arrow indicates object direction in image (screen) 
coordinates. The dashed green arrow is the opposite of the flow vector, which is 
vectorially added to the image motion (yellow arrow) to obtain the expected perceived 
direction (black arrow).  (B) Same as panel A except that optic flow simulates backward 
self-motion (red dots), leading to a rightward expected bias from flow parsing. (C) 
Hypothetical neural population response profiles in response to a presentation of an 
object in the right visual hemi-field moving straight upward in retinal coordinates (e.g., 
yellow dots in panels A and B). Each curve shows the normalized response of a 
population of neurons plotted as a function of each neuron’s preferred direction. When 
an observer is stationary (blue), the population hill of activity peaks at 0 deg (vertical 
motion). If the perceptual biases induced by flow parsing are reflected in this neural 
population response, then forward self-motion should shift the curve leftward (green) 
and backward self-motion should shift the curve rightward (red). As a result, a neuron 
that prefers a direction of -45° should have a greater response during forward self-
motion than during backward self-motion. In contrast, a cell that prefers +45° would 
show the opposite effect. 

Figure 2. Optic flow systematically biases object motion perception in monkeys. 
(A) Psychometric functions from a recording session in which monkey P discriminated 
object direction in the presence of optic flow. Symbol shape and color denote data from 
the stationary (blue squares), forward (green circles), and backward (red triangles) self-
motion conditions. Smooth curves show fits of a cumulative Gaussian function to the 
data points. Horizontal error bars indicate 95% confidence intervals on the PSEs, and 
the dashed vertical lines indicate the expected PSEs for complete flow-parsing (FP gain 
= 1). Because the object was presented in the right visual hemi-field, monkey P’s 
perception of object motion was biased leftward during forward self-motion and 
rightward during backward self-motion. (B) Data from a recording session in which 
monkey M discriminated object motion in the left hemi-field, leading to an opposite 
pattern of perceptual biases. (C) Distributions of flow-parsing gains (observed/expected 
PSE shift) for 20 recording sessions from monkey M (teal) and 19 recording sessions 
from monkey P (purple). Downward-pointing triangles indicate the median flow-parsing 
gains for each animal. 

Figure 3. Modulation of MT firing rates by optic flow depends on direction tuning. 
(A-B) Firing rates of two units, recorded during the same session in which the object 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581050
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

35 
 

was in the left visual hemi-field. Data are shown separately for the stationary (blue 
squares), forward (green circles), and backward (red triangles) self-motion conditions. 
Error bars denote SEM. (A) For a unit that prefers leftward object motion, responses 
during backward self-motion are greater than responses during forward self-motion. (B) 
For a simultaneously recorded unit that prefers rightward object motion, responses 
during forward self-motion are greater than those during backward self-motion. (C-D) 
Flow-modulation index (FMI) across the population of 737 units depends systematically 
on aspects of direction tuning. Color and shape of symbols denote monkey identity: 
monkey M (teal triangles) and monkey P (purple circles). (C) FMI is circularly correlated 
with preferred direction, where a preference of 0 denotes the upward task direction 
reference. The black trace denotes a running median FMI, computed within a preferred 
direction window of 90° (data pooled across monkeys). (D) FMI is inversely correlated 
with selectivity for horizontal motion, as measured by the horizontal direction 
discrimination index (HDDI). Black line indicates the line of best fit (linear regression, 
data pooled across monkeys). 

Figure 4. Effects of optic flow on MT responses are distinct from choice-related 
activity. Neural responses were analyzed to dissociate effects of background optic flow 
(Flow Probability, FP) from choice-related response modulations (Choice Probability, 
CP), as detailed in Methods. (A, B) Flow probability is robustly correlated with both 
neuronal preferred direction and HDDI, similar to the results for FMI (format as in Figure 
3C,D). (C, D) In contrast, choice probability is not systematically related to either flow 
probability or HDDI. This reveals that effects of object flow background on MT 
responses are dissociable from choice-related modulations. 

Figure 5.  Time course of population response, HDDI, and FMI. In each panel, 
vertical lines indicate stimulus onset and offset, and the gray curve indicates the 
stimulus velocity profile. (A) Time course of normalized response to vertical (0 deg) 
object motion, averaged over all units. Color indicates self-motion direction; blue: 
stationary, green: forward, red: backward. (B) Mean HDDI time course for subsets of 
units, grouped according to the horizontal component of their preferred direction. Darker 
red curves indicate units with preferred directions closer to leftward (-90 deg), and 
darker blue curves indicate units with preferred directions closer to rightward (+90 deg). 
Horizontal black lines indicate time periods during which HDDI differs significantly 
between the darkest red and the darkest blue curves. (C) Mean FMI time course for 
subsets of units, grouped according to their HDDI values, where negative/positive HDDI 
values indicated a preference for leftward/rightward motion. Horizontal black lines 
indicate time periods during which FMI differs significantly between the darkest red and 
the darkest blue curves.  

Figure 6. Psychometric functions representing monkey behavior and population 
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decoder performance for two example sessions. Format as in Figure 2A,B. Vertical 
lines indicate the expected PSEs for complete flow-parsing. (A) Psychometric function 
reflecting one session of monkey P’s direction discrimination performance for an object 
located in the left visual hemifield. (B) Predicted psychometric function produced by the 
stimulusworld decoder, which was trained to discriminate object direction in world-
centered coordinates from neural responses in the same for which the behavioral data 
are shown in panel A. (C) Psychometric function produced by the stimulusscreen decoder, 
which was trained to discriminate object direction in retinal coordinates (same session 
as panels A, B). (D-F) Psychometric data and decoder performance for one example 
session from monkey M. 

Figure 7. Summary of comparison between monkey behavior and population 
decoder performance. Each datum represents one experimental session from monkey 
M (teal triangles) or monkey P (purple circles). Star-shaped symbols indicate the 
median perceptual and decoder FP gains across sessions for each animal. (A) FP gains 
of the stimulusworld decoder are plotted against the monkeys’ perceptual FP gains. (B) 
FP gains of the stimulusscreen decoder are plotted against the monkeys’ perceptual FP 
gains. (C) FP gains of the choice decoder plotted against the monkeys’ perceptual FP 
gains. 

Supplementary Figure 1. Flow-parsing gains gradually decreased over time. (A) 
Monkey M’s flow-parsing gains throughout 20 recording sessions (large, teal open 
circles), in addition to the flow-parsing gains over 44 training sessions (small, gray filled 
circles). Each gray circle indicates the mean flow-parsing gain for a training session that 
took place before or after recordings. (B) Monkey P’s flow-parsing gains throughout 19 
recording sessions (large, purple open triangles), as well as flow-parsing gains over 62 
training sessions (small, gray filled triangles). Right-facing triangles denote sessions in 
which the object was in the right hemi-field, and left-facing triangles denote sessions in 
which the object was in the left hemi-field. 

Supplementary Figure 2. Schematic illustration of the object direction 
discrimination task. (A) Each trial initiated when a fixation target appeared and the 
monkey fixated on the target. The monkey was required to maintain fixation during the 
presentation of a stimulus, which consisted of an object moving upward obliquely and a 
global optic flow field simulating forward or backward self-motion. At the end of the 
stimulus presentation, two choice targets appeared. The monkey was required to make 
a saccade to one of the targets indicating whether the object’s motion was rightward or 
leftward of vertical. (B) Timeline of events within each trial. 
 
Supplementary Figure 3. Receptive field locations for each experimental session. 
Each ellipse represents the average receptive field location and size across all units 
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recorded within a session, computed from the average parameters of 2-dimensional 
(2D) Gaussian fits. Each ellipse corresponds to a cross-section through the average 2D 
Gaussian function at the half-maximal response amplitude. Coordinate (0, 0) represents 
the center of the screen and the location of the fixation target. Color indicates monkey 
identity; teal: monkey M, purple: monkey P. 

Supplementary Figure 4. Relationships between FMI, Flow Probability, and 
Choice Probability. In all panels, symbol color and shape denote monkeys M (teal 
triangles) and P (purple circles). (A) Flow probability (FP) is highly correlated with flow 
modulation index (FMI) for both monkey P (Pearson correlation, R = 0.97, P = 3.2×10-

205, N=315) and monkey M (R = 0.96, P = 1.2×10-241, N=410).  (B) Choice probability 
(CP) is poorly correlated with FMI for both monkey P (Pearson correlation, R = -0.08, P 
= 0.147, N=315) and monkey M (R = -0.07, P = 0.176, N=410). (C) CP is weakly 
negatively correlated with FP for both monkey P (Pearson correlation, R = -0.22, P = 
5.0×10-5, N=315) and monkey M (R = -0.25, P = 1.5×10-7, N=410).  

Supplementary Figure 5. Optic flow modulation in MT is not correlated with 
surround suppression. (A) Absolute value of FMI is plotted as a function of surround 
suppression index. Symbol color and shape denote monkeys M (teal triangles) and P 
(purple circles). (B) The absolute value of flow probability, after subtracting 0.5, is 
plotted against surround suppression index (format as in panel B). If effects of 
background optic flow on MT responses were explained by surround suppression, we 
would expect to see positive correlations in these plots. 

Movie 1. Examples of visual stimuli. This video shows examples of visual stimuli from 
the main flow-parsing experiment. A sequence of 4 trials is shown. In each trial, the 
target object patch (composed of small yellow triangles) moves vertically. Background 
optic flow (shown as a red/green anaglyph for stereo viewing) simulates self-motion that 
alternates between forward (expanding optic flow) and backward (contracting optic 
flow). The small yellow cross at the center of the display is the target to be fixated while 
viewing the stimuli. The prediction of flow parsing is that the target object should appear 
to be moving up-left during forward self-motion (first and third trials) and up-right during 
backward self-motion (second and fourth trials). 
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Suppl. Figure 3
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Suppl. Figure 4
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