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Abstract

For the brain to compute object motion in the world during self-motion, it must
discount the global patterns of image motion (optic flow) caused by self-motion. Optic
flow parsing is a proposed visual mechanism for computing object motion in the world,
and studies in both humans and monkeys have demonstrated perceptual biases
consistent with the operation of a flow parsing mechanism. However, the neural basis of
flow parsing remains unknown. We demonstrate, at both the individual unit and
population levels, that neural activity in macaque area MT is biased by peripheral optic
flow in a manner that can at least partially account for perceptual biases induced by flow
parsing. These effects cannot be explained by conventional surround suppression
mechanisms or choice-related activity, and have a substantial neural latency. Together,
our findings establish the first neural basis for the computation of scene-relative object
motion based on flow parsing.

Introduction

As we move through the world, our eyes are presented with a structured pattern
of image motion called optic flow (Gibson, 1950; Longuet-Higgins and Prazdny, 1980).
Optic flow is a rich source of self-motion information and can be used to estimate one’s
heading (Britten, 2008; Van den Berg, 1992; Warren et al., 1991). However, optic flow
complicates the interpretation of object motion. During self-motion, an object’s motion
on the retina reflects a vector sum of image motion caused by the object’s movement in
the world and optic flow due to the observer’s self-motion. To estimate object motion in
the world, the brain must discount optic flow resulting from self-motion.

One mechanism for computing object motion during self-motion is known as optic
flow parsing (Niehorster and Li, 2017; Rushton and Warren, 2005; Warren and Rushton,
2007; 2009a). According to the flow-parsing hypothesis, the visual system subtracts the
optic flow due to self-motion such that any remaining motion represents object motion in
the world (Figure 1A, B). If the visual system performs flow parsing, an observer’'s
perception of an object’'s motion should be biased relative to its retinal motion (Warren
and Rushton, 2009a), with the bias being a repulsion away from the optic flow vector at
the location of the object.

Human psychophysical experiments have demonstrated that optic flow biases
object motion perception in a manner consistent with flow parsing (Foulkes et al., 2013;
Matsumiya and Ando, 2009; Niehorster and Li, 2017; Rogers et al., 2017; Warren and
Rushton, 2007; 2009a; b). The direction of the induced bias is predicted by flow parsing,
although the magnitude of bias is typically smaller than expected (flow-parsing gain <1,
Niehorster and Li, 2017). As predicted, larger biases are observed when the object is
more eccentric in the visual field (Warren and Rushton, 2009a), and the direction of the
induced bias is opposite for forward and backward self-motion (Rogers et al., 2017).
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Perceptual biases also grow with self-motion speed, as expected by the flow parsing
hypothesis (Niehorster and Li, 2017; Peltier et al., 2020). Flow parsing effects are seen
even when optic flow is confined to the visual hemi-field opposite to that which contains
the object of interest (Warren and Rushton, 2009a), suggesting a global component of
the flow-parsing mechanism.

We have recently shown that motion perception of macaque monkeys
demonstrates flow parsing, including all of the key features of human behavior
described above (Peltier et al., 2020). Although biologically-plausible computational
models have been proposed (Layton and Fajen, 2016b; Layton and Niehorster, 2019),
the neural mechanisms underlying optic flow parsing remain unknown. Because the
behavioral effects of flow-parsing are highly location-specific (Peltier et al., 2020), a
brain area that represents the outcome of a flow-parsing mechanism is likely to contain
a retinotopic motion map. The middle temporal (MT) area is a strong candidate given its
retinotopic visual representation and its robust direction and speed tuning (Albright et
al., 1984; Maunsell and Van Essen, 1983b; Nover et al., 2005; Van Essen et al., 1981).
MT activity is correlated with perceived motion for ambiguous motion stimuli (Britten et
al., 1996), plaid motion (Rodman and Albright, 1989; Stoner and Albright, 1992), illusory
motion (Krekelberg et al., 2003; Luo et al., 2019), and implied motion (Kourtzi and
Kanwisher, 2000; Schlack and Albright, 2007). Thus, we hypothesized that MT activity
may reflect perceptual biases induced by flow parsing. Furthermore, MT has reciprocal
connections with the dorsal subdivision of the medial superior temporal area (MSTd)
(Maunsell and Van Essen, 1983a), an area that is highly selective for radial optic flow
patterns and is causally linked to heading perception (Britten and Van Wezel, 2002;
Celebrini and Newsome, 1995; Duffy and Wurtz, 1991; Gu et al., 2012; Gu et al., 2006).
This connection with MSTd may allow MT to compensate for self-motion and represent
object motion in the world.

If population activity in area MT accounts for the behavioral effects of flow
parsing, one would expect the population activity profile to shift with the direction of self-
motion simulated by optic flow (Figure 1C). This predicts that the effect of optic flow on
a neuron’s response would depend systematically on the neuron’s preferred direction
(dashed lines, Fig. 1C). To identify a neural mechanism for flow parsing, we recorded
from small neural populations in area MT while monkeys performed a direction
discrimination task in the presence of different optic flow backgrounds. We find that
optic flow modulates the responses of individual units in a manner consistent with the
predicted shift of the population response (Fig. 1C). Moreover, single-session
population decoding shows that even small populations of MT neurons can account for
a substantial portion of the behavioral effects of flow parsing. Together, our findings
demonstrate a novel mechanism for computing scene-relative object motion based on
flow parsing.
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Methods
Subjects and surgery

Two male rhesus monkeys (Macaca mulatta) participated in the experiment. A
head restraint device was implanted according to standard aseptic surgical procedures
under gas anesthesia. A Delrin (Dupont) ring was attached to the skull with dental
acrylic cement and anchored with bone screws and titanium inverted T- bolts (see Gu et
al., 2006 for details). To monitor eye movements, a scleral search coil was implanted
under the conjunctiva of one eye.

To guide electrodes to area MT, a Delrin recording grid was fastened inside the
head-restraint ring using dental acrylic. The recording grid (2 x 4 x 0.5 cm) contained a
dense array of holes spaced 0.8 mm apart. Under anesthesia and using sterile
technique, small burr holes (~0.5 mm diameter) were drilled vertically through the
recording grid to allow electrodes to penetrate the brain through transdural guide tubes.
All surgical procedures and experimental protocols were approved by the University
Committee on Animal Resources at the University of Rochester.

Experimental apparatus

Monkeys were seated in custom-built primate chairs with their heads restrained.
The chair was fastened onto a six degree-of-freedom motion platform (MOOG
6DOF2000E); however, in these experiments, the platform remained stationary. A field
coil frame (C-N-C Engineering) was mounted to the top of the motion platform to
monitor eye movements using the scleral search coil technique.

Visual stimuli were rear-projected onto a 60 x 60 cm tangent screen using a
projector (Christie Digital Mirage S+3K) that was mounted on the motion platform. The
screen was affixed to the front of the field coil frame, roughly 30 cm in front of the
monkey (monkey M: 31.7 cm from eyes to screen; monkey P: 33.0 cm from eyes to
screen). As a result, the screen subtended approximately 90 x 90° of visual angle. To
restrict the monkey’s field of view to visual stimuli on the screen, the sides and top of
the field coil frame were covered with black matte material.

Electrophysiological recordings
Electrode positioning system

Extracellular neural activity was recorded using V-Probe multi-site linear
electrode arrays (Plexon). The probes had 24 channels with 50 um spacing between
channels. The position of the probe was controlled using the EPS electrode positioning
system and the Flex MT microdrive mounting system (Alpha Omega). The Flex MT
mounting ring was secured to the monkey’s head restraint, and a microdrive tower was
mounted onto this ring. This tower held the V-Probe and guide tube, while connecting to
the EPS system to drive the electrode array. The sterilized V-Probe was front-loaded
into a transdural guide tube and then secured to the microdrive tower. The tower was
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then affixed to the mounting ring in a position that aligned the guide tube vertically with
the appropriate grid hole. The guide tube was then lowered manually through the grid
hole until the resistance of the dura mater was felt. The entire tower, including the guide
tube and electrode array, was then lowered ~2-3 mm, allowing the guide tube to
puncture the dura mater.

Neural signal processing system

Neural signals were amplified and bandpass filtered (350 Hz — 3446 Hz,
Blackrock Microsystems). Spike waveforms and raster plots for all channels were
monitored online. Spike detection thresholds were set manually for each channel to
capture multi-unit activity with a spontaneous firing rate of ~50-100 spikes/second. The
raw voltage signals from the probe were digitized and stored to disk at 30 kHz for offline
analysis. Because spike thresholding was performed again offline before spike sorting
and analysis, the manual spike thresholds were set online simply to map receptive fields
and to tailor stimuli to neuronal preferences.

Neural signals were analyzed offline using Plexon Offline Sorter to determine a
spike detection threshold and to perform spike sorting. Waveforms corresponding to
candidate neural events were detected when the raw voltage trace reached local
minima at least 3 standard deviations below the mean of the signal for each channel.
Waveform snippets were extracted as 48 samples over 1.6 ms and aligned such that 16
samples were taken before the threshold was reached. These waveforms were then
sorted in a 2-dimensional feature space using the built-in t-distribution expectation-
maximization scanning method. As there was a tendency of the Plexon Offline Sorter to
overestimate the number of unique units, the sorting of each channel was reviewed
manually in a 2-dimensional feature space and units were merged as necessary. Each
channel yielded one multi-unit with possibly one or more single units. The vast majority
of recordings were multi-units; note, however, that multiunit signals in area MT typically
show robust tuning properties that are closely matched with single units at the same
location (DeAngelis and Newsome, 1999)

Identifying the location of area MT

The location of area MT was initially estimated from structural MRI scans and a
standard macaque atlas (Van Essen et al., 2001). Area MT was identified as a region in
the posterior bank of the superior temporal sulcus (STS), typically centered ~16 mm
lateral to the midline and ~3 mm posterior to the interaural plane. Before using a V-
Probe, tungsten microelectrodes (FHC) were used to identify MT by mapping the
response properties in locations corresponding to the region identified by MRI.
Electrode penetrations were informed by the pattern of activity as the electrode passed
through gray matter and white matter, as well as the response properties of neurons to
visual stimuli. As the electrode approached the STS, it typically encountered neurons
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with large receptive fields that were selective for direction of visual motion, characteristic
of the dorsal division of the medial superior temporal (MSTd) area (Duffy and Wurtz,
1991). This activity was typically followed by a very quiet region, indicative of the lumen
of the STS, and then area MT as the next region of gray matter. Receptive fields in MT
were markedly smaller than those in MSTd, and their sizes scaled approximately
linearly with receptive field eccentricity (Albright and Desimone, 1987). Across MT,
neurons typically exhibited tuning to direction, speed, disparity, and receptive field
location that changed gradually with the depth of the electrode, consistent with the
previously documented organization of MT (Albright ef al., 1984; DeAngelis and
Newsome, 1999).

In recording experiments, the V-Probe was lowered until activity characteristic of
MT was centered on the probe’s channels, after which the probe was left to settle for 1-
1.5 hours. As the brain settled around the probe, the MT activity sometimes shifted
toward shallower channels. This tendency was combatted by retracting the probe 10-50
pMm at a time to keep MT centered on the channels.

Visual stimuli

Visual stimuli simulated the motion of an independently moving object during
forward or backward self-motion. Stimuli were generated by software written in Visual
C++, using the OpenGL 3D graphics rendering library. An OpenGL camera located at
the same position as each of the animal’s eyes generated the planar image projection
shown to each eye. To simulate depth in the stimulus, the stimulus was rendered
stereoscopically as a red/green anaglyph, and the animal viewed it through red and
green filters (Kodak Wratten2 #29 and #61, respectively). Visual stimuli lasted for 2 s in
all recording sessions except for the first three sessions in one monkey; in these
experiments, the stimulus duration was 1.2 s.

Object motion

Object motion was represented by random dots moving coherently within a
circular aperture positioned approximately in the middle of the receptive fields of the
recorded MT units, as determined with the receptive field mapping protocol described
below. This patch of random dots (hereafter typically referred to as the “object”) was
rendered at the same distance as the fixation point (i.e., centered within the plane of the
screen), and its size was determined to be the approximate size of the receptive fields
of several channels sampled online. The object was a nearly flat disk, with a front-to-
back simulated visual depth of 0.1 cm. Dots within the object were triangles 0.15 cm
wide and 0.15 cm tall, and they were distributed with a density of 20 dots/cm3.

Object motion within a stationary aperture was used so that the object stayed on
the receptive field throughout the trial, reducing response modulations due to varying
luminance within the receptive field or stimulation of the inhibitory surround. The
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stationary aperture ensured that any observed difference in firing rate between object
motion directions was due to motion within the aperture and not to changes in position
of the object’s boundaries. We also measured behavior in some sessions using moving
objects in which the object boundary translated, and we observed no qualitative
differences in biases or discrimination thresholds induced by optic flow. Thus, flow
parsing appears to function similarly for “objects” with either stationary or moving
boundaries.

The object moved in the fronto-parallel plane in one of 11 directions centered
around straight upward. For monkey M, object directions ranged from -40° to +40°
around straight upward, spaced linearly in steps of 8°. For monkey P, object directions
ranged from -20° to +20°, spaced in steps of 4°. Linear spacing of object directions was
used to allow for equal resolution in measuring perceptual biases within the range of
tested directions. The 11 object directions were interleaved randomly within a single
block of trials. In conditions with simulated self-motion, the object moved in depth with
the OpenGL camera, staying at the same depth relative to the moving camera, and thus
keeping the location and size of the object fixed on the retina. The direction and speed
of object motion were therefore defined in screen coordinates. Since the fixation target
remained fixed on the screen during simulated self-motion, any given direction of object
motion was identical on the retina (assuming perfect fixation) for the different optic flow
conditions. Thus, any observed differences in firing rate between optic flow conditions
could be attributed to the surrounding pattern of optic flow.

Dots within the object moved coherently, following a Gaussian velocity profile
with a standard deviation equal to 1/6™ of the duration of the visual stimulus (c =0.2 s
for 1.2-s trials, 0.33 s for 2-s trials), hitting the peak speed around the middle of the trial.
Generally, this velocity profile was scaled such that the peak speed was 10°/s, selected
because it is approximately the median preferred speed of MT neurons (Nover et al.,
2005). However, in sessions where there were channels on the V-Probe that did not
respond at all to slow speeds, the peak speed was increased to 16°/s or 20°/s.

Self-motion

A three-dimensional cloud of background dots surrounded the object, extending
in depth from 5 cm to 55 cm from the eyes. Patterned motion of these background dots
was used to visually simulate self-motion (see Movie #1). Each simulated self-motion
was a pre-programmed straight trajectory (forward or backward) that was not under
control of the subject. During simulated self-motion, the depth range of the dots (relative
to the OpenGL camera) remained fixed through the use of near and far clipping planes
in OpenGL. The background dots were triangles with height and width of 0.1 cm,
distributed with a density of 0.002 dots/cm?3. In the first four sessions with monkey P, the
background dots were points 3 x 3 pixels in size, and their retinal projections did not
vary in size according to their distance from the monkey. In subsequent sessions, these
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fixed-size dots were replaced with triangles whose image sizes varied inversely with
their distance from the monkey. This added a monocular depth cue to the optic flow,
simulating self-motion more realistically.

In most trials, background motion was generated by placing an OpenGL camera
at the location of the monkey’s eye and moving the camera along the trajectory of the
simulated self-motion. In the forward self-motion condition, the background dots
expanded radially from the central fixation point, simulating forward self-motion. In the
backward condition, the background dots contracted toward the fixation point,
simulating backward self-motion. In a set of control trials (stationary condition), the
background dots were static for the duration of the trial to indicate no self-motion. These
three self-motion conditions were crossed with the 11 object directions, and all
conditions were randomly interleaved within a single block of trials.

Self-motion speed followed a Gaussian velocity profile with a standard deviation
equal to 1/6 of the trial duration (o = 0.2 s for 1.2-s trials, 0.33 s for 2-s trials), hitting the
peak speed around the middle of the trial. This velocity profile was identical in shape
and timing to the object’s velocity profile; therefore, object speed and simulated self-
motion speed are proportional throughout the trial.

Self-motion speed, along with the object’s horizontal location and speed,
determines the image velocity of the flow vector at the location of the object (Longuet-
Higgins and Prazdny, 1980), and thus the predicted perceptual bias due to flow-parsing
(Peltier et al., 2020). In our experiments, the speed of self-motion was chosen for a
given object location and speed to keep the predicted perceptual bias at a specified
value. Self-motion was, therefore, faster in sessions with objects that were less
horizontally eccentric and in sessions with faster object motion. The predicted bias was
specified for each session, and it was set to be either £10° or £15° so that the total
predicted shift between forward and backward self-motion would be either 20° or 30°
(assuming perfect flow parsing with a gain of unity). For monkey M, the predicted bias
was +£10° in all experiments. Because monkey P generally exhibited smaller biases that
decreased toward 0 over an extended period of training (Suppl Figure 1B), faster self-
motion was used in later experiments to elicit a robust perceptual bias. For monkey P,
the predicted bias was £10° in early experiments and £15° in several later experiments.

A circular mask was placed around the object to block out background dots
directly surrounding the object. The purpose of the mask was to prevent the monkey
from making judgments of object motion based solely on local motion comparisons
between the object and the immediately surrounding optic flow. The background mask
also limited the effect of center-surround interactions on MT responses. The size of the
mask was determined by a mask ratio parameter, which is the ratio of the mask’s
diameter to the object’s diameter. In these experiments, the mask ratio stayed constant
within each session and ranged between 2 and 3 across sessions.
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Experimental protocol
Preliminary measurements

Manual mapping of MT: Once the V-Probe had settled in area MT, the receptive
field and tuning properties of several channels spanning the length of the probe were
examined individually using manually controlled patches of random dots. The
parameters of the patch were manipulated to determine approximate receptive field
location and size, as well as estimates of preferences for direction, speed, and disparity.

Tuning protocols: Quantitative measurements were then taken of direction
tuning, speed tuning, and receptive field location and size. While the activity from all
channels was saved for offline analysis, the activity of four channels distributed along
the length of the probe was monitored online during these tuning measurements. The
tuning of these four channels was used to inform stimulus parameter selection in
subsequent tuning protocols.

Direction tuning was measured with patches of random dots that drifted
coherently in one of 8 directions separated by 45°, in order to determine the direction
preferences of all neurons. The estimated preferred direction (determined by eye from
the online tuning curve) was set to be the stimulus direction in subsequent tuning
measurements. When preferred directions varied substantially across channels in a
recording session, an intermediate direction (chosen to activate the most units) was
selected as the preferred direction. If preferred directions differed so much that an
intermediate direction would not elicit responses from any channels, subsequent tuning
measurements were taken more than once, testing responses to two different directions
that together could drive responses from most, if not all, channels.

Speed tuning was measured with patches of random dots that moved coherently
in the preferred direction at 0, 0.5, 1, 2, 4, 8, 16, and 32°/s. The preferred speed was
estimated manually from tuning curves plotted online from neural activity recorded on
the four selected channels, and it was used as the stimulus speed in subsequent tuning
measurements. If there appeared to be substantial variation in speed preferences, an
intermediate speed was used. It never occurred that a single speed could not be found
that would elicit a response from all four of the channels monitored online.

The spatial profile of the receptive field was measured with patches of random
dots presented at locations on a 4 x 4 grid. The grid was centered on the manually
estimated receptive field center and covered an area twice as wide and as long as the
manually estimated diameter of the receptive field. Responses were fitted with a 2-
dimensional Gaussian function to estimate the center and size of the receptive field.
The mean of the receptive field centers of the four channels that could be viewed online
determined the location of the object during the size tuning measurement and the flow-
parsing experiment.

Size tuning was measured with patches of random dots that moved in the
preferred direction and speed with patch diameters of 2, 4, 8, 16, 32, and 64° of visual
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angle. The approximate mean optimal stimulus size among the four channels viewed
online determined the object’s size in the flow-parsing experiment. Optimal sizes varied
from 8° to 32° in diameter depending on stimulus eccentricity, with a median diameter of
20°.

Flow-parsing task

The animal’s task was to judge whether a patch of dots (the “object”) moved
rightward or leftward, relative to vertical, in the presence of optic flow simulating forward
or backward self-motion (see Suppl. Figure 2 and Fig. 2 of (Peltier et al., 2020) for more
details). At the beginning of each trial, a fixation target appeared in the center of a blank
screen. The monkey had to maintain fixation within a 2.5-2.8° (full width) box
surrounding the fixation target for the duration of the trial. 215 ms after fixation was
achieved, the visual stimulus appeared. The object and background dots appeared
simultaneously, started to move following the Gaussian velocity profile described above,
and then disappeared when the object motion and self-motion concluded. At this time,
the fixation point disappeared and two choice targets appeared 10° to the left and right
of center. The monkeys indicated whether they perceived leftward or rightward object
motion (relative to the vertical reference) with a saccadic eye movement to one of the
two choice targets. Correct responses, based on the direction of object motion in screen
coordinates, were followed by a liquid reward (0.2-0.4 ml).

The presence of optic flow was expected to bias the monkey’s reports of object
direction if it was performing a flow-parsing operation (Peltier et al., 2020). As a result,
the monkey’s report of object motion direction in the stationary condition could flip from
rightward to leftward or vice versa during self-motion. This reversal could occur in
conditions for which the object’s motion in screen coordinates is rightward while the
object’s motion in world coordinates is leftward, or vice versa (see (Peltier et al., 2020)
for more details). This corresponds to conditions in which the horizontal component of
the optic flow vector implied at the location of the object is in the same direction and
greater in magnitude than the horizontal component of object motion (assuming a flow
parsing gain of unity). To avoid reinforcing perceptual reports in one coordinate frame
over the other, subjects received a reward randomly on 70% of these trials (see Figure
12 of (Peltier et al., 2020)). On all other trials, in which object directions were consistent
in screen and world coordinates, subjects were rewarded on 95% of correct trials.

Data Analyses
Behavioral analyses

For each experimental session, a psychometric function was computed for each
optic flow condition to represent the proportion of rightward choices as a function of
object direction. The probability of a rightward choice given the object direction was
calculated as a cumulative Gaussian distribution, given by:
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P(rightward choice | 0) = %(1 + erf(i%)) (1)

where 0 is the object’s direction of motion, y is the mean of the Gaussian distribution, o
is the standard deviation of the distribution, and erf(x) is the Gauss error function given
by:
2 -
erf(x) = \/_ﬁfox et dt (2)

Parameters p and o were optimized to minimize the sum squared error between the
predicted proportion of rightward choices and the recorded proportion of rightward
choices. To calculate confidence intervals around each u, 200 bootstrapped samples of
the behavioral data were computed. Each sample was fitted with a cumulative Gaussian
function, and a 95% confidence interval was computed using percentiles of the
bootstrap distribution. Incorporating a lapse rate into fits of the psychometric function
was not found to improve the fits and was thus not included in the main analysis.

The mean of the Gaussian distribution, u, represents the object motion on the
screen at which the monkey makes 50% rightward choices and 50% leftward choices,
also known as the point of subjective equality (PSE). The effect of optic flow on
perceived object motion was measured as the shift in PSE between forward and
backward optic flow conditions, given by:

PSE shift = sign(ObjXLocation) X (PSEforwara — PSEpackwara) (3)
where sign(ObjXLocation) is +1 for objects located in the right visual field and -1 for
objects located in the left visual field, and PSEfmwara and PSEpackwara are the PSEs of the
psychometric function for the forward and backward optic flow conditions, respectively.
The expected effect of flow parsing depends on the direction of optic flow vectors that
would have been at the location of the object had they not been masked, which
depends on the object’s location in the visual field. Thus, the sign of the PSE shift
depends on the object’s horizontal location such that it is positive if it is in the direction
predicted by flow parsing. Confidence intervals on PSE shifts were computed using the
same bootstrapped samples used to compute PSE confidence intervals. For each of the
200 samples, the PSE shift was computed, and a 95% confidence interval was
computed using percentiles of the bootstrap distribution.

PSE shifts were compared to the shifts that are predicted by flow-parsing through

the computation of a flow-parsing gain (FP gain), given by
PSE shiftopserved (4)
PSE Shiftpredicted

where PSEshiftopserved denotes the measured PSE shift (Equation 3) and PSEshiftyredicted
denotes the PSE shift predicted by perfect flow parsing. The computation of predicted
PSE shift is described in detail elsewhere (Peltier et al., 2020). Flow-parsing gain will be
0 if optic flow does not produce any perceptual biases, meaning that the subject is
reporting object motion in retinal coordinates. Flow-parsing gain will be 1 if the biases
induced by optic flow match those that are predicted by the flow-parsing hypothesis,
indicating that the subject is fully compensating for self-motion and reporting object
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motion in world coordinates.

Neural analyses
Unit inclusion criteria

Exclusion of units without direction tuning: Units were included in analysis only if
they exhibited statistically significant direction tuning. For each unit, firing rates collected
in the direction tuning protocol were compared using a Kruskal-Wallis one-way analysis
of variance to test whether the distributions of responses elicited by each direction all
came from the same distribution. If the distributions of firing rates did not differ
significantly between directions (p > 0.05), the unit was determined not to have
significant direction tuning and it was excluded from subsequent analyses.

Exclusion of units without structured receptive fields: Firing rates recorded during
the receptive field (RF) mapping protocol were fitted with a 2-dimensional (2D)
Gaussian function. A unit’s firing rate at location (x, y) is modeled as:

R(xy) = b + Aexp (_ <(x—xo)2 N (y—yo)2)> 5)

209% 2032,

where b is the spontaneous firing rate, A is the response amplitude, xo is the horizontal
location of the RF center, ox is the horizontal extent, yo is the vertical location of the RF
center, and oy is the vertical extent. Parameters were optimized to minimize the sum
squared error between measured and predicted firing rates. If a Spearman’s rank
correlation between measured and the predicted firing rates failed to reach significance
(permutation test, p < 0.05), the unit was excluded from further analysis.

Because the stimuli used to map MT receptive fields were approximately half the
diameter of the receptive field, RF sizes are generally overestimated using this RF
mapping protocol. To account for this spatial blurring effect, deconvolution of the fitted
receptive fields was performed to compute a more accurate receptive field size. The 2-
dimensional Gaussian fits were extrapolated onto a spatial domain that was double the
length and width of the RF mapping grid, using Equation 5. Then, the horizontal and
vertical components of the receptive field were deconvolved separately. For the
horizontal component, a cross-section was taken at the peak vertical value. This 1-
dimensional Gaussian function was then deconvolved with a boxcar function having the
width of the RF mapping stimulus. The result was then fitted with a Gaussian function,
given by:

R(x) = b + Aexp (— ;T’;) (6)
where b is the baseline, A is the amplitude, u is the center location of the RF, and o is
the standard deviation of the Gaussian RF profile. The o parameter from this fit was
used as the adjusted ox for the 2-dimensional receptive field. Similarly, an adjusted oy
was computed by deconvolving a cross-section taken at the peak horizontal value and
fitting the output with a Gaussian function. Deconvolution typically reduced o values by

about 25%.
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Exclusion of units based on receptive field overlap with the optic flow
background: The purpose of the background mask was to prevent units from
responding directly to the background optic flow, so units were excluded from analysis if
their receptive fields had substantial overlap with the background optic flow field. We
quantified the amount of overlap between receptive fields and the background mask
with a metric called Receptive Field Inside Mask (RFIM). To capture the entire receptive
field, we used the fitted parameters from Equation 5 to compute the receptive field over
a region 3 times as wide and as tall as the range of locations tested in the RF mapping
protocol. The receptive field was computed with 0.5° resolution, using parameters b, A,
Xo, and yo from the pre-deconvolved fit along with ox and o, from the deconvolved fit.
The minimum value of the extended receptive field was subtracted from all points to
make the minimum of the receptive field zero.

The location of the background mask was represented as a bit mask of the same
size and resolution as the modeled receptive field, with values of 1 representing points
within the mask and values of 0 representing points overlapping with optic flow. The
overlap between the receptive field and background mask was computed as the
pointwise product of the fitted receptive field and the bit mask. The products were then
summed over all points and normalized by the entire area of the receptive field. This
computation of RFIM is given by:

S, I (RF (x(0),y (1)) xBM (x(D),y () @)

L N RF(x@.y(D)
where RF(x(i), y(j)) is the value of the unit’s receptive field at point (x(i), y(j)) minus the
minimum value and BM(x(i), y(j)) is the value of the bit mask at the same point.

This computation of RFIM assigns a higher weight to locations that elicit higher
firing rates, representing the center of the receptive field, and less weight to locations at
the edge or outside the receptive field. Units were excluded from analysis if RFIM was
less than 0.75, indicating that less than 75% of the response density fit within the
background mask. Varying this criterion for RFIM from 0.6 to 0.9 had little impact on
decoding results.

RF inside mask =

Spike counting window

Unless specified otherwise, firing rates were calculated by summing spike counts
within a 1000-ms window centered on the peak of the population response. The peak
population response occurred approximately 1200 ms after the stimulus onset, 110 ms
after the peak object speed was reached. The window was therefore determined to be
700 ms to 1700 ms after stimulus onset, thus capturing most of the visually driven
responses while excluding transient responses to the onset of the stimulus (see Figure
5A). As described below, a different analysis window was utilized for the computation of
Flow Modulation Index and decoding analyses, based on the observed time course of
FMI (Figure 5C).
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Surround suppression index (SSI)

Firing rates recorded during the size tuning protocol were fitted with two tuning
curves. The first was a single error function (DeAngelis and Newsome, 1999; DeAngelis
and Uka, 2003) representing a unit’s response to stimulus diameter, w, given by:

R(w) =Ry + A, * erf(%) (8)
where Ryp is the baseline response, Ae is the excitation amplitude, a affects the slope of
the tuning curve, and erf(x) represents the Gauss error function (Equation 2). Equation
8 best represents the size tuning of a unit without surround suppression, as there is no
peak representing a preferred stimulus size.

The second function used to fit size tuning curves was a difference-of-error (DoE)
functions (DeAngelis and Newsome, 1999; DeAngelis and Uka, 2003), given by:

R(w) = Ry + A, * erf (%) —A; * erf(ﬁ) (9)
Here, parameters Ro, Ae, and a, as well as the error function erf(x), are as defined in
Equation 8. A; represents the amplitude of inhibition, and g affects the slope of
inhibition. The DoE function best characterizes the size tuning of units with surround
suppression, as they produce a peak response for an intermediate stimulus size, with
decreasing responses for larger stimuli.

The errors of the fits from Equations 8 and 9 were compared using a sequential F
test, and a unit was determined to have significant surround suppression if the DoE
function yielded a significantly better fit than the single error function (p < 0.05). If the
DoE function produced a better fit, the unit’s optimal stimulus size was determined as
the peak of the DoE fit. If there was no significant surround suppression, the unit's
optimal stimulus size was taken to be the size at which the single error function fit
reached 90% of its maximal value (DeAngelis and Uka, 2003). A surround suppression

index (SSI) was calculated for each unit as follows:
SSI — Roptimal_Rlargest (10)

Roptimal_RO

where Roptimai denotes the unit’s response to its optimal stimulus size, Riargest represents
its response to the largest presented stimulus, and Ry is the unit’s baseline response
without any stimulus. SSI will be close to 1 for units that exhibit strong surround
suppression, and it will be 0 for units that do not exhibit any surround suppression. Units
that did not exhibit significant surround suppression, based on the sequential F-test,
were assigned an SSI of 0.

Horizontal direction discrimination index (HDDI)

The selectivity of MT units for direction during the discrimination task (i.e., a
preference for rightward or leftward object motion) was computed as a horizontal-
direction discrimination index (HDDI), calculated as follows (adapted from DeAngelis
and Uka, 2003; Prince et al., 2002):
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HDDI = 1N Riight() " Rieft(i) (11)

N &= |Rrighr(i)‘Rzefr(i)|+‘7avg(i)
For each pair of the N = 5 object motion directions symmetric around 0O (e.g. +4
degrees), the difference in mean firing rate between rightward (Rignt) and leftward (Rier)
object directions was calculated among trials in which there was no self-motion. This
difference was then normalized by the sum of the magnitude of the difference and the
average standard deviation of firing rates between rightward and leftward object
directions (0avg), also calculated from stationary background trials. This value was
averaged over the 5 pairs of directions to determine the HDDI. HDDI ranges from -1 to
1, with negative values assigned to units that respond more strongly to leftward motion
and positive values assigned to units that respond more strongly to rightward motion.

Flow-modulation index (FMI)
The effect of optic flow on a unit’s response was computed as a flow modulation
index (FMI), given by:

1 N sign(ObjXLocation)x (Rforward(i) _Rbackward(i))

FMI = -3,

(12)

|Rforward(i)‘Rbackward(i)|+‘7avg(i)
For each of the N = 11 object directions used in the experiment, we calculated the
difference in mean firing rate between forward (Rfoward) and backward (Rbackward) self-
motion conditions. This difference was normalized by the magnitude of the difference
added to the average standard deviation in firing rates between forward and backward
self-motion conditions. This normalized difference was averaged over the 11 object
directions to compute the FMI. FMI ranges from -1 to 1, with the magnitude of the value
indicating the strength of the effect of optic flow on firing rates. As with the computation
of PSE shifts, the horizontal position of the object (ObjXLocation) is incorporated into
calculation of the FMI because the expected effect of optic flow on neural responses
depends on the direction of optic flow surrounding the object, which depends on the
object’s location.

Because FMI is computed as an average across the different object directions, it
will only tend to be substantially different from zero if there is a fairly consistent
difference in response between forward and backward optic flow conditions across the
different object directions. However, because the range of object directions used in the
discrimination task is restricted (to £20° for monkey P and +40° for monkey M), we
expect a consistent difference in response between the two self-motion directions for
neurons with direction preferences that are substantially away from the vertical task
reference (e.g., dashed vertical lines in Figure 1C).

After observing that FMI developed more slowly than HDDI (Figure 5B,C), we
determined a new time window to compute FMI that was shifted toward later times than
other spike rate analyses. We calculated a time course of FMI for each unit by splitting
trials into 50-ms windows and computing FMI within each window. Because the strength
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of FMI effects is related to HDDI (Figure 3D), we separated units into two groups based
on whether HDDI was greater than or less than 0, and we computed an average FMI
time course for each group. The difference in time course between groups was
calculated, and the absolute value of that difference was computed. We determined the
time window with the strongest FMI information as the full width of the difference time
course at half maximum. This window was 850-1150 ms after stimulus onset for
sessions with 1200-ms trials and 1250-1750 ms after stimulus onset for sessions with
2000-ms trials.

Dissociating effects of optic flow and choice on neural responses

FMI measures differences in response associated with self-motion direction
indicated by optic flow. However, the perceptual biases induced by optic flow mean that
choices are correlated with self-motion direction. Thus, it is possible that neural effects
captured by FMI simply reflect a correlation of neural responses with choices. To
dissociate the contributions of choice and self-motion direction to MT responses, we
took advantage of the subset of object directions for which monkeys made both choices
for each self-motion direction. This allowed a conditioning analysis to measure distinct
effects of choice and self-motion direction, analogous to that used previously (Nogueira
et al., 2017; Sasaki et al., 2020).

To quantify choice-related activity in individual units, we computed the well-
established choice probability (CP) metric (Britten et al., 1996). For each distinct
combination of object direction and self-motion direction (forward/backward), the
distribution of responses was z-scored and then divided into two groups based on
whether the animal made a leftward or rightward saccade to indicate their choice.
Because this was done separately for each self-motion direction, effects of optic flow on
the CP metric were removed. Z-scored responses were then pooled across unique
stimulus conditions as long as there were at least 3 choices made toward each target
location. ROC analysis was then applied to the pooled z-scores for the two choice
groups, and CP was defined as the area under the ROC curve. For our purposes, CP
was not referenced to each neuron’s preferred direction; rather CP > 0.5 corresponds to
a preference for rightward choices and CP < 0.5 corresponds to a preference for
leftward choices. This avoids potential issues with defining the “preferred” stimulus
when choice effects are large (Zaidel et al., 2017).

We used an analogous ROC-based metric to quantify response modulations
related to the direction of self-motion simulated by optic flow. This ‘flow probability’ (FP)
metric is computed like CP, but swapping the roles of variables that represent choice
(left vs. right) and self-motion direction (forward vs. backward). For each distinct
combination of object direction and choice, responses were z-scored and sorted into
two groups based on self-motion direction. If there were at least 3 trials for forward and
backward self-motion, normalized responses from that condition were pooled with other
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conditions that met the same criteria. ROC analysis was applied to the pooled z-scores
that were sorted by self-motion direction. The resulting metric was then multiplied by
sign(ObjXLocation), such that it's sign would be expected to match the sign of FMI if
FMI is driven solely by effects of self-motion direction. Thus, FP provides a metric
similar to FMI but removes any response modulations that depend on choice.

Time course analyses

To observe the temporal dynamics of MT responses to combined object motion
and optic flow, we analyzed the time course of the normalized population response,
FMI, and HDDI. Only units recorded during sessions with 2-s trials were included in the
time course analyses (669/727 units). Data were pooled across monkeys.

First, we computed a peristimulus time histogram (PSTH) of the population
response to vertical object motion. Separate PSTHs were calculated for each self-
motion condition. Firing rates were calculated by taking a moving sum of the spike trains
for a given self-motion direction with a window width of 50 ms. Each unit’s firing rates
were normalized (across all self-motion conditions) so that the unit’'s peak response was
assigned a value of one. A PSTH was computed for each unit from these normalized
responses, and the population PSTH was computed as the mean PSTH across units.
Spontaneous firing rates were not subtracted when normalizing each unit’s responses,
and the mean normalized baseline response was 0.28. To test for a difference in
normalized response between stationary and self-motion trials, we performed a rank-
sum test on the distributions of stationary and self-motion (combining forward and
backward) responses for each of the 2501 time points from the onset of the stimulus to
500 ms after stimulus offset. A time point was considered to have a significant
difference in response between stationary and self-motion conditions if the rank-sum
test revealed a significant difference with a Bonferroni correction for multiple
comparisons (p < 0.05/2501 = 2.00 x 10°).

A time course of HDDI was computed by calculating HDDI for each unit in 50-ms
bins. Units were grouped according to the cosine (horizontal component) of their
preferred direction in intervals of 0.25, and the mean HDDI time course was computed
for each group. Periods of significant directional responses were defined as time
windows in which the distribution of HDDIs differed between the group of units that
preferred rightward motion (cos(preferred direction) > 0.75) and the group that preferred
leftward motion (cos(preferred direction) < -0.75). We used rank-sum tests to compare
the distributions of HDDI between groups within each of the 51 time windows from
stimulus onset to 500 ms after stimulus offset. A time window was determined to have a
directional response if the rank-sum test reached significance with a Bonferroni
correction for multiple comparisons (p < 0.05/51 = 9.80 x 104).

Similarly, a time course of FMI was computed by calculating FMI for each unit in
50-ms bins. Units were grouped according to HDDI in intervals of 0.2, and the mean
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FMI time course was calculated within each group. Periods of significant optic flow
modulation were defined as time windows in which FMI among units with the strongest
positive HDDI (HDDI > 0.6) differed from FMI among units with the strongest negative
HDDI (HDDI < -0.6). Rank-sum tests compared the distributions of FMI between groups
in each of the 51 time windows from stimulus onset to 500 ms after stimulus offset, and
a Bonferroni correction for multiple comparisons (p < 0.05/51 = 9.80 x 104) was
implemented to assess statistical significance.

Population decoding
Decoding procedure

To investigate how well area MT carries information about choice and object
motion, logistic regression models were trained to classify each of these variables from
a linear combination of the responses of a population of simultaneously recorded MT
units. These linear classifiers were implemented in Matlab using the function ‘fitclinear’
with a logistic regression learner and 10-fold cross-validation. Classifiers assigned a
weight to the activity of each unit, indicating how strongly the unit contributed to the
decoder’s predictions along with its sign. The weights correspond to the components
(one per unit) of a vector of decoding weights. Decoding results were robust to
variations in the type of decoder used (logistic regression, support vector machine,
Fisher linear discriminant), and the type of cross-validation (5-fold, 10-fold, none). Thus,
we only present results for the logistic regression decoder with 10-fold-cross-validation.

A separate linear classifier was trained to decode each variable of interest. First,
we trained a linear decoder to predict the monkey’s choice on each trial (choice
decoder), with rightward choices coded as +1 and leftward choices coded as -1.
Second, we trained a classifier to decode stimulus direction in screen coordinates
(stimulusscreen decoder). For this decoder, the stimulus was coded as the sign of the
object’s direction relative to vertical on the display: +1 for rightward object motion, -1 for
leftward object motion. Since straight upward motion does not have a sign, trials in
which the object moved straight upward were not included in training this model.
However, firing rates from these trials were used to predict stimulus direction once the
decoder was trained. Finally, we trained a linear classifier to decode the stimulus in
world coordinates (stimuluswons decoder). The object direction in world coordinates was
computed as the vector difference of the object direction on the screen and the optic
flow vector that would have appeared at the (x, y, z) location of the center of the object.
Positive values of object direction (rightward object motion in the world) were coded as
+1, while negative values (leftward object motion in the world) were coded as -1.

In addition to these three main decoders, a variation of the stimulus decoders
was trained only on trials in which no self-motion was simulated (stationary background
dots), such that there can be no distinction between world and screed coordinates in the
training set. The decoder was then tested on both stationary trials and trials with self-
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motion. Since this stimulusnosm decoder did not have access to neural responses when
there was forward/backward optic flow, it served as a control. We also trained an
analogous decoder to classify the monkey’s choices based only on responses in the no
self-motion condition (choicenosm decoder). If this choicenosm decoder could predict
choice biases seen in behavior during the self-motion conditions, it would suggest that
choice-related activity alone is sufficient to account for the effects of background optic
flow on MT responses.

Analysis of decoding results

Trained linear classifiers predicted stimulus or choice direction on held out trials,
using 10-fold cross-validation. The reports of the decoders were analyzed in the same
manner as the behavioral data, by tabulating the proportion of “rightward” choices of the
decoder and plotting this proportion as a function of stimulus direction in either world or
screen coordinates. This produced a set of “psychometric” curves for each decoder,
and PSE shifts and FP gains were computed from these decoder psychometric
functions in the same way that behavior was analyzed. The FP gains from each
decoder were compared to those from the other decoders and to the monkey’s
behavioral FP gains. Spearman’s rank correlations were computed between pairs of
decoders to determine whether the PSE shifts produced by two decoders covary across
recording sessions. Wilcoxon signed-rank tests were used to assess whether two
decoders produced PSE shifts (or FP gains) across sessions that come from
distributions with different medians.

Multiple linear regression was used to determine what features of a unit’s tuning
contribute to its individual decoding weight for each different type of decoder. The
regressors were HDDI, to represent a unit’s strength of direction tuning, and FMI, to
represent the strength of a unit's modulation in the presence of optic flow. We took the
components of the vector of decoding weights for a particular decoder, with each
component corresponding to a single unit, and regressed them against the HDDI and
FMI values for each unit. Prior to regressions, decoder weights were normalized within
each session by computing their z-scores. Linear regressions were computed using
Matlab’s fitim function, after combining data across recording sessions for each animal.
This yielded, for each type of decoder, a regression coefficient that captured the
relationship between decoding weights and HDDI/FMI values, as well as a regression
coefficient that reflected the interaction between decoding weights and HDDI/FMI
values. Regression coefficients that are significantly different from O indicate a variable
or interaction that plays a significant role in predicting the neural weights for that
decoder.

Results
Two macaque monkeys performed a fine discrimination of object motion direction
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in the presence of optic flow simulating forward or backward self-motion (Figure 1A,B;
20 sessions for monkey M, 19 sessions for monkey P). We first examine the perceptual
biases that were induced by optic flow. We next describe the effect of optic flow on the
responses of 727 units that were recorded from area MT during the discrimination task.
Finally, we used within-session population decoding approaches to examine whether
MT activity can account for the behavioral effects, and whether it can represent object
motion in screen or world coordinates. Note that, since the fixation target remains
centered on the screen during simulated self-motion, screen coordinates and retinal
coordinates would be isomorphic if the eyes remain perfectly fixated during stimulus
presentation. Since fixation cannot be perfect, we adopt the terminology of screen
coordinates.

Perceived object motion direction is biased in the presence of optic flow

The proportion of rightward choices, relative to vertical, was plotted as a function
of object motion direction (in screen coordinates) to construct a psychometric function
for each optic flow condition. Choices were biased in the presence of optic flow, and the
direction of the bias depended on the location of the object (Figure 2 A,B). When the
object was in the right visual hemi-field (Figure 2A), choices were biased leftward during
simulated forward self-motion and rightward during backward self-motion. This effect is
consistent with the flow-parsing hypothesis, as forward self-motion produces optic flow
vectors in the right visual hemi-field with a rightward component, such that subtraction
of these vectors is expected to produce a leftward perceptual bias (Fig. 1A, right panel).
Backward self-motion, conversely, produces optic flow vectors in the right hemi-field
with a leftward component, such that subtraction should induce a rightward bias (Fig.
1B, right panel). When the object to be discriminated was in the left visual hemi-field
(Figure 2B), biases induced by optic flow were reversed, as expected from the flow-
parsing hypothesis.

The effect of optic flow on perceived direction of object motion was quantified for
each session by computing a PSE shift, which is the difference in PSE between forward
and backward self-motion, multiplied by the sign of the object’s horizontal location in the
visual field (Egn. 3). When computed this way, a positive PSE shift always indicates a
perceptual shift in the direction that is predicted by flow-parsing. The PSE shifts for the
sessions in Figure 2A, B are 12.7° and 26.8°, respectively. For perfect flow parsing, the
PSE shifts for these two sessions are expected to be 30° and 20°, respectively (interval
between dashed vertical lines, Fig. 2 A, B).

Since stimulus conditions and expected PSE shifts varied across sessions and
animals, we computed a flow-parsing gain (FP gain) as the ratio between the observed
PSE shift and the expected PSE shift. The FP gain should be 1 if the monkey’s
perceptual reports reflect complete subtraction of background optic flow, O if no flow-
parsing occurs at all, and intermediate if the monkey’s behavior reflects partial
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subtraction of optic flow. FP gains may also be greater than 1 if the monkey
overcompensates for self-motion.

The distribution of FP gains measured during 39 recording sessions (20 for
monkey M, 19 for monkey P) is shown in Figure 2C. Median FP gains were 1.14 for
monkey M and 0.32 for monkey P, and this difference was significant (Wilcoxon rank-
sum test, Z = 4.5097, p = 6.493 x 10-%). While both monkeys’ FP gains were significantly
greater than 0 (Wilcoxon signed-rank test, monkey M: Z = 3.920, p = 8.858 x 105;
monkey P: Z = 3.823, p = 1.318 x 10*), monkey P’s FP gains were significantly less
than 1 (Wilcoxon signed-rank test, Z = -3.662, p = 2.502 x 10-4). This shows that
monkey P exhibited partial flow-parsing, consistent with previous results in humans
(Dokka et al., 2015; Fajen et al., 2013; Layton and Niehorster, 2019; Niehorster and Li,
2017). In contrast, monkey M’s median FP gain was marginally greater than 1 (Z =
1.904, p = 0.0569), suggesting some overcompensation for self-motion when judging
object motion.

As documented previously (Peltier et al., 2020), FP gains for both monkeys
decreased over time during training, likely due to the reward regimen used (see
Discussion). For monkey M (Suppl. Fig. 1A), flow-parsing gains started well above 1,
signifying a large overcompensation for self-motion, but decreased toward 1 by the time
recording sessions commenced. For Monkey P (Suppl. Fig. 1B), FP gains started closer
to 1 and decreased over time, stabilizing around ~0.3. Interestingly, when the object
was moved to the opposite hemi-field (Suppl. Fig. 1B, leftward-facing triangles), flow-
parsing gains increased toward their original values and subsequently declined again.
For both animals, FP gain were relatively stable during the period of time when
recording sessions took place (colors in Suppl. Fig. 1).

Effect of optic flow on MT responses depend on motion direction preference

We next examined whether a neural correlate of these perceptual biases is
manifest in the activity of neurons in area MT. While monkeys performed the
discrimination task described above, 24-channel linear electrode arrays were used to
record activity from area MT (see Methods). In order to be included in analyses, units
had to be directionally tuned, needed to have a receptive field that could be well-fit with
a 2-dimensional Gaussian function, and were required to have less than 25% overlap
between the receptive field and the background optic flow (see Methods for details). Of
the 974 units recorded over 39 sessions, 727 units met these inclusion criteria (317
units from 19 sessions in monkey P, 410 units from 20 sessions in monkey M). The
scarcity of well-isolated single units (18/727) did not allow us to analyze them separately
from multi-units, so all units were pooled in the analysis. Average receptive fields for
each recording session are shown in Suppl. Fig. 3.

Direction tuning curves of two example units, recorded during the same session
of the discrimination task, are shown in Figure 3 A,B. In this session, the target object
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was in the left visual field. The tuning curve of a unit that preferred leftward object
motion (Figure 3A) was modulated by optic flow such that backward optic flow
enhanced firing rates relative to forward optic flow. The tuning curve of a unit that
preferred rightward object motion (Figure 3B) shows the opposite pattern; firing rates
were greater during forward self-motion than backward self-motion. Although these
units were presented with the same optic flow patterns, they exhibited opposite effects
of optic flow on responses to object motion. Crucially, the effects shown by both units
are in the directions expected if optic flow shifts the population activity profile, as
illustrated in Figure 1C.

We quantified response modulations caused by background optic flow by
computing a flow modulation index (FMI, Eqn. 12). FMI is a normalized measure of the
difference in response between forward and backward self-motion conditions, averaged
across object motion directions. The sign of FMI is adjusted according to the location of
the object relative to the fixation target (Eqn. 12), such that data could be combined
across recordings in the left and right hemi-fields.

If flow parsing causes a shift of population activity in MT that explains perceptual
biases (Figure 1C), the firing rates of individual units should be affected differently
depending on their preferred directions. Specifically, FMI should be positive for leftward-
preferring neurons and negative for rightward-preferring neurons; neurons preferring
near-vertical directions should have FMI values closer to zero, as a shift of the
population activity has less effect on these neurons (Figure 1C). Indeed, this pattern
was observed across the populations of MT neurons recorded in each animal. Figure
3C demonstrates a roughly sinusoidal relationship between FMI and preferred direction,
and a circular-linear correlation reveals a highly significant relationship for each animal
(monkey M: reircuiar = 0.263, p = 6.96 x 10°7; monkey P: rcicutar = 0.611, p < 1 x 10714),
While there is clearly considerable variability in this relationship across the population of
MT units, this pattern is consistent with a shift in the MT population response that could
account for the perceptual biases induced by flow parsing.

As a complementary analysis, we would also expect FMI to depend on the
strength of MT units’ selectivity for leftward vs. rightward motion, given that the task
involves discriminating the horizontal component of motion. We quantified selectivity for
leftward vs. rightward motion with a quantity called the horizontal direction
discrimination index (HDDI, see Methods, Egn. 11). A positive HDDI indicates a
rightward direction preference, while a negative HDDI indicates a leftward preference.
The magnitude of the HDDI indicates the strength of directional selectivity over the
range measured during the discrimination task. FMI is plotted as a function of HDDI in
Figure 3D, revealing the expected linear relationship. FMI and HDDI are strongly
correlated (Spearman’s rank correlation, monkey M: rs = -0.244, p = 6.40 x 107/;
monkey P: rs =-0.706, p = 1 x 10®), indicating that neurons that better discriminate
horizontal motion are more affected by optic flow.
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Distinguishing effects of background optic flow from choice-related responses

We have shown that background optic flow modulates MT responses in a
manner that depends systematically on the direction preference of neurons relative to
the vertical discrimination boundary. However, since optic flow also biases choices of
the monkeys, one possibility is that neural response modulations simply reflect choice-
related activity in MT (Britten et al., 1996; Nienborg et al., 2012; Purushothaman and
Bradley, 2005; Uka and DeAngelis, 2004), rather than a mechanism of flow parsing per
se. Thus, it is unclear whether FMI primarily reflects effects of background optic flow,
effects of choice, or a mixture of the two. To address this issue, we applied a method
(Nogueira et al., 2017; Sasaki et al., 2020) for dissociating effects of stimulus context
(background optic flow direction) and choice on neural responses (see Methods for
details). In brief, for a subset of object directions that produced choices in both
directions for each optic flow condition, we used a z-scoring and conditioning approach
to measure the effect of optic flow direction on neural responses while conditioning on
choice (flow probability, FP), and to measure the effect of choice on neural responses
while conditioning on optic flow direction (choice probability, CP). If we see effects of
either optic flow or choice after conditioning on choice and optic flow, respectively, then
these effects cannot be accounted for by the conditioned variable.

Figure 4 A,B shows that flow probability (FP) exhibits a clear, systematic
dependence on preferred direction (circular-linear correlation, monkey M: reircutar = 0.323,
p = 5.45 x 10-'%; monkey P: reircuiar = 0.587, p < 1 x 10-'4) and HDDI (Spearman’s rank
correlation, monkey M: rs = -0.248, p = 3.83 x 1077; monkey P: rs =-0.691, p = 4.4 x 10
46) that is very similar to the dependencies of FMI in Fig. 3C,D. In contrast, choice
probability (CP) shows an inconsistent dependence on direction preference (circular-
linear correlation, monkey M: reircuiar = 0.312, p = 1.56 x 104; monkey P: reircuiar = 0.108,
p = 0.155) and exhibits a weak correlation with HDDI that has the opposite sign
compared to FP (monkey M: rs = 0.119, p = 0.015; monkey P: rs = 0.125, p = 0.026).
Further analysis shows that FP is strongly correlated with FMI, whereas CP is
uncorrelated with FMI and weakly negatively correlated with FP (Suppl. Fig. 4). These
findings demonstrate that background optic flow induces contextual modulations of MT
responses that cannot be simply explained by choice-related activity.

Strength of optic flow modulation cannot be explained by surround suppression
One might expect that effects of optic flow on MT responses are related to
interactions between an MT neuron’s classical receptive field and its inhibitory surround.

For many MT neurons, responses to a stimulus in the classical receptive field are
suppressed by motion in the surround (Allman et al., 1985), with suppression being
strongest when the velocity of surround motion matches the cell’s preference. Could this
form of directional surround suppression account for some or all of the observed effects
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of background optic flow on MT responses?

In our experimental design, we attempted to minimize contributions of surround
suppression by masking out a region of the background flow field at least twice as large
as the receptive field. Nevertheless, if masking was not completely effective, we might
expect neurons with larger optic flow modulations to have stronger surround
suppression. The absolute value of FMI is plotted as a function of surround suppression
index (SSI) in Suppl. Fig. 5A. We performed a multiple linear regression of the absolute
value of FMI onto SSI and monkey identity. We found no significant main effect of SSI
(t(723) = -0.918, p = 0.359), as well as no interactive effect of SSI and monkey identity
(t(723) = -1.35, p = 0.177), demonstrating that neurons with greater flow modulation do
not generally have stronger surround suppression. The only significant effect was a
main effect of monkey identity (B = -0.0623, #(723) = -4.42, p = 1.16 x 10), indicating
that [FMI| values were significantly greater in monkey P than in monkey M. Treating
each animal separately, there was no correlation between SSI and |FMI| for monkey P
(Spearman rank correlation: rs = -0.0284, p = 0.615), and a significant negative
correlation for monkey M (rs = -0.193, p = 8.31 x 10°). This negative correlation
indicates that units with stronger surround suppression had weaker flow modulation,
which runs counter to the notion that flow modulation arises from surround suppression.
Similar results were obtained when plotting FP against SSI (Suppl. Fig. 5B). The lack of
positive correlation between SSI and FMI suggests that optic flow modulates MT
responses via a mechanism that is distinct from conventional surround suppression,
perhaps through feedback from higher-level areas that encode optic flow, such as
MSTd or VIP (see Discussion).

HDDI and FMI develop with different time courses

If neural correlates of flow parsing in area MT rely on feedback or some other
mechanism that requires additional processing time, there may be a delay in the effect
of optic flow on MT responses. To explore this issue, we analyzed the time courses of
response properties of the MT population (Figure 5). Figure 5A shows the normalized
population response to vertical object motion, computed using a moving 50-ms analysis
window. Each unit’s firing rates were normalized (without subtracting spontaneous
activity) such that the unit’'s peak response (across all three self-motion conditions) was
1, and a population PSTH was then computed.

There was a robust transient response when dots appeared at the start of the
trial, with a peak 160 ms after stimulus onset. This transient is presumably a response
to the luminance onset of the dots, since motion begins sometime later. After the
transient response, normalized response shows a broad central peak that roughly
follows the temporal profile of stimulus velocity, peaking ~1100 ms after stimulus onset.
The time course of population response is practically indistinguishable between optic
flow conditions (Fig. 5A, colored curves). Rank-sum tests revealed that there was no
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time point at which normalized responses differed significantly between the stationary
and forward or backward self-motion conditions (p > 0.05; which is much greater than
the threshold for significance after correction for multiple comparisons, which is p = 2.00
x 10-). This indicates that optic flow did not elicit a net change in average response
across the entire MT population. This likely occurs because forward and backward optic
flow have opposite effects on MT units that prefer rightward and leftward directions (see
Fig. 1C), and because rightward and leftward tuned neurons are roughly equal in
number.

Figure 5B illustrates the time course of HDDI, with neurons grouped according to
direction preference. As expected from the definition of HDDI, there is a clear
separation in the HDDI time course between units that preferred rightward motion
(shades of blue) and units that preferred leftward motion (shades of red). Approximately
600 ms after stimulus onset, units that preferred rightward motion developed positive
HDDIs while units that prefer leftward motion developed negative HDDIs. This
directionally selective response persists throughout most of the remainder of the
stimulus period.

We identified periods of significant directional responses as time windows in
which the distribution of HDDIs differed between the group of units that preferred
rightward motion (cos(preferred direction) > 0.75; Figure 5B, darkest blue curve) and the
group that preferred leftward motion (cos(preferred direction) < -0.75; Figure 5B, darkest
red curve). We compared the distributions of HDDI between groups within each time
window, with significance assessed by a Wilcoxon rank-sum test with Bonferroni
correction for multiple comparisons, p < 9.80 x 104). There was a significant directional
response from 600 to 1850 ms after stimulus onset, as well as a much weaker but
significant reversal of selectivity in the ~500 ms after stimulus offset. This reversal may
be an adaptation effect, as shown previously following stimulus extinction (Kohn and
Movshon, 2003; Van Wezel and Britten, 2002).

For comparison, Figure 5C illustrates the time course of FMI during the trial, with
neurons grouped according to HDDI value. Strikingly, the time courses of FMI for
rightward- and leftward-preferring units separate much later, during the second half of
the visual stimulus presentation. We defined periods of significant optic flow modulation
as time windows in which FMI for units with HDDI > 0.6 (Figure 5C, darkest blue curve)
differed from FMI for units with HDDI < -0.6 (Figure 5C, darkest red curve). Rank-sum
tests with Bonferroni correction for multiple comparisons (p < 9.80 x 10*) revealed a
main period of significant optic flow modulation ~1300-1700 ms after stimulus onset. A
weaker but significant reversal effect was also seen after stimulus offset, which may
again be caused by response adaptation to the stimulus.

The fact that optic flow modulation of MT responses arose ~700 ms after
directional selectivity suggests that effects of optic flow on MT responses are mediated
through additional pathways that are not necessary for the generation of direction
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selectivity. Flow modulation may be mediated through feedback from higher-level areas,
such as MSTd or VIP, that respond selectively to optic flow (see Discussion).

Single-session decoding of MT population responses

The fact that MT activity is modulated by background optic flow indicates that MT
neurons represent more than just an object’s retinal velocity. Moreover, the dependence
on direction preference (Fig. 3C,4A) is consistent with the hypothesis that background
optic flow shifts the population hill of activity in the direction necessary to account for
behavioral biases (Fig. 1C). However, it is unclear thus far whether the response
modulations induced by optic flow are sufficiently strong to account for behavioral
effects. To address this issue, we used logistic regression to perform within-session,
trial-by-trial population decoding of MT responses. Decoders were trained to predict one
of three variables: a stimulusscreen decoder was trained to decode the direction of object
motion in screen coordinates; a stimuluswors decoder was trained to decode the
direction of object motion in the world; and a choice decoder was trained to classify
trials according to the monkey’s choice on each trial. In each case, decoders were
trained, using 10-fold cross-validation, on data from all three self-motion conditions, and
decoder performance was evaluated on held-out data (see Methods for details).
Decoders were trained on spike counts computed over a time window from 1250-1750
ms after stimulus onset, as this time window revealed the largest FMI values (Figure
5C). The number of units included in decoding for each session ranged from 8 to 26,
with a median of 19 units. For each type of decoder of MT responses, predicted
psychometric curves, constructed from the choices generated by the decoder given the
activity of the simultaneously recorded cells, were constructed for the 3 optic flow
conditions, and FP gains were computed. This allows us to directly compare the FP
gains of behavior with those predicted by the different decoders.

Psychometric functions from an example session for monkey P are shown in
Figure 6A, and reveal a behavioral FP gain of 0.68. For this session, the stimulusworid
decoder (Figure 6B) predicts a largely similar pattern of biases, with a predicted FP gain
of 0.48. Thus, decoding of just a small population of MT units (N=21 in this case) can
account for most of the behavioral biases and overall sensitivity of the monkey’s
performance in this session. By comparison, the stimulusscreen decoder (Figure 6C)
predicts much smaller PSE shifts, corresponding to a FP gain of 0.10. Thus, the same
population of MT neurons can be decoded to obtain reasonable estimates of motion in
either screen coordinates or world coordinates.

Figure 6D-F shows similar results for an example recording session from monkey
M (N=22 units). In this case, the FP gains are 1.48 for behavior, 0.65 for the
stimulusworia decoder and 0.03 for the stimulusscreen decoder. The diversity of effects of
optic flow on MT responses (Fig. 3C, 4A) likely allows units to be weighted differently
between decoders to produce PSE shifts that vary according to the decoded variable,
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thus counterbalancing biases if there are systematic shifts in the tuning curves.

Comparison between behavioral effects and decoder performance

For the stimulusworida decoder, Fig. 7A summarizes flow parsing effects across
sessions for each animal. The median FP gains of the stimulusworia decoder are 0.45 for
monkey M and 0.35 for monkey P, which are not significantly different from each other
(Wilcoxon rank-sum test, Z=-1.03, p = 0.31). Pooling FP gains across monkeys, the
median FP gain (0.41) is significantly less than 1 (Wilcoxon signed-rank test, Z = -5.43,
p = 5.68 x 10-) and significantly greater than zero (Z = 5.42, p = x 10®), indicating that
the stimulusworia decoder does not perfectly represent object motion in world coordinates
for either animal.

Given that behavioral FP gains differed subtantially between monkeys, perhaps
the more relevant question is whether performance of the stimulusworia decoder can
account for behavioral performance, as summarized in Fig. 7A. For monkey P, there is
no significant difference between median FP gains for behavior and the stimulusworld
decoder (Wilcoxon signed-rank test, Z = -0.16, p = 0.87), indicating that neural effects of
flow parsing in MT are sufficient to account for behavioral biases in this animal.
Moreover, there is a significant correlation across sessions between FP gains for
behavior and the stimulusworia decoder for monkey P (Spearman rank correlation, rs =
0.56, p = 0.014), indicating that variations in the neural effects account for some of the
variations in behavior across sessions. By contrast, for monkey M, the median
behavioral FP gain is significantly greater than the median FP gain of the stimulusworid
decoder (Wilcoxon signed-rank test, Z = 3.92, p = 8.86 x 10-%), and there is no
significant correlation between these measures across sessions (rs = 0.3098, p =
0.1835). Thus, while a linear decoder of stimulusworid predicts a partial shift (~40%)
toward a world-centered reference frame for both animals, this neural effect was able to
fully account for behavioral biases in monkey P, but not in monkey M (see Discussion).

We also examined the performance of a decoder that attempts to classify object
motion direction in screen coordinates. If this stimulusscreen decoder performs perfectly, it
should yield FP gains equal to 0, regardless of whether perception is biased by optic
flow. Median FP gains for the stimulusscreen decoder were 0.032 for monkey M and
0.098 for monkey P, and these values did not differ significantly between animals
(Wilcoxon rank-sum test, Z = 1.05, p = 0.29). Pooled across animals, the median FP
gain was 0.0324, which is significantly greater than 0 (Wilcoxon signed-rank test, Z =
2.71, p =6.78 x 103). FP gains for the stimulusscreen decoder were significantly less than
behavioral FP gains for both animals (Wilcoxon signed-rank test, monkey M: Z=3.92, p
= 8.85 x 105, monkey P: Z=3.82, p = 1.32 x 10%; Figure 7B). We found a modest but
significant correlation between FP gains for behavior and the stimulusscreen decoder for
monkey P (Spearman rank correlation: rs = 0.54, p = 0.02) but not for monkey M (rs =
0.33, p=0.15).
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FP gains significantly greater than zero for the stimulusscreen decoder suggest that
effects of optic flow on MT responses are sufficiently pervasive that they cannot
completely be discounted by a linear decoder to estimate motion in screen coordinates
(although it is certainly possible that the stimulusscreen decoder would perform more
ideally if based on larger populations of neurons than we recorded within each session).
We observed similar effects when the decoder of motion direction was trained only on
trials without background optic flow (stimulusnosm decoder). Because the median FP
gains of the stimulusnosm decoder did not differ between animals (Wilcoxon rank-sum
test, Z=-0.58, p = 0.56), we again pooled data across animals. The median pooled FP
gain (0.10) of the stimulusnosm decoder was significantly greater than 0 (Wilcoxon
signed-rank test, Z = 2.51, p = 0.012), indicating that this result was not simply driven by
other variables (e.g., choice) that may covary with optic flow conditions.

Finally, we also trained a decoder to predict the choices of the animal, rather
than stimulus direction. We found that the median FP gain for behavior was significantly
greater than the median value for the choice decoder (monkey M: Z = 3.92, p = 8.86 x
10-%; monkey P: Z = 3.06, p = 0.002; pooled: Z =5.18, p = 2.25%x107). MT activity
accounted for 58.3% of the behavioral effect for monkey P and 42.4% for monkey M. FP
gains were also significantly correlated across sessions between behavior and the
choice decoder (monkey M: rs = 0.65, p = 0.0025; monkey P: rs = 0.64, p = 0.0040),
suggesting that MT activity can account for a substantial fraction of session-to-session
variability in perceptual FP gains. Because choices are strongly related to the optic flow
condition in behavior, the predictive capacity of the choice decoder could rely on either
response modulations that are associated with choice or with background optic flow. To
gain further insight, we trained a classifier to decode choice from just trials without self-
motion (choicenosm decoder), as this condition affords the decoder with choice-related
signals but not signals related to optic flow condition. This choicenosm decoder yields
median FP gains (monkey M: -0.021; monkey P: 0.098) that are significantly less than
those of the choice decoder trained on all conditions (Wilcoxon signed-rank test,
monkey M: Z = 3.77, p = 1.63 x 104; monkey P: Z = 2.01, p = 0.044). These findings
suggest that performance of the choice decoder is mainly driven by effects of
background optic flow on MT responses, and this finding is consistent with the analysis
of Figure 4, which shows that flow probability, but not choice probability, is
systematically related to the direction preferences of MT neurons.

Relationships between decoding weights and neural selectivity

The fact that these decoders can be trained to represent different variables
suggests that different weights are assigned to the units depending on the decoded
variable. To gain further insight into how neurons with different properties contribute to
decoder performance, we used linear regression to examine relationships between
decoding weights, HDDI, and FMI. The stimulusscreen decoder should place more weight
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on units with strong direction selectivity in screen coordinates (high magnitude of HDDI).
However, because the computation of object motion in screen coordinates does not rely
on information about optic flow, the stimulusscreen decoder should not selectively weight
units according to FMI. A multiple regression analysis of the stimulusscreen decoder’s
weights, wstimulusscreen, revealed that HDDI was significantly predictive of neuronal
decoding weights (monkey M: B = 0.902, #(406) = 10.13, p = 1.188 x 102"; monkey P: B
= 0.726, 1(311) = 6.33, p = 8.725 x 109), but FMI was not (monkey M: #(406) = -1.04, p
= 0.299; monkey P: {(311) = 0.72, p = 0.472). This finding is consistent with the
expectation that performance of the stimulusscreen decoder should not depend on
modulations by background optic flow.

In contrast, computing object motion in world coordinates requires information
about optic flow. Therefore, the stimulusworia decoder should significantly weight units
based on the magnitude of both HDDI and FMI. Indeed our multiple regression analysis
revealed that FMI was highly predictive of decoder weights, Wstimulusworid, for both
animals (monkey M: B = -1.437, #{(406) = -6.87, p = 2.38 x 10'"; monkey P: B = -1.871,
t(311) = -8.26, p = 4.39 x 10-'5). HDDI was significantly predictive of wstimulusworld for one
animal (monkey M: B = 0.7571, t(406) = 8.732, p = 6.609 x 10') but not the other
(monkey P: #311) =-0.0909, p = 0.9277). There was a marginally significant interaction
effect between HDDI and FMI on wstimuusworld for monkey M (8 = 0.709, #(406) = 1.840, p
= 0.066) but not for monkey P (£(311) = -0.616, p = 0.539). The significant contribution
of FMI to decoding weights for the stimulusworia decoder demonstrates that units with
strong response modulations by optic flow contribute to representing object motion in
world coordinates. Very similar results were obtained using FP instead of FMI in this
analysis, as expected given the strong correlation between FP and FMI measures
(Suppl. Fig. 4A). In contrast, when FMI was replaced with CP in this analysis, there
were no significant contributions (p>0.5) of CP to predicting either wstimuiusscreen OF
Wstimulusworld. This analysis further demonstrates that the capacity of MT population
responses to predict perceptual biases associated with optic flow does not simply rely
on choice-related activity.

Discussion

Flow parsing has been proposed as a strategy for solving a crucial problem in
vision: discounting the visual consequences of self-motion in order to compute object
motion relative to the world (Rushton and Warren, 2005; Warren and Rushton, 2007;
2009a). Despite extensive psychophysical evidence for flow parsing in humans, the
neural mechanisms underlying this process were unknown. We demonstrate here a
neural basis for flow parsing in macaque area MT. Responses of MT units are
modulated by surrounding optic flow in a systematic manner that depends on preferred
direction. This effect is consistent with the hypothesis that optic flow shifts the
population profile of activity in MT, leading to the observed behavioral biases. Crucially,
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these effects cannot be explained by choice-related activity or conventional surround
suppression, as discussed further below. Consistent with the effects seen in individual
units, single-session population decoding predicts biases in the same direction as seen
in behavior, although weaker in magnitude. Together, these findings provide the first
evidence of a mechanism for flow parsing at the level of single neurons and neural
population activity.

Systematic effects of optic flow on MT responses

We hypothesized that MT might reflect flow parsing via a shift of the population
hill of activity as illustrated in Fig. 1C. Such a shift predicts that the response
modulations induced by optic flow should depend systematically on direction preference
relative to the reference direction of the task (which is vertical here). Indeed, our data
(Fig. 3C, 4A) confirm this prediction, indicating that responses in area MT can account,
at least partially, for the biases observed in behavior. However, results were variable, as
many units showed little to no effect of optic flow. This variability suggests that a pure
shift of the population hill of activity is likely too simple an explanation. Rather, some
subpopulations of MT units may shift their representation of object motion toward world
coordinates while others do not. Such diversity might enable MT to represent object
motion in more than one coordinate frame, allowing for flexible readout according to
task demands. In future work, it would be interesting to determine whether MT neurons
with weak and strong modulations by optic flow have different projection targets.

For MT units that are modulated by optic flow, these changes typically manifest
as differences in response between forward and backward optic flow that are fairly
consistent across object motion directions (e.g., Fig. 3A,B). One possible explanation is
that optic flow shifts direction-tuning curves in a manner consistent with representing
object motion in the world. Another possibility is that MT responses are gain modulated
by optic flow, such that optic flow acts to multiplicatively scale MT tuning curves. Due to
the limited range of object directions presented in this experiment, our data do not allow
us to clearly distinguish between these possibilities. In an ongoing study, we are
measuring the full direction tuning curves of MT units in the presence of optic flow, such
that we can better quantify how optic flow acts to modulate MT responses.

Potential confounds of surround suppression and choice-related activity

Our findings demonstrate that optic flow surrounding a target object modulates
neural responses in area MT and biases reports of motion direction. Here, we address
two potentially less interesting explanations for these effects: non-classical surround
suppression and choice-related modulations.

It is well established that receptive fields of many MT neurons have a non-
classical surround that suppresses responses when surrounding stimuli have similar
properties to the stimulus that activates the neuron (Allman et al., 1985; Born, 2000;
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Bradley and Andersen, 1998; DeAngelis and Uka, 2003). To limit involvement of the
conventional surround, we employed a mask that was typically at least 2-fold larger than
the classical receptive field. We also excluded units whose receptive fields overlapped
with the surrounding optic flow (see Methods). Nevertheless, it is still possible that our
findings could be a result of surround suppression. To assess this, we measured the
size tuning of MT units, and we found no significant correlation between the magnitude
of either FMI or FP and a quantitative measure of surround suppression (Suppl. Fig. 5).
Thus, conventional surround suppression cannot account for our findings.

Another potential confound is choice-related activity. It is well-established that
responses of MT neurons are weakly correlated with perceptual decisions (Britten et al.,
1996; Purushothaman and Bradley, 2005; Uka and DeAngelis, 2004); as such, it is
possible that the response modulations observed in MT simply reflect an effect of optic
flow on choices, which subsequently modulates MT responses. To address this issue,
we adapted an analysis (Sasaki et al., 2020) to isolate the effects of choice from the
effects of background optic flow in the response of MT neurons (see Methods, Fig. 4,
and Suppl. Fig. 4). This demonstrates clearly that flow-related modulations (Fig. 4 A, B),
but not choice-related modulations (Fig. 4 C, D), are systematically related to direction
preferences in MT. In addition, we demonstrate that decoding weights for the
stimulusworia decoder are correlated with both the FMI and FP values of individual units,
whereas these decoding weights are not correlated with CP values. Thus, our findings
cannot be simply explained by choice-related activity, and instead suggest a modulation
of MT responses that is specific to the inferred optic flow vector at the location of the
target object.

Comparison of behavioral and decoder biases

During recording sessions, the two animals had different magnitudes of
behavioral effects. While monkey M showed a flow-parsing gain close to unity, monkey
P had biases that were substantially smaller than predicted by perfect flow parsing (Fig.
2C). The incomplete compensation for self-motion exhibited by monkey P has been
observed previously in humans (Dokka et al., 2015; Fajen et al., 2013; Layton and
Niehorster, 2019; Niehorster and Li, 2017). In addition, both monkeys demonstrated a
substantial decrease in flow-parsing gains over time, mainly during the training period
prior to commencement of recordings (Suppl. Fig. 1, see also (Peltier et al., 2020)). For
monkey P, flow-parsing gain decreased from near unity toward values < 0.5. In contrast,
monkey M had flow-parsing gains that were initially much greater than unity, declined
sharply toward unity prior to recordings, and declined gradually during recordings such
that the final values were less than unity. A likely explanation for this reduction in flow-
parsing gains over time is the variable reward scheme that we used (see (Peltier et al.,
2020) for further discussion). Ideally, one would reward animals around their intrinsic
perceptual biases, such that there is not pressure to decrease perceptual biases to
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maximize reward. In ongoing work, we have developed a Bayesian adaptive technique
to estimate perceptual biases online, but this was not available when the present study
was conducted.

For decoders trained to classify object direction in world coordinates, we found
that single-session decoding in both animals predicted flow-parsing gains near 0.5, on
average (Fig. 7A). For monkey P, decoder performance was sufficient to account for the
flow-parsing gains seen in behavior; in contrast, for monkey M, decoder effects were
substantially weaker than behavioral effects (Fig. 7A). It is possible that flow-parsing
acts at multiple stages of motion processing, as suggested by human neuroimaging
studies (Field et al., 2020; Kozhemiako et al., 2020; Pitzalis et al., 2020), and that
effects on areas downstream of MT account for the larger behavioral effects in monkey
M. However, it is also possible that decoding from larger neural populations in area MT
could predict the larger biases seen in monkey M.

It may seem surprising that the visual system would compensate for self-motion
at a relatively early processing stage such as area MT, which has often been thought to
represent retinal image motion. However, it is important to point out that retinal motion
information is not lost in MT. Due to the diversity of effects of background optic flow in
MT units, population responses could be weighted differently to read out motion in
either world or screen coordinates. Indeed, we find that decoding weights are correlated
with FMI values for the stimulusworia decoder but not the stimulusscreen decoder.
Correspondingly, we find that decoders trained to recover direction in screen
coordinates are much less biased by optic flow (Fig. 7B). Thus, the representation we
observe in MT may allow downstream areas to flexibly decode object motion in different
reference frames.

Furthermore, flow parsing should only be done if an observer infers that there is
an independently moving object in the scene. This was generally the case in our study
because recording sites were selected to have receptive fields located closer to the
horizontal meridian. Since the direction reference for the task was always vertical, optic
flow vectors at the location of the target patch were typically close to orthogonal to the
task reference. Recent psychophysical work shows that motion perception can
transition from integration to segmentation depending on the similarity of an object’s
motion to the background (Shivkumar et al., 2023). Thus, it is possible that flow parsing
effects in MT would be modulated by causal inference regarding the likelihood of
independent object motion, which is an ongoing topic of exploration in the laboratory.

Potential neural networks of flow-parsing

As discussed above, decoding results from MT typically account for less than the
full behavioral effects of flow parsing, suggesting that additional contributions to flow
parsing may arise downstream of MT. Relevant to this, flow modulation effects were
substantially slower (~700 ms) to develop than directional responses (Fig. 5 B, C).
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While the reasons for such a long delay are unclear, it may reflect computations that are
done downstream and then fed back to MT to modulate population responses. MT is
known to receive feedback from areas that are involved in computing heading, such as
areas MSTd (Bradley et al., 1996; Duffy and Wurtz, 1995; Fetsch et al., 2012; Gu et al.,
2008; Gu et al., 2006) and VIP (Bremmer et al., 2002; Chen et al., 2011; 2013; Zhang
and Britten, 2004; 2010). Another downstream area of interest is area V6, which is
reported to contain subpopulations of neurons that represent motion in head-centered
reference frames (Fattori et al., 2009; Galletti et al., 1995). The origin of the long delay
of neural flow parsing effects in MT deserves further study. It is worth noting that other
previous studies have examined how rotational optic flow modulates MT responses, and
those effects were not found to have such a long delay (Kim et al., 2015; 2017).

Computational models of heading perception (Hatsopoulos and Warren, 1991;
Layton and Browning, 2014; Layton and Fajen, 2016a; Layton et al., 2012; Perrone,
1992; 2012; Perrone and Stone, 1994; 1998; Royden, 1997) and flow parsing (Layton
and Fajen, 2016b; Layton and Niehorster, 2019; Royden and Holloway, 2014) have
primarily focused on the relationship between MT and MSTd. These models consist of a
layer of small MT-like operators that are selective for motion direction and speed. These
operators transmit their responses to a layer of large MSTd-like templates, whose
receptive fields are built from the combination of MT operators with receptive fields
spanning the template. The estimated heading is typically the preferred heading of the
most active MSTd template, or a combination of the most active templates. In a model
that was specifically designed to implement flow parsing (Layton and Fajen, 2016b),
feedback from the MSTd layer to the MT layer enhances the activity of MT units with a
preferred direction that disagrees with the most active MSTd template. It is currently
unclear whether this type of model is consistent with our physiological findings or not.
However, simultaneous recordings from MT and MSTd may be valuable for testing
specific predictions of this type of model. Furthermore, it would be valuable to examine
how reversible inactivation of MSTd affects flow-parsing behavior as well as the
response modulations of MT neurons. Having established a starting point for
understanding the neural computations of flow parsing, subsequent studies can be
targeted to unraveling the relevant neural circuits.
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Figure Captions

Figure 1. lllustration of expected perceptual biases from flow parsing and a
potential neural correlate. (A) Schematic illustration of a stimulus condition presenting
forward self-motion (green dots) and upward object motion on the screen (yellow dots).
Right: If flow parsing occurs, the rightward flow vector at the location of the object (solid
green arrow) would be subtracted, leading to a leftward bias in perceived object
direction (black arrow). The yellow arrow indicates object direction in image (screen)
coordinates. The dashed green arrow is the opposite of the flow vector, which is
vectorially added to the image motion (yellow arrow) to obtain the expected perceived
direction (black arrow). (B) Same as panel A except that optic flow simulates backward
self-motion (red dots), leading to a rightward expected bias from flow parsing. (C)
Hypothetical neural population response profiles in response to a presentation of an
object in the right visual hemi-field moving straight upward in retinal coordinates (e.g.,
yellow dots in panels A and B). Each curve shows the normalized response of a
population of neurons plotted as a function of each neuron’s preferred direction. When
an observer is stationary (blue), the population hill of activity peaks at 0 deg (vertical
motion). If the perceptual biases induced by flow parsing are reflected in this neural
population response, then forward self-motion should shift the curve leftward (green)
and backward self-motion should shift the curve rightward (red). As a result, a neuron
that prefers a direction of -45° should have a greater response during forward self-
motion than during backward self-motion. In contrast, a cell that prefers +45° would
show the opposite effect.

Figure 2. Optic flow systematically biases object motion perception in monkeys.
(A) Psychometric functions from a recording session in which monkey P discriminated
object direction in the presence of optic flow. Symbol shape and color denote data from
the stationary (blue squares), forward (green circles), and backward (red triangles) self-
motion conditions. Smooth curves show fits of a cumulative Gaussian function to the
data points. Horizontal error bars indicate 95% confidence intervals on the PSEs, and
the dashed vertical lines indicate the expected PSEs for complete flow-parsing (FP gain
= 1). Because the object was presented in the right visual hemi-field, monkey P’s
perception of object motion was biased leftward during forward self-motion and
rightward during backward self-motion. (B) Data from a recording session in which
monkey M discriminated object motion in the left hemi-field, leading to an opposite
pattern of perceptual biases. (C) Distributions of flow-parsing gains (observed/expected
PSE shift) for 20 recording sessions from monkey M (teal) and 19 recording sessions
from monkey P (purple). Downward-pointing triangles indicate the median flow-parsing
gains for each animal.

Figure 3. Modulation of MT firing rates by optic flow depends on direction tuning.
(A-B) Firing rates of two units, recorded during the same session in which the object
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was in the left visual hemi-field. Data are shown separately for the stationary (blue
squares), forward (green circles), and backward (red triangles) self-motion conditions.
Error bars denote SEM. (A) For a unit that prefers leftward object motion, responses
during backward self-motion are greater than responses during forward self-motion. (B)
For a simultaneously recorded unit that prefers rightward object motion, responses
during forward self-motion are greater than those during backward self-motion. (C-D)
Flow-modulation index (FMI) across the population of 737 units depends systematically
on aspects of direction tuning. Color and shape of symbols denote monkey identity:
monkey M (teal triangles) and monkey P (purple circles). (C) FMI is circularly correlated
with preferred direction, where a preference of 0 denotes the upward task direction
reference. The black trace denotes a running median FMI, computed within a preferred
direction window of 90° (data pooled across monkeys). (D) FMI is inversely correlated
with selectivity for horizontal motion, as measured by the horizontal direction
discrimination index (HDDI). Black line indicates the line of best fit (linear regression,
data pooled across monkeys).

Figure 4. Effects of optic flow on MT responses are distinct from choice-related
activity. Neural responses were analyzed to dissociate effects of background optic flow
(Flow Probability, FP) from choice-related response modulations (Choice Probability,
CP), as detailed in Methods. (A, B) Flow probability is robustly correlated with both
neuronal preferred direction and HDDI, similar to the results for FMI (format as in Figure
3C,D). (C, D) In contrast, choice probability is not systematically related to either flow
probability or HDDI. This reveals that effects of object flow background on MT
responses are dissociable from choice-related modulations.

Figure 5. Time course of population response, HDDI, and FMI. In each panel,
vertical lines indicate stimulus onset and offset, and the gray curve indicates the
stimulus velocity profile. (A) Time course of normalized response to vertical (0 deg)
object motion, averaged over all units. Color indicates self-motion direction; blue:
stationary, green: forward, red: backward. (B) Mean HDDI time course for subsets of
units, grouped according to the horizontal component of their preferred direction. Darker
red curves indicate units with preferred directions closer to leftward (-90 deg), and
darker blue curves indicate units with preferred directions closer to rightward (+90 deg).
Horizontal black lines indicate time periods during which HDDI differs significantly
between the darkest red and the darkest blue curves. (C) Mean FMI time course for
subsets of units, grouped according to their HDDI values, where negative/positive HDDI
values indicated a preference for leftward/rightward motion. Horizontal black lines
indicate time periods during which FMI differs significantly between the darkest red and
the darkest blue curves.

Figure 6. Psychometric functions representing monkey behavior and population
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decoder performance for two example sessions. Format as in Figure 2A,B. Vertical
lines indicate the expected PSEs for complete flow-parsing. (A) Psychometric function
reflecting one session of monkey P’s direction discrimination performance for an object
located in the left visual hemifield. (B) Predicted psychometric function produced by the
stimulusworia decoder, which was trained to discriminate object direction in world-
centered coordinates from neural responses in the same for which the behavioral data
are shown in panel A. (C) Psychometric function produced by the stimulusscreen decoder,
which was trained to discriminate object direction in retinal coordinates (same session
as panels A, B). (D-F) Psychometric data and decoder performance for one example
session from monkey M.

Figure 7. Summary of comparison between monkey behavior and population
decoder performance. Each datum represents one experimental session from monkey
M (teal triangles) or monkey P (purple circles). Star-shaped symbols indicate the
median perceptual and decoder FP gains across sessions for each animal. (A) FP gains
of the stimulusworia decoder are plotted against the monkeys’ perceptual FP gains. (B)
FP gains of the stimulusscreen decoder are plotted against the monkeys’ perceptual FP
gains. (C) FP gains of the choice decoder plotted against the monkeys’ perceptual FP
gains.

Supplementary Figure 1. Flow-parsing gains gradually decreased over time. (A)
Monkey M’s flow-parsing gains throughout 20 recording sessions (large, teal open
circles), in addition to the flow-parsing gains over 44 training sessions (small, gray filled
circles). Each gray circle indicates the mean flow-parsing gain for a training session that
took place before or after recordings. (B) Monkey P’s flow-parsing gains throughout 19
recording sessions (large, purple open triangles), as well as flow-parsing gains over 62
training sessions (small, gray filled triangles). Right-facing triangles denote sessions in
which the object was in the right hemi-field, and left-facing triangles denote sessions in
which the object was in the left hemi-field.

Supplementary Figure 2. Schematic illustration of the object direction
discrimination task. (A) Each trial initiated when a fixation target appeared and the
monkey fixated on the target. The monkey was required to maintain fixation during the
presentation of a stimulus, which consisted of an object moving upward obliquely and a
global optic flow field simulating forward or backward self-motion. At the end of the
stimulus presentation, two choice targets appeared. The monkey was required to make
a saccade to one of the targets indicating whether the object’s motion was rightward or
leftward of vertical. (B) Timeline of events within each trial.

Supplementary Figure 3. Receptive field locations for each experimental session.
Each ellipse represents the average receptive field location and size across all units
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recorded within a session, computed from the average parameters of 2-dimensional
(2D) Gaussian fits. Each ellipse corresponds to a cross-section through the average 2D
Gaussian function at the half-maximal response amplitude. Coordinate (0, O) represents
the center of the screen and the location of the fixation target. Color indicates monkey
identity; teal: monkey M, purple: monkey P.

Supplementary Figure 4. Relationships between FMI, Flow Probability, and
Choice Probability. In all panels, symbol color and shape denote monkeys M (teal
triangles) and P (purple circles). (A) Flow probability (FP) is highly correlated with flow
modulation index (FMI) for both monkey P (Pearson correlation, R = 0.97, P = 3.2x10"
205 'N=315) and monkey M (R = 0.96, P = 1.2x10%*', N=410). (B) Choice probability
(CP) is poorly correlated with FMI for both monkey P (Pearson correlation, R =-0.08, P
=0.147, N=315) and monkey M (R =-0.07, P = 0.176, N=410). (C) CP is weakly
negatively correlated with FP for both monkey P (Pearson correlation, R =-0.22, P =
5.0x10-°, N=315) and monkey M (R =-0.25, P = 1.5x1077, N=410).

Supplementary Figure 5. Optic flow modulation in MT is not correlated with
surround suppression. (A) Absolute value of FMI is plotted as a function of surround
suppression index. Symbol color and shape denote monkeys M (teal triangles) and P
(purple circles). (B) The absolute value of flow probability, after subtracting 0.5, is
plotted against surround suppression index (format as in panel B). If effects of
background optic flow on MT responses were explained by surround suppression, we
would expect to see positive correlations in these plots.

Movie 1. Examples of visual stimuli. This video shows examples of visual stimuli from
the main flow-parsing experiment. A sequence of 4 trials is shown. In each trial, the
target object patch (composed of small yellow triangles) moves vertically. Background
optic flow (shown as a red/green anaglyph for stereo viewing) simulates self-motion that
alternates between forward (expanding optic flow) and backward (contracting optic
flow). The small yellow cross at the center of the display is the target to be fixated while
viewing the stimuli. The prediction of flow parsing is that the target object should appear
to be moving up-left during forward self-motion (first and third trials) and up-right during
backward self-motion (second and fourth trials).
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