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Abstract

Background

Effective population size (Ne) is a pivotal parameter in population genetics as it can provide
information on the rate of inbreeding and the contemporary status of genetic diversity in breeding
populations. The population with smaller Ne can lead to faster inbreeding, with little potential for
genetic gain making selections ineffective. The importance of N. has become increasingly
recognized in plant breeding, which can help breeders monitor and enhance the genetic variability
or redesign their selection protocols. Here, we present the first Ne estimates based on linkage

disequilibrium (LD) in the pea genome.
Results

We calculated and compared Ne using SNP markers from North Dakota State University (NDSU)
modern breeding lines and United States Department of Agriculture (USDA) diversity panel. The
extent of LD was highly variable not only between populations but also among different regions
and chromosomes of the genome. Overall, NDSU had a higher and longer-range LD than the
USDA that could extend up to 500Kb, with a genome-wide average r?of 0.57 (vs 0.34), likely due
to its lower recombination rates and the selection background. The estimated Ne for the USDA was
nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high

degree of population structure due to the selfing nature of pea.
Conclusions

Our results provided insights into the genetic diversity of the germplasm studied, which can guide
plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the

breeding efforts in the long term.
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Introduction

Dry pea (Pisum sativum L.), is a diploid, cool-season legume and a member of the
Leguminosae family (Abbo et al. 2017). Pea is one of the most important pulse crops grown in
more than 100 countries, where 7,043,605 hectares of dry pea were planted around the world with

a total production of 12,403,522 tonnes (FAOSTAT 2021; https://www.fao.org/faostat/). In the

USA alone, the pea production reached one million tonnes in 2019 (USDA 2020). In recent years,
pea protein has become more popular in the market for plant-based diets e.g., Beyond® Meat
Burger (Bari et al. 2021). Pea seeds have earned a reputation as a dietary goldmine with around 15
— 32% protein content, vitamins, folate, fibers, potassium and minerals, which is good for human
health and helps prevent cardiovascular and specific cancer diseases (Bari et al. 2021; Tayeh et al.
2015). The increasing popularity of plant-based proteins in the market has further propelled the
demand for peas. Therefore, the study of genetic diversity should expand to accelerate the genetic
gain of pea varieties to meet future demands, maintaining the diversity in peas is the top priority

for plant breeders (Bari et al. 2021; Gali et al. 2019).

Estimation of effective population size (Ne) determines the rate of inbreeding (Rahimmadar
et al. 2021; Tenesa et al. 2007) and genetic changes due to genetic drift (Gargiulo et al. 2023). Ne
is an important parameter in population genetics and breeding introduced by Sewall Wright in

1931, which helps breeders to maintain and monitor the level of genetic diversity in their species
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(Cobb et al. 2019). The estimated Ne is expected to be smaller than the census size (N), as it
influences the rate at which genetic diversity decreases within a population (Lonsinger et al. 2018;
Hare et al. 2011). Relatively smaller Ne indicates limited population diversity, which, in turn, can
restrict genetic advancement within a breeding program (Hayes et al., 2003). Moreover, Ne

parameter retrieves the population dynamics of the genes (Nei and Tajima 1981).

The effective size of a population refers to the hypothetical number of individuals in an
idealized population that would exhibit a comparable genetic response to stochastic processes,
similar to that observed in a real-world population which is based on the Wright-Fisher model
(Wang et al. 2016; Wright 1931; Fisher 1930). This model shows genetic drift as the main
operating factor, and that changes in allelic and genotypic frequencies over generations are solely
influenced by the population size (N) (Wang et al. 2016). In real-world breeding populations,
factors such as mutation, migration, natural selection, and non-random mating come into play
(Wang et al. 2016) These factors affect the actual rates of inbreeding and changes in gene
frequency variance observed in a population (Charlesworth 2009). This will indeed impact N and
therefore, reduce the genetic variation and diversity. The most commonly used extensions for
effective population size theory are variance effective size and inbreeding effective size (Wang et
al. 2016). The variance effective size reflects the rate of change in gene frequency variance, while
inbreeding effective size corresponds to the rate of inbreeding observed in a population (Crow and
Kimura 1970). These measures allow us to quantify the consequences of genetic drift in a real
population, based on the characteristics and dynamics of the idealized Wright-Fisher population

(Wang et al. 2016).

While Ne of a population can be estimated either from demographic data or genetic

markers, the latter is preferred (Gilbert and Whitlock 2015; Luikart et al. 2010; Fernandez et al.
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87  2005). Demographic data involves using census size and variance of reproductive success whereas
88  genetic markers reveal changes in allele frequencies over time and are based on linkage
89  disequilibrium (LD). When the pedigree or demographic data is not available, Ne can be estimated
90 using genetic markers (Wang 2005). The most popular and widely-employed genetic approach has
91  been the temporal method, which relies on temporal fluctuations in allele frequencies observed on
92  multiple samples collected from the same population (Nei and Tajima 1981). Ne, however, can
93 also be directly estimated using LD between loci at various distances along the genome (Hayes et
94  al. 2003; Sved 1971). Recent advancements in high-throughput sequencing and the availability of
95 high-density markers such as single nucleotide polymorphisms (SNPs) have increased over the
96 past decade, contributing to the LD-based approach now being acknowledged as more reliable,
97  robust (Novo et al. 2022), cost and time effective than the temporal approach (Gargiulo et al.

98  2023).

99 Linkage disequilibrium (represented as r?) is a phenomenon characterized by the non-
100  random association of alleles at various loci (Hill and Robertson 1968) which became popular in
101 recent years for predicting Ne (Antao et al. 2011). Correlations between alleles are generated by
102  genetic drift when it is inversely proportional to Ne (Gargiulo et al. 2023), which changes the allele
103  frequencies in a population over time. The biggest advantage of LD over the temporal method
104  (Pollak 1983), is the strength of associations between markers that can be used to calculate Ne at
105  any time (generations) from a single population accurately without relying on longitudinal data.
106  This makes LD a valuable tool for studying populations where temporal information may be
107  limited or unavailable. Recombination and mutation rates are fundamental processes that shape
108  the genetic landscape (Ardlie et al. 2002), and by analyzing LD, we can better understand their

109  history and apply it to plant breeding and population genetics (Sved and Hill 2018).
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110 In this study, we estimated the extent of LD decay in the dry pea genome and utilized the
111  relationship between LD and recombination frequency, as initially described by Sved (1971), to
112 estimate Ne which is convenient as it only requires one sampling time (Garcia-Cortés et al. 2019;
113 Hill 1981). We used two sets of populations: 1) NDSU modern breeding lines, hereafter referred
114  to as NDSU set, and 2) USDA diversity panel, hereafter referred to as USDA set. Our objectives
115  were two-fold: (i) to estimate Ne for these two germplasms set in dry pea and (ii) to compare the
116  genetic variation between these germplasms. To achieve these goals, we developed a
117  comprehensive R package that implements the Sved (1971) formula for Ne prediction. This
118  package not only caters to the specific needs of dry pea research but can also be adapted for use in
119  other crop species. Since there has been no information on Ne for peas, our findings serve as a
120  valuable reference for researchers seeking to determine the minimum number of lines required for
121  designing experiments. Furthermore, comparing the genetic variation between NDSU modern
122 breeding lines and USDA multi-environmental lines provides valuable information about the
123 diversity and potential of these germplasm collections. This knowledge can guide breeding
124  programs and conservation efforts, ensuring the maintenance and enhancement of genetic

125  resources in dry pea cultivation.

126

127
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129
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131  Methods

132

133  Plant Materials

134 In this study, we used plant materials from two distinct germplasms. The first population
135  comes from the NDSU Pulse Breeding Program (NDSU set) where 300 advanced elite lines were
136 generated from multiple bi-parental populations. These lines were created specifically with a focus
137  on phenotypes including high yield, grain quality, resistance to disease and some other desirable
138  agronomic traits. The breeding lines used in this experiment were carefully chosen and contain

139  both contemporary and past elite germplasm. (Bari et al. 2023; Atanda et al. 2022).

140 The second population is from a USDA diversity panel (USDA set), and contained 482
141  accessions, of which 292 samples were from the Pea Single Plant Plus Collection (Pea PSP) (Bari
142  etal. 2021; Holdsworth et al. 2017; Cheng et al. 2015). The USDA set was composed of accessions
143  that represent most of available diversity within the USDA pea germplasm collection based on the
144  knowledge of geography, taxonomy, morphology and genotyping-by-sequencing data generated

145  previously (Holdsworth et al. 2017).

146 DNA extraction, Sequencing and Variant Calling

147 Leaf tissues from the greenhouse were collected at different stages for all NDSU elite lines
148  and USDA accessions. The DNA from the lyophilized tissues were extracted using the DNeasy
149  Plant Mini Kit (Qiagen). Detailed information regarding the tissue collections and extractions are
150  provided in Bari et al. (2023) and Bari et al. (2021). Both NDSU set and USDA set were sequenced

151  using genotyping-by-sequencing (GBS). Using the restriction enzyme ApeKIl, dual-indexed GBS
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152  libraries for both populations were prepared (Elshire et al. 2011). Samples were sequenced using
153  NovaSeq S1 x 100 Illumina sequencing technologies. The NDSU set sequenced libraries were
154  retrieved with a quality score > 30. For USDA set, FASTQC (Andrews 2010) was utilized to
155  perform quality check and removed reads with lengths < 50 bases. All reads that passed the quality

156  check were aligned with the reference genome (Kreplak et al. 2019) (https://www.pulsedb.org).

157  Finally, the aligned reads were analyzed using SAMtools (v1.10) and generated the variant files

158  (VCF) using FreeBayes (V1.3.2).

159 The amount of single nucleotide polymorphisms (SNPs) identified for the NDSU set was
160 28,832, while 380,527 SNP markers were identified in the USDA set (Bari et al. 2021, 2023;
161  Atanda et al. 2022). For these marker datasets, we filtered minor allele frequency (MAF), since
162  alleles with < 5% could produce bias to the LD and N calculations (Toosi et al. 2010, Lee et al.
163  2014). We also removed markers with more than 20% missing values using Plink v1.9 (Purcell et
164  al. 2007) and heterozygosity > 20% using Tassel v5.0 (Bradbury et al. 2007). The resulting marker
165  sets consisted of 7,157 (NDSU set) and 19,826 (USDA set) SNP markers that were used for

166  downstream analysis.
167
168  Calculation of Linkage Disequilibrium (r?)

169 LD was calculated using Plink v1.9 (Purcell et al. 2007) with a maximum distance of 750
170  kb. Using “ggplot2” R package, the genome-wide and chromosome-wide LD-decay (r?) were

171 visualized against the physical distance (kb) to show the recombination history (see Fig. 1 & 2).
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172 LD scores were also estimated using Genome-wide Complex Trait Analysis (GCTA)
173 software for window size of 1000 kb and r? cutoff of 0 (Yang et al. 2011). This approach was

174  employed to visualize the distribution of mean LD throughout the genome.
175
176  Calculation of Effective Population Size

177 Effective population size (Ne) for both the NDSU set and the USDA set were estimated
178  based on LD using the Sved (1971) equation. The recombination rate (cM) was calculated using
179  cM/Mb conversion ratio from a recent pea genetic linkage map (Sawada et. al. 2022) and then

180  transformed to Morgan’s (C).

181 N, = %(ﬁ — 1) U )

182  Where, N, = effective population size
183 ¢ = genetic distance in Morgan’s
184  E(r?) = expected r?

185  The expected r? was predicted by linear regression model using least square estimation (LSE),

186 Prediction of r2:
187 n=Xp. (2
188 B=X'X)"1XY. .......(3)
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mean_r?
2
mean_r

The mean_r? from the Y parameter was calculated by LD (r?) for the genetic distance ‘c’ using

‘group by’ mean function in R Environment (R Core Team, 2023).

Now with the availability of all required parameters, we finally estimated Ne from Equation (1)

using LSE,

According to the formula (Egn. 1), we assigned the variables as predictor (X) and response (Y)

and calculated the coefficient B, without the intercept term B,, following Juma et al. (2021).

1
Y=<7>—1,X=4><c
Qi
r4.c (1) 1'
4c i .

. 1 "
1 1o-
L4 \p/

Again, we used Equation (3) to calculate the coefficient 8; which represents Ne.

10
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204 Results

205  Linkage Disequilibrium Decay Rate and Scores

206 The decay of linkage disequilibrium (r?) was examined in both NDSU set and USDA set
207 by utilizing 7,157 and 19,826 SNP markers, respectively. This analysis allowed for the
208 identification of the physical distance at which the decay rate occurred. Supplementary Figure 1
209  depicts the distribution of SNPs within and across chromosomes for both populations, providing
210  an illustration of the marker density. The NDSU set’s genome-wide LD-decay plot (Figure 1)
211 demonstrates that the r? reached its peak value of 0.57 within the initial kilobases and subsequently
212 exhibited a gradual decline. The r? showed a decrease from 0.3 to 0.25 when the genomic distance
213 increased from 150 kb to 250 kb. Following that, the LD within each chromosome was observed
214  visually in Figure 2 in order to improve comprehension of the decay pattern. Chromosomes 1 and
215 6 exhibited a rapid decay at approximately 175 kb, while chromosomes 2 and 5 demonstrated a
216  comparatively slower decay rate of around 350 kb. Furthermore, it is worth noting that
217 chromosome 5 had the higher r? value of 0.61 compared to other chromosomes. Whereas, the
218 genome-wide LD of USDA set showed that r? started at a lower value of 0.34 and dropped rapidly
219 and reached 0.2 and 0.1 at 100 kb and 200 kb (Figure 1). From the chromosome-wide LD-decay
220  (Figure 2), we observed that chromosome 3 dropped faster around ~150 kb, but the r? decreased
221 below 0.1 for chromosomes 4 and 7. Also, chromosomes 1, 5 and 6 decayed slowly (~250 kb) and
222 reached r? 0.1. We also observed that chromosome 1 exhibited a higher r? of 0.37. LD-decay

223 figures show the trend of the r? decaying from LD to linkage equilibrium (LE).

224 Additionally, we performed calculations of LD scores as an alternative metric for inferring
225  LD. The analysis of local LD in the NDSU set indicates a notable rise in the average r? of 0.6

226  across all chromosomes. The average r? of chromosomes 5 and 6 was the highest with 0.8. The

11
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227  genomic interval encompassing the centromeric region of chromosome 2 was missing. In contrast,
228  the USDA set exhibited low average r?, with chromosome 2 hardly reaching 0.4, and chromosomes
229 1,4, and 7 having few sets that reached 0.3. It is worth noting that the LD density of the NDSU

230  set is comparatively lower than the USDA set (Figure 3).

231 With respect to recombination rate (centimorgans - ¢cM), the genome-wide r? on average
232 decayed from 0.54 to 0.27 at 0.7 cM for the NDSU set, indicating a moderate level of correlation
233 within this specific genetic distance across the genome. In contrast, the USDA set had lower
234 average r? (0.28) which dropped within a shorter genetic distance (0.5 cM). This implies that as
235  the distance between the markers increases to 0.5 cM, they tend to be less correlated with each

236  other (Supplementary Figure 2)

237 The level of LD exhibited significant variation across distinct genomic regions and
238  populations of dry peas. The impracticality of conducting whole-genome scanning can be
239  attributed to the excessive number of markers required for such studies, particularly in cases where
240 thereis a low level of linkage disequilibrium (Kruglyak 1999). The USDA set reported a low LD
241  value, indicating a higher occurrence of recombination events. In contrast, the NDSU set showed
242  a higher LD score, suggesting a greater frequency of linked markers presumably due to limited

243 recent recombination to date (Siol et al. 2017).
244
245  Effective Population Size (Ne)

246 Based on LD, the estimated effective population size (Ne) for both the populations are
247  shown in Figure 4. The smaller Ne and high LD in NDSU set indicates that it has undergone

248  selective pressures leading to reduced diversity and increased correlation between the markers.

12
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249  Given NDSU set’s population history and marker density, it is acceptable to state that despite lower
250 N, it holds a reasonable level of diversity that may help maintain its genetic variability which is
251  essential for long-term viability and adaptability. The USDA set resulted in lower LD and higher
252 Ne, meaning it has more diversity and has encountered relatively fewer instances of selective
253  pressures or genetic bottlenecks. It is important to note that the low LD can also be observed in a
254  population with high Ne. Thus, it was expected to see NDSU set with lower Ne compared to USDA
255  set. These estimates explain how genetic drift and selections have shaped these populations over

256  time.

257

258  Discussion

259 The importance of Ne has become increasingly recognized in plant breeding as it describes
260 the rate of inbreeding and can reflect the contemporary status of genetic diversity in breeding
261  populations (Onda and Mochida 2016). When N is low, the population can become quickly inbred
262  with little potential for genetic gain making long-term selection ineffective. Therefore, plant
263  breeders should be cognizant of the effective population size of their breeding program (Cobb et
264 al. 2019). Actively monitoring Ne in successive cycles of breeding can enhance the viability of the
265 breeding efforts and help sustain long-term genetic gain. In this study, we presented the first
266  estimation of Ne in dry pea using two distinct germplasm sets: 1) the NDSU set consisting of elite
267  breeding lines within the NDSU breeding program, and 2) the USDA set comprised of landraces
268 and plant introductions collected all over the world (Cheng et al. 2015; Holdsworth et al. 2017).
269  The former represents breeding lines and germplasm in an active breeding program that releases

270  new modern cultivars, while the latter represents germplasm accessions in a repository. As

13
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271  expected, the estimated Ne for the USDA set (Ne=174) was higher than the NDSU set (Ne=64).
272 The genetic diversity for the USDA set is higher than the NDSU set as it represents most of the
273 available diversity in the USDA pea germplasm collection (Holdsworth et al. 2017; Cheng et al.

274 2015).

275 The Ne estimate for the NDSU set was within the same range as those reported in other
276  self-pollinating crops such as rice (Oryza sativa) and soybean (Glycine max), with calculated Ne
277  ranging from 20 to 60. Juma et. al. (2021) estimated the Ne in rice to be 22 using an elite core panel
278  comprised of 72 lines, but Ne may have been underestimated due to limited marker information
279  used in the analysis. Similar studies in rice also had the same range of Ne, with calculated values
280 ranging from 23-57 and 40-60; these were estimated based on breeding populations from recurrent
281  selection programs (Grenier et al. 2015) and pedigree data (Morais Janior et al. 2017).
282  The estimated Ne of USDA set was within the range of Ne values reported in studies conducted on
283  other crops. In soybean, Xavier et al. (2018) estimated Ne for the USDA soybean germplasm
284  collection comprised of 19,652 accessions from Bandillo et al. (2015) and reported it to be 106
285 individuals. Recent studies have shown that soybean possess several genetic bottlenecks (Guo et
286 al. 2010) and its genetic diversity has been reduced (Li et al. 2013, Min et al. 2010). The Ne estimate
287  of USDA set is relatively higher than soybean, implying greater diversity. Zhao et al. (2013)
288  estimated N. in wild rice using 11 Chinese Oryza rufipogon populations including 32 landraces
289  and reported it between 96-158, which is in a similar range to the USDA set. Thus, the Ne of USDA
290 set offers greater potential for adaptation, maintaining rare alleles, population stability, and

291  reduced risk for inbreeding.

14
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292 The results of our study also suggest that the use of GBS holds good potential for making
293 inferences of Ne regardless of the germplasm type. Using GBS-based markers, we approximated
294  the LD pattern within and across chromosomes of both germplasms and then used the LD
295  information for estimation of Ne. Genome-wide LD (r?) of the USDA set decayed from lower LD
296 at 200 kb, while the NDSU set had the highest LD declined at a longer distance of around 250 kb.
297  These results provided consistency of higher genetic variations of the former over the latter.
298  Similar LD findings have been observed in previous studies conducted on peas, wherein both wild
299 and spring peas exhibited a decay distance of approximately 200 kb, whereas wild/landrace peas
300 were around 100 kb (Siol et al. 2017) which is a bit lower than the USDA set. Comparing the LD
301 of USDA set and the NDSU set to other selfing crops such as rice, soybeans, and barley, the
302  physical distances found were more or less similar depending on the populations. For instance,
303 Huang et al. (2010) estimated LD using O. indica and O. japonica landraces of rice at 123 and 167
304 kb, respectively, with r? declining to 0.25 and 0.28. Additionally, soybean landraces extended from
305 90 to 500 kb (Hyten et al. 2007) while improved cultivars hit 133 kb (Zhou et al. 2015) which is
306 similar to the USDA set. Alternatively, a recent LD analysis from soybean USDA germplasm
307  revealed that the r? dropped intragenically within a few kilobases (Xavier et al. 2018) and the one
308 in barley’s landraces hit 90 kb (Caldwell et al. 2006), both shorter than the USDA set. The LD-
309 decay of the NDSU set was also found to be in a similar range with elite varieties of barley which
310 extended to at least 212 kb (Caldwell et al. 2006) and O. japonica elite lines at ~318 kb (L. et al.
311  2020), but had a higher distance compared to O. indica elite lines (~124 kb) (Li et al. 2020). The
312  LD-decay rate of a crop does depend on the genetic background of the populations being studied,
313  and it can be affected due to mutations, genetic drift, non-random mating, and a small Ne (Flint-

314  Garciaet al. 2003).
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315 Since public plant breeding programs are moving toward more quantitative methods, the
316  importance of the dynamic exchange of genetic material and the maintenance of diversity within
317  the population has increased. Effective population size helps breeders preserve and remodel their
318  selection strategies to enhance the stability and variability in their breeding populations (Cobb et
319 al. 2019). Breeders can also implement marker-based mating experiments known as optimum
320 contribution selection (OCS) (Juma et al. 2021) in order to maintain diversity in selection
321  candidates for long-term gain. As pulse crop breeders navigate through challenges in their breeding
322 programs, the information from this study provides valuable insights by demonstrating the strength
323  of contemporary populations and possibly contributing to the long-term goal of increasing genetic

324  gain while maintaining diversity in breeding programs.

325

326  Conclusions

327 These research findings shed light on the range of genetic diversity in both NDSU set and
328  USDA set. The evaluation of Ne can be a bit more challenging and there is a possibility of potential
329  biases if certain crucial factors including sample size, marker density, population history and LD
330 are not accounted appropriately (Waples and Yokota 2007, Waples and Do 2010; Gilbert and
331 Whitlock 2015; Marandel et al. 2020). Even though genetic markers have become a more widely
332  utilized approach for estimating Ne in recent years, there are still more obstacles to overcome in
333 its Ne accuracy. Future estimation of Ne could be complemented with gene expression along with
334 DNA markers and demographic history, that would increase the understanding of breeders

335  regarding the population dynamics and potential for adaptation in different environments.

16


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

336  Acknowledgments

337  The authors would like to acknowledge the funding provided by USDA-NIFA (Hatch Project #:
338 NDO01513). The genotyping of the NDSU materials was funded by the North Dakota Department
339  of Agriculture through the Specialty Crop Block Grant Program (19-429) and Northern Pulse
340  Growers Associations. The genotyping of the USDA germplasm was partially supported through
341 funding from USDA Plant Genetic Resource Evaluation, USA Dry Pea and Lentil Council
342  Research Committee, USDA ARS Pulse Crop Health Initiative and USDA ARS Project: 5348-
343  21000-017-00D (CJC), and 5348-21000-024-00D (RJM). This investigation used resources of the
344  Center for Computationally Assisted Science and Technology (CCAST) at North Dakota State

345  University, Fargo, ND, USA which were made possible in part by NSF MRI Award No. 2019077.

346 We would also like to acknowledge the contributions of Jérébme Bartholomé who provided

347  technical guidance on the implementation of Sved’s (1971) equation.

348

349  Author Contributions

350 Josephine Princy Johnson: Conceptualization; Data curation; Pipeline development; Formal
351 analysis; Investigation; Methodology; Writing — original draft, review and editing, Lisa Piche:
352  Methodology; Review and editing, Hannah Worral: Methodology; Review and editing, Sikiru
353  Adeniyi Atanda: Writing - review and editing, Clarice J. Coyne: Funding acquisition;
354  Resources; Review and editing, Kevin McPhee: Funding acquisition; Resources; Review and
355  editing, Rebecca McGee: Funding acquisition; Resources; Review and editing, and Nonoy
356  Bandillo: Conceptualization; Supervision; Funding acquisition; Resources; Validation; Writing -

357  review and editing.

17


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

358  Competing Interests

359  The authors declare no conflict of interest.

360

361 Data archiving

362 Please find the  “EffectivePopSize” R  package from  GitHub  repository:

363  https://github.com/PrincyJohnson/EffectivePopSize.

364

365

366

367

368

369

370

371

372

373

374

375

18


https://github.com/PrincyJohnson/EffectivePopSize
https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

376 References

377

378  Abbo S, Gopher A, Lev-Yadun S (2017). The Domestication of Crop Plants. In: Thomas B,
379  Murray BG, Murphy DJ (eds) Encyclopedia of Applied Plant Sciences (Second Edition),
380  Academic Press: Oxford, pp 50-54.

381

382  Andrews S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data.

383  http://Www.bioinformatics.babraham.ac.uk/Projects/Fastgc/

384

385  Antao T, Pérez-Figueroa A, Luikart G (2011). Early detection of population declines: high power
386  of genetic monitoring using effective population size estimators. Evol Appl 4: 144-154.

387

388  Ardlie KG, Kruglyak L, Seielstad M (2002). Patterns of linkage disequilibrium in the human
389  genome. Nat Rev Genet 3: 299-309.

390

391  Atanda SA, Steffes J, Lan Y, Al Bari MA, Kim J-H, Morales M, et al. (2022). Multi-trait

392  genomic prediction improves selection accuracy for enhancing seed mineral concentrations in
393  pea. Plant Genome 15: €20260.

394

395 Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J et al. (2015). A Population

396  Structure and Genome-Wide Association Analysis on the USDA Soybean Germplasm

397  Collection. Plant Genome 8: eplantgenome2015.04.0024.

398

19


http://www.bioinformatics.babraham.ac.uk/Projects/Fastqc/
https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

available under aCC-BY 4.0 International license.

Bari MAA, Fonseka D, Stenger J, Zitnick-Anderson K, Atanda SA, Morales M et al. (2023). A
greenhouse-based high-throughput phenotyping platform for identification and genetic dissection

of resistance to Aphanomyces root rot in field pea. Plant Phenome 6: e20063.

Bari MAA, Zheng P, Viera I, Worral H, Szwiec S, Ma Y et al. (2021). Harnessing Genetic
Diversity in the USDA Pea Germplasm Collection Through Genomic Prediction. Front Genet

12: 707754.

Boyle EA, Li Y1, Pritchard JK (2017). An Expanded View of Complex Traits: From Polygenic

to Omnigenic. Cell 169: 1177-1186.

Caldwell KS, Russell J, Langridge P, Powell W (2006). Extreme Population-Dependent Linkage
Disequilibrium Detected in an Inbreeding Plant Species, Hordeum vulgare. Genetics 172: 557—

567.

Charlesworth B (2009). Fundamental concepts in genetics: effective population size and patterns

of molecular evolution and variation. Nat Rev Genet 10: 195—-205.

Charlesworth B, Charlesworth D (2010) Elements of Evolutionary Genetics. Roberts & Co:

Greenwood Village, Colorado, USA.

Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA et al. (2015). Association

mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 35: 75

20


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

422

423  Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G et al. (2019). Enhancing the
424  rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s

425  equation. Theor Appl Genet 132: 627—645.

426

427  Crow JF, Kimura M. (1970). An Introduction to Population Genetics Theory. Harper & Row:
428  New York, USA.

429

430  Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. (2011). A robust,
431  simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:

432 e19379.

433

434  Fernandez J, Villanueva B, Pong-Wong R, Toro MA (2005). Efficiency of the use of pedigree
435  and molecular marker information in conservation programs. Genetics 170: 1313-1321.

436

437  Fisher RA (1930). The genetical theory of natural selection. Oxford University Press. Oxford
438  Flint-Garcia SA, Thornsberry JM, Buckler ES 4th (2003). Structure of linkage disequilibrium in
439  plants. Annu Rev Plant Biol 54: 357-374.

440

441  Gali KK, Sackville A, Tafesse EG, Lachagari VBR, McPhee K, Hybl M, et al. (2019). Genome-
442  Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum
443  L.). Front Plant Sci 10: 1538.

444

21


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

available under aCC-BY 4.0 International license.

Garcia-Cortés LA, Austerlitz F, de Cara MAR (2019). An evaluation of the methods to estimate

effective population size from measures of linkage disequilibrium. J Evol Biol 32: 267-277.

Gargiulo R, Decroocq V, Gonzélez-Martinez SC, Paz-Vinas I, Aury J-M, Kupin IL, et al. (2023).
Estimation of contemporary effective population size in plant populations: limitations of

genomic datasets. bioRxiv: 2023.07.18.549323.

Gilbert KJ, Whitlock MC (2015). Evaluating methods for estimating local effective population

size with and without migration. Evolution 69: 2154-2166.

Grenier C, Cao T-V, Ospina Y, Quintero C, Chatel MH, Tohme J, et al. (2015). Accuracy of
Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding.

PLoS One 10: e0136594.

Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, et al. (2010). A single origin and moderate
bottleneck during domestication of soybean (Glycine max): implications from microsatellites and

nucleotide sequences. Ann Bot 106: 505-514.

Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, et al. (2011).

Understanding and estimating effective population size for practical application in marine

species management. Conserv Biol 25: 438-449.

22


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

467  Hayes BJ, Visscher PM, McPartlan HC, Goddard ME (2003). Novel multilocus measure of
468  linkage disequilibrium to estimate past effective population size. Genome Res 13: 635-643.
469

470  Hill WG (1981). Estimation of effective population size from data on linkage disequilibrium.
471  Genet Res 38: 209-216.

472

473  Hill WG, Robertson A (1968). Linkage disequilibrium in finite populations. Theor Appl Genet
474  38:226-231.

475

476  Holdsworth WL, Gazave E, Cheng P, Myers JR, Gore MA, Coyne CJ, et al. (2017). A

477  community resource for exploring and utilizing genetic diversity in the USDA pea single plant
478  plus collection. Hortic Res 4: 17017.

479

480 Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. (2010). Genome-wide association
481  studies of 14 agronomic traits in rice landraces. Nat Genet 42: 961-967.

482

483  Hyten DL, Choi I-Y, Song Q, Shoemaker RC, Nelson RL, Costa JM, et al. (2007). Highly

484  variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175: 1937—
485  1944.

486

487  Juma RU, Bartholomé J, Thathapalli Prakash P, Hussain W, Platten JD, Lopena V, et al. (2021).
488 Identification of an Elite Core Panel as a Key Breeding Resource to Accelerate the Rate of

489  Genetic Improvement for Irrigated Rice. Rice 14: 92.

23


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

490

491  Kreplak J, Madoui M-A, Cépal P, Novak P, Labadie K, Aubert G, et al. (2019). A reference
492  genome for pea provides insight into legume genome evolution. Nat Genet 51: 1411-1422.
493

494  Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common
495  disease genes. Nat Genet 22: 139-144.

496

497  Lee Y-S, Woo Lee J, Kim H (2014). Estimating effective population size of thoroughbred horses
498  using linkage disequilibrium and theta (4Np) value. Livest Sci 168: 32-37.

499

500 LiY-H, Zhao S-C, Ma J-X, Li D, Yan L, Li J, et al. (2013). Molecular footprints of

501  domestication and improvement in soybean revealed by whole genome re-sequencing. BMC
502  Genomics 14: 579.

503

504 Lonsinger RC, Adams JR, Waits LP (2018). Evaluating effective population size and genetic
505  diversity of a declining kit fox population using contemporary and historical specimens. Ecol
506 Evol 8:12011-12021.

507

508 Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010). Estimation of census
509 and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv
510 Genet 11: 355-373.

511

24


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Marandel F, Charrier G, Lamy J-B, Le Cam S, Lorance P, Trenkel VM (2020). Estimating
effective population size using RADseq: Effects of SNP selection and sample size. Ecol Evol 10:

1929-1937.

Min W, Run-zhi L, Wan-ming Y, Wei-jun D (2010). Assessing the genetic diversity of cultivars

and wild soybeans using SSR markers. African Journal of Biotechnology 9: 4857-4866.

Morais Junior OP, Breseghello F, Duarte JB, Morais OP, Rangel PHN, Coelho ASG (2017).

Effectiveness of recurrent selection in irrigated rice breeding. Crop Sci 57: 3043-3058.

Nei M, Tajima F (1981). Genetic drift and estimation of effective population size. Genetics 98:

625-640.

Novo I, Santiago E, Caballero A (2022). The estimates of effective population size based on

linkage disequilibrium are virtually unaffected by natural selection. PLoS Genet 18: €1009764.

Onda Y, Mochida K (2016). Exploring Genetic Diversity in Plants Using High-Throughput

Sequencing Techniques. Curr Genomics 17: 358-367.

Pollak E (1983). A new method for estimating the effective population size from allele frequency

changes. Genetics 104: 531-548.

25


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

534 R Core Team. (2023). R: A Language and Environment for Statistical Computing.

535  https://www.r-project.org/

536

537  Rahimmadar S, Ghaffari M, Mokhber M, Williams JL (2021). Linkage Disequilibrium and
538  Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a
539  Medium Density SNP Array. Front Genet 12: 608186.

540

541  Sawada C, Moreau C, Robinson GHJ, Steuernagel B, Wingen LU, Cheema J, et al. (2022). An
542  Integrated Linkage Map of Three Recombinant Inbred Populations of Pea (Pisum sativum L.).
543  Genes 13: 196

544

545  Siol M, Jacquin F, Chabert-Martinello M, Smykal P, Le Paslier M-C, Aubert G, et al. (2017).
546  Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea

547  Germplasm. G3 7: 2461-2471.

548

549  Sved JA (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite
550 populations. Theor Popul Biol 2: 125-141.

551

552 Sved JA, Hill WG (2018). One Hundred Years of Linkage Disequilibrium. Genetics 209: 629—
553  636.

554

26


https://www.r-project.org/
https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

555  Tayeh N, Klein A, Le Paslier M-C, Jacquin F, Houtin H, Rond C, et al. (2015). Genomic

556  Prediction in Pea: Effect of Marker Density and Training Population Size and Composition on
557  Prediction Accuracy. Front Plant Sci 6: 941.

558

559  Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. (2007). Recent
560 human effective population size estimated from linkage disequilibrium. Genome Res 17: 520—
561  526.

562

563  Toosi A, Fernando RL, Dekkers JCM (2010). Genomic selection in admixed and crossbred
564  populations. J Anim Sci 88: 32-46.

565

566  USDA (2020). United States Acreage. National Agricultural Statistics Service.

567  https://www.nass.usda.gov/Publications/Todays Reports/reports/acrg0620.pdf. Accessed 15

568  August 2023

569

570 Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2017). Evaluation
571  of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid
572  potato. Theor Appl Genet 130: 123-135.

573

574  Wang J (2005). Estimation of effective population sizes from data on genetic markers. Philos
575  Trans R Soc Lond B Biol Sci 360: 1395-14009.

576

27


https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf.%20Accessed%2015%20August%202023
https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf.%20Accessed%2015%20August%202023
https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

577  Wang J, Santiago E, Caballero A (2016). Prediction and estimation of effective population size.
578  Heredity 117: 193-206.

579

580 Waples RS, Do C (2010). Linkage disequilibrium estimates of contemporary Ne using highly
581 variable genetic markers: a largely untapped resource for applied conservation and evolution.
582  Evol Appl 3: 244-262.

583

584  Waples RS, Yokota M (2007). Temporal estimates of effective population size in species with
585  overlapping generations. Genetics 175: 219-233.

586

587  Wright S (1931). Evolution in Mendelian Populations. Genetics 16: 97-159.

588

589  Xavier A, Thapa R, Muir WM, Rainey KM (2018). Population and quantitative genomic

590 properties of the USDA soybean germplasm collection. Plant Genet Resour 16: 513-523.

591

592  YangJ, Lee SH, Goddard ME, Visscher PM (2011). GCTA: a tool for genome-wide complex
593 trait analysis. Am J Hum Genet 88: 76-82.

594

595 ZhaoY, Vrieling K, Liao H, Xiao M, Zhu Y, Rong J, et al. (2013). Are habitat fragmentation,
596 local adaptation and isolation-by-distance driving population divergence in wild rice Oryza
597  rufipogon? Mol Ecol 22: 5531-5547.

598

28


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

599  Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, et al. (2015). Resequencing 302 wild and

600 cultivated accessions identifies genes related to domestication and improvement in soybean. Nat
601  Biotechnol 33: 408-414.

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

29


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

619  Main Figures

620 Figurel

621
622
623

0.6-

Germplasm
= NDSU
0.5 == |JSDA
0.4-
o
8 03
—
0.25
0.1+
0 250 500 750
Distance (Kb)

624
625
626 Figure 1. Genome-wide Linkage Disequilibrium - decay of NDSU set and USDA set
627
628
629
630
631
632

30


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2

06 Chromosome
— Chr1
= Chr2

0.5 — chr3
— Chré4

0.4 = Chrb

Chré
- Chr7
0.3
0.2
0 250 500 750
Distance (Kb)

LD (%)

0.3-

0.1-

USDA

250 500
Distance (Kb)

750

Chromosome

= Chr1
== Chr2
— Chr3
- Chr4
— Chrb

Chr 6
— Chr7

Figure 2. Chromosome-wide Linkage Disequilibrium - decay of NDSU set and USDA set

31


https://doi.org/10.1101/2024.02.19.581041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581041; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

648  Figure 3

649
650
651
652
LDscores - NDSU
653 0.8 —
654
Q06 —
655 3 '
a
[ e
657 S 02
658 Fis
0.0 —
659
1 2 3 4 5 6 7
660
LDscores - USDA
661 08 —
662
g 0.6 —
663 §
04 —
664 7:'
(4]
665 2 oo 4
666
0.0 —
667
1 2 3 4 5 6 7
668
669

670 Figure 3. The Mean LD scores estimated in 1000kb windows. There is a significant increase in

671 LD of NDSU set compared to USDA set
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