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Abstract 20 

Background 21 

Effective population size (Ne) is a pivotal parameter in population genetics as it can provide 22 

information on the rate of inbreeding and the contemporary status of genetic diversity in breeding 23 

populations. The population with smaller Ne can lead to faster inbreeding, with little potential for 24 

genetic gain making selections ineffective. The importance of Ne has become increasingly 25 

recognized in plant breeding, which can help breeders monitor and enhance the genetic variability 26 

or redesign their selection protocols. Here, we present the first Ne estimates based on linkage 27 

disequilibrium (LD) in the pea genome.  28 

Results 29 

We calculated and compared Ne using SNP markers from North Dakota State University (NDSU) 30 

modern breeding lines and United States Department of Agriculture (USDA) diversity panel. The 31 

extent of LD was highly variable not only between populations but also among different regions 32 

and chromosomes of the genome. Overall, NDSU had a higher and longer-range LD than the 33 

USDA that could extend up to 500Kb, with a genome-wide average r2 of 0.57 (vs 0.34), likely due 34 

to its lower recombination rates and the selection background. The estimated Ne for the USDA was 35 

nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high 36 

degree of population structure due to the selfing nature of pea.  37 

Conclusions 38 

Our results provided insights into the genetic diversity of the germplasm studied, which can guide 39 

plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the 40 

breeding efforts in the long term.   41 
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 44 

Introduction 45 

 46 

Dry pea (Pisum sativum L.), is a diploid, cool-season legume and a member of the 47 

Leguminosae family (Abbo et al. 2017). Pea is one of the most important pulse crops grown in 48 

more than 100 countries, where 7,043,605 hectares of dry pea were planted around the world with 49 

a total production of 12,403,522 tonnes (FAOSTAT 2021; https://www.fao.org/faostat/). In the 50 

USA alone, the pea production reached one million tonnes in 2019 (USDA  2020). In recent years, 51 

pea protein has become more popular in the market for plant-based diets e.g., Beyond® Meat 52 

Burger (Bari et al. 2021). Pea seeds have earned a reputation as a dietary goldmine with around 15 53 

– 32% protein content, vitamins, folate, fibers, potassium and minerals, which is good for human 54 

health and helps prevent cardiovascular and specific cancer diseases (Bari et al. 2021; Tayeh et al. 55 

2015). The increasing popularity of plant-based proteins in the market has further propelled the 56 

demand for peas. Therefore, the study of genetic diversity should expand to accelerate the genetic 57 

gain of pea varieties to meet future demands, maintaining the diversity in peas is the top priority 58 

for plant breeders (Bari et al. 2021; Gali et al. 2019).  59 

Estimation of effective population size (Ne) determines the rate of inbreeding (Rahimmadar 60 

et al. 2021; Tenesa et al. 2007) and genetic changes due to genetic drift (Gargiulo et al. 2023). Ne 61 

is an important parameter in population genetics and breeding introduced by Sewall Wright in 62 

1931, which helps breeders to maintain and monitor the level of genetic diversity in their species 63 
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(Cobb et al. 2019). The estimated Ne is expected to be smaller than the census size (N), as it 64 

influences the rate at which genetic diversity decreases within a population (Lonsinger et al. 2018; 65 

Hare et al. 2011). Relatively smaller Ne indicates limited population diversity, which, in turn, can 66 

restrict genetic advancement within a breeding program (Hayes et al., 2003). Moreover, Ne 67 

parameter retrieves the population dynamics of the genes (Nei and Tajima 1981).  68 

The effective size of a population refers to the hypothetical number of individuals in an 69 

idealized population that would exhibit a comparable genetic response to stochastic processes, 70 

similar to that observed in a real-world population which is based on the Wright-Fisher model 71 

(Wang et al. 2016; Wright 1931; Fisher 1930). This model shows genetic drift as the main 72 

operating factor, and that changes in allelic and genotypic frequencies over generations are solely 73 

influenced by the population size (N) (Wang et al. 2016). In real-world breeding populations, 74 

factors such as mutation, migration, natural selection, and non-random mating come into play 75 

(Wang et al. 2016) These factors affect the actual rates of inbreeding and changes in gene 76 

frequency variance observed in a population (Charlesworth 2009). This will indeed impact Ne and 77 

therefore, reduce the genetic variation and diversity. The most commonly used extensions for 78 

effective population size theory are variance effective size and inbreeding effective size (Wang et 79 

al. 2016). The variance effective size reflects the rate of change in gene frequency variance, while 80 

inbreeding effective size corresponds to the rate of inbreeding observed in a population (Crow and 81 

Kimura 1970). These measures allow us to quantify the consequences of genetic drift in a real 82 

population, based on the characteristics and dynamics of the idealized Wright-Fisher population 83 

(Wang et al. 2016).  84 

While Ne of a population can be estimated either from demographic data or genetic 85 

markers, the latter is preferred (Gilbert and Whitlock 2015; Luikart et al. 2010; Fernández et al. 86 
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2005). Demographic data involves using census size and variance of reproductive success whereas 87 

genetic markers reveal changes in allele frequencies over time and are based on linkage 88 

disequilibrium (LD). When the pedigree or demographic data is not available, Ne can be estimated 89 

using genetic markers (Wang 2005). The most popular and widely-employed genetic approach has 90 

been the temporal method, which relies on temporal fluctuations in allele frequencies observed on 91 

multiple samples collected from the same population (Nei and Tajima 1981). Ne, however, can 92 

also be directly estimated using LD between loci at various distances along the genome (Hayes et 93 

al. 2003; Sved 1971). Recent advancements in high-throughput sequencing and the availability of 94 

high-density markers such as single nucleotide polymorphisms (SNPs) have increased over the 95 

past decade, contributing to the LD-based approach now being acknowledged as more reliable, 96 

robust (Novo et al. 2022), cost and time effective than the temporal approach (Gargiulo et al. 97 

2023).  98 

         Linkage disequilibrium (represented as r2) is a phenomenon characterized by the non-99 

random association of alleles at various loci (Hill and Robertson 1968) which became popular in 100 

recent years for predicting Ne (Antao et al. 2011). Correlations between alleles are generated by 101 

genetic drift when it is inversely proportional to Ne (Gargiulo et al. 2023), which changes the allele 102 

frequencies in a population over time. The biggest advantage of LD over the temporal method 103 

(Pollak 1983), is the strength of associations between markers that can be used to calculate Ne at 104 

any time (generations) from a single population accurately without relying on longitudinal data. 105 

This makes LD a valuable tool for studying populations where temporal information may be 106 

limited or unavailable. Recombination and mutation rates are fundamental processes that shape 107 

the genetic landscape (Ardlie et al. 2002), and by analyzing LD, we can better understand their 108 

history and apply it to plant breeding and population genetics (Sved and Hill 2018). 109 
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         In this study, we estimated the extent of LD decay in the dry pea genome and utilized the 110 

relationship between LD and recombination frequency, as initially described by Sved (1971), to 111 

estimate Ne which is convenient as it only requires one sampling time (García-Cortés et al. 2019; 112 

Hill 1981). We used two sets of populations: 1) NDSU modern breeding lines, hereafter referred 113 

to as NDSU set, and 2) USDA diversity panel, hereafter referred to as USDA set. Our objectives 114 

were two-fold: (i) to estimate Ne for these two germplasms set in dry pea and (ii) to compare the 115 

genetic variation between these germplasms. To achieve these goals, we developed a 116 

comprehensive R package that implements the Sved (1971) formula for Ne prediction. This 117 

package not only caters to the specific needs of dry pea research but can also be adapted for use in 118 

other crop species. Since there has been no information on Ne for peas, our findings serve as a 119 

valuable reference for researchers seeking to determine the minimum number of lines required for 120 

designing experiments. Furthermore, comparing the genetic variation between NDSU modern 121 

breeding lines and USDA multi-environmental lines provides valuable information about the 122 

diversity and potential of these germplasm collections. This knowledge can guide breeding 123 

programs and conservation efforts, ensuring the maintenance and enhancement of genetic 124 

resources in dry pea cultivation. 125 

 126 

 127 

 128 

 129 

 130 
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Methods 131 

 132 

Plant Materials 133 

 In this study, we used plant materials from two distinct germplasms. The first population 134 

comes from the NDSU Pulse Breeding Program (NDSU set) where 300 advanced elite lines were 135 

generated from multiple bi-parental populations. These lines were created specifically with a focus 136 

on phenotypes including high yield, grain quality, resistance to disease and some other desirable 137 

agronomic traits. The breeding lines used in this experiment were carefully chosen and contain 138 

both contemporary and past elite germplasm. (Bari et al. 2023; Atanda et al. 2022). 139 

The second population is from a USDA diversity panel (USDA set), and contained 482 140 

accessions, of which 292 samples were from the Pea Single Plant Plus Collection (Pea PSP) (Bari 141 

et al. 2021; Holdsworth et al. 2017; Cheng et al. 2015). The USDA set was composed of accessions 142 

that represent most of available diversity within the USDA pea germplasm collection based on the 143 

knowledge of geography, taxonomy, morphology and genotyping-by-sequencing data generated 144 

previously (Holdsworth et al. 2017).  145 

DNA extraction, Sequencing and Variant Calling 146 

Leaf tissues from the greenhouse were collected at different stages for all NDSU elite lines 147 

and USDA accessions. The DNA from the lyophilized tissues were extracted using the DNeasy 148 

Plant Mini Kit (Qiagen). Detailed information regarding the tissue collections and extractions are 149 

provided in Bari et al. (2023) and Bari et al. (2021). Both NDSU set and USDA set were sequenced 150 

using genotyping-by-sequencing (GBS). Using the restriction enzyme ApeKI, dual-indexed GBS 151 
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libraries for both populations were prepared (Elshire et al. 2011). Samples were sequenced using 152 

NovaSeq S1 × 100 Illumina sequencing technologies. The NDSU set sequenced libraries were 153 

retrieved with a quality score ≥ 30. For USDA set, FASTQC (Andrews 2010) was utilized to 154 

perform quality check and removed reads with lengths < 50 bases. All reads that passed the quality 155 

check were aligned with the reference genome (Kreplak et al. 2019) (https://www.pulsedb.org). 156 

Finally, the aligned reads were analyzed using SAMtools (v1.10) and generated the variant files 157 

(VCF) using FreeBayes (V1.3.2).  158 

The amount of single nucleotide polymorphisms (SNPs) identified for the NDSU set was 159 

28,832, while 380,527 SNP markers were identified in the USDA set (Bari et al. 2021, 2023; 160 

Atanda et al. 2022). For these marker datasets, we filtered minor allele frequency (MAF), since 161 

alleles with < 5% could produce bias to the LD and Ne calculations (Toosi et al. 2010, Lee et al. 162 

2014). We also removed markers with more than 20% missing values using Plink v1.9 (Purcell et 163 

al. 2007) and heterozygosity > 20% using Tassel v5.0 (Bradbury et al. 2007). The resulting marker 164 

sets consisted of 7,157 (NDSU set) and 19,826 (USDA set) SNP markers that were used for 165 

downstream analysis. 166 

 167 

Calculation of Linkage Disequilibrium (r2) 168 

LD was calculated using Plink v1.9 (Purcell et al. 2007) with a maximum distance of 750 169 

kb. Using “ggplot2” R package, the genome-wide and chromosome-wide LD-decay (r²) were 170 

visualized against the physical distance (kb) to show the recombination history (see Fig. 1 & 2).  171 
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LD scores were also estimated using Genome-wide Complex Trait Analysis (GCTA) 172 

software for window size of 1000 kb and r2 cutoff of 0 (Yang et al. 2011). This approach was 173 

employed to visualize the distribution of mean LD throughout the genome. 174 

 175 

Calculation of Effective Population Size 176 

Effective population size (Ne) for both the NDSU set and the USDA set were estimated 177 

based on LD using the Sved (1971) equation. The recombination rate (cM) was calculated using 178 

cM/Mb conversion ratio from a recent pea genetic linkage map (Sawada et. al. 2022) and then 179 

transformed to Morgan’s (c). 180 

𝑵𝒆 =
𝟏

𝟒𝒄
(

𝟏

𝑬(𝒓𝟐)
 −  𝟏)………… . (1) 181 

Where, 𝑁𝑒 = effective population size 182 

𝑐 = genetic distance in Morgan’s 183 

𝐸(𝑟2) = expected 𝑟2 184 

The expected r2 was predicted by linear regression model using least square estimation (LSE), 185 

Prediction of 𝑟2: 186 

𝛍̂ = 𝐗𝛃̂……… . (2) 187 

                                                  𝛃̂ = (𝐗′𝐗)−𝟏 𝐗𝐘 .. … … . (3) 188 
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𝐗 =

[
 
 
 
 
1 c
1 c
. .
. .
1 c]

 
 
 
 

, 𝐘 = [

mean_r2

.

.
mean_r2

] 189 

The mean_r2 from the Y parameter was calculated by LD (r2) for the genetic distance ‘c’ using 190 

‘group by’ mean function in R Environment (R Core Team, 2023).  191 

Now with the availability of all required parameters, we finally estimated Ne from Equation (1) 192 

using LSE, 193 

According to the formula (Eqn. 1), we assigned the variables as predictor (X) and response (Y) 194 

and calculated the coefficient 𝛃1 without the intercept term 𝛃0, following Juma et al. (2021). 195 

𝒀 = (
1

𝜇̂
) − 1, 𝐗 = 4 × 𝑐 196 

𝑿 =

[
 
 
 
 
 
4𝑐
4𝑐
.
.
.

4𝑐]
 
 
 
 
 

  , 𝐘 =

[
 
 
 
 
 (

1

μ̂
) − 1

.

.

(
1

μ̂
) − 1

]
 
 
 
 
 

 197 

 198 

Again, we used Equation (3) to calculate the coefficient 𝛃1 which represents Ne. 199 

 200 

 201 

 202 

 203 
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Results 204 

Linkage Disequilibrium Decay Rate and Scores 205 

The decay of linkage disequilibrium (r2) was examined in both NDSU set and USDA set 206 

by utilizing 7,157 and 19,826 SNP markers, respectively. This analysis allowed for the 207 

identification of the physical distance at which the decay rate occurred. Supplementary Figure 1 208 

depicts the distribution of SNPs within and across chromosomes for both populations, providing 209 

an illustration of the marker density. The NDSU set’s genome-wide LD-decay plot (Figure 1) 210 

demonstrates that the r2 reached its peak value of 0.57 within the initial kilobases and subsequently 211 

exhibited a gradual decline. The r2 showed a decrease from 0.3 to 0.25 when the genomic distance 212 

increased from 150 kb to 250 kb. Following that, the LD within each chromosome was observed 213 

visually in Figure 2 in order to improve comprehension of the decay pattern. Chromosomes 1 and 214 

6 exhibited a rapid decay at approximately 175 kb, while chromosomes 2 and 5 demonstrated a 215 

comparatively slower decay rate of around 350 kb. Furthermore, it is worth noting that 216 

chromosome 5 had the higher r2 value of 0.61 compared to other chromosomes. Whereas, the 217 

genome-wide LD of USDA set showed that r2 started at a lower value of 0.34 and dropped rapidly 218 

and reached 0.2 and 0.1 at 100 kb and 200 kb (Figure 1). From the chromosome-wide LD-decay 219 

(Figure 2), we observed that chromosome 3 dropped faster around ~150 kb, but the r2 decreased 220 

below 0.1 for chromosomes 4 and 7. Also, chromosomes 1, 5 and 6 decayed slowly (~250 kb) and 221 

reached r2 0.1. We also observed that chromosome 1 exhibited a higher r2 of 0.37. LD-decay 222 

figures show the trend of the r2 decaying from LD to linkage equilibrium (LE). 223 

Additionally, we performed calculations of LD scores as an alternative metric for inferring 224 

LD. The analysis of local LD in the NDSU set indicates a notable rise in the average r2 of 0.6 225 

across all chromosomes. The average r2 of chromosomes 5 and 6 was the highest with 0.8. The 226 
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genomic interval encompassing the centromeric region of chromosome 2 was missing. In contrast, 227 

the USDA set exhibited low average r2, with chromosome 2 hardly reaching 0.4, and chromosomes 228 

1, 4, and 7 having few sets that reached 0.3. It is worth noting that the LD density of the NDSU 229 

set is comparatively lower than the USDA set (Figure 3). 230 

With respect to recombination rate (centimorgans - cM), the genome-wide r2 on average 231 

decayed from 0.54 to 0.27 at 0.7 cM for the NDSU set, indicating a moderate level of correlation 232 

within this specific genetic distance across the genome. In contrast, the USDA set had lower 233 

average r2 (0.28) which dropped within a shorter genetic distance (0.5 cM). This implies that as 234 

the distance between the markers increases to 0.5 cM, they tend to be less correlated with each 235 

other (Supplementary Figure 2) 236 

The level of LD exhibited significant variation across distinct genomic regions and 237 

populations of dry peas. The impracticality of conducting whole-genome scanning can be 238 

attributed to the excessive number of markers required for such studies, particularly in cases where 239 

there is a low level of linkage disequilibrium (Kruglyak 1999). The USDA set reported a low LD 240 

value, indicating a higher occurrence of recombination events. In contrast, the NDSU set showed 241 

a higher LD score, suggesting a greater frequency of linked markers presumably due to limited 242 

recent recombination to date (Siol et al. 2017). 243 

 244 

Effective Population Size (Ne) 245 

 Based on LD, the estimated effective population size (Ne) for both the populations are 246 

shown in Figure 4. The smaller Ne and high LD in NDSU set indicates that it has undergone 247 

selective pressures leading to reduced diversity and increased correlation between the markers. 248 
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Given NDSU set’s population history and marker density, it is acceptable to state that despite lower 249 

Ne, it holds a reasonable level of diversity that may help maintain its genetic variability which is 250 

essential for long-term viability and adaptability. The USDA set resulted in lower LD and higher 251 

Ne, meaning it has more diversity and has encountered relatively fewer instances of selective 252 

pressures or genetic bottlenecks. It is important to note that the low LD can also be observed in a 253 

population with high Ne. Thus, it was expected to see NDSU set with lower Ne compared to USDA 254 

set. These estimates explain how genetic drift and selections have shaped these populations over 255 

time. 256 

 257 

Discussion 258 

The importance of Ne has become increasingly recognized in plant breeding as it describes 259 

the rate of inbreeding and can reflect the contemporary status of genetic diversity in breeding 260 

populations (Onda and Mochida 2016). When Ne is low, the population can become quickly inbred 261 

with little potential for genetic gain making long-term selection ineffective. Therefore, plant 262 

breeders should be cognizant of the effective population size of their breeding program (Cobb et 263 

al. 2019). Actively monitoring Ne in successive cycles of breeding can enhance the viability of the 264 

breeding efforts and help sustain long-term genetic gain. In this study, we presented the first 265 

estimation of Ne in dry pea using two distinct germplasm sets: 1) the NDSU set consisting of elite 266 

breeding lines within the NDSU breeding program, and 2) the USDA set comprised of landraces 267 

and plant introductions collected all over the world (Cheng et al. 2015; Holdsworth et al. 2017). 268 

The former represents breeding lines and germplasm in an active breeding program that releases 269 

new modern cultivars, while the latter represents germplasm accessions in a repository. As 270 
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expected, the estimated Ne for the USDA set (Ne=174) was higher than the NDSU set (Ne=64). 271 

The genetic diversity for the USDA set is higher than the NDSU set as it represents most of the 272 

available diversity in the USDA pea germplasm collection (Holdsworth et al. 2017; Cheng et al. 273 

2015).  274 

The Ne estimate for the NDSU set was within the same range as those reported in other 275 

self-pollinating crops such as rice (Oryza sativa) and soybean (Glycine max), with calculated Ne 276 

ranging from 20 to 60. Juma et. al. (2021) estimated the Ne in rice to be 22 using an elite core panel 277 

comprised of 72 lines, but Ne may have been underestimated due to limited marker information 278 

used in the analysis. Similar studies in rice also had the same range of Ne, with calculated values 279 

ranging from 23-57 and 40-60; these were estimated based on breeding populations from recurrent 280 

selection programs (Grenier et al. 2015) and pedigree data (Morais Júnior et al. 2017). 281 

The estimated Ne of USDA set was within the range of Ne values reported in studies conducted on 282 

other crops. In soybean, Xavier et al. (2018) estimated Ne for the USDA soybean germplasm 283 

collection comprised of 19,652 accessions from Bandillo et al. (2015) and reported it to be 106 284 

individuals. Recent studies have shown that soybean possess several genetic bottlenecks (Guo et 285 

al. 2010) and its genetic diversity has been reduced (Li et al. 2013, Min et al. 2010). The Ne estimate 286 

of USDA set is relatively higher than soybean, implying greater diversity. Zhao et al. (2013) 287 

estimated Ne in wild rice using 11 Chinese Oryza rufipogon populations including 32 landraces 288 

and reported it between 96-158, which is in a similar range to the USDA set. Thus, the Ne of USDA 289 

set offers greater potential for adaptation, maintaining rare alleles, population stability, and 290 

reduced risk for inbreeding.  291 
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  The results of our study also suggest that the use of GBS holds good potential for making 292 

inferences of Ne regardless of the germplasm type. Using GBS-based markers, we approximated 293 

the LD pattern within and across chromosomes of both germplasms and then used the LD 294 

information for estimation of Ne. Genome-wide LD (r2) of the USDA set decayed from lower LD 295 

at 200 kb, while the NDSU set had the highest LD declined at a longer distance of around 250 kb. 296 

These results provided consistency of higher genetic variations of the former over the latter. 297 

Similar LD findings have been observed in previous studies conducted on peas, wherein both wild 298 

and spring peas exhibited a decay distance of approximately 200 kb, whereas wild/landrace peas 299 

were around 100 kb (Siol et al. 2017) which is a bit lower than the USDA set. Comparing the LD 300 

of USDA set and the NDSU set to other selfing crops such as rice, soybeans, and barley, the 301 

physical distances found were more or less similar depending on the populations. For instance, 302 

Huang et al. (2010) estimated LD using O. indica and O. japonica landraces of rice at 123 and 167 303 

kb, respectively, with r2 declining to 0.25 and 0.28. Additionally, soybean landraces extended from 304 

90 to 500 kb (Hyten et al. 2007) while improved cultivars hit 133 kb (Zhou et al. 2015) which is 305 

similar to the USDA set. Alternatively, a recent LD analysis from soybean USDA germplasm 306 

revealed that the r2 dropped intragenically within a few kilobases (Xavier et al. 2018) and the one 307 

in barley’s landraces hit 90 kb (Caldwell et al. 2006), both shorter than the USDA set. The LD-308 

decay of the NDSU set was also found to be in a similar range with elite varieties of barley which 309 

extended to at least 212 kb (Caldwell et al. 2006) and O. japonica elite lines at ~318 kb (Li et al. 310 

2020), but had a higher distance compared to O. indica elite lines (~124 kb) (Li et al. 2020). The 311 

LD-decay rate of a crop does depend on the genetic background of the populations being studied, 312 

and it can be affected due to mutations, genetic drift, non-random mating, and a small Ne (Flint-313 

Garcia et al. 2003). 314 
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 Since public plant breeding programs are moving toward more quantitative methods, the 315 

importance of the dynamic exchange of genetic material and the maintenance of diversity within 316 

the population has increased. Effective population size helps breeders preserve and remodel their 317 

selection strategies to enhance the stability and variability in their breeding populations (Cobb et 318 

al. 2019). Breeders can also implement marker-based mating experiments known as optimum 319 

contribution selection (OCS) (Juma et al. 2021) in order to maintain diversity in selection 320 

candidates for long-term gain. As pulse crop breeders navigate through challenges in their breeding 321 

programs, the information from this study provides valuable insights by demonstrating the strength 322 

of contemporary populations and possibly contributing to the long-term goal of increasing genetic 323 

gain while maintaining diversity in breeding programs. 324 

 325 

Conclusions 326 

 These research findings shed light on the range of genetic diversity in both NDSU set and 327 

USDA set. The evaluation of Ne can be a bit more challenging and there is a possibility of potential 328 

biases if certain crucial factors including sample size, marker density, population history and LD 329 

are not accounted appropriately (Waples and Yokota 2007, Waples and Do 2010; Gilbert and 330 

Whitlock 2015; Marandel et al. 2020). Even though genetic markers have become a more widely 331 

utilized approach for estimating Ne in recent years, there are still more obstacles to overcome in 332 

its Ne accuracy. Future estimation of Ne could be complemented with gene expression along with 333 

DNA markers and demographic history, that would increase the understanding of breeders 334 

regarding the population dynamics and potential for adaptation in different environments. 335 
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Figure 1. Genome-wide Linkage Disequilibrium - decay of NDSU set and USDA set 626 
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Figure 2 634 
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Figure 2. Chromosome-wide Linkage Disequilibrium - decay of NDSU set and USDA set 641 
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Figure 3 648 
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Figure 3. The Mean LD scores estimated in 1000kb windows. There is a significant increase in 670 

LD of NDSU set compared to USDA set 671 
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Figure 4 676 
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Figure 4. Estimated effective population size (Ne) for NDSU set is 64 and USDA set is 174 695 
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