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Abstract 

Neuroblastoma (NB) can be a highly aggressive malignancy in children. However, the precise 

mechanisms driving NB tumorigenesis remain elusive. This study revealed the critical role of 

CREB phosphorylation in NB cell proliferation. By employing a CRISPR-Cas9 knockout screen 

targeting calcium/calmodulin-dependent protein kinase (CaMK) family members, we identified 

the CaM kinase-like vesicle-associated (CAMKV) protein as a kinase that mediates direct 

phosphorylation of CREB to promote NB cell proliferation. CAMKV was found to be a 

transcriptional target of MYCN/MYC in NB cells. CAMKV knockout and knockdown effectively 

suppressed NB cell proliferation and tumor growth both in vitro and in vivo. Bioinformatic 

analysis revealed that high CAMKV expression is significantly correlated with poor patient 

survival. High-risk NB frequently had high CAMKV protein levels by Immunohistochemical 

staining. Integrated transcriptomic and proteomic analyses of CAMKV knockdown cells unveiled 

downstream targets involved in CAMKV-regulated phosphorylation and signaling pathways, 

many of which are linked to neural development and cancer progression. We identified small 

molecule inhibitors targeting CAMKV and further demonstrated the efficacy of one inhibitor in 

suppressing NB tumor growth and prolonging the survival of mice bearing xenografted tumors. 

These findings reveal a critical role for CAMKV kinase signaling in NB growth and identified 

CAMKV kinase as a potential therapeutic target and prognostic marker for patients with NB. 

 

Key words: Neuroblastoma; Calcium/calmodulin-dependent protein kinases; cyclic AMP 

response element-binding protein  
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Introduction 

Neuroblastoma (NB) is the most common extracranial solid tumor in children, accounting for 8-

10% of childhood tumors (1). Despite its diverse clinical manifestations and variable response to 

therapy, the prognosis for high-risk NB remains unacceptably low (1, 2). Genomic amplification 

of the MYCN oncogene is associated with tumor aggressiveness and serves as a major prognostic 

factor in NB (3–6). In the absence of MYCN amplification, overexpression of MYC characterizes 

the aggressive phenotype of high-risk NB (7–9). However, direct targeting of a transcription factor 

such as MYCN/MYC is challenging, though some recent reports have shown some hope (10). 

Hence, unraveling other oncogenic signaling pathways is imperative for identifying novel 

therapeutic targets in NB.  

 

The transcription factor, cyclic AMP response element-binding protein (CREB), is a well-

characterized member of the basic leucine zipper super-family. It serving as a critical nidus 

connecting upstream kinase signaling to downstream target gene expression. CREB activation is 

mediated through the phosphorylation of Serine 133 in its transactivation domain (11, 12), which 

facilitates the recruitment of p300/CREB-binding protein (CBP) and subsequent histone 

acetylation of , along with chromatin remodeling (13). CREB promotes cell proliferation by 

upregulating multiple cell cycle-related genes, including CCNA1 (14), CCNA2 (15), and CCND1 

(16). CREB is also necessary for the survival of neuronal cells and NB cells (17–22). CREB 

phosphorylation is known to enhance melanoma' resistance to chemotherapy and radiotherapy (23). 

However, the exact function and regulatory role of CREB in NB remains unclear. 

 

Calcium/calmodulin-dependent protein kinases (CaMKs) constitute a family of serine/threonine 

kinases activated by stimuli elevating intracellular calcium levels (24, 25). The CaMK regulatory 

domain harbors a CaM binding site, and the binding of CaM initiates autophosphorylation to 

release autoinhibition and activate kinase activity (26). Various CaMK family members have been 

reported to play pivotal roles in cancer development (27). Notably, members of the CAMK2 

subfamily (CAMK2A, CAMK2B, CAMK2D, and CAMK2G) and CAMK4 have been shown to 

serve as CREB-activating kinases, which contribute to oncogenesis in diverse tumor types (28, 

29).  
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Intriguingly, CaM kinase-like vesicle-associated protein (CAMKV), a gene structurally akin to the 

CaMK family but considered a pseudokinase (30), has been linked to dendritic spine maintenance 

(31) and activity-dependent bulk endocytosis in neurons (32). CAMKV has also been identified as 

a prognostic biomarker in human endometrial carcinoma (33). A recent study revealed CAMKV as 

a transcriptional target of MYCN/MYC in NB (34).   

 

In this study, we identified a novel mechanism by which CAMKV controls CREB phosphorylation 

and activation in NB cells. We demonstrated CAMKV to be a bona fide CREB kinase that 

mediates CREB phosphorylation and promotes NB cell proliferation. Through integrated 

transcriptomic and proteomic analyses of CAMKV knockdown cells, we uncovered downstream 

genes/proteins involved in CAMKV-regulated phosphorylation and signaling pathways. 

Additionally, we identified small molecule inhibitors that target CAMKV and examined their 

efficacy in vitro and in vivo. Overall, our study highlights the role of CAMKV as a critical kinase 

regulated by MYCN/MYC to promote NB tumor growth and represents a new, druggable NB 

target. 

 

2. Material and methods 

2.1 Antibodies, chemicals, drugs, and other materials  

Antibodies for phospho-CREB (Ser133) (#9198L), CREB (#9104S), mouse IgG (#7076), and 

rabbit IgG (#7074) were from Cell Signaling Technology; antibodies for CAMKV (D-18) (#sc-

102406), CAMKV (2F3-1A2, sc-517082), c-Myc (#sc-40), N-Myc (#sc-56729), CCNA2 (#sc-

271682), His-tag (H-3, (#sc-8036), CAMK4 (H-5, c55501) and GATA2 (#sc-267) were from 

Santa Cruz Biotechnology. Monoclonal Anti-FLAG M2 and Monoclonal Anti-β-actin were from 

Sigma-Aldrich. Phospho-GATA2 (Ser192) (#PA5-105538) was from Thermo Fisher Scientific. 

Phosphatase inhibitor cocktail 2 (#P5726) and cocktail 3 (P0044) were from Sigma-Aldrich. 

Glutathione Sepharose 4B (#17-0756-01) was from Sigma-Aldrich. All small molecule inhibitors 

used in our assays were listed in table S1.  

 

2.2 Cell culture  

Human NB cell lines: SK-N-AS, IMR32, and SH-SY5Y were from ATCC; NGP and LAN-1 were 

from DSMZ; CHLA-255, CHLA-136, and SK-N-BE2 were from Children’s Oncology Group 
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(COG); NB-19 was gifted from Dr. Andrew Davidoff; LAN-6 was gifted from Dr. Robert Seeger. 

Human embryonic kidney cell line HEK-293T was from ATCC. NGP, SK-N-AS, IMR32, NB-19, 

CHLA255, LAN-1, LAN-6, SK-N-BE2, and SH-SY5Y were grown in RPMI1640 containing 20% 

fetal bovine serum (Invitrogen), 100 units/ml penicillin, and 100 µg/ml streptomycin. HEK293T 

cells were grown in DMEM containing 10% fetal bovine serum. Patient-derived xenograft (PDX) 

COG-N-519x and COG-N-564x cells were obtained from the COG Cell Culture and Xenograft 

Repository and maintained in IMDM containing 20% fetal bovine serum, 4 mM L-glutamine, and 

1 × ITS (5 µg/mL insulin, 5 µg/mL transferrin, 5 ng/mL selenous acid) (Biotechne, AR013, 

Minneapolis, MN, USA). 

 

2.3 Plasmids  

The full-length open reading frame of the wild-type (WT) human CAMKV was subcloned into the 

mammalian expression vector pcDNA3.1 with a C-terminal FLAG tag. The expression constructs 

of CAMKV mutants were generated by site-directed PCR mutagenesis and verified by DNA 

sequencing. The lentiviral packing vector psPAX2 (Addgene plasmid # 12260) and envelope 

vector pMD2.G (Addgene plasmid # 12259) were gifts from Didier Trono. PB-iCas9 was a gift 

from Xiaojun Lian (Addgene plasmid # 160048). For prokaryotic expression of CREB proteins, 

cDNA encoding CREB-WT was subcloned into a modified pGEX vector to generate the N-

terminal GST-tagged fusion proteins. A Trc2-lentiviral vector was used to generate shRNA 

plasmids for CAMKV, CREB, and CCNA2. All target sequences for each gene are described in 

table S2.  

 

2.4 Generation of CRISPR-Cas9 knockout constructs  

The protocol for generating a CRISPR-Cas9 library targeting CaMKs was described previously 

(35). The lentiCRISPR v2 plasmid was developed by Zhang Lab (Addgene plasmid # 52961) (36).  

Target sequences specific for the 11 CaMK family members were individually cloned into the 

lentiCRISPR-Cas9 plasmid. The knockout plasmids were transfected into SK-N-AS cells seeded 

in 6-cm dishes with Fugene 6 and selected with puromycin (0.5 μg/ml) for 5 days. Target 

sequences specific to the 11 members of CaMKs are listed in table S3. 

 

2.5 Generation of inducible shRNA knockdown construct 
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A doxycycline-inducible TRE-CAMKV shRNA piggyBac transposon vector containing a TRE-

sh-CAMKV cassette followed by a phPGK-driven puroR-T2A-rtTA cassette was constructed. 

This vector was co-transfected with a plasmid expressing the piggyBac transposase into SK-N-AS 

cells. Cells were selected with neomycin at 500 µg/mL to generate polyclonal cell populations that 

stably express inducible CAMKV shRNA. To induce the expression of CAMKV shRNA, 

doxycycline was administrated at 100 ng/mL for the indicated time. 

 

2.6 Generation of inducible CRISPR-Cas9 knockout constructs 

A doxycycline-inducible TRE-Cas9 piggyBac transposon vector containing a cassette of a hPGK 

promoter-driven puroR-T2A-rtTA cassette was co-transfected with a plasmid containing pCMV-

driven piggyBac transposase into CHLA-136-Luc cells. Cells were selected with neomycin at 500 

µg/mL. Then a second lentivirus vector (pCDH-BL) containing a doxycycline-inducible TRE-

single-guide RNA (sgRNA) of CAMKV with a blasticidin (BL) selection marker was transduced 

into CHLA-136-Luc cells followed by subsequent BL selection to generate polyclonal cell 

populations that stably express inducible Cas9 and the CAMKV sgRNA. To induce the expression 

of Cas9 protein and sgRNA, doxycycline was administrated at 100 ng/mL for the indicated time. 

 

2.7 Immunoblotting  

Cell lysates were obtained by lysing cells with RIPA lysis buffer (25 mM HEPES at PH 7.7, 135 

mM NaCl, 1% Triton X-100, 25 mM b-glycerophosphate, 0.1 mM sodium orthovanadate, 0.5 mM 

phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 mM 

Benzamidine) containing phosphatase inhibitor cocktail 2 and 3 (Sigma, P5726 and P0044). 

Supernatants containing proteins were collected after centrifugation at the highest speed for 15 

minutes at 4°C, then resolved by SDS polyacrylamide gel electrophoresis and transferred to PVDF 

membranes. The membranes were then incubated with corresponding primary antibodies in 1 × 

Tris Buffered Saline with Tween (TBST) containing 5% milk or bovine serum albumin (BSA) 

overnight at 4°C and horseradish peroxidase-conjugated secondary antibodies for 1 hour at room 

temperature. Then the membranes were exposed to X-film and visualized using the ECL Western 

detection system (#32106, Thermo Scientific). 

 

2.8 Purification of recombinant GST-CREB protein 
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The pGEX-CREB expression plasmids were transformed into E. coli BL-21 pLys (Invitrogen) and 

selected on the Luria–Bertani (LB) agar plates containing 100 μg/ml ampicillin. The colonies were 

inoculated and cultured in LB medium containing 100 μg/ml ampicillin at 37°C. Once OD600 

reached 0.6-08, isopropyl-b-D-1-thiogalactopyranoside (IPTG) was added at a final concentration 

of 1 mM to induce expression of GST-tagged CREB for 4 h at 30°C. Bacteria were pelleted and 

lysed with 1 × extraction buffer (50 mM Tris-HCl, pH 8.5, 100 mM NaCl, 1 mM EDTA, 1 mM 

DTT, 50 mg/mL lysozyme, 10 μg/mL aprotinin, 10 μg/mL leupeptin, and 1 mM PMSF). The 

bacteria were sonicated at 4°C in 1% Sarcosyl (Sigma), followed by adding Triton X-100 (1%), 5 

μg/mL DNase I, and 5 μg/mL RNase. The lysate was centrifuged at 15,000 x g, and the supernatant 

containing GST-fusion proteins was collected. GST protein was purified using glutathione 

Sepharose 4B beads (Sigma) by rotating overnight at 4°C. Beads were then washed three times in 

extraction buffer containing 0.5% Triton X-100 and one extra wash in extraction buffer containing 

0.1% Triton X-100. GST-CREB proteins were eluted in elution buffer (30.7% glutathione, 50 mM 

Tris–HCl, pH 8.0, 20% glycerol, 5M NaCl) and dialyzed in 1 × PBS. The protein concentrations 

were then assessed with a Bradford Protein Assay (Bio-Rad). The proteins were visualized by 10% 

SDS-PAGE and Coomassie blue staining of the gel. 

 

2.9 In vitro kinase assay and Kinase-Glo® luminescent kinase assay 

GST-tagged CREB was expressed and purified from E. coli BL-21 (Invitrogen). FLAG-tagged 

CAMKV wildtype and mutants were stably expressed in SK-N-AS cell lines or overexpressed in 

HEK293T cells. FLAG-tagged CAMKV proteins were purified from cells lysed with RIPA lysis 

buffer using anti-FLAG antibody and protein A agarose beads, followed by three times washing 

with PBS and one time with kinase assay buffer (20 mM Tris/HCL, pH 7.5, 10 mM MnCl2, 10 

mM MgCl2, 50 mM NaCl2 1 mM dithiothreitol, 20 mM β‐glycerophosphate, 1 mM NaF). The 

beads carrying immune complexes were resuspended in 50 μL of kinase assay buffer containing 

100 mM ATP. GST-CREB was added to the mixtures, the reaction mixtures were incubated at 

30°C for 30 minutes, and 4 × loading buffer was added. Proteins were resolved by SDS-PAGE 

and detected by western blot using an anti-phospho-CREB antibody. For Kinase-Glo® 

luminescent kinase assay, the kinase reaction mixtures were collected after incubation and added 

into equal volume Kinase-Glo® regent (V6711, Promega) for 10 minutes at room temperature, 

followed by the luminescence recording. 
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2.10 CCK-8 cell proliferation assay  

Cell proliferation was determined using a Cell Counting Kit-8 (Dojindo Molecular Technologies) 

as described previously (37). In brief, cells were plated into 96-well plates at the concentration of 

1x103 cells per well, then incubated at 37°C for different time periods. Relative cell proliferation 

was quantified by adding 10 μL of Cell Counting Kit-8 solution. The absorbance was measured at 

450 nm after 3-hour incubation at 37°C. 

 

2.11 Crystal violet staining 

Cells in 6-well plates were washed twice with ice-cold PBS, followed by fixation with ice-cold 

methanol for 10 minutes. Methanol was removed, and the plate was incubated with 0.5% crystal 

violet solution (made with 25% methanol) for 10 minutes at room temperature. The plate was 

rinsed with double distilled water and dried at room temperature. The stained colonies were 

photographed by using a microscope (Olympus). 

 

2.12 3D culture assay 

NB cells were resuspended in a 1:1 mixture of Matrigel (# CB-40230, Thermo Fisher Scientific) 

and cell culture medium, then plated in 24-well plates. After 8 days of culture, colonies were 

visualized, and the sizes of the colonies were measured under a microscope (Olympus). 

 

2.13 Quantitative PCR analysis 

Total RNA from NB cells was extracted using Trizol reagent (Life Technologies) and treated with 

RNase-free DNase (Roche) according to the manufacturer’s instructions. One μg of total RNA was 

converted to cDNA, and quantitative RT-PCR analyses were performed using SensiFAST™ 

SYBR® kit (Bioline) on an Applied Biosystems StepOne Plus instrument. The primers used are 

listed in table S4. Relative levels of gene expression were analyzed using the 2-∆∆Ct method. 

 

2.14 In situ proximity ligation assay (PLA)  

The interaction between CAMKV and CREB was assessed in SK-N-AS cells using an in situ PLA 

assay (Duolink in situ red starter kit, Sigma-Aldrich) according to the manufacturer’s instructions. 

Briefly, SK-N-AS cells were fixed in 4% paraformaldehyde for 10 min at room temperature, 
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followed by permeabilization with 0.5% Triton X-100. Cells were then blocked at 37°C for 30 

minutes and incubated with primary antibodies against CAMKV (1:500) (rabbit), CREB (1:500) 

(mouse), or control mouse IgG (1:500), followed by washing and incubation with the secondary 

anti-mouse or anti-rabbit antibodies conjugated to PLA probes. After ligation and amplification, 

the red fluorescence indicating the interaction between CAMKV and CREB was visualized under 

a fluorescence microscope (Nikon). 

 

2.15 Chromatin immunoprecipitation (ChIP) 

ChIP assays were performed by using a Chromatin Immunoprecipitation (ChIP) kit (Active Motif). 

The MYCN-amplified cell line NGP and MYCN-non-amplified cell line SK-N-AS were cross-

linked with 1% formaldehyde. Cells were then washed with ice-cold PBS, lysed, and sonicated on 

ice to produce sheared soluble chromatin. The soluble chromatin was precleared with Protein A 

Plus agarose beads (sc-2001, Santa Cruz Biotechnology) at 4°C for one hour and then incubated 

with anti-MYCN or anti-c-MYC antibodies or with control mouse IgG at 4°C overnight. The 

immunoprecipitated complexes were collected on protein A agarose and eluted. Crosslinking of 

immunoprecipitated chromatin complexes and input controls were reversed by heating at 65°C for 

4 hours, followed by proteinase K treatment. The purified DNA was analyzed by quantitative PCR. 

 

2.16 Immunohistochemistry (IHC)  

IHC was performed on 30 formalin-fixed, paraffin-embedded human NB tissue specimens, 

including 19 high-risk NBs (11 with MYCN amplification and 8 without MYCN amplification) 

and 11 low-risk NBs. Sections were cut at 5 μm and put on the slides. The slides were then 

incubated at 70°C for 30 minutes. The sections on the slides were de-waxed into water, soaked in 

Leica Epitope Retrieval 1 (pH 6), and heated in pressure cook at 125 °C for 90 seconds (BioCare 

Medical), and then transferred into Leica Bond Rx Autostainer to run IHC staining using CAMKV 

monoclonal antibody 1:100 (#sc-102406, Santa Cruz) for 30 minutes. This study was approved by 

the Institutional Review Board of Children’s Hospital Los Angeles. 

 

2.17 In vivo studies  

NSG mice were obtained from The Jackson Laboratory and maintained at the Children’s National 

Hospital animal care facility. All treatments described were approved by the Institutional Animal 
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Care and Use Committee (IACUC) at Children’s National Hospital under protocol number 

#000031057. To test the effect of CAMKV knockout on NB tumor growth, mice were injected 

intraperitoneally (i.p.) with 5 × 106 firefly luciferase-labeled CHLA-136 (CHLA-136-Fluc) cells 

expressing the inducible CAMKV knockout plasmid or the control plasmid. Doxycycline was 

administered via intraperitoneal injection at 5 µg/mouse daily for three days.  For in vivo 

therapeutic experiments, mice were injected i.p. with 5 × 106 CHLA-136-Fluc NB cells. Two 

weeks after injection, mice were treated with i.p. injected OTSSP167 (10 mg/kg) daily for two 

weeks. Tumor growth was monitored weekly by bioluminescent imaging using a Xenogen IVIS 

Lumina system.  

  

2.18 Mass spectrometry 

Global proteome analysis 

NGP wild-type and CAMKV knockdown cells were grown in RPMI-1640 with 20% fetal bovine 

serum, collected by centrifugation and washed with cold PBS and lysed with sonication using 10 

sample volumes of 50 mM ammonium bicarbonate with 1 mM CaCl2. The protein concentration 

was determined using the Bradford assay. About 200 µg of lysate were digested with 4 µg of 

trypsin for 12 hours at 37°C. The concentration of tryptic peptides was measured using the 

Pierce™ Quantitative Peptide Assays kit (Thermo Fisher Scientific cat# 23275), and 25 µg of 

peptides were separated on a home-made reverse-phase C18 column in a pipet tip as previously 

(38). Peptides were eluted and separated into fifteen fractions using a stepwise gradient of 

increasing acetonitrile (2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 

35% acetonitrile) at pH 10. Subsequently, these fractions were combined into five groups 

(2%+12%+22%, 4%+14%+24%, 6%+16%+26%, 8%+18%+28%, 10%+20%+35% acetonitrile 

eluted fractions) and vacuum dried. The dried peptides were resuspended in a solution of 5% 

methanol and 0.1% formic acid in water, then subjected to a 2 cm trap column (100 µm i.d.) and 

separated by a 5 cm analytical column (150 µm i.d.) containing Reprosil-Pur Basic C18 (1.9 µm, 

Dr. Maisch GmbH, Germany). A nanoLC-1000 (Thermo Scientific, USA) delivered a 75 min 

discontinuous gradient of 4 to 24 % of acetonitrile/0.1% formic acid at a flow rate of 800 nL/min. 

An Orbitrap Fusion mass spectrometer (Thermo Scientific) was operated in data-dependent 

acquisition mode with the following parameters: MS was in the 300-1400 m/z range with a 

120,000 resolution at 400 m/z and AGC target of 7.5 × 105 (50 ms maximum injection time). Cycle 
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time was top 3 selected MS1 signal using Quadrupole filter in 2 m/z isolation window, 2 seconds 

exclusion time. The HCD fragmented ions were detected by ion trap with rapid scan, 3 × 104 AGC 

target, and 35 ms of maximum injection time. 

 

Global phospho-proteome analysis 

After trypsin digestion, 100 µg of peptides went through a phosphopeptide enrichment procedure 

Briefly, the peptide mixture was resuspended in 100 μL of binding buffer (50% acetonitrile, 1% 

trifluoroacetic acid, and 1M lactic acid) and incubated with 5 mg of pre-conditioned TiO2 beads 

(GL Science, 5020-75000) at room temperature for 20 minutes with continuous vortexing at 1,500 

rpm, then spun at 500 × g for 30 seconds. The beads were washed with the binding buffer and 

collected by centrifuge at 500 × g for 30 seconds. The beads were further washed with a washing 

buffer (30% acetonitrile, 0.07% trifluoroacetic acid) twice, and transferred to a 200 μL pipet tip 

with Empore™ C18 disk (3M, 2215) plug. The beads were settled in the tip. Another 100 μL of 

wash buffer was added and washed, followed by elution with 150 μL of elution buffer (40% 

acetonitrile + 10% NH4OH). Then eluted samples were subjected to mass spectrometry analysis. 

The nanoLC-MS/MS and data analysis was carried out in the same condition as global profiling. 

 

CAMKV phosphorylation site identification 

Two µg of purified CAMKV protein was digested by 100 ng of trypsin (1:20 ratio) in the digestion 

buffer of 50 mM NH4HCO3, 1mM CaCl2 for 4 hours. Digested peptides were acidified by adding 

2% formic acid (final concentration 0.2%) and loaded onto Orbitrap Fusion mass spectrometer. A 

targeted method (PRM, Parallel-Reaction Monitoring) was adopted to detect the defined peptides, 

including phosphorylated (EPCGpTPEYLAPEVVGR, 898.8999 m/z, charge 2+) and non-

phosphorylated forms (EPCGTPEYLAPEVVGR, 858.9167 m/z, charge 2+). The peptides were 

isolated with a 45 min discontinuous gradient of 10-26% acetonitrile/0.1% formic acid at a flow 

rate of 850 nL/min, and directly introduced into the mass spectrometer. The MS was operated in 

data-dependent mode, the top 35 strongest ions were selected and fragmented under direct control 

of Xcalibur software (Thermo Scientific). Parent MS spectra were acquired in the Orbitrap with a 

resolution of 120,000, and selected ions were fragmented by HCD in the ion trap.  

 

MS data processing 
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Raw MS data were processed by the Max-Quant software program (version 1.6.17.0; Max Planck 

Institute of Biochemistry, Martinsreid, Germany). Spectra were searched against target-decoy 

uniprot human reference proteome database (downloaded in July 2023 with a total of 20,408 

Swiss-Prot reviewed canonical proteins) with a 1% of false-discovery rate at both protein and 

peptide levels. Carbamidomethyl(C) was selected as a fixed modification and Oxidation (M) and 

Acetyl (Protein N-term) were considered as variable modifications in global proteome analysis. A 

minimum peptide length was 7 amino acids. The MS1 mass tolerance was 20 ppm and the MS2 

mass tolerance was 0.5 Dalton. A maximum of two missed cleavages was allowed. All other 

parameters were set to the default values. For global phospho-proteomic analysis, additional 

variable modifications (Phosphorylation of Ser, Thr and Tyr) were considered and a minimum site 

localization probability of 0.75 was required for localization of phosphorylation sites. MaxQuant 

LFQ algorithm for label-free quantification was used for peptides and proteins quantification. 

Peptide intensities was used for phosphopeptide quantification. Targeted phosphopeptides were 

validated by Skyline software and peak area (AUC) was calculated.  

 

2.19 RNA sequencing 

Total RNA was isolated by RNeasy Plus Mini Kit (Qiagen) from CAMKV-knockdown, OTSSP167 

treated, or control cells. Quality was assessed before the RNA-seq library construction by 

Bioanalyzer RNA 6000 (Agilent Technologies, Inc). The library was sequenced on an Illumina 

HiSeq platform. Adaptors were removed from the raw reads, and sequencing quality was assessed 

with FastQC software (version 0.11.2). Quality scores, sequence duplication, adaptor content, and 

other metrics were examined to determine whether additional filtering was needed before the 

genome mapping. Clean reads were mapped onto the reference genome (GRCh38.p13) with the 

HISAT2 alignment program (version 2.1.0). The mappable reads were assembled into transcripts 

or genes with the StringTie assembler (version 1.3.5). Only coding genes were retained and 

considered for downstream analysis.  

 

2.20 Bioinformatic and Statistical Analyses 

To identify differentially expressed genes (DEGs) between CAMKV-knockdown and control cells 

or OTSSP167 treated vs untreated cells, we conducted DESeq2 (version 1.28.1) analyses in R 

software. Fold changes were log2-transformed, and adjusted P values (padj) were calculated using 
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the Benjamini-Hochberg procedure to control the false discovery rate. Compared to the control 

cells, genes in the CAMKV-knockdown or OTSSP167 treated cells were considered significantly 

upregulated if the log2 fold-change was ≥ 1 with a padj < 0.05 or significantly downregulated if 

the log2 fold-change was ≤ –1 with a padj was < 0.05. Differentially expressed genes were selected 

for further analysis. For pathway analysis, Reactome and KEGG databases were chosen and DEGs 

were subjected to over-representation tests. DEGs were categorized into GO Biological Processes.  

 

A student's t-test was performed to identify differentially expressed proteins (DEPs) between 

CAMKV-knockdown and control cells. DEPs were called if the fold-change was ≥ 2 or <= 0.5 

with a p<0.05. Reactome and KEGG databases were considered for pathway analysis, and DEPs 

were subjected to over-representation tests with all identified proteins as background. 

 

To identify differentially expressed phosphosites between CAMKV-knockdown and control cells, 

DESeq2 (version 1.28.1) analysis using peptide intensities was conducted. Phophosites were 

considered significantly upregulated if the log2 fold-change was ≥ 1 with a padj < 0.05 or 

significantly downregulated if the log2 fold-change was ≤ –1 with a padj was < 0.05. Differentially 

expressed phosphosites were categorized into different protein classes (Function and compartment 

based) and kinase families based on the Human Protein Atlas Database 

(https://v19.proteinatlas.org/humanproteome/proteinclasses). 

 

2.21 System Preparation and Molecular Docking Simulations 

The structure of CAMKV was predicted using ColabFold (AlphaFold 2 colab) (39). The MELK/8a 

complex (PDB entry: 5IH9) was retrieved from the RSCB Protein Data Bank (40). Both protein 

structures were prepared using Protein Preparation Wizard via Mastro in Schrödinger 

(Schrödinger, LLC, New York, NY). Briefly, the preparation protocol included removing 

crystallographic water molecules, adding hydrogen atoms to the structure, and filling the missing 

side chains and loops. Then by using Receptor Grid Generation, a grid with size 10 × 10 × 10 Å 

was created within the MELK/8a complex to define the docking space with the bound ligand (8a) 

as the centroid following the Glide Grid Generation panel. For CAMKV, both Cys52 and Lys53 

were selected as the centroid for generating a grid with the size of 25 × 25 × 25 Å. 
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For the ligands, MELK-8a (Compound CID: 119058124), K252a (Compound CID: 3813), and 

OTSSP167 (Compound CID: 135398499) were retrieved from the NIH PubChem. All ligands 

were subsequently prepared through the LigPrep module with the OPLS3 force field, the 

ionization state of inhibitors was assigned by Epik, pH was set to neutral 7.0 ± 2.0, and other 

configurations were set as default. 

 

Molecular docking simulation was performed using the Ligand Docking (Glide) module via 

maestro in Schrödinger. The precision was set as XP (extra precision), the number of best poses 

per ligand keeping for energy minimization was set as 32, the number of poses per ligand to include 

to perform post-docking minimization was set as 16, and other configurations as default.  

 

3. Results 

3.1 CAMKV is required for CREB phosphorylation and NB cell proliferation 

Since CREB has been demonstrated to upregulate multiple cell cycle- regulatory cyclin genes and 

promote cell growth, we investigated its role in NB cells. Examining CREB expression and its 

phosphorylation status in nine NB cell lines by immunoblotting assay revealed phosphorylation at 

Serine 133 in all cell lines (Fig.1A). CREB Knockdown using short hairpin RNA (shRNA) led to 

significant inhibition of cell proliferation in four NB cell lines (Fig.1, B and C, Fig.S1A). Further 

assessments of the CREB knockdown effects on cyclin gene expression showed a highest 

reduction of CCNA2 expression compared other cyclin genes in NB cells (Fig.1B, Fig.S1B). 

Additionally, CCNA2 knockdown in different NB cell lines also resulted in significant inhibition 

of NB cell proliferation (Fig.S1, C and D). These data highlight that CREB up-regulates CCNA2 

expression and is critical for NB cell proliferation. 

 

Several CaMK family members have been reported as CREB kinases in various tumor types 

andimplicated in cancer development (41–44). To explore whether the CaMK family of genes 

plays a role in NB cell proliferation, we individually knocked out the eleven CaMK family 

members using CRISPR-Cas9-mediated genome editing in SK-N-AS cells (Fig.1, D and E, 

Fig.S2). Of these, CAMKV knockout showed the most significant decrease in CREB 

phosphorylation and cell proliferation. CAMKV knockout was confirmed by genomic sequencing 

(Fig.S3). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581040doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581040
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Further, we detected CAMKV protein in nine tested NB cell lines, regardless of MYCN-

amplification status (Fig.1F). Analyses of CAMKV mRNA expression from the Cancer Cell Line 

Encyclopedia (CCLE) of 40 tumor types revealed that NB has the highest CAMKV expression 

(Fig.1G). Consistent with the CAMKV knockout results, CAMKV knockdown led to decreased 

CREB phosphorylation and reduced CCNA2 levels (Fig.1H), while total CREB was unaffected by 

CAMKV knockdown. CAMKV knockdown also impaired cell proliferation in NB cell lines (Fig.1I). 

Importantly, expressing a shRNA-resistant CAMKV (CAMKV-R) in NB cells rescued the effect 

of CAMKV knockdown on CREB phosphorylation (Fig.1J). To confirm this knockdown result, we 

transfected piggyBac (PB) vector with an inducible CAMKV shRNA cassette and established 

stable line in SK-N-AS cells. Induction of CAMKV shRNA expression led to decreased CREB 

phosphorylation and cell proliferation (Fig.S4). Taken together, these results demonstrate that 

CAMKV is overexpressed in NB cells and plays a crucial role in CREB phosphorylation and 

cellular proliferation. 

 

3.2 CAMKV is an active kinase in NB cells to promote cell proliferation 

Our CAMKV immunoblots demonstrated two distinct bands in NB cell lines (Fig.1F), indicating 

the presence of two CAMKV isoforms. By sequencing CAMKV cDNA clones generated from NB 

cell lines, we identified the full-length isoform (CAMKV-FL) coding for 501 amino acids and a 

truncated isoform (CAMKV-S) with a 31-amino-acid C-terminal deletion (Fig.2A). 

 

Both CAMKV isoforms contain an N-terminal protein serine/threonine kinase domain and a C-

terminal regulatory domain containing a C-terminal repeat domain (CTD) with a characteristic 

Nona-peptide repeat TPA motif (Fig.2A). To determine the functional difference between 

CAMKV-FL and CAMKV-S, we ectopically overexpressed them in NB cell lines. While 

overexpression of both isoforms enhanced CREB phosphorylation, CAMKV-S overexpression 

resulted in stronger CREB phosphorylation and increased cell proliferation (Fig.2, B and C, Fig.S5, 

A and B). 

 

A previous report suggested that CAMKV lacks kinase activity (30). However, our study indicated 

that CAMKV is crucial for CREB phosphorylation in NB cells. These data prompted us to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581040doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581040
http://creativecommons.org/licenses/by-nc-nd/4.0/


investigate whether CAMKV acts as a functional kinase mediating CREB phosphorylation in NB 

cells. To determine whether CAMKV could directly consume ATP and phosphorylate CREB, we 

conducted both Kinase-Glo luminescent kinase assays and in vitro kinase assays with recombinant 

GST-CREB as the substrate. These assays revealed that purified FLAG-tagged CAMKV-FL, -S, 

and CAMKV-334aa (containing the kinase and calmodulin-binding domains) from the transfected 

SK-N-AS cells consumed ATP and directly phosphorylated recombinant CREB at Ser133 (Fig.2, 

D and E). However, a shorter form of CAMKV-303aa (kinase domain only) failed to 

phosphorylate CREB. Moreover, a cell-based in situ proximity ligation assay designed to visualize 

the spatial proximity of interacting proteins demonstrated a direct interaction between endogenous 

CAMKV and CREB in SK-N-AS cells (Fig.2F). Our results suggest that CAMKV directly 

phosphorylates CREB at Ser133 and the calmodulin-binding domain is essential for CAMKV 

kinase activation in NB cells. We followed up these experiments by overexpressing the various 

constructs in HEK293T cells, and we observed only CAMKV-334aa phosphorylated CREB in 

both Kinase-Glo and in vitro kinase assays (Fig.S5, C and D). Therefore, CAMKV-334aa protein 

was purified from HEK293T cells for phospho-proteomic analysis, and only Thr183 (T183) 

phosphorylation was identified (Fig.S5, E and F), suggesting that Thr183 plays a critical role in 

CAMKV kinase activation, and the calmodulin-binding domains is essential for its kinase 

activation. However, CAMKV-FL and CAMKV-S purified from HEK293T failed to 

phosphorylate CREB, suggesting that the C-terminal regulatory domain has inhibitory function 

and the mechanism leading to CAMKV-FL and CAMKV-S activation only exists in NB cells.  

 

Phosphorylation and dephosphorylation of key serine and threonine residues in the activation loop 

of kinases are crucial for regulating kinase activity (45–47). Numerous studies have demonstrated 

that substituting these critical residues with acidic residues to mimic phosphorylation renders the 

kinase constitutively active (48, 49). To assess whether CAMKV kinase activation depends on the 

K53 (potential site for ATP binding) and T183 (potential phosphorylation site for kinase 

activation), we generated FLAG-tagged mutant expression constructs: putative kinase-dead K53M 

mutant, constitutively active kinase T183E mutant, and kinase-deficient T183A mutant. We found 

that CAMKV-S-WT and CAMKV-S-T183E proteins, purified from transfected SK-N-AS cells, 

directly phosphorylated recombinant CREB at Ser133, with lesser phosphorylation by CAMKV -

S-T183A protein (Fig. 2, G and H). In contrast, CAMKV-S-K53M and CAMKV-S-T183A 
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proteins failed to phosphorylate CREB (Fig. 2, G and H). Overexpression of CAMKV-WT and -

T183E enhanced CREB phosphorylation and promoted NB cell proliferation compared to the 

control vector, while CAMKV-K53M and -T183A inhibited CREB phosphorylation and cell 

proliferation (Fig.S5, G and H). Moreover, ectopic expression of the shRNA-resistant CAMKV-

WT or CAMKV-T183E rescued the defective CREB phosphorylation and cell proliferation caused 

by knocking down endogenous CAMKV in NB cells, whereas K53M and T183A mutants failed 

to do so (Fig.2, I to L).  

 

Three-dimensional cell culture systems accurately model physiological cell growth and cell-cell 

interactions. SK-N-AS cells with CAMKV-FL-WT and CAMKV-S-WT overexpression formed 

larger colonies compared to the vector control cells, while cells with K53M mutant overexpression 

formed smaller colonies (Fig.S5, I and J). Notably, CAMKV-S-WT overexpression led to the 

formation of larger colonies than CAMKV-FL-WT, indicating that the CAMKV-S isoform is more 

active in promoting NB cell proliferation (Fig.S5, I and J). These results suggest that the deleted 

31-amino acid sequence in the CAMKV-S isoform inhibits its kinase activity. 

 

We also investigated the role of the calmodulin binding domain in CAMKV kinase activation. 

Alignment of the calmodulin binding domains from human CAMK family members revealed 

several conserved residues including three lysine and one arginine residues (Fig.S6A). Substituting 

them with alanine residues inactivated CAMKV kinase activity in NB cells (Fig.S6, B and C). 

However, this substitution had no effect on the constitutively active CAMKV (CAMKV-T183E-

R3K-mut) (Fig.S6, B and C). Overexpressing shRNA-resistant CAMKV-T183E with the four sites 

substituted with alanine (T183E-R3K-mut) also rescued the defective CREB phosphorylation and 

cell proliferation caused by knocking down endogenous CAMKV in SK-N-AS cells (Fig.S6, D 

and E). In contrast, CAMKV-WT with the four sites substituted with alanine (WT-R3K-mut) did 

not rescue these effects (Fig.S6, D and E). These results indicate that the calmodulin-binding 

domain of CAMKV is required for the initial kinase activation, but not for maintaining kinase 

activity after the kinase phosphorylation and activation. Collectively, these findings suggest that 

at least a portion of the C-terminal regulatory domain plays an inhibitory role, and the calmodulin-

binding domain is essential for CAMKV phosphorylation at T183 and its subsequent activation in 

NB cells. 
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Interestingly, an earlier study suggested that CAMK4 acts as a CREB kinase in the NB cell line, 

SK-N-BE2 (50). However, we found that overexpressing CAMK4 in SH-SY5Y, SK-N-AS, and 

NGP cell lines inhibited NB cell proliferation while having no significant effect on CREB 

phosphorylation in NB cells (Fig.S7, A and B). Furthermore, FLAG-CAMK4 purified from SK-

N-AS cells failed to consume ATP and phosphorylate CREB in both the Kinase-Glo luminescent 

kinase assay and the in vitro kinase assay (Fig.S7, C and D). Additionally, CAMK4 gene knockout 

had no effect on CREB phosphorylation or cell proliferation in NB cells, suggesting that CAMK4 

is not a CREB kinase in this context (Fig.S7, E and F). CAMK4 knockout was confirmed by 

genomic sequencing (Fig.S8). 

 

3.3 CAMKV is a direct transcriptional target of MYCN/MYC in NB cells  

Myc family members MYCN and MYC share sequence homology and bind to chromatin at 

consensus E-box sequences (CAGCTG) as heterodimers with the bHLH Zip protein Max (51, 52). 

To investigate whether MYCN/MYC directly regulate CAMKV gene expressions, we analyzed a 

previously generated NB ChIP-sequencing dataset (53) and identified two potential MYCN/MYC 

binding sites in the 5' untranslated region (UTR) and promoter region of CAMKV (Fig.3A). We 

further validated these findings by performing individual ChIP-qPCR assays using an anti-MycN 

antibody for NGP cells (MYCN-amplified) and an anti-Myc antibody for SK-N-AS cells (Myc 

overexpressed). We observed significant enrichment of MYCN/MYC binding at the CAMKV 

promoter (Fig.3B). Analyses of the NB RNA-seq dataset GSE19274 (51) revealed higher CAMKV 

mRNA levels in MYCN-amplified NB cell lines compared to MYCN-non-amplified lines (Fig.3C). 

A significant positive correlation between CAMKV and MYCN expression was also observed 

(Pearson correlation, R=0.523) (Fig.3D). Furthermore, immunoblotting assays revealed an overall 

positive correlation of CAMKV and phospho-CREB with MYCN/MYC protein levels in NB cell 

lines (Fig.3, E and F). Additionally, MYCN and MYC knockdown led to decreased CAMKV 

expression levels (Fig.3G). Furthermore, CAMKV mRNA levels were higher in tumors than in 

normal ganglia and adrenal glands from the TH-MYCN-driven NB mouse model (54, 55) (Fig.3, 

H and I). Taken together, these data suggest that CAMKV is a direct transcriptional target of 

MYCN/MYC in NB.  
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3.4. CAMKV knockdown induces extensive transcriptomic and proteomic changes in NB cells 

To elucidate how CAMKV regulates cell proliferation in NB and identify its downstream pathways, 

we conducted bulk RNA-sequencing (RNA-seq) on wild-type and CAMKV knockdown NGP cells 

(Fig.4A). Compared to wild-type cells, we identified 477 upregulated and 811 downregulated 

genes in CAMKV knockdown cells (table S5). Gene set enrichment analyses (GSEA) of 

downregulated genes revealed multiple linked neuronal pathways, suggesting CAMKV's pivotal 

role in regulating the neuronal system (Fig.4B). Additionally, we found that many of the previously 

reported CREB target genes in table S6 were downregulated in CAMKV knockdown cells, 

confirming CREB as one of CAMKV's targets (56). To identify CAMKV regulatory proteins and 

their associated pathways, we conducted a global proteome analysis that revealed 380 upregulated 

and 111 downregulated proteins in CAMKV knockdown cells compared to wild-type NGP cells 

(Fig.4C and table S7). GSEA of downregulated proteins identified multiple pathways related to 

protein translation, including translation initiation, elongation, and termination, as well as 

apoptosis (Fig.4D).  

 

Perturbing kinase activity in living cells through drug treatment or knocking down/out a specific 

kinase  allows for examining consequent changes in phosphorylation levels in vitro (57, 58). To 

systematically identify CAMKV substrates, we performed global quantitative phosphoproteomic 

analyses using NGP wild-type and CAMKV knockdown cells. These analyses revealed 240 

upregulated and 793 downregulated phosphopeptides in CAMKV knockdown cells (Fig.4E and 

table S8). According to the Human Proteome Atlas database, these phosphosites fall into six 

protein classes: predicted intracellular proteins, plasma proteins, enzymes, predicted membrane 

proteins, transcription factors, and transporters. The enzymes include kinases, ubiquitin ligases 

and deubiquitinases, histone modifiers, DNA topoisomerases, RNA helicases, and enzymes 

involved in metabolism. These results suggest that CAMKV regulates NB cell proliferation via 

phosphorylating different proteins. 

 

Noticeably, we identified 46 transcription factors with decreased phosphorylation changes 

following CAMKV knockdown (table S8 and S9). The decreased phosphorylation of transcription 

factor GATA2 at Ser182 and Ser192 in CAMKV-knockdown cells suggests that GATA2 is a 

potential substrate of CAMKV. Since anti-GATA2 phospho-Ser192 antibody is commercially 
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available and GATA2 is highly expressed in NB cells, we validated this finding using 

immunoblotting assays (Fig.S9 and Fig.S10A). To further investigate the role of CAMKV's kinase 

activity in GATA2 phosphorylation, we co-transfected FLAG-tagged GATA2 with CAMKV-

334aa-WT or CAMKV-334aa-K53M into HEK-293T cells. We found that CAMKV-334aa-WT, 

but not CAMKV-334aa-K53M kinase-dead mutant, increased the phospho-Ser192-GATA2 level 

(Fig.S10B). In addition, GATA2 knockdown significantly inhibited cell proliferation compared to 

control cells (Fig.S10, C and D). Together, these findings suggest that GATA2 is a CAMKV kinase 

activity-regulated transcription factor and promotes NB cell proliferation. 

 

3.5 CAMKV overexpression in NB is associated with poor patient survival 

By analyzing a publicly available NB patient tumor dataset (https://pob.abcc.ncifcrf.gov/cgi-

bin/JK), we found that CAMKV is highly expressed in both NB tumors and established cell lines, 

compared to other pediatric cancers (Fig.S11A). RNA-seq analysis of 498 NB patient tumor 

samples (https://hgserver1.amc.nl/) (GSE62564, Seqc-498-cohort) revealed a negative correlation 

between CAMKV gene expression and patient survival (p=1.0e-10) (Fig.5A). This finding was 

confirmed in another dataset of 649 patients (GSE45547, Kocak-649-cohort) (Fig.S11B). 

Additionally, we found that CAMKV mRNA levels were significantly higher in high-risk NB 

patients compared to low-risk patients (Fig.5B). Furthermore, CAMKV mRNA levels were 

significantly higher in tumors of advanced stages (stages 3, 4, and 4S) compared to those of low 

stages in both datasets (Fig.5C, Fig.S11C). We also observed that CAMKV mRNA levels were 

significantly higher in MYCN-amplified NBs compared to non-amplified ones (Fig.5D, Fig.S11D). 

In both datasets (GSE62564 and GSE45547), a positive correlation between CAMKV and MYCN 

mRNA levels was observed (R=0.494, p=4.7e-32 in the Seqc-498 cohort; R=0.471, p=3.4e-37 in 

the Kocak-649 cohort) (Fig.5E, Fig.S11E). In a single cell study of 16 NBs, 2 embryos, and 4 fetal 

adrenal glands (59), CAMKV was found to be highly expressed in neuroblasts (cell markers: CHGA, 

TH, NCAM1) from embryos, fetal adrenal glands (Fig.5F). CAMKV is overexpressed and 

positively correlated with MYCN amplification in NB cells identified by NB cell markers of CHGA, 

TH, MYCN (Fig.5F). 

 

Consistently, IHC staining showed co-positive staining of CAMKV, p-CREB and CCNA2 in the 

high-risk human NB primary tumor samples (Fig.5, G and H). In 19 high-risk NB patients, 
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CAMKV, p-CREB and CCNA2 staining were positive, not only in tumors with MYCN 

amplification, but also in tumors without MYCN amplification but with c-MYC overexpression 

(Fig.5H). In contrast, CAMKV, p-CREB and CCNA2 staining were negative in all low-risk tumors 

(Fig.5H). Based on these data, a strong correlation (P˂0.001) was observed between CAMKV 

positive staining and high-risk NB (Fig.5I), between CAMKV and p-CREB positive staining 

(Fig.5J), and between CAMKV and CCNA2 positive staining (Fig.5K). 

 

In various tumor types, CAMK2A, CAMK2B, CAMK2D, CAMK2G, and CAMK4 have been 

reported to phosphorylate CREB (28, 29). However, we found that high expression of these other 

CaMKs in NB primary tumor specimens predicted better patient outcomes (Fig.S12). The mRNA 

level of CAMKV, but not other CaMK family members, was significantly higher in MYCN-

amplified NB patient tumor samples compared to MYCN-non-amplified ones (Fig.S13, A and B). 

Furthermore, the mRNA level of CAMKV was significantly higher in Stage 3 and Stage 4 NB 

patient tumors than in Stage 1 and Stage 2 samples (Fig.S13, C and D). Together, these data 

suggest that CAMKV potentially serves as a novel marker for risk stratification in NB prognosis. 

 

3.6 Inhibition of CAMKV activity suppresses NB growth in vivo 

The traditional CRISPR-Cas9 system lacks the ability to achieve temporally or spatially controlled 

Cas9 protein expression in vivo. Additionally, uncontrolled Cas9 expression in animal models can 

lead to genomic damage (60), off-target effects (61, 62), and immunological clearance responses 

hindering the system's application (63). To test the effect of CAMKV inhibition on NB growth in 

vivo, we employed a conditional CRISPR/Cas9-mediated gene knockout approach (64–67). This 

approach allows for temporal control of CRISPR-Cas9 activity for inducible genome editing in 

luciferase-expressing CHLA136 cells (CHLA136-Fluc). We found that doxycycline-regulated 

sgRNA and Cas9 induction facilitated efficient gene disruption in CHLA136-Fluc cells and led to 

decreased cell proliferation (Fig.6, A and B). We subsequently examined the effect of inducible 

CAMKV gene knockout on NB tumor growth in the CHLA136-Fluc xenograft model. Inducible 

CAMKV gene knockout resulted in decreased tumor growth (Fig.6C) and significantly prolonged 

the survival of mice carrying tumors (Fig.6D). These findings further demonstrate that CAMKV 

plays a significant role in NB growth. 
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We serendipitously found that OTSSP167 and K252a inhibited ATP consumption by examining 

the inhibitory effect of 21 small molecules we have on the kinase activity of purified CAMKV-

334aa in a Kinase-Glo assay (Fig.S14A). Our previous study has shown that OTSSP167 suppresses 

cell proliferation by inhibiting MELK activity in NB (68, 69). OTSSP167 also inhibited cell 

proliferation in NB patient-derived xenograft (PDX) cells with a low IC50 (Fig.S14, B and C). In 

our CAMKV Kinase-Glo assay, OSSTP167 significantly suppressed ATP consumption and CREB 

phosphorylation in a dose-dependent manner (Fig.7, A and B). These results suggest that 

OSSTP167 is a CAMKV inhibitor in vitro.  

 

To evaluate the therapeutic potential of OTSSP167 in treating NB, we examined its activity in our 

CHLA136-Fluc xenograft model. Mice were randomized into different cohorts and treated with 

OSSTP167 (10 mg/kg) or vehicle daily for two weeks (Fig.7C). We found that OTSSP167 

treatment significantly inhibited NB tumor growth and prolonged the survival of the mice 

compared to the vehicle-treated group (Fig.7, D and E).  

 

To decipher the inhibitory mechanism of OTSSP167 in NB, we performed RNA-seq of NGP cells 

treated with OTSSP167 (60 nM, 12 hours). Our analysis revealed genome-wide transcriptome 

changes with 1,784 upregulated and 2,234 downregulated genes (Fig.7F and table S10). GSEA of 

the downregulated genes revealed pathways related to the neuronal system, like those observed in 

CAMKV knockdown cells (Fig.S14D). Gene Ontology (GO) term analysis of these genes revealed 

neuronal biological processes such as axon guidance, positive regulation of long-term synaptic 

potentiation, positive regulation of synaptic transmission, axonogenesis, and neuron projection 

guidance (Fig.S14E). Notably, 237 of the downregulated genes were also observed in CAMKV 

knockdown cells (Fig.S14F). Together, these data and our previously published data demonstrate 

the ability of OTSSP167 to inhibit NB tumor growth and prolong survival by dual targeting both 

CAMKV and MELK. 

 

Several small molecule inhibitors have been identified for members of the CaMK family (70–75). 

We examined the inhibitory effects of K252a, K252c, KN93, STO609, PKC412 (midostaurin), 

and staurosporine on the kinase activity of purified CAMKV-334aa-FLAG-His using an in vitro 

kinase assay. Of these, only K252a and staurosporine inhibited CAMKV-334aa-mediated CREB 
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phosphorylation in the in vitro kinase assay (Fig.S15A) and in the Kinase-Glo assay (Fig.S15B). 

Similarly, K252a also suppressed ATP consumption by the CAMKV short isoform (CAMKV-S-

FLAG) kinase purified from SK-N-AS cells (Fig.S15C). Consistently, K252a and staurosporine, 

but not the others, inhibited cell proliferation (Fig.S15D), CREB phosphorylation (Fig.S15E), and 

CCNA2 expression (Fig.S15F), as well as reduced cell viability (Fig.S15G). These findings 

indicate that K252a suppresses NB cell proliferation at least partially by targeting CAMKV 

signaling.  

 

Further, we performed molecular docking of OTSSP167, K252a and another MELK inhibitor 8a 

(76) and aligned the protein structure of CAMKV, especially at the ATP-binding pocket. The 

docking poses of OTSSP167, 8a and K252a within the ATP-binding pocket of CAMKV predict 

that they are strong inhibitors of CAMKV, and comparatively OTSSP167 (Docking Scores: -4.445 

kcal/mol) had a highest docking score compared to 8a (Docking Scores: -3.543 kcal/mol) and 

K252a (Docking Scores: -2.640 kcal/mol) (Fig.S16). Together, these results suggest that inhibiting 

CAMKV kinase activity represents a promising therapeutic strategy for NB treatment. 

 

4. Discussion 

This study has identified CAMKV as a protein kinase and demonstrated its direct phosphorylation 

of CREB at S133, thereby promoting NB cell proliferation and tumor growth. Our data further 

reveals a correlation between elevated CAMKV expression and adverse patient outcomes in NB. 

RNA sequencing and mass spectrometry analyses indicate that CAMKV knockdown leads to 

extensive transcriptomic and proteomic changes in NB cells. Moreover, we identified small 

molecules capable of inhibiting CAMKV activity, effectively suppressing tumor growth both in 

vitro and in a mouse NB xenograft model. These findings suggest that CAMKV serves as a 

potential biomarker for NB prognosis and a novel therapeutic target for NB treatment. 

 

Elevated CREB expression and phosphorylation are commonly observed in various cancers. In 

our study, we discovered that CREB is highly phosphorylated at Ser133 in NB cells, contributing 

to NB cell proliferation. Additionally, upon CAMKV knockdown in NB cells, we noted the 

downregulation of many established CREB target genes (table S6). These genes are known to play 

crucial roles in neuronal system development and cancer progression (56). For instance, SCG2 
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exhibits high expression in the brain, adrenal gland, pituitary gland, and NB cells, regulating 

neuronal differentiation and safeguarding NB cells from nitric oxide-induced apoptosis (77). 

Similarly, BDNF and its receptor, TrkB, crucial for neuronal cell survival and development, are 

highly expressed in NB tumors, promoting resistance to genotoxic stress (78–80). This implies 

that CAMKV serves as a central hub controlling the expression of the genes that promote NB cell 

proliferation.  

 

CREB has been reported to be a substrate for members of the CAMK2 subfamily (CAMK2A, 

CAMK2B, CAMK2D, and CAMK2G) and CAMK4 in many cell types (28, 29). Intriguingly, the 

knockout of any of these CaMK2 members or CAMK4 did not notably inhibit CREB 

phosphorylation or NB cell proliferation (Fig. 1, D and E). Unexpectedly, we also observed that 

elevated expression of CaMK2A, CaMK2B, CAMK2D, CAMK2G, and CAMK4 in NB primary 

tumor specimens correlated with improved patient outcomes (Fig.S12). Further investigation is 

required to elucidate the role of other CaMK members in NB tumorigenesis.  

 

A prior study claimed that recombinant CAMKV purified from bacteria lacks kinase activity, 

suggesting CAMKV is a non-functional pseudokinase (30). Another study proposed that CAMKV 

is vital for synaptic transmission and plasticity and maintaining dendritic spine structure, but no 

kinase activity is required for this function (31). We demonstrated for the first time that CAMKV 

kinase activity is required for NB tumor growth. It is plausible that CAMKV purified in a 

prokaryotic expression system lacks the correct folding or post-translational modifications 

necessary for its kinase activity. Furthermore, we identified threonine 183 (Thr183) as a critical 

site for CAMKV kinase activation and function in NB cells. However, further investigation is 

needed to uncover the upstream signaling pathway(s) that lead to CAMKV phosphorylation and 

activation in NB cells.  

 

Calmodulin binding and subsequent autophosphorylation play crucial roles in regulating CaMKs' 

activation (81). The interaction between calmodulin and the kinase is a vital regulatory step, 

promoting autophosphorylation and initiating the activation cascade. Once the critical amino acid 

is phosphorylated, it disrupts the autoinhibitory domain, which allows the kinase to establish a 

self-sustaining activation and render calmodulin dispensable for maintaining kinase activity (81, 
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82). Consistent with these early reports, we found that the calmodulin binding domain is required 

for the initial activation of CAMKV but is not required for maintaining its kinase activity. To avoid 

artificial activations of CAMKV in vitro, we did not add calmodulin in our in vitro kinase assay 

to examine the kinase activity of endogenously activated CAMKV in SK-N-AS cells.  

 

Alternative splicing contributes to transcript variation, proteome diversity, and the specificity of 

numerous cellular processes (83–85). Aberrant splicing events are also common in NB cells and 

contribute to cancer progression (86–89). Notably, four CaMKII genes (CAMK2A, CAMK2B, 

CAMK2G, and CAMK2D) undergo alternative splicing, which results in changes in specific 

kinase activity and differential responses to calcium stimulation in vitro (90, 91). In this study, two 

isoforms of CAMKV with kinase activity were identified in NB cells. The short isoform exhibited 

higher kinase activity than the full-length isoform, suggesting that the deleted region in the short 

isoform negatively regulates CAMKV kinase activity. Further investigation is needed to determine 

whether the alternative splicing of CAMKV contributes to NB development. 

 

MYCN amplification is a powerful tool for stratifying NB patients and predicting their prognosis 

(3, 4). However, it occurs in less than half of high-risk NB patients, indicating that more than half 

still experience poor outcomes despite the absence of MYCN amplification  (7, 8). This underscores 

the need for additional markers to enhance risk stratification. We found that NB patients with high 

CAMKV expression have significantly worse survival than those with lower expression, suggesting 

that elevated CAMKV levels are at least partially correlated with a more aggressive NB phenotype. 

Consistent with a recent report (34), our study also demonstrated that CAMKV is transcriptionally 

regulated by MYCN/MYC. Therefore, patients with high-risk NB without MYCN amplification 

could potentially be identified by this novel marker, CAMKV, supplementing the limitations of 

MYCN as a sole stratification tool. However, additional studies are needed to further investigate 

the association between CAMKV and MYCN/MYC protein expression levels in clinical 

specimens. 

 

Our RNA-seq and mass spectrometry data revealed extensive transcriptomic, proteomic, and 

phosphorylation changes in NB cells upon CAMKV knockdown. These changes included 

phosphorylation of eight transcription factors. Among them, we identified two decreased 
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phosphopeptides from the transcription factor GATA2 at Ser182 and Ser192, implying that 

GATA2 is another CAMKV substrate. Like CAMKV, GATA2 exhibits specific overexpression in 

NB cells and may play a critical role in mediating CAMKV kinase signaling. Using an anti-

phospho-GATA2 (Ser192) antibody, we confirmed its decreased phosphorylation in CAMKV-

knockdown NGP cells while the total GATA2 protein level remained unchanged (Fig.S10A). 

Besides transcription factors, we also observed decreased phosphorylation of several kinases after 

CAMKV knockdown (table S8 and S9). One example is STK10 (Serine/Threonine-Protein Kinase 

10), expressed in various tumor cell lines and highly proliferative tissues (92). STK10 plays a 

crucial role in tumor progression and its knockdown promotes tumor cell apoptosis (93, 94). 

Another example is RIOK1 (RIO kinase 1), which is known to promote cancer cell proliferation 

and invasion (95). These findings suggest that CAMKV regulates the phosphorylation of multiple 

categories of proteins to promote NB growth.  

 

K252a has  been shown to exert inhibitory effects on various signaling pathways by suppressing 

the activity of multiple kinases including TrkA and TrkB tyrosine kinases (96–101). Therefore, 

K252a likely inhibits other kinase-mediated pathways contributing to NB cell proliferation and 

tumor growth besides CAMKV. However, all the candidate inhibitors we identified are not specific 

for CAMKV and screening specific CAMKV kinase inhibitors is therefore needed in the future. 

Our current results provide proof-of-concept that inhibiting CAMKV activity with small molecule 

inhibitors represents a promising strategy for developing novel NB therapies. 

 

In this study, we demonstrated that MYCN/MYC transcriptionally up-regulates CAMKV 

expression. Once activated, CAMKV directly phosphorylates CREB and other targets to modulate 

gene expression, thereby enhancing NB cell proliferation. Inactivating the CAMKV gene or 

inhibiting its kinase activity with small molecule inhibitors suppresses tumor growth, which 

suggests that CAMKV kinase represents a novel therapeutic avenue and is a potential prognostic 

marker for NB. 
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Fig. 1. CAMKV is required for CREB phosphorylation and NB cell proliferation. 

(A) CREB phosphorylation level in NB cell lines. Immunoblot of cell extracts of nine NB cell 

lines to determine the level of total and phosphorylated-Ser133 CREB. -actin was used as a 

loading control. (B) The effects of CREB knockdown by shRNA on CREB and CCNA2 

expression. (C) The effect of CREB knockdown by two shRNA on NB cell proliferation by crystal 

violet staining after 7 days.  (D, E) The effects of CRISPR/Cas9 knockout of each member of 

Ca2+/calmodulin-dependent kinases (CaMKs) on CREB phosphorylation (D) and cell proliferation 

(E) of SK-N-AS cells. (F) CAMKV protein levels in nine NB cell lines. (G) CAMKV mRNA 

expression in 40 tumor types in the Cancer Cell Line Encyclopedia (CCLE). (H, I) The effects of 

CAMKV knockdown on total and phosphorylated CREB and CCNA2 protein (H), as well as on 

the cell proliferation of NB cell lines by crystal violet staining assay (I). (J)  The effects of 

CAMKV knockdown on CREB phosphorylation can be prevented by expressing a sh-RNA-

resistant CAMKV (CAMKV-R) in SK-N-AS cells. 
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Fig. 2. Phosphorylation at Thr183 is required for CAMKV kinase activation and signaling.  

(A) Diagram of CAMKV isoforms and truncated forms. The kinase domain (SPKc in blue) and 

regulatory domain (in red) containing CTD are illustrated. The missing amino acids (aa 351-381) 

in CAMKV short isoform (CAMKV-S) are indicated. The structures of truncated forms of 

CAMKV, CAMKV-334 and CAMKV-303 are also indicated. (B, C) The effects of over-

expression of CAMKV-FL-WT or CAMKV-S-WT on CREB phosphorylation (B) and cell 

proliferation (C) of NGP and SK-N-AS cells. (D, E) In vitro phosphorylation of recombinant GST-

CREB by CAMKV-FL, CAMKV-S, CAMKV-334aa, and CAMKV-303aa. CAMKV proteins 

were immunoprecipitated from cell lysates of SK-N-AS cells stably expressing CAMKV and then 

subjected to a Kinase-Glo® luminescent kinase assay (D) and an in vitro kinase assay (E). (F) 

Detection and visualization of the interaction between CAMKV and CREB in SK-N-AS cells by 

an in situ proximity ligation assay. (G, H) In vitro phosphorylation of recombinant GST-CREB 

by CAMKV-S-WT and putative kinase-dead K53M mutants, putative constitutively active kinase 

T183E mutants, and putative kinase-deficient T183A mutants in a Kinase-Glo® luminescent 

kinase assay (G) and an in vitro kinase assay (H). (I-L) The effects of stable expression of shRNA 

resistant CAMKV-FL, CAMKV-S or their mutants on CREB phosphorylation (I, J) and cell 

proliferation (K, L) in SK-N-AS and NGP cell lines, in which endogenous CAMKV was knocked 

down. 
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Fig. 3.  CAMKV is a direct transcriptional target of MYCN/MYC in NB cells. 

(A) Potential MYCN/MYC binding sites at the 5’UTR and promoter region of CAMKV. (B) ChIPs 

were performed with anti-MYCN and anti-MYC antibodies on two NB cell lines followed by 

quantitative PCR to detect the relative enrichments of target sequences. (C) The mRNA level of 

CAMKV in MYCN-amplified NB cell lines and MYCN-non-amplified NB cell lines (from 

GSE19274 dataset). (D) The correlation of gene expression between CAMKV and MYCN in NB 

cell lines (from GSE19274 dataset). (E, F) CAMKV and p-CREB protein levels in MYCN-

amplified (E) and MYCN-non-amplified NB cell lines (F). (G) The effects of MYCN/MYC 

knockdown on CAMKV mRNA expression in NB cells. (H-I) The relative Camkv mRNA 

expressions in tumors derived from TH-MYCN-driven mouse model compared to ganglia and 

adrenal by analyzing Series GSE17740 (H) and GSE32386 (I) datasets. 
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Fig. 4.  CAMKV knockdown induces extensive transcriptomic and proteomic changes in NB.  

(A) RNA-seq results of wild-type NGP cells and CAMKV knockdown cells. Plot of differentially 

expressed genes comparing significance vs fold change. (B) Gene set enrichment analysis of 

downregulated genes. (C) Global proteome analysis of wild-type and CAMKV knockdown NGP 

cells. Plot of differentially expressed proteins comparing significance vs fold change. (D) Gene set 

enrichment analysis of downregulated proteins. (E) Global quantitative phosphoproteomic 

analysis of WT and CAMKV knockdown NGP cells showing the protein classes with down- and 

up-regulated phosphosites. 
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Fig. 5. CAMKV high expression in NB tumors correlates with poor patient survival. 

(A) Correlation of high and low CAMKV mRNA levels of NB tumor samples and the overall 

survival of patients was analyzed using the GSE62564 (Seqc-498-cohort) dataset. (B) CAMKV 

expression in low- (n=322) and high-risk (n=176) NB samples from the Seqc-498-cohort. 

Statistical analysis was performed using the two-sided unpaired t-test. (C) CAMKV mRNA levels 

in patient tumor samples from the Seqc-498-cohort grouped on the base of INSS stage 1 to 4. 

Statistical analysis was performed using the two-sided unpaired t test. (Stage 1, n=121; Stage 2, 

n=78; Stage 3, n=63; Stage 4, n=183; Stage 4s, n=53). (D) CAMKV mRNA levels in tumors from 

patients with non-amplified MYCN (n=401) and amplified MYCN (n=92, GSE62564 dataset). (E) 

The correlation of gene expression between CAMKV and MYCN in the Seqc-498 cohort. (F) 

CAMKV and MYCN expressions in neuroblast and NB cells by single cell RNA-Seq of 2 

embryos, 4 fetal adrenal glands, and 16 NBs, (G) Representative images of CAMKV, phospho-

CREB, and CCNA2 IHC staining on the sections from 30 human NB patient tumor tissues. (H) 

Summary of IHC staining results. (I-K) The correlation between CAMKV protein expression and 

NB risk (I), the expression of p-CREB (S133) (J) and CCNA2 (K) from these tumors. 
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Fig. 6. Inducible knockout of CAMKV gene suppresses NB cell proliferation in vitro and 

tumor growth in the xenograft NB mouse model.  

(A) Immunoblotting of CAMKV and p-CREB (S133) in CHLA-136 cell with inducible CAMKV 

gene knockout or control vector. (B) The effects of inducible knockout of CAMKV gene on NB 

cell proliferation. CHLA-136 cells were treated with doxycycline (100 ng/mL, 48 hours) and 

stained with crystal violet 14 days after treatment. (C) Bioluminescent imaging of CHLA-136-

Fluc xenograft NB mice from the control group and the CAMKV inducible knockout group. (D) 

The survival rate of CHLA-136-Fluc xenograft NB mice of control group and the CAMKV 

inducible knockout group. Statistical analysis was performed by a Log-rank test. (χ2 = 10.26; p = 

0.0165). 
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Fig. 7. Inhibition of CAMKV activity by small molecular inhibitors suppresses NB cell 

proliferation in vitro and tumor growth in xenograft NB mouse model. 

(A) Kinase-Glo kinase assay to show the inhibition of OTSSP167 on CAMKV activity. (B) In 

vitro Kinase assay to show the inhibition of OTSSP167 on CREB phosphorylation mediated by 

CAMKV. (C) Treatment regimen of the xenograft NB mouse model. Two weeks after CHLA-

136-Fluc cell i.p. implantation in NSG mice, OTSSP167 was i.p. administrated daily for 2 weeks. 

(D) Bioluminescent imaging photos of CHLA-136-Fluc xenograft NB mice from the control and 

the OTSSP167-treated groups. (E) The survival rate of CHLA-136-Fluc xenograft NB mice of 

control-(n=4) and the OTSSP167-treated groups (n=4). (F) RNA-seq results of control cells and 

OTSSP167-treated cells (60 nM, 12 hours). Plot of differentially expressed genes comparing 

significance vs fold change.  
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Supplementary figure 1. The effects of CREB and CCNA2 gene knockdown on cell 

proliferation in NB cells. (A) The effects of CREB knockdown on NB cell proliferation. NB cells 

with CREB knockdown or control shRNA were seeded in 96-well plates at a concentration of 1 × 

104 cells per well. CCK8 assay was performed on day three to determine the cell viability. 

Experiment was performed in triplicate. (B) The effects of CREB knockdown on the expression of 

different cyclins in SK-N-AS cell. The mRNA levels were detected by real-time PCR. (C, D) The 

effects of CCNA2 knockdown on NB cell proliferation. NB cells were transduced with shRNAs 

targeting CCNA2 or with control shRNA. The protein levels of CCNA2 and -actin in the cell 

lysates were detected by immunoblotting. 
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Supplementary figure 2. The effects of CRISPR/Cas9 knockout of each member of 

Ca2+/calmodulin-dependent kinases (CaMKs) on CREB phosphorylation by the second set 

of sgRNAs. 
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Supplementary figure 3. Sequencing results of CAMKV knockout in SK-N-AS cells. (A, C) 

Sequencing results of single clones from CAMKV knockout mediated by guide RNA-1 (A) and 

guide RNA-2 (C). (B, D) The reading frame-shifted CAMKV genomic sequences after genome 

editing by guide RNA-1 (B) and guide RNA-2 (D). 
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Supplementary figure 4. Effects of CAMKV inducible knockdown mediated by an inducible 

piggyBac (PB) system in SK-N-AS cells. (A) The effects of inducible knockdown of CAMKV 

gene on CREB phosphorylation. SK-N-AS cells were treated with doxycycline (100 ng/mL, 72 

hours) and harvested for immunoblotting analysis. (B) SK-N-AS cells were treated with 

doxycycline (100 ng/mL, 14 days) and stained with crystal violet.   
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Supplementary figure 5. The kinase activity of CAMKV is required for NB cell proliferation 

and phosphorylation at Thr183 is crucial for kinase activation. (A, B) The effects of over-

expression of CAMKV-FL-WT or CAMKV-S-WT on CREB phosphorylation (A) and cell 

proliferation (B) of IMR32 and SH-SY5Y cells. (C, D) In vitro phosphorylation of recombinant 

GST-CREB by CAMKV-FL, CAMKV-S, CAMKV-334aa, and CAMKV-303aa purified from 

overexpressed HEK293T cells by Kinase-Glo® luminescent kinase assay (C) and in vitro kinase 

assay (D).  (E, F) Identification of CAMKV phosphorylation site by mass spectrometry (MS). (E) 

The representative MS/MS spectrum of the tryptic phospho-peptide EPCGT(p)PEYLAPEVVGR 

(p denotes phosphorylation), which identified phosphorylation at Thr-183, is shown. (F) The 

percent of the phospho-peptide from MS analysis. (G, H) Overexpressing either the FL mutants 

(left) or S mutants (right), the threonine 183 residue is the critical phosphorylation site for optimal 

CAMKV function to promote CREB phosphorylation (G) and NB cell proliferation (H) in NGP 

and SK-N-AS cell lines. (I, J) The effects of overexpression of CAMKV WT or mutants on colony 

formation of SK-N-AS cells in Matrigel. The blue arrows point single cells, and the scale indicates 

200 µm. (I) Colony images were captured at 100 × magnification under a microscope. (J) The sizes 

of twenty colonies from each well were measured, averaged, and presented as mean ± S.D. 
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Supplementary figure 6. Calmodulin binding domain is required for the initial activation of 

CAMKV kinase in NB cells. (A) Sequence alignment of calmodulin binding domain (CBD) of 

CAMK family members with conserved lysines (K) and arginines (R) highlighted in yellow. (B, 

C) In vitro phosphorylation of recombinant GST-CREB by CAMKV-S-WT, CAMKV-S-R3K-

mut, CAMKV-S-T183E and CAMKV-S-T183E-R3K-mut. by Kinase-Glo® luminescent kinase 

assay (B) and an in vitro kinase assay (C). (D, E) The effects of stable expression of shRNA 

resistant CAMKV-S-WT, -S or their mutants on cell proliferation (D) and CREB phosphorylation 

(E) in SK-N-AS cells, in which endogenous CAMKV was knocked down. 
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Supplementary figure 7. CAMK4 is not required for CREB phosphorylation in NB cells and 

NB cell proliferation. (A) The effects of CAMK4 overexpression on total and phospho-CREB by 

immunoblotting in SK-N-AS, SH-SY5Y, and NGP cell lines. beta-actin was used as a loading 

control. by immunoblotting. (B) The effects of CAMK4 overexpression on the NB cell 

proliferation by crystal violet staining after 7 days of culture.  (C, D) In vitro phosphorylation of 

recombinant GST-CREB by FLAG-tagged CAMKV-FL compared to CAMK4-FL by a Kinase-

Glo® luminescent kinase assay (C) and an in vitro kinase assay (D).  (E, F) The effects of CAMK4 

knockout on CREB phosphorylation (E) and cell proliferation (F) in SK-N-AS cells.  
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Supplementary figure 8. Sequencing results of CAMK4 knockout in SK-N-AS cells. (A) 

Sequencing results of single clones from CAMK4 knockout mediated by guide RNA-1. (B) The 

reading frame-shifted CAMK4 genomic sequences after genome editing by guide RNA-1. 
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Supplementary figure 9. GATA2 is highly expressed in NB cells. (A) GATA2 mRNA level in 

different types of cancer cell lines. (B) GATA2 mRNA level in different NB cell lines. 

(https://www.proteinatlas.org/ENSG00000179348-GATA2/cell+line#neuroblastoma) 
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Supplementary figure 10. The phosphorylation of GATA2 is regulated by CAMKV. (A) The 

effect of CAMKV knockdown on the phosphorylation level of GATA2 in NGP cells. (B) The 

effect of overexpression of His-tagged CAMKV-334aa WT and K53M mutant on the 

phosphorylation level of co-transfected FLAG-GATA2 in HEK293T cells. (C) GATA2 protein 

level in GATA2-knockdown NGP cells. (D) The effect of GATA2 knockdown on NGP cell 

proliferation.  
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Supplementary figure 11. Correlation of high expression of CAMKV in tumors with a poor 

NB patient survival. (A) Relative CAMKV expression levels in a normal tissue and pediatric 

malignancy microarray array database, including acute lymphocytic leukemia (ALL), alveolar 

(aRMS) and embryonal (eRMS) rhabdomyosarcoma, Ewing's sarcoma (EWS), ependymoma (EP), 

medulloblastoma (MB), neuroblastoma (NB), osteosarcoma (OS), Wilms' tumor (WT), and 

normal tissue (NT). (B) Correlation of CAMKV mRNA levels and the overall survival of NB 

patients was analyzed in Kocak-649-cohort dataset. (C, D) CAMKV mRNA levels among different 

stages (Stage 1, n=153; Stage 2, n=113; Stage 3, n=91; Stage 4, n=214; Stage 4s, n=78) (C) and in 

samples with MYCN non-amplification (n=550) or amplification (n=93) (D). (E) Correlation of 

CAMKV and MYCN mRNA levels in all 649 NB tumor tissues. 
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Supplementary figure 12. Correlations of the CAMK family members mRNA levels and 

patient overall survival. Correlations of CAMK2A (A), CAMK2B (B), CAMK2D (C), CAMK2G 

(D), or CAMK4 (E) mRNA levels and patient overall survival in Seqc-498-cohort (left) and Kocak-

649-cohort (right) datasets.   
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Supplementary figure 13. The mRNA levels of CAMK family members in different MYCN 

status and INSS stages. (A, B) The mRNA levels of CaMKs in NB tumor tissues between MYCN 

non-amplified and amplified groups in Seqc-498-cohort (A) and the Kocak-649-cohort datasets 

(B). (C, D) The mRNA levels of CaMKs in NB tumor tissues among different INSS stages from 

Seqc-498-cohort (C) and the Kocak-649-cohort (D) datasets. 
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Supplementary figure 14. OTSSP167 inhibits CAMKV kinase activity in NB cells. (A) The 

effects of Alcetinib, Agerafenib, Entrectinib, K252a, Lenvatinib, OTSSP167, Regorafenib, and 

Takinib on ATP consumption of CAMKV-334a incubated with GST-CREB in the Kinase-Glo 

Assay. (B) The effect of OSTSSP167 ex vivo treatment on cell proliferation of NB PDX cells. (C) 

The IC50 value of OTSSP167 in NB PDX cells, COG-N-519X and COG-N-564X. (D) Gene set 

enrichment analysis of downregulated genes in OTSSP167 treated NGP cells showing enrichment 

of neuronal-related pathways. (E, F) Integrated analysis of RNA-seq results between CAMKV 

knockdown and OTSSP167 treated NGP cells. 
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Supplementary figure 15. K252a inhibits CAMKV kinase-mediated CREB phosphorylation. 

(A) The effects of CAMK-family inhibitors KN93, STO609, K252a, K252c, PKC412, and 

staurosporine (Stauro) on CAMKV-334aa-mediated phosphorylation of recombinant GST-CREB 

in an in vitro kinase assay. (B, C) K252a inhibited ATP consumption for recombinant GST-CREB 

phosphorylation by the purified CAMKV-334aa (B) or CAMKV-S (C) in the Kinase-Glo Assay.  

(D) The effects of CAMK family member inhibitors on SK-N-AS cell viability. (E) The effects of 

K252a, PKC412, and staurosporine (Stauro) on CREB phosphorylation level in NB cells. (F) The 

effects of K252a on CREB phosphorylation and CCNA2 expression in NB cells. (G) Inhibitory 

effects of K252a on the viability of different NB cell lines.  
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Supplementary figure 16. Molecular docking of MELK-8a, OTSSP167, and K-252a with 

CAMKV and MELK. (A) Alignment between CAMKV (white, generated by AlpahFold2) and 

MELK-8a/MELK (warm pink, PDB ID: 5IH9), and the ATP binding pocket was highlighted. (B) 

The superposition of MELK-8a redock pose (wheat) and its original inhibitor (warm pink), and 

the docking poses of OTSSP167 (violet) and K-252a (marine) within the ATP-binding pocket of 

MELK. (C) The docking poses of MELK-8a, OTSSP167, and K-252a within the ATP-binding 

pocket of CAMKV. (D-F) The 2D-interactive patterns between key residues and MELK-8a (D), 

OTSSP167 (E), and K-252a (F) within the ATP-binding pocket of CAMKV. Molecular docking 

was performed by Glide with XP precision; 2D interactive pattern was illustrated by Ligand 

Interactive Diagram; 3D binding mode was illustrated by PyMOL. 
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