

1 **The effects of clay minerals on bacterial community composition during**
2 **arthropod decay**

3

4 Nora Corthésy^{1*}, Farid Saleh^{1*}, Camille Thomas², Jonathan B. Antcliffe¹, and Allison C. Daley¹

5

6 ¹Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne,
7 Switzerland

8 ²Institute of Geological Sciences, Oeschger Centre for Climate Research, University of Bern,
9 Baltzerstrasse 1+3, 3012 Bern, Switzerland

10

11 Corresponding authors: N. Corthésy (nora.corthesy@unil.ch)
12 F. Saleh (farid.nassim.saleh@gmail.com)

13

14 **ABSTRACT**

15 Fossilization, or the transition of an organism from the biosphere to the geosphere, is a complex
16 mechanism involving numerous biological and geological variables. Bacteria are one of the
17 most significant biotic players to decompose organic matter in natural environments, early on
18 during fossilization. However, bacterial processes are difficult to characterize as many different
19 abiotic conditions can influence bacterial efficiency in degrading tissues. One potentially
20 important variable is the composition and nature of the sediment on which a carcass is deposited
21 after death. We experimentally examined this by decaying the marine shrimp *Palaemon varians*
22 underwater on three different clay sediments. Samples were then analyzed using 16S ribosomal
23 RNA sequencing to identify the bacterial communities associated with each clay system.
24 Results show that samples decaying on the surface of kaolinite have a lower bacterial diversity
25 than those decaying on the surface of bentonite and montmorillonite, which could explain the
26 limited decay of carcasses deposited on this clay. However, this is not the only role played by
27 kaolinite, as a greater proportion of gram-negative over gram-positive bacteria is observed in
28 this system. Gram-positive bacteria are generally thought to be more efficient at recycling
29 complex polysaccharides such as those forming the body walls of arthropods. This is the first
30 experimental evidence of sediments shaping an entire bacterial community. Such interaction
31 between sediments and bacteria might have contributed to arthropods' exquisite preservation
32 and prevalence in kaolinite-rich Lagerstätten of the Cambrian Explosion.

33

34 **KEYWORDS**

35 exceptional fossil preservation, microbiome, experimental taphonomy, *Palaemon varians*, 16S
36 rRNA sequencing, Cambrian

37

38

39 INTRODUCTION

40 Microorganisms, are ubiquitous and play crucial roles in numerous processes, including animal
41 metabolism, biogeochemical cycles, and the degradation of organic matter (Azam et al., 1994;
42 Fava, 2015; Madsen, 2011). For a long time, little was known about the animal microbiome,
43 which is primarily responsible for digestion and immunity, but it has recently gained ground in
44 research, largely due to high-throughput sequencing (McAdam et al., 2014). Studying bacteria
45 is essential because, in many systems, such as the human body, bacterial cell quantities exceed
46 those of host cells (Sender et al., 2016). Given the widespread presence of bacteria, they are
47 recognized as one of the primary biotic factors governing the post-mortem decay of biological
48 tissues, with a preference for recycling soft anatomical structures (e.g., skin, internal organs,
49 non-mineralized cuticles) over hard and resistant tissues (e.g., bones, horns, claws, mineralized
50 shells) (Nudds & Selden, 2008).

51 The bacterial processes involved in decay and fossilization are poorly understood as
52 they include many complex interactions between bacteria, the nature of the decaying organic
53 matter, in addition to the substrate in the depositional environment. For example, experiments
54 on the decomposition of brine shrimps have revealed that the gut remains well-preserved,
55 despite hosting numerous microorganisms (Butler et al., 2015). This discovery suggests that the
56 gut microbiota might be crucial for preserving internal organs and therefore could play a role
57 in the preservation of soft tissues in the fossil record (Butler et al., 2015). Indeed, exceptionally
58 preserved animal fossils from several Cambrian Burgess Shale-type Lagerstätten sometimes
59 show the presence of high-relief three-dimension gut structures preserved in iron oxide or
60 phosphatic minerals, while the rest of the labile anatomy is preserved as flattened carbon films
61 (Butterfield, 2002; Lerosey-Aubril et al., 2012; Vannier et al., 2014). Many mineralization
62 processes, in which soft tissues are replicated in minerals like pyrite or phosphate crystals,
63 resistant over geological time scales, are mediated or accelerated by bacterial activity (Saleh et
64 al., 2020). Therefore, bacteria are not only responsible for the decay of soft tissues but can also
65 stabilize labile anatomical features, via their metabolic pathways under certain conditions. One
66 approach to understanding the role of bacteria in degradation, given their limited preservation
67 potential in the rock record (Saleh et al., 2020; Vinther, 2016), is through controlled decay
68 experimentation.

69 Many previous decay experiments have investigated the impact of numerous abiotic
70 factors on the rate and sequence of organic matter degradation. These factors include oxygen
71 (Butler et al., 2015; Hancy & Antcliffe, 2020; Murdock et al., 2014; Sansom, 2016; Sansom et
72 al., 2010), pH (Clements et al., 2017, 2022), and associated sediment composition (Martin et
73 al., 2004; Naimark et al., 2016; Sagemann et al., 1999; Wilson & Butterfield, 2014).
74 Experiments such as these have provided an outstanding framework of the sequences of
75 anatomical character loss and how that varies under different conditions. It is now time to ask
76 why these variations are occurring and to describe the processes leading to their observed
77 differences. Decay experiments involving sediments have shown that kaolinite, a clay mineral
78 often associated with Cambrian Burgess Shale-type preservation (Anderson et al., 2018, 2021),
79 preserves organisms better than other substrates (Naimark et al., 2016; Wilson & Butterfield,
80 2014). By inoculating a single species of bacteria into a kaolinite suspension, it has been shown
81 that this clay can limit bacterial growth probably due to its high aluminum concentration, which
82 would damage bacterial membranes in the presence of oxygen (McMahon et al., 2016).
83 However, generalization should be carefully made as recent microbiome analysis of decaying
84 crayfish, placed separately in aerobic and anaerobic conditions, revealed the presence of diverse
85 bacterial communities around the decaying carcasses (Mähler et al., 2023). Therefore, we know
86 that kaolinite can affect bacteria (McMahon et al., 2016). However, we do not know how
87 kaolinite influences the composition of the bacterial communities within and surrounding a

88 decaying carcass (Mähler et al., 2023), and the process by which kaolinite aids exceptional
89 fossil preservation is yet to be fully deciphered (Naimark et al., 2016; Wilson & Butterfield,
90 2014).

91 In this study, bacterial communities associated with the marine shrimps *Palaemon*
92 *varians* decaying on three different clay substrates were examined using 16S ribosomal RNA
93 (rRNA) sequencing. The results show that the bacterial communities present in the shrimp and
94 the sediments on which it is decaying depend on the carcass and its surrounding substrate.
95 Kaolinite impacts soft-tissue degradation by promoting the proliferation of bacteria that are less
96 efficient at recycling polysaccharide-rich body walls, such as those of arthropods. The
97 observation of contrasting bacterial communities in association with different clays begins to
98 provide a process-based understanding as to why certain animals in Early Paleozoic ecosystems
99 are so exquisitely preserved in rock matrices containing kaolinite.

100

101 MATERIAL AND METHODS

102 **Sample preparation.** To investigate the interplay of clay minerals and bacterial communities
103 during animal decomposition, the decay of the marine shrimp *Palaemon varians* was studied.
104 Seventeen marine shrimps were euthanized using clove oil ($C_7H_{12}ClN_3O_2$) at the aquarium lab
105 facility of the Institute of Earth Sciences at the University of Lausanne. Clove oil was chosen
106 to avoid mechanically damaging the animals and to induce their rapid death. After three
107 minutes, all animals were successfully euthanized, and they were repeatedly rinsed with
108 deionized water to remove clove oil residue. Experimental boxes (5x3x2cm) were prepared in
109 the meantime and contained 5g dry weight of clay powder and 35g of artificial seawater (ASW),
110 prepared to 1.024 psu with reverse osmosis deionized water and Aquarium Systems Reef
111 Crystals. The three clays used in the experimental setup were kaolinite, bentonite, and
112 montmorillonite (Pusch, 2015; Saikia et al., 2003; Uddin, 2008). The carcasses were then
113 individually placed on the surface of the clay in the decay experiment boxes, which were then
114 closed with lids to limit oxygen supply and prevent excessive evaporation. Control samples of
115 5g clay powder with 35g of ASW without any carcass were also prepared. Controls were
116 prepared for each clay, resulting in three additional samples. All samples were kept at room
117 temperature and in the dark to avoid bias in microbial growth (Sansom, 2014). Shrimps were
118 left to decay for two months. Specimen were then imaged using a SC50 5-megapixel color
119 camera (Olympus Life Science Solutions) with Olympus Stream Basic software (version 2.2;
120 Olympus Soft Imaging Solutions). Six shrimp samples (two decaying on each clay mineral), in
121 addition to the three controls, were prepared for DNA extractions. The investigated shrimps
122 were intentionally not sterilized as the experiment aims to explore the influence of different
123 clay minerals on both the bacteria present within the shrimp (e.g., in its guts) and environmental
124 bacteria (on its cuticle). After two months, the remaining pieces of the shrimp carcass and the
125 surrounding sediment were subsampled in sterile 1.5ml tubes. For the controls, only sediments
126 were put into tubes. Tubes were then stored in the freezer at -18°C to limit the decay process
127 and were kept frozen until DNA extractions. We acknowledge that this experimental setup does
128 not replicate natural environments, as a single type of clays does not form the entire seafloor,
129 and other environmental factors such as oxygen concentrations and the presence of scavengers
130 are not accounted for. However, it is important to note that the primary focus of decay
131 experiments is not to mimic natural conditions but rather to investigate how specific variables
132 influence decay patterns. In this case, the variable under investigation is sediment mineralogy,
133 and its impact on shrimp decay is assessed through the analysis of bacterial communities. Given
134 the impossibility of replicating natural environments, especially those from half a billion years
135 ago, we chose not to inoculate our experiment with any randomly occurring microbial

136 community found in nature. This decision avoids increasing the number of variables
137 investigated and prevents potential distortion from our main objective, which is to examine the
138 influence of shrimp bacteria on decay in the presence of different clays.

139 **DNA extractions and 16S sequencing.** DNA extractions of the nine samples were conducted
140 at the Department of Earth Sciences of University of Geneva. The DNeasy PowerSoil Pro Kit
141 (Qiagen, Germantown, MD, USA), one of the most common kits for the extraction of DNA
142 from sedimentary environments, was used following the manufacturer's protocol. For each tube,
143 any water remaining in the samples was removed by sterile pipetting. For the control samples,
144 500mg of the clay was placed individually into a PowerBead Pro Tube. For samples containing
145 shrimp carcasses, pieces of the carcass were harvested with surrounding clays and placed in the
146 same types of tubes until reaching 500mg. The masses of each remaining carcass were not
147 measured. The standard protocol was then followed. The DNA was quantified by using
148 Invitrogen Qubit dsDNA HS assay kit (Life Technologies, #Q32851, Grand Island, NY, USA)
149 and was subsequently stored at -18°C. An extraction blank, without sample material, was
150 realized during sample manipulation and DNA extractions to assess potential microbial
151 contaminations. The 16S rRNA gene amplification and sequencing were conducted by
152 Macrogen Inc. (Seoul, Rep. of Korea). The V3-V4 region of the 16S rRNA gene was amplified
153 by primers 341F (5'-CCTACGGNGGCWGCAG-3') and 805R (5'-
154 CCCCCGYCAATTCTTTRAGT-3'; Herlemann et al., 2011) as these primers are often used
155 for shrimp gut microbial identification and recommended for good coverage of bacterial
156 diversity (García-López et al., 2020; Holt et al., 2021). The V3-V4 16S rRNA amplicons were
157 sequenced using an Illumina MiSeq (paired-reads run 2 x 300 bp, San Diego, CA, USA).

158 **Microbiome analysis.** Microbiome analyses were performed using *dada2* (version 1.25.2;
159 Callahan et al., 2016) R package. Taxonomic affiliation was done against the SILVA database
160 version nr99_v138.1, (Quast et al., 2013). Data were then analyzed using *phyloseq* (version
161 1.36.0; (McMurdie & Holmes, 2013)), *vegan* (version 2.6-4) and *ggplot2* (version 3.4.0;
162 (Wickham, 2016)) on RStudio. The generated barplots facilitate in-depth investigation between
163 samples with shrimps and controls, as well as a more detailed exploration of the differences in
164 bacterial communities between the different minerals. The bacterial diversity of each sample
165 was assessed with the Shannon-Weaver index at the amplicon sequence variant (ASV) level.
166 Similarity and dissimilarity of the bacterial communities between samples were also assessed
167 at the ASV level with a non-metric multidimensional scaling (NMDS) plot based on a Bray-
168 Curtis distance metric after their normalization using a Hellinger transformation. Then, a
169 permutational analysis of variance (ANOVA) was done using Bray-Curtis dissimilarity to test
170 if bacterial communities were significantly different between the three types of clay, and
171 between kaolinite and the other two combined clays (bentonite and montmorillonite). The
172 results of the ANOVA are influenced by the small sample sizes in this study, a limitation we
173 acknowledge. Significant differences are only deemed present when clear disparities are evident
174 in the plotted data. However, to address the challenge posed by the numerous variables in the
175 system (i.e., the large number of bacterial taxa) and the limited number of specimens, we elected
176 to categorize the bacteria into two distinct groups based on their cell wall composition: gram-
177 positive and gram-negative bacteria. The two categories were defined at the class level (Tab.
178 1), only considering the classes whose relative abundances exceed 1%. For the classes that may
179 have gram-positive or gram-negative cell walls (e.g., Bacilli, Clostridia), the categorization was
180 done at the order level (Tab. 1). ANOVA was then used, once more, to test whether the relative
181 abundances of gram-positive and gram-negative bacteria were significantly different between
182 the three individual clays, and between kaolinite and the two other combined clays.

183 When the interaction between the type of clay and the type of cell wall was significant, contrast
184 analyses were performed with *emmeans* (version 1.8.2) R package to assess in more detail

185 whether the proportions of gram-positive and gram-negative bacteria were influenced by the
186 different clays. Raw datasets and statistical analyses can be found in the *Supplementary*
187 *Materials* and downloaded on the following link (<https://doi.org/10.17605/osf.io/K6DHG>).

188 **Table 1.** Bacterial phyla, classes, and orders identified in the samples, and their type of cell
189 walls (gram-positive/gram-negative).

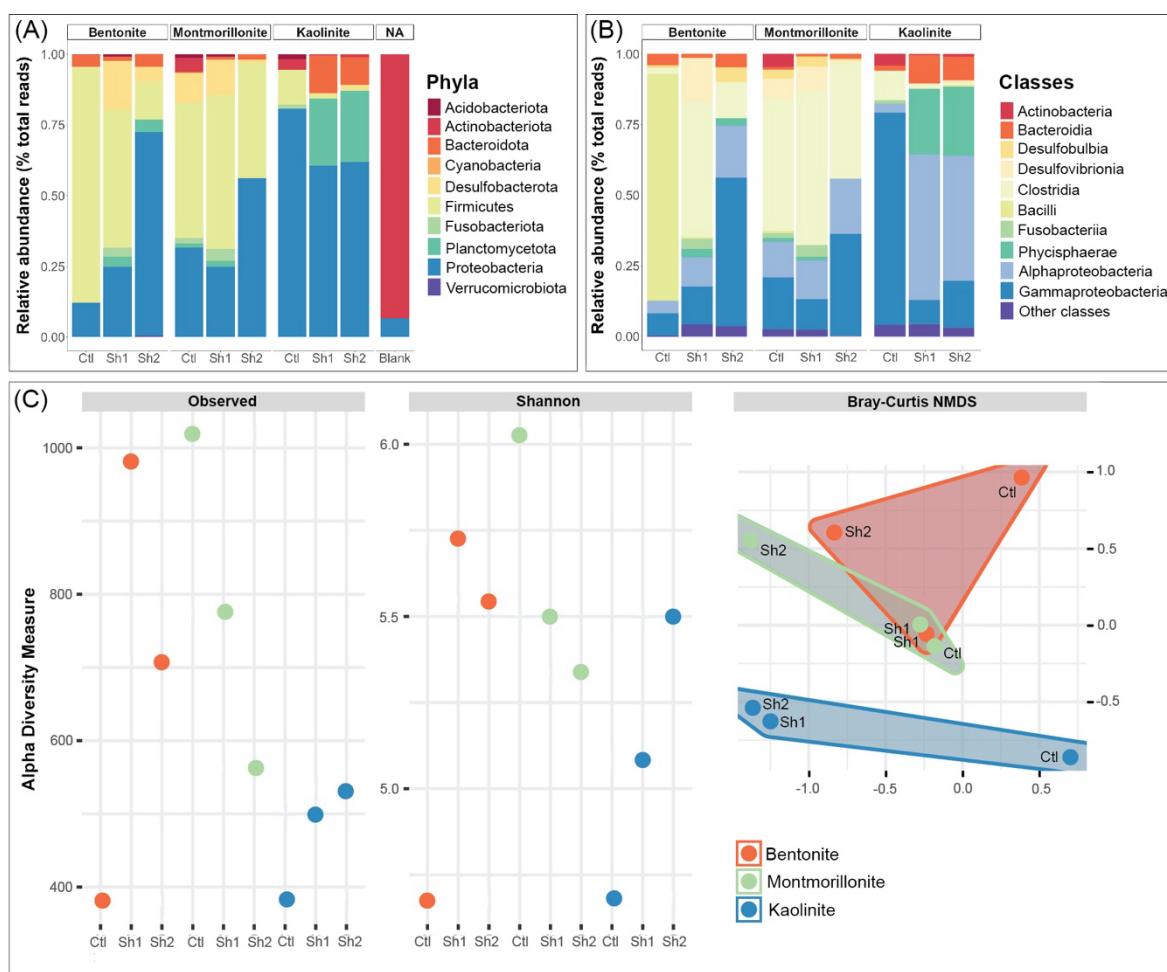
Phyla	Classes and <i>orders</i>	Gram
Actinobacteriota	Actinobacteria	Positive
Bacteroidota	Bacteroidia	Negative
Desulfobacterota	Desulfobulbia	Negative
	Desulfovibrionia	Negative
Firmicutes	Bacilli	
	<i>Lactobacillales</i>	Positive
	Clostridia	
	<i>Clostridiaceae</i>	Positive
Fusobacteriota	Fusobacteriia	Negative
Planctomycetota	Phycisphaerae	Negative
Proteobacteria	Alphaproteobacteria	Negative
	Gammaproteobacteria	Negative

190

191 RESULTS AND DISCUSSION

192 **Bacterial diversity is individual sample and clay dependent.** The phylum-scale data show
193 that Firmicutes and Desulfobacterota are less abundant in the presence of kaolinite than in the
194 presence of the two other clays (Fig. 1A). The proportions of Bacteroidota and Planctomycetota
195 (Wiegand et al., 2018) are higher in the presence of kaolinite in comparison to the bentonite
196 and montmorillonite experiments (Fig. 1A). When comparing the three control groups only
197 (i.e., without a decaying shrimps), differences in bacterial communities are also observed. In
198 particular, the control sample containing kaolinite shows a lower Firmicutes presence compared
199 to the controls with bentonite/montmorillonite (Fig. 1A). All these observations suggest that
200 clays influence bacterial community composition, with kaolinite playing a different role
201 compared to bentonite and montmorillonite.

202 Comparisons between the shrimps decaying on bentonite reveal remarkable variation
203 between the two individual samples, even though they were placed on the same substrate (Fig.
204 1A). A similar observation is made for the two shrimps placed on montmorillonite (Fig. 1A).
205 This highlights that shrimps decaying under identical experimental conditions can exhibit
206 variations in their bacterial communities, which implies that bacterial composition is influenced
207 by the decaying individual and its unique microbiome. Nonetheless, the impact of the individual
208 sample on bacterial diversity appears relatively minimal when kaolinite is present, as the two
209 shrimps decaying on kaolinite share a comparable bacterial composition (Fig. 1A). Although
210 the possibility that the two shrimps placed on kaolinite had a similar original bacterial
211 composition cannot be completely ruled out, these results also suggest that kaolinite may have
212 a more pronounced impact on the bacterial community composition than the other clays, leading
213 to a homogenization of the bacterial diversity in kaolinite shrimp samples in our study (Fig.
214 1A).

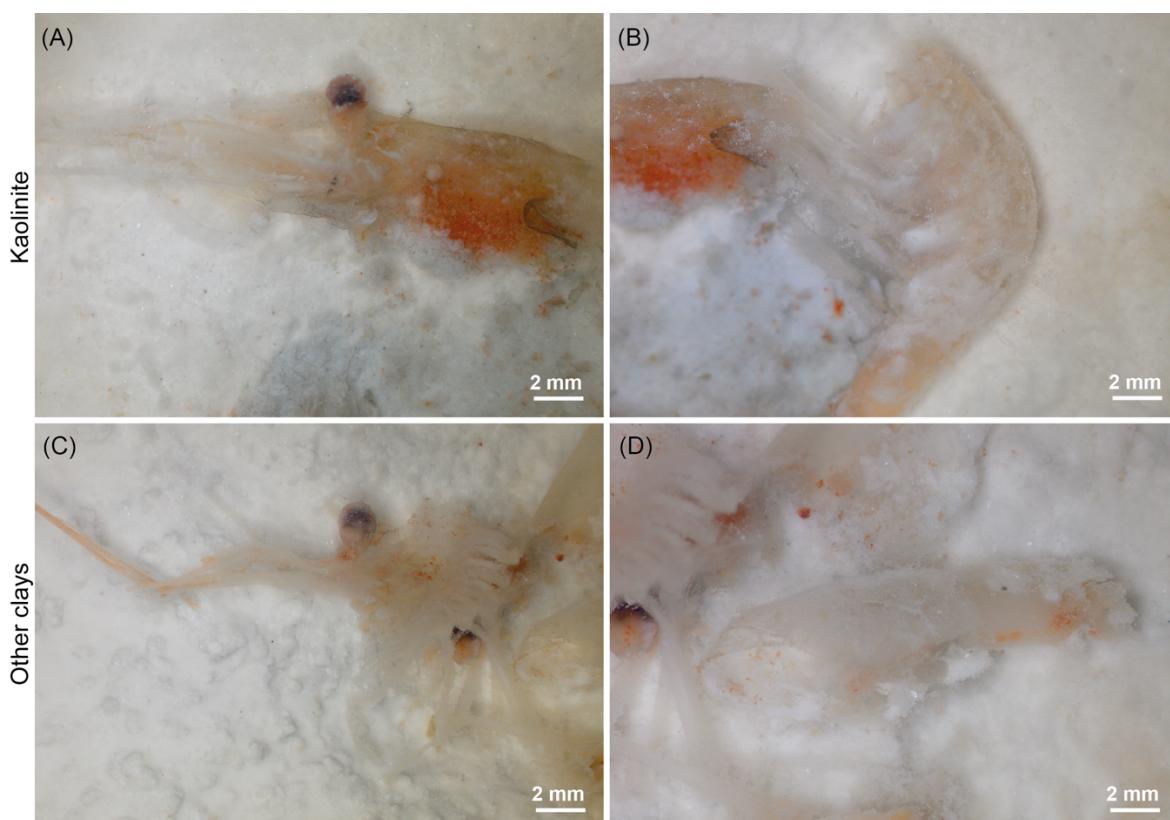

215 Differences between kaolinite and the other clays are also evident when examining
216 bacterial classes (Fig. 1B). Notably, the kaolinite samples display an almost absence of
217 Clostridia members from the Firmicutes phylum (Fig. 1B). Within the Proteobacteria phylum,
218 the kaolinite samples are marked by the prevalence of Alphaproteobacteria over
219 Gammaproteobacteria when shrimps are present in the experiment (Fig. 1B). Additionally, the

220 kaolinite samples exhibit an increased presence of Phycisphaerae and Bacteroidia members
221 compared to bentonite and montmorillonite. In contrast, bentonite and montmorillonite display
222 a higher relative abundance of Desulfobulbia and Desulfovibrionia within the Desulfobacterota
223 phylum (Fig. 1B). All the samples differ substantially from the blank, which consists mainly of
224 Actinobacteriota (Fig. 1A) and confirms that the obtained data do not result from external
225 contaminations. The observed phyla are consistent with those observed in other decay
226 experiments (Mähler et al., 2023) and with bacteria recovered in arthropod taxa (García-López
227 et al., 2020; Holt et al., 2021).

228 These findings suggest that none of the investigated clays totally inhibits bacterial
229 activity as all samples show diverse bacterial communities (Fig. 1A, B). However, the reduction
230 of the activity of specific bacterial species by certain clays, as suggested by McMahon et al.
231 (2016), cannot be ruled out. When looking at species-level (ASV) diversity metrics, sequencing
232 read numbers are the lowest for the kaolinite experiments with less than 550 reads for both
233 shrimp-containing samples (Fig. 1C). Similarly, the diversity, as measured by the Shannon-
234 Weaver index is on average lower for the kaolinite shrimp experiments (5.0) when compared to
235 the bentonite and montmorillonite experiments (5.5) (Fig. 1C). The NMDS also shows a marked
236 difference between the kaolinite bacterial communities and the bentonite and montmorillonite
237 communities (Fig. 1C). The ANOVA testing the contrast in bacterial communities between the
238 three clays did not show significant differences ($F_{1,8} = 0.885, p = 0.577$), and this is likely due
239 to the overlap between bentonite and montmorillonite values (Fig. 1C). However, when
240 combining bentonite and montmorillonite in one group and comparing it to kaolinite, bacterial
241 communities are shown to be significantly different ($F_{1,8} = 2.013, p = 0.0304$), which supports
242 that samples with kaolinite have meaningfully different communities (Fig. 1C). Note that
243 differences between the three different clays, and possibly between montmorillonite and
244 bentonite, might be more evident if a bigger sample size was considered.

245 An intriguing observation in our data is that the controls do not cluster together in the
246 NMDS plot, but rather remain proximate to their respective clay-mineral groups (Fig. 1D). This
247 suggests that the clay minerals not only influence the bacteria initially introduced with the
248 shrimp but also any bacteria that could have developed over the two months in the controls. Put
249 differently, the influence of minerals on bacteria could be discerned when comparing the
250 controls to one another. If different clays did not exert differential impacts on bacterial
251 community compositions, all controls would exhibit the same bacterial composition, which is
252 not the case (Fig. 1A, B). However, not all the observations of this experiment could have been
253 made without the samples that included shrimps. For instance, there is also a clear difference
254 between the controls and the shrimp samples for both bentonite and kaolinite (Fig. 1B, C),
255 indicating that shrimps also influence the diversity in the system. This difference is less apparent
256 between montmorillonite samples with shrimps and the montmorillonite control (Fig. 1B).
257 Additionally, the montmorillonite controls show a higher number of reads than the samples with
258 shrimps (Fig. 1C). It is unclear why this might be happening in the montmorillonite control,
259 and more experiments involving montmorillonite need to be conducted in the future.

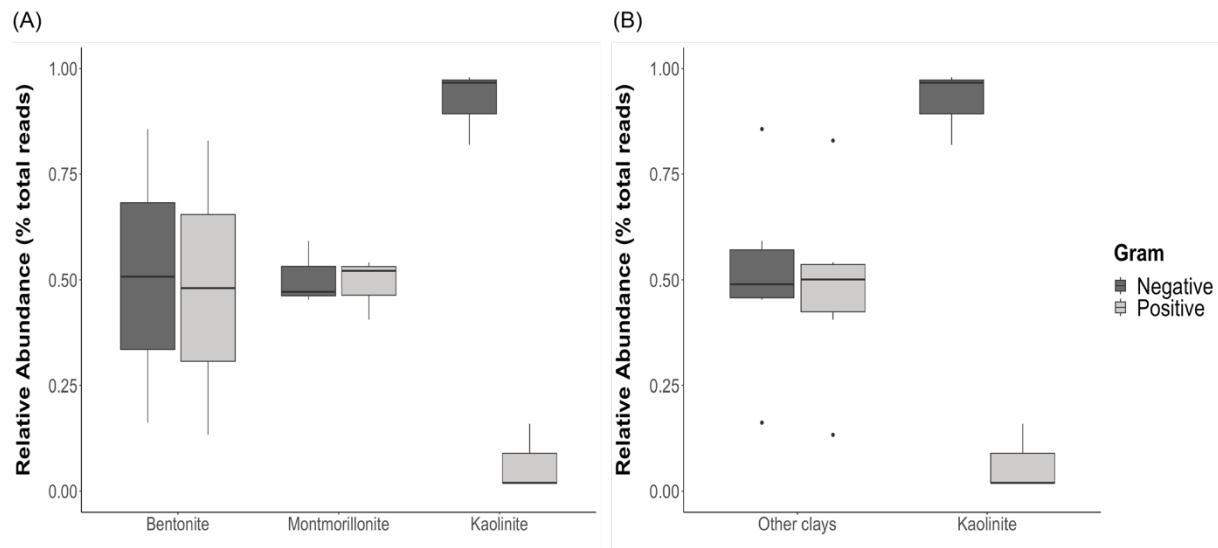
260 At this stage, due to its chemical composition, kaolinite may have favored the growth
261 of certain bacteria while inhibiting others, resulting in different bacterial communities than in
262 the presence of bentonite and montmorillonite (Fig. 1D). As a result, the proportions and
263 abundances of both phyla and classes are remarkably different between kaolinite and the other
264 clays (Fig. 1), and it is important to explore the implications of these variances in a decay
265 context.



266

267 **Figure 1.** (A) Relative bacterial abundances at the phylum level in the presence of different clay
 268 minerals. Each clay barplot includes one control (Ctl) consisting of sediment without shrimp and two
 269 marine shrimps (Sh1 and Sh2) decaying for two months. The blank represents contaminations during
 270 DNA extraction and manipulation. (B) Relative bacterial abundances at the class level in the presence
 271 of different clay minerals. (C) Species level raw alpha diversity and Shannon diversity index in the
 272 presence of different clay minerals in addition to NMDS analyses showing an overlap between bentonite
 273 and montmorillonite with both plotting separately from kaolinite.

274 **Bacteria associated with kaolinite are characteristic of early decay stages.** The differences
 275 in bacterial compositions between kaolinite, bentonite, and montmorillonite are related to
 276 different stages of decay, as bacterial communities change with time (i.e., bacterial succession)
 277 after the death of an organism. In the literature, a high abundance of Desulfobacterota (Waite et
 278 al., 2020), gammaproteobacterial Enterobacterales and Clostridia are often associated with
 279 advanced carcass decay, unlike Bacteroidia and Alphaproteobacteria that are often active
 280 during early stages of decomposition (Adserias-Garriga, Quijada, et al., 2017). As highlighted
 281 in the previous section, Clostridia and Desulfobacterota are almost absent from the kaolinite
 282 samples (Fig. 1A, B). Moreover, Enterobacterales are largely dominant in the
 283 gammaproteobacterial sequences of bentonite (66% and 91% of Gammaproteobacteria in Sh1
 284 and Sh2 respectively) and montmorillonite (53% and 43% of Gammaproteobacteria in Sh1 and
 285 Sh2 respectively) experiments (see the external link in *Material and Methods* for detailed
 286 composition). Therefore, the prevalence of Alphaproteobacteria and Bacteroidia in kaolinite
 287 samples (Fig. 1B), as opposed to the dominance of Clostridia (Fig. 1B), Desulfobacterota (Fig.
 288 1A), and gammaproteobacterial Enterobacterales in bentonite and montmorillonite, suggests
 289 that the decomposition of shrimp organic matter is at an earlier stage in the kaolinite samples
 290 than in the other clays.


291 Bacterial occurrences are consistent with morphological observations of the decaying
292 shrimps as carcasses are better preserved when they are left to decay on kaolinite than when
293 they decay on bentonite and montmorillonite (Fig. 2). In the presence of bentonite and
294 montmorillonite, all that remains after two months are severely decayed fragments (Fig. 2C,
295 D), while the anatomical parts of shrimps on kaolinite are still discernable (Fig. 2A, B). By
296 limiting the establishment of bacterial communities that are associated with advanced decay,
297 such as the ones observed in bentonite and montmorillonite samples (Adserias-Garriga,
298 Hernández, et al., 2017; Adserias-Garriga, Quijada, et al., 2017; DeBruyn & Hauther, 2017),
299 kaolinite better preserves arthropod carcasses for prolonged periods (Fig. 2A, B). However, the
300 process by which kaolinite drives a specific bacterial community, which is not efficient in
301 recycling shrimp carcasses, remains unknown. A separation of the observed bacteria between
302 gram-negative and gram-positive (Tab. 1) can provide a better understanding of the interactions
303 between clays and different bacterial cell walls and allows the investigation of bacterial
304 metabolism in greater depth by limiting the number of variables.

305
306 **Figure 2.** The decay stage of marine shrimps after two months following death when they are deposited
307 on (A, B) kaolinite and on (C, D) the two other clays (bentonite or montmorillonite).

308 **Kaolinite favors gram-negative over gram-positive bacteria.** The relative abundances of
309 gram-positive and gram-negative bacteria are similar for bentonite and montmorillonite
310 samples as each group of bacteria represents approximately 50% of the community (Fig. 3A;
311 $p_{\text{Bentonite}[\text{Neg-Pos}]} = 0.875$, $t\text{-ratio}_{\text{B}[\text{Neg-Pos}]} = 0.161$, $p_{\text{Montmorillonite}[\text{Neg-Pos}]} = 0.927$, $t\text{-ratio}_{\text{M}[\text{Neg-Pos}]} =$
312 0.093 , Tab. S1-S2). However, the proportions of gram-positive and gram-negative bacteria for
313 the samples with kaolinite are significantly different with a very high proportion of gram-
314 negative and a very low proportion of gram-positive bacteria (Fig. 3A; $p_{\text{Kaolinite}[\text{Neg-Pos}]} = 0.0003$,
315 $t\text{-ratio}_{\text{K}[\text{Neg-Pos}]} = 4.966$, Table S1-S2). When comparing the proportions of gram-positive
316 bacteria between kaolinite samples and all samples from the other two clays, the proportions
317 are significantly lower for kaolinite than for the other clays (Fig. 3B; $p_{\text{Positive}[\text{Kaolinite-Others}]} =$
318 0.0089 , $t\text{-ratio}_{\text{Pos}[\text{Kaolinite-Others}]} = -3.034$, Tab. S3-S4). In contrast, the proportions of gram-

319 negative bacteria for kaolinite are significantly higher than for the other two clays (Fig. 3B;
320 $p_{\text{Negative[Kaolinite-Others]}} = 0.0096$, $t\text{-ratio}_{\text{Neg[Kaolinite-Others]}} = 2.999$, Tab. S3-S4). The difference in the
321 proportions of gram-negative and gram-positive bacteria in the presence of kaolinite can be
322 explained by the fact that gram-positive bacteria are more sensitive to high aluminum
323 concentrations and thus to kaolinite than are gram-negative bacteria (Jou & Malek, 2016; Piña
324 & Cervantes, 1996).

325
326 **Figure 3.** (A) Relative abundances of gram-negative and gram-positive bacteria in the presence of the
327 three different clay minerals. (B) Relative abundances of gram-negative and gram-positive bacteria in
328 the presence of bentonite and montmorillonite combined (other clays) and kaolinite. Each boxplot
329 includes the proportion of gram-negative or gram-positive bacteria, defined at the class level, of the two
330 shrimp samples and the control corresponding to the tested clay.

331 Both gram-negative and gram-positive bacteria have been identified in association with
332 decaying organic material (Zhou et al., 2021). Community fingerprinting from soils of different
333 organic matter composition and vegetation stages showed that gram-positive to gram-negative
334 bacteria ratio was high in soils with complex carbon chains (Fanin et al., 2019). In soils, it was
335 suggested that gram-positive bacteria mainly rely on recalcitrant complex carbon compounds
336 as an energy source, whereas gram-negative bacteria use simpler carbon compounds (Kramer
337 & Gleixner, 2008). The cuticle of shrimps, composed of chitin, consists of a polysaccharide
338 with complex carbon chains (Baas et al., 1995; Das et al., 2016) and would typically serve as
339 an abundant carbon source for gram-positive bacteria. However, since kaolinite is likely to favor
340 the growth of gram-negative bacteria (Fig. 3), it would result in a reduced recycling of chitin
341 and an increase in the preservation potential of shrimp exoskeletal elements in the presence of
342 kaolinite (Fig. 2A, B) providing novel insights into the process of their exceptional fossilization.

343 The positive impact of kaolinite on the preservation of polysaccharidic body walls may
344 extend beyond arthropods to other cuticularized animal groups such as annelids and priapulids.
345 Arthropods, priapulids, and annelids are prominent constituents of modern ecosystems, as they
346 were around half a billion years ago during the Cambrian and the Ordovician (Daley et al.,
347 2018; Nanglu et al., 2020; Saleh et al., 2021, 2022). Many Early Paleozoic biotas with these
348 animal groups are preserved in sediments containing kaolinite or other reactive minerals
349 (Anderson et al., 2018, 2021; Saleh et al., 2019). Although the favorable role of kaolinite can
350 be attributed to its high aluminum concentration (Amonette et al., 2003; Guida et al., 1991;
351 Imlay et al., 1988), it is expected that different types of kaolinite, with varying elemental
352 compositions, may have varying effects on bacterial community compositions. Furthermore,
353 the beneficial impact on exceptional preservation may not be exclusive to kaolinite. It is

354 possible that other clays and minerals could fulfill a similar role if they possess specific physico-
355 chemical properties, such as aluminum enrichment. It will be interesting in the future to expand
356 analyses to try new clay minerals, and other animal groups than arthropods. However, at this
357 stage, it is possible to suggest that the preservation of some ecdysozoa and lophotrocozoa in the
358 fossil record might be facilitated by kaolinite, through its role in favoring gram-negative over
359 gram-positive bacteria during organic matter decay.

360

361 CONCLUSION

362 Bacterial community compositions associated with decaying shrimps deposited on the surface
363 of three different clays were investigated. Results show that bacterial composition is influenced
364 by both the decaying organism and the surrounding clay (Fig. 1A, B). None of the investigated
365 clays completely inhibits bacterial activity (Fig. 1A, B), but the kaolinite system shows a lower
366 bacterial diversity in comparison to the systems with bentonite and montmorillonite (Fig. 1C).
367 Importantly, a significant majority of bacteria associated with kaolinite are gram-negative (Fig.
368 3). The preferential proliferation of gram-negative over gram-positive bacteria in the presence
369 of kaolinite may imply that complex carbon chains cannot be efficiently recycled when this clay
370 is present. This phenomenon can explain why the body walls of organisms like shrimps, which
371 are composed of polysaccharides, exhibit better preservation in kaolinite compared to when
372 other clays are present (Fig. 2). These results start to explain the pattern observed in the fossil
373 record whereby exceptionally well-preserved arthropods from the Cambrian are often found
374 associated with kaolinite-rich sediments, by showing that the preservation was likely linked to
375 the effect of this clay mineral on bacterial communities in such a way as to slow the decay of
376 the carcass.

377

378 **Acknowledgments.** The authors thank fruitful discussions with all members of the Anom Lab
379 at the University of Lausanne, Switzerland, and with numerous attendees of the PalAss Annual
380 Meeting in Cambridge, UK.

381 **Funding.** NC and FS are funded by an SNF Ambizione Grant (PZ00P2_209102). JBA is
382 supported by an SNF Sinergia Grant (198691) awarded to ACD. Lab and experimental expenses
383 were supported by the University of Lausanne, the University of Geneva, and an SNF project
384 grant (205321_179084) awarded to ACD.

385 **Conflict of interests.** The authors declare no competing interests.

386 **Data availability.** All data necessary to replicate this work are available in the main text, in the
387 *Supplementary Materials*, and on the following link (<https://doi.org/10.17605/osf.io/K6DHG>).

388 **Author contributions.** NC, JBA, and ACD designed the research. NC and CT conducted the
389 experiments. NC and FS interpreted and discussed the results with all co-authors. NC made the
390 figures and wrote the initial version of the text with the help of all co-authors.

391

392 REFERENCES

393 Adserias-Garriga, J., Hernández, M., Quijada, N. M., Rodríguez Lázaro, D., Steadman, D., &
394 Garcia-Gil, J. (2017). Daily thanatominicrobiome changes in soil as an approach of

395 postmortem interval estimation: An ecological perspective. *Forensic Science*
396 *International*, 278, 388-395. <https://doi.org/10.1016/j.forsciint.2017.07.017>

397 Adserias-Garriga, J., Quijada, N. m., Hernandez, M., Rodríguez Lázaro, D., Steadman, D., &
398 Garcia-Gil, L. j. (2017). Dynamics of the oral microbiota as a tool to estimate time since
399 death. *Molecular Oral Microbiology*, 32(6), 511-516.
400 <https://doi.org/10.1111/omi.12191>

401 Amonette, J. E., Russell, C. K., Carosino, K. A., Robinson, N. L., & Ho, J. T. (2003). Toxicity
402 of Al to *Desulfovibrio desulfuricans*. *Applied and Environmental Microbiology*, 69(7),
403 4057-4066. <https://doi.org/10.1128/AEM.69.7.4057-4066.2003>

404 Anderson, R. P., Tosca, N. J., Gaines, R. R., Mongiardino Koch, N., & Briggs, D. E. G. (2018).
405 A mineralogical signature for Burgess Shale-type fossilization. *Geology*, 46(4),
406 347-350. <https://doi.org/10.1130/G39941.1>

407 Anderson, R. P., Tosca, N. J., Saupe, E. E., Wade, J., & Briggs, D. E. G. (2021). Early formation
408 and taphonomic significance of kaolinite associated with Burgess Shale fossils.
409 *Geology*, 49(4), Article 4. <https://doi.org/10.1130/G48067.1>

410 Azam, F., Smith, D. C., Steward, G. F., & Hagström, Å. (1994). Bacteria-organic matter
411 coupling and its significance for oceanic carbon cycling. *Microbial Ecology*, 28(2),
412 167-179. <https://doi.org/10.1007/BF00166806>

413 Baas, M., Briggs, D. E. G., Van Heemst, J. D. H., Kear, A. J., & De Leeuw, J. W. (1995).
414 Selective preservation of chitin during the decay of shrimp. *Geochimica et*
415 *Cosmochimica Acta*, 59(5), 945-951. [https://doi.org/10.1016/0016-7037\(95\)00012-7](https://doi.org/10.1016/0016-7037(95)00012-7)

416 Butler, A. D., Cunningham, J. A., Budd, G. E., & Donoghue, P. C. J. (2015). Experimental
417 taphonomy of *Artemia* reveals the role of endogenous microbes in mediating decay and
418 fossilization. *Proceedings of the Royal Society B: Biological Sciences*, 282(1808),
419 20150476. <https://doi.org/10.1098/rspb.2015.0476>

420 Butterfield, N. J. (2002). Leanchoilia guts and the interpretation of three-dimensional structures
421 in Burgess Shale-type fossils. *Paleobiology*, 28(1), 155-171.
422 [https://doi.org/10.1666/0094-8373\(2002\)028<0155:LGATIO>2.0.CO;2](https://doi.org/10.1666/0094-8373(2002)028<0155:LGATIO>2.0.CO;2)

423 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.
424 (2016). DADA2 : High-resolution sample inference from Illumina amplicon data.
425 *Nature Methods*, 13(7), Article 7. <https://doi.org/10.1038/nmeth.3869>

426 Clements, T., Colleary, C., De Baets, K., & Vinther, J. (2017). Buoyancy mechanisms limit
427 preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten.
428 *Palaeontology*, 60(1), 1-14. <https://doi.org/10.1111/pala.12267>

429 Clements, T., Purnell, M. A., & Gabbott, S. (2022). Experimental analysis of organ decay and
430 pH gradients within a carcass and the implications for phosphatization of soft tissues.
431 *Palaeontology*, 65(4), e12617. <https://doi.org/10.1111/pala.12617>

432 Daley, A. C., Antcliffe, J. B., Drage, H. B., & Pates, S. (2018). Early fossil record of
433 Euarthropoda and the Cambrian Explosion. *Proceedings of the National Academy of
434 Sciences*, 115(21), Article 21. <https://doi.org/10.1073/pnas.1719962115>

435 Das, S., Roy, D., & Sen, R. (2016). Chapter Two—Utilization of Chitinaceous Wastes for the
436 Production of Chitinase. In S.-K. Kim & F. Toldrá (Éds.), *Advances in Food and
437 Nutrition Research* (Vol. 78, p. 27-46). Academic Press.
438 <https://doi.org/10.1016/bs.afnr.2016.04.001>

439 DeBruyn, J. M., & Hauther, K. A. (2017). Postmortem succession of gut microbial communities
440 in deceased human subjects. *PeerJ*, 5, e3437. <https://doi.org/10.7717/peerj.3437>

441 Fanin, N., Kardol, P., Farrell, M., Nilsson, M.-C., Gundale, M. J., & Wardle, D. A. (2019). The
442 ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of
443 carbon availability in organic soils. *Soil Biology and Biochemistry*, 128, 111-114.
444 <https://doi.org/10.1016/j.soilbio.2018.10.010>

445 Fava, F. (2015). Chapter 9 - Gut Microbiota–Immune System Crosstalk : Implications for
446 Metabolic Disease. In K. Tuohy & D. Del Rio (Éds.), *Diet-Microbe Interactions in the*
447 *Gut* (p. 127-137). Academic Press. <https://doi.org/10.1016/B978-0-12-407825-3.00009-5>

449 García-López, R., Cornejo-Granados, F., Lopez-Zavala, A. A., Sánchez-López, F., Cota-Huizar,
450 A., Sotelo-Mundo, R. R., Guerrero, A., Mendoza-Vargas, A., Gómez-Gil, B., & Ochoa-
451 Leyva, A. (2020). Doing More with Less : A Comparison of 16S Hypervariable Regions
452 in Search of Defining the Shrimp Microbiota. *Microorganisms*, 8(1), Article 1.
453 <https://doi.org/10.3390/microorganisms8010134>

454 Guida, L., Saidi, Z., Hughes, M. N., & Poole, R. K. (1991). Aluminium toxicity and binding to
455 *Escherichia coli*. *Archives of Microbiology*, 156(6), 507-512.
456 <https://doi.org/10.1007/BF00245400>

457 Hancy, A. D., & Antcliffe, J. B. (2020). Anoxia can increase the rate of decay for cnidarian
458 tissue : Using *Actinia equina* to understand the early fossil record. *Geobiology*, 18(2),
459 167-184. <https://doi.org/10.1111/gbi.12370>

460 Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F.
461 (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the
462 Baltic Sea. *The ISME Journal*, 5(10), Article 10. <https://doi.org/10.1038/ismej.2011.41>

463 Holt, C. C., Bass, D., Stentiford, G. D., & van der Giezen, M. (2021). Understanding the role
464 of the shrimp gut microbiome in health and disease. *Journal of Invertebrate Pathology*,
465 186, 107387. <https://doi.org/10.1016/j.jip.2020.107387>

466 Imlay, J. A., Chin, S. M., & Linn, S. (1988). Toxic DNA Damage by Hydrogen Peroxide
467 Through the Fenton Reaction in Vivo and in Vitro. *Science*, 240(4852), 640-642.
468 <https://doi.org/10.1126/science.2834821>

469 Jou, S. K., & Malek, N. A. N. N. (2016). Characterization and antibacterial activity of
470 chlorhexidine loaded silver-kaolinite. *Applied Clay Science*, 127-128, 1-9.
471 <https://doi.org/10.1016/j.clay.2016.04.001>

472 Kramer, C., & Gleixner, G. (2008). Soil organic matter in soil depth profiles : Distinct carbon
473 preferences of microbial groups during carbon transformation. *Soil Biology and*
474 *Biochemistry*, 40(2), 425-433. <https://doi.org/10.1016/j.soilbio.2007.09.016>

475 Leroevey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J., & Carré, M. (2012).
476 Controls on Gut Phosphatation : The Trilobites from the Weeks Formation Lagerstätte
477 (Cambrian; Utah). *PLOS ONE*, 7(3), e32934.
478 <https://doi.org/10.1371/journal.pone.0032934>

479 Madsen, E. L. (2011). Microorganisms and their roles in fundamental biogeochemical cycles.
480 *Current Opinion in Biotechnology*, 22(3), 456-464.
481 <https://doi.org/10.1016/j.copbio.2011.01.008>

482 Mähler, B., Janssen, K., Lönartz, M. I., Lagos, M., Geisler, T., Rust, J., & Bierbaum, G. (2023).
483 Time-dependent microbial shifts during crayfish decomposition in freshwater and
484 sediment under different environmental conditions. *Scientific Reports*, 13(1), Article 1.
485 <https://doi.org/10.1038/s41598-023-28713-x>

486 Martin, D., Briggs, D. E. G., & Parkes, R. J. (2004). Experimental attachment of sediment
487 particles to invertebrate eggs and the preservation of soft-bodied fossils. *Journal of the*
488 *Geological Society*, 161(5), 735-738. <https://doi.org/10.1144/0016-764903-164>

489 McAdam, P. R., Richardson, E. J., & Fitzgerald, J. R. (2014). High-throughput sequencing for
490 the study of bacterial pathogen biology. *Current Opinion in Microbiology*, 19, 106-113.
491 <https://doi.org/10.1016/j.mib.2014.06.002>

492 McMahon, S., Anderson, R. P., Saupe, E. E., & Briggs, D. E. G. (2016). Experimental evidence
493 that clay inhibits bacterial decomposers : Implications for preservation of organic
494 fossils. *Geology*, 44(10), 867-870. <https://doi.org/10.1130/G38454.1>

495 McMurdie, P. J., & Holmes, S. (2013). phyloseq : An R Package for Reproducible Interactive
496 Analysis and Graphics of Microbiome Census Data. *PLOS ONE*, 8(4), e61217.
497 <https://doi.org/10.1371/journal.pone.0061217>

498 Murdock, D. J., Gabbott, S. E., Mayer, G., & Purnell, M. A. (2014). Decay of velvet worms
499 (Onychophora), and bias in the fossil record of lobopodians. *BMC Evolutionary
500 Biology*, 14(1), 222. <https://doi.org/10.1186/s12862-014-0222-z>

501 Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., & Zaytseva, L. (2016).
502 Decaying in different clays : Implications for soft-tissue preservation. *Palaeontology*,
503 59(4), 583-595. <https://doi.org/10.1111/pala.12246>

504 Nanglu, K., Caron, J.-B., & Gaines, R. R. (2020). The Burgess Shale paleocommunity with new
505 insights from Marble Canyon, British Columbia. *Paleobiology*, 46(1), 58-81.
506 <https://doi.org/10.1017/pab.2019.42>

507 Nudds, J., & Selden, P. (2008). Fossil–Lagerstätten. *Geology Today*, 24(4), 153-158.
508 <https://doi.org/10.1111/j.1365-2451.2008.00679.x>

509 Piña, R. G., & Cervantes, C. (1996). Microbial interactions with aluminium. *BioMetals*, 9(3),
510 311-316. <https://doi.org/10.1007/BF00817932>

511 Pusch, R. (2015). *Bentonite Clay : Environmental Properties and Applications*. CRC Press.

512 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F.
513 O. (2013). The SILVA ribosomal RNA gene database project : Improved data processing
514 and web-based tools. *Nucleic Acids Research*, 41(D1), D590-D596.
515 <https://doi.org/10.1093/nar/gks1219>

516 Sagemann, J., Bale, S. J., Briggs, D. E. G., & Parkes, R. J. (1999). Controls on the formation of
517 authigenic minerals in association with decaying organic matter: An experimental
518 approach. *Geochimica et Cosmochimica Acta*, 63(7), 1083-1095.
519 [https://doi.org/10.1016/S0016-7037\(99\)00087-3](https://doi.org/10.1016/S0016-7037(99)00087-3)

520 Saikia, N. J., Bharali, D. J., Sengupta, P., Bordoloi, D., Goswamee, R. L., Saikia, P. C., &
521 Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite
522 clay from Assam, India. *Applied Clay Science*, 24(1), 93-103.
523 [https://doi.org/10.1016/S0169-1317\(03\)00151-0](https://doi.org/10.1016/S0169-1317(03)00151-0)

524 Saleh, F., Daley, A. C., Lefebvre, B., Pittet, B., & Perrillat, J. P. (2020). Biogenic Iron Preserves
525 Structures during Fossilization: A Hypothesis. *BioEssays*, 42(6), 1900243.
526 <https://doi.org/10.1002/bies.201900243>

527 Saleh, F., Ma, X., Guenser, P., Mángano, M. G., Buatois, L. A., & Antcliffe, J. B. (2022).
528 Probability-based preservational variations within the early Cambrian Chengjiang biota
529 (China). *PeerJ*, 10, e13869. <https://doi.org/10.7717/peerj.13869>

530 Saleh, F., Pittet, B., Perrillat, J.-P., & Lefebvre, B. (2019). Orbital control on exceptional fossil
531 preservation. *Geology*, 47(2), 103-106. <https://doi.org/10.1130/G45598.1>

532 Saleh, F., Vaucher, R., Antcliffe, J. B., Daley, A. C., El Hariri, K., Kouraiss, K., Lefebvre, B.,
533 Martin, E. L. O., Perrillat, J.-P., Sansjofre, P., Vidal, M., & Pittet, B. (2021). Insights
534 into soft-part preservation from the Early Ordovician Fezouata Biota. *Earth-Science
535 Reviews*, 213, 103464. <https://doi.org/10.1016/j.earscirev.2020.103464>

536 Sansom, R. S. (2014). Experimental Decay of Soft Tissues. *The Paleontological Society
537 Papers*, 20, 259-274. <https://doi.org/10.1017/S1089332600002886>

538 Sansom, R. S. (2016). Preservation and phylogeny of Cambrian ecdysozoans tested by
539 experimental decay of *Priapulus*. *Scientific Reports*, 6(1), Article 1.
540 <https://doi.org/10.1038/srep32817>

541 Sansom, R. S., Gabbott, S. E., & Purnell, M. A. (2010). Non-random decay of chordate
542 characters causes bias in fossil interpretation. *Nature*, 463(7282), Article 7282.
543 <https://doi.org/10.1038/nature08745>

544 Sender, R., Fuchs, S., & Milo, R. (2016). Are We Really Vastly Outnumbered? Revisiting the
545 Ratio of Bacterial to Host Cells in Humans. *Cell*, 164(3), 337-340.
546 <https://doi.org/10.1016/j.cell.2016.01.013>

547 Uddin, F. (2008). Clays, Nanoclays, and Montmorillonite Minerals. *Metallurgical and*
548 *Materials Transactions A*, 39(12), 2804-2814. <https://doi.org/10.1007/s11661-008-9603-5>

550 Vannier, J., Liu, J., Leroosey-Aubril, R., Vinther, J., & Daley, A. C. (2014). Sophisticated
551 digestive systems in early arthropods. *Nature Communications*, 5(1), Article 1.
552 <https://doi.org/10.1038/ncomms4641>

553 Vinther, J. (2016). Fossil melanosomes or bacteria? A wealth of findings favours melanosomes.
554 *BioEssays*, 38(3), 220-225. <https://doi.org/10.1002/bies.201500168>

555 Waite, D. W., Chuvochina, M., Pelikan, C., Parks, D. H., Yilmaz, P., Wagner, M., Loy, A.,
556 Naganuma, T., Nakai, R., Whitman, W. B., Hahn, M. W., Kuever, J., & Hugenholtz, P.
557 (2020). Proposal to reclassify the proteobacterial classes Deltaproteobacteria and
558 Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major
559 functional capabilities. *International Journal of Systematic and Evolutionary*
560 *Microbiology*, 70(11), 5972-6016. <https://doi.org/10.1099/ijsem.0.004213>

561 Wickham, H. (2016). Data Analysis. In H. Wickham (Ed.), *Ggplot2 : Elegant Graphics for Data*
562 *Analysis* (p. 189-201). Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4_9

564 Wiegand, S., Jogler, M., & Jogler, C. (2018). On the maverick Planctomycetes. *FEMS*
565 *Microbiology Reviews*, 42(6), 739-760. <https://doi.org/10.1093/femsre/fuy029>

566 Wilson, L. A., & Butterfield, N. J. (2014). Sediment Effects on the Preservation of Burgess
567 Shale-Type Compression Fossils. *PALAIOS*, 29(4), 145-154.
568 <https://doi.org/10.2110/palo.2013.075>

569 Zhou, R., Wang, Y., Hilal, M. G., Yu, Q., Feng, T., & Li, H. (2021). Temporal succession of
570 water microbiomes and resistomes during carcass decomposition in a fish model.
571 *Journal of Hazardous Materials*, 403, 123795.
572 <https://doi.org/10.1016/j.jhazmat.2020.123795>

573