

1 **Functional avidity of anti-B7H3 CAR-T constructs predicts
2 antigen density thresholds for triggering effector function**

3 Marta Barisa^{1,***}, Elisa Zappa^{2,6}, Henrike Muller^{1,6}, Rivani Shah¹, Juliane Buhl^{2,3} Benjamin
4 Draper¹, Courtney Himsorth¹, Chantelle Bowers¹, Sophie Munnings-Tomes¹, Marilena
5 Nicolaïdou¹, Sonia Morlando¹, Katie Birley¹, Clara Leboreiro-Babe¹, Alice Vitali¹, Laura
6 Privitera¹, Kyle O'Sullivan¹, Ailsa Greppi¹, Magdalena Buschhaus⁴, Mario Barrera Román^{2,3},
7 Sam de Blank^{2,3}, Femke van den Ham², Brenna R. van 't Veld², Gabrielle Ferry¹, Laura K.
8 Donovan¹, Louis Chesler⁵, Jan Molenaar², Jarno Drost^{2,3}, Anne Rios^{2,3}, Kerry Chester⁴,
9 Judith Wienke^{2,**} and John Anderson^{1,7,*}

10

11 **Affiliations**

12 ¹ Great Ormond Street Institute of Child Health, University College London, UK

13 ² Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

14 ³ Oncode Institute, Utrecht, The Netherlands

15 ⁴ Cancer Institute, University College London, UK

16 ⁵ The Institute of Cancer Research, UK

17 ⁶ Equal contribution

18 ⁷ Lead contact

19 *Corresponding authors

20

21 Correspondence to:

22 j.anderson@ucl.ac.uk, j.wienke-4@prinsesmaximacentrum.nl, m.barisa@ucl.ac.uk

23

24 **Abstract**

25 Chimeric Antigen receptor T cell (CAR-T) treatments for solid cancers have been
26 compromised by limited expansion and survival in the tumor microenvironment following
27 interaction with antigen-expressing target cells. Using B7H3 as a model antigen with broad
28 clinical applicability, we evaluated the relationship between the antibody/antigen affinity of
29 three clinical candidate binders and the three following functional characteristics: functional
30 avidity, prolonged cytotoxicity in tumoroid re-stimulation assays, and *in vivo* anti-tumoral
31 responses. BEHAV3D video-microscopy assessed distinct CAR-T cell behaviors at single
32 cell resolution. T cell exhaustion did not dictate effector function. Rather, we demonstrated a
33 threshold avidity of CAR-T / tumor cell interaction, characterized by longer cumulative CD8⁺
34 CAR-T / tumor target interaction times, and required for adequate CAR-T cell expansion to
35 result in sustained tumor control upon re-challenge. These results provide new insights into
36 design of CAR-T cells for antigen-dim cell targeting, and avoidance of antigen-dim tumor
37 relapse.

38

39 Manuscript word count: 6,975

40 Introduction

41 Genetic modification of a cancer patients' T cells with Chimeric antigen receptors (CAR-T
42 cells) for adoptive transfer immunotherapy is a rapidly expanding clinical and scientific field.
43 Clinical studies targeting hematological malignancy using adoptively-transferred CAR-T cell
44 therapy have resulted in FDA approvals of CAR-T products for the treatment of leukaemia,
45 lymphoma and myeloma ¹. In contrast, far fewer durable clinical responses attributable to
46 CAR-T cells are reported in solid cancers despite considerable efforts². A major reason for
47 the relative failure of CAR-T cell adoptive transfer in the solid cancer setting is suboptimal T
48 cell functionality, evidenced by a lack of T cell proliferation and persistence. Reasons for this
49 failure can likely be distilled down to inhibitory effects of the tumor microenvironment and
50 inherent failure of CARs to provide optimal signals to the T cell upon target engagement.

51 CARs comprise an antigen-sensing ectodomain, which is typically a single chain variable
52 fragment (scFv) of an antibody, and endodomains that are an amalgamation of ITAM-
53 containing T cell receptor (TCR) signalling domains, most typically the ζ -chain of CD3, and
54 co-stimulatory domains. CAR-T cells thereby commandeer the MHC-unrestricted antigen
55 specificity of a monoclonal antibody and combine it with T cell signalling in a single molecule.
56 The triggering of T cell activity is dependent on the formation of an effective immune
57 synapse with an antigen-positive target cell. Once a productive synapse is formed, signalling
58 occurs through engagement of the CD3 ζ and co-stimulatory moieties with proximal signalling
59 molecules, leading to T cell effector functions and a pro-inflammatory response.

60 For example, structural features of the CAR that influence persistence of effector function
61 include hinge and transmembrane components, and choice and orientation of co-stimulatory
62 endodomains. Moreover, certain scFv binders which signal in the absence of antigen
63 contribute to excessive signalling and subsequent T cell dysfunction^{3,4}. Studies in CD19-
64 expressing leukaemia have shown that scFv affinity can affect the strength and duration of
65 the immune synapse with consequences for subsequent disease control⁵. The quality and

66 quantity of immune synapse formation are influenced by binder affinity (both on- and off-
67 rate), target antigen density and CAR expression density. Functional avidity (strength of
68 association between a CAR-T cell and its cellular target), is similarly governed by both
69 affinity of interaction and expression levels of CAR and antigen in the interacting cells. A
70 detailed understanding is lacking of how best to select an optimal CAR scFv for solid tumor-
71 targeting CAR-T cells, and how scFv affinity and avidity impact on sustained functionality in
72 solid tumors.

73 To address these challenges, we chose a broadly expressed solid tumor cancer antigen that
74 is targeted in a number of current CAR-T clinical studies in solid tumors. B7H3 is expressed
75 on solid and hematological cancer in the adult and pediatric settings^{6,7}. A member of the
76 immunoglobulin superfamily and closely related to PD-L1, B7H3 is enriched on high-grade
77 tumors and expressed at low levels on healthy tissue⁸⁻¹³. There are several B7H3 binders
78 that have been or are being progressed to evaluation in clinical trials including MGA271,
79 376.96 and TE9^{7,9,14}. To specifically evaluate the impact of the scFv binding properties on
80 CAR-T function we cloned these three different binders into identical viral backbones. All
81 constructs had a 2nd generation 28 ζ endodomain and CD8 hinge and transmembrane
82 format, and hence we set out to determine generalizable relationships between binder
83 properties with CAR-T function rather than evaluate the binders in the context of their
84 optimized formats for clinical studies.

85 Contrary to our expectations based on preceding literature^{5,15-17}, we found that CAR-T
86 incorporating either of two scFv's that formed high avidity interaction with B7H3-expressing
87 cells mediated superior anti-tumor functionality compared to a low avidity scFv. Both high
88 and low avidity interactions enabled acute cytotoxicity and cytokine production, but only high
89 avidity interactions led to sustained CAR-T proliferation and consequent activity in the re-
90 challenge setting. These differences in scFv-driven functional potential were most evident
91 against B7H3^{med} or B7H3^{dim} targets, the consequence of which was emergence of antigen-
92 dim escape variants with the low avidity binder. We postulate that, in order to mediate

93 tumour control, B7H3 CAR-T cells need to interact with their target cell with a supra-
94 threshold avidity, sufficient to drive initial activation and proliferation.

95 **Results**

96 MGA271, 376.96 and TE9 scFv's mediate divergent CAR-T responses against *in vivo*
97 models of solid tumours

98 MGA271¹⁸, 376.98¹⁹ and TE9²⁰ scFv's were cloned into a CD8-28 ζ 2nd generation CAR
99 format containing a CD8 α hinge-transmembrane, and expressed in SFG γ -retroviral vector
100 with an EF1 α promoter as described previously²⁰. A compact epitope tag, RQR8²¹, was co-
101 expressed from the construct to monitor CAR-T transduction efficiency (Figure 1A).
102 Comparable transgene co-expression between the binders was validated by staining the
103 CAR directly with B7H3-His protein (Supplementary Figure 1). Against LAN-1 and Kelly
104 neuroblastoma targets, we observed enhanced CAR-T cytokine production for 28 ζ
105 compared to 4-1BB ζ endodomain for all the binders, consistent with previous literature
106 including our own data^{7,20,22}, and which was concurrent with higher checkpoint receptor
107 expression (Supplementary Figure 2). CD28 co-stimulation was, therefore, chosen over 4-
108 1BB.

109 We first evaluated TE9 *in vivo* performance in an orthotopic, B7H3-positive²³ Med8A model
110 of medulloblastoma in which NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice received
111 intraventricular CAR-T cells 48 hours after orthotopic cerebellar tumor engraftment. Used in
112 these non-stress conditions, TE9-28 ζ fully cleared the tumors within a week of CAR-T
113 infusion (Figure 1B). Next, we evaluated the binders MGA271 and 376.96 in the same model
114 but in increased stress conditions of longer tumor engraftment and lower CAR-T cell dose.
115 Here the 376.96-28 ζ treatment was curative (Figure 1C) whilst MGA271-28 ζ did not
116 significantly improve survival compared with non-transduced (NTD) T cells. This was
117 unexpected, as both CAR-T products were equivalently cytotoxic against Med8A in a single
118 challenge effector: target (E:T) ratio of 1:10 co-culture (Figure 1D). In a repeat experiment of

119 the stress condition Med8A model, TE9-28 ζ CAR-T efficacy matched that of 376.96-28 ζ
120 CAR-T, with both binders effecting more cures than MGA271-28 ζ CAR-T (Supplementary
121 Figure 3).

122 We have previously shown that MGA271, 376.96 and TE9 28 ζ scFv CAR-T are equivalent in
123 short-term single challenge cytotoxicity assays against LAN-1 neuroblastoma cells, and that
124 TE9-28 ζ CAR-T significantly enhance survival in a difficult-to-treat subcutaneous LAN1 NSG
125 model²⁰. We, therefore, evaluated MGA271 and 376.96-28 ζ CAR-T in the LAN-1 *in vivo*
126 model (Figure 1E). Intriguingly, in contrast with the Med8A model where differences between
127 binders were apparent, 376.96 and MGA271 binders performed similarly against LAN-1
128 tumors, extending survival similarly to what was described for TE9-28 ζ ²⁰. Taken together,
129 different *in vivo* models establish that B7H3 CAR-T functionality can be affected by scFv
130 selection, but in a manner that is dependent on the choice of tumor target.

131 MGA271 CAR-T have a lower avidity than 376.96 and TE9 CAR-T for B7H3-expressing
132 tumor cells

133 Despite achieving similar high transduction efficiencies with all three binder CARs
134 (Supplementary Figure 1), we noted that MGA271 CAR-T staining with B7H3-his protein was
135 dimmer than that of matched 376.96 and TE9 CAR-T (Figure 2A, Supplementary Figure 4A).
136 We hypothesized that the strength of the different scFvs' binding to target, and its impact on
137 strength of immune synapse might correlate with the differences observed between binders
138 in the Med8A and LAN-1 *in vivo* studies. To test this, we evaluated the strength of cell-to-cell
139 interaction for each of these CAR-T cells with Med8A, LAN-1, SupT1 wild type (SupT1-WT),
140 and SupT1 transduced with 4-Ig human B7H3 (SupT1-B7H3^{hi}), representing a range of
141 antigen expression (Figure 2B). To avoid differences in transduction efficiency biasing avidity
142 measurement, CAR-T of all scFv's were diluted with donor-matched NTD T cells to
143 standardize expression of the RQR8 marker gene (Supplementary Figure 4B).

144 Avidity measurements were carried out using a Lumicks z-Movi Cell Avidity Analyzer, which
145 measures the force (in piconewtons, pN) required to detach a population of effector cells
146 from their targets (Figure 2C). None of the CAR-T bound to B7H3^{neg} SupT1-WT cells, whilst
147 all three bound B7H3^{pos} cells, albeit with different avidities (Figure 2D,E). TE9 and 376.96
148 scFv CAR-T consistently bound antigen-positive target cells with higher avidity than
149 MGA271 or NTD cells.

150 To investigate the relationship between antibody-to-antigen binding properties, avidity and
151 antigen target density, we measured the antibodies' affinities, as well as target B7H3
152 molecules per cell in the respective target cell lines. Target cells with high B7H3 per cell
153 overall formed higher avidity synapses with CAR-T, although the positive correlation
154 between binding strength and antigen density was more pronounced for TE9 and 376.96
155 than MGA271 (Figure 2F). Binder affinity of binders in IgG1 format for 4-Ig B7H3 was
156 measured using Surface Plasmon Resonance. TE9 had the highest affinity for B7H3
157 (0.44nM), similar to 376.96 (0.69mM) and higher than MGA271 (1.61nM) (Figure 2G,
158 Supplementary Figure 5). It was of interest that TE9 had both the highest on-rate and the
159 highest off-rate, whilst 376.9 had relatively slow on- and off-rate (Figure 2H). Since affinity is
160 the ratio of off- and on-rates, dissociation constant (K_D) values of TE9 and 376.9 were
161 similar. Binder affinity for B7H3 correlated with the intensity of staining of CAR-T cells by
162 recombinant B7H3 protein (Figure 2I).

163 Cytotoxic capacity of low-avidity MGA271 CAR-T deteriorates upon rechallenges with
164 B7H3^{dim} but not B7H3^{bright} tumors

165 To examine the impact of CAR-T binding avidity on effector function, the different constructs
166 were assessed against solid tumor target cells that express a range of B7H3 densities. We
167 selected five different B7H3^{pos} target types which were either cell lines or primary
168 neurosphere cultures (defined hereafter as 'tumoroids'), derived from pediatric solid tumors

169 with a broad range of B7H3 antigen densities as determined using QuantiBright beads
170 (Figure 3A).

171 CAR-T cytotoxicity was first evaluated at a range of E:T ratios in single-challenge short-term
172 assays. All binders displayed equivalent effective cytotoxicity against B7H3^{hi} neuroblastoma
173 cell lines LAN-1 and Kelly (Figure 3B), but relative failure of the lower affinity MGA271 binder
174 was seen when targeting the lower B7H3 antigen density neuroblastoma tumoroids at low
175 E:T ratios ($\leq 1:10$) (Figure 3C).

176 Capacity of CAR-T constructs to maintain killing on repeat encounter with target cells is
177 essential for their clinical utility. Therefore, CAR-T were re-challenged over a four-week co-
178 culture as illustrated in Figure 3D. Allowing the CAR-T 6 days to effect cytotoxicity, 691-T
179 tumoroids were killed by both low-avidity CAR MGA271 and representative high-avidity CAR
180 376.96 following the first challenge (Figure 3E). However, MGA271 killing dropped
181 drastically after re-challenge and by the third challenge no MGA271-mediated 691-T killing
182 was observed, while high avidity 376.96 CAR-T maintained tumor control, similar to TE9
183 CAR-T in an independent experiment (Supplementary Figure 6). Using 691-B tumoroids
184 which have lower antigen density, the high avidity binders 376.96 and TE9 completely
185 eliminated targets after a single challenge whilst MGA271 showed no cytotoxicity. All CAR
186 constructs failed against 691-B upon re-challenge (Figure 3E, Supplementary Figure 6). A
187 similar trend was observed for B7H3^{med} 103-T malignant rhabdoid tumoroids. All CARs were
188 cytotoxic against 103-T, but the inferiority of MGA271 was the most pronounced upon
189 challenge during the third and final week (Figure 3F,G).

190 Potential explanations for CAR-T failure in repeat stimulation assays is T cell exhaustion or
191 differentiation to terminal effector cells. While we identified upregulation of
192 exhaustion/activation receptors (including PD-1, TIM-3 and LAG-3) on all scFv CAR-T cells
193 following challenge with neuroblastoma targets (Supplementary Figure 2 for Kelly and LAN-1
194 cell lines; Supplementary Figure 7 for 691 tumoroids), these were not consistently different

195 between the different binders, and, therefore, did not appear to account for functional
196 differences between the CAR products. There were similarly no consistent differences
197 between binders in memory markers CD45RA and CCR7, nor activation markers CD25 and
198 CD69 (Supplementary Figure 7). Collating data from the tumoroid co-cultures at 1:10 E:T
199 ratio, the differences in cytotoxicity between binders at low antigen density was pronounced
200 at both initial challenge and re-challenges, and is represented graphically in Figure 3H. At
201 the lowest antigen density (~1,000 molecules per cell for 691-B tumoroids), only the high
202 avidity binders, TE9 and 376.96, were capable of initiating killing at first challenge but failed
203 to sustain cytotoxicity at re-challenge. At ~5,000 molecules per cell or more, all the binders
204 were effective at initial challenge but only the two high avidity binders sustained killing over
205 multiple rounds of stimulation (Figure 3H).

206 The data prompted us to hypothesize that at high antigen density, binders perform similarly
207 because CAR-T signalling for all of them exceeds a threshold for proliferation and cytokine
208 secretion to initiate tumour control. At low antigen density, high avidity interaction is required
209 to exceed this threshold. Therefore, we next evaluated CAR-T effector functions other than
210 cytotoxicity, including IL-2 and IFN- γ production, and CAR-T cell proliferation.

211 *High avidity interaction with target cells drives CAR-T proliferation and thereby sustained*
212 *effector function*

213 To compare activation profiles, we first measured CAR-T cytokine secretion in response to
214 antigen-bright LAN-1 and Kelly neuroblastoma cell lines. Unexpectedly, despite having seen
215 high and equivalent killing of the targets by all three CARs in short-term killing assays
216 (Figure 3B), the lower avidity MGA271 produced significantly lower levels of IFN- γ and IL-2
217 than TE9 and 376.96 CAR-T (Figure 4A,B). MGA271 CAR-T cell numbers declined
218 throughout the assay – in a manner that was indistinguishable from NTD T cells, whilst TE9
219 and 376.96 CAR-T proliferated at each challenge with targets (Figure 4C).

220 The pattern of CAR-T persistence and proliferation in the 691-T or -B neuroblastoma
221 tumoroid re-challenge assays (Figure 4D and E) mirrored the differential cytokine responses
222 of the different binders. MGA271, but not TE9 and 376.96, numbers declined steadily over
223 time – even in conditions where the MGA271 CAR-T had initially mediated high level killing
224 at first challenge such as was seen against 691-T in Figure 3C and E.

225 To evaluate whether B7H3 CAR-T responses to brain tumor targets are similar, we identified
226 three different medulloblastoma models with a range of antigen densities (Figure 5A). All
227 were B7H3^{med} or B7H3^{med-hi}. CAR-T cytotoxicity upon single challenge with these targets was
228 equivalently high across all scFv's at a range of E:T ratios (Supplementary Figure 8). As was
229 the case with the neuroblastoma targets, however, there were differences in antigen induced
230 CAR-T proliferation between the binders. Low avidity MGA271 proliferated significantly less
231 than TE9 or 376.96 CAR-T, at a level that was not significantly greater than that of NTD T
232 cells (Figure 5B). Proliferation for all CARs was proportionate with antigen expression, and
233 the required B7H3 threshold for driving an increase in T cell numbers was higher for
234 MGA271 than TE9 and 376.96 (Figure 5C). Linking CAR-T proliferation to avidity
235 measurements from Figure 2 revealed that for both Med8A and LAN-1 targets, avidity
236 appeared predictive of subsequent T cell proliferation (Figure 5D).

237 High avidity, determined by ScFv affinity and B7H3 antigen density, drives CAR-T activation

238 To identify the threshold of B7H3 antigen density for binder-dependent CAR-T functionality
239 within the context of the same target cell, we generated a cell line that expresses a range of
240 B7H3 densities by transducing SupT1 cells with 4-Ig B7H3 (Figure 6A). The SupT1 cells
241 were also transduced with a transgene encoding eGFP and luciferase to enable cytotoxicity
242 evaluation by luminescence. Resulting SupT1-B7H3^{range} contained cells with range of B7H3
243 antigen densities from negative to ultra-high (Figure 6B). CAR-T were challenged with
244 SupT1-B7H3^{range} cells at a 1:1 E:T ratio daily for a week to mimic continued exposure to
245 tumor (Figure 6C).

246 While all CAR-T cells exhibited some cytotoxicity against SupT1-B7H3^{range} cells, MGA271
247 killing of targets was consistently lower than that of TE9 and 376.96 CAR-T (Figure 6D). Of
248 note, in contrast to previous targets assayed, MGA271 CAR-T kept up sustained, if low-
249 level, killing even following 7 challenges with targets. None of the CAR-T killed control
250 SupT1-WT cells (Supplementary Figure 9A). Substantial 376.96 and TE9 proliferation was
251 seen as target challenge progressed, whilst more modest MGA271 proliferation was
252 observed (Figure 6E). The antigen dependency of the proliferation was demonstrated by the
253 lack of response in the presence of SupT1-WT targets (Supplementary Figure 9B) or
254 unstimulated conditions (Figure 6F). TE9 and 376.96 CAR-T produced significantly more IL-
255 2 and IFN- γ than MGA271 after the initial challenge with SupT1-B7H3^{range} targets (Figure
256 6G).

257 CAR-T / tumor co-cultures were harvested after the 5th challenge, and residual SupT1-
258 B7H3^{range} expression of B7H3 was measured. Figure 6H shows concatenated B7H3
259 expression on GFP-positive SupT1 cells across the CAR groups. While TE9 and 376.96
260 CAR-T cultures contained few or no residual B7H3-positive targets, MGA271 CAR-exposed
261 SupT1 cells maintained a range of B7H3 expression. Compared to the NTD T cell condition,
262 MGA271 eliminated only the antigen-high SupT1 targets (Figure 6H,I).

263 We then aimed to determine the relationship between-T effector function (cytokine secretion
264 and proliferation) and CAR avidity. CAR-T fold-proliferation over 5 challenges with targets
265 correlated with IL-2 production at the time of the initial target challenge, though 376.96 CARs
266 were more consistent initial IL-2 producers than TE9 CARs (Figure 6J). The avidity of CAR-T
267 interaction with SupT1-B7H3^{hi} targets shown in Figure 2 correlated with both IL-2 production
268 and proliferation in response to SupT1-B7H3^{range} cells (Figure 6K,L). A similarly strong but
269 inverse correlation was observed between avidity of interaction and the antigen expression
270 on residual SupT1-B7H3^{range} cells following serial re-challenge (Figure 6M). Taken together,
271 the data indicate that for each cell target engaged by a standard CD28 ζ CAR-T cell, there is
272 a threshold of avidity required for sufficient cytokine and proliferation response to allow for

273 expansion and effective cytotoxicity on target re-challenge. We next examined the impact of
274 scFv on B7H3 CAR-T functionality at the single cell level.

275 High 'on-rate' is associated with high CD8⁺ CAR-T / tumoroid contact duration and rapid
276 cytotoxicity against B7H3^{dim} targets

277 BEHAV3D, a multispectral, 3D image-based platform, is designed to live-track the efficacy
278 and mode of action of cellular immunotherapy at the single cell level²⁴. BEHAV3D was used
279 to track anti-B7H3 CAR-T functionality over three challenges with 691-B and 691-T tumor
280 targets. Cultures were imaged during the first (day 0) and third (day 7) challenge with
281 targets, and the series of images then processed for CAR-T behavior using a bioinformatic
282 pipeline, developed by Anne Rios and colleagues²⁴ (the assay setup is illustrated in Figure
283 7A and B and Supplementary Figure 10). CAR-T cell behavior was tracked across six
284 different parameters, shown in Figure 7B. Video compilations of day 0 and day 7 CAR-T /
285 tumoroid co-cultures can be viewed in Supplementary Videos 1-24.

286 CAR-T/tumoroid interactions leading to tumoroid death was evident for all conditions
287 (representative co-cultures images shown in Figure 7C). In analysis of behaviors against
288 B7H3^{dim} 691-B tumoroids, striking and unexpected differences were seen between the
289 binders, and between CD4⁺ and CD8⁺ T cells. Plotting the cumulative CD8⁺ CAR-T/tumoroid
290 contact since initiation of the day 0 co-culture showed that TE9 and 376.96 CD8⁺ CAR-T
291 spent significantly longer in contact with B7H3^{dim} 691-B tumoroids than MGA271 CD8⁺ CAR-
292 T did (Figure 7D). A summation of total CD8⁺ CAR-T / 691-B contact time during the entire
293 day-0 analysis confirmed this difference between binders (Figure 7F). This cumulative
294 contact score correlated with the cytotoxicity of respective binder-CAR-T constructs against
295 these B7H3^{dim} 691-B targets in an overnight 1:10 E:T killing assay (Figure 7D, E). In
296 contrast, all CD8⁺ CAR-T showed similar contact time and cytotoxicity with higher antigen
297 density 691-T tumoroids (Figure 7D-F). Analyzing cytotoxicity by detection of organoid death
298 during the imaging (tumor cell conversion from 'yellow' to 'red' in Figure 7C) confirmed the

299 observation that TE9 CAR-T were the most rapid at killing B7H3^{dim} 691-B tumoroids followed
300 by 376.96 and MGA271 CAR-T cells. In contrast, all CAR-T cells were equally rapid at killing
301 691-T tumoroids of higher antigen density (Figure 7G).

302 There were no differences between binders in terms of the number of new CAR-T contacts
303 during the 800 minute data collection, using either tumoroid model (Supplementary Figure
304 11A). Hence the finding of highest total T cell/tumoroid contact time of the TE9 CD8 CAR-T
305 cells (Figure 7F) implied TE9 was the binder conferring the longest duration of individual
306 contacts. Consistent with this observation, TE9 CD8⁺ CAR-T cells also showed the lowest
307 displacement distance (Figure 7H) and speed of displacement (Figure 7I). whilst MGA271
308 had the shortest and 376.96 were intermediate (Figure 7F,H,I). This ranking of tumor
309 interaction duration of TE9 > 376.96 > MGA271 when targeting low antigen density targets
310 correlated with the cytotoxicity, avidity, and binder association rate constant (Supplementary
311 Figure 11B). These data suggest that high avidity binder CD8⁺ CAR-T cells stay longer in
312 contact with low antigen tumoroids to facilitate more efficient killing.

313 Compared to CD8⁺ CAR-T cells, CD4⁺ CAR-T cells showed greater displacement and
314 reduced tumoroid contact, and this was observed in both models of higher and lower antigen
315 density respectively (Figures 7F,H,I). Moreover, in CD4⁺ CAR-T, the influence of the
316 respective binders on tumoroid contact and displacement was variable, consistent with CD4⁺
317 CAR-T cells having a lesser role in tumoroid contact and direct cytotoxicity, as described
318 previously using BEHAV3D analysis²⁴ (Figure 7F,H,I). While more mobile overall, CD4⁺
319 CAR-T cells did not engage in CAR-T / CAR-T interaction more than CD8⁺ CAR-T cells
320 (Supplementary Figure 11C).

321 Distinct CAR-T cell characteristics revealed by dimensionality reduction of behavioral
322 parameters

323 To extract behavioral patterns and dynamics, the day 0 BEHAV3D tumor challenge imaging
324 data was clustered using UMAP (Supplementary Figure 12A), revealing six CAR-T behavior
325 types: ‘tumoroid engagers’ (cluster 1), ‘multi-taskers’ (clusters 2, 3), ‘CAR-T engagers’
326 (clusters 4,5) and ‘dying T cells’ (cluster 6) (Figure 7J). Fitting with the individual cell
327 analysis, the ‘tumoroid engager’ cluster 1 was relatively enriched in CD8⁺ cells compared to
328 CD4⁺ and with higher antigen density 691-T compared with 691-B targets (Figure 7K).
329 Moreover, TE9 and 376.96 binder CD8⁺ T cells consistently exhibited more cluster 1-type
330 tumor engager behavior than MGA271 CAR-T against both tumor targets, and further
331 exhibited more ‘multi-tasker’ behavior in the 691-B tumoroid co-culture. These differences
332 between binders were less apparent in the CD4⁺ CAR-T context.

333 CAR-T behavior was then compared between the two analyzed timepoints (day 0 and day
334 7). Day 7 CAR-T behavior was reduced using UMAP into 7 clusters across the two imaging
335 sessions (Supplementary Figure 12B), which grouped into ‘organoid interaction’ (clusters A,
336 B, C, D), ‘CAR-T interaction (clusters E, F) and cell death (cluster G) (Supplementary Figure
337 12C). Strikingly, no consistent differences between the CAR-T binders or even CD4⁺ vs
338 CD8⁺ T cells remained evident at day 7 (Supplementary Figure 12D). This narrowing of
339 CAR-T phenotype was evident when comparing the trajectory of tumoroid death over the
340 day 0 and day 7 imaging sessions, pooling data from all three binders and target types
341 (Figure 7L). A broad range of tumor killing trajectory was seen at day 0 whilst at day 7 all
342 CARs mediated rapid tumor clearance. This apparent ability of low avidity MGA271 CAR-T
343 to control low antigen density tumor at day 7 is most likely due to artificially resetting the
344 effector to target ratio at each tumor challenge with re-sorted viable CAR-T cells.

345 The dimensionality reduction BEHAV3D analysis reflects the broad conclusion that high
346 avidity of CD8⁺ T CAR-T cells equips them for longer interactions with low antigen density
347 targets, which facilitates sustained cytotoxic activity. The data supports our hypothesis that

348 the differences in CAR-T functionality seen *in vivo* and *in vitro* assays are caused not by
349 variation in binder-driven functional exhaustion, but rather by the differential ability of the
350 CAR-T constructs to proliferate and engage in serial tumor cytotoxicity.

351 **Discussion**

352 CAR-T cell technology represents a highly promising cancer therapy as exemplified by FDA
353 approvals for several agents in the hemato-oncology field. In solid cancers the pace of
354 development has been slower. The solid cancer environment is immunologically hostile and
355 hypoxic, which limits of capacity of infiltrating CAR-T Cells to engage in the sustained
356 proliferation and cytotoxicity, which is a requirement for shrinking a solid tumor in which the
357 ratio of tumor to CAR-T cells is stacked in favour of the former. CAR-T relative failure is likely
358 compounded by T cell exhaustion, a phenomenon whereby T cells become transcriptionally
359 programmed to hypo-functionality, as a result of repeated antigen stimulation. The capacity
360 to engage in efficient serial killing through repeated successful interactions with tumor cells
361 without inducing T cell exhaustion may be the defining feature of a successful solid cancer
362 CAR-T construct.

363 The CAR-T to tumor interaction encompasses a CAR immune synapse, wherein the initial
364 contact between T cell and tumor is stabilised by the CAR antibody to target antigen binding
365 interaction, which develops into a cluster of engaged CAR constructs^{25,26}. Although the
366 biophysical properties of the CAR-T to antigen synapse are not as well characterized as
367 native TCR immune synapses, it is likely that the strength of this interaction as well as the
368 number of target antigens will determine whether the synapse becomes functional; *i.e.*
369 triggers death of the target cell through release of cytolytic granules concomitant with T cell
370 signalling to promote proliferation and cytokine secretion^{25,26}.

371 Successful formation of a synapse leads to the exclusion of phosphatases (e.g. CD45) and
372 the recruitment of src family kinases (e.g. lck) resulting in phosphorylation of CD3 ζ chain

373 ITAMs within the CAR molecule, and subsequent signalling. An efficient and high-quality
374 CAR-T immune synapse might be one that is strong enough to induce death of the target
375 and short-lived enough to induce a “goldilocks” quantity and quality of T cell signalling that
376 promotes activation without exhaustion. Immune synapse quality is likely affected by the
377 nature of the initiating antibody-to-antigen interaction. Recent progress in CAR-T / target
378 interaction tracking at the single cell level, on platforms such as BEHAV3D²⁴, has enabled a
379 nascent understanding of the kinetics of immune synapse formation and how synaptic
380 formation dynamics differ between CD4 and CD8 cells. The relationships between the
381 synapse, the binding properties of the CAR scFv's and the effect of synaptic signalling on T
382 cell activation and exhaustion remain poorly understood.

383 Functional avidity is the strength of interaction between a CAR-T cell and its tumor target,
384 which we have measured as the force required to disrupt the interaction. We hypothesized
385 that avidity would be influenced by three factors: the CAR surface expression on CAR-T
386 cells, the target antigen density on the tumor cells, and the affinity of the antibody to antigen
387 interaction at the single molecular interaction scale. We reasoned that this interplay of
388 factors would be such that none of the parameters alone would be predictive of CAR-T
389 response, but the interaction of the three factors to define functional avidity would be the
390 closest predictor of subsequent T cell function. We evaluated the relationship of antibody to
391 antigen biding properties as both affinity (Biacore surface plasmon resonance) and
392 functional avidity (Lumicks) measurements against a range of antigen densities. Two binders
393 of similar affinity (K_D) had quite differing rate constants of association and dissociation with
394 similar avidity (TE9 and 376.96), whilst a third of lower affinity also demonstrated low avidity
395 (MGA271).

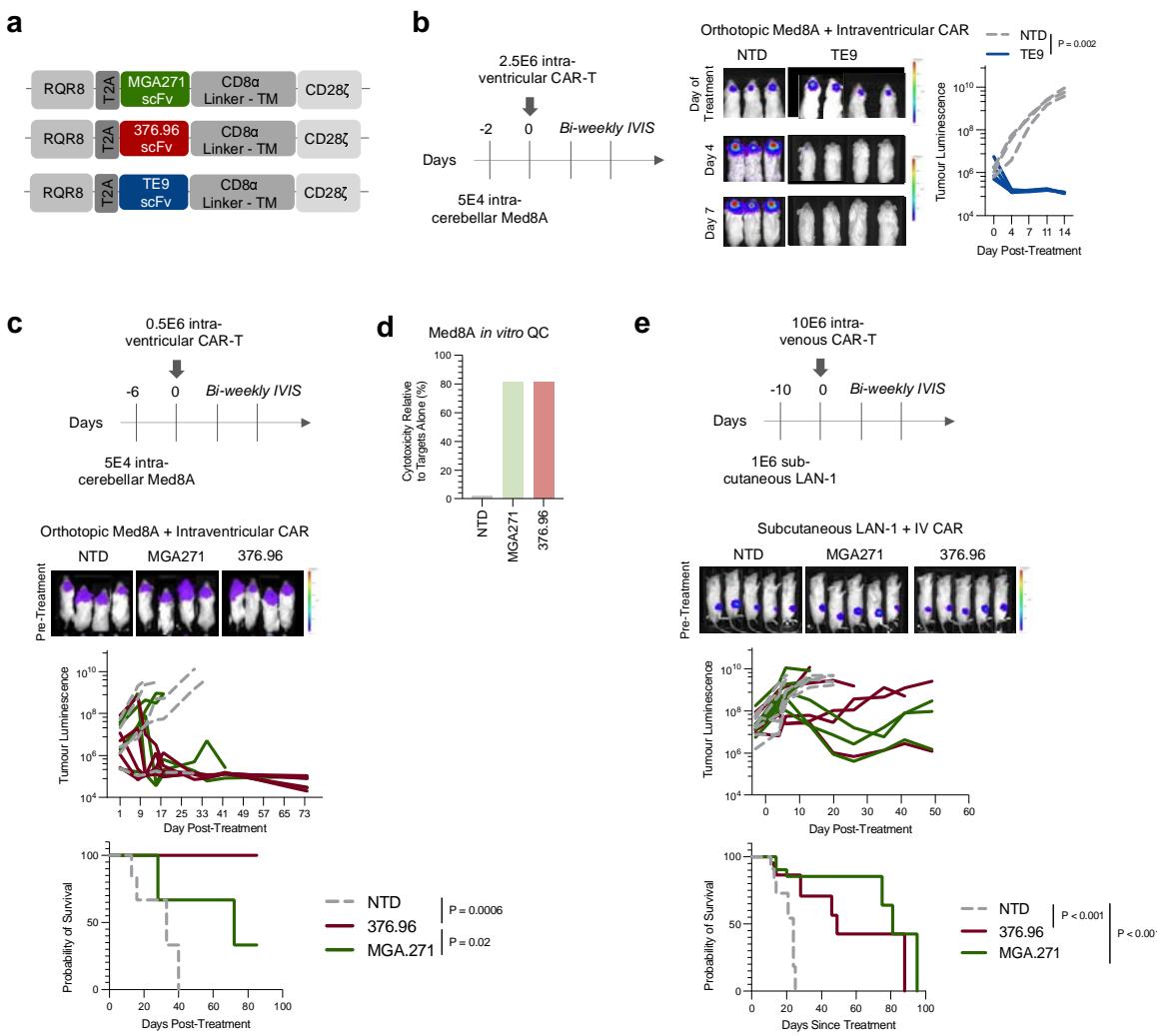
396 Several previous studies have investigated avidity of CAR-T cells using the Lumicks
397 platform. For example, the group of Maher *et al* studied a range of anti-CD19 binders in the
398 context of leukemia therapy using conventional 2nd generation CARs co-expressing a 4-1BB

399 chimeric costimulatory receptor²⁷. Interestingly, intermediate avidity CAR-T were identified to
400 have the greatest *in vivo* capacity to control tumor growth.

401 Using repeat stimulation assays against suspension cells, monolayers and three
402 dimensional tumoroid models to recapitulate the repeat antigenic engagement of the tumor
403 environment, we show that low avidity interaction on first tumor encounter results in a weak
404 cytokine and proliferative response. Weak initial response translates into ultimate failure of
405 expansion and tumor control in stress conditions. In contrast, higher avidity initial interaction
406 in the low antigen density setting results in effective proliferation and serial killing. In the
407 setting of higher antigen density, all CAR-T constructs have sufficiently high avidity initial
408 interaction to induce expansion and serial killing although low avidity MGA271 still ultimately
409 has reduced functionality at the end of serial challenges. Previous studies have identified
410 fast off-rate as linked to more efficient and effective CAR-T control of leukemia^{5,15–17} and it is
411 therefore an interesting contrast in our tumoroid studies to note that the quickest construct
412 for tumor control of low antigen density had the longest organoid contact time as well as the
413 fastest on- and off-rates. This apparent discordance might be explained by the multiple cell
414 contacts that single CD8⁺ CAR-T generate with the multi-cellular tumoroid structures as
415 previously described using BEHAV3D analysis²⁴. Here, a more complex and dynamic
416 interaction of an individual CD8⁺ CAR-T cell with multiple tumor cell targets within a 3D
417 structure might explain a more complex relationship between avidity and success in tumor
418 control.

419 Of note, in the current models which extend to seven repeat tumor challenges we have not
420 seen evidence of differences in T cell exhaustion between the three binders. This may be
421 because the repeat antigenic challenges were not sustained long enough and it is also
422 tempting to speculate that a higher affinity antibody / higher avidity CAR-T cell might have
423 induced exhaustion in the same repeat stimulation experiments. All binders evaluated
424 showed only modest increases in TIM-3⁺PD-1⁺ double-positive cells and little evidence of
425 exhaustion induced by signalling in the absence of antigen (tonic signalling). It will be

426 important in future studies to evaluate whether very high avidity binders and/or tonic
427 signaling binders show relative failure associated with increased exhaustion marker
428 expression.


429 One notable observation was that the TE9 binder, which had similar affinity and avidity to the
430 376.96 binder, had both the highest on-rate and fastest on-rate. To determine if this
431 impacted on the CAR-T / tumor interaction time, we performed BEHAV3D video microscopy
432 analysis. Interestingly, we found that at higher antigen densities there were no difference in
433 dwell time between the binders. In contrast, at low antigen density, the CD8⁺ 376.96 and
434 TE9 CAR-T cells had longer dwell times than MGA271 CAR-T, which was consistent with
435 both their greater cytotoxicity and the higher displacement score of the MGA271 CAR-T. The
436 fast on- and off-rates (in single molecule Biacore affinity studies) of TE9 appears to translate
437 into longer tumoroid contact, and leads us to speculate that avidity measurements may
438 prove to be of greater predictive value for CAR-T synapse formation characteristics. A
439 further surprising result was the short tumour dwell-time of TE9 CD4⁺ cells, which appeared
440 to be of less importance in direct cytotoxicity. Further studies are required to confirm these
441 observations with other binders and targets, as well as mechanistic studies to determine the
442 significance of differences in avidity between CD4⁺ and CD8⁺ CAR-T cells.

443 B7H3 is an emerging attractive target for cancer immunotherapy due to its bright expression
444 on the surface of a high proportion of cancer cells, its association with poor prognosis, its
445 potential function as an immune regulator, and its relative absence on healthy tissues^{28,29}.
446 Interestingly, its cancer specificity seems to extend beyond cancer cells in the tumor
447 environment since several lines of evidence point to its expression in a variety of tumor
448 infiltrating cells, such as vascular endothelial cells. Hence, the clinical application may
449 extend beyond cancers in which B7H3 has a role as a driver oncogene. Indeed, its vascular
450 endothelial expression might mitigate tumor heterogeneity being a cause of antigen escape
451 variants which has been a significant consideration diminishing enthusiasm for clinical

452 progression with several alternate antigens. All three of the binders evaluated in this study
453 are of clinical relevance and are being evaluated in a range of clinical trials.

454 There are three important implications of these avidity findings for clinical activity of these
455 respective binders. The first is threshold of antigen density for activation. B7H3 is expressed
456 at low level on some healthy tissues. A lower avidity binder might have optimal activation
457 threshold to distinguish healthy from tumor tissue to avoid on-target off-tumor toxicity.
458 Secondly, the avidity threshold for activation will be affected by the respective signalling
459 characteristics of the CAR. For example, work using the MGA271 binder has shown that
460 substitution of the CD8 hinge and transmembrane regions (H/TM) as evaluated in this paper,
461 for CD28 H/TM, within the context of 41BB-CD3 ζ signaling, results is significantly improved
462 function against low antigen density targets⁶. In current clinical trial NCT05474378 (Mackall
463 and colleagues), the configuration is with CD8 hinge/transmembrane with 41BB
464 costimulation. A second recruiting clinical study (SJ-19-0014; St Jude's, USA; DeRenzo *et*
465 *al*) using MGA271 with CD28 ζ is deploying an additional 41BBL co-stimulation *in-trans*
466 module²², whilst trial NCT04185038¹⁴ (Seattle, USA; Vitanza and team) makes use of
467 MGA271 with CD28 H/TM in a 2nd gen 41BB-CD3 ζ configuration. Hence, none of the current
468 MGA271 trials are using the configuration in the current paper. Thirdly, higher expression of
469 CAR through use of higher MOI of virus could increase avidity of a given binder against
470 targets. Artificially, we ensured equivalent expression levels to allow fair comparison of
471 avidity effects in relation to target antigen density. Higher expression of CAR might increase
472 avidity and functionality. What seems clear is that all CARs require fine-tuning of binders to
473 identify optimal activation thresholds. Avidity measurements may prove an additional
474 valuable parameter for screening constructs to optimal signalling and activation.

475 **Figures and Figure Legends**

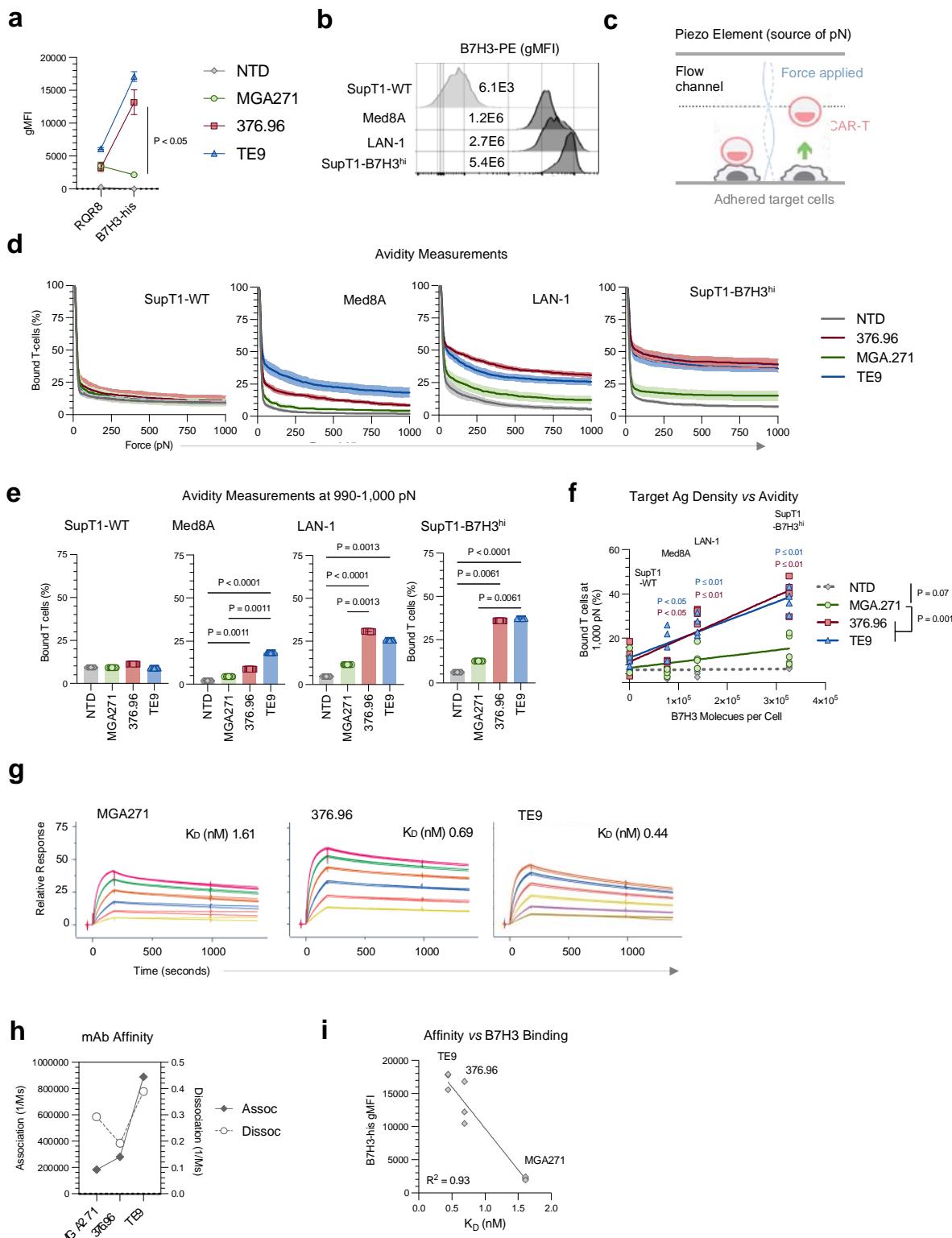
476

477 *Figure 1. MGA271, 376.96 and TE9 scFv's mediate divergent CAR-T responses against *in**

478 *vivo* models of medulloblastoma and neuroblastoma. (A) Schematic of the retroviral

479 constructs. (B) Orthotopic “non-stress” condition Med8A tumor model pilot in NSG mice; N=3

480 for NTD (non-transduced T cells), N=4 for TE9-CAR (tumor luminescence comparison


481 between groups by Two-Way ANOVA). (C) Orthotopic “stress condition” Med8A tumor

482 model in NSG mice; N=4 mice for all conditions (Kaplan-Meyer comparison by Log-rank

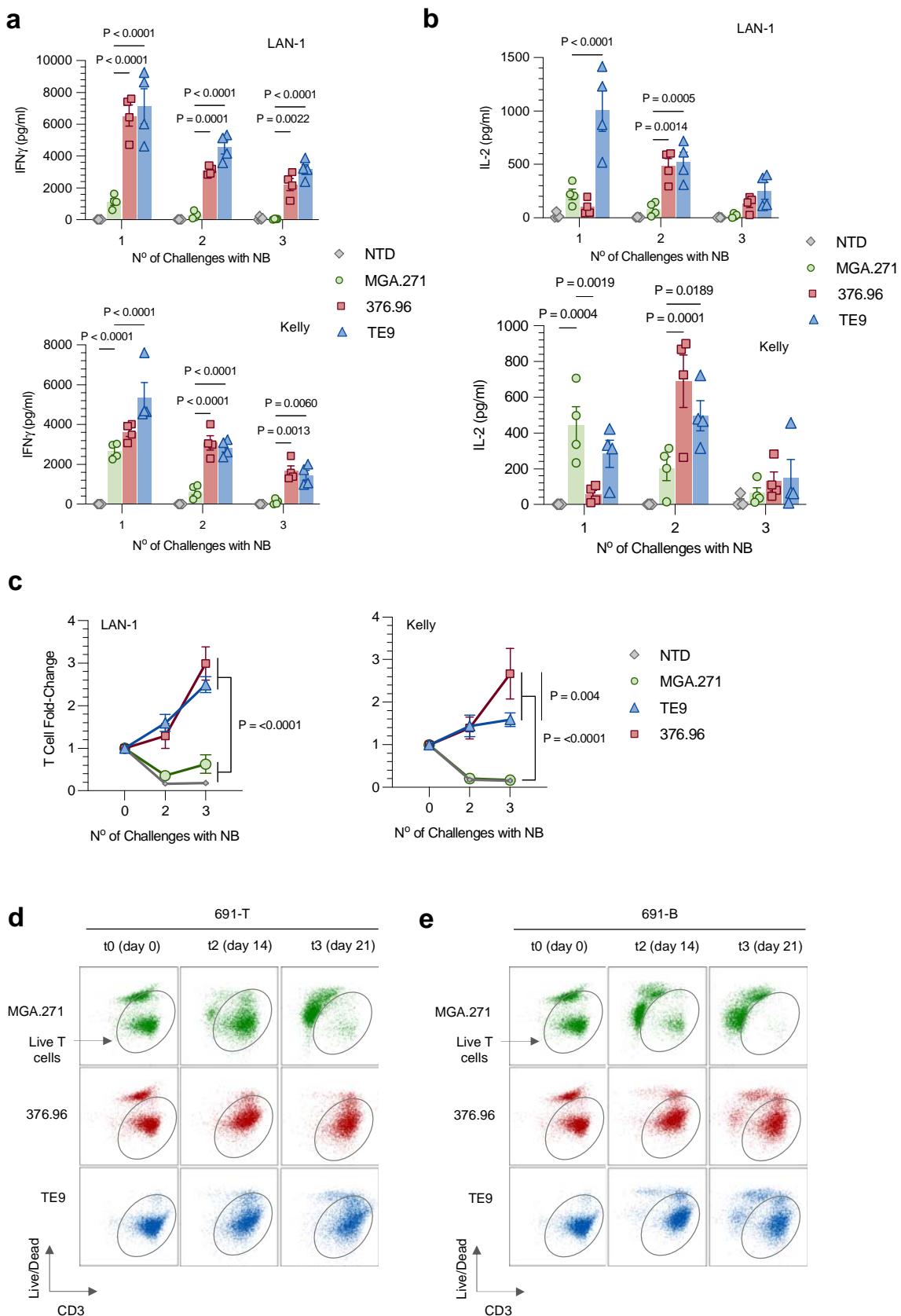
483 Mantel-Cox test). (D) Overnight CAR-T cytotoxicity assay run in-parallel to the *in vivo* study

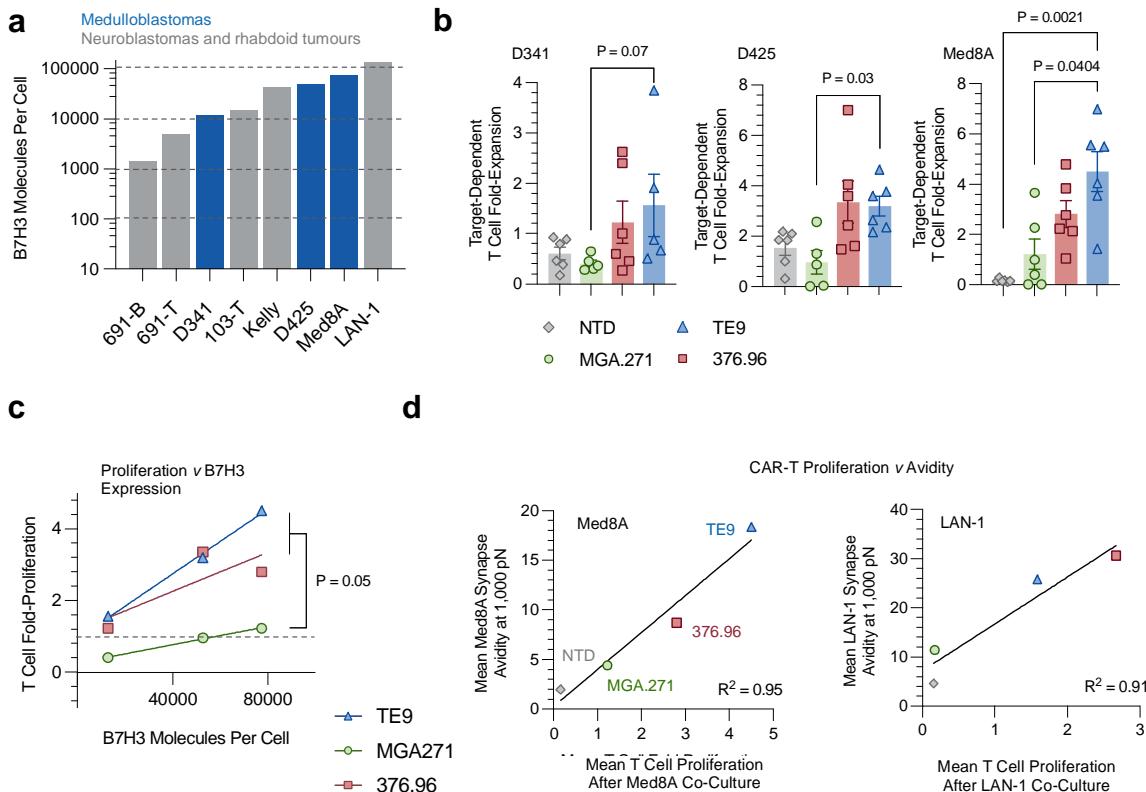
484 from panel (C) (E:T ratio 1:10, N=1). (E) Subcutaneous LAN-1 tumor model in NSG mice.

485 N=5 mice for all conditions (Kaplan-Meyer curve comparison by Log-rank Mantel-Cox test).

486

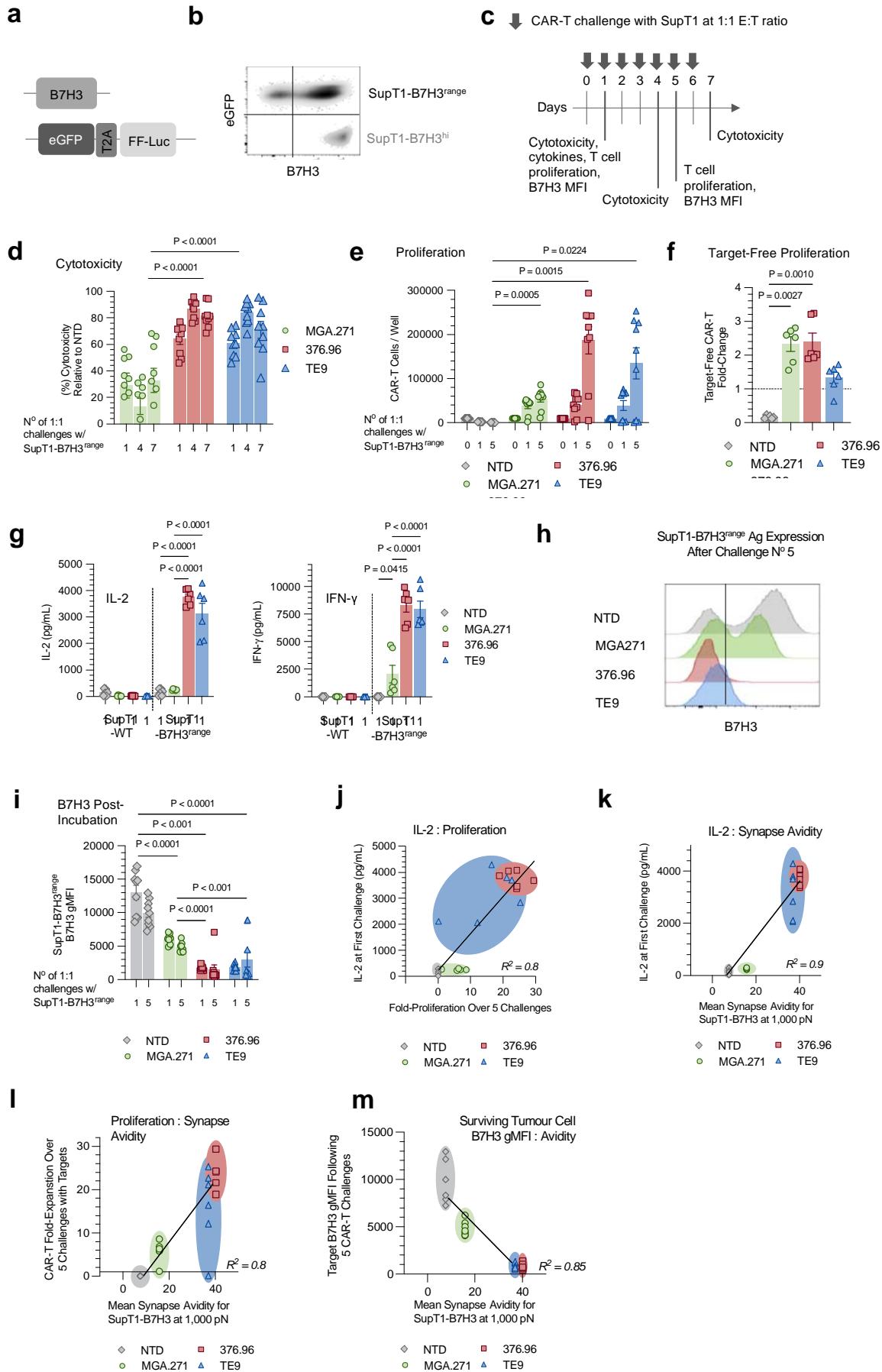
487 Figure 2. 376.96 and TE9 but not MGA271 CAR-T form high avidity interactions with tumor
 488 cells in a B7H3 density dependent manner. (A) Cryopreserved, thawed CAR-T cell surface


489 transgene expression was detected using flow cytometry with clone QBEND10 mAb to
490 detect RQR8 marker gene and histidine-x6 tagged B7H3 protein (B7H3-his) + anti-his mAb
491 to detect the CAR (mean \pm SEM, N=3 donors, Two-Way ANOVA). **(B)** Target cells were
492 stained with anti-B7H3-PE mAb and analyzed by FACS. Shown on the staggered histogram
493 are respective geometric mean fluorescence intensities (gMFI) of B7H3-PE. **(C)** Principle of
494 Lumicks z-Movi avidity measurement platform. **(D)** CAR-T detachment plotted against force
495 in pN applied to the T cell / target interaction. The line indicates the mean T cell attachment
496 of 4 independent donors across 3 experimental replicates whilst shaded area represents
497 SEM. **(E)** Avidity as represented by attachment at 990-1,000 pN applied force: N=4 donors
498 each with 3 experimental replicates, One-Way ANOVA. **(F)** Bound CAR-T (%) at 1,000 pN
499 plotted against QuantiBright defined B7H3 molecules per cell. The lines are linear
500 regressions of the means of 4 individual donors (Two-Way ANOVA). **(G)** Binder affinity for
501 B7H3 (4-Ig) was measured using whole antibodies in IgG1 format using Biacore Surface
502 Plasmon Resonance (SPR). **(H)** The association ('on-rate') and dissociation ('off-rate') rate
503 constants for the different binders were plotted. **(I)** Binder affinity was plotted against the
504 gMFI of B7H3-his protein staining of three independent donor CAR-T cell products.

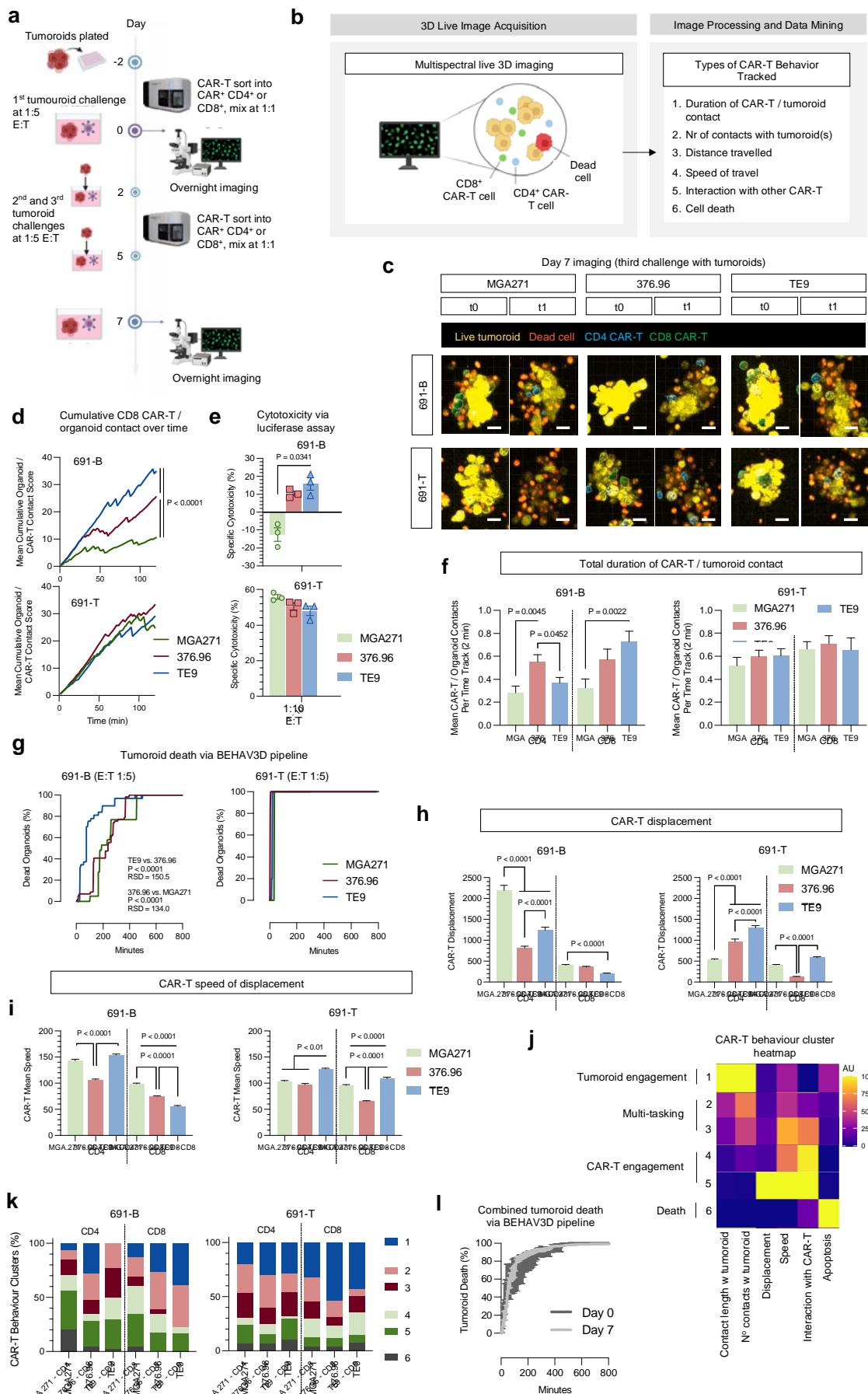

505

506 Figure 3. TE9 and 376.96, but not MGA271 CAR-T, respond to B7H3 ultra-dim tumor targets
 507 in serial re-challenge cytotoxicity assays. (A) Number of B7H3 molecules/cell (QuantiBright
 508 flow cytometry assay) for range of targets. **(B)** CAR-T cell cytotoxicity against LAN-1 and

509 Kelly neuroblastoma cell lines (4h ^{51}Cr release assay). ‘Specific cytotoxicity’ denotes
510 cytotoxicity relative to non-transduced (NTD) T cell controls (mean \pm SEM, N=3 donors,
511 Two-Way ANOVA). **(C)** CAR-T cell cytotoxicity against GFP/Luc-engineered tumoroids by
512 overnight luminescence-based assay. ‘Specific cytotoxicity’ denotes cytotoxicity relative to
513 NTD T cell controls (mean \pm SEM, N=2 independent donors across 3 technical replicates,
514 Two-Way ANOVA). **(D-F)** Re-challenge assay timecourse **(D)**, against neuroblastoma **(E)**
515 and malignant rhabdoid tumor (MRT) organoids **(F)**; gray arrows indicate re-challenge with
516 tumor. In **(E)**, data is mean \pm SEM, N=2 independent T cell donors across 3 experimental
517 replicates and ‘specific cytotoxicity’ denotes cytotoxicity relative to NTD T cell controls; in **(F)**
518 ‘specific cytotoxicity’ denotes cytotoxicity relative to tumor alone controls plated in parallel,
519 data is mean \pm SEM, N=1 independent T cell donor (same as one of the donors used to
520 generate data for panel **E**) across 3 experimental replicates. **(G)** Representative microscopy
521 images of 103-T MRT tumoroid being killed by CAR-T over time. **(H)** 1:10 E:T ratio
522 cytotoxicity for the first and third week challenge from the assays showed in panels **(E and F)**
523 plotted against antigen density (Quantibright); line = mean cytotoxicity, shaded area = SEM.



525 Figure 4. High avidity interaction with target cells drives CAR-T proliferation and resulting
526 sustained effector function. (A,B) CAR-T cells were stimulated with irradiated LAN-1 or Kelly
527 neuroblastoma cell lines at a 1:1 E:T ratio every 7 days ; IFN- γ (A) and IL-2 (B) were
528 measured in supernatants collected 24h after every stimulation (mean \pm SEM, N=3
529 independent donors, Two-Way ANOVA). (C) T cell numbers in the same co-cultures were
530 evaluated at each time point using Precision Count Beads and flow cytometry (mean \pm SEM,
531 N=3 independent donors, Two-Way ANOVA). (D) Relative T cell proportions measured
532 using flow cytometry in 691-B and 691-T tumor co-cultures over three weeks of weekly
533 tumor challenges at an E:T ratio of 1:10. Gated on singlet PBMC of harvested cultures,
534 representative dot plots from one donor CAR-T are shown.



535
536 Figure 5. High avidity interactions drive CAR-T proliferation and cytotoxicity in brain tumor

537 models. (A) B7H3 molecules per cell were quantified using a QuantiBright flow cytometry
538 assay; brain tumor targets in blue, neuroblastoma and rhabdoid tumor targets in gray. (B) T
539 cell proliferation in response to live brain tumor challenge at a 1:1 E:T ratio was quantified
540 after 6 days of co-culture (mean \pm SEM, 3 independent T cell donors across two
541 experimental replicates, Kurskal-Wallis test). (C) T cell fold-expansion against the number of
542 B7H3 molecules per target cell; dots represent mean proliferation of the different donors and
543 replicates; lines are simple linear regression curves. (D) Mean fold-proliferation of CAR-T
544 cells against Med8a and LAN-1 cells was plotted against the mean avidity at 1,000 pN for
545 the two cell lines. The dots represent mean proliferation of the different donors and
546 replicates; the lines are simple linear regression curves.

548 *Figure 6. High avidity drives elimination of antigen-dim targets. (A)* Constructs for generation
549 of B7H3 and GFP/luciferase sublines of SupT1 cells. **(B)** Expression of B7H3 in the unsorted
550 'SupT1-B7H3^{range}' and flow-sorted 'SupT1-B7H3^{hi}' cells. **(C)** Rechallenge assay experimental
551 schematic. For all subsequent data in the panels: N=4 independent donors across 4
552 experimental replicates. **(D)** Cytotoxicity was measured by luciferase signal as relative to
553 tumor luminescence in the presence of donor-matched non-transduced (NTD) T cells (mean
554 \pm SEM, Two-Way ANOVA). **(E)** T cell numbers in the same assay following either a range of
555 challenges with tumor targets or **(F)** target-free (mean \pm SEM, Two-Way ANOVA). **(G)**
556 Cytokine measurements in co-culture supernatants following a single challenge wit SupT1-
557 B7H3^{range} targets at a 1:1 E:T ratio (mean \pm SEM, Two-Way ANOVA). **(H)** B7H3 expression
558 on targets was measured using flow cytometry following the fifth challenge. Shown are
559 concatenated histograms that were generated by combining flow data adjusted for 10,000
560 SupT1 cells per sample. **(I)** The same SupT1-B7H3^{range} positivity for antigen as analysed in
561 each sample separately (mean represents geometric mean fluorescence intensity (gMFI) \pm
562 SEM, Two-Way ANOVA). **(J)** Respective CAR fold-proliferation in response to 5 challenges
563 with SupT1-B7H3^{range} targets plotted against IL-2 production following the initial challenge.
564 **(K)** IL-2 production after first challenge plotted against the mean avidity for SupT1-B7H3^{hi}
565 targets at 1,000 pN. **(L)** Proliferation after 5 challenges with targets was plotted against the
566 mean synapse avidity that the respective CARs achieved when combined with SupT1-
567 B7H3^{hi} targets at 1,000 pN. **(M)** SupT1-B7H3^{range} cell B7H3 gMFI after 5 challenges with
568 targets was plotted against the mean synapse avidity that the respective CARs achieved
569 when combined with SupT1-B7H3^{hi} targets at 1,000 pN. In **(J-M)** each dot represents an
570 individual donor experimental replicate, the lines are simple linear regressions.

572 Figure 7. Higher CAR binder B7H3 avidity associated with increased CD8⁺ CAR-T / tumoroid
573 contact duration and more rapid cytotoxicity against B7H3^{ultra-dim} tumoroids. (A,B)
574 experimental overview. (C) Illustrative stills of tumoroid and T cell clusters at the start (day 0
575 = t0), and end (day 7 = t1) 800 minute imaging sessions. (D) CD8⁺ CAR-T cell cumulative
576 contact time with 691-B and 691-T organoids tracked for the first 2h of the first tumor
577 challenge on day 0. The line represents the mean cumulative tumoroid contact score of all
578 the individual CAR-T cells that were successfully tracked for the full 120 min period (the
579 number of cells tracked in each of the conditions was a mean 31.33±10.8; curves were
580 compared using simple linear regressions). (E) CAR-T cells were incubated with tumoroids
581 overnight at a 1:10 E:T ratio. ‘Specific cytotoxicity’ denotes tumor luminescence relative to
582 matched non-transduced T cell (NTD) controls (mean ± SEM, N=3 independent
583 experimental replicates, Kruskal-Wallis test). (F-I) Respective parameters were tracked for
584 entire duration (800 minutes) of the first tumor challenge at day 0. (F) CD4⁺ and CD8⁺ CAR-
585 T cell cumulative contact time with 691-B and 691-T organoids (mean ± SEM, N = 31.5 ±
586 10.6 cells per T cell condition, Two-Way ANOVA). (G) Cumulative tumoroid death
587 (conversion from viability dye yellow to red) (a total of 398 incremental time-points were
588 recorded to track tumoroid apoptosis over the assay; curve comparison was carried out
589 using a Friedman test for P value and rank sum differences (RSD)). (H) CD4⁺ and CD8⁺
590 CAR-T displacement (mean ± SEM, N = 31.5 ± 10.6 cells per T cell condition, Two-Way
591 ANOVA). (I) Mean speed of CD4⁺ and CD8⁺ CAR-T displacement (mean ± SEM, N = 31.5 ±
592 10.6 cells per T cell condition, Two-Way ANOVA). (J) Trends in CAR-T behavior reduced
593 into 6 clusters using UMAP analysis of the T cell behavior across all the conditions observed
594 in the initial tumor challenge at day 0 and represented as a heatmap. (K) The CAR-T
595 behaviors broken down by T cell, binder and target type. (L) Pooled data from all CAR
596 constructs against both targets comparing day 0 and day 7 challenge rate of organoid
597 death.

598 **Acknowledgements**

599 We thank Debarati Shome and Reza Nadafi of Lumicks for their support with our z-Movi
600 analysis of B7H3-CAR-T synapse avidities, and Lumicks more broadly for supporting us with
601 hardware and technical advice during the experiments. We're grateful to the Flow Cytometry
602 Core Facility at UCL GOS Institute of Child Health and to the Imaging Center at the Princess
603 Máxima Center for their support in running our studies. We thank the Princess Máxima
604 Center Imaging and Tumoroid facilities for support.

605 **Funding**

606 We are grateful for the following grant support. Anderson and Chesler: Stand up to Cancer/
607 CRUK Paediatric Cancer New Discoveries Challenge; Anderson, Chesler and Donovan:
608 CwC INSTINCT-MB award, Fight Kids Cancer, and LPT programme awards; Anderson:
609 Research into Childhood Cancer, NIHR GOSH BRC, GOSHCC 552864, AMR/LifeArc
610 awards. Drost and Buhl: Oncode Institute, Children Cancer-free Foundation (KiKa),
611 Deutsche Forschungsgemeinschaft (German Research Foundation, DFG). Molenaar: Villa
612 Joep, Veni. This work has received funding from the European Union's Horizon 2020
613 research and innovation program under the Marie Skłodowska-Curie grant agreement, No.
614 956285 (VAGABOND).

615 **Author Contributions**

616 MB, JW, and JA wrote the manuscript; MB, HM, EZ, MBR, and SbD analyzed data; GF
617 generated reagents; EZ, HM, RS, BD, CH, CB, SMT, MN, SM, KB, CLB, AV, LP, KoS, AG,
618 and MB performed experiments; JA, JW, JB, KC, AR, JD, JM, LC co-supervised the
619 research.

620 **Conflicts of Interest**

621 MB, JA, KC, KB, MB hold patents in CAR-T technology development, including a pending
622 patent for the TE9 anti-B7H3 binder. JA holds founders shares in Autolus.

623 **References**

624

- 625 1. Research, C. for B. E. and. Approved Cellular and Gene Therapy Products. *FDA* (2023).
- 626 2. Albelda, S. M. CAR T cell therapy for patients with solid tumours: key lessons to learn and
627 unlearn. *Nat Rev Clin Oncol* **21**, 47–66 (2024).
- 628 3. Weber, E. W. *et al.* Transient “rest” restores functionality in exhausted CAR-T cells via
629 epigenetic remodeling. *Science* **372**, eaba1786 (2021).
- 630 4. Weber, E. W. *et al.* Pharmacologic control of CAR-T cell function using dasatinib. *Blood*
631 *Adv* **3**, 711–717 (2019).
- 632 5. Ghorashian, S. *et al.* Enhanced CAR T cell expansion and prolonged persistence in
633 pediatric patients with ALL treated with a low-affinity CD19 CAR. *Nature Medicine* **25**,
634 1408–1414 (2019).
- 635 6. Majzner, R. G. *et al.* Tuning the Antigen Density Requirement for CAR T-cell Activity.
636 *Cancer Discov* **10**, 702–723 (2020).
- 637 7. Du, H. *et al.* Antitumor Responses in the Absence of Toxicity in Solid Tumors by
638 Targeting B7-H3 via Chimeric Antigen Receptor T Cells. *Cancer Cell* **35**, 221-237.e8
639 (2019).
- 640 8. Theruvath, J. *et al.* Locoregionally administered B7-H3-targeted CAR T cells for treatment
641 of atypical teratoid/rhabdoid tumors. *Nat Med* **26**, 712–719 (2020).
- 642 9. Majzner, R. G. *et al.* CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate
643 Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. *Clinical*
644 *Cancer Research* **25**, 2560–2574 (2019).
- 645 10. Maachani, U. B. *et al.* B7-H3 as a Prognostic Biomarker and Therapeutic Target in
646 Pediatric central nervous system Tumors. *Transl Oncol* **13**, 365–371 (2020).
- 647 11. Modak, S., Kramer, K., Gultekin, S. H., Guo, H. F. & Cheung, N. K. Monoclonal
648 antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of
649 human solid tumors. *Cancer Res* **61**, 4048–4054 (2001).

650 12. Chapoval, A. I. *et al.* B7-H3: A costimulatory molecule for T cell activation and IFN- γ
651 production. *Nature Immunology* **2**, 269–274 (2001).

652 13. Wang, L., Kang, F.-B. & Shan, B.-E. B7-H3-mediated tumor immunology: Friend or
653 foe? *International Journal of Cancer* **134**, 2764–2771 (2014).

654 14. Vitanza, N. A. *et al.* Intraventricular B7-H3 CAR T Cells for Diffuse Intrinsic Pontine
655 Glioma: Preliminary First-in-Human Bioactivity and Safety. *Cancer Discov* **13**, 114–131
656 (2023).

657 15. Chmielewski, M., Hombach, A., Heuser, C., Adams, G. P. & Abken, H. T Cell
658 Activation by Antibody-Like Immunoreceptors: Increase in Affinity of the Single-Chain
659 Fragment Domain above Threshold Does Not Increase T Cell Activation against Antigen-
660 Positive Target Cells but Decreases Selectivity1. *The Journal of Immunology* **173**, 7647–
661 7653 (2004).

662 16. Mause, E. R. V. *et al.* Combinatorial T cell engineering eliminates on-target off-tumor
663 toxicity of CD229 CAR T cells while maintaining anti-tumor activity. 2021.12.06.471279
664 Preprint at <https://doi.org/10.1101/2021.12.06.471279> (2022).

665 17. Olson, M. L. *et al.* Low-affinity CAR T cells exhibit reduced trogocytosis, preventing
666 rapid antigen loss, and increasing CAR T cell expansion. *Leukemia* **36**, 1943–1946
667 (2022).

668 18. Loo, D. *et al.* Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with
669 potent antitumor activity. *Clin Cancer Res* **18**, 3834–3845 (2012).

670 19. Imai, K., Wilson, B. S., Bigotti, A., Natali, P. G. & Ferrone, S. A 94,000-dalton
671 glycoprotein expressed by human melanoma and carcinoma cells. *J Natl Cancer Inst* **68**,
672 761–769 (1982).

673 20. Birley, K. *et al.* A novel anti-B7-H3 chimeric antigen receptor from a single-chain
674 antibody library for immunotherapy of solid cancers. *Molecular Therapy - Oncolytics* **26**,
675 429–443 (2022).

676 21. Philip, B. *et al.* A highly compact epitope-based marker/suicide gene for easier and
677 safer T-cell therapy. *Blood* **124**, 1277–1287 (2014).

678 22. Nguyen, P. *et al.* Route of 41BB/41BBL Costimulation Determines Effector Function
679 of B7-H3-CAR.CD28 ζ T Cells. *Mol Ther Oncolytics* **18**, 202–214 (2020).

680 23. Labanieh, L. *et al.* Enhanced safety and efficacy of protease-regulated CAR-T cell
681 receptors. *Cell* **185**, 1745-1763.e22 (2022).

682 24. Dekkers, J. F. *et al.* Uncovering the mode of action of engineered T cells in patient
683 cancer organoids. *Nat Biotechnol* 1–10 (2022) doi:10.1038/s41587-022-01397-w.

684 25. Sajman, J. *et al.* Nanoscale CAR Organization at the Immune Synapse Correlates
685 with CAR-T Effector Functions. *Cells* **12**, 2261 (2023).

686 26. Xiong, Y., Libby, K. A. & Su, X. The physical landscape of CAR-T synapse.
687 *Biophysical Journal* (2023) doi:10.1016/j.bpj.2023.09.004.

688 27. Halim, L. *et al.* Engineering of an Avidity-Optimized CD19-Specific Parallel Chimeric
689 Antigen Receptor That Delivers Dual CD28 and 4-1BB Co-Stimulation. *Frontiers in*
690 *Immunology* **13**, (2022).

691 28. Kontos, F. *et al.* B7-H3: An Attractive Target for Antibody-based Immunotherapy.
692 *Clinical Cancer Research* **27**, 1227–1235 (2021).

693 29. Zhou, W.-T. & Jin, W.-L. B7-H3/CD276: An Emerging Cancer Immunotherapy.
694 *Frontiers in Immunology* **12**, (2021).

695 30. Schutgens, F. *et al.* Tubuloids derived from human adult kidney and urine for
696 personalized disease modeling. *Nat Biotechnol* **37**, 303–313 (2019).

697 31. Calandrini, C. *et al.* An organoid biobank for childhood kidney cancers that captures
698 disease and tissue heterogeneity. *Nat Commun* **11**, 1310 (2020).

699 32. Custers, L. *et al.* Somatic mutations and single-cell transcriptomes reveal the root of
700 malignant rhabdoid tumours. *Nat Commun* **12**, 1407 (2021).

701 33. Koo, B.-K. *et al.* Controlled gene expression in primary Lgr5 organoid cultures. *Nat*
702 *Methods* **9**, 81–83 (2011).

703 34. Johnson, L. S., Huang, L., Moore, P. A., Loo, D. T. & Chen, F. Z. Antibodies reactive
704 with B7-H3 and uses thereof. (2014).

705 35. Dotti, G., Ferrone, S., Du, H., Wang, X. & Ferrone, C. Methods and compositions for
706 chimeric antigen receptor targeting cancer cells. (2019).

707 36. Sabbatino, F. *et al.* Novel Tumor Antigen-Specific Monoclonal Antibody-Based
708 Immunotherapy to Eradicate Both Differentiated Cancer Cells and Cancer-Initiating Cells
709 in Solid Tumors. *Seminars in Oncology* **41**, 685–699 (2014).

710 37. The z-Movi Cell Avidity Analyzer workflow. *LUMICKS*
711 <https://lumicks.com/knowledge/the-z-movi-workflow/>.

712 38. Jason-Moller, L., Murphy, M. & Bruno, J. Overview of Biacore systems and their
713 applications. *Curr Protoc Protein Sci Chapter 19*, Unit 19.13 (2006).

714

715 Methods

716 Cells lines and culture conditions

717 All cell lines were cultured in humidified 37C° in 5% CO₂ conditions. Cell lines were thawed
718 and passaged for at least two weeks prior to use in functional assays. Culture mycoplasma
719 tests were performed monthly using MycoAlert Detection Kit from Lonza. The following table
720 summarizes the characteristics and culture conditions of the cell lines that were used over
721 the course of this study.

722

Cell Line ID	Type of Cancer	Source	RRID	Culture Media
<i>LAN-1 (LA-N-1)</i>	Neuroblastoma	ECACC	CVCL_1827	RPMI1640 (Gibco) + 10% FCS (Gibco)
<i>Med8A (MED-MEB-8A) wild type</i>	Medulloblastoma	Gift from Michael Taylor, The Hospital for Sick Children, Canada	CVCL_M137	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)
<i>Med8A GFP/Luc</i>	Medulloblastoma	Derived from Med8A wild type by RD114 γ-retroviral transduction with GFP/Luc	None	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)
<i>Kelly</i>	Neuroblastoma	Gift from Andrew Stoker, UCL, UK	CVCL_2092	RPMI1640 + 10% FCS
<i>SupT1 wild type</i>	Childhood T lymphoblastic lymphoma	ECACC	CVCL_1714	RPMI1640 + 10% FCS
<i>SupT1-B7H3^{hi}</i>	Childhood T lymphoblastic lymphoma	Derived from SupT1 wild type by RD114 γ-retroviral transduction with 4-Ig B7H3 (Sinobiological), followed by flow cytometric sorting	None	RPMI1640 + 10% FCS
<i>SupT1-B7H3^{range} GFP/Luc</i>	Childhood T lymphoblastic lymphoma	Derived from SupT1 wild type by RD114 γ-retroviral transduction with GFP/Luc followed by flow cytometric sorting, then 4-Ig B7H3 (Sinobiological) without sorting	None	RPMI1640 + 10% FCS

691-T (AMC691-T) <i>wild type</i>	Neuroblastoma	Gift from Jan Molenaar (Utrecht)	None	'Neurosphere medium': DMEM- GlutaMAX supplemented with 20% Ham's F-12 nutrient mixture, 2% B-27 supplement minus vitamin A, 1% N-2 Supplement, 100 U/mL penicillin, 100 mg/mL streptomycin, 300 ng/mL insulin- like growth factor (IGF-1), 40 ng/mL fibroblast growth factor- basic (FGF-2), 20 ng/mL epidermal growth factor (EGF), 10 ng/mL platelet-derived growth factor-AA (PDGF-AA) and 10 ng/mL platelet-derived growth factor-BB (PDGF-BB)	
691-T (AMC691-T) <i>GFP/Luc</i>	Neuroblastoma	Gift from Jan Molenaar (Utrecht)	None	'Neurosphere medium'	
691-B (AMC691-B)	Neuroblastoma	Gift from Jan Molenaar (Utrecht)	None	'Neurosphere medium'	
691-B (AMC691-B) <i>GFP/Luc</i>	Neuroblastoma	Gift from Jan Molenaar (Utrecht)	None	'Neurosphere medium'	
103-T <i>wild type</i>	Malignant rhabdoid tumor	Gift from Jarno Drost (Utrecht)	None	'MRT medium' ^{30,31} : MRT tumoroids were cultured in droplets of growth factor- reduced basement membrane extract (BME) Type 2 (R&D Systems) in kidney tumoroid medium (KOM) (Advanced Dulbecco's Modified Eagle Medium (DMEM)/F12 (Gibco) containing 1X GlutaMAX (Thermo Fisher Scientific), 10 mM HEPES (Thermo Fisher Scientific) and 1X Penicillin- Streptomycin (P/S) (Merck Millipore), supplemented with 10% R-spondin-conditioned medium, 1.5% B27 supplement (Gibco), 50 ng/mL epidermal growth factor (EGF) (PeproTech), 50 ng/mL fibroblast growth factor (FGF)-2 (PeproTech), 1.25 mM N- acetylcysteine (Sigma), 10 μ M Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y-27632 (Abmole) and 5 μ M A83-01 (Tocris Bioscience))	
103-T <i>Luc</i>	Malignant rhabdoid tumor	Gift from Jarno Drost (Utrecht); derived from 103-T wild type by lentiviral transduction with pLKO.1-UbC-luciferase blast and pLV-H2B- mNeon-puro cassettes ^{32,33}	None	'MRT medium'	
<i>D341 wild type</i>	Medulloblastoma	Gift from Michael Taylor, The Hospital for Sick Children, Canada	CVCL_0018	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)	

<i>D341 GFP/Luc</i>	Medulloblastoma	Derived from D341 wild type by RD114 γ-retroviral transduction with GFP/Luc	None	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)
<i>D425 wild type</i>	Medulloblastoma	Gift from Michael Taylor, The Hospital for Sick Children, Canada	CVCL_1275	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)
<i>D425 GFP/Luc</i>	Medulloblastoma	Derived from D425 wild type by RD114 γ-retroviral transduction with GFP/Luc	None	DMEM (Gibco) + 10% FCS + 1x Glutamax (Gibco)
<i>293-T (HEK293T)</i>	Transformed cell line	ATCC	CVCL_0063	IMDM + 10% FCS

723

724 CAR sequences

725 All CARs were expressed using an SFG backbone in a 2nd generation RD114 γ-retroviral
726 system. All plasmids were sequenced to verify absence of unexpected sequence mutations
727 prior to manufacture of virus. A diagram of construct structure is shown in Figure 1A, with all
728 anti-B7H3 CARs expressed in the following format: RQR8-T2A-scFv-CD8αLinker-CD8αTM-
729 CD28endodomain-CD3ζchain. The sequences for the scFv's were obtained from public
730 sources and are summarized in the below table. To insert these into the CAR backbone, the
731 scFv sequences were ordered as geneblocks and then restriction cloned into a CD8α-CD28-
732 CD3ζ format.

733

<i>scFv ID</i>	<i>Full CAR Amino Acid Sequence</i>	<i>Source of scFv Sequence</i>
<i>MGA271</i>	EVQLVESGGGLVQPGGSLRLSCAASGFTSSFGMHWVRQAPGKGLEW VAYISSLSSAIYYADTVKGRTFTISRDNAKNSLYLQMNSLRDEDETAVYYCG RGRENIYYGSRLDYWGQGTTVTVSSGGGGSGGGGGSGGGSDIQLTQS PSFLSASVGDRVTITCKASQNVDTNVAVYQQKPGKAPKALIYSASYRYS GVPSRFSGSGSGTDFLTISLQPEDFATYYCQQYNNYPFTFGQGTKLEI KAAADPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAHVTRGLDFAC DIYIWAPLAGTCGVLLLSLVITLYRTRSKRSRLLHSDYMNMTPRRPGPTRK HYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEY DVLDKRRGRDPEMGGKPRRKNPQEGLYNELQDKMAEAYSEIGMKGER RRGKGHDGLYQGLSTATKDTYDALHMQALPPR*	Macrogenics Inc Patent 'US9441049B2' ³⁴ , development described by Loo and colleagues ¹⁸

376.96	EVQLVESGGGLVKPGGSLKLSCEASRFTFSSYAMSWVRQTPEKRLEWV AAISGGGRYTPDSMKGRFTISRDNAKNFLYLMQSSLRSEDTAMYCA RHYDGYLDYWGQGTTLVSSGGGGSGGGSGGGSDIVMTQSHKFMS TSIGARVSITCKASQDVRTAVAWYQQKPGQSPKLLIYSASYRTGVPDRF TGSGSGTDFTFTISSVQAEDLAVYYCQQHYGTPPPWTFGGGTKLEIKA PTTTPAPRPTPAPTIASQPLSLRPEACRPAAGGA VHTRGLDFACDIYIWA PLAGTCGVLLSLVITLYRTRSKRSRLLHSDYMNMTPRRPGPTRKHYQPY APPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNENLGRREEYDVL DKRRGRDPEMGGKPRRKNPQEGLYNELQDKMAEAYSEIGMKGERRGK GHDGLYQGLSTATKDTYDALHMQALPPR*	University of North Carolina at Chapel Hill, General Hospital Corp Patent 'US10233226B2 ³⁵ ; development described by Imai ¹⁹ and Sabbatino ³⁶
TE9	QVQLQQSGAALVKPGTSVKLSCASGYTFTSYWMHWVKQRPGQGLEWI GMIHPKSGSVDYNEKFTNKATLTGDKSSGTAYMQLSSLTSEDSAVYYCA RGGYGS PFDYWGQGTTV VSSGGGGSGGGGGSENV LTQSPAIM SASPGEKV TMTCSASSSV SYM WY QQKPGSSPRLLIYRT SNLASGV PAR FSGSGSGT SYSLT ISS MEA EDA AT YYC QQW SSN PPT F GGGT KLEI KRAA ADPTT PAPR PTP AP TIAS QPL SLR PEAC RPA AGGA VH TRGL DFAC DIYI W AP LAG TC GV VLL S L V I T Y R T R S K R S R L L H S D Y M N M T P R R P G P T R K H Y Q P Y A P P R D F A A Y R S R V K F S R S A D A P A Y Q Q G Q N Q L Y N E L N L G R R E E Y D V L D K R R G R D P E M G G K P R R K N P Q E G L Y N E L Q D K M A E A Y S E I G M K G E R R G K G K H D G L Y Q G L S T A T K D T Y D A L H M Q A L P P R	Developed in-house at UCL. Development described by Birley <i>et al</i> ²⁰

734

735 CAR-T cell manufacture

736 Leukapheresis cones were acquired from NHS Blood and Transplant. PBMCs were
737 separated through Ficoll centrifugation using Lymphoprep (STEMCELL Technologies).
738 PBMCs were washed and residual red cells lysed with ACK Lysis buffer (Thermo Fisher
739 Scientific). NK cells were depleted using magnetic CD56 depletion beads (Miltenyi Biotec)
740 and LD depletion columns (Miltenyi Biotec). PBMCs were suspended in RPMI1640
741 containing 10% FCS and 1x L-glutamine at a concentration of 1 x 10⁶ cells/mL, and then
742 activated with 0.5 mg/mL of anti-CD3 (clone: OKT-3; Miltenyi Biotec) and anti-CD28
743 antibodies (clone: CD28.2; Miltenyi Biotec). Forty-eight hours before transduction and on the
744 day of transduction, 100 IU/mL recombinant human IL-2 (Proleukin, Novartis) was added. T
745 cells were transduced with the above-mentioned γ-retroviral SFG construct following plating
746 on retronectin (Takara Bio)-coated plates and spinoculation. Transduction efficiency was
747 measured three days after transduction using flow cytometry by staining for RQR8 (clone:
748 QBNED10; R&D BioSystems). T cell populations were not corrected for transduction
749 efficiency in functional assays. Transduction efficiencies of >50% were routinely achieved.
750 Expanding CAR-T cell IL-2 media was replenished every two days. Expansions were

751 harvested at day 10-12 following culture initiation and cryopreserved in 10% DMSO
752 complete media. When initiating *in vitro* or *in vivo* functional assays, CAR-T cells were
753 thawed in pre-warmed IL-2 (100 IU/mL) complete media (RPMI1640, 10% FCS), rested
754 overnight and then counted. CAR-T E:T ratios were based on the number of viable T cells
755 after overnight rest. Cryopreserved CAR-T recovery after overnight rest (relative to the
756 number of CAR-T that were frozen down) was routinely 50-60%, with a ~90% viability.

757 *Animal studies*

758 Animal protocols were approved by local institutional research committees and in
759 accordance with UK Home Office guidelines. Mixed male and female NSG mice aged
760 between 6 and 8 weeks were supplied by Charles River. All experiments were carried out
761 under UK home office licenses project license number 15981/01, and personal license
762 numbers I13398879, P2E645DD9, I83870811, I27052867, I8C20AD0D and I754094BC.

763 For the LAN-1 *in vivo* study, NSG mice were injected with 1×10^6 LAN-1-BFP/Luc in Matrigel
764 (Corning) subcutaneously into the flank. CAR-T cells (1×10^7) were injected intravenously
765 into the tail vain at day 10 following tumor engraftment (treatment schedule illustrated in
766 Figure 1E). Tumor size was monitored twice a week with digital callipers. Mice were given
767 200 uL luciferin (Thermo Fisher Scientific) into the scruff and imaged using a
768 PhotonIMAGERTM optical imaging system (Biospace Lab) weekly. Animal sacrifice was
769 initiated upon reaching either a tumor diameter of >15 mm in any direction (as measured by
770 callipers) or the appearance of tumor burden toxicity that exceeds our animal welfare
771 standards ($>15\%$ weight loss, change in activity, ataxia, dehydration, loss of normal gait,
772 grimacing).

773 For the Med8A *in vivo* study, two types of model were run: the 'high-stress' model and the
774 'low-stress' model. In both models 5×10^4 Med8A cells re-suspended in PBS were injected
775 into the cerebellum of an NSG mouse. In the 'low-stress model' (illustrated in Figure 1B), two
776 days after tumor engraftment the mice were administered intraventricularly with 2.5×10^6

777 CAR-T cells. In the 'high-stress model' (illustrated in Figure 1C) the mice were treated six
778 days after tumor engraftment, and with 0.5×10^6 CAR-T cells per animal. Mice were given
779 200 μ L luciferin (Thermo Fisher Scientific) into the scruff and imaged using a
780 PhotonIMAGERTM optical imaging system (Biospace Lab) weekly. Animal sacrifice was
781 initiated upon reaching either a tumor luminescence of $10E10$ photons/second/cm² (via
782 IVIS), or the appearance of tumor burden toxicity that exceeds our animal welfare standards
783 (>15% weight loss, doming of the cranium, change in activity, ataxia, dehydration, loss of
784 normal gait, grimacing).

785 *CAR-T in vitro functional assays*

786 A number of different functional CAR-T assays were performed. While high (>60%)
787 transduction efficiency of CAR-T was routinely achieved, transduced cell numbers were
788 normalised for functional assays to ensure that each binder condition receives the same
789 number of viable CAR-T cells. All data was collected in experimental duplicates or triplicates,
790 as indicated in figure legends.

791 CAR-T responses against LAN-1 and Kelly target cells were assessed as follows. For the
792 overnight (~18h) co-culture cytokine assays, CAR-T cells were co-cultured with LAN-1, Kelly
793 cells or no antigen stimulus in 48-well plates at an E:T ratio of 1:1. After 18 h, supernatant
794 was removed for ELISA and cells incubated with monensin (BioLegend). Checkpoint
795 receptors PD-1, TIM-3 and LAG-3 were detected by flow cytometry. Overnight cytotoxicity
796 was tested using a ⁵¹Cr release assay. Target cells were incubated with ⁵¹Cr for 1 h then
797 washed and plated in 96-well plates. CAR-T cells or untransduced cells were plated at a
798 range of E:T ratios. The plates were incubated for 4 h at 37°C and then the supernatant was
799 removed and incubated with scintillation fluid (PerkinElmer) overnight at room temperature.
800 ⁵¹Cr released into the supernatant was measured using a 1450 MicroBeta TriLux
801 (PerkinElmer). For the re-challenge assays, CAR-T cells were co-cultured with irradiated
802 LAN-1, Kelly, or no target cells in 24-well plates at an E:T ratio of 2:1. Cell medium was

803 replenished every 2–3 days. CAR-T cells were challenged with irradiated target cells every 6
804 days, cultured for a further 24 h, and analyzed. Cells were pelleted and supernatant was
805 removed every week for ELISA. CAR-T cell proliferation was measured weekly by flow
806 cytometry using Precision Count Beads (BioLegend). The levels of cytokines IL-2 and IFN- γ
807 were quantified using ELISA MAX Deluxe Set Human IL-2 and ELISA MAX Deluxe Set
808 Human IFN- γ (BioLegend).

809 SupT1-B7H3^{range} re-challenge assays were performed as follows (illustrated in Figure 6C).
810 For the overnight (~18h) co-culture cytokine assays, CAR-T cells were co-cultured with
811 GFP/Luc-SupT1-B7H3^{range} cells or GFP/Luc-SupT1-WT cells in 96-well plates at an E:T ratio
812 of 1:1. After 18 h, supernatant was removed for analysis with ELISA MAX Deluxe Set
813 Human IL-2 and ELISA MAX Deluxe Set Human IFN- γ (BioLegend). Cytotoxicity at the
814 various indicated timepoints was tested using a luciferase-based assay. Briefly, 15ug/mL of
815 D-luciferin (Perkin Elmer) was added to each well to document the remaining number of
816 living tumor cells. The plate was then incubated for 5 min at 37°C in 5% CO₂ and run on a
817 SpectraMax, Molecular Devices analyzer, with 'no effector' tumor wells as controls for T cell-
818 mediated tumor death. CAR-T cells or untransduced cells were plated at a 1:1 E:T ratio, with
819 daily re-challenges. Cytotoxicity readings were done in this manner 18h after each new
820 tumor re-stimulation. CAR-T cell proliferation was measured weekly by flow cytometry using
821 Precision Count Beads (BioLegend).

822 Brain tumor challenge assays with GFP/Luc-Med8A, -D425 and -D341 cells were done by
823 plating CAR-T cells with targets at the indicated E:T ratios in 96-well plates. Cytotoxicity at
824 96h following tumor challenge was tested using a luciferase-based assay. Briefly, 15ug/mL
825 of D-luciferin (Perkin Elmer) was added to each well to document the remaining number of
826 living tumor cells. The plate was then incubated for 5 min at 37°C in 5% CO₂ and run on a
827 SpectraMax, Molecular Devices analyzer, with 'no effector' tumor wells as controls for T cell-
828 mediated tumor death. CAR-T cell proliferation was measured weekly by flow cytometry
829 using Precision Count Beads (BioLegend).

830 Malignant rhabdoid tumoroids were established, characterised and cultured as previously
831 described^{30,31}. 103-T tumoroids were transduced with a construct encoding for luciferase
832 were cultured in KOM in BME droplets for 7 days in advance. 4 days before the co-culture
833 the tumoroids were disrupted mechanically into a single cell suspension by mechanical
834 dissociation and seeded in BME droplets. On the day of CAR-T challenge, MRT tumoroids
835 were collected, washed with cold medium to remove BME, and a fraction was dissociated
836 into a single cell suspension. Single tumor cells were counted to determine the number of
837 cells present in the MRT tumoroid suspension. MRT tumoroids were then seeded out with an
838 equivalent of 7500 single tumor cells per well in 50 uL of co-culture medium containing 10%
839 FBS and a 1:1 ratio of KOM and RPMI with 1X GlutaMAX and 1X P/S. To determine tumor
840 specific killing, a released luciferase assay was performed using the luciferase assay system
841 (Promega). Medium was removed and cells were washed with 100 uL of PBS. 20 uL of 1X
842 passive lysis buffer (Promega) were added and the plate was incubated at room temperature
843 for 15 min while shaking. In a LUMITRAC white polystyrene 96-well plate (Greiner) 100 uL of
844 the luciferase reagent were added to 20 uL of the lysed cells and the plate was measured at
845 the FluoSTAR Omega Microplate reader immediately. Luciferase signal was determined on
846 day 1 after co-culture as well as before re-challenge with new tumoroids.

847 To measure CAR-T cytotoxicity against (AMC) 691-B and 691-T neuroblastoma tumoroids,
848 GFP-Luc tumoroids were dissociated into single cells by re-suspending in 1 mL of Accutase
849 solution (Sigma-Aldrich) through a p10 tip on top of a p1000 tip to combine both enzymatic
850 and mechanic dissociation methods. Tumoroid cells in suspension were counted and plated
851 two days before the beginning of the experiment to ensure spheroid formation in 96-well
852 white flat bottom plates(Costar). On the day of initiation co-culture, CAR-T cells were
853 counted and plated with GFP/Luc tumoroids at the stated E:T ratios in half 'neurosphere
854 medium' (expanded on in the Cell Lines section of Methods and Materials) and half T cell
855 medium (RPMI- GlutaMAX 1640 + 25 mM Hepes (ThermoFisher) supplemented with 10%
856 FCS (Gibco), 1% penicillin/streptomycin (ThermoFisher) and 1% L- glutamine

857 (ThermoFisher) supplemented with 100 IU/mL IL-2 (Miltenyi Biotec)). For re-challenge,
858 tumoroids were plated 2 days before each challenge, with the CAR-T culture added on top.
859 Tumoroid re-challenge a set E:T ratio was done every 2-3 days. Cytotoxicity was measured
860 by adding 15ug/mL of D-luciferin (Perkin Elmer) to each well to document the remaining
861 number of living tumor cells, with 'no effector' tumor wells as controls for T cell-mediated
862 tumor death. Cells were then incubated for 5' at 37°C in 5% CO₂ and readout performed in
863 the FLUOstar Omega microplate reader.

864 Flow cytometry staining and analysis

865 The following cell cytometers were used to collect flow cytometry data: BD ® LSR II Flow
866 Cytometer (BD Biosciences), FACSsymphony™ A5 High-Parameter Cell Analyzer (BD
867 Biosciences) and CytoFLEX S V4-B2-Y4-R3 Flow Cytometer (Beckman Coulter). FlowJo
868 10.9.0 software for Mac (Becton Dickinson) was used to analyse flow cytometry data. All
869 staining was done in FACS buffer, PBS, 2% FCS with 2mM EDTA. Samples were either
870 analysed immediately following staining or fixed with Biolegend Fixation Buffer and analysed
871 within two weeks. The following table lists the flow cytometry staining reagents that were
872 used:

873

Target	Product ID	Catalogue Number
<i>Viability Dye</i>	Fixable Blue Dead Cell Stain — LIVE/Dead™ (Thermo)	L34961
<i>Flow count beads</i>	Precision Count Beads (Biolegend)	424902
<i>B7H3-his</i>	B7H3-his protein to detect CAR at the cell surface (R&D Biosystems)	1949-B3-050/CF
<i>His</i>	Anti-his mAb clone J095G46-APC (BioLegend)	362605
<i>Ag Density Quantification</i>	BD Biosciences™ Quantibrite™ Phycoerythrin (PE) Beads; used to quantify B7H3 antigen density on target cell surface	10626384

<i>Fixation buffer</i>	Fixation buffer (Biolegend)	420801
<i>Cell membrane dye</i>	eBioscience Cell Proliferation Dye eFluor 450 (blue) (Thermo Fisher); used to label cells for BEHAV3D analysis	65-0842-85
<i>Cell membrane dye</i>	Calcein AM (green) (Thermo Fisher); used to label cells for BEHAV3D analysis	C1430
<i>Cell membrane dye</i>	CellTrace™ Far Red Cell Proliferation Kit, for flow cytometry; used to label cells for Lumicks z-Movi analysis	C34564
<i>RQR8 marker gene</i>	Clone QBEND10-APC (BioTechnne)	FAB7227A
<i>CD3</i>	Clone OKT-3-Brilliant Violet 711 (Biolegend)	317328
<i>CD4</i>	Clone VIT4-VioBlue (Miltenyi Biotec),	130-113-219
<i>B7H3</i>	Clone MIH42-PE (BioLegend)	351003
<i>PD-1</i>	Clone EH12.1-Brilliant Violet 605 (Beckton Dickinson)	563245
<i>CD25</i>	Clone 2A3-Briljant Violet 711 (Beckton Dickinson)	563159
<i>CD4</i>	Clone A161A1-FITC (Biolegend)	357406
<i>CD8</i>	Clone SK1-PerCP (Biolegend)	344706
<i>TIM-3</i>	Clone F38-2E2-PE (Biolegend)	345006
<i>CCR7</i>	Clone G043H7-PE/Dazzle594 (Biolegend)	353235
<i>CD69</i>	Clone FN50-PE-Cy7 (Beckton Dickinson)	561928
<i>CD137</i>	Clone 4B4-1-APC (Beckton Dickinson)	550890
<i>CD3</i>	Clone HIT3a-Alexa Fluor 700 (BioLegend)	300324

CD45RA

Clone HI100-APC/Cy7 (Beckton Dickinson)

750258

874

875 Lumicks CAR-T synapse avidity measurements

876 Proprietary z-Movi Lumicks protocols were followed under the supervision of Lumicks staff
877 present for the assays. Briefly, SupT1-WT, SupT1-B7H3^{hi}, LAN-1 and Med8A tumor cells
878 were seeded in a z-Movi microfluidic chip (Lumicks, Amsterdam, Netherlands) coated with
879 poly-L-lysine and cultured for 16 hours. The next day, flow sorted, transduction efficiency-
880 normalized and CellTrace Red (Biolegend)-labelled CAR-T cells were serially flowed in the
881 chips and incubated with the target cells for 10 minutes prior to initializing a 3-minute linear
882 force ramp. During the force ramp, the z-Movi device (Lumicks) captured a time series of
883 images using a bright field microscope integrated into the platform. Detached cells were
884 levitated towards the acoustic nodes, allowing the tracking of cells based on their XY
885 positions. Changes in the Z-position resulted in a change in the diffraction pattern, which
886 allowed the distinction between cells adhered to the substrate and cells suspended to the
887 acoustic nodes. This information was used to correlate cell detachment events with a
888 specific rupture force. Cell detachment was acquired using z-Movi Tracking and post
889 experiment image analysis was done using Cell Tracking offline analysis. Data were
890 presented as 'mean % CAR-T attached cells' at the maximum mean force applied, 1000
891 piconewtons, pN. This was repeated in experimental triplicate for four biological T cell
892 donors. A greater depth of z-Movi workflow is reported online³⁷. The software used to
893 acquire the data was z-Movi Software (v1.0).

894 Binder affinity measurements

895 Biacore surface plasmon resonance (SPR) for anti-B7H3 antibodies was done as previously
896 described³⁸. Briefly, MGA271, 376.96 and TE9 binders were expressed in human IgG1
897 format (Evitria), and then evaluated by Antibody Analytics using Biacore SPR for binding

898 kinetics to 4-Ig human B7H3. Anti-B7H3 antibodies were first adhered to plates and several
899 concentrations of Human B7-H3 analyte were passed over the surface to assess the binding
900 interactions. The data is shown in Figure 2G. Clone 9G8 mAb was used as an isotype
901 control.

902 *BEHAV3D CAR-T / tumoroid imaging*

903 Tumoroids (691-B and -T) were grown in 'Neurosphere medium' (as described in the 'Cell
904 Lines' section), cultured for 3 weeks prior to the experiments and passaged once or twice a
905 week according to tumoroid size and confluence. The experimental timeline is illustrated in
906 Figure 7A. CAR T cells were thawed one day prior to the start of the experiment in RPMI-
907 GlutaMAX 1640 + 25 mM Hepes (ThermoFisher) supplemented with 10% FCS (Gibco), 1%
908 penicillin/streptomycin (ThermoFisher) and 1% L- glutamine (ThermoFisher), rested
909 overnight at a density of 1×10^7 cells/mL in 100 IU/mL IL-2 (Miltenyi Biotec)-supplemented
910 medium. CAR T cells for the initial challenge day 0 imaging experiment were stained with the
911 following antibody mix in FACS buffer (PBS 1x + 2% FCS + 2mM EDTA): anti-RQR8 mAb
912 clone QBEND10-APC (R&D Systems), anti-CD4 mAb clone VIT4-VioBlue (Miltenyi Biotec)
913 and mouse serum (Invitrogen). RQR8 $^+$ CD4 $^+$ and RQR8 $^+$ CD4 $^-$ CAR-T cells were FACS-
914 sorted with a Sony SH800S cell sorter into FCS, and rested overnight in a density of 1×10^7
915 cells/mL in medium supplemented with 100 IU/mL IL-2 (Miltenyi Biotec).

916 For co-culture experiments, tumoroids were dissociated into single cells by pipetting 1 mL of
917 Accutase solution (Sigma-Aldrich, counted and plated two days before the beginning of the
918 experiment to ensure spheroid formation in either 12-well flat-bottom plates (for rec-
919 hallenges) (Greiner) or in a glass-bottom 96-well SensoPlate (Greiner) for imaging. The
920 correct cell number was determined considering organoid growth rates. Wild type organoids
921 were used. Sorted and rested CAR T cells were stained separately with eBioscience Cell
922 Proliferation Dye eFluor 450 (1:4000, ThermoFisher) or Calcein AM (1:3000, ThermoFisher)
923 in PBS for 15 minutes at 37°C and mixed in a 1:1 ratio immediately before plating them with

924 the organoids in a 1:5 E:T ratio. The co-culture medium (100 μ L organoids + 100 μ L T cells)
925 was then supplemented with 2.5% basement membrane extract (BME, Cultrex), Nucred
926 Dead 647 (three drops per mL, ThermoFisher), and TO-PRO-3 (1:5000, ThermoFisher). The
927 combination of Nucred Dead 647 and TO-PRO-3 has previously been described by Dekkers
928 et al²⁴. The plate was placed in a SP8 confocal microscope (Leica) containing an incubation
929 chamber (37°C, 5% CO₂) and imaged for thirteen hours in time series with two-minute
930 intervals (as shown in Supplementary Figure 10). Day 7 BEHAV3D imaging was the third
931 challenge with 691 tumoroids. On Day 6, cells from re-challenge plates were stained with the
932 following antibody mix in FACS buffer (PBS1x + 2% FCS + 2mM EDTA): anti-RQR8 mAb
933 clone QBEND10-APC (R&D Systems), anti-CD4 mAb clone VIT4-VioBlue (Miltenyi Biotec),
934 anti B7H3 mAb clone MIH42-PE (BioLegend) and mouse serum (Invitrogen). B7H3⁻
935 CD34⁺CD4⁺ and B7H3⁻ CD34⁺CD4⁺ CAR-T cells were FACS-sorted with the Sony SH800S
936 cell sorter into FCS, rested overnight at a density of 1x10⁷ cells/mL in medium supplemented
937 with 100 IU/mL IL-2 (Miltenyi Biotec). On day 7, rested CAR-T cells were stained separately
938 and plated with WT organoids in a 1:5 E:T ratio, as described above. The plate was placed
939 in a SP8 confocal microscope (Leica) containing an incubation chamber (37°C, 5% CO₂)
940 and imaged for thirteen hours in time series with a two-minute interval.

941 Image processing was done according to the protocol previously described by Dekkers et
942 al²⁴ using the Imaris (Oxford Instruments) version 10.0 software for 3D visualization, cell
943 segmentation and extraction of statistics. The Channel Arithmetics Xtension was used to
944 create additional channels for the specific identification of CD8⁺ and CD4⁺ T cells (live and
945 dead), organoids (live and dead), and to exclude debris. The Surface and ImarisTrack
946 modules were used to specifically detect and track T cells and/or organoids. For tracked T
947 cells, time-lapse statistics consisting of the coordinates of each cell, speed, square
948 displacement, distance to either organoids or the other T cell subset, and dead cell dye
949 channel intensity were exported into a metadata file for subsequent processing and analysis.

950 Data presentation

951 Data was graphed and analysed statistically using Graphpad Prism 10 for macOS software
952 (Dotmatics). Statistical tests were chosen as suitable to particular data sets, and statistical
953 test recommendations by Graphpad Prism 10 software were followed, based on data type,
954 replicates and degree of pairing. The number of biological and experimental replicates used
955 in each analysis is listed in respective figure legends. Data processing for the BEHAV3D
956 platform was done using 'R' programming language code that was written by and published
957 from the Rios group²⁴.