

1 **Title**

2 **Investigating the use of odour and colour foraging cues by rosy-faced lovebirds (*Agapornis*
3 *roseicollis*) using deep-learning based behavioural analysis**

4

5 **Authors**

6 Winson King Wai Tsang^a, Emily Shui Kei Poon^a, Chris Newman^b, Christina D. Buesching^c, Simon
7 Yung Wa Sin^a

8

9 **Affiliations**

10 ^a School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong,
11 China.

12 ^b Wildlife Conservation Research Unit, Department of Biology, University of Oxford, The Recanati-
13 Kaplan Centre, Tubney OX13 5QL, UK

14 ^c Department of Biology, Irving K. Barber Faculty of Sciences, The University of British Columbia,
15 Okanagan, Kelowna, British Columbia, Canada

16

17 **Correspondence**

18 yungwa.sin@gmail.com or sinyw@hku.hk (S.Y.W.S.)

19

20 **Abstract**

21 Olfaction and vision can play important roles in optimizing foraging decisions of birds, enabling them
22 to maximize their net rate of energy intake while searching for, handling, and consuming food. Parrots
23 have been used extensively in avian cognition research, and some species use olfactory cues to find
24 food. Here we pioneered machine learning analysis and pose-estimation with convolutional neural
25 networks (CNNs) to elucidate the relative importance of visual and olfactory cues for informing
26 foraging decisions in the rosy-faced lovebird (*Agapornis roseicollis*) as a non-typical model species.

27 In a binary choice experiment, we used markerless body pose tracking to analyse bird response
28 behaviours. Rosy-faced lovebirds quickly learnt to discriminate the feeder provisioned with food by
29 forming an association with visual (red/green papers) but not olfactory (banana/almond odour) cues.
30 When visual cues indicated the provisioned and empty feeders, feeder choice was more successful,
31 choice latency shorter, and interest in the empty feeder significantly lower. This demonstrates that
32 visual cues alone are sufficient to inform lovebird foraging decisions without needing to use olfactory
33 cues, suggesting that selection has not driven olfactory-based foraging in lovebird evolution.

34

35 **Keywords**

36 Animal cognition, avian olfaction, avian vision, convolutional neural networks, foraging behaviour,
37 parrots.

38

39 **Introduction**

40 Optimal foraging theory posits that animals seek to maximize their net rate of energy intake while
41 searching for, handling, consuming, and digesting food (Stephens & Krebs, 2019). Foraging
42 optimality therefore depends not only on extrinsic variables, such as food availability, patch size,
43 predator avoidance, and environmental stochasticity, but also on the forager's ability to detect food
44 (Martin, 2020). This may involve multiple sensory systems (i.e., detecting visual, auditory, tactile, and
45 olfactory cues) integrated by cognitive processes (Talsma et al., 2010). Modalities may synergize each
46 other, or one modality may have primacy. Depending on the specific conditions, feeding behaviour
47 can thus be moderated by top-down factors, such as previous experience and the goals and
48 expectations of the receiver, and by bottom-up factors, such as signal salience and detection threshold
49 (Sumner and Sumner, 2020). When cognitive processing related to a specific task is more efficient in
50 one modality than in another (e.g., when one modality is masked by environmental noise), the
51 principle of 'modality appropriateness' applies (Welch and Warren, 1980). Ultimately, better
52 understanding how animals engage their senses during ecologically important tasks may therefore

53 inform on potential for adaptation to environmental change, where the growing appreciation of the
54 role played by sensory abilities is driving a paradigm shift in foraging ecology (LaScala-Gruenewald
55 et al., 2019).

56 The role of visual perception in avian foraging decisions is relatively well understood
57 (Fernández-Juricic et al., 2004). Birds perceive wavelengths from 300 to 700 nm (Toomey et al.,
58 2016), extending into the ultraviolet spectrum (Jacobs, 1992). Birds have four cone cell types and see
59 more hues than humans (Toomey et al., 2016). This superior visual perception may support complex
60 decision making, including foraging (e.g., Shrestha et al., 2013). Acoustic perception is also well-
61 understood across bird taxa, although, outside of scavenging (Jackson et al., 2020), audition appears
62 less important to foraging decisions (Elie et al., 2020).

63 In contrast, far less is known about avian olfaction, although birds use odour cues in
64 individual discrimination (predators, relatives, partners, offspring, hetero-/conspecifics; Caro et al.,
65 2015), nest recognition (Krause & Caspers, 2012), sexual advertisement (Caro et al., 2015), homing
66 and navigation (Thorup et al., 2007), and foraging (e.g., Mäntylä et al., 2020; Rubene et al., 2019). For
67 instance, insectivorous birds use herbivore-induced plant volatiles (HIPVs) in combination with visual
68 cues to identify insect-damaged trees (Amo et al., 2013), and various bird species use both vision and
69 olfaction either hierarchically or in combination to identify foraging sites (Rubene et al. 2019), while
70 great tits (*Parus major*) can identify herbivore-damaged trees without any arthropod prey cues by
71 using olfaction alone, but not vision alone (Amo et al., 2013). According to the dispersal syndrome
72 hypothesis, fruits have evolved specific traits to attract dispersers (Lei et al. 2021), including fruit
73 colour that signals higher lipid content and appeals particularly to avian dispersers. This suggests that
74 birds rely more on visual cues than on odour or taste to detect food, although this may be influenced
75 by species-specific fruit consumption techniques (Levey, 1987). Additionally, the olfactory receptor
76 (OR) subgenome and its expression vary with olfactory ability and are shaped by ecological factors
77 and life-history adaptations (Sin et al., 2022; Steiger et al. 2010).

78 Parrots (Psittaciformes) have been used extensively in avian cognition research (see
79 Auersperg and von Bayern, 2019). Nevertheless, despite relying predominantly on fruits, seeds, and

80 nectar (Ndithia & Perrin, 2009a; Toda et al., 2021), their ability to detect these foods using olfaction
81 alone or in a multimodal combination with visual cues remains largely untested. Earlier studies (Healy
82 and Guilford, 1990) used olfactory bulb ratio as an indicator of olfactory ability (Corfield et al., 2015),
83 and inferred that parrots likely have a poor sense of smell. Nevertheless, studies showing that Yellow-
84 backed chattering lories (*Lorius garrulus flavopallia*) (Roper, 2003), kakapo (*Strigops habroptilus*)
85 (Gsell, 2012), kea (*Nestor notabilis*), and New Zealand kākā (*Nestor meridionalis*) (Gsell et al., 2016)
86 use olfactory cues to find food have refuted this assumption.

87 To elucidate the role of olfaction and any multimodality between olfaction and vision in
88 parrots, we conducted a food reward experiment testing the ability of rosy-faced lovebirds (*Agapornis*
89 *roseicollis*), a common pet parrot species (Chan et al. 2020), to associate odour and colour cues with
90 food presence/absence. Specifically, we investigated whether *A. roseicollis* can locate food rewards
91 purely from i) olfactory cues, ii) visual cues, and iii) whether their success rate is enhanced if visual
92 and olfactory cues are presented in a co-modal combination. To analyse decision-making processes in
93 detail, we applied a machine learning analytical approach, using DeepLabCut (Mathis et al. 2018) and
94 Simple Behavioural Analysis (SimBA) software (Nilsson et al., 2020), able to detect markerless
95 posture estimation networks (convolutional neural networks) to classify behaviour from video, frame-
96 by-frame. This approach can test nonlinear dependencies and unknown interactions across multiple
97 variables unencumbered by the inductive bias implicit in a priori hypothesis testing (Sturman et al.
98 2020). We discuss our results in the context of optimal foraging theory to extend understanding of the
99 ecological implications of avian cognition and sensory systems, where evidence that either of these
100 sensory modalities, separately or in co-modality, enhance net energy gain or reduce the time taken to
101 achieve that gain would support optimal foraging.

102

103 **Materials and methods**

104 *Study species*

105 We used 26 captive, sexually mature *A. roseicollis* (17 males, 9 females), kept at the Centre for
106 Comparative Medicine Research (CCMR) animal facility at the University of Hong Kong. Birds were
107 provisioned with artificial food pellets (Mazuri Small Bird Maintenance Diet 56A6), which did not
108 contain any fruit and/or nut ingredients. Experiments were conducted in individual cages (60cm ×
109 40cm × 35cm) under 6500K illumination (LED T5 tube, 7W, SUNSHINE).

110

111 ***Experimental design and data collection***

112 We conducted binary choice experiments, commonly used to study sensory discrimination in birds
113 (e.g., Potier et al., 2021; Abankwah et al., 2020). Because lovebird natural diet includes fruits and
114 seeds (Ndithia & Perrin, 2009a), we used natural sunflower seeds, Parakeet Higgins Vita Seed, and
115 Mazuri food pellets as food reward in the experimental set-up.

116 To test sensory preferences, we designed a foraging task where birds had to select between
117 two cylindrical (diameter × height: 5cm × 5cm), non-transparent feeders attached to a perch (20 cm)
118 that allowed the bird to move freely between feeders and select between foraging cues (Supplementary
119 Figure 1A). One feeder contained food ('feeder_{food}'), the other feeder was empty ('feeder_{w/o food}'). Both
120 feeder bowls were completely covered with paper folded around the rim and fixed with a cable tie,
121 preventing birds seeing the food reward. Red paper signified the feeder_{food}, green paper signified the
122 feeder_{w/o food}, while white paper could cover both reward and empty feeders. A scent stick was attached
123 to these paper cover, either untreated or treated with two drops of an odour cue: Banana scent
124 (RAYNER'S) to indicate the feeder_{food}, or 2 drops of almond scent (RAYNER'S) to indicate the
125 feeder_{w/o food}. These scents were chosen based on their successful application in similar studies.
126 Almond odour occurs naturally, associated with toxicity in plants, and has been used successfully in
127 avoidance learning experiments in chickens (*Gallus gallus domesticus*) (Roper and Marples, 1997).
128 Banana odour was used because toucans (*Ramphastos* spp.), scarlet macaws (*Ara macao*) (Hernández
129 et al. 2022), and red-winged starlings (*Onychognathus morio*) (Zungu et al. 2014) can detect and use it
130 when making foraging decisions (see Supplementary Material for habituation and training protocol).

131

132 ***Experimental Phase***

133 During the experiments, feeders were obscured with non-perforated paper. Each bird was tested in
134 four different experimental set-ups, a choice between: 1) a provisioned and an empty feeder marked
135 with a combination of corresponding visual and olfactory cues (banana or almond); 2) a provisioned
136 and an empty feeder marked with only olfactory cues (banana or almond); 3) a provisioned and an
137 empty feeder marked only with visual cues; and 4) a provisioned and an empty feeder without any
138 cues (Figure 1B). To avoid side bias, we repeated each trial with feeder positions reversed, and tested
139 all birds in all feeder combinations. Thus, each bird participated in twelve trials. Birds participated in a
140 single trial per day, to ensure choices were independent and unbiased by recent experience, and to
141 avert trial fatigue. All trials were conducted between 9am-3pm.

142

143 ***Behavioural analysis***

144 We recorded bird behaviour using a video camera (STARCAM CB71 Mini Battery IP Camera) placed
145 above the cage (Figure S1). We defined two 12cm × 12cm regions of interest (ROI) centred around
146 either feeder (ROI_{food}: ROI around a feeder_{food}; ROI_{w/o food}: ROI around a feeder_{w/o food}) (Figure 1A). We
147 classified behaviours into ‘investigation’ (i.e., head turns, body turns, preening, and wing stretching)
148 and ‘tearing’ (i.e., bird using its beak to tear a hole in the paper cover). To standardise video length
149 between individuals and trials, we trimmed videos to start once the bird entered the field of vision, and
150 to end once the bird chose one of the feeders (i.e., tearing a hole in the paper and putting its head into
151 the feeder). If birds failed to do so within 1 hour, no choice preference was recorded for that trial and
152 the video was not included in downstream analysis. Birds that tore away the paper covers of both
153 feeders, but without making a clear choice (i.e., putting their head into neither feeder), were assigned a
154 choice based on the duration spent in each feeder ROI, time spent investigating each feeder, and time
155 spent tearing at each feeder prior. Videos were recorded at a resolution of 1920 × 1080 pixels, but
156 were down-sampled to 1280 × 720 pixels, with a bit-rate of 1000 bps at 30 frames per second (fps,) to
157 facilitate further computational analysis (Mathis & Warren, 2018).

158

159 ***Machine learning of pose estimation and behavioural classification***

160 We used DeepLabCut (2.2.0.3; Mathis et al., 2018) for markerless tracking of the relative positions of
161 seven body parts (left eye, right eye, crown, beak, left nape, right nape, and back centre; Figure S2) for
162 pose-estimation. Simple Behavioural Analysis (SimBA) (0.89.9; Nilsson et al., 2020) was used for
163 supervised machine learning of behavioural predictive classification to quantify recorded behaviours
164 automatically. A random subset of 3000 labelled frames from 50 videos, taken during different
165 experiments featuring different individuals, was used for network training.

166 We trained a ResNet-50-based neural network (He et al. 2016; a convolutional neural
167 network, up to 50 layers deep), set with default parameters, and using the maximum of 10,300,000
168 training iterations. Validation, based on a single shuffle (to normalise data) gave a test error of 3.15
169 pixels and a train error of 2.66 pixels (with p-cut-off =0.95). We used a p-cut-off of 0.95 to condition
170 the X, Y coordinates for future analysis. Network training was performed in the Google Colab Pro
171 environment (Carneiro et al., 2018) with NVIDIA Tesla T4/P100 GPUs. The trained network was
172 applied to analyse all videos, yielding pose tracking files for subsequent analysis. Figure 2A shows the
173 pose-estimation analytical procedure. The video and the tracking file of each bird were input into
174 SimBA to produce behavioural classifiers (Nilsson et al., 2020).

175 Next, we took pose-estimation data, extracted from the DeepLabCut procedure, standardised
176 for relative body-position distance (pixels/mm) movement, angles, areas, and path metrics and their
177 deviations and rank for individual frames and across rolling windows, along with time (fps)
178 standardisation, to which we applied the SimBA in-built event logger (using FFmpeg to display
179 individual frames alongside extracted video) to annotate the presence/absence of each behaviour
180 within each ROI, the total duration of each behaviour, and the time when the bird entered/exited either
181 ROI. Behaviour classifier models separated data and eigenvalues into different classes (e.g., absence
182 or presence) by applying intuitive random forest classifier algorithms (trained using default
183 hyperparameters; Figure 2B) to these raw video data to obtain the behavioural dataset.

184 Each classification model was evaluated based on calculating its precision, recall and F1 curve
185 scores after 5-fold shuffle cross-validations on 20% of the datasets annotated in the SimBA event
186 logger, and by testing each classifier on the un-shuffled, correctly annotated behavioural event
187 annotations in the training data set. We generated classifier learning curves that indicated how the
188 inclusion of further logged behavioural events affected classifier performance. We also evaluated F1-
189 scores for learning curves after performing 5-fold cross-validations using 1, 25, 75 and 100% of the
190 shuffled data sets to predict the classified behaviours on 20% of the datasets. Precision-recall curves
191 were generated to visualise how classifiers can be titrated to balance classification sensitivity against
192 specificity across different discrimination thresholds, which we used to set the optimal discrimination
193 threshold for ‘investigation’ at 0.52 and ‘tearing’ at 0.5625 (see Figure S3 for illustration of the
194 workflow for machine learning, pose estimation and behavioural classification).

195 Mean precision, recall, and F1-scores for the presence/absence of behaviours following the 5-
196 fold shuffle cross-validation of each classifier are presented in Figure S4. Classification performance
197 for the presence of behaviours as measured by F1 were 0.736 and 0.781, precision was 0.713 and
198 0.735, and recall was 0.758-0.834; the classification performance scores for the absence of behaviours
199 were slightly higher (Figure S4C). Five-fold cross-validation learning curves using 1-100% of these
200 annotated data (Figure S4A) showed that the number of annotated images correlated positively with
201 the F1-score. Precision-recall curves (Figure S4B) indicated optimal classifier performance for
202 different classifications, as measured by F1-score at discrimination thresholds between 0.52 and 0.56.
203 We used SimBA to correct gross pose-estimation tracking inaccuracies based on impossible locations
204 and movements of body parts.

205 From the pose-estimation model and the behavioural classifier, we calculated the proportion
206 of each response variable (i.e., time spent on ‘investigation’ and ‘tearing’, number of times the bird
207 entered either ROI, and total time spent in each ROI; but excluding choice result and choice latency,
208 see Table 1) in each trial by dividing the total time spent on each behaviour by the total video duration
209 time. Choice latency was first calculated as the total video duration minus the total time the bird spent

210 in each ROI, and standardized as a proportion from 0 to 1 for better visualisation. No data were
211 standardised before conducting any statistical analyses.

212 Choice latency (i.e., when birds were not in either ROI) was analysed equally for ROI_{food} and
213 ROI_{w/o food}. In contrast, the frequency with which birds entered either ROI, and the total time spent in
214 these ROIs, were analysed based on the ROI_{food}. Consequently, latency was reciprocally proportionate
215 between the two ROIs, and analysed as a total for each trial, whereas investigation time and tearing
216 were analysed separately for each ROI, as these data were not reciprocally proportionate.

217

218 ***Statistical analyses***

219 Statistical analyses were performed using R (version 4.2.0) with RStudio. We used the "GLMMTMB"
220 package for generalised linear mixed models (Magnusson et al., 2017). Two identical models were
221 performed, one for each olfactory cue, the 'banana model' and the 'almond model'. In both models, N
222 designates the no-cues treatment group ; O that only olfactory cues were presented; V that only visual
223 cues were presented, and B that both sensory cues were presented. We also analysed the complete
224 suite of behaviours recorded during each trial to test for a combinatory effect between visual and
225 olfactory cues.

226 Visual cues (yes/no) and olfactory cues (yes/no for either banana or almond) were included as
227 fixed effects with an interaction term. Individual identity and trial number were included as random
228 effects, with the side of the feeder_{food} included as a random slope. The significance of successfully
229 selecting the feeder_{food} ('success rate') was determined using binomial statistics. Multiple pairwise
230 comparisons were subjected to Benjamini-Hochberg correction. Critical alpha values were set at
231 $p < 0.05$ for all analyses, unless stated otherwise.

232 We used the "DHARMA" and "performance" packages to check if model assumptions were
233 met (Lüdecke et al., 2021). We checked normality among model residuals and each random effect
234 with Shapiro-Wilk tests and qqplot, and checked for homogeneity of variances, linearity of fitted value
235 and residuals, and collinearity of the variance inflation factor (VIC) using Levene's tests and Bartlett's

236 tests. We used boxplots to identify influential outliers. If the model residual did not fit normality, a
237 Box-Cox transformation was applied to these data (Box & Cox, 1964). Although results were similar
238 if outliers were included, outliers were excluded if they significantly affected model homogeneity of
239 the variance to ensure model assumptions were met.

240

241 **Results**

242 ***Behavioural responses: selecting the feeder that contained the food reward***

243 We analysed a total of 296 videos. Treatment cues affected the success rate at which birds correctly
244 chose the feeder_{food} (Figure 3): Overall, if only visual cues were presented (Figure 1 B3), success rate
245 was 96.15% (50/52), significantly better than expected by chance ($p<0.001$); if no cues were presented
246 (Figure 1 B4), overall success rate was 47.92% (23/48), i.e., not significantly different from random
247 choice ($p=0.11$). If a positive visual cue indicating food (i.e., red paper) was paired with banana scent
248 (Figure 1 B1), success rate was 87.23% (41/47, $p<0.001$); if a negative visual cue (green paper) was
249 paired with almond scent, success rate was 98% (49/50, $p<0.001$). If, however, only scent cues were
250 presented (Figure 1 B2), success rate dropped to 36.54% (19/52, $p=0.017$) for banana scent and 61.7%
251 (29/47, $p=0.03$) for almond scent (Figure 3).

252

253 1) Feeder choice

254 Only visual cues affected feeder choice significantly (banana model ANOVA: $\chi^2_{1,196}=18.16, p<0.001$;
255 almond model ANOVA: $\chi^2_{1,194}=27.97, p<0.001$), with no significant interactions in either model
256 (Table. 2 & 3; Figure 3). Post-hoc model comparison showed that feeder choice differed only when
257 visual cues were present, i.e., between treatment groups N and V (banana model: $t_{196}=-3.19, p<0.01$;
258 almond model: $t_{194}=-4.25, p<0.001$); N and B (banana model: $t_{196}=-2.36, p<0.05$; almond model: $t_{194}=-3.79, p<0.001$); V and O (banana model: $t_{196}=3.66, p<0.01$; almond model: $t_{194}=3.38, p<0.01$); and B
259 and O (banana model: $t_{196}=-2.92, p<0.01$; almond model: $t_{194}=-3.15, p<0.01$).

261

262 2) Number of ROI_{Food} entries
263 The number of ROI_{Food} entries prior to the bird choosing a feeder was also only affected by visual cues
264 (banana model: ANOVA: $\chi^2_{1,195}=64.94, p<0.001$; almond model: ANOVA: $\chi^2_{1,195}=12.92, p<0.001$)
265 with no significant interactions in either model (Table. 2 & 3; Figure 4). Post-hoc comparison showed
266 that ROI_{Food} entries differed significantly between treatment groups with and without visual cues
267 (banana model: N and V: $t_{195}=-5.33, p<0.001$; N and B: $t_{195}=-5.14, p<0.001$; V and O: $t_{195}=6.30,$
268 $p<0.001$; B and O: $t_{195}=-6.05, p<0.001$; almond model: N and V: $t_{193}=-2.90, p<0.05$; N and B: $t_{193}=-$
269 $2.91, p<0.05$; V and O: $t_{193}=2.17, p<0.05$; B and O: $t_{193}=-2.18, p<0.05$).

270

271 3) Investigation time
272 Time spent investigating either ROI_{Food} or ROI_{w/o Food} was affected by experimental treatments. For the
273 banana model, only visual cues significantly affected the time spent investigating the ROI_{w/o Food}
274 (ANOVA: $\chi^2_{1,175}=75.33, p<0.001$), with no significant interactions between visual and olfactory cues
275 (Table 2; Figure 4A). Post-hoc comparison showed significant differences between treatment groups
276 N and V ($t_{175}=7.29, p<0.001$); N and B ($t_{175}=4.72, p<0.001$); V and O ($t_{175}=-7.62, p<0.001$); and B and
277 O ($t_{175}=4.98, p<0.001$). The time spent investigating in the ROI_{Food} was only affected significantly by
278 olfactory cues (ANOVA: $\chi^2_{1,195}=5.93, p<0.05$) without significant interactions between visual and
279 olfactory cues (Table 2; Figure 4A). Post-hoc comparison found no significant differences between
280 treatment groups.

281 For the almond model, visual cues significantly affected time spent investigating the ROI_{w/o Food}
282 (ANOVA: $\chi^2_{1,165}=40.51, p<0.001$). The interaction between visual and olfactory cues significantly
283 affected time spent investigating the ROI_{w/o Food} (ANOVA: $\chi^2_{1,165}=11.62, p<0.05$) (Table 3; Figure
284 4B), but there were neither significant effects nor a significant interaction between visual and olfactory
285 cues (Table 3; Figure 4B); therefore, post-hoc comparison found no significant differences between
286 treatment groups.

287

288 4) Choice latency

289 For the banana model, only visual cues significantly affected choice latency (ANOVA: $\chi^2_{1,195}=20.33$,
290 $p<0.001$), with no significant interactions between visual and olfactory cues (Table 2; Figure 4A).
291 Post-hoc comparison found a significant difference between treatment groups N and V ($t_{195}= 3.68$,
292 $p<0.01$); N and B ($t_{195}= 3.11$, $p<0.01$); V and O ($t_{195}= -3.27$, $p<0.01$); and B and O ($t_{195}= 2.69$, $p<0.05$).
293 For the almond model, however, both visual and olfactory cues significantly affected choice latency
294 (ANOVA: visual $\chi^2_{1,191}=20.46$, $p<0.001$; olfactory: $\chi^2_{1,191}=4.15$, $p<0.05$), with no significant
295 interaction between visual and olfactory cues (Table 3; Figure 4B). Post-hoc comparison found a
296 significant difference between treatment groups N and V ($t_{191}= 3.84$, $p<0.001$); V and O ($t_{191}= -4.64$,
297 $p<0.001$); and B and O ($t_{191}= 2.55$, $p<0.05$).

298

299 5) Tearing time

300 Both models evidenced different tearing times for ROI_{Food} and $ROI_{w/o Food}$. For the banana model, only
301 visual cues significantly affected tearing time in the $ROI_{no Food}$ (ANOVA: $\chi^2_{1,143}=15.53$, $p<0.001$),
302 without significant interaction between visual and olfactory cues (Table 2; Figure 4A). Post-hoc
303 comparison found a significant difference between treatment groups N and V ($t_{195}=3.29$, $p<0.01$); V
304 and O ($t_{195}= -3.67$, $p<0.01$); and B and O ($t_{195}=2.29$, $p<0.05$). The time spent tearing in the ROI_{Food} was
305 not affected by cues, with no significant interactions between visual and olfactory cues (Table 2;
306 Figure 4A). Post-hoc comparison found no significant differences between treatment groups.

307 For the almond model, only visual cues significantly affected tearing time in the $ROI_{w/o Food}$
308 (ANOVA: $\chi^2_{1,131}=16.27$, $p<0.001$), without significant interaction between visual and olfactory cues
309 (Table 3; Figure 4B). Post-hoc comparison found a significant difference between treatment groups N
310 and V ($t_{131}=3.82$, $p<0.01$); B and N ($t_{131}=2.27$, $p<0.05$); and V and O ($t_{131}= -3.45$ $p<0.01$). For the
311 ROI_{Food} , there was a significant interaction between the visual and olfactory cues in tearing time
312 (Table 3; Figure 4B).

313

314 6) Total time spent

315 The total time spent in ROI_{Food} was affected by visual cues (banana model: ANOVA: $\chi^2_{1,150}=16.72$,
316 $p<0.001$; almond model: ANOVA: $\chi^2_{1,172}=62.26$, $p<0.001$), and olfactory cues were also significant in
317 the almond model (ANOVA: $\chi^2_{1,172}=9.16$, $p<0.01$) (Table. 2 & 3; Figure 4). Post-hoc comparison
318 found a significant difference between treatment groups with and without visual cues, i.e., between
319 treatment groups N and V (banana model: $t_{146}=-4.15$, $p<0.001$; almond model: $t_{172}=-5.13$, $p<0.001$);
320 N and B (banana model: $t_{146}=-3.22$, $p<0.01$; almond model: $t_{172}=-3.27$, $p<0.001$); V and O (banana
321 model: $t_{146}=5.16$, $p<0.001$; almond model: $t_{172}=8.03$, $p<0.001$); and B and O (banana model: $t_{146}=-$
322 4.21, $p<0.001$; almond model: $t_{172}=-6.00$, $p<0.001$). For the almond model, total time spent was also
323 different between the treatment groups N and O ($t_{172}=-2.27$, $p<0.05$) and B and V ($t_{172}=2.02$, $p<0.05$).

324

325 **Discussion**

326 Lovebird feeder choice was guided almost exclusively by visual cues. If presented with a visual cue,
327 they were significantly more likely to choose the feeder_{Food}, to spend more time in the ROI_{Food}, and to
328 spend less time hesitating (latency) on which feeder to choose. They also performed significantly less
329 ‘investigation’ and ‘tearing’ behaviours at the feeder_{w/o food} when a visual cue was presented. In
330 contrast, neither banana (positive cue) nor almond (negative cue) odour influenced their feeder choices
331 (Figure 3). In fact, their foraging behaviour when only olfactory and no visual cues were presented
332 was very similar to when no cues were presented. They also spent a similar duration investigating and
333 tearing at a visually identifiable feeder_{Food}, irrespective of whether olfactory cues were presented.
334 From this we deduce that lovebirds did not utilise the olfactory cues we provided to locate their food,
335 but instead their decision making and processing time were informed solely by visual cues. We also
336 found that, once lovebirds established that a feeder contained no food, they gave it little subsequent
337 attention. This is consistent with optimal foraging theory, which posits that species should adopt the
338 most economically advantageous foraging patterns (Pyke et al., 1977).

339 Various previous studies have established the importance of visual foraging cues for birds,
340 and so our results are not unexpected. Most fruits, berries, and seeds have evolved distinctive colours
341 with wavelengths easily distinguished by birds (Lei et al. 2021), and strong visual ability enables
342 insectivorous birds to detect prey directly (Zvereva et al. 2019), and to detect even subtle differences
343 in the reflective spectrum produced by herbivore-damaged trees (Mäntylä et al. 2020). The importance
344 of olfaction in avian sensory perception has also been demonstrated across species and behaviours. For
345 instance, plants suffering herbivory engage in a tritrophic response, releasing volatile secondary
346 allelochemical metabolites to attract predators to remove these grazers (Mäntylä et al., 2004). Nevitt et
347 al. (1995) found that Procellariiform seabirds are attracted to the dimethyl sulphide scent produced by
348 phytoplankton in response to zooplankton grazing, resulting in the seabirds consuming these
349 herbivores. Rubene et al. (2019), however, showed experimentally that although herbivore-induced
350 plant volatiles attracted various insectivorous bird species, these olfactory cues were still secondary to
351 visual cues in avian foraging decisions. Importantly, and contrary to other studies (e.g., Mäntylä et al.,
352 2020; Potier et al., 2019; Rubene et al., 2019), in lovebirds we did not find any evidence that olfaction
353 was acting synergistically with vision. This suggests that while vision is augmented by scent in some
354 bird species, this synergism has not acted as a selection pressure during the evolution of lovebird
355 sensory perception (Steiger et al., 2010).

356 Unlike most other parrot species, known to have a keen sense of smell (e.g., yellow-backed
357 chattering lories *Lorius garrulus flavopalliatus*: Roper 2003; kakapo *Strigops habroptilus*: Hagelin
358 2004; kea and kaka: Gsell, 2012, budgerigars: Zhang et al., 2010), rosy-faced lovebirds live in arid
359 habitats, with high temperatures, intense sunlight, and low humidity; conditions not conducive to the
360 persistence of odour molecules that evaporate/denature quickly (Ndithia & Perrin, 2009b). In this
361 habitat, however, edible plants typically have high visual salience. Furthermore, unlike other parrot
362 species that may use their keen sense of smell to locate ripe fruit (e.g., the nocturnal kakapo [*Strigops*
363 *habroptila*]: Gsell et al., 2012; macaws: Hernández et al., 2022), lovebirds rarely feed on fruits in the
364 wild (Ndithia & Perrin, 2009a). Olfactory ability is reflected in the olfactory bulb to brain ratio, which,
365 along with OR gene numbers, is likely affected by ecological factors and life-history adaptations (e.g.,

366 nocturnal lifestyle: Gsell et al., 2012; trophic niche: Toda et al. 2021). In birds, olfactory bulb to brain
367 ratio correlates positively with the estimated total number of OR genes (Steiger et al. 2010; Khan et al.
368 2015), although parrots generally have relatively small ratios (Corfield et al. 2015). Since most
369 *Agapornis* species, including *A. roseicollis* and their common ancestor, are granivorous (Huynh et al.
370 2023), their olfactory ability (or use of olfaction in foraging) is likely more limited compared to parrot
371 species that have evolved strong olfactory ability. Therefore, that lovebirds do not associate banana
372 scent with foraging success may be due to a lack of association, a lack of olfactory receptors expressed
373 in sensory neurons within the olfactory epithelium, or due to the loss of functional olfactory receptor
374 genes able to detect certain odour cues (i.e., almond) (Steiger et al., 2010).

375 Nevertheless, although banana or almond odour cues did not improve rosy-faced lovebird
376 foraging decisions, this does not necessarily infer insensitivity to all odours. Other studies have found
377 that foraging birds can be much more sensitive to one odour than another (Kelly & Marples, 2004).
378 For instance, birds can be highly sensitive to irritant odours (e.g., 2-methoxy-3-sec butyl pyrazine; 2-
379 methoxy-3-isobutyl pyrazine; mint) that stimulate not only the olfactory nerve but also trigger the
380 trigeminal nerve, perceived as pain (Müller-Schwarze, 2006). Further studies will need to ascertain if
381 this is true also for *A. roseicollis*.

382 Furthermore, while our investigation suggests that rosy-faced lovebirds do not rely on
383 olfaction while foraging, olfaction could still be important in non-foraging contexts. For example,
384 birds use scent and olfaction in manifest social contexts (Liu, 2022), such as determining sex through
385 the scent of uropygial gland secretion (Amo et al., 2012), chemo-signalling reproductive status (Caro
386 et al., 2015), and even using olfaction to detect MHC compatibility (Leclaire et al., 2017). Humboldt
387 penguins (*Spheniscus humboldti*) use odour to recognize familiar and related conspecifics (Coffin et
388 al. 2011); female zebra finches (*Taeniopygia guttata*) and Bengalese finches (*Lonchura striata var.*
389 *domestica*) use odour cues to recognize their own nests (Krause & Caspers, 2012); house finches
390 (*Carpodacus mexicanus*) can detect olfactory cues from predatory and non-predatory mammalian
391 faeces (Roth II et al., 2008). As rosy-faced lovebirds are highly social, future research should test
392 whether they use olfaction in non-foraging behavioural contexts.

393 Generally, the ability of a species to adapt to captivity and new objects directly affects the
394 success of behavioural experiments (Lambrechts et al., 1999), where neophobia can constrain research
395 on bird perception and cognition (Greenberg, 2003). Lovebirds learnt the layout and principles of our
396 experimental set-up rapidly during the habituation phase, forming a positive association between
397 colour and food. This implies that they are intelligent enough to participate in this type of empirical
398 investigation, comparable to other parrot species (Auersperg and von Bayern, 2019). Future work
399 should investigate the intelligence of lovebirds, particularly their ability to recognize objects, as
400 established for larger parrots.

401 From a technical perspective, the advanced machine-learning analysis we applied substantially
402 overcame the limitations of having a human observer annotate, identify, record, and interpret relevant
403 behavioural changes in real time, where it requires 22 person-hours to annotate a 1-hour video with
404 frame-by-frame precision (Jhuang et al., 2010). Furthermore, having multiple people annotate
405 recordings can result in inter-observer error (von Ziegler et al., 2021). Machine-learning saved us
406 approximately 503 person-hours of video annotation (with associated staff costs). Importantly, our
407 approach did not require any motion capture (Microelectromechanical systems, MEMS) markers
408 (Mishra & Kiourtis, 2021) to be attached to the birds (Won et al., 2021), which can cause discomfort
409 and distress, compromising psychological, behavioural, and physiological data quality (Sneddon,
410 2017). Markerless motion capture technology (Nakano et al., 2020), combined with deep learning
411 computational approaches, such as the convolutional neural networks (CNN) applied by the
412 DeepLabCut open-source software, (Mathis et al., 2018), thus has significant potential to advance
413 recording and processing of animal pose-estimation in behavioural studies (Labuguen et al., 2021; Li
414 et al., 2023).

415 In conclusion, ours is the first study to apply deep-learning techniques to expand on the role of
416 avian olfaction in optimal foraging, involving a non-standard avian model species, providing a
417 standardised protocol for future behaviour studies. That lovebirds did not use olfaction to detect food,
418 relying instead on visual perception, highlights how sensory processing sensitivity is strongly related
419 to the environmental conditions in which each species lives, affecting their sensory neurophysiology

420 (Corfield et al., 2015) and genetics (Khan et al., 2015; olfactory receptor gene repertoires—Steiger et
421 al., 2010), which ultimately shapes their life-history evolution (Driver & Balakrishnan, 2021; Steiger
422 et al., 2010) and personality traits (Dingemanse & Réale, 2015).

423

424 **Ethics**

425 All procedures were approved by the University of Hong Kong Committee on the Use of Live
426 Animals in Teaching and Research (CULATR; approval number: 5883-21), and under a Department
427 of Health Animal (Control of Experiments) Ordinance Chapter 340 permit ((21-1146) in
428 DH/HT&A/8/2/3 Pt.32).

429

430 **Funding**

431 This work was supported by the Start-up (the University of Hong Kong) granted to S.Y.W.S.

432

433 **Acknowledgements**

434 We thank Yiu Siu, Ellen Sai Nam Lo, Tat Sing Ngai, and Mei Ying Wu for animal care and
435 husbandry.

436

437 **References**

438 Abankwah, V., Deeming, D. C., & Pike, T. W. (2020). Avian Olfaction: A Review of the Recent
439 Literature. *Comparative Cognition & Behavior Reviews*, 15.

440 Amo L, Jansen JJ, van Dam NM, Dicke M, Visser ME. 2013 Birds exploit herbivore-induced plant
441 volatiles to locate herbivorous prey. *Ecol. Lett.* 16, 1348–1355. (doi:10.1111/ele.12177)

442 Amo, L., Avilés, J. M., Parejo, D., Peña, A., Rodríguez, J., & Tomás, G. (2012). Sex recognition by
443 odour and variation in the uropygial gland secretion in starlings. *Journal of Animal Ecology*, 81(3),
444 605-613.

445 Auersperg, A. M., & von Bayern, A. M. (2019). Who's a clever bird—now? A brief history of parrot
446 cognition. *Behaviour*, 156(5-8), 391-407.

447 Box, G. E., & Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical
448 Society: Series B (Methodological)*, 26(2), 211-243.

449 Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T., Bian, G.-B., De Albuquerque, V. H. C., &
450 Reboucas Filho, P. P. (2018). Performance analysis of google colaboratory as a tool for accelerating
451 deep learning applications. *IEEE Access*, 6, 61677-61685.

452 Caro, S. P., Balthazart, J., & Bonadonna, F. (2015). The perfume of reproduction in birds:
453 chemosignaling in avian social life. *Hormones and Behavior*, 68, 25-42.

454 Chan, D.T.C., Poon, E.S.K., Wong, A.T.C. and Sin, S.Y.W., 2021. Global trade in parrots—Influential
455 factors of trade and implications for conservation. *Global Ecology and Conservation*, 30, p.e01784.

456 Coffin, H. R., Watters, J. V., & Mateo, J. M. (2011). Odor-based recognition of familiar and related
457 conspecifics: a first test conducted on captive Humboldt penguins (*Spheniscus humboldti*). *PLoS*
458 *One*, 6(9), e25002.

459 Corfield, J. R., Eisthen, H. L., Iwaniuk, A. N., & Parsons, S. (2014). Anatomical Specializations for
460 Enhanced Olfactory Sensitivity in Kiwi, *Apteryx mantelli*. *Brain, behavior and evolution*, 84(3), 214-
461 226.

462 Corfield, J. R., Price, K., Iwaniuk, A. N., Gutierrez-Ibanez, C., Birkhead, T., & Wylie, D. R. (2015).
463 Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. *Front Neuroanat*,
464 9, 102.

465 Dingemanse, N. J., & Réale, D. (2005). Natural selection and animal personality. *Behaviour*, 1159-
466 1184.

467 Driver, R. J., & Balakrishnan, C. N. (2021). Highly contiguous genomes improve the understanding of
468 avian olfactory receptor repertoires. *Integrative and Comparative Biology*.

469 Elie, J. E., Hoffmann, S., Dunning, J. L., Coleman, M. J., Fortune, E. S., & Prather, J. F. (2020). From
470 perception to action: The role of auditory input in shaping vocal communication and social behaviors
471 in birds. *Brain, Behavior and Evolution*, 94(1-4), 51-60.

472 Fernández-Juricic, E., Erichsen, J. T., & Kacelnik, A. (2004). Visual perception and social foraging in
473 birds. *Trends in Ecology & Evolution*, 19(1), 25-31.

474 Greenberg RS. The role of neophobia and neophilia in the development of innovative behaviour of
475 birds. *Animal innovation*. 2003.

476 Gsell, A. C. (2012). *The ecology and anatomy of scent in the critically endangered kakapo (Strigops*
477 *habroptilus): a thesis presented in partial fulfilment of the requirements for the degree of Doctor of*
478 *Philosophy in Zoology at Massey University, Auckland, New Zealand* [Massey University].

479 Gsell AC, Hagelin JC, Brunton DH. Olfactory sensitivity in Kea and Kaka. *Emu-Austral Ornithology*.
480 2012 Mar 1;112(1):60-6.

481 Hagelin, J. C. (2004). Observations on the olfactory ability of the Kakapo *Strigops habroptilus*, the
482 critically endangered parrot of New Zealand. *Ibis*, 146(1), 161-164.

483 Hartig, F., & Hartig, M. F. (2017). Package ‘DHARMA’. *R package*.

484 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
485 In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

486 Hernández, M. C., Villada, A. M., & Barja, I. (2022). Onto the sense of smell in macaws, amazons
487 and toucans: can they use volatile cues of fruits to make foraging decisions?. *Integrative Zoology*.

488 Healy, S., & Guilford, T. (1990). Olfactory-bulb size and nocturnality in birds. *Evolution*, 44(2), 339-
489 346.

490 Huynh, S., Cloutier, A., & Sin, S. Y. W. (2023). Museomics and phylogenomics of lovebirds
491 (Psittaciformes, Psittaculidae, Agapornis) using low-coverage whole-genome sequencing. *Molecular*
492 *Phylogenetics and Evolution*, 107822.

493 Jackson, C. R., Maddox, T., Mbise, F. P., Stokke, B. G., Belant, J. L., Bevanger, K., ... & Fossøy, F.
494 (2020). A dead giveaway: Foraging vultures and other avian scavengers respond to auditory
495 cues. *Ecology and Evolution*, 10(13), 6769-6774.

496 Jacobs, G. H. (1992). Ultraviolet vision in vertebrates. *American Zoologist*, 32(4), 544-554.

497 Jhuang, H., Garrote, E., Yu, X., Khilnani, V., Poggio, T., Steele, A. D., & Serre, T. (2010). Automated
498 home-cage behavioural phenotyping of mice. *Nature communications*, 1(1), 1-10.

499 Kelly, D. J., & Marples, N. M. (2004). The effects of novel odour and colour cues on food acceptance
500 by the zebra finch, *Taeniopygia guttata*. *Animal Behaviour*, 68(5), 1049-1054.

501 Khan, Imran, Zhikai Yang, Emanuel Maldonado, Cai Li, Guojie Zhang, M. Thomas P. Gilbert, Erich
502 D. Jarvis, Stephen J. O'brien, Warren E. Johnson, and Agostinho Antunes. "Olfactory receptor
503 subgenomes linked with broad ecological adaptations in Sauropsida." *Molecular biology and evolution*
504 32, no. 11 (2015): 2832-2843.

505 Krause, E. T., & Caspers, B. A. (2012). Are olfactory cues involved in nest recognition in two social
506 species of estrildid finches? *PLoS One*, 7(5), e36615.

507 Kress, D., Van Bokhorst, E., & Lentink, D. (2015). How Lovebirds Maneuver Rapidly Using Super-
508 Fast Head Saccades and Image Feature Stabilization. *PLoS One*, 10(6), e0129287.

509 Labuguen, R., Matsumoto, J., Negrete, S. B., Nishimaru, H., Nishijo, H., Takada, M., ... & Shibata, T.
510 (2021). MacaquePose: a novel "in the wild" macaque monkey pose dataset for markerless motion
511 capture. *Frontiers in behavioral neuroscience*, 14, 581154.

512 Lambrechts, M. M., Perret, P., Maistre, M., & Blondel, J. (1999). Do experiments with captive non-
513 domesticated animals make sense without population field studies? A case study with blue tits'
514 breeding time. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 266(1426),
515 1311-1315.

516 LaScala-Gruenewald, D. E., Mehta, R. S., Liu, Y., & Denny, M. W. (2019). Sensory perception plays
517 a larger role in foraging efficiency than heavy-tailed movement strategies. *Ecological modelling*, 404,
518 69-82.

519 Leclaire, S., Strandh, M., Mardon, J., Westerdahl, H., & Bonadonna, F. (2017). Odour-based
520 discrimination of similarity at the major histocompatibility complex in birds. *Proceedings of the Royal*
521 *Society B: Biological Sciences*, 284(1846), 20162466.

522 Lei, B., Cui, J., Newman, C., Buesching, C. D., Xie, Z., Macdonald, D. W., & Zhou, Y. (2021). Seed
523 dispersers shape the pulp nutrients of fleshy-fruited plants. *Proceedings of the Royal Society*
524 *B*, 288(1953), 20210817.

525 Levey, D. J. (1987). Sugar-tasting ability and fruit selection in tropical fruit-eating birds. *The*
526 *auk*, 104(2), 173-179.

527 Li, H., He, Q., & Wu, L. (2023). Detection of brain abnormalities in Parkinson's rats by combining
528 deep learning and motion tracking. *IEEE Transactions on Neural Systems and Rehabilitation*
529 *Engineering*.

530 Liu, C. Z. Y. (2022). Research progress on olfactory communication in the social behaviours of
531 birds. *Biodiversity Science*, 22219.

532 Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R
533 package for assessment, comparison and testing of statistical models. *Journal of Open Source*
534 *Software*, 6(60).

535 Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K.,
536 Bolker, B., Brooks, M., & Brooks, M. M. (2017). Package 'glmmTMB'. *R Package Version 0.2. 0.*

537 Mäntylä, E., Kipper, S., & Hilker, M. (2020). Insectivorous birds can see and smell systemically
538 herbivore-induced pines. *Ecol Evol*, 10(17), 9358-9370.

539 Mäntylä, E., Klemola, T., & Haukioja, E. (2004). Attraction of willow warblers to sawfly-damaged
540 mountain birches: novel function of inducible plant defences?. *Ecology Letters*, 7(10), 915-918.

541 Martin GR. 2020 Bird senses: how and what birds see, hear, smell, taste and feel. Exeter, UK: Pelagic
542 Publishing.

543 Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M.
544 (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
545 *Nature neuroscience*, 21(9), 1281-1289.

546 Mathis, A., & Warren, R. (2018). On the inference speed and video-compression robustness of
547 DeepLabCut. *BioRxiv*, 457242.

548 Mishra, V., & Kiourtis, A. (2021). Wearable sensors for motion capture. *Antenna and Sensor*
549 *Technologies in Modern Medical Applications*, 43-90.

550 Müller -Schwarze, D. (2006). *Chemical ecology of vertebrates*. Cambridge University Press.

551 Ndithia, H., & Perrin, M. R. (2009a). Diet and foraging behaviour of the Rosy-faced Lovebird
552 *Agapornis roseicollis* in Namibia. *Ostrich*, 77(1-2), 45-51.

553 Ndithia, H., & Perrin, M. R. (2009b). The spatial ecology of the Rosy-faced Lovebird *Agapornis*
554 *roseicollis* in Namibia. *Ostrich*, 77(1-2), 52-57.

555 Nakano, N., Sakura, T., Ueda, K., Omura, L., Kimura, A., Iino, Y., ... & Yoshioka, S. (2020).
556 Evaluation of 3D markerless motion capture accuracy using OpenPose with multiple video
557 cameras. *Frontiers in sports and active living*, 2, 50.

558 Nevitt, G. A., Veit, R. R., & Kareiva, P. (1995). Dimethyl sulphide as a foraging cue for Antarctic
559 procellariiform seabirds. *Nature*, 376(6542), 680-682.

560 Nilsson, S. R., Goodwin, N. L., Choong, J. J., Hwang, S., Wright, H. R., Norville, Z. C., Tong, X.,
561 Lin, D., Bentzley, B. S., & Eshel, N. (2020). Simple Behavioral Analysis (SimBA)—an open source
562 toolkit for computer classification of complex social behaviors in experimental animals. *BioRxiv*.

563 Potier, S., Duriez, O., Célérier, A., Liegeois, J.-L., & Bonadonna, F. (2019). Sight or smell: which
564 senses do scavenging raptors use to find food? *Animal cognition*, 22(1), 49-59.

565 Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: a selective review of theory
566 and tests. *The Quarterly review of biology*, 52(2), 137-154.

567 Roper, T. (2003). Olfactory discrimination in Yellow-backed Chattering Lories *Lorius garrulus*
568 *flavopalliatus*: first demonstration of olfaction in Psittaciformes. *Ibis*, 145(4), 689-691.

569 Roper, T. J., & Marples, N. M. (1997). Odour and colour as cues for taste-avoidance learning in
570 domestic chicks. *Animal Behaviour*, 53(6), 1241-1250.

571 Roth II, T. C., Cox, J. G., & Lima, S. L. (2008). Can foraging birds assess predation risk by
572 scent?. *Animal Behaviour*, 76(6), 2021-2027.

573 Rubene, D., Leidefors, M., Ninkovic, V., Eggers, S., & Low, M. (2019). Disentangling olfactory and
574 visual information used by field foraging birds. *Ecology and Evolution*, 9(1), 545-552.

575 Shrestha, M., Dyer, A. G., Boyd-Gerny, S., Wong, B. B., & Burd, M. (2013). Shades of red: bird-
576 pollinated flowers target the specific colour discrimination abilities of avian vision. *New Phytologist*,
577 198(1), 301-310.

578 Sin SY, Cloutier A, Nevitt G, Edwards SV. Olfactory receptor subgenome and expression in a highly
579 olfactory procellariiform seabird. *Genetics*. 2022 Feb 1;220(2):iyab210.

580 Sneddon, L. U. (2017). Pain in laboratory animals: A possible confounding factor? *Alternatives to
581 Laboratory Animals*, 45(3), 161-164.

582 Steiger, S. S., Fidler, A. E., Mueller, J. C., & Kempenaers, B. (2010). Evidence for adaptive evolution
583 of olfactory receptor genes in 9 bird species. *Journal of Heredity*, 101(3), 325-333.

584 Stephens, D. W., & Krebs, J. R. (2019). Foraging theory. In *Foraging theory*. Princeton university
585 press.

586 Sturman, O., von Ziegler, L., Schläppi, C., Akyol, F., Privitera, M., Slominski, D., ... & Bohacek, J.
587 (2020). Deep learning-based behavioral analysis reaches human accuracy and is capable of
588 outperforming commercial solutions. *Neuropsychopharmacology*, 45(11), 1942-1952.

589 Sumner, C. J., & Sumner, S. (2020). Signal detection: applying analysis methods from psychology to
590 animal behaviour. *Philosophical Transactions of the Royal Society B*, 375(1802), 20190480.

591 Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG. 2010 The multifaceted interplay between
592 attention and multisensory integration. *Trends Cogn. Sci.* 14, 400–410. (doi:10.1016/j.tics.
593 2010.06.008).

594 Thorup, K., Bisson, I.-A., Bowlin, M. S., Holland, R. A., Wingfield, J. C., Ramenofsky, M., &
595 Wikelski, M. (2007). Evidence for a navigational map stretching across the continental US in a
596 migratory songbird. *Proceedings of the National Academy of Sciences*, 104(46), 18115-18119.

597 Toda, Y., Ko, M.C., Liang, Q., Miller, E.T., Rico-Guevara, A., Nakagita, T., Sakakibara, A., Uemura,
598 K., Sackton, T., Hayakawa, T., Sin, S.Y.W., ... & Baldwin, M.W. (2021). Early origin of sweet
599 perception in the songbird radiation. *Science*, 373(6551), pp.226-231.

600 Toomey, M. B., Lind, O., Frederiksen, R., Curley Jr, R. W., Riedl, K. M., Wilby, D., Schwartz, S. J.,
601 Witt, C. C., Harrison, E. H., & Roberts, N. W. (2016). Complementary shifts in photoreceptor spectral
602 tuning unlock the full adaptive potential of ultraviolet vision in birds. *Elife*, 5, e15675.

603 von Ziegler, L., Sturman, O., & Bohacek, J. (2021). Big behavior: challenges and opportunities in a
604 new era of deep behavior profiling. *Neuropsychopharmacology*, 46(1), 33-44.

605 Welch RB, Warren DH. 1980 Immediate perceptual response to intersensory discrepancy. *Psychol.*
606 *Bull.* 88, 638–667. (doi:10.1037/0033-2909.88.3.638)

607 Won, S. M., Cai, L., Gutruf, P., & Rogers, J. A. (2021). Wireless and battery-free technologies for
608 neuroengineering. *Nature Biomedical Engineering*, 1-19.

609 Zhang, J.X., Wei, W., Zhang, J.H. & Yang, W.H., 2010. Uropygial gland-secreted alkanols contribute
610 to olfactory sex signals in budgerigars. *Chemical senses*, 35(5), pp.375-382.

611 Zungu, M. M., Hart, L. A., & Downs, C. T. (2014). The use of taste and smell in making foraging
612 decisions in frugivorous birds: an experimental test using Red-winged Starlings *Onychognathus*
613 *morio*. *Aspects of fruit digestion and selection in selected southern African avian frugivores*, 131.

614 Zvereva, E. L., Castagnérol, B., Cornelissen, T., Forsman, A., Hernández-Agüero, J. A., Klemola, T.,
615 ... & Kozlov, M. V. (2019). Opposite latitudinal patterns for bird and arthropod predation revealed in
616 experiments with differently colored artificial prey. *Ecology and Evolution*, 9(24), 14273-14285.

Tables

Table 1. Definition of response variables.

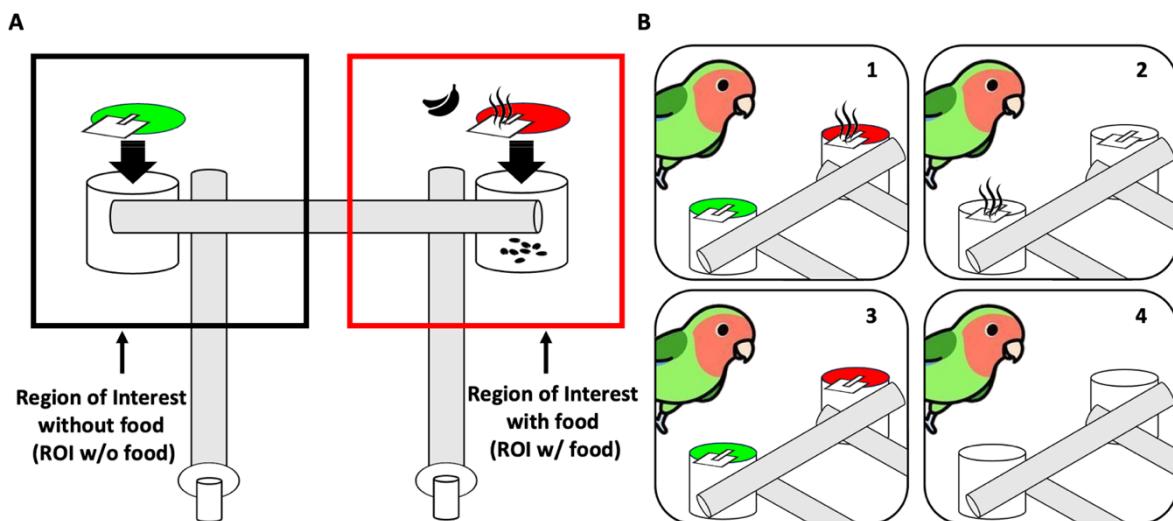

Data collected	Type of data	Definition	Collection method
Choice result	Bivariate	The feeder first opened entirely, into which the bird sticks its head	Recorded by observer
No. of ROI entry	Count	Each event = the entry of the crown of the bird's head into the ROI	Automatically calculated using SimBA
Investigation time	Continuous	The duration of time the bird spends investigating the feeder within each ROI, including body turns, head turns, preening, and wing stretching, but without touching the feeder directly.	Automatically calculated using SimBA
Choice latency	Continuous	Calculated as total video duration minus the total time the bird spent in each ROI; an indicator of choice decision hesitancy reflecting time to switch between ROIs	Automatically calculated using SimBA
Tearing time	Continuous	The duration of time the bird performing tearing behaviour on the feeder within each ROI, recorded from when the bird touches the feeder directly	Automatically calculated using SimBA
Total time spent	Continuous	Total time spent in each ROI during the entire video	Automatically calculated using SimBA

Table 2. Bird responses to four different treatments (using banana flavour): B: both cues; V: only visual cue; O: only olfactory cue; N: no cues presented. Significant p-values are in bold and denoted by asterisks (*p<0.05; **p<0.01; ***p<0.001), post-hoc results also shown in bold if significant. ROI_{food}: Region of interest with food. ROI_{w/o food}: Region of interest without food.

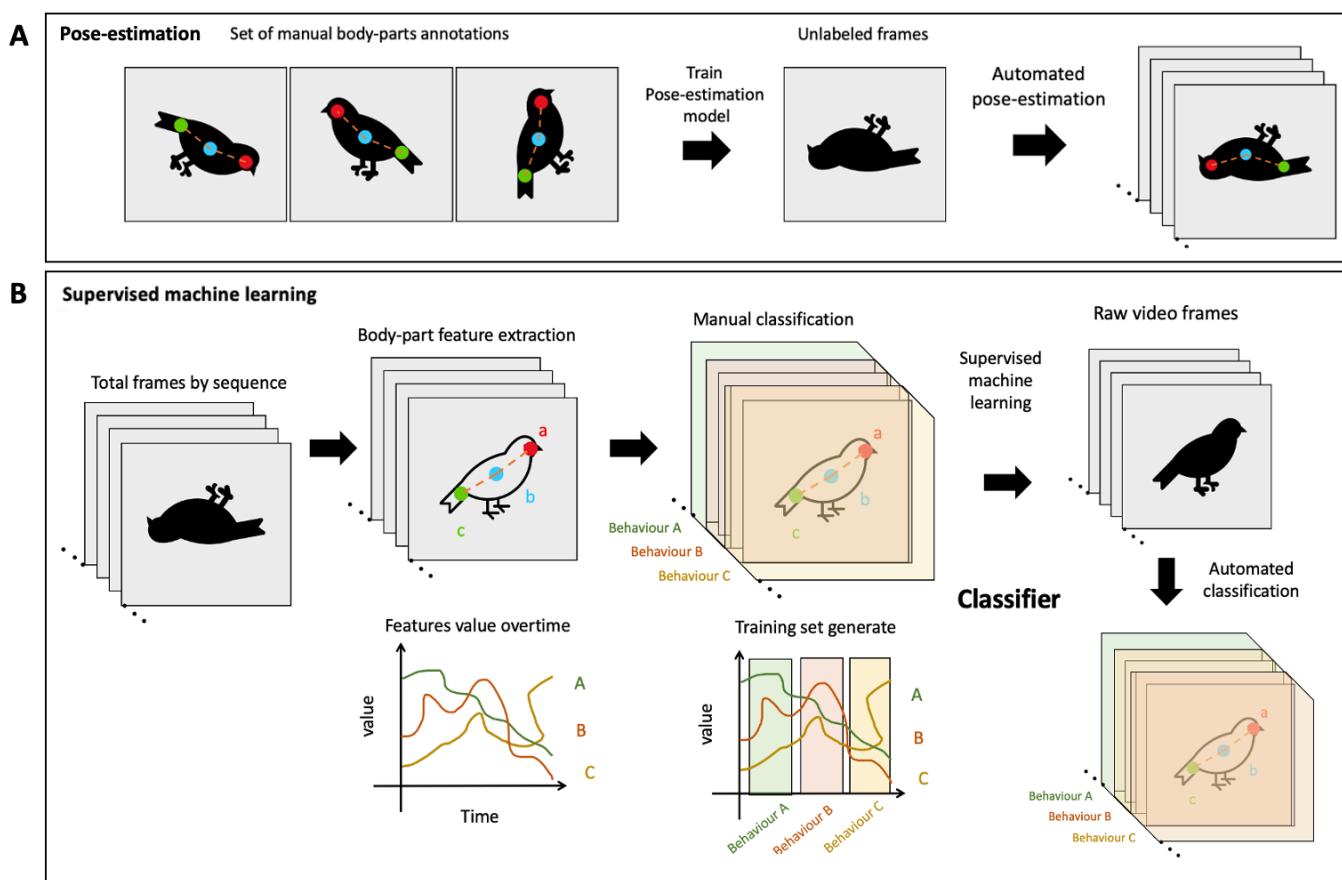
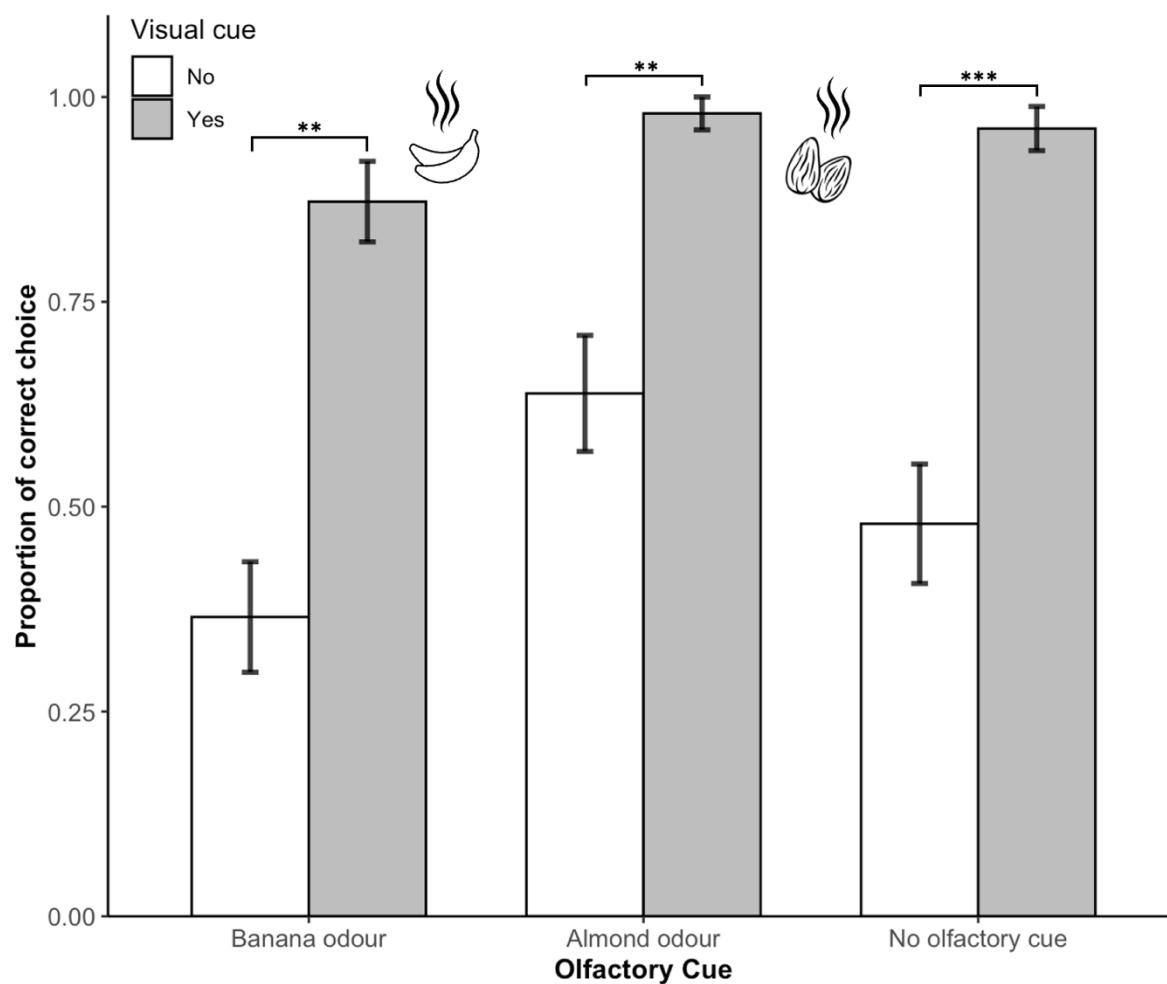

A) Response variable	Factor	LS means±SE	Random factor (Var; Std. Dev)	β-Estimate	df	χ²	p-value
1) Choice result	Visual cue	B: 1.99±0.67; V: 3.27±0.89;	Trial	0.46; 0.68	3.27	1,196	18.16 <0.001***
	Olfactory cue	O: -0.58±0.57; N: -0.075±0.57	Individual	0.09; 0.30	-0.5	1,196	1.42 0.23
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	-0.78	1,196	0.33 0.57
2) No. of ROI entry	Visual cue	B: 0.77±0.03; V: 0.77±0.03;	Trial	<0.001; 0.00	0.20	1,195	64.94 <0.001***
	Olfactory cue	O: 0.53±0.03; N: 0.57±0.03	Individual	0.00; 0.06	-0.03	1,195	0.38 0.54
	Visual cue*Olfactory cue		Side Individual	0.01; 0.12	0.03	1,195	0.29 0.60
3a) Investigation time (ROI _{w/o food})	Visual cue	B: 0.25±0.03; V: 0.17±0.03;	Trial	0.01; 0.07	-0.25	1,175	75.33 <0.001***
	Olfactory cue	O: 0.43±0.02; N: 0.42±0.03	Individual	<0.001; <0.001	0.01	1,175	2.66 0.10
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.08	1,175	2.53 0.11
3b) Investigation time (ROI _{food})	Visual cue	B: 0.24±0.03; V: 0.34±0.03;	Trial	<0.001; <0.001	0.02	1,195	0.00 0.98
	Olfactory cue	O: 0.26±0.03; N: 0.32±0.03	Individual	<0.001; <0.001	-0.06	1,195	5.93 0.02*
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	-0.04	1,195	0.39 0.53
4) Choice latency	Visual cue	B: 1.62±0.16; V: 1.51±0.16;	Trial	<0.001; <0.001	-0.70	1,195	20.33 <0.001***
	Olfactory cue	O: 2.13±0.16; N: 2.21±0.16	Individual	<0.001; <0.001	-0.08	1,195	0.00 0.95
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.19	1,195	0.48 0.49
5a) Tearing time (ROI _{w/o food})	Visual cue	B: 0.24±0.05; V: 0.14±0.06;	Trial	0.02; 0.15	-0.25	1,143	15.53 <0.001***
	Olfactory cue	O: 0.42±0.05; N: 0.39±0.05	Individual	0.16; 0.40	0.03	1,143	1.47 0.23
	Visual cue*Olfactory cue		Side Individual	0.03; 0.17	0.08	1,143	0.54 0.46
5b) Tearing time (ROI _{food})	Visual cue	B: 0.31±0.05; V: 0.36±0.05;	Trial	0.00; 0.06	0.02	1,194	0.83 0.36
	Olfactory cue	O: 0.25±0.05; N: 0.34±0.05	Individual	0.00; 0.07	-0.09	1,194	2.54 0.11
	Visual cue*Olfactory cue		Side Individual	0.00; 0.07	0.03	1,194	0.14 0.71
6) Total time spent	Visual cue	B: 0.78±0.06; V: 0.83±0.06;	Trial	<0.001; <0.001	0.24	1,150	16.72 <0.001***
	Olfactory cue	O: 0.52±0.07; N: 0.59±0.06	Individual	<0.001; <0.001	-0.07	1,150	0.89 0.34
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.02	1,150	0.03 0.87

Table 3. Bird responses to four different treatments (using almond flavour): B: both cues; V: only visual cue; O: only olfactory cue; N: no cues presented. Significant p-values are in bold and denoted by asterisks (*p<0.05; **p<0.01; ***p<0.001), post-hoc result also shows in bold if significant. ROI_{food}: Region of interest with food. ROI_{w/o food}: Region of interest without food.


B) Response variable	Factor	LS means±SE	Random factor (Var; Std. Dev)	β-Estimate	df	χ ²	p-value	
1) Choice result	Visual cue	B: 3.90±1.02; V: 3.23±0.73;	Trial	<0.001; <0.001	3.32	1,194	27.97	<0.001***
	Olfactory cue	O: 0.58±0.32; N: -0.08±0.30	Individual	0.20; 0.45	0.66	1,194	2.76	0.1
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.01	1,194	0.00	0.99
2) No. of ROI entry times	Visual cue	B: 0.97±0.01; V: 0.97±0.01;	Trial	<0.001; <0.001	0.04	1,193	12.92	<0.001***
	Olfactory cue	O: 0.94±0.01; N: 0.93±0.01	Individual	<0.001; <0.001	0.01	1,193	0.27	0.60
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	-0.01	1,193	0.25	0.62
3a) Investigation time (ROI _{w/o food})	Visual cue	B: 0.27±0.04; V: 0.14±0.03;	Trial	<0.001; 0.02	-0.26	1,165	40.51	<0.001***
	Olfactory cue	O: 0.33±0.03; N: 0.40±0.03	Individual	<0.001; <0.001	-0.07	1,165	0.01	0.94
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.21	1,165	11.62	0.037*
3b) Investigation time (ROI _{food})	Visual cue	B: 0.39±0.05; V: 0.34±0.05;	Trial	<0.001; <0.001	-0.02	1,140	0.08	0.78
	Olfactory cue	O: 0.45±0.06; N: 0.36±0.05	Individual	<0.001; <0.001	0.04	1,140	2.02	0.15
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	0.08	1,140	0.60	0.44
4) Choice latency	Visual cue	B: 1.89±0.16; V: 1.51±0.16;	Trial	0.02; 0.15	1.51	1,191	20.46	<0.001***
	Olfactory cue	O: 2.36±0.16; N: 2.21±0.16	Individual	0.19; 0.44	0.15	1,191	4.15	0.04*
	Visual cue*Olfactory cue		Side Individual	0.07; 0.26	0.23	1,191	0.78	0.38
5a) Tearing time (ROI _{w/o food})	Visual cue	B: 0.25±0.04; V: 0.15±0.04;	Trial	0.00; 0.05	-0.24	1,131	16.27	<0.001***
	Olfactory cue	O: 0.37±0.04; N: 0.39±0.04	Individual	<0.001; 0.02	-0.02	1,131	0.62	0.43
	Visual cue*Olfactory cue		Side Individual	<0.001; 0.03	0.12	1,131	1.95	0.16
5b) Tearing time (ROI _{food})	Visual cue	B: 0.08±0.03; V: 0.35±0.03;	Trial	<0.001; <0.001	0.04	1,182	14.22	<0.001***
	Olfactory cue	O: 0.34±0.03; N: 0.31±0.03	Individual	<0.001; <0.001	0.02	1,182	19.88	<0.001***
	Visual cue*Olfactory cue		Side Individual	<0.001; <0.001	-0.29	1,182	26.57	<0.001***
6) Total time spent	Visual cue	B: 0.73±0.04; V: 0.83±0.04;	Trial	<0.001; 0.03	0.26	1,172	62.26	<0.001***
	Olfactory cue	O: 0.46±0.04; N: 0.57±0.04	Individual	0.01; 0.08	-0.11	1,172	9.16	<0.01**
	Visual cue*Olfactory cue		Side Individual	0.00; 0.05	0.02	1,172	0.11	0.74

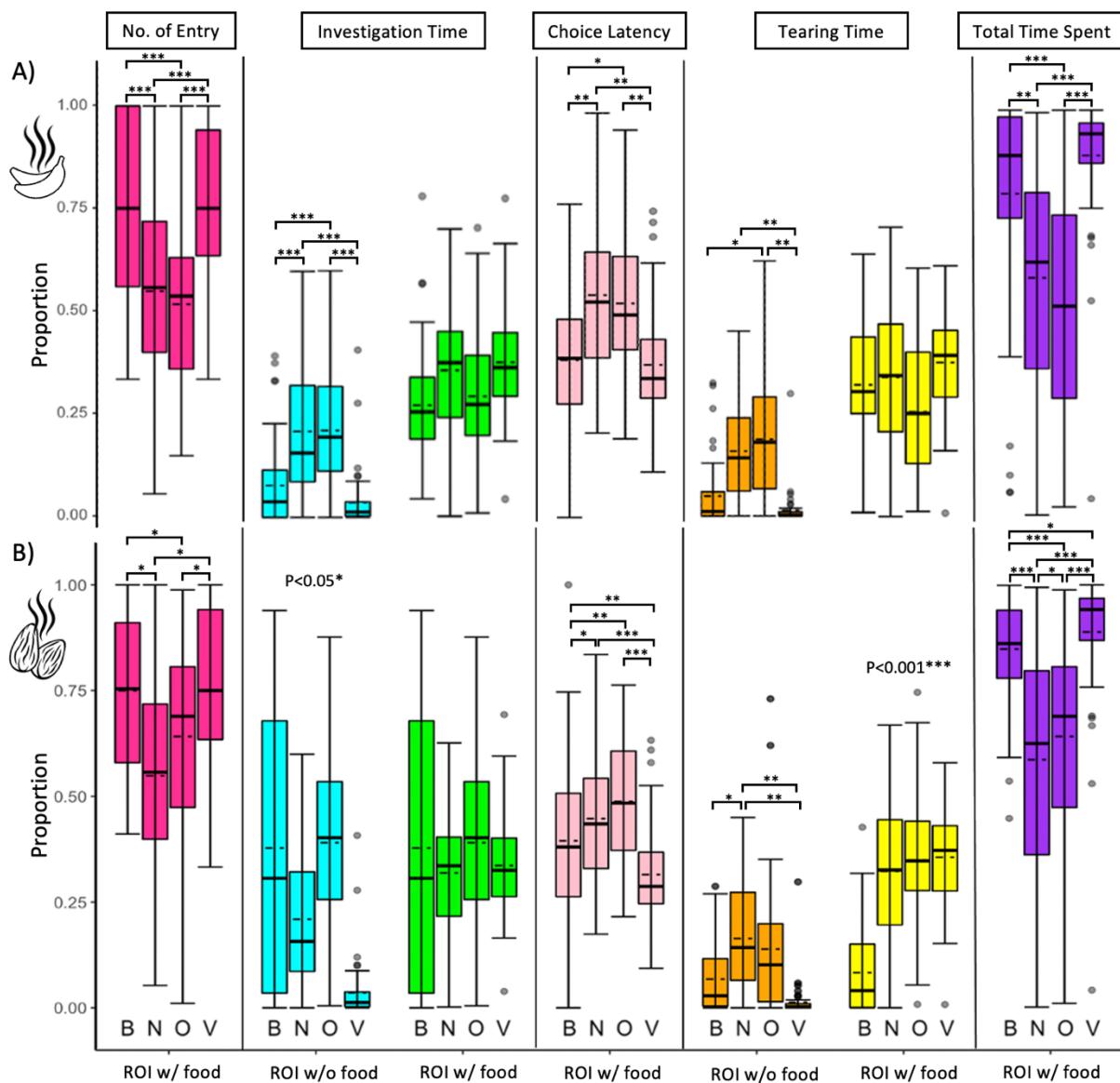

Figure 1. A) A schematic representation of the experimental design, including both the visual cue (red/green paper) and/or olfactory cue (either banana scent on a provisioned feeder or almond scent on an empty feeder). The region of interest was defined for each feeder; B) Each bird participates in four treatments, 1: both visual and olfactory cues; 2: olfactory cue only; 3: only visual cue; 4: no cues.

Figure 2. A) Pose-estimation algorithms used to track animal body parts based on manual annotations in a set of training videos. The model marked corresponding body parts based on input data, used to analyse raw videos. B) Supervised machine learning trained the classifier with manually defined behaviours. The trained classifier then detected these key data in new video and identified these behaviours according to this learning algorithm data. Figure modified from von Ziegler et al. (2021).

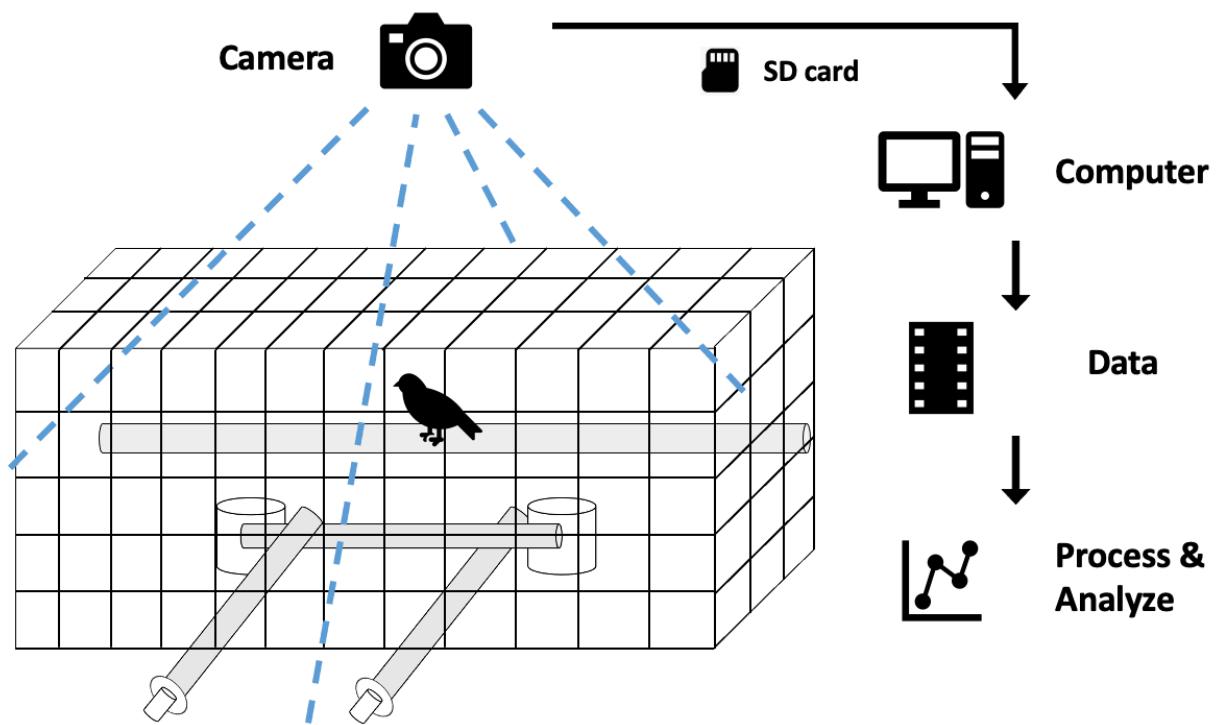
Figure 3. Choices made based on olfactory and visual cues. The y-axis represents the proportion of times the bird chose the feeder containing food in each treatment; the x-axis and legends indicate each treatment group. Error bars give the standard error of the mean. Significant post-hoc comparisons are denoted by asterisks (*p<0.05; **p<0.01; ***p<0.001).

Figure 4. Box and whisker plots showing variation in response variables among treatments and their relation to each ROI. A) Banana scent as the olfactory cue. B) Almond scent as the olfactory cue. Each response variable is indicated at the top of the figure, and each box reflects the result of a different treatment as indicated by the capital letter at the bottom of each panel (B: Both cues; N: No cues; V: visual cue only; O: olfactory cue only). The horizontal bar in each box represents the median. The dashed line indicates the mean. Dots represent outliers. ROIs (with or without food) were indicated at the bottom of the figure. Significant p-values are denoted by asterisks (* $p<0.05$; ** $p<0.01$; *** $p<0.001$) based on post-hoc results. Significant p-values without parentheses indicate that an interaction occurred between treatment groups.

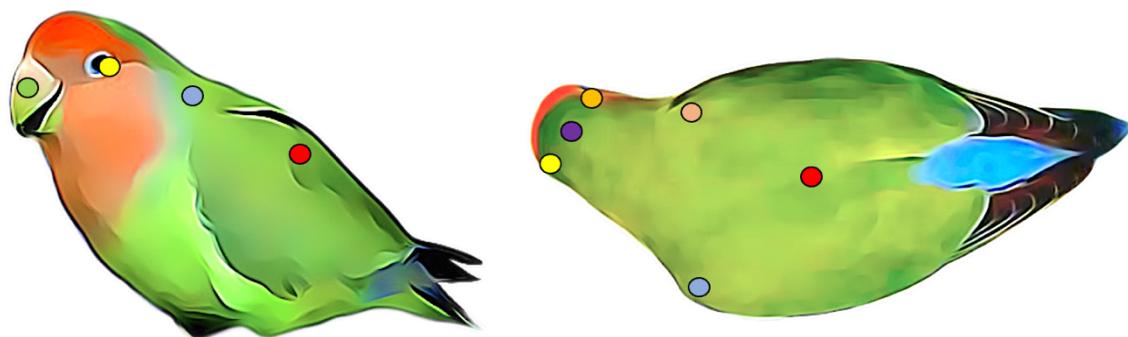
Supplementary Materials for

Investigating the use of odour and colour foraging cues by rosy-faced lovebirds (*Agapornis roseicollis*) using deep-learning based behavioural analysis

Supplementary methods


Figures S1-S4

Supplementary methods


Habituation and Training

Prior to our experimental testing, we conducted a habituation phase, during which birds were allowed to forage and familiarize themselves with the experimental set-up. To train the birds to seek the non-visible food rewards obscured by the paper cover, we first perforated the paper over each feeder bowl with a small hole so that the food was partially visible. Birds thus learned to remove the paper to access the food. We ascertained that all study subjects had understood the principal by monitoring that the birds i) looked through the hole at the food first before they removed the paper cover, ii) removed the paper cover on provisioned feeders, and iii) lost interest in the feeder once they had emptied it of food. Success rate in this pilot experiment ($n=37$) was 0.81 (binomial test; $p<0.001$), indicating that bird behaviour in our experiments was motivated by food, which ensured the reliability of our observations. During training, feeder positions were assigned randomly to each side of the perch apparatus to avoid side bias. During the subsequent associative learning phase, we continued using perforated papers and the birds were trained to associate the visual red/green coloured paper cues or olfactory banana/almond odour cues with the presence/absence of a food reward, for approximately 10 rounds for either cue.

Supplementary figures

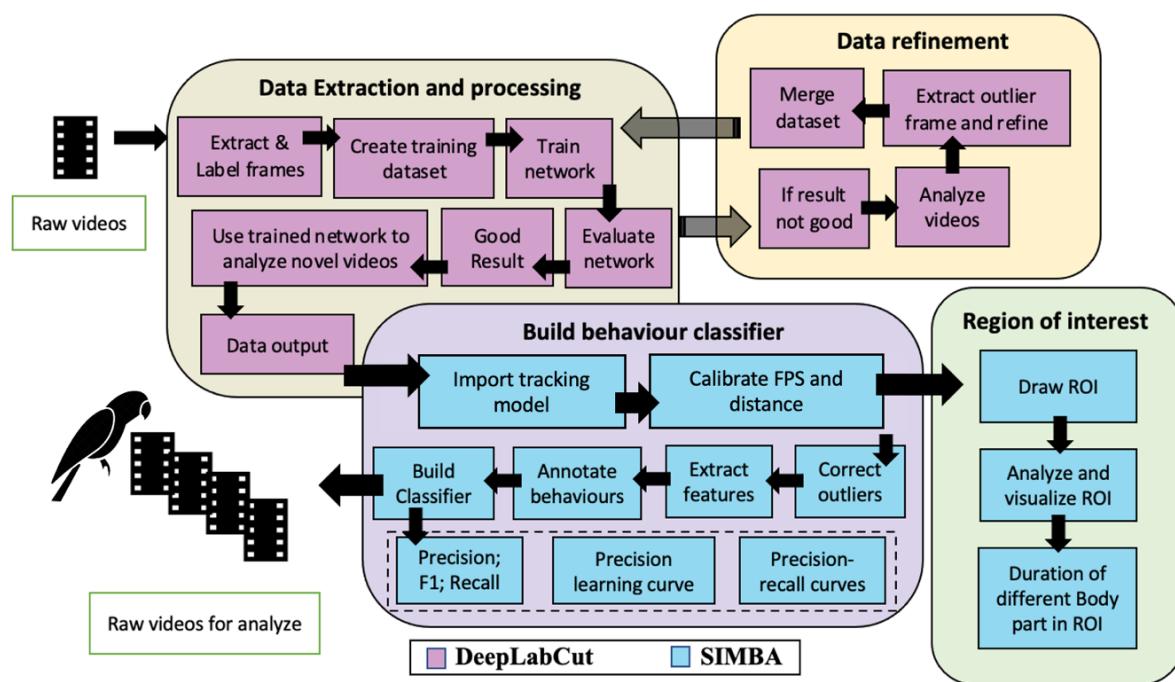
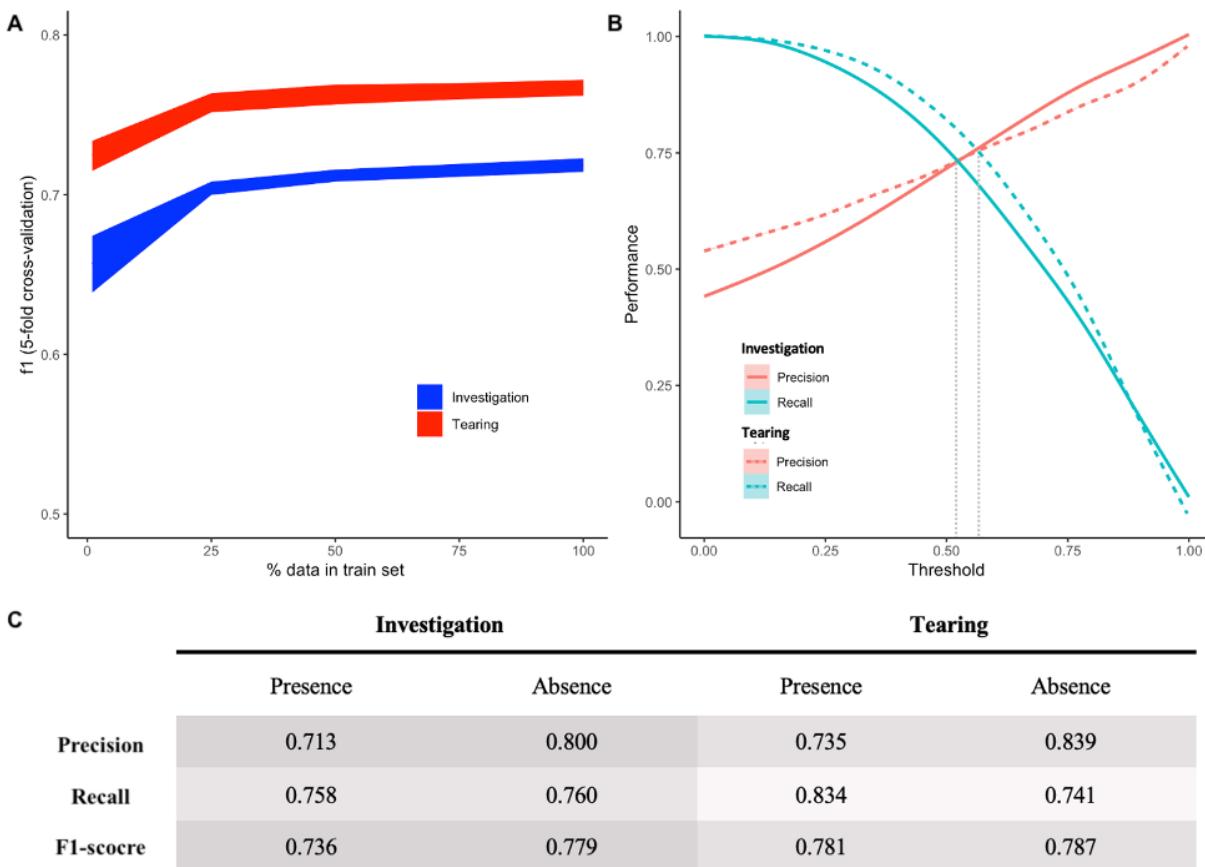


Figure S1. Depiction of data collection procedure.



● Left eye ● Right eye ● Crown ● Beak ● Left nape ● Right nape ● Center of back

Figure S2. Points of interest labelled for the seven defined body parts used for training and analyses in DeepLabCut and SimBA.

Figure S3. Workflow showing the generation of the pose-estimation model in DeepLabCut and the behaviour classifier in SimBA.

Figure S4. Evaluations of bird behaviour predictive classifiers. (A) Learning curves were created using 2k trees, 5 data splits (1-100%), and shuffled 5-fold cross-validation at each data split. Errors represent \pm SEM. (B) Classification precision, recall, and F1 scores at different discrimination thresholds. The grey dotted line represents the discrimination threshold at the maximal F1 score. C) Mean classifier precision, recall, and F1 score evaluated by shuffled 5-fold shuffle cross-validation.