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Core ideas

Phenotypic selection in PYT is challenged by limited seeds, resulting to few replications

and environments.

e MTME-GP offers opportunity for enhancing prediction accuracy of multi-trait and
diverse environments in PYT.

e MTME-GP enhances prediction by up to 2.5-fold, especially with numerous overlapping
genotypes in various tested environments.

e RKHS MTME-GP models, excels in low-heritability, negatively correlated traits, like

drought-affected conditions.
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ABSTRACT
Phenotypic selection in preliminary yield trials (PYT) is challenged by limited seeds, resulting in
trials with few replications and environments. The emergence of multi-trait multi-environment
enabled genomic prediction (MTME-GP) offers opportunity for enhancing prediction accuracy
and genetic gain across multiple traits and diverse environments. Using a set of 300 advanced
breeding lines in the North Dakota State University (NDSU) pulse crop breeding program, we
assessed the efficiency of a MTME-GP model for improving seed yield and protein content in
field peas in stress and non-stress environments. MTME-GP significantly improved predictive
ability, improving up to 2.5-fold, particularly when a significant number of genotypes

overlapped across environments. Heritability of the training environments contributed
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significantly to the overall prediction of the model. Average predictive ability ranged from 3 to
7-folds when environments with low heritability were excluded from the training set. Overall,
the Reproducing Kernel Hilbert Spaces (RKHS) model consistently resulted in improved
predictive ability across all breeding scenarios considered in our study. Our results lay the
groundwork for further exploration, including integration of diverse traits, incorporation of deep

learning techniques, and the utilization of multi-omics data in predictive modeling.

1.0 INTRODUCTION
The challenges posed by a rapidly expanding global population and climate change underscore the
imperative for sustainable food production (Tilman et al. 2011; van Dijk et al. 2021; Kumar et al.
2022). Field pea (Pisum sativum) emerges as a desirable crop, not only meeting the criteria for
sustainability but also standing out as an affordable and nutritious plant-based protein source. This
places field pea at the forefront of leguminous crops in the food industry (Punia & Kumar, 2022;
Shanthakumar et al., 2022). However, the conventional process of developing a promising line for
release to farmers involves rigorous phenotypic assessments across multiple seasons and
environments, especially for polygenic traits with complex genetic architecture (Samantara et al.,
2022). Accelerating the development of crop varieties to meet the needs of a growing population

stands out as a viable strategy to help feed the world (Ahmar et al. 2020).

Genomic selection for complex traits in early breeding cycles has the potential to significantly
reduce the selection cycle time and expedite genetic gain (Ertiro et al., 2015; Crossa et al., 2017,
Bernardo, 2020). The advent of next-generation sequencing and various genotyping platforms has

rendered genotyping more accessible and cost-effective than traditional phenotyping methods
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(Atanda et al., 2021). This transformative shift provides a unique opportunity to seamlessly
integrate genomic selection (GS), leveraging DNA information to predict the genetic merit of new
genotypes (Meuwissen et al., 2001; Atanda et al., 2021). Studies have shown the potential of GS
in pulse breeding programs for genetic improvement of seed yield, seed protein content, and wider
adaptability to ever-changing environmental conditions (Annicchiarico et al., 2019; Budhlakoti et
al., 2022; Cazzola et al., 2021; Gosal & Wani, 2020; Haile et al., 2020; Li et al., 2022; Pratap et
al., 2022). The North Dakota State University (NDSU) pulse breeding program is undergoing a
fundamental shift from phenotypically-driven approaches to a more modern GS-based approach
at the preliminary yield trial (PYT) stage. Improving accuracy in the early yield testing stage for
selection of top-performing lines is essential for efficient resource allocation, shortening the
breeding cycle, and, ultimately, increasing genetic gain (Bassi et al., 2016; Atanda et al., 2021,

Bandillo et al., 2022).

Univariate or single-trait (UNI) models have been widely employed in GS, focusing on predicting
individual traits independently while assuming no correlation between traits (Atanda et al., 2022;
Sandhu et al., 2022; Montesinos-Ldpez et al., 2022). Multi-trait GS (MT-GS) models integrate
information from correlated traits and shared genetic information between lines to improve the
accuracy. (Jia and Jannink, 2012; Gill et al. 2021; Atanda et al., 2022; Montesinos-Lépez et al.,
2022;). As traits are genetically correlated, these MT-GS models have demonstrated their ability

to enhance prediction accuracy, particularly for traits with inherently low heritability.

Hayes et al. (2017) reported increased genomic prediction accuracy by ~40% for wheat end-use

quality traits using a MT-GS model compared to a UNI-GS model. In barley, Bhatta et al. (2020)
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94  reported an increase of 57 to 61% prediction accuracy for agronomic and malting quality traits. In
95 a recent study, Atanda et al. (2022) proposed a sparse-phenotyping-aided MT-GS model and
96 demonstrated a notable improvement of over 12% in prediction accuracy across nutritional traits
97 in field pea. Generally, prediction accuracy in MT-GS improves as correlation between traits
98 increases. However, in practice, the correlation between traits ranges from positive to negative,
99 along with varying degrees of heritability. Addressing this challenge, Atanda et al. (2022)

100 emphasized composition of traits in the training and prediction sets based on the heritability and

101  genetic correlation between traits to enhance the prediction accuracy. Studies have also shown

102  that the integration of genotype by environment (GXE) in the MT model further improves

103 prediction accuracy (Gill et al., 2021; Sandhu et al., 2022).

104

105  Inthis study, we explored the merit of a multi-trait multi-environment enabled genomic prediction

106  model (MTME-GP) in enhancing the prediction accuracy of two highly-important, yet negatively

107  correlated, traits: seed protein content and seed yield in field pea. Additionally, we further assessed

108  the potential of MTME-GP models for predicting performance within- and across-environments

109  using multiple years of data.

110

111 2.0 MATERIALS AND METHODS

112 2.1 Germplasm and phenotyping

113 The genetic materials consisted of 282 NDSU advanced elite breeding lines previously described

114  in Bari et al. (2022). The lines were planted in 1.5- x 7.6-m plots at 0.30-m spacing between plots

115  with 840 pure live seeds per plot, arranged in an augmented incomplete block design with five

116  diagonal repeated checks for preliminary yield trials. Seed yield and agronomic data were collected
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117  in 3-year experiments from 2020 to 2022, including two environments at the NDSU North Central
118  Research Extension Center (NCREC) near Minot, ND (MOT20 and MOT21) and one environment
119  at the Carrington Research Extension Center near Carrington, ND (CAR22). Standard cultural
120  practices were followed. Plots were harvested at physiological maturity (90-120 days after
121 planting) and dried to 13% moisture content. A total of 0.11 kg clean and dried harvested seeds
122 per line was used for protein analysis at the NCREC using near infrared (NIR) spectroscopy.

123

124 2.2 Genotyping

125  Young leaves were harvested from seedlings of each pea line planted in a greenhouse environment.
126 DNA extraction was carried out using the DNeasy® Plant Mini Kit (Qiagen, Germantown, MD,
127 USA) following the manufacturer’s instructions, and elution was performed with 100pl.
128  Subsequently, the DNA samples obtained were quantified using the Qubit dsSDNA BR Assay kit
129  and Qubit 4.0 fluorometer (Life Technologies Corporation, Eugene, OR). As described by Bari et
130 al. (2022), DNA samples were standardized to a final concentration of 25 ng/ul for subsequent
131  genotyping-by-sequencing (GBS) at a genomic center. The prepared dual-indexed GBS libraries
132 using the restriction enzyme ApeKI (Elshire et al. 2011) were combined into a single pool and
133 sequenced across 1.5 lanes of NovaSeq S1x100-pb run, producing approximately 1,000 million
134  pass filter reads with mean quality scores of > 30. The resulting quality reads were aligned to the
135  established pea reference genome (Kreplak et al. 2019) yielding a total of 28,832 SNP markers.
136  After removal of SNPs with minor allele frequency less than 1%, heterozygosity exceeding 20%,
137  and those having over 90% missing values, the remaining 11,858 SNPs were used for downstream
138  analysis. SNPs with missing values were imputed using Beagle v.5.1 (Browning et al., 2018).

139
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140 2.3 Phenotyping

141 A mixed linear model was used to extract best linear unbiased estimates (BLUES) for all traits
142  evaluated using the following model:

143

144 y=f(r,c)+Xb+ Z.u,+ Zou.+¢ (1)

145

146 where y is the response variable for n-th phenotype, b is the fixed effect of the genotype, u, and
147  u. are row and column random effects accounting for discontinuous field variation with

148  multivariate normal distribution: u, ~ N(0, Io?) and u, ~ N(0, I52) respectively, wherein, | is an
149  identity matrix and o2 and oZ are variances due to row and column effect. f(r, c) is a smooth
150  bivariate function defined over the row and column positions, € is the measurement error from
151 each plot with distribution of € ~ N(0, 162), wherein, | is the same as above and ¢? is variance
152  for the residual term or simply referred to as nugget. X and Z are incidence matrices for the fixed
153  and random terms, respectively.

154

155 2.4 Genomic selection models

156  The univariate (UNI) single environment GS model was fitted using the Bayesian approach and
157  implemented in the BGLR R package (Pérez & de los Campos, 2014):

158

159 y= 1xp + Zu + ¢ (2
160

161  where y is the vector (n x 1) of adjusted means (BLUES) for j-th pea lines for a targeted trait; p

162 s the overall mean; 1, (k x 1) is a vector of ones; u is the genomic effect of the j-th pea line
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163 and assumed to follow the multivariate normal distribution expressed as u~N(0, Go3), where G
164 s the genomic relationship matrix and o is the additive genetic variance; and Z is the incidence
165  matrix for genomic effect of the lines.

166

167  The UNI multi-environment GS model was fitted using a reaction norm model which accounts
168  for genotype by environment interaction (GXE) described in Jarquin et al. (2013):

169

170 y=1u+Zu; + Z,u, + Z;u; + € (3)

171

172 wherey (nx1) is the vector of phenotypes of the pea lines measured in the environments (1...k), p
173 isthe overall mean and 1, (nx1) is a of vector ones. u, is the random effect of the k-th environment
174  and follows the multivariate normal distribution N(0, 0£ZKZ;) where o is the variance of the
175  main effect of the environment, K is a relationship matrix between the environments which is an
176  identity matrix, Zyis an incidence matrix that relates the phenotypes to the mean of the
177  environments, and Z,KZ, is a block diagonal matrix that uses a 1 for all pairs of observations in
178  the same environment and a O for off-diagonal elements. u,is the random effect of the pea lines
179 and follows the multivariate normal distribution N(0, 03Z,GZg), where o3 is the variance of the
180  main effect of the pea lines, Z,is an incidence matrix that relates the phenotypes with the genomic
181  relationship between the pea lines (G). usis the random effect of the GXE effect and follows the
182 multivariate normal distribution N(0, 03, Z;GZ4#0}Z\ KZy), Where o3 is the variance component
183  of GE, # denotes the Hadamard product, and Z,GZgand Z\KZ; are the same as previously

184  described. € is the random term of the residual and follows the multivariate normal distribution

185  N(O, 62I), where o2 is the homogenous residual variance. For the Bayesian Reproducing Kernel
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186  Hilbert Spaces Regressions (RHKS), the G matrix was replaced by kernel matrix (see Pérez & de
187  los Campos, 2014 for details).
188

189  The multi-trait (MT) single environment GS model was fitted by extending Eq. 2 as follows:

Z1 0 uy &
P ][]+[] (4)
0 Zn u, €n

192  where y; ...y, are the vector of phenotypes, y, ...u, are the overall mean for each n-th trait, Z,

190
Y1 1

191 +

¥n [1kUn
193  ...Z, is the incidence matrix for genomic effect of the lines for each n-th trait, u; .... u, is the
194  genomic effect of the lines for each n-th trait, and &, ... €, is the residual error for each n-th trait.
195 The random term is assumed to follow the multivariate normal distribution [u, ...
196  u,] ~ MN[0, (G® G,)], where G is the same as above and G, is an n x n unstructured variance-

197  covariance matrix of the genetic effect of the traits, this is represented as follows:

[ 0-52-}1 0-g12 Ggln]
_lo 02
198 G, QG =|%821 % Y )
%nm ;. of

199  The diagonal elements represent variance for each trait and covariances between traits are the off-
200 diagonal elements.

201

202 Further, the residual term for each n-th trait is assumed to follow the multivariate normal
203  distribution [g; ... €,] ~ MN[0, (I® R)], where I is the same as above and R is a heterogeneous
204  diagonal matrix of the residual variances for each n-th trait:

205
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[Ggl 0 0 ]
206 R:| (:) 0?2 0 |®l (6)
lo o . ol

207  The diagonal elements represent the residual variance for each n-th trait and off-diagonal

208  elements of the R matrix equal zero.

209

210  For the multi-trait (MT) multi-environment GS model, Eq. 3 was expanded as described by
211 Montesinos et al. (2022):

212 y =1 +Zijuy + Zy 0y, + Zzquz + € (7)

213

214  whereyis of size i x nand i =j x k, n is the number of traits, j is the number of genotypes and k
215 is the number of environments. Z, ; is the incidence matrix of environment of size i X k, u; ; is
216  the random effect of each environment of each trait with size k x n, Z, ; is the incidence matrix
217  of genotypes of order i x j, u, 4 is the random effect of the genotypes i x n, and follows the

218 multivariate normal distribution MN(0, 65Z,GZg, Ug), where Zjis an incidence matrix of the
219 genotypes of order i X j. G, Z;GZgand ZyKZ, are the same as above and Uyis the unstructured
220  variance-covariance matrix of traits of order n x n. Z5 , is the incidence matrix of GE of order i
221 xKj, uz 4 is the random effect of the genotypes by environment by trait of order kj x n and

222 follows the matrix multivariate normal distribution MN(O, onggGZ,{;#oﬁZkKZl’p Ug), where
223 Ug is the unstructured variance-covariance matrix of order k by k. € is the random term of the

224  residual and follows the multivariate normal distribution MN(O, I, £,). 1 is identity matrix of order
225 ixn, and X, is the unstructured variance-covariance matrix.

226
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227 2.5 Cross validation scheme

228  Evaluation of the predictive performance was assessed using various validation scenarios mean to
229  mimic possible utilization scenarios of genomic selection in the NDSU field pea breeding program.
230  Models were trained to predict seed yield and total seed protein content within and across different
231 environments. Predictive ability (PA) was estimated as the Pearson correlation coefficient between
232 predicted genomic estimated breeding value (GEBV) and BLUE of each trait for the complete
233 dataset. For within-environment predictions, datasets for each environment (MOT20, MOT21, and
234  CAR22) were partitioned into different training set sizes (50%, 60%, 70%, and 80%) and the
235  process was repeated 30 times. For across-environment predictions, models were trained on one
236  environment and tested on a novel environment (e.g., MOT20 trained to predict MOT21). We also
237  explored the effectiveness of training the model on multiple environments to predict a novel
238  environment (e.g., MOT20 and MOT21 trained to predict CAR22).

239

240 3.0 RESULTS AND DISCUSSION

241 3.1 Predictive ability of different genomic prediction models

242 We evaluated the potential of GS to predict the genetic merit of two negatively-correlated complex
243  traits across three environments with varying degrees of heritability (Supp. Fig. 1). Except in the
244  case of UNI-GS model where G_BRR outperformed RKHS for both traits, the RKHS model
245  consistently demonstrated superior predictive performance across models and in cross-validation
246  strategies for both traits (Supp. Fig.2:5). The superiority of the RKHS model in all other scenarios
247  evaluated in this study suggests robustness and reliability of the model in capturing not only
248  additive effects but also non-linear effects and complex GxE interactions (Baertschi et al. 2021;

249  Jiang and Reif 2015). These findings align with those of Bari et al. (2021), which observed subtle
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250 but favorable advantages of the RKHS model for predicting seed yield in field peas. To compare
251 UNI with MT, we focused on the RKHS model due to its superiority over the BRR model across
252 all validation scenarios. MT outperformed UNI by 11-fold across traits and environments (Supp.
253  Fig 6:7). Okeke et al. (2017) also reported an improvement in predictive ability (average of 40%)
254  with MT compared to UN for various traits in African cassava. Similarly, Arojju et al. (2020)
255  reported improvements in prediction accuracy ranging from 24% to 59% for dry matter yield and
256  67% to 105% for nutritive quality traits in perennial ryegrass. Most recently, Winn et al. (2023)
257  demonstrated substantial enhancement in prediction accuracy for various combinations of soft red
258  winter wheat traits. These highlight the potential of MT models to enhance prediction accuracy,
259  especially for challenging and resource-intensive traits.

260

261  The integration of GXE interaction by including environments with low heritability did not result
262 in an increase in predictive ability as shown in Supplementary Figure 7F. Specifically, adding
263 MOT21 to the training set, which has the lowest heritability estimate of 0.11, did not enhance
264  predictive ability. This might suggest a nuanced interplay between environmental conditions and
265  predictive models. This corroborates the findings of Rogers and Holland (2022), emphasizing that
266  the addition of nuisance environments will not enhance overall predictive ability. This suggests
267 that GXE interactions might be more relevant in environments with moderate to high heritability.

268

269 3.2 Optimal training set size for improved predictive performance of RKHS model

270  The training set size is one of the major factors influencing the prediction accuracy of un-tested
271 lines (Norman et al., 2018). Supp. Fig. 6:7 showed no clear trend in predictive ability for the traits

272 with increasing training set size. The G_RKHS (MT) model consistently showed the highest


https://doi.org/10.1101/2024.02.18.580909
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.18.580909; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

273 predictive ability for seed protein reaching 30% when 60% and 80% of MOT?20 dataset were
274  trained to predict CAR22 (Fig. 1). However, in predicting for seed yield, the majority of the highest
275  predictive abilities were still observed under G_RKHS (MT), reaching 34% when 80% of MOT20
276  dataset was trained to test CAR22 (Supp. Fig. 8). Previous studies have emphasized a strong
277  relationship between prediction accuracy, training set size, and trait heritability (Luan et al., 2009;
278  Lorenz etal., 2011; Clark et al., 2012; Nyline et al., 2017; Kaler et al.,2022; Atanda et al., 2022).
279  Considering the varying heritability of our traits across environments, ranging from 1.57E-06 to
280  0.80 for grain yield and 0.12 to 0.53 for protein, and the negative correlation between traits, these
281  factors might contribute to the overall predictive ability across models in our study. Contrary to
282  our results, Bari et al. (2021) reported an increase in prediction accuracy with increased training
283  setsize. Other studies (Budhlakoti et al. 2022; De Roos et al. 2020) have also reported the influence
284  of training set size and heritability on prediction accuracy. This underscores the importance of

285  careful consideration when selecting training set size for model training.
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286

287  Figure 1: Average predictive ability with increasing training population size using RKHS
288  models for seed protein content, RKHS is Reproducing Kernel Hilbert Spaces, MT is

289  multivariate, UNI is univariate, G is prediction model considering genotype, GE is

290 prediction model integrating GXE interaction. (A) MOT21 dataset trained to predict

291 MOT20, (B) CAR22 dataset trained to predict MOT20, (C) MOT20 dataset trained to

292 predict MOT21, (D) CAR22 dataset trained to predict MOT?21, (E) MOT20 dataset trained

293  to predict CAR22, (F) MOT21 dataset trained to predict CAR22.

294

295 3.3 Efficacy of MTME-GP for predictions within and across different environments
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296  Generally, integration of GXE in the model improved the predictive ability (Supp. Fig. 2B, 2E,
297 4B, 4E) except for environment with low heritability as reported earlier. This further highlights
298 the importance of carefully managing testing environments to reduce the influence of
299  environmental nuisance on phenotyping. Ultimately, it underscores the significance of considering
300 heritability in the environment when developing training datasets for multi-environment GS
301 models, ensuring efficient capturing of the genetic relationship between environments and
302  borrowing information effectively across environments (Xu, 2016; van Eeuwijk et al. 2019;
303 Atanda et al., 2021). Similarly, Sapkota et al. (2020) reported varying prediction accuracy when
304 environments with different heritability were included in the training model to predict new
305 environments. Gill et al. (2021) emphasized the potential of MTME-GP in practical scenarios,
306  such as overcoming the challenges posed by the loss of complete or partial trials due to extreme
307  weather. As also shown in our study, also MTME-GP proved valuable in predicting the genetic

308  merit of the lines affected by drought condition for both traits (Fig. 2:3).

309
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312  Figure 2: Average predictive abilities with increasing training population set size using
313 RKHS model for seed yield, G is prediction model considering genotype, GE is prediction
314  model integrating GXE interaction, MT is multivariate, UNI is univariate. (A) MOT21 and
315 CARZ22 datasets trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to

316 predict MOT21, (C) MOT20 and MOT21 datasets trained to predict CAR22.

317
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319  Figure 3: Average predictive abilities with increasing training set size using RKHS model for
320 seed protein content, G is prediction model considering genotype, GE is prediction model
321 integrating GXE interaction, MT is multivariate, UNI is univariate. (A) MOT21 and CAR22
322 datasets trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to predict
323 MOT21, (C) MOT20 and MOT21 datasets trained to predict CAR22.

324

325 CONCLUSION

326 Our research findings highlight the intricate dynamics of genomic prediction for seed yield and
327  seed protein content in the face of diverse environmental conditions. The consistent superiority of
328 the RKHS model, particularly in capturing GxE, highlights its robustness and as a choice model

329 in GS. Furthermore, the adoption of MTME-GP has proven instrumental in addressing the
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330 complexities associated in predicting inherently low trait heritabilities such as grain yield and total
331 protein content. To fully harness the potential of genomic prediction in plant breeding, composition
332  of the training set in terms of the individuals as well as the heritability of the environments for
333 MTME-enabled GS should be carefully considered. More so, including a wider array of correlated
334 traits in prediction models, integrating deep learning for a more profound understanding of genetic
335 architecture, and incorporating multi-omics data for a comprehensive view of trait genetics and
336 molecular foundations all hold promise. This research marks a significant stride towards unlocking
337 the potential of genomics in public plant breeding programs and offers valuable insights into the
338 challenges and opportunities entailed by complex traits and diverse environments.
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