
 

 

Core ideas 1 

• Phenotypic selection in PYT is challenged by limited seeds, resulting to few replications 2 

and environments. 3 

• MTME-GP offers opportunity for enhancing prediction accuracy of multi-trait and 4 

diverse environments in PYT.  5 

• MTME-GP enhances prediction by up to 2.5-fold, especially with numerous overlapping 6 

genotypes in various tested environments. 7 

• RKHS MTME-GP models, excels in low-heritability, negatively correlated traits, like 8 

drought-affected conditions. 9 

 10 
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ABSTRACT 38 

Phenotypic selection in preliminary yield trials (PYT) is challenged by limited seeds, resulting in 39 

trials with few replications and environments. The emergence of multi-trait multi-environment 40 

enabled genomic prediction (MTME-GP) offers opportunity for enhancing prediction accuracy 41 

and genetic gain across multiple traits and diverse environments. Using a set of 300 advanced 42 

breeding lines in the North Dakota State University (NDSU) pulse crop breeding program, we 43 

assessed the efficiency of a MTME-GP model for improving seed yield and protein content in 44 

field peas in stress and non-stress environments. MTME-GP significantly improved predictive 45 

ability, improving up to 2.5-fold, particularly when a significant number of genotypes 46 

overlapped across environments. Heritability of the training environments contributed 47 
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significantly to the overall prediction of the model. Average predictive ability ranged from 3 to 48 

7-folds when environments with low heritability were excluded from the training set. Overall, 49 

the Reproducing Kernel Hilbert Spaces (RKHS) model consistently resulted in improved 50 

predictive ability across all breeding scenarios considered in our study. Our results lay the 51 

groundwork for further exploration, including integration of diverse traits, incorporation of deep 52 

learning techniques, and the utilization of multi-omics data in predictive modeling. 53 

 54 

1.0 INTRODUCTION 55 

The challenges posed by a rapidly expanding global population and climate change underscore the 56 

imperative for sustainable food production (Tilman et al. 2011; van Dijk et al. 2021; Kumar et al. 57 

2022). Field pea (Pisum sativum) emerges as a desirable crop, not only meeting the criteria for 58 

sustainability but also standing out as an affordable and nutritious plant-based protein source. This 59 

places field pea at the forefront of leguminous crops in the food industry (Punia & Kumar, 2022; 60 

Shanthakumar et al., 2022). However, the conventional process of developing a promising line for 61 

release to farmers involves rigorous phenotypic assessments across multiple seasons and 62 

environments, especially for polygenic traits with complex genetic architecture (Samantara et al., 63 

2022).  Accelerating the development of crop varieties to meet the needs of a growing population 64 

stands out as a viable strategy to help feed the world (Ahmar et al. 2020). 65 

 66 

Genomic selection for complex traits in early breeding cycles has the potential to significantly 67 

reduce the selection cycle time and expedite genetic gain (Ertiro et al., 2015; Crossa et al., 2017; 68 

Bernardo, 2020).  The advent of next-generation sequencing and various genotyping platforms has 69 

rendered genotyping more accessible and cost-effective than traditional phenotyping methods 70 
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(Atanda et al., 2021). This transformative shift provides a unique opportunity to seamlessly 71 

integrate genomic selection (GS), leveraging DNA information to predict the genetic merit of new 72 

genotypes (Meuwissen et al., 2001; Atanda et al., 2021). Studies have shown the potential of GS 73 

in pulse breeding programs for genetic improvement of seed yield, seed protein content, and wider 74 

adaptability to ever-changing environmental conditions (Annicchiarico et al., 2019; Budhlakoti et 75 

al., 2022; Cazzola et al., 2021; Gosal & Wani, 2020; Haile et al., 2020; Li et al., 2022; Pratap et 76 

al., 2022). The North Dakota State University (NDSU) pulse breeding program is undergoing a 77 

fundamental shift from phenotypically-driven approaches to a more modern GS-based approach 78 

at the preliminary yield trial (PYT) stage. Improving accuracy in the early yield testing stage for 79 

selection of top-performing lines is essential for efficient resource allocation, shortening the 80 

breeding cycle, and, ultimately, increasing genetic gain (Bassi et al., 2016; Atanda et al., 2021; 81 

Bandillo et al., 2022).  82 

 83 

Univariate or single-trait (UNI) models have been widely employed in GS, focusing on predicting 84 

individual traits independently while assuming no correlation between traits (Atanda et al., 2022; 85 

Sandhu et al., 2022; Montesinos-López et al., 2022). Multi-trait GS (MT-GS) models integrate 86 

information from correlated traits and shared genetic information between lines to improve the 87 

accuracy. (Jia and Jannink, 2012; Gill et al. 2021; Atanda et al., 2022; Montesinos-López et al., 88 

2022;). As traits are genetically correlated, these MT-GS models have demonstrated their ability 89 

to enhance prediction accuracy, particularly for traits with inherently low heritability.  90 

 91 

Hayes et al. (2017) reported increased genomic prediction accuracy by ~40% for wheat end-use 92 

quality traits using a MT-GS model compared to a UNI-GS model. In barley, Bhatta et al. (2020) 93 
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reported an increase of 57 to 61% prediction accuracy for agronomic and malting quality traits. In 94 

a recent study, Atanda et al. (2022) proposed a sparse-phenotyping-aided MT-GS model and 95 

demonstrated a notable improvement of over 12% in prediction accuracy across nutritional traits 96 

in field pea. Generally, prediction accuracy in MT-GS improves as correlation between traits 97 

increases. However, in practice, the correlation between traits ranges from positive to negative, 98 

along with varying degrees of heritability. Addressing this challenge, Atanda et al. (2022) 99 

emphasized composition of traits in the training and prediction sets based on the heritability and 100 

genetic correlation between traits to enhance the prediction accuracy.  Studies have also shown 101 

that the integration of genotype by environment (GxE) in the MT model further improves 102 

prediction accuracy (Gill et al., 2021; Sandhu et al., 2022).  103 

 104 

In this study, we explored the merit of a multi-trait multi-environment enabled genomic prediction 105 

model (MTME-GP) in enhancing the prediction accuracy of two highly-important, yet negatively 106 

correlated, traits: seed protein content and seed yield in field pea. Additionally, we further assessed 107 

the potential of MTME-GP models for predicting performance within- and across-environments 108 

using multiple years of data.  109 

 110 

2.0 MATERIALS AND METHODS 111 

2.1 Germplasm and phenotyping 112 

The genetic materials consisted of 282 NDSU advanced elite breeding lines previously described 113 

in Bari et al. (2022). The lines were planted in 1.5- x 7.6-m plots at 0.30-m spacing between plots 114 

with 840 pure live seeds per plot, arranged in an augmented incomplete block design with five 115 

diagonal repeated checks for preliminary yield trials. Seed yield and agronomic data were collected 116 
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in 3-year experiments from 2020 to 2022, including two environments at the NDSU North Central 117 

Research Extension Center (NCREC) near Minot, ND (MOT20 and MOT21) and one environment 118 

at the Carrington Research Extension Center near Carrington, ND (CAR22). Standard cultural 119 

practices were followed. Plots were harvested at physiological maturity (90-120 days after 120 

planting) and dried to 13% moisture content. A total of 0.11 kg clean and dried harvested seeds 121 

per line was used for protein analysis at the NCREC using near infrared (NIR) spectroscopy. 122 

 123 

2.2 Genotyping 124 

Young leaves were harvested from seedlings of each pea line planted in a greenhouse environment. 125 

DNA extraction was carried out using the DNeasy® Plant Mini Kit (Qiagen, Germantown, MD, 126 

USA) following the manufacturer’s instructions, and elution was performed with 100µl. 127 

Subsequently, the DNA samples obtained were quantified using the Qubit dsDNA BR Assay kit 128 

and Qubit 4.0 fluorometer (Life Technologies Corporation, Eugene, OR). As described by Bari et 129 

al. (2022), DNA samples were standardized to a final concentration of 25 ng/µl for subsequent 130 

genotyping-by-sequencing (GBS) at a genomic center. The prepared dual-indexed GBS libraries 131 

using the restriction enzyme ApeKI (Elshire et al. 2011) were combined into a single pool and 132 

sequenced across 1.5 lanes of NovaSeq S1x100-pb run, producing approximately 1,000 million 133 

pass filter reads with mean quality scores of > 30. The resulting quality reads were aligned to the 134 

established pea reference genome (Kreplak et al. 2019) yielding a total of 28,832 SNP markers. 135 

After removal of SNPs with minor allele frequency less than 1%, heterozygosity exceeding 20%, 136 

and those having over 90% missing values, the remaining 11,858 SNPs were used for downstream 137 

analysis. SNPs with missing values were imputed using Beagle v.5.1 (Browning et al., 2018). 138 

 139 
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2.3 Phenotyping 140 

A mixed linear model was used to extract best linear unbiased estimates (BLUEs) for all traits 141 

evaluated using the following model: 142 

 143 

𝐲 = f(𝐫, 𝐜) + 𝐗𝐛 + 𝐙r𝐮𝒓 + 𝐙c𝐮c + 𝛆     (1) 144 

 145 

where y is the response variable for n-th phenotype, b is the fixed effect of the genotype, 𝐮𝐫 and 146 

𝐮𝐜 are row and column random effects accounting for discontinuous field variation with 147 

multivariate normal distribution: 𝐮𝐫 ~ N(0, 𝐈σr
2) and 𝐮𝐜 ~ N(0, 𝐈σc

2) respectively, wherein, I is an 148 

identity matrix and  σr
2 and σc

2 are variances due to row and column effect. f(r, c) is a smooth 149 

bivariate function defined over the row and column positions, 𝛆 is the measurement error from 150 

each plot with distribution of 𝛆 ~ N(0, Iσε
2), wherein, I is the same as above and σε

2 is variance 151 

for the residual term or simply referred to as nugget. X and Z are incidence matrices for the fixed 152 

and random terms, respectively. 153 

 154 

2.4 Genomic selection models 155 

The univariate (UNI) single environment GS model was fitted using the Bayesian approach and 156 

implemented in the BGLR R package (Pérez & de los Campos, 2014): 157 

 158 

𝐲 =  𝟏𝐤μ +  𝐙𝐮 +  𝛆     (2) 159 

  160 

where 𝐲 is the vector (n x 1) of adjusted means (BLUEs) for j-th pea lines for a targeted trait; μ 161 

is the overall mean; 𝟏k (k × 1)  is a vector of ones; 𝐮 is the genomic effect of the j-th pea line 162 
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and assumed to follow the multivariate normal distribution expressed as 𝐮~N(0, 𝐆σg
2), where 𝐆 163 

is the genomic relationship matrix and σg
2 is the additive genetic variance; and 𝐙 is the incidence 164 

matrix for genomic effect of the lines. 165 

 166 

The UNI multi-environment GS model was fitted using a reaction norm model which accounts 167 

for genotype by environment interaction (GxE) described in Jarquin et al. (2013): 168 

 169 

𝐲 = 𝟏nμ + 𝐙1𝐮1 + 𝐙2𝐮2 + 𝐙3𝐮3 + 𝛆   (3) 170 

  171 

where y (n×1) is the vector of phenotypes of the pea lines measured in the environments (1...k), μ 172 

is the overall mean and 𝟏n (nx1) is a of vector ones. 𝐮1is the random effect of the k-th environment 173 

and follows the multivariate normal distribution N(0, σk
2𝐙k𝐊𝐙𝐤

′ ) where σk
2 is the variance of the 174 

main effect of the environment, K is a relationship matrix between the environments which is an 175 

identity matrix, 𝐙kis an incidence matrix that relates the phenotypes to the mean of the 176 

environments, and 𝐙k𝐊𝐙𝐤
′  is a block diagonal matrix that uses a 1 for all pairs of observations in 177 

the same environment and a 0 for off-diagonal elements. 𝐮𝟐is the random effect of the pea lines 178 

and follows the multivariate normal distribution N(0, σg
2𝐙𝐠𝐆𝐙𝐠

′ ), where σg
2 is the variance of the 179 

main effect of the pea lines, 𝐙gis an incidence matrix that relates the phenotypes with the genomic 180 

relationship between the pea lines (G). 𝐮3is the random effect of the GxE effect and follows the 181 

multivariate normal distribution N(0, σgk
2 𝐙𝐠𝐆𝐙𝐠

′#σk
2𝐙k𝐊𝐙𝐤

′ ), where σgk
2  is the variance component 182 

of GE, # denotes the Hadamard product, and 𝐙𝐠𝐆𝐙𝐠
′ and 𝐙k𝐊𝐙𝐤

′  are the same as previously 183 

described. 𝛆 is the random term of the residual and follows the multivariate normal distribution 184 

N(0, σε
2𝐈), where σε

2 is the homogenous residual variance. For the Bayesian Reproducing Kernel 185 
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Hilbert Spaces Regressions (RHKS), the G matrix was replaced by kernel matrix (see Pérez & de 186 

los Campos, 2014 for details).  187 

 188 

The multi-trait (MT) single environment GS model was fitted by extending Eq. 2 as follows: 189 

 190 

[

𝐲1

⋮
𝐲n

]   = [
𝟏1μ1

⋮
𝟏kμn

] + [
𝐙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐙n

]  [

𝐮1

⋮
𝐮n

]  +[

ε1

⋮
εn

]           (4) 191 

where 𝐲1…𝐲n are the vector of phenotypes, μ1 …μn are the overall mean for each n-th trait, 𝐙1 192 

…𝐙n is the incidence matrix for genomic effect of the lines for each n-th trait, 𝐮1 …. 𝐮n is the 193 

genomic effect of the lines for each n-th trait, and 𝛆1 … 𝛆n is the residual error for each n-th trait. 194 

The random term is assumed to follow the multivariate normal distribution [𝐮1 …. 195 

𝐮n]  ~ MN[0, (𝐆⨂𝐆o)], where G is the same as above and 𝐆o is an n x n unstructured variance-196 

covariance matrix of the genetic effect of the traits, this is represented as follows: 197 

𝐆o⊗G = 

[
 
 
 
 
σg1

2 σg12
⋯ σg1n

σg21
σg2

2 ⋯ ⋯

σgn1

⋮
⋮

⋱
…

⋮
σgn

2
]
 
 
 
 

⨂ 𝐆         (5) 198 

The diagonal elements represent variance for each trait and covariances between traits are the off-199 

diagonal elements.  200 

 201 

Further, the residual term for each n-th trait is assumed to follow the multivariate normal 202 

distribution [𝛆1 … 𝛆n]  ~ MN[0, (𝐈⨂𝐑)], where 𝐈 is the same as above and R is a heterogeneous 203 

diagonal matrix of the residual variances for each n-th trait: 204 

 205 
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𝐑= 

[
 
 
 
 
σε1

2 0 ⋯ 0

0 σε2
2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮
σεn

2
]
 
 
 
 

 ⨂ 𝐈       (6) 206 

The diagonal elements represent the residual variance for each n-th trait and off-diagonal 207 

elements of the 𝐑 matrix equal zero. 208 

 209 

For the multi-trait (MT) multi-environment GS model, Eq. 3 was expanded as described by 210 

Montesinos et al. (2022): 211 

𝐲 = 𝟏nKμ + 𝐙1.1𝐮1.1 + 𝐙2.1𝐮2.1 + 𝐙3.1𝐮3.1 + 𝛆   (7) 212 

 213 

where 𝐲 is of size i x n and i =j x k, n is the number of traits, j is the number of genotypes and k 214 

is the number of environments. 𝐙1.1 is the incidence matrix of environment of size i x k, 𝐮1.1 is 215 

the random effect of each environment of each trait with size k x n, 𝐙2.1 is the incidence matrix 216 

of genotypes of order i × j, 𝐮2.1 is the random effect of the genotypes i × n, and follows the 217 

multivariate normal distribution MN(0, σg
2𝐙𝐠𝐆𝐙𝐠

′ , 𝐔g), where 𝐙𝐠is an incidence matrix of the 218 

genotypes of order i x j. 𝐆, 𝐙𝐠𝐆𝐙𝐠
′and 𝐙k𝐊𝐙𝐤

′  are the same as above and 𝐔gis the unstructured 219 

variance-covariance matrix of traits of order n × n.  𝐙3.1 is the incidence matrix of GE of order i 220 

× kj, 𝐮3.1 is the random effect of the genotypes by environment by trait of order kj × n and 221 

follows the matrix multivariate normal distribution MN(0, σgk
2 𝐙𝐠𝐆𝐙𝐠

′#σk
2𝐙k𝐊𝐙𝐤

′ , 𝐔gk), where 222 

𝐔gk is the unstructured variance-covariance matrix of order k by k.  𝛆 is the random term of the 223 

residual and follows the multivariate normal distribution MN(0, 𝐈, Σt). 𝐈 is identity matrix of order 224 

i ×n, and Σt is the unstructured variance-covariance matrix. 225 

 226 
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2.5 Cross validation scheme 227 

Evaluation of the predictive performance was assessed using various validation scenarios mean to 228 

mimic possible utilization scenarios of genomic selection in the NDSU field pea breeding program. 229 

Models were trained to predict seed yield and total seed protein content within and across different 230 

environments. Predictive ability (PA) was estimated as the Pearson correlation coefficient between 231 

predicted genomic estimated breeding value (GEBV) and BLUE of each trait for the complete 232 

dataset. For within-environment predictions, datasets for each environment (MOT20, MOT21, and 233 

CAR22) were partitioned into different training set sizes (50%, 60%, 70%, and 80%) and the 234 

process was repeated 30 times. For across-environment predictions, models were trained on one 235 

environment and tested on a novel environment (e.g., MOT20 trained to predict MOT21). We also 236 

explored the effectiveness of training the model on multiple environments to predict a novel 237 

environment (e.g., MOT20 and MOT21 trained to predict CAR22). 238 

 239 

3.0 RESULTS AND DISCUSSION 240 

3.1 Predictive ability of different genomic prediction models 241 

We evaluated the potential of GS to predict the genetic merit of two negatively-correlated complex 242 

traits across three environments with varying degrees of heritability (Supp. Fig. 1). Except in the 243 

case of UNI-GS model where G_BRR outperformed RKHS for both traits, the RKHS model 244 

consistently demonstrated superior predictive performance across models and in cross-validation 245 

strategies for both traits (Supp. Fig.2:5). The superiority of the RKHS model in all other scenarios 246 

evaluated in this study suggests robustness and reliability of the model in capturing not only 247 

additive effects but also non-linear effects and complex GxE interactions (Baertschi et al. 2021; 248 

Jiang and Reif 2015). These findings align with those of Bari et al. (2021), which observed subtle 249 
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but favorable advantages of the RKHS model for predicting seed yield in field peas. To compare 250 

UNI with MT, we focused on the RKHS model due to its superiority over the BRR model across 251 

all validation scenarios. MT outperformed UNI by 11-fold across traits and environments (Supp. 252 

Fig 6:7). Okeke et al. (2017) also reported an improvement in predictive ability (average of 40%) 253 

with MT compared to UN for various traits in African cassava. Similarly, Arojju et al. (2020) 254 

reported improvements in prediction accuracy ranging from 24% to 59% for dry matter yield and 255 

67% to 105% for nutritive quality traits in perennial ryegrass. Most recently, Winn et al. (2023) 256 

demonstrated substantial enhancement in prediction accuracy for various combinations of soft red 257 

winter wheat traits. These highlight the potential of MT models to enhance prediction accuracy, 258 

especially for challenging and resource-intensive traits.  259 

 260 

The integration of GxE interaction by including environments with low heritability did not result 261 

in an increase in predictive ability as shown in Supplementary Figure 7F. Specifically, adding 262 

MOT21 to the training set, which has the lowest heritability estimate of 0.11, did not enhance 263 

predictive ability. This might suggest a nuanced interplay between environmental conditions and 264 

predictive models. This corroborates the findings of Rogers and Holland (2022), emphasizing that 265 

the addition of nuisance environments will not enhance overall predictive ability. This suggests 266 

that GxE interactions might be more relevant in environments with moderate to high heritability.  267 

 268 

3.2 Optimal training set size for improved predictive performance of RKHS model 269 

The training set size is one of the major factors influencing the prediction accuracy of un-tested 270 

lines (Norman et al., 2018). Supp. Fig. 6:7 showed no clear trend in predictive ability for the traits 271 

with increasing training set size. The G_RKHS (MT) model consistently showed the highest 272 
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predictive ability for seed protein reaching 30% when 60% and 80% of MOT20 dataset were 273 

trained to predict CAR22 (Fig. 1). However, in predicting for seed yield, the majority of the highest 274 

predictive abilities were still observed under G_RKHS (MT), reaching 34% when 80% of MOT20 275 

dataset was trained to test CAR22 (Supp. Fig. 8). Previous studies have emphasized a strong 276 

relationship between prediction accuracy, training set size, and trait heritability (Luan et al., 2009; 277 

Lorenz et al., 2011; Clark et al., 2012; Nyline et al., 2017; Kaler et al.,2022; Atanda et al., 2022). 278 

Considering the varying heritability of our traits across environments, ranging from 1.57E-06 to 279 

0.80 for grain yield and 0.12 to 0.53 for protein, and the negative correlation between traits, these 280 

factors might contribute to the overall predictive ability across models in our study. Contrary to 281 

our results, Bari et al. (2021) reported an increase in prediction accuracy with increased training 282 

set size. Other studies (Budhlakoti et al. 2022; De Roos et al. 2020) have also reported the influence 283 

of training set size and heritability on prediction accuracy. This underscores the importance of 284 

careful consideration when selecting training set size for model training. 285 
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 286 

Figure 1: Average predictive ability with increasing training population size using RKHS 287 

models for seed protein content, RKHS is Reproducing Kernel Hilbert Spaces, MT is 288 

multivariate, UNI is univariate, G is prediction model considering genotype, GE is 289 

prediction model integrating GxE interaction. (A) MOT21 dataset trained to predict 290 

MOT20, (B) CAR22 dataset trained to predict MOT20, (C) MOT20 dataset trained to 291 

predict MOT21, (D) CAR22 dataset trained to predict MOT21, (E) MOT20 dataset trained 292 

to predict CAR22, (F) MOT21 dataset trained to predict CAR22.  293 

 294 

3.3 Efficacy of MTME-GP for predictions within and across different environments 295 
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Generally, integration of GxE in the model improved the predictive ability (Supp. Fig. 2B, 2E, 296 

4B, 4E) except for environment with low heritability as reported earlier. This further highlights 297 

the importance of carefully managing testing environments to reduce the influence of 298 

environmental nuisance on phenotyping. Ultimately, it underscores the significance of considering 299 

heritability in the environment when developing training datasets for multi-environment GS 300 

models, ensuring efficient capturing of the genetic relationship between environments and 301 

borrowing information effectively across environments (Xu, 2016; van Eeuwijk et al. 2019; 302 

Atanda et al., 2021). Similarly, Sapkota et al. (2020) reported varying prediction accuracy when 303 

environments with different heritability were included in the training model to predict new 304 

environments. Gill et al. (2021) emphasized the potential of MTME-GP in practical scenarios, 305 

such as overcoming the challenges posed by the loss of complete or partial trials due to extreme 306 

weather. As also shown in our study, also MTME-GP proved valuable in predicting the genetic 307 

merit of the lines affected by drought condition for both traits (Fig. 2:3). 308 

 309 

 310 

  311 
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Figure 2: Average predictive abilities with increasing training population set size using 312 

RKHS model for seed yield, G is prediction model considering genotype, GE is prediction 313 

model integrating GxE interaction, MT is multivariate, UNI is univariate. (A) MOT21 and 314 

CAR22 datasets trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to 315 

predict MOT21, (C) MOT20 and MOT21 datasets trained to predict CAR22.  316 

 317 

 318 

Figure 3: Average predictive abilities with increasing training set size using RKHS model for 319 

seed protein content, G is prediction model considering genotype, GE is prediction model 320 

integrating GxE interaction, MT is multivariate, UNI is univariate. (A) MOT21 and CAR22 321 

datasets trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to predict 322 

MOT21, (C) MOT20 and MOT21 datasets trained to predict CAR22. 323 

 324 

CONCLUSION 325 

Our research findings highlight the intricate dynamics of genomic prediction for seed yield and 326 

seed protein content in the face of diverse environmental conditions. The consistent superiority of 327 

the RKHS model, particularly in capturing GxE, highlights its robustness and as a choice model 328 

in GS. Furthermore, the adoption of MTME-GP has proven instrumental in addressing the 329 
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complexities associated in predicting inherently low trait heritabilities such as grain yield and total 330 

protein content. To fully harness the potential of genomic prediction in plant breeding, composition 331 

of the training set in terms of the individuals as well as the heritability of the environments for 332 

MTME-enabled GS should be carefully considered. More so, including a wider array of correlated 333 

traits in prediction models, integrating deep learning for a more profound understanding of genetic 334 

architecture, and incorporating multi-omics data for a comprehensive view of trait genetics and 335 

molecular foundations all hold promise. This research marks a significant stride towards unlocking 336 

the potential of genomics in public plant breeding programs and offers valuable insights into the 337 

challenges and opportunities entailed by complex traits and diverse environments. 338 
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