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Abstract

Approaches to regenerating bone often rely on the integration of biomaterials and biological
signals in the form of cells or cytokines. However, from a translational point of view, these
approaches face challenges due to the sourcing and quality of the biologic, unpredictable immune
responses, complex regulatory paths, and high costs. We describe a simple manufacturing process
and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages
for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite
composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a
continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold
with 60% hydroxyapatite content resembling natural bone. The resulting scaffold integrates with
a thermoresponsive hydrogel composite, customizable in situ to fit the defect. This hybrid phasic
porous CSS mimics the bone microenvironment (inorganic and organic) while allowing

independent control of each material phase (rigid and soft). The CSS stimulates osteogenic
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differentiation in vitro and in vivo. Moreover, it promotes M2 polarization and blood vessel
ingrowth, which are crucial for supporting bone formation. Our comprehensive micro-CT analysis
revealed that within 4 weeks in a critical-size defect model, the CSS accelerated ECM deposition
(8-fold) and mineralized osteoid (69-fold) compared to the untreated. Our material-centric
approach delivers impressive osteogenic properties and streamlined manufacturing advantages,

potentially expediting clinical application for bone reconstruction surgeries.

Keywords

Craniofacial bone regeneration; Composite scaffold; Material-centric approach; 3D printing;

Citrate biomaterial

Introduction

Over 3 million cases of craniofacial trauma occur each year in the United States, constituting 21%
of significant traumas (/). Craniofacial bone defects resulting from traumatic injuries present
challenges for patients and surgeons, necessitating complex surgeries and substantial surgical costs
(2). Autografts, while considered the gold standard for craniofacial reconstruction (3, 4), bring
challenges such as the need for a second/donor surgical site, prolonged operation time, and
increased patient discomfort and recovery. Bone tissue engineering has been considered a
promising alternative, aiming to replicate the native craniofacial environment without complex
technical demands (5). However, integrating biological components such as stem cells and growth
factors increases regulatory complexity (6), raises product development costs, and can elicit
unwanted immune and inflammatory responses (7, &). In this regard, material-centric approaches
alongside the development of synthetic biological scaffolds offer significant potential for

accelerating commercialization strategies and improving patient outcomes (3, 9).
3
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Bone extracellular matrix (ECM) is composed of approximately 40% organic and 60%
inorganic compounds (/0). Several material-centric strategies have proposed composite scaffold
systems (CSS) to accelerate osteogenesis and vascularization, either by integrating ceramics with
hydrogels to simulate the bone matrix microenvironment (/ /) or by combining them with polymers
and additives (e.g., bioactive particles or graphene derivates) (/2, 13). However, the low solubility
of ceramics under physiological conditions leads to poor interface interaction with hydrogels,
causing structural instability, while employing particles for enhancing miscibility (/4, /5) might
compromise biocompatibility. Pre-fabricated systems incorporating hydrogels should consider
swelling properties (/6, 17), which may lead to structural misalignment post-implantation.
Moreover, the mechanical properties of porous ceramic scaffolds can be influenced by the quantity

of additives (/2, 18), complicating the independent control of structural and functional properties.

CSS should not only provide a microenvironment conducive to osteogenesis but also
conform to the defect geometry in 3D for effective integration and function recovery (/9). Additive
manufacturing using continuous liquid interface production (CLIP) offers advantages in printing
speed and complex architecture fabrication at high resolutions (20, 217). Therefore, 3D-printed CSS
developed using CLIP technology has significant potential in bone reconstruction. Nevertheless,
several complex considerations are required for this manufacturing process, including additional
steps to improve material compatibility among the composite components (/4). Due to the
aforementioned reasons, material-centric strategies involving composites face numerous

considerations and constraints.

Herein, we present a customizable CSS comprised of biphasic citrate-based polymers,

incorporating two microparticles, hydroxyapatite (HA) and graphene oxide (GO). This CSS is

4
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86  developed by integrating a polydiolcitrate-GO hydrogel composite into a 3D-printed porous
87  polydiolcitrate-HA scaffold. The 3D-printed scaffold utilizes a poly(1,8-octanediol citrate) (POC)
88  citrate elastomer, which exhibits superior cytocompatibility and tissue interaction compared to
89  commonly used poly(caprolactone) (PCL) in bone tissue engineering (22). The polydiolcirate-GO
90  hydrogel composite, a thermal-responsive gel, provides shaping flexibility, enabling seamless
91  integration with the 3D-printed scaffold and in situ fabrication to fit the defect site (23, 24). We
92  show that the hydrogel-infused 3D-printed CSS stimulates angiogenesis and osteogenesis of
93  endogenous progenitors. Moreover, through granular micro-CT analysis, bone formation over time
94  is assessed in a critical-size defect model in rodents. The material design and strategy allow
95  independent control of each material phase of the CSS and facilitate patient translation and scalable

96  manufacturing, indicating potential as an advanced CSS, particularly for addressing cranial defects.
97  Results
98  GP hydrogel integrates into P-HA enabling CSS fabrication

99  The 3D-printed porous ceramic scaffolds are precisely structured to fit a mouse skull defect model
100  via a micro-continuous liquid interface production (WCLIP) 3D printer (Fig. 1A). Within this
101  system, the composite mixture is placed in a resin bath, allowing photopolymerization by UV light
102 penetration through an Oz-permeable window. Subsequently, the composite is additively
103  manufactured by pattering UV light into cross-sectional images of the 3D-designed scaffold via a
104  digital micromirror device (DMD). Following the printing, the hybrid CSS is fabricated by
105  injecting the hydrogel-GO precursor solution into the structure and gelling it at 37°C. The
106  combination of 3D printing technology (20, 21) and the injectable thermoresponsive hydrogel (23,

107 25) allows for the convenient and swift fabrication of a customizable soft-rigid hybrid system.

5
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109 Fig. 1. Representative images of the 3D-printed CSS fabrication and preparation of P-HA and GP hydrogel.
110 (A) uCLIP 3D printer system and schematic depiction of 3D-printed CSS implantation in cranial defect model. (B)
111 Synthesis schematic of mPOC and its structure. (C) Preparation of P-HA composite consisting of mPOC polymer and
112 HA. (D) Structure of PPCN and (E) schematic illustration of GP precursor solution preparation. (F) Different
113 physiological properties of GO (0.4mg/mL), PPCNg (50mg/mL), and GP hybrid hydrogel at room temperature and

114 37°C.

115 The methacrylated poly(1,8-octanediol-citrate) (mPOC) was used as a 3D printable
116  polymer and developed from POC via two steps (Fig. 1B). Initially, the POC was obtained through
117  an esterification reaction between 1,8-octanediol and citric acid (26). Subsequently, it was
118  developed into mPOC by introducing methacrylate functional groups through a ring-opening
119 reaction of glycidyl methacrylate. The chemical composition of mPOC was confirmed through 'H-
120 NMR and FT-IR spectroscopy analysis (Fig. S1). The 'H-NMR analysis identified peaks at 1.9,

121 5.7, and 6ppm, indicating the presence of methacrylate groups within the mPOC structure. The

6
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122 estimated molar ratio of citric acid to methacrylate was approximately 1:0.9, as inferred from the
123 spectrum. In addition, the FT-IR spectrum exhibited a C=C stretching vibration peak at 1636 cm"
124 !'. These results collectively demonstrate the effective modification of POC through methacrylation,

125  allowing for radical polymerization under UV light throughout the 3D printing process.

126 The formulation of the composite involved a mixture of mPOC with HA microparticles

127  (P-HA) (Fig. 1C). In order to achieve a wide range of 3D printable composite, we incorporated

128 2.5um HA (specific surface area, >80 m?/g). A previous study has demonstrated that materials

129  derived from HA exhibit cytocompatibility with stem cells and promote the osteogenic
130  differentiation of such cells (27). The incorporation of HA microparticles improved the viscosity

131  of the composite, thereby enhancing its printability and allowing for HA contents of up to 60%.

132 Poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) was used as the
133 thermoseponsive hydrogel component (Fig. 1D). It was obtained with citric acid, PEG and N-
134 isopropylacrylamide (NIPAAm) components (23), and due to the unique properties of the
135  NIPAAm, it exhibits a lower critical solution temperature (LCST) that enables phase change from
136  liquid to gel at physiological body temperature (37°C) (28). The 'H-NMR spectrum of PPCN
137  exhibited multiple peaks associated with citric acid, PEG, and NIPAAm units (Fig. S2). As a result
138  of analyzing the signal intensity, the molar ratio between citric acid and poly(NIPAAm) was
139  determined to be approximately 1:12, reflecting the molar feed ratio during synthesis. The FT-IR
140  spectrum revealed that PPCN had characteristic amide peaks present in the NIPAAm structure,
141  along with additional peaks indicating C=0O, C-O, and -OH functional groups, attributed to citric

142 acid, ester bonds and PEG (Fig. S2).
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143 The PPCN was combined with gelatin (PPCNg) and then developed into GO-PPCNg (GP)
144 hydrogel composite using the following method. In brief, the PPCN was dissolved in PBS and
145  blended with gelatin in a 1:1 ratio. Afterward, this mixture was combined with GO solution at a
146  volume ratio of 5:1 (Fig. 1E). The physical appearance of GP hydrogel demonstrated favorable
147  mixing of GO with PPCNg (Fig. 1F). It exhibited the LCST behavior typical of PPCN, remaining
148 in a liquid state at 4°C but undergoing a relatively rapid gelation process at 37°C, while GO

149  solution consistently remained in a liquid form.
150 HA and GO improve mechanical and rheological properties of the scaffold

151  The combination of mPOC and HA provides processing flexibility, rendering it an ideal composite
152  for fabricating 3D-printed porous structures of various dimensions and pore unit cell
153  configurations using the pCLIP 3D printer (Fig. S3). For the subsequent experiments, the P-HA

154  was engineered with a porous architecture featuring hexagonal unit cells (Fig. 2A and Fig. S4).
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156 Fig. 2. Fabrication of 3D-printed porous P-HA scaffolds and characterization of P-HA scaffolds and GP

157  hydrogel. (A) Comparison images between 3D design and 3D-printed P-HA scaffold. Scale bars, 500um. (B) 3D-
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158 printed P-HA scaffolds with various HA concentrations and morphological surface appearance of each scaffold in
159  SEM. Scale bar, Ipm (top) and 10um (bottom). (C) Representative stress-strain curves of each P-HA scaffold. n=3
160 (D) Degradation behavior of each P-HA scaffold at 75°C. Error bars, + SD; n=3. (E) Gelation kinetics of PPCNg and
161 GP hydrogel, and (F) their stress-relaxation profiles at 37°C. (G) Morphological structure of P-60HA/GP composite
162 scaffold and GP hydrogel in SEM images. Scale bars, 500um (top) and 10um (bottom).

163 The hexagonal structural element efficiently disperses external forces, enhancing the
164  stability of the scaffolds (29, 30). Additionally, smaller internal pore units (<450um) (Fig. S4)
165 aimed to promote osteogenesis and vascularization (37, 32) while enabling the advantageous
166  integration of the GP hydrogel throughout the scaffold. The uCLIP printer enabled precise
167  customization by replicating the scaffold at a high resolution according to the designed structure
168  without any pore blockages (Fig. 2A). The P-HA were prepared at various HA concentrations
169  ranging from 0% to 60% to evaluate mechanical properties according to HA content, and were
170  labeled as P-OHA, P-20H, P-40H, and P-60HA depending on the content. Even with high HA
171  content (60wt.%), the P-HA exhibited favorable printability characteristics (Fig. S3), and HA
172 particles were distributed throughout the structure, as depicted in SEM (Fig. 2B). The surface
173 roughness resulting from the addition of HA can promote cell adhesion and differentiation (33,
174  34). Therefore, we expected that the surface properties of the P-HA scaffold would provide an

175  advantage in osteogenesis.

176 In order to assess mechanical properties, P-HA were made into plug-shaped samples
177  (3mmx6mm), which is a standard structure (ASTM D695) for measuring the compressive modulus
178  of materials (Fig. 2C). The samples were measured using a universal testing machine until they
179  fractured under a compressive load. Despite the potential impact of higher HA content on sample
180  brittleness, the P-60HA exhibited enhancement in compressive strength (23.7 £ 1.6 MPa) (Fig.

9
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181  S5). This enhancement confirms the structural stability of the P-HA composite material, signifying
182  compatibility between mPOC and HA (Fig. 2B). The degradation behavior of 3D-printed porous
183  P-HA scaffolds (Fig. 2A) was investigated in PBS for 12 weeks at 75°C, representing an
184  environment accelerated 16 times compared to body temperature (35) (Fig. 2D). At 12 weeks, the
185  P-OHA exhibited a mass loss of approximately 54.1%, while that of P-60HA was 24.6%, which

186  delayed the degradation behavior by about 2.3-fold.

187 We examined the impact of GO on the rheological and viscoelastic properties of the
188  PPCNg hydrogel (Fig. 2, E and F). The PPCNg hydrogels showed a phase transition from liquid
189  to gel at 35°C, where G” and G’ intersected (Fig. 2E). While the GP hydrogel did not show a
190  distinct intersection point, it exhibited a transition from liquid to gel above 35°C (Fig. 1E).
191  Furthermore, the GP hydrogel displayed gel-like characteristics with higher G’ values even in the
192  liquid phase (below 35°C) and improved the G' of the PPCNg hydrogel from 77 to 126 Pa
193  following the phase transition. This behavior is attributed to the interactions between GO and
194  PPCNg chains within the GP mixture (36). The stress relaxation of the hydrogels was investigated
195  at 37°C, maintaining a constant shear strain of 15%, comparable to the strain applied by cells
196  within a 3D matrix (37, 38) (Fig. 2F). The GP hydrogel showed a faster half-stress relaxation time
197  (tin =1.5 sec) compared to PPCNg hydrogel (ti2 =3 sec), which is likely due to GO particles

198 interfering with the crosslinking of PPCN chains, leading to faster chain relaxation.

199 The P-60HA scaffold was combined with GP hydrogel, and the resulting hybrid CSS (P-
200 60HA/GP) maintained a stable composite structure at 37°C (Fig. 2G). The morphological
201  structure and the distribution of GP hydrogel within the CSS were evaluated via SEM analysis

202 (Fig. 2G). The GP hydrogel formed an extensive network by physically interacting with the P-

10
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203  60HA scaffold and uniformly covered the entire structure. Additionally, the GP hydrogel exhibited

204  permeable porous channels supporting blood vessel formation and tissue ingrowth.

205 We confirmed that both the P-60HA scaffold and GP hydrogel collectively enhance
206  physical properties, and the hybrid CSS demonstrated a consistent and durable structure. In
207  subsequent experiments, the P-60HA scaffold was chosen as the primary structural framework of
208  the CSS based on results, demonstrating improved mechanical properties with comparable mineral

209  concentration to native bone (65-70wt.%).

210  P-60HA/GP is cytocompatible and promotes osteogenesis in vitro

211  We investigated the cytotoxicity and the in vitro osteogenic potential of the scaffolds using human
212 mesenchymal stromal cells (hMSCs) (Fig. 3). To evaluate the influence of HA and GP hydrogel
213 on cellular activity, the P-OHA, P-60HA, and P-60HA/GP scaffolds were examined, and each
214 value was normalized to TCP control group (Fig. 3, A and B). The scaffolds were immersed in
215  the TCP cultured with hMSCs for 7 days and subjected to live/dead staining (Fig. 3A) and
216  alamarBlue assay (Fig. 3B). There were no observable dead cells, with sustained live cell

217  proliferation, and cell viability was recorded at =90% for 7 days, suggesting that both P-HA

218  scaffolds and GP hydrogel are biocompatible.

11
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220 Fig. 3. In vitro assessment of cell viability and osteogenic differentiation of hMSCs on the scaffolds. (A)
221 Live/dead staining images of each group on days 1, 4, and 7 days. Scale bar, 200um. (B) Cell viability in the
222 alamarBlue assay normalized to the TCP control group. n.s.: no significant difference; Error bars, £ SD; n=3. (C)
223 Cytoskeleton staining images of hMSCs on P-60HA scaffold and GP hydrogel in P-60HA/GP scaffold 4 days after
224 cell seeding. Scale bars, 100um. (D) ALP activity normalized to DNA concentration in each group on days 7, 14, and
225  21."p <0.05,"p <0.01, ™*p <0.001 and ***p <0.0001; Error bars, = SD; n=3. (E) The relative expression levels of
226 RUNX2, OPN, and OCN for hMSCs cultured in each group at days 7, 14, and 21. All expression levels were quantified
227 using 2-AACT method and then normalized to the value of the housekeeping gene GAPDH and day O for the P-OHA

228  group. "p <0.05, *p <0.01, ""p <0.001 and ***"p <0.0001; Error bars, = SD; n=3.

229 The interaction between scaffolds and cells plays a crucial role as it enhances tissue
230  reconstruction by enabling effective interaction with surrounding tissues post-implantation (39,
231  40). We assessed cell adhesion and retention on the scaffolds using cytoskeleton staining (Fig.

232 3C). hMSCs were cultured on P-60HA and P-60HA/GP for 4 days without cell adhesion treatment.
12
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233 Inthe staining results, P-60HA exhibited cell attachment, but cells had limited proliferation on the
234 scaffold surface. In contrast, cells showed widespread distribution within the GP hydrogel of P-
235  60HA/GP. This indicates that GP hydrogel provides a conducive microenvironment to cell growth,

236  allowing cells to proliferate throughout the GP hydrogel-conjugated scaffold.

237 To demonstrate the effects of HA and GP hydrogel on the osteogenic differentiation of
238  hMSCs, we analyzed osteogenesis markers at 7, 14, and 21 days after cell culturing on the scaffolds.
239  First, the early osteogenic marker alkaline phosphatase (ALP) was assessed using the absorbance
240  method and normalized to the DNA concentration of each group at the indicated time points (Fig.
241  3D). Atday 7, ALP activity was significantly upregulated in P-60HA and P-60HA/GP compared
242 to P-OHA. Moreover, the incorporation of GP hydrogel into the P-60HA scaffold enhanced ALP

sk

243 activity, which was =4.57 times (' p <0.0001) higher than P-OHA at day 21.

244 The expression levels of osteogenesis markers were analyzed by real-time reverse
245  quantitative PCR (RT-qPCR), and each value was normalized to day 0 of P-OHA scaffold for
246  comparison between groups (Fig. 3E). The results showed that P-60HA/GP upregulated early
247  (Runt-related transcription factor 2, RUNX2) (=5-fold) and intermediate (Osteopontin, OPN)
248  markers (=39-fold) compared to P-OHA from the early time point, day 7. By day 14, while the
249  trend in OPN levels differed in P-60HA/GP from the other scaffolds, it maintained 5- and 1.5-fold
250  higher levels than those of P-OHA and P-60HA, respectively. The late-stage marker, osteocalcin
251  (OCN), exhibited upregulation at day 14 in both P-60HA and P-60HA/GP, with the P-60HA/GP

252 showing enhanced levels 1.7 times compared to P-OHA.
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253 Taken together, P-60HA/GP induced early osteogenesis with high levels of ALP activity,
254  RUNX2, and OPN during the proliferative phase before mineralization and upregulated OCN

255  promoting apatite mineralization in vitro (41).
256  P-60HA/GP exhibits favorable tissue interaction and biocompatibility in vivo

257  We investigated the immune response and tissue interaction associated with P-HA scaffolds
258  through subcutaneous implantation in a mouse model (Fig. 4A). Each scaffold was implanted on
259  the dorsal region of the mice, and tissue samples were harvested with scaffolds after 7 and 35 days
260  for histological analysis. Following in vivo implantation, the infiltration of cells within the scaffold
261  serves as an indicator of the scaffold's capability to facilitate cell attachment, proliferation, and
262  migration within its structure (42). H&E staining results (Fig. 4B) revealed mild connective tissue
263  and cellular infiltration into the porous scaffold structure by day 7 in all experimental groups, and
264  there were no significant inflammatory responses at the implantation site. Notably, P-60HA/GP
265  exhibited robust cell infiltration at the administered GP hydrogel area. This cell recruitment can
266  be attributed to the favorable effects of the gelatin (24) and GO components (43) in the GP
267  hydrogel. By day 35, all scaffolds demonstrated successful integration with the surrounding tissue
268  network, and some biomaterial-associated multinucleated giant cells (BMGCs) were observed
269  around the surface of the scaffolds. These cells are typically observed in response to foreign body
270  reactions of polymeric implants (40, 44). BMGCs may act as key regulators during biomaterial
271  integration and have the potential to contribute to the vascularization of the implant bed, ultimately
272 stimulating bone formation (44). This observation suggests that P-HA scaffolds interact with

273  surrounding tissues and induce cellular responses, contributing to tissue remodeling.
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Fig. 4. Evaluation of in vivo immune response and biocompatibility of scaffolds in mouse subcutaneous
implantation. (A) Schematic illustration of the subcutaneous implantation experiment. (B) Cross-sectional H&E
histological images of scaffold implanted tissue at day 7 and day 35. The images at the bottom represent the higher
magnification of each group. The asterisk (*): scaffold; Green arrowhead: GO residue; Yellow arrowhead:
multinucleated giant cells. Scale bars, 150um. (C) Representative Masson's trichrome staining images at day 35 after
implantation and their higher magnification images. The asterisk (*), scaffold; Scale bars, 50um. (D) Cross-sectional
SEM images of the implanted scaffold on day 35. The asterisk (*): scaffold; Star: infiltrated tissues. Left: under 100X
magnification; Right: 1,000X magnification. Scale bars, 50um. (E) Representative immunofluorescence staining
images of CD31 and a-SMA on day 35. Pink arrowhead: newly formed blood vessel. Scale bar, 100um. (F) The

quantitative analysis of blood vessel formation inside scaffolds on day 35. *p <0.01, Error bars, £ SD; n=6. (G)
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285 Representative immunofluorescence staining images of F4/80, (H) CD86, and CD163 markers on day 7. Scale bars,
286  50um. (I) The relative quantitative mean gray value of F4/80, CD86, and CD163 on day 7. ““p <0.01, and **"p <0.001,

287  Error bars, + SD; n=6.

288 At 35 days, Masson's trichrome staining (Fig. 4C) was performed to assess the capacity
289  to facilitate effective integration with adjacent tissues and act as a substrate for the deposition of
290 new ECM. All P-HA scaffolds exhibited collagen fibril formation throughout their porous
291  structures. Specifically, within the P-60HA/GP scaffold, there was observable tissue infiltration
292 aligned along the site of GP hydrogel injection. This observation is attributed to the interaction
293 between GO and collagen fibers (45), such as hydrogen bonding, electrostatic interaction, and n-xt
294 stacking (46, 47). The stable ECM network formation surrounding the scaffolds and within their
295  structure was also confirmed in SEM (Fig. 4D). Overall, these results showed the potential of P-
296  HA scaffolds and GP hydrogel to stimulate cell and tissue ingrowth over time, indicating their

297  suitability as an implant for tissue reconstruction.
298  GP hydrogel affects angiogenesis and M2 macrophage polarization

299  Timely vascularization supplies oxygen and nutrients during bone repair, thereby enhancing bone
300 formation (48). To further evaluate their potential in stimulating angiogenesis, we conducted
301  immunofluorescence (IF) analysis on the tissue formed within the porous structure of the scaffolds
302  (n=6 from three biologically independent mice) (Fig. 4E). At 35 days post-implantation, there was
303  no statistically significant difference (p =0.17) observed between P-OHA (10 + 3 vessels/mm?) and
304 P-60HA (15 + 3 vessels/mm?) as a quantitative result by CD31 and o-smooth muscle actin (o-

305 SMA) markers (Fig. 4F). However, P-60HA/GP demonstrated enhanced blood vessel formation
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306 (18 + 3 vessels/mm?) ("p <0.01) compared to the P-OHA, suggesting that the inclusion of GP

307  hydrogel accelerates angiogenesis (49, 50).

308 Once the biomaterial is implanted, an inflammatory reaction is observed for foreign body
309  response (57). Macrophages are one of the first cells to encounter the implanted materials and the
310  major modulator of tissue integration (52), and they exhibit a wide range of capabilities, capable
311  oftransitioning from an M1 type (pro-inflammatory state) to an M2 type (anti-inflammatory state)
312 (53). During the bone regeneration period, the long-term M1 macrophage environment after
313  implantation may lead to bone destruction, hindering the process of bone regeneration and repair.
314  We evaluated the degree of inflammation and macrophage polarization using IF staining with
315  F4/80 (pan macrophages), CD86 (M1 macrophages), and CD163 (M2 macrophages) (n=6 from
316  three biologically independent mice) (Fig. 4, G and H). The analysis was performed on the
317  adjacent tissues surrounding the implanted scaffold, and the relative mean gray value was
318  determined based on the P-OHA value at day 7 (Fig. 4I). At 35 days, F4/80 and CD86 levels were
319  decreased in all groups (mean value <0.5) (Fig. S6) by the transition from the pro-inflammatory
320 to anti-inflammatory phase, and there was no significant difference between groups (p >0.05).
321  However, on day 7, P-60HA/GP showed low F4/80 intensity (0.5 + 0.1) and significantly reduced
322 CD86 levels (0.2 = 0.1) (Fig. 4I). In particular, P-60HA/GP accelerated M2 polarization (2.1 +

323  0.7), even at early time point.
324  P-60HA/GP accelerates bone formation in critical-sized cranial defects

325  We evaluated the in vivo osteogenic capabilities of P-HA scaffolds using a mouse calvarial defect
326  model (Fig. 5A). The scaffolds were printed to match the bone defects (4mmx0.3mm), and the

327 new bone formation was monitored by micro-computed tomography (uCT) scanning until 12
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328  weeks (Fig. 5B). Considering the similarity in HA content between P-60HA and the natural bone
329  surrounding and the resulting tissue density (Fig. S7 and S8), we segmented the area into two
330 regions to facilitate visualization and quantification of bone formation (n=5 for scaffold groups
331 and n=3 for blank). According to the threshold ranges, tissue formations, including the P-60HA
332 scaffold, were highlighted in green and yellow on the pCT images (Fig. 5SB) and categorized as
333 low-density and high-density immature bone, respectively (Fig. 5, C and D). In the lower
334  threshold range (140-300mg HA/cm?), the scaffold and soft tissue (brain, scalp, and fat) were
335  disregarded from visualization (Fig. S8), allowing focus solely on the tissues infiltrated at the
336  peripheral border and voids of the scaffold. The bone reconstruction process involves infiltration
337  of an ECM network, including the formation of collagen fibrils, followed by mineralization by
338  osteoblasts to create mechanically stable bone in the form of lamellae (54). Therefore, the lower
339  threshold range involves the low-density immature bone, including the collagen network and ECM
340  (54). The progression of tissue growth and maturation into the high-density threshold range is
341  supported by pCT scanning results taken over time (Fig. S9). On the other hand, the higher global
342  threshold range (above 300mg HA/cm?) was utilized to evaluate the high-density immature bone,

343  which includes the P-60HA scaffold, unmineralized osteoid, and mineralized tissues.
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345 Fig. 5. Bone reconstruction by scaffolds in murine critical-sized cranial defect model. (A) Schematic illustration
346 and photos of in vivo cranial defect repair experiment. (B) Representative micro-CT images at 1, 4, and 12 weeks.
347 Blank: no treatment; Green: tissues and scaffolds in the low threshold range; Yellow: tissues and scaffolds in the high
348 threshold range. Scale bar, Imm. (C and D) Quantitative analyses of immature bone formation in each group at 4 and

349 12 weeks compared to at 1 week, and (E) relative BMD of each group. “p <0.05, “p <0.01, **p <0.001 and ***p
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350  <0.0001; Error bars, + SD; n=5. (F) H&E staining and (G) Masson’s trichrome staining of each group at 12 weeks
351  after implantation. Scale bars, 500pm. The images at the bottom represent the higher magnification of each area. Scale
352 bars, 100um. Sc: scaffold; Black arrow: defective area; Hash (#): unmineralized osteoid; The asterisk (*): periosteal
353  layer; MB: mature bone fragment; GO: GO residue.

354 The volume of newly formed tissue in the defect area was quantified based on week 1 of
355  each group. P-60HA/GP showed a considerable low-density immature bone formation (0.3 £ 0.2
356 mm?) at an early stage (week 4), exhibiting an 8.4-fold increase compared to blank (0.04 + 0.02
357  mm?®) (7p<0.01) (Fig. 5C). This observation suggests that during the early stage, the presence of
358  GP hydrogel facilitated the development of dense collagen fibers surrounding the scaffold and the
359  formation of ECM found in the outer layer of the scaffold (Fig. S10). At 12 weeks, certain
360  experimental groups of P-60HA/GP exhibited a relatively decreased formation compared to week
361 4. This result indicates maturation in tissue formation due to collagen fiber crosslinking (54),
362 transitioning towards the stage of high-density immature bone (Fig. S10). Furthermore, within 4
363  weeks, P-60HA/GP significantly promoted mature bone formation (0.6 + 0.2 mm?), exceeding the

sk

364  blank (0.009 = 0.01 mm®) ("""p <0.0001) by 69 times and P-60HA (0.2 + 0.1 mm?) (""p <0.001)
365 by 3 times (Fig. SD). In addition, P-60HA/GP enhanced the bone mineral density by 1.2 times at

366  week 12 compared to week 1 (Fig. SE and Fig. S7).

367 At 12 weeks, the tissues from the center of the defect area were sectioned and examined
368  for analysis. H&E and Masson’s trichrome staining (Fig. 5, F and G) showed that P-60HA/GP
369  induced mature new bone fragments between pores and around the structure, while other scaffolds
370  resulted in unmineralized osteoid at the boundary of the defect area. Compared to week 4 (Fig.

371  S10), minimal GO residual was observed in the P-60HA/GP implanted group, suggesting gradual
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372 in vivo degradation of GO (55). Moreover, at week 4, P-60HA/GP allowed an abundant tissue

373  network formation throughout its structure, a finding supported by pCT quantification (Fig. 5C).

374 Effective reconstruction of the periosteal layer is crucial to promote bone formation, given
375  its ability to supply abundant growth factors for bone cell growth and differentiation (56-58). P-
376  60HA and P-60HA/GP induced rich periosteal layers around their structure, while the blank and
377  P-OHA formed less connective collagen structures (Fig. 5G). Interestingly, collagen fibers were
378  formed along injected GP hydrogel in the P-60HA/GP scaffold, which aligned with the findings
379  from the subcutaneous implantation model (Fig. 4C). This outcome demonstrated that P-60HA/GP

380 facilitated the development of aligned collagen formation, which favored bone tissue growth (56).
381 P-60HA/GP promotes the osteogenesis of endogenous cells and angiogenesis

382 At week 12, the osteogenic and angiogenic capacity were assessed through IF staining with
383  osteogenic markers (RUNX2, OPN, and OCN) and CD31/a-SMA (Fig. 6, A and B). The
384  osteogenic markers were labeled with a red fluorescent dye, and their intensity (n=10 from five
385  Dbiologically independent mice) was evaluated relative to the mean gray value of the blank (n=6
386  from three biologically independent mice) at week 12 (Fig. 6C).

387 The quantitative results of RUNX2 indicated high expression levels and significant
388  improvements in P-60HA/GP from week 4 (1.5 + 0.2) (""p <0.001) (Fig. S11) to week 12 (1.3 =
389 0.2) ("p <0.05) compared to the blank, while the other groups exhibited no significant differences
390 (p >0.05) from the blank at week 12 (Fig. 6C). Furthermore, P-60HA/GP showed strong signal

391  intensities in both OPN (1.5 £0.3) (" p <0.001) and OCN (2 +0.4) (" p <0.0001) compared to

392  those of the blank, which were observed from the early stage (Fig. S11). These findings suggest
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393  that P-60HA/GP promotes pre-osteoblast proliferation and maturation, thereby facilitating

394  mineralization (47).
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396  Fig. 6. Osteogenic potential and angiogenesis assessments of scaffolds in cranial defect model. (A) Representative
397 immunofluorescence staining images of osteogenic markers and (B) CD31, and a-SMA markers on each scaffold after
398 12 weeks of implantation. The asterisk (*): scaffold; Pink arrow: newly formed blood vessel. Scale bar, 100um. (C)
399 Relative mean gray value of each osteogenic differentiation markers on different groups, and (D) the quantitative

400  analysis of blood vessel formation. “p <0.05, *“p <0.01, **p <0.001 and ***p <0.0001; Error bars, + SD; n=10.
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401 Significant outcomes were also found in angiogenesis (Fig. 6, B and D). While the P-
402  60HA resulted in slightly higher blood vessel formation (14 + 5 vessels/mm?) compared to the
403  blank (11 + 3 vessels/mm?) and P-OHA (12 + 4 vessels/mm?) groups, this difference was not
404  statistically significant (p >0.05). In contrast, P-60HA/GP exhibited a progressive vessel formation
405 (20 £ 5 vessels/mm?) ("p <0.01 for the blank and P-OHA; “p <0.05 for P-60HA), particularly

406  pronounced starting from week 4 (12 + 4 vessels/mm?) (Fig. S12).
407  Discussion

408  Meeting the global demand for simple and scalable regenerative biomaterials while complying
409  with clinical standards and minimizing cost remains a significant challenge (59). The 3D-printed
410 porous CSS presented here provides a rigid (P-60HA)-soft (GP hydrogel) hybrid
411  microenvironment that mimics natural bone (/0). The fabrication of this hybrid CSS is simple and
412 scalable for manufacturing while meeting the conformal requirements to reconstruct cranial facial
413 defects (20, 60, 61). Citrate plays a crucial role as a bioactive factor in bone (62). Both mPOC and
414  PPCN, integral components of the CSS, are polymers that belong to a biomaterial technology
415  referred to as citrate-based biomaterials (CBB) (26, 63). A CBB, referred to as CITREGEN, has
416  been used for the fabrication of biodegradable implantable medical devices that have been cleared
417 by the U.S. Food and Drug Administration (FDA) to attach soft tissue to bone (63). Therefore,
418  given that the FDA is familiar with this new composition and class of polymers (biodegradable

419  thermosets), the CSS is primed for translational application.

420 Importantly, our strategy eliminates dependence on exogenous biological factors and
421  demonstrates proficient tissue integration and osteogenic potential solely through material-driven

422 cues. The porous architecture of the scaffold contributes to vascularization and tissue ingrowth (37,
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423 32, 64, 65). The P-60HA/GP has a heterogeneous pore architecture (Fig. 2G) resulting from the
424  printed porous scaffold integrated with the GP hydrogel network. These structures, with their
425  varied pore sizes and interconnected microenvironments, potentially facilitate angiogenesis (65)
426  (Fig. 4F and Fig. 6D). M2 macrophages play a crucial role in alleviating inflammation and
427  regulating angiogenesis and tissue repair (53). Although reactive oxygen species (ROS) are
428  recognized to interfere with M2 activation, they play a role in regulating both pro- and anti-
429  inflammatory macrophage phenotype, depending on the context (66-68). PPCN diminishes ROS
430 levels owing to its inherent antioxidant property, reducing oxidative stress (23). Meanwhile, GO
431  demonstrates angiogenic activity despite its potential to increase ROS levels dose-dependently
432 (69). Moreover, the surface topography resulting from HA particles can influence macrophage
433 polarization (70). Hence, P-60HA/GP is expected to have promoted M2 polarization and
434  angiogenesis (Fig. 4, F and I) through complex collective actions between components. However,

435  further experiments are warranted to understand the mechanism and their effects.

436 The osteogenic potential of a biomaterial can be influenced by various factors (39, 71, 72).
437 HA encourages osteoblast proliferation and facilitates mesenchymal stem cell growth and
438  differentiation by elevating local Ca** concentrations (73, 74). GO expedites the transformation of
439  stem cells or pre-osteoblasts into osteoblasts by facilitating non-covalent interactions with
440  physiological ions and biomolecules (43, 75, 76). Additionally, the role of GO in mineralization,
441  synergizing with HA (77, 78), enhances bone formation (79, 80). This is supported by a previous
442 report demonstrating that the integration of HA and GO has enhanced osteogenic differentiation
443  in contrast to their individual uses (79). The viscoelastic environment of GP hydrogel with rapid

444  stress relaxation promotes intracellular response and tissue remodeling (37, 39), and gelatin in GP
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445  hydrogel reinforces cell adhesion (37, 81, 82). Separately, the carboxylate functional groups of
446  gelatins are expected to have accelerated mineralization through interaction with Ca®" released
447  from HA (83). Taken together, these collective properties of P-60HA/GP are believed to promote

448  bone formation and accumulate crucial signaling proteins essential for osteogenesis.

449 Previous studies demonstrated dose-dependent toxicity of GO through intravenous
450  injection in mice (84). A dosage of 0.25mg per mouse from these studies was not toxic or lethal.
451  We administered a 16.5ug GO dose (0.33 mg/mL in 50uL. GP hydrogel) within the acceptable
452  tolerance range established by previous studies (84). While we demonstrated the potential
453  degradability of GO during in vivo bone healing, its long-term effects until complete bone healing
454  are yet unexplored. Further exploration is crucial to determine the optimal GO concentration for

455  osteogenesis and its relationship with biodegradation.

456 While we have demonstrated the osteogenic capabilities of the CSS, these results have not
457  been directly compared to systems integrating cells and growth factors. However, our primary
458  focus has been on effective bone and tissue reconstruction while minimizing costs, procedures,
459  and potential immune responses, all geared toward swift translation and clinical implementation.
460  Our future work will be expanded to larger animals and will address the potential of our approach

461  for practical applications by comparison in more relevant contexts.
462  Ethics approval and consent to participate

463  The mouse subcutaneous implantation model was carried out with the approval from the
464 Institutional Animal Care and Use Committee at Northwestern University (protocol #1S00003238).
465  The cranial defect animal procedure was performed in compliance with the approval from the

466  University of Chicago Animal Care and Use Committee (ACUP #71745).
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