

1 **Personalized composite scaffolds for accelerated cell- and growth factor-free**
2 **craniofacial bone regeneration**

3 Mirae Kim^{1,2}, Caralyn P. Collins^{2,3}, Yugang Liu^{1,2}, Hsiu-Ming Tsai⁴, Yujin Ahn⁵, Xinlong

4 Wang^{1,2}, Joseph W. Song^{1,2,6}, Chongwen Duan^{1,2}, Cheng Sun^{2,3}, Zhu Yi⁷, Tong-Chuan He^{2,7},

5 Russell R. Reid^{2,8*}, Guillermo A. Ameer^{1,2,6,9,10,11,12*}

6 ¹Department of Biomedical Engineering, Northwestern University; Evanston, IL, 60208, USA.

7 ²Center for Advanced Regenerative Engineering, Northwestern University; Evanston, IL, 60208,
8 USA.

9 ³Department of Mechanical Engineering, Northwestern University; Evanston, IL, 60208 USA.

10 ⁴Department of Radiology, The University of Chicago; Chicago, IL, 60637, USA

11 ⁵Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-
12 Champaign; Urbana, IL, 61820, USA.

13 ⁶Simpson Querrey Institute for Bionanotechnology, Northwestern University; Chicago, IL,
14 60208, USA

15 ⁷Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
16 Medicine, The University of Chicago Medical Center; Chicago, IL, 60637, USA.

17 ⁸Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive
18 Surgery, Department of Surgery, The University of Chicago Medical Center; Chicago, IL,
19 60637, USA.

20 ⁹Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA.

21 ¹⁰Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL,
22 60208, USA.

23 ¹¹Chemistry of Life Process Institute, Northwestern University, Chicago, IL, 60208, USA.

24 ¹²International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208,
25 USA.

26 *Corresponding authors.

27 Email: rreid@bsd.uchicago.edu, g-ameer@northwestern.edu

28

29 **Abstract**

30 Approaches to regenerating bone often rely on the integration of biomaterials and biological
31 signals in the form of cells or cytokines. However, from a translational point of view, these
32 approaches face challenges due to the sourcing and quality of the biologic, unpredictable immune
33 responses, complex regulatory paths, and high costs. We describe a simple manufacturing process
34 and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages
35 for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite
36 composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a
37 continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold
38 with 60% hydroxyapatite content resembling natural bone. The resulting scaffold integrates with
39 a thermoresponsive hydrogel composite, customizable *in situ* to fit the defect. This hybrid phasic
40 porous CSS mimics the bone microenvironment (inorganic and organic) while allowing
41 independent control of each material phase (rigid and soft). The CSS stimulates osteogenic

42 differentiation *in vitro* and *in vivo*. Moreover, it promotes M2 polarization and blood vessel
43 ingrowth, which are crucial for supporting bone formation. Our comprehensive micro-CT analysis
44 revealed that within 4 weeks in a critical-size defect model, the CSS accelerated ECM deposition
45 (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Our material-centric
46 approach delivers impressive osteogenic properties and streamlined manufacturing advantages,
47 potentially expediting clinical application for bone reconstruction surgeries.

48 **Keywords**

49 Craniofacial bone regeneration; Composite scaffold; Material-centric approach; 3D printing;
50 Citrate biomaterial

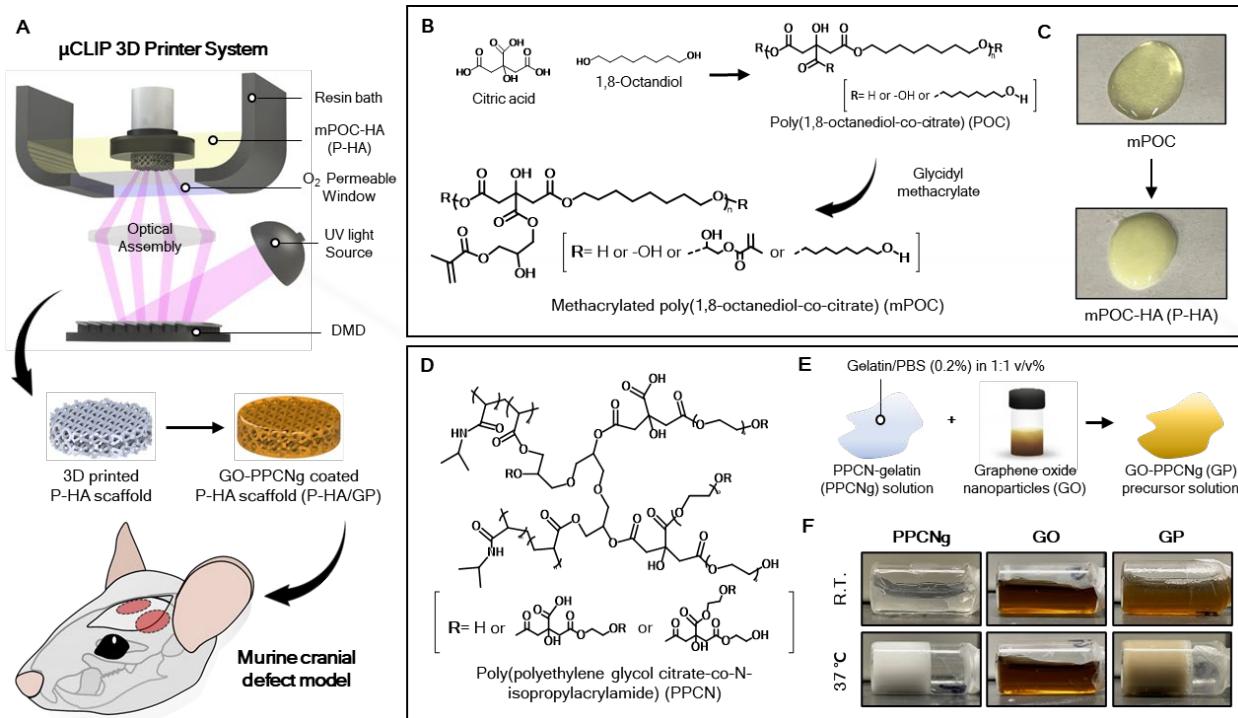
51 **Introduction**

52 Over 3 million cases of craniofacial trauma occur each year in the United States, constituting 21%
53 of significant traumas (1). Craniofacial bone defects resulting from traumatic injuries present
54 challenges for patients and surgeons, necessitating complex surgeries and substantial surgical costs
55 (2). Autografts, while considered the gold standard for craniofacial reconstruction (3, 4), bring
56 challenges such as the need for a second/donor surgical site, prolonged operation time, and
57 increased patient discomfort and recovery. Bone tissue engineering has been considered a
58 promising alternative, aiming to replicate the native craniofacial environment without complex
59 technical demands (5). However, integrating biological components such as stem cells and growth
60 factors increases regulatory complexity (6), raises product development costs, and can elicit
61 unwanted immune and inflammatory responses (7, 8). In this regard, material-centric approaches
62 alongside the development of synthetic biological scaffolds offer significant potential for
63 accelerating commercialization strategies and improving patient outcomes (5, 9).

64 Bone extracellular matrix (ECM) is composed of approximately 40% organic and 60%
65 inorganic compounds (10). Several material-centric strategies have proposed composite scaffold
66 systems (**CSS**) to accelerate osteogenesis and vascularization, either by integrating ceramics with
67 hydrogels to simulate the bone matrix microenvironment (11) or by combining them with polymers
68 and additives (e.g., bioactive particles or graphene derivates) (12, 13). However, the low solubility
69 of ceramics under physiological conditions leads to poor interface interaction with hydrogels,
70 causing structural instability, while employing particles for enhancing miscibility (14, 15) might
71 compromise biocompatibility. Pre-fabricated systems incorporating hydrogels should consider
72 swelling properties (16, 17), which may lead to structural misalignment post-implantation.
73 Moreover, the mechanical properties of porous ceramic scaffolds can be influenced by the quantity
74 of additives (12, 18), complicating the independent control of structural and functional properties.

75 CSS should not only provide a microenvironment conducive to osteogenesis but also
76 conform to the defect geometry in 3D for effective integration and function recovery (19). Additive
77 manufacturing using continuous liquid interface production (CLIP) offers advantages in printing
78 speed and complex architecture fabrication at high resolutions (20, 21). Therefore, 3D-printed CSS
79 developed using CLIP technology has significant potential in bone reconstruction. Nevertheless,
80 several complex considerations are required for this manufacturing process, including additional
81 steps to improve material compatibility among the composite components (14). Due to the
82 aforementioned reasons, material-centric strategies involving composites face numerous
83 considerations and constraints.

84 Herein, we present a customizable CSS comprised of biphasic citrate-based polymers,
85 incorporating two microparticles, hydroxyapatite (**HA**) and graphene oxide (**GO**). This CSS is


86 developed by integrating a polydiolcitrate-GO hydrogel composite into a 3D-printed porous
87 polydiolcitrate-HA scaffold. The 3D-printed scaffold utilizes a poly(1,8-octanediol citrate) (**POC**)
88 citrate elastomer, which exhibits superior cytocompatibility and tissue interaction compared to
89 commonly used poly(caprolactone) (PCL) in bone tissue engineering (22). The polydiolcirate-GO
90 hydrogel composite, a thermal-responsive gel, provides shaping flexibility, enabling seamless
91 integration with the 3D-printed scaffold and *in situ* fabrication to fit the defect site (23, 24). We
92 show that the hydrogel-infused 3D-printed CSS stimulates angiogenesis and osteogenesis of
93 endogenous progenitors. Moreover, through granular micro-CT analysis, bone formation over time
94 is assessed in a critical-size defect model in rodents. The material design and strategy allow
95 independent control of each material phase of the CSS and facilitate patient translation and scalable
96 manufacturing, indicating potential as an advanced CSS, particularly for addressing cranial defects.

97 **Results**

98 **GP hydrogel integrates into P-HA enabling CSS fabrication**

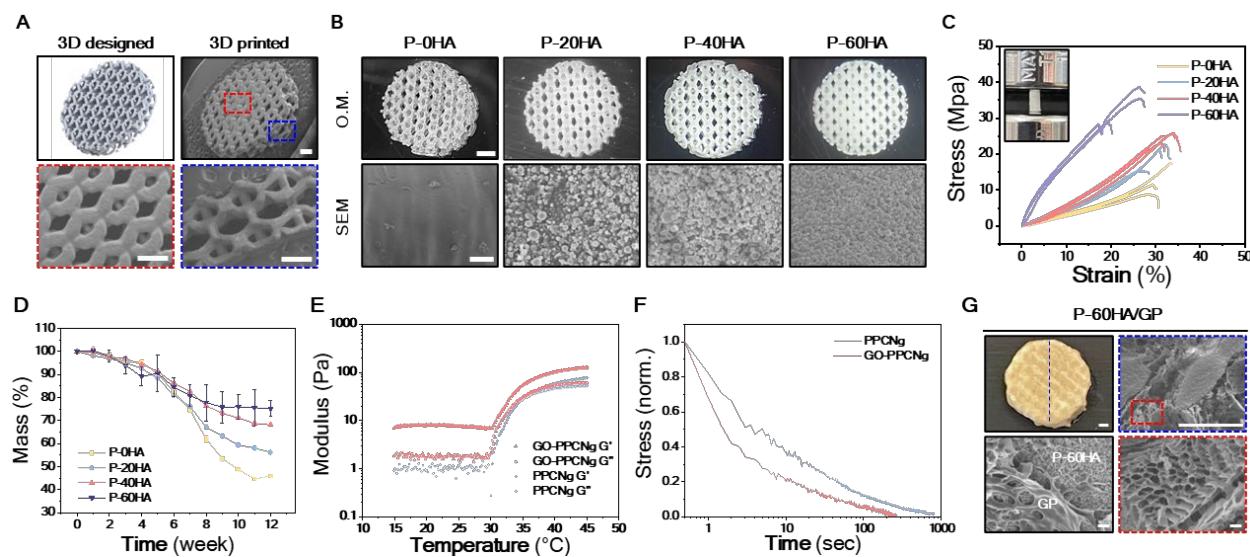
99 The 3D-printed porous ceramic scaffolds are precisely structured to fit a mouse skull defect model
100 via a micro-continuous liquid interface production (μ CLIP) 3D printer (**Fig. 1A**). Within this
101 system, the composite mixture is placed in a resin bath, allowing photopolymerization by UV light
102 penetration through an O₂-permeable window. Subsequently, the composite is additively
103 manufactured by patterning UV light into cross-sectional images of the 3D-designed scaffold via a
104 digital micromirror device (DMD). Following the printing, the hybrid CSS is fabricated by
105 injecting the hydrogel-GO precursor solution into the structure and gelling it at 37°C. The
106 combination of 3D printing technology (20, 21) and the injectable thermoresponsive hydrogel (23,
107 25) allows for the convenient and swift fabrication of a customizable soft-rigid hybrid system.

108

109 **Fig. 1. Representative images of the 3D-printed CSS fabrication and preparation of P-HA and GP hydrogel.**
110 (A) μCLIP 3D printer system and schematic depiction of 3D-printed CSS implantation in cranial defect model. (B)
111 Synthesis schematic of mPOC and its structure. (C) Preparation of P-HA composite consisting of mPOC polymer and
112 HA. (D) Structure of PPCN and (E) schematic illustration of GP precursor solution preparation. (F) Different
113 physiological properties of GO (0.4mg/mL), PPCNg (50mg/mL), and GP hybrid hydrogel at room temperature and
114 37°C.

115 The methacrylated poly(1,8-octanediol-citrate) (**mPOC**) was used as a 3D printable
116 polymer and developed from POC via two steps (**Fig. 1B**). Initially, the POC was obtained through
117 an esterification reaction between 1,8-octanediol and citric acid (26). Subsequently, it was
118 developed into mPOC by introducing methacrylate functional groups through a ring-opening
119 reaction of glycidyl methacrylate. The chemical composition of mPOC was confirmed through ¹H-
120 NMR and FT-IR spectroscopy analysis (**Fig. S1**). The ¹H-NMR analysis identified peaks at 1.9,
121 5.7, and 6ppm, indicating the presence of methacrylate groups within the mPOC structure. The

122 estimated molar ratio of citric acid to methacrylate was approximately 1:0.9, as inferred from the
123 spectrum. In addition, the FT-IR spectrum exhibited a C=C stretching vibration peak at 1636 cm⁻¹
124 ¹. These results collectively demonstrate the effective modification of POC through methacrylation,
125 allowing for radical polymerization under UV light throughout the 3D printing process.


126 The formulation of the composite involved a mixture of mPOC with HA microparticles
127 (**P-HA**) (**Fig. 1C**). In order to achieve a wide range of 3D printable composite, we incorporated
128 2.5µm HA (specific surface area, ≥ 80 m²/g). A previous study has demonstrated that materials
129 derived from HA exhibit cytocompatibility with stem cells and promote the osteogenic
130 differentiation of such cells (27). The incorporation of HA microparticles improved the viscosity
131 of the composite, thereby enhancing its printability and allowing for HA contents of up to 60%.

132 Poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (**PPCN**) was used as the
133 thermoseponsive hydrogel component (**Fig. 1D**). It was obtained with citric acid, PEG and N-
134 isopropylacrylamide (**NIPAAm**) components (23), and due to the unique properties of the
135 NIPAAm, it exhibits a lower critical solution temperature (LCST) that enables phase change from
136 liquid to gel at physiological body temperature (37°C) (28). The ¹H-NMR spectrum of PPCN
137 exhibited multiple peaks associated with citric acid, PEG, and NIPAAm units (**Fig. S2**). As a result
138 of analyzing the signal intensity, the molar ratio between citric acid and poly(NIPAAm) was
139 determined to be approximately 1:12, reflecting the molar feed ratio during synthesis. The FT-IR
140 spectrum revealed that PPCN had characteristic amide peaks present in the NIPAAm structure,
141 along with additional peaks indicating C=O, C-O, and -OH functional groups, attributed to citric
142 acid, ester bonds and PEG (**Fig. S2**).

143 The PPCN was combined with gelatin (PPCNg) and then developed into GO-PPCNg (**GP**)
144 hydrogel composite using the following method. In brief, the PPCN was dissolved in PBS and
145 blended with gelatin in a 1:1 ratio. Afterward, this mixture was combined with GO solution at a
146 volume ratio of 5:1 (**Fig. 1E**). The physical appearance of GP hydrogel demonstrated favorable
147 mixing of GO with PPCNg (**Fig. 1F**). It exhibited the LCST behavior typical of PPCN, remaining
148 in a liquid state at 4°C but undergoing a relatively rapid gelation process at 37°C, while GO
149 solution consistently remained in a liquid form.

150 **HA and GO improve mechanical and rheological properties of the scaffold**

151 The combination of mPOC and HA provides processing flexibility, rendering it an ideal composite
152 for fabricating 3D-printed porous structures of various dimensions and pore unit cell
153 configurations using the μ CLIP 3D printer (**Fig. S3**). For the subsequent experiments, the P-HA
154 was engineered with a porous architecture featuring hexagonal unit cells (**Fig. 2A and Fig. S4**).

155
156 **Fig. 2. Fabrication of 3D-printed porous P-HA scaffolds and characterization of P-HA scaffolds and GP**
157 **hydrogel.** (A) Comparison images between 3D design and 3D-printed P-HA scaffold. Scale bars, 500 μ m. (B) 3D-

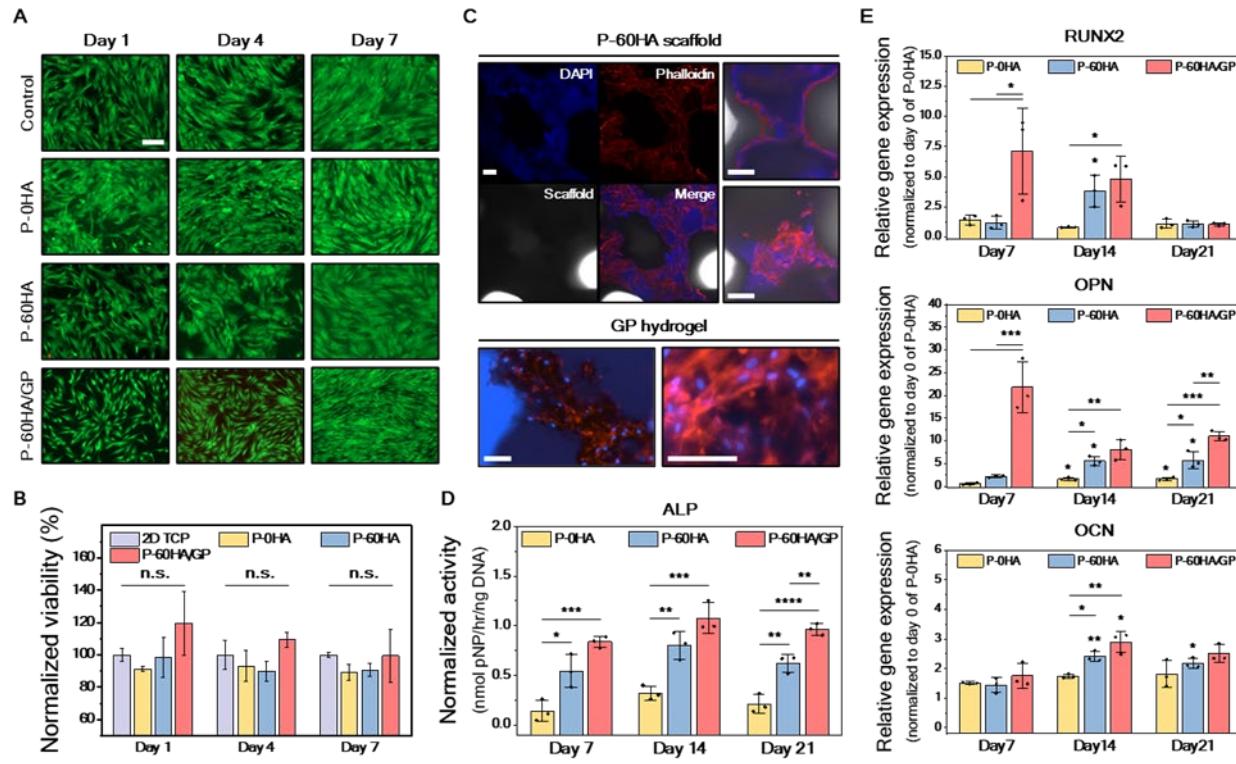
158 printed P-HA scaffolds with various HA concentrations and morphological surface appearance of each scaffold in
159 SEM. Scale bar, 1 μ m (top) and 10 μ m (bottom). (C) Representative stress-strain curves of each P-HA scaffold. n=3
160 (D) Degradation behavior of each P-HA scaffold at 75°C. Error bars, \pm SD; n=3. (E) Gelation kinetics of PPCNg and
161 GP hydrogel, and (F) their stress-relaxation profiles at 37°C. (G) Morphological structure of P-60HA/GP composite
162 scaffold and GP hydrogel in SEM images. Scale bars, 500 μ m (top) and 10 μ m (bottom).

163 The hexagonal structural element efficiently disperses external forces, enhancing the
164 stability of the scaffolds (29, 30). Additionally, smaller internal pore units (<450 μ m) (Fig. S4)
165 aimed to promote osteogenesis and vascularization (31, 32) while enabling the advantageous
166 integration of the GP hydrogel throughout the scaffold. The μ CLIP printer enabled precise
167 customization by replicating the scaffold at a high resolution according to the designed structure
168 without any pore blockages (Fig. 2A). The P-HA were prepared at various HA concentrations
169 ranging from 0% to 60% to evaluate mechanical properties according to HA content, and were
170 labeled as P-0HA, P-20H, P-40H, and P-60HA depending on the content. Even with high HA
171 content (60wt.%), the P-HA exhibited favorable printability characteristics (Fig. S3), and HA
172 particles were distributed throughout the structure, as depicted in SEM (Fig. 2B). The surface
173 roughness resulting from the addition of HA can promote cell adhesion and differentiation (33,
174 34). Therefore, we expected that the surface properties of the P-HA scaffold would provide an
175 advantage in osteogenesis.

176 In order to assess mechanical properties, P-HA were made into plug-shaped samples
177 (3mm \times 6mm), which is a standard structure (ASTM D695) for measuring the compressive modulus
178 of materials (Fig. 2C). The samples were measured using a universal testing machine until they
179 fractured under a compressive load. Despite the potential impact of higher HA content on sample
180 brittleness, the P-60HA exhibited enhancement in compressive strength (23.7 \pm 1.6 MPa) (Fig.

181 **S5**). This enhancement confirms the structural stability of the P-HA composite material, signifying
182 compatibility between mPOC and HA (**Fig. 2B**). The degradation behavior of 3D-printed porous
183 P-HA scaffolds (**Fig. 2A**) was investigated in PBS for 12 weeks at 75°C, representing an
184 environment accelerated 16 times compared to body temperature (35) (**Fig. 2D**). At 12 weeks, the
185 P-0HA exhibited a mass loss of approximately 54.1%, while that of P-60HA was 24.6%, which
186 delayed the degradation behavior by about 2.3-fold.

187 We examined the impact of GO on the rheological and viscoelastic properties of the
188 PPCNg hydrogel (**Fig. 2, E and F**). The PPCNg hydrogels showed a phase transition from liquid
189 to gel at 35°C, where G'' and G' intersected (**Fig. 2E**). While the GP hydrogel did not show a
190 distinct intersection point, it exhibited a transition from liquid to gel above 35°C (**Fig. 1E**).
191 Furthermore, the GP hydrogel displayed gel-like characteristics with higher G' values even in the
192 liquid phase (below 35°C) and improved the G' of the PPCNg hydrogel from 77 to 126 Pa
193 following the phase transition. This behavior is attributed to the interactions between GO and
194 PPCNg chains within the GP mixture (36). The stress relaxation of the hydrogels was investigated
195 at 37°C, maintaining a constant shear strain of 15%, comparable to the strain applied by cells
196 within a 3D matrix (37, 38) (**Fig. 2F**). The GP hydrogel showed a faster half-stress relaxation time
197 ($t_{1/2} \approx 1.5$ sec) compared to PPCNg hydrogel ($t_{1/2} \approx 3$ sec), which is likely due to GO particles
198 interfering with the crosslinking of PPCN chains, leading to faster chain relaxation.


199 The P-60HA scaffold was combined with GP hydrogel, and the resulting hybrid CSS (**P-**
200 **60HA/GP**) maintained a stable composite structure at 37°C (**Fig. 2G**). The morphological
201 structure and the distribution of GP hydrogel within the CSS were evaluated via SEM analysis
202 (**Fig. 2G**). The GP hydrogel formed an extensive network by physically interacting with the P-

203 60HA scaffold and uniformly covered the entire structure. Additionally, the GP hydrogel exhibited
204 permeable porous channels supporting blood vessel formation and tissue ingrowth.

205 We confirmed that both the P-60HA scaffold and GP hydrogel collectively enhance
206 physical properties, and the hybrid CSS demonstrated a consistent and durable structure. In
207 subsequent experiments, the P-60HA scaffold was chosen as the primary structural framework of
208 the CSS based on results, demonstrating improved mechanical properties with comparable mineral
209 concentration to native bone (65-70wt.%).

210 **P-60HA/GP is cytocompatible and promotes osteogenesis *in vitro***

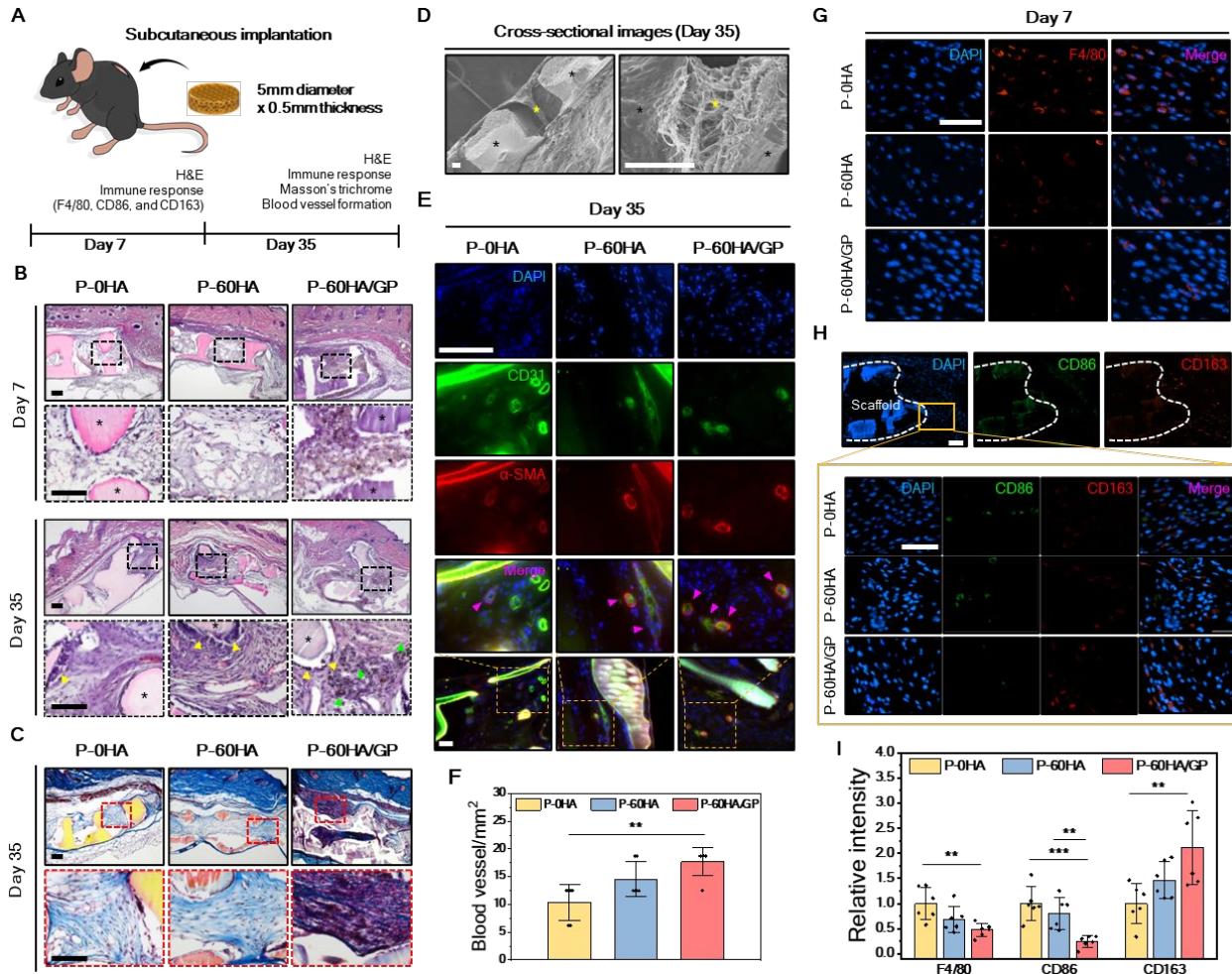
211 We investigated the cytotoxicity and the *in vitro* osteogenic potential of the scaffolds using human
212 mesenchymal stromal cells (hMSCs) (Fig. 3). To evaluate the influence of HA and GP hydrogel
213 on cellular activity, the P-0HA, P-60HA, and P-60HA/GP scaffolds were examined, and each
214 value was normalized to TCP control group (Fig. 3, A and B). The scaffolds were immersed in
215 the TCP cultured with hMSCs for 7 days and subjected to live/dead staining (Fig. 3A) and
216 alamarBlue assay (Fig. 3B). There were no observable dead cells, with sustained live cell
217 proliferation, and cell viability was recorded at $\approx 90\%$ for 7 days, suggesting that both P-HA
218 scaffolds and GP hydrogel are biocompatible.

219

220 **Fig. 3. In vitro assessment of cell viability and osteogenic differentiation of hMSCs on the scaffolds.** (A)
221 Live/dead staining images of each group on days 1, 4, and 7 days. Scale bar, 200 μ m. (B) Cell viability in the
222 alamarBlue assay normalized to the TCP control group. n.s.: no significant difference; Error bars, \pm SD; n=3. (C)
223 Cytoskeleton staining images of hMSCs on P-60HA scaffold and GP hydrogel in P-60HA/GP scaffold 4 days after
224 cell seeding. Scale bars, 100 μ m. (D) ALP activity normalized to DNA concentration in each group on days 7, 14, and
225 21. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001; Error bars, \pm SD; n=3. (E) The relative expression levels of
226 RUNX2, OPN, and OCN for hMSCs cultured in each group at days 7, 14, and 21. All expression levels were quantified
227 using 2- $\Delta\Delta$ CT method and then normalized to the value of the housekeeping gene GAPDH and day 0 for the P-0HA
228 group. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001; Error bars, \pm SD; n=3.

229 The interaction between scaffolds and cells plays a crucial role as it enhances tissue
230 reconstruction by enabling effective interaction with surrounding tissues post-implantation (39,
231 40). We assessed cell adhesion and retention on the scaffolds using cytoskeleton staining (Fig.
232 3C). hMSCs were cultured on P-60HA and P-60HA/GP for 4 days without cell adhesion treatment.

233 In the staining results, P-60HA exhibited cell attachment, but cells had limited proliferation on the
234 scaffold surface. In contrast, cells showed widespread distribution within the GP hydrogel of P-
235 60HA/GP. This indicates that GP hydrogel provides a conducive microenvironment to cell growth,
236 allowing cells to proliferate throughout the GP hydrogel-conjugated scaffold.


237 To demonstrate the effects of HA and GP hydrogel on the osteogenic differentiation of
238 hMSCs, we analyzed osteogenesis markers at 7, 14, and 21 days after cell culturing on the scaffolds.
239 First, the early osteogenic marker alkaline phosphatase (ALP) was assessed using the absorbance
240 method and normalized to the DNA concentration of each group at the indicated time points (Fig.
241 3D). At day 7, ALP activity was significantly upregulated in P-60HA and P-60HA/GP compared
242 to P-0HA. Moreover, the incorporation of GP hydrogel into the P-60HA scaffold enhanced ALP
243 activity, which was \approx 4.57 times ($****p <0.0001$) higher than P-0HA at day 21.

244 The expression levels of osteogenesis markers were analyzed by real-time reverse
245 quantitative PCR (RT-qPCR), and each value was normalized to day 0 of P-0HA scaffold for
246 comparison between groups (Fig. 3E). The results showed that P-60HA/GP upregulated early
247 (Runt-related transcription factor 2, RUNX2) (\approx 5-fold) and intermediate (Osteopontin, OPN)
248 markers (\approx 39-fold) compared to P-0HA from the early time point, day 7. By day 14, while the
249 trend in OPN levels differed in P-60HA/GP from the other scaffolds, it maintained 5- and 1.5-fold
250 higher levels than those of P-0HA and P-60HA, respectively. The late-stage marker, osteocalcin
251 (OCN), exhibited upregulation at day 14 in both P-60HA and P-60HA/GP, with the P-60HA/GP
252 showing enhanced levels 1.7 times compared to P-0HA.

253 Taken together, P-60HA/GP induced early osteogenesis with high levels of ALP activity,
254 RUNX2, and OPN during the proliferative phase before mineralization and upregulated OCN
255 promoting apatite mineralization *in vitro* (41).

256 **P-60HA/GP exhibits favorable tissue interaction and biocompatibility *in vivo***

257 We investigated the immune response and tissue interaction associated with P-HA scaffolds
258 through subcutaneous implantation in a mouse model (**Fig. 4A**). Each scaffold was implanted on
259 the dorsal region of the mice, and tissue samples were harvested with scaffolds after 7 and 35 days
260 for histological analysis. Following *in vivo* implantation, the infiltration of cells within the scaffold
261 serves as an indicator of the scaffold's capability to facilitate cell attachment, proliferation, and
262 migration within its structure (42). H&E staining results (**Fig. 4B**) revealed mild connective tissue
263 and cellular infiltration into the porous scaffold structure by day 7 in all experimental groups, and
264 there were no significant inflammatory responses at the implantation site. Notably, P-60HA/GP
265 exhibited robust cell infiltration at the administered GP hydrogel area. This cell recruitment can
266 be attributed to the favorable effects of the gelatin (24) and GO components (43) in the GP
267 hydrogel. By day 35, all scaffolds demonstrated successful integration with the surrounding tissue
268 network, and some biomaterial-associated multinucleated giant cells (BMGCs) were observed
269 around the surface of the scaffolds. These cells are typically observed in response to foreign body
270 reactions of polymeric implants (40, 44). BMGCs may act as key regulators during biomaterial
271 integration and have the potential to contribute to the vascularization of the implant bed, ultimately
272 stimulating bone formation (44). This observation suggests that P-HA scaffolds interact with
273 surrounding tissues and induce cellular responses, contributing to tissue remodeling.

274

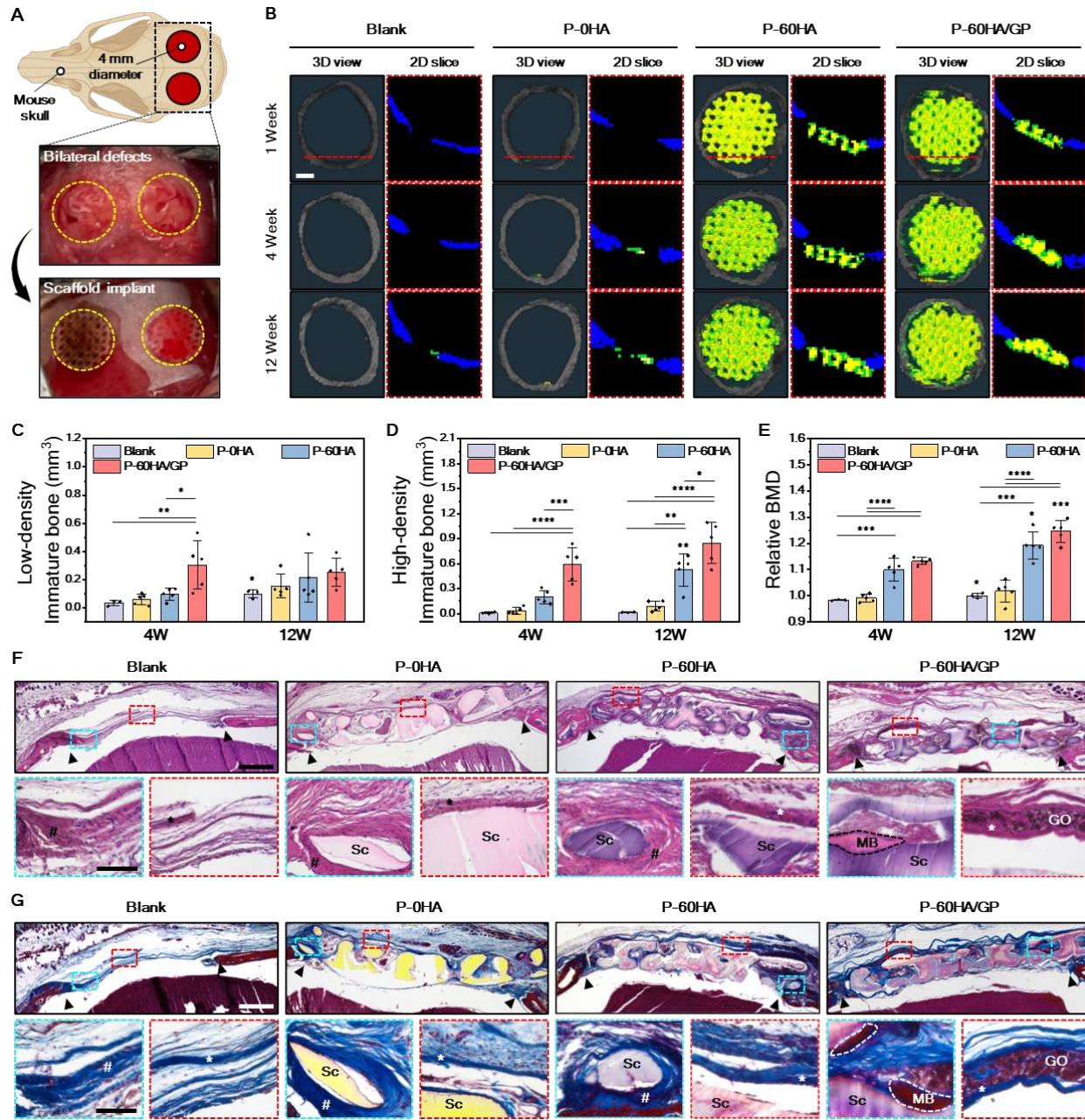
Fig. 4. Evaluation of in vivo immune response and biocompatibility of scaffolds in mouse subcutaneous implantation. (A) Schematic illustration of the subcutaneous implantation experiment. (B) Cross-sectional H&E histological images of scaffold implanted tissue at day 7 and day 35. The images at the bottom represent the higher magnification of each group. The asterisk (*): scaffold; Green arrowhead: GO residue; Yellow arrowhead: multinucleated giant cells. Scale bars, 150 μ m. (C) Representative Masson's trichrome staining images at day 35 after implantation and their higher magnification images. The asterisk (*), scaffold; Scale bars, 50 μ m. (D) Cross-sectional SEM images of the implanted scaffold on day 35. The asterisk (*): scaffold; Star: infiltrated tissues. Left: under 100X magnification; Right: 1,000X magnification. Scale bars, 50 μ m. (E) Representative immunofluorescence staining images of CD31 and α -SMA on day 35. Pink arrowhead: newly formed blood vessel. Scale bar, 100 μ m. (F) The quantitative analysis of blood vessel formation inside scaffolds on day 35. **p < 0.01, Error bars, \pm SD; n=6. (G)

285 Representative immunofluorescence staining images of F4/80, (H) CD86, and CD163 markers on day 7. Scale bars,
286 50 μ m. (I) The relative quantitative mean gray value of F4/80, CD86, and CD163 on day 7. ** p <0.01, and *** p <0.001,
287 Error bars, \pm SD; n=6.

288 At 35 days, Masson's trichrome staining (**Fig. 4C**) was performed to assess the capacity
289 to facilitate effective integration with adjacent tissues and act as a substrate for the deposition of
290 new ECM. All P-HA scaffolds exhibited collagen fibril formation throughout their porous
291 structures. Specifically, within the P-60HA/GP scaffold, there was observable tissue infiltration
292 aligned along the site of GP hydrogel injection. This observation is attributed to the interaction
293 between GO and collagen fibers (45), such as hydrogen bonding, electrostatic interaction, and π - π
294 stacking (46, 47). The stable ECM network formation surrounding the scaffolds and within their
295 structure was also confirmed in SEM (**Fig. 4D**). Overall, these results showed the potential of P-
296 HA scaffolds and GP hydrogel to stimulate cell and tissue ingrowth over time, indicating their
297 suitability as an implant for tissue reconstruction.

298 **GP hydrogel affects angiogenesis and M2 macrophage polarization**

299 Timely vascularization supplies oxygen and nutrients during bone repair, thereby enhancing bone
300 formation (48). To further evaluate their potential in stimulating angiogenesis, we conducted
301 immunofluorescence (IF) analysis on the tissue formed within the porous structure of the scaffolds
302 (n=6 from three biologically independent mice) (**Fig. 4E**). At 35 days post-implantation, there was
303 no statistically significant difference (p =0.17) observed between P-0HA (10 ± 3 vessels/mm 2) and
304 P-60HA (15 ± 3 vessels/mm 2) as a quantitative result by CD31 and α -smooth muscle actin (α -
305 SMA) markers (**Fig. 4F**). However, P-60HA/GP demonstrated enhanced blood vessel formation


306 (18 ± 3 vessels/mm²) (***p* <0.01) compared to the P-0HA, suggesting that the inclusion of GP
307 hydrogel accelerates angiogenesis (49, 50).

308 Once the biomaterial is implanted, an inflammatory reaction is observed for foreign body
309 response (51). Macrophages are one of the first cells to encounter the implanted materials and the
310 major modulator of tissue integration (52), and they exhibit a wide range of capabilities, capable
311 of transitioning from an M1 type (pro-inflammatory state) to an M2 type (anti-inflammatory state)
312 (53). During the bone regeneration period, the long-term M1 macrophage environment after
313 implantation may lead to bone destruction, hindering the process of bone regeneration and repair.
314 We evaluated the degree of inflammation and macrophage polarization using IF staining with
315 F4/80 (pan macrophages), CD86 (M1 macrophages), and CD163 (M2 macrophages) (n=6 from
316 three biologically independent mice) (**Fig. 4, G and H**). The analysis was performed on the
317 adjacent tissues surrounding the implanted scaffold, and the relative mean gray value was
318 determined based on the P-0HA value at day 7 (**Fig. 4I**). At 35 days, F4/80 and CD86 levels were
319 decreased in all groups (mean value <0.5) (**Fig. S6**) by the transition from the pro-inflammatory
320 to anti-inflammatory phase, and there was no significant difference between groups (*p* >0.05).
321 However, on day 7, P-60HA/GP showed low F4/80 intensity (0.5 ± 0.1) and significantly reduced
322 CD86 levels (0.2 ± 0.1) (**Fig. 4I**). In particular, P-60HA/GP accelerated M2 polarization (2.1 ±
323 0.7), even at early time point.

324 **P-60HA/GP accelerates bone formation in critical-sized cranial defects**

325 We evaluated the *in vivo* osteogenic capabilities of P-HA scaffolds using a mouse calvarial defect
326 model (**Fig. 5A**). The scaffolds were printed to match the bone defects (4mm×0.3mm), and the
327 new bone formation was monitored by micro-computed tomography (μCT) scanning until 12

328 weeks (**Fig. 5B**). Considering the similarity in HA content between P-60HA and the natural bone
329 surrounding and the resulting tissue density (**Fig. S7 and S8**), we segmented the area into two
330 regions to facilitate visualization and quantification of bone formation (n=5 for scaffold groups
331 and n=3 for blank). According to the threshold ranges, tissue formations, including the P-60HA
332 scaffold, were highlighted in green and yellow on the μ CT images (**Fig. 5B**) and categorized as
333 low-density and high-density immature bone, respectively (**Fig. 5, C and D**). In the lower
334 threshold range (140-300mg HA/cm³), the scaffold and soft tissue (brain, scalp, and fat) were
335 disregarded from visualization (**Fig. S8**), allowing focus solely on the tissues infiltrated at the
336 peripheral border and voids of the scaffold. The bone reconstruction process involves infiltration
337 of an ECM network, including the formation of collagen fibrils, followed by mineralization by
338 osteoblasts to create mechanically stable bone in the form of lamellae (54). Therefore, the lower
339 threshold range involves the low-density immature bone, including the collagen network and ECM
340 (54). The progression of tissue growth and maturation into the high-density threshold range is
341 supported by μ CT scanning results taken over time (**Fig. S9**). On the other hand, the higher global
342 threshold range (above 300mg HA/cm³) was utilized to evaluate the high-density immature bone,
343 which includes the P-60HA scaffold, unmineralized osteoid, and mineralized tissues.

344

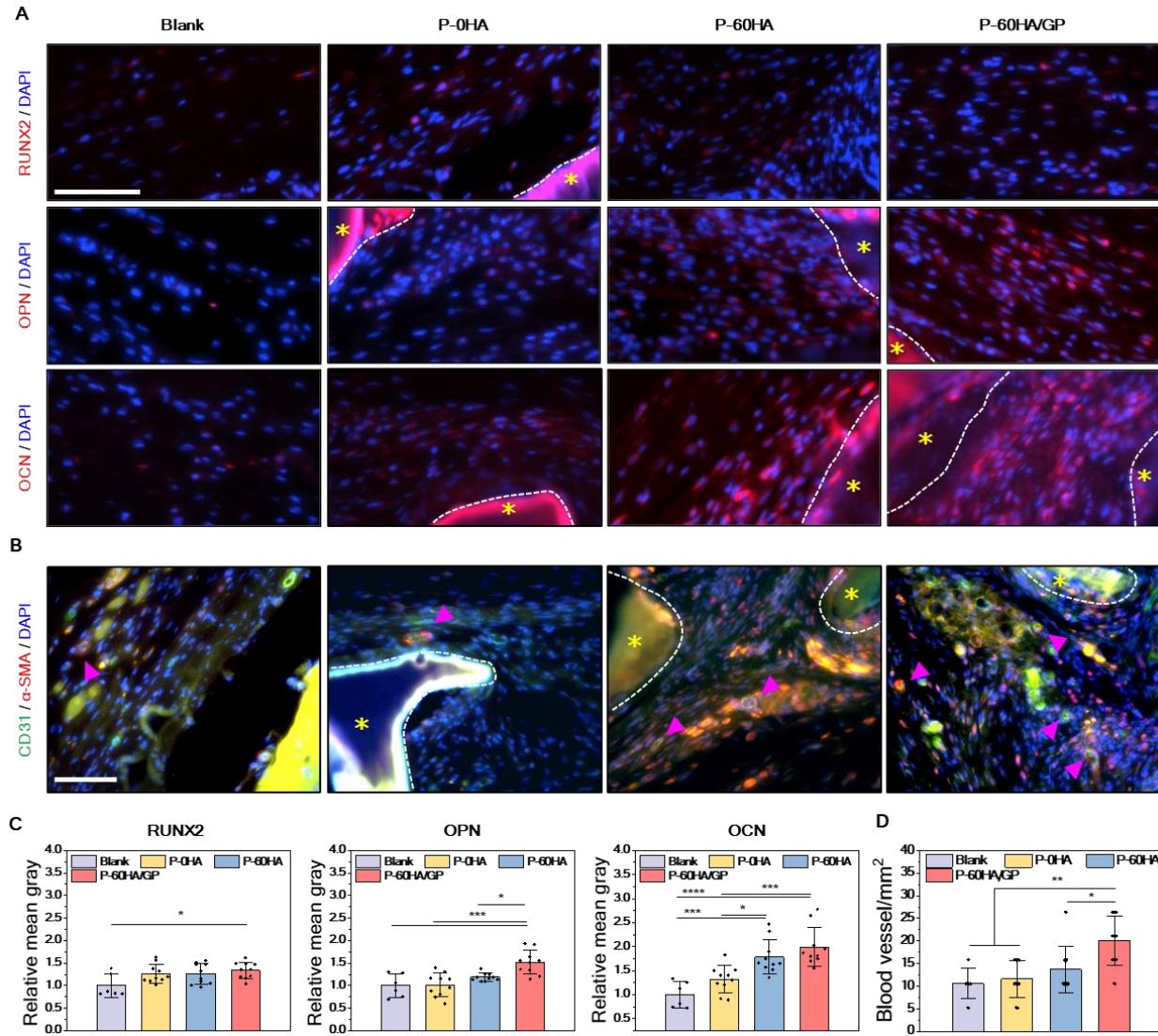
345 **Fig. 5. Bone reconstruction by scaffolds in murine critical-sized cranial defect model.** (A) Schematic illustration
346 and photos of in vivo cranial defect repair experiment. (B) Representative micro-CT images at 1, 4, and 12 weeks.
347 Blank: no treatment; Green: tissues and scaffolds in the low threshold range; Yellow: tissues and scaffolds in the high
348 threshold range. Scale bar, 1mm. (C and D) Quantitative analyses of immature bone formation in each group at 4 and
349 12 weeks compared to at 1 week, and (E) relative BMD of each group. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** p

350 <0.0001; Error bars, \pm SD; n=5. (F) H&E staining and (G) Masson's trichrome staining of each group at 12 weeks
351 after implantation. Scale bars, 500 μ m. The images at the bottom represent the higher magnification of each area. Scale
352 bars, 100 μ m. Sc: scaffold; Black arrow: defective area; Hash (#): unmineralized osteoid; The asterisk (*): periosteal
353 layer; MB: mature bone fragment; GO: GO residue.

354 The volume of newly formed tissue in the defect area was quantified based on week 1 of
355 each group. P-60HA/GP showed a considerable low-density immature bone formation (0.3 ± 0.2
356 mm 3) at an early stage (week 4), exhibiting an 8.4-fold increase compared to blank (0.04 ± 0.02
357 mm 3) (** $p < 0.01$) (**Fig. 5C**). This observation suggests that during the early stage, the presence of
358 GP hydrogel facilitated the development of dense collagen fibers surrounding the scaffold and the
359 formation of ECM found in the outer layer of the scaffold (**Fig. S10**). At 12 weeks, certain
360 experimental groups of P-60HA/GP exhibited a relatively decreased formation compared to week
361 4. This result indicates maturation in tissue formation due to collagen fiber crosslinking (54),
362 transitioning towards the stage of high-density immature bone (**Fig. S10**). Furthermore, within 4
363 weeks, P-60HA/GP significantly promoted mature bone formation (0.6 ± 0.2 mm 3), exceeding the
364 blank (0.009 ± 0.01 mm 3) (**** $p < 0.0001$) by 69 times and P-60HA (0.2 ± 0.1 mm 3) (*** $p < 0.001$)
365 by 3 times (**Fig. 5D**). In addition, P-60HA/GP enhanced the bone mineral density by 1.2 times at
366 week 12 compared to week 1 (**Fig. 5E and Fig. S7**).

367 At 12 weeks, the tissues from the center of the defect area were sectioned and examined
368 for analysis. H&E and Masson's trichrome staining (**Fig. 5, F and G**) showed that P-60HA/GP
369 induced mature new bone fragments between pores and around the structure, while other scaffolds
370 resulted in unmineralized osteoid at the boundary of the defect area. Compared to week 4 (**Fig.**
371 **S10**), minimal GO residual was observed in the P-60HA/GP implanted group, suggesting gradual

372 *in vivo* degradation of GO (55). Moreover, at week 4, P-60HA/GP allowed an abundant tissue
373 network formation throughout its structure, a finding supported by μ CT quantification (**Fig. 5C**).


374 Effective reconstruction of the periosteal layer is crucial to promote bone formation, given
375 its ability to supply abundant growth factors for bone cell growth and differentiation (56-58). P-
376 60HA and P-60HA/GP induced rich periosteal layers around their structure, while the blank and
377 P-0HA formed less connective collagen structures (**Fig. 5G**). Interestingly, collagen fibers were
378 formed along injected GP hydrogel in the P-60HA/GP scaffold, which aligned with the findings
379 from the subcutaneous implantation model (**Fig. 4C**). This outcome demonstrated that P-60HA/GP
380 facilitated the development of aligned collagen formation, which favored bone tissue growth (56).

381 **P-60HA/GP promotes the osteogenesis of endogenous cells and angiogenesis**

382 At week 12, the osteogenic and angiogenic capacity were assessed through IF staining with
383 osteogenic markers (RUNX2, OPN, and OCN) and CD31/ α -SMA (**Fig. 6, A and B**). The
384 osteogenic markers were labeled with a red fluorescent dye, and their intensity (n=10 from five
385 biologically independent mice) was evaluated relative to the mean gray value of the blank (n=6
386 from three biologically independent mice) at week 12 (**Fig. 6C**).

387 The quantitative results of RUNX2 indicated high expression levels and significant
388 improvements in P-60HA/GP from week 4 (1.5 ± 0.2) ($^{***}p < 0.001$) (**Fig. S11**) to week 12 ($1.3 \pm$
389 0.2) ($^{*}p < 0.05$) compared to the blank, while the other groups exhibited no significant differences
390 ($p > 0.05$) from the blank at week 12 (**Fig. 6C**). Furthermore, P-60HA/GP showed strong signal
391 intensities in both OPN (1.5 ± 0.3) ($^{***}p < 0.001$) and OCN (2 ± 0.4) ($^{****}p < 0.0001$) compared to
392 those of the blank, which were observed from the early stage (**Fig. S11**). These findings suggest

393 that P-60HA/GP promotes pre-osteoblast proliferation and maturation, thereby facilitating
394 mineralization (41).

395 **Fig. 6. Osteogenic potential and angiogenesis assessments of scaffolds in cranial defect model.** (A) Representative
396 immunofluorescence staining images of osteogenic markers and (B) CD31, and α -SMA markers on each scaffold after
397 12 weeks of implantation. The asterisk (*): scaffold; Pink arrow: newly formed blood vessel. Scale bar, 100 μ m. (C)
398 Relative mean gray value of each osteogenic differentiation markers on different groups, and (D) the quantitative
399 analysis of blood vessel formation. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001; Error bars, \pm SD; n=10.
400

401 Significant outcomes were also found in angiogenesis (**Fig. 6, B and D**). While the P-
402 60HA resulted in slightly higher blood vessel formation (14 ± 5 vessels/mm 2) compared to the
403 blank (11 ± 3 vessels/mm 2) and P-0HA (12 ± 4 vessels/mm 2) groups, this difference was not
404 statistically significant ($p > 0.05$). In contrast, P-60HA/GP exhibited a progressive vessel formation
405 (20 ± 5 vessels/mm 2) (** $p < 0.01$ for the blank and P-0HA; * $p < 0.05$ for P-60HA), particularly
406 pronounced starting from week 4 (12 ± 4 vessels/mm 2) (**Fig. S12**).

407 **Discussion**

408 Meeting the global demand for simple and scalable regenerative biomaterials while complying
409 with clinical standards and minimizing cost remains a significant challenge (59). The 3D-printed
410 porous CSS presented here provides a rigid (P-60HA)-soft (GP hydrogel) hybrid
411 microenvironment that mimics natural bone (10). The fabrication of this hybrid CSS is simple and
412 scalable for manufacturing while meeting the conformal requirements to reconstruct cranial facial
413 defects (20, 60, 61). Citrate plays a crucial role as a bioactive factor in bone (62). Both mPOC and
414 PPCN, integral components of the CSS, are polymers that belong to a biomaterial technology
415 referred to as citrate-based biomaterials (CBB) (26, 63). A CBB, referred to as CITREGEN, has
416 been used for the fabrication of biodegradable implantable medical devices that have been cleared
417 by the U.S. Food and Drug Administration (FDA) to attach soft tissue to bone (63). Therefore,
418 given that the FDA is familiar with this new composition and class of polymers (biodegradable
419 thermosets), the CSS is primed for translational application.

420 Importantly, our strategy eliminates dependence on exogenous biological factors and
421 demonstrates proficient tissue integration and osteogenic potential solely through material-driven
422 cues. The porous architecture of the scaffold contributes to vascularization and tissue ingrowth (31,

423 32, 64, 65). The P-60HA/GP has a heterogeneous pore architecture (**Fig. 2G**) resulting from the
424 printed porous scaffold integrated with the GP hydrogel network. These structures, with their
425 varied pore sizes and interconnected microenvironments, potentially facilitate angiogenesis (65)
426 (**Fig. 4F and Fig. 6D**). M2 macrophages play a crucial role in alleviating inflammation and
427 regulating angiogenesis and tissue repair (53). Although reactive oxygen species (ROS) are
428 recognized to interfere with M2 activation, they play a role in regulating both pro- and anti-
429 inflammatory macrophage phenotype, depending on the context (66-68). PPCN diminishes ROS
430 levels owing to its inherent antioxidant property, reducing oxidative stress (23). Meanwhile, GO
431 demonstrates angiogenic activity despite its potential to increase ROS levels dose-dependently
432 (69). Moreover, the surface topography resulting from HA particles can influence macrophage
433 polarization (70). Hence, P-60HA/GP is expected to have promoted M2 polarization and
434 angiogenesis (**Fig. 4, F and I**) through complex collective actions between components. However,
435 further experiments are warranted to understand the mechanism and their effects.

436 The osteogenic potential of a biomaterial can be influenced by various factors (39, 71, 72).
437 HA encourages osteoblast proliferation and facilitates mesenchymal stem cell growth and
438 differentiation by elevating local Ca^{2+} concentrations (73, 74). GO expedites the transformation of
439 stem cells or pre-osteoblasts into osteoblasts by facilitating non-covalent interactions with
440 physiological ions and biomolecules (43, 75, 76). Additionally, the role of GO in mineralization,
441 synergizing with HA (77, 78), enhances bone formation (79, 80). This is supported by a previous
442 report demonstrating that the integration of HA and GO has enhanced osteogenic differentiation
443 in contrast to their individual uses (79). The viscoelastic environment of GP hydrogel with rapid
444 stress relaxation promotes intracellular response and tissue remodeling (37, 39), and gelatin in GP

445 hydrogel reinforces cell adhesion (37, 81, 82). Separately, the carboxylate functional groups of
446 gelatins are expected to have accelerated mineralization through interaction with Ca^{2+} released
447 from HA (83). Taken together, these collective properties of P-60HA/GP are believed to promote
448 bone formation and accumulate crucial signaling proteins essential for osteogenesis.

449 Previous studies demonstrated dose-dependent toxicity of GO through intravenous
450 injection in mice (84). A dosage of 0.25mg per mouse from these studies was not toxic or lethal.
451 We administered a 16.5 μg GO dose (0.33 mg/mL in 50 μL GP hydrogel) within the acceptable
452 tolerance range established by previous studies (84). While we demonstrated the potential
453 degradability of GO during *in vivo* bone healing, its long-term effects until complete bone healing
454 are yet unexplored. Further exploration is crucial to determine the optimal GO concentration for
455 osteogenesis and its relationship with biodegradation.

456 While we have demonstrated the osteogenic capabilities of the CSS, these results have not
457 been directly compared to systems integrating cells and growth factors. However, our primary
458 focus has been on effective bone and tissue reconstruction while minimizing costs, procedures,
459 and potential immune responses, all geared toward swift translation and clinical implementation.
460 Our future work will be expanded to larger animals and will address the potential of our approach
461 for practical applications by comparison in more relevant contexts.

462 **Ethics approval and consent to participate**

463 The mouse subcutaneous implantation model was carried out with the approval from the
464 Institutional Animal Care and Use Committee at Northwestern University (protocol #IS00003238).
465 The cranial defect animal procedure was performed in compliance with the approval from the
466 University of Chicago Animal Care and Use Committee (ACUP #71745).

467 **Data and materials availability**

468 All data are available in the main text or the supplementary materials.

469 **CRediT authorship contribution statement**

470 **Mirae Kim:** Conceptualization, Methodology, Investigation, Visualization, Writing – original
471 draft, Writing – review & editing. **Caralyn P. Collins:** Methodology, Investigation, Visualization,
472 Writing – review & editing. **Yugang Liu:** Methodology, Investigation. **Hsiu-Ming Tsal:**
473 Methodology, Investigation, Visualization. **Yujin Ahn:** Methodology, Investigation,
474 Visualization. **Xinlong Wang:** Methodology, Investigation. **Joseph W. Song:** Methodology,
475 Investigation. **Chongwen Duan:** Methodology, Investigation. **Cheng Sun:** Methodology. **Zhu Yi:**
476 Investigation. **Tong-Chuan He:** Methodology, Writing – review & editing. **Russell R. Reid:**
477 Conceptualization, Investigation, Supervision, Writing – review & editing. **Guillermo A. Ameer:**
478 Conceptualization, Supervision, Writing – review & editing.

479 **Funding**

480 This work was supported by the National Research Foundation of Korea
481 (2021R1A6A3A14039205) (Mirae Kim); the National Institutes of Health/National Institute of
482 Dental and Craniofacial Research (R01DE030480) (Russell R. Reid).

483 **Declaration of competing interest**

484 The authors declare that they have no other competing interests.

485 **Acknowledgments**

486 This work made use of the IMSERC NMR and Physical Characterization facility at Northwestern
487 University, which has received support from the Soft and Hybrid Nanotechnology Experimental
488 (SHyNE) Resource (NSF ECCS-2025633), and Northwestern University. This work made use of
489 the Keck-II facility and the EPIC facility of Northwestern University's NUANCE Center, which
490 has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and
491 Northwestern's MRSEC program (NSF DMR-2308691). Imaging work was performed at the
492 Northwestern University Center for Advanced Molecular Imaging (RRID:SCR_021192)
493 generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie
494 Comprehensive Cancer Center.

495 **References**

- 496 1. L. A. Kandi, T. L. Jarvis, M. Shrout, D. A. Thornburg, M. A. Howard, M. Ellis, C. M.
497 Teven, Trends in Medicare Reimbursement for the Top 20 Surgical Procedures in
498 Craniofacial Trauma. *Journal of Craniofacial Surgery* **34**, 247-249 (2023).
- 499 2. M. J. Carty, N. Ferraro, J. Upton, Reconstruction of pediatric cranial base defects: a review
500 of a single microsurgeon's 30-year experience. *Journal of Craniofacial Surgery* **20**, 639-
501 645 (2009).
- 502 3. S. Bhumiratana, J. C. Bernhard, D. M. Alfi, K. Yeager, R. E. Eton, J. Bova, F. Shah, J. M.
503 Gimble, M. J. Lopez, S. B. Eisig, Tissue-engineered autologous grafts for facial bone
504 reconstruction. *Science translational medicine* **8**, 343ra383-343ra383 (2016).
- 505 4. T. W. Bauer, G. F. Muschler, Bone graft materials: an overview of the basic science.
506 *Clinical Orthopaedics and Related Research®* **371**, 10-27 (2000).

507 5. G. L. Koons, M. Diba, A. G. Mikos, Materials design for bone-tissue engineering. *Nature*
508 *Reviews Materials* **5**, 584-603 (2020).

509 6. N. L. Hunter, R. E. Sherman, Combination products: modernizing the regulatory paradigm.
510 *Nature Reviews Drug Discovery* **16**, 513-514 (2017).

511 7. A. De Pieri, Y. Rochev, D. I. Zeugolis, Scaffold-free cell-based tissue engineering
512 therapies: Advances, shortfalls and forecast. *NPJ Regenerative Medicine* **6**, 18 (2021).

513 8. F. Shang, Y. Yu, S. Liu, L. Ming, Y. Zhang, Z. Zhou, J. Zhao, Y. Jin, Advancing
514 application of mesenchymal stem cell-based bone tissue regeneration. *Bioactive materials*
515 **6**, 666-683 (2021).

516 9. J. A. Burdick, R. L. Mauck, J. H. Gorman III, R. C. Gorman, Acellular biomaterials: an
517 evolving alternative to cell-based therapies. *Science translational medicine* **5**, 176ps174-
518 176ps174 (2013).

519 10. M. Fontcuberta-Rigo, M. Nakamura, P. Puigbò, Phylobone: a comprehensive database of
520 bone extracellular matrix proteins in human and model organisms. *Bone Research* **11**, 44
521 (2023).

522 11. L. Nie, Y. Deng, P. Li, R. Hou, A. Shavandi, S. Yang, Hydroxyethyl chitosan-reinforced
523 polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. *Acs Omega*
524 **5**, 10948-10957 (2020).

525 12. K. Zhou, P. Yu, X. Shi, T. Ling, W. Zeng, A. Chen, W. Yang, Z. Zhou, Hierarchically
526 porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid
527 bone ingrowth and repair. *ACS nano* **13**, 9595-9606 (2019).

528 13. Z. Zhong, X. Wu, Y. Wang, M. Li, Y. Li, X. Liu, X. Zhang, Z. Lan, J. Wang, Y. Du, Zn/Sr
529 dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through
530 procedural osteo-immunomodulation and osteogenesis. *Bioactive materials* **10**, 195-206
531 (2022).

532 14. P. Song, M. Li, B. Zhang, X. Gui, Y. Han, L. Wang, W. Zhou, L. Guo, Z. Zhang, Z. Li,
533 DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue
534 engineering application. *Composites Part B: Engineering* **244**, 110163 (2022).

535 15. L. Tong, X. Pu, Q. Liu, X. Li, M. Chen, P. Wang, Y. Zou, G. Lu, J. Liang, Y. Fan,
536 Nanostructured 3D-Printed Hybrid Scaffold Accelerates Bone Regeneration by
537 Photointegrating Nanohydroxyapatite. *Advanced Science* **10**, 2300038 (2023).

538 16. J. Barros, M. P. Ferraz, J. Azeredo, M. Fernandes, P. Gomes, F. Monteiro, Alginate-
539 nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone
540 regeneration. *Materials Science and Engineering: C* **105**, 109985 (2019).

541 17. M. Kamaraj, A. Datla, S. E. Moulton, S. N. Rath, Biomimetic Mineralization of Mn-Doped
542 Biphasic Calcium Phosphate in the GelMa Hydrogel Acting as a Functional 3D Bioscaffold
543 for Osteo Defect Repair. *ACS Applied Polymer Materials* **6**, 943-955 (2024).

544 18. G. Kaur, V. Kumar, F. Baino, J. C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mechanical
545 properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art
546 review and future challenges. *Materials science and engineering: C* **104**, 109895 (2019).

547 19. A. Atala, F. K. Kasper, A. G. Mikos, Engineering complex tissues. *Science translational
548 medicine* **4**, 160rv112-160rv112 (2012).

549 20. J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D.
550 Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, Continuous liquid interface
551 production of 3D objects. *Science* **347**, 1349-1352 (2015).

552 21. R. L. Keate, J. Tropp, C. P. Collins, H. O. T. Ware, A. J. Petty, G. A. Ameer, C. Sun, J.
553 Rivnay, 3D-Printed Electroactive Hydrogel Architectures with Sub-100 μ m Resolution
554 Promote Myoblast Viability. *Macromolecular bioscience* **22**, 2200103 (2022).

555 22. C. G. Jeong, S. J. Hollister, A comparison of the influence of material on in vitro cartilage
556 tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with
557 chondrocytes. *Biomaterials* **31**, 4304-4312 (2010).

558 23. J. Yang, R. Van Lith, K. Baler, R. A. Hoshi, G. A. Ameer, A thermoresponsive
559 biodegradable polymer with intrinsic antioxidant properties. *Biomacromolecules* **15**, 3942-
560 3952 (2014).

561 24. J. Ye, J. Wang, Y. Zhu, Q. Wei, X. Wang, J. Yang, S. Tang, H. Liu, J. Fan, F. Zhang, A
562 thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective
563 bone formation from BMP9-transduced mesenchymal stem cells. *Biomedical Materials* **11**,
564 025021 (2016).

565 25. M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, N. He, Injectable hydrogels
566 for cartilage and bone tissue engineering. *Bone research* **5**, 1-20 (2017).

567 26. J. Yang, A. R. Webb, G. A. Ameer, Novel citric acid-based biodegradable elastomers for
568 tissue engineering. *Advanced Materials* **16**, 511-516 (2004).

569 27. M. M. Hasani-Sadrabadi, P. Sarzion, S. Pouraghaei, Y. Chau, S. Ansari, S. Li, T. Aghaloo,
570 A. Moshaverinia, An engineered cell-laden adhesive hydrogel promotes craniofacial bone
571 tissue regeneration in rats. *Science translational medicine* **12**, eaay6853 (2020).

572 28. H. A. Pearce, J. W. Swain, L. H. Victor, K. J. Hogan, E. Y. Jiang, M. L. Bedell, A. M.
573 Navara, A. Farsheed, Y. S. Kim, J. L. Guo, Thermogelling hydrogel charge and lower
574 critical solution temperature influence cellular infiltration and tissue integration in an ex
575 vivo cartilage explant model. *Journal of Biomedical Materials Research Part A* **111**, 15-
576 34 (2023).

577 29. A. L. Olivares, È. Marsal, J. A. Planell, D. Lacroix, Finite element study of scaffold
578 architecture design and culture conditions for tissue engineering. *Biomaterials* **30**, 6142-
579 6149 (2009).

580 30. M. Castilho, A. van Mil, M. Maher, C. H. Metz, G. Hochleitner, J. Groll, P. A. Doevedans,
581 K. Ito, J. P. Sluijter, J. Malda, Melt electrowriting allows tailored microstructural and
582 mechanical design of scaffolds to advance functional human myocardial tissue formation.
583 *Advanced Functional Materials* **28**, 1803151 (2018).

584 31. W. B. Swanson, M. Omi, Z. Zhang, H. K. Nam, Y. Jung, G. Wang, P. X. Ma, N. E. Hatch,
585 Y. Mishina, Macropore design of tissue engineering scaffolds regulates mesenchymal stem
586 cell differentiation fate. *Biomaterials* **272**, 120769 (2021).

587 32. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis.
588 *Biomaterials* **26**, 5474-5491 (2005).

589 33. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, Y. F. Missirlis, Effect of surface
590 roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation,
591 differentiation and detachment strength. *Biomaterials* **22**, 87-96 (2000).

592 34. A. B. Faia-Torres, S. Guimond-Lischer, M. Rottmar, M. Charnley, T. Goren, K. Maniura-
593 Weber, N. D. Spencer, R. L. Reis, M. Textor, N. M. Neves, Differential regulation of
594 osteogenic differentiation of stem cells on surface roughness gradients. *Biomaterials* **35**,
595 9023-9032 (2014).

596 35. J. W. Song, H. Ryu, W. Bai, Z. Xie, A. Vázquez-Guardado, K. Nandoliya, R. Avila, G.
597 Lee, Z. Song, J. Kim, Bioresorbable, wireless, and battery-free system for electrotherapy
598 and impedance sensing at wound sites. *Science Advances* **9**, eade4687 (2023).

599 36. C. Zhao, Z. Zeng, N. T. Qazvini, X. Yu, R. Zhang, S. Yan, Y. Shu, Y. Zhu, C. Duan, E.
600 Bishop, Thermoresponsive citrate-based graphene oxide scaffold enhances bone
601 regeneration from BMP9-stimulated adipose-derived mesenchymal stem cells. *ACS
602 biomaterials science & engineering* **4**, 2943-2955 (2018).

603 37. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch,
604 H.-p. Lee, E. Lippens, G. N. Duda, Hydrogels with tunable stress relaxation regulate stem
605 cell fate and activity. *Nature materials* **15**, 326-334 (2016).

606 38. W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, C. S. Chen,
607 Measurement of mechanical tractions exerted by cells in three-dimensional matrices.
608 *Nature methods* **7**, 969-971 (2010).

609 39. A. K. Gaharwar, I. Singh, A. Khademhosseini, Engineered biomaterials for in situ tissue
610 regeneration. *Nature Reviews Materials* **5**, 686-705 (2020).

611 40. F. Wang, X. Cai, Y. Shen, L. Meng, Cell–scaffold interactions in tissue engineering for
612 oral and craniofacial reconstruction. *Bioactive Materials* **23**, 16-44 (2023).

613 41. K. K. Moncal, H. Gudapati, K. P. Godzik, D. N. Heo, Y. Kang, E. Rizk, D. J. Ravnic, H.
614 Wee, D. F. Pepley, V. Ozbolat, Intra-operative bioprinting of hard, soft, and hard/soft
615 composite tissues for craniomaxillofacial reconstruction. *Advanced functional materials*
616 **31**, 2010858 (2021).

617 42. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive
618 composite scaffolds for bone tissue engineering. *Bioactive materials* **3**, 278-314 (2018).

619 43. W. C. Lee, C. H. Y. Lim, H. Shi, L. A. Tang, Y. Wang, C. T. Lim, K. P. Loh, Origin of
620 enhanced stem cell growth and differentiation on graphene and graphene oxide. *ACS nano*
621 **5**, 7334-7341 (2011).

622 44. R. J. Miron, D. D. Bosshardt, Multinucleated giant cells: good guys or bad guys? *Tissue*
623 *Engineering Part B: Reviews* **24**, 53-65 (2018).

624 45. C. Yue, C. Ding, X. Du, Y. Wang, J. Su, B. Cheng, Self-assembly of collagen fibrils on
625 graphene oxide and their hybrid nanocomposite films. *International Journal of Biological*
626 *Macromolecules* **193**, 173-182 (2021).

627 46. C.-Y. Chen, P.-H. Tsai, Y.-H. Lin, C.-Y. Huang, J. H. Chung, G.-Y. Chen, Controllable
628 graphene oxide-based biocompatible hybrid interface as an anti-fibrotic coating for
629 metallic implants. *Materials Today Bio* **15**, 100326 (2022).

630 47. H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide. *The Journal of Physical*
631 *Chemistry C* **115**, 5545-5551 (2011).

632 48. S. Yin, W. Zhang, Z. Zhang, X. Jiang, Recent advances in scaffold design and material for
633 vascularized tissue-engineered bone regeneration. *Advanced healthcare materials* **8**,
634 1801433 (2019).

635 49. J. Park, Y. S. Kim, S. Ryu, W. S. Kang, S. Park, J. Han, H. C. Jeong, B. H. Hong, Y. Ahn,
636 B. S. Kim, Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells
637 by stimulating the expression of angiogenic growth factors and gap junction protein.
638 *Advanced Functional Materials* **25**, 2590-2600 (2015).

639 50. M. H. Norahan, M. Amroon, R. Ghahremanzadeh, M. Mahmoodi, N. Baheiraei,
640 Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac
641 tissue engineering. *Journal of biomedical materials research Part A* **107**, 204-219 (2019).

642 51. J. M. Anderson, A. Rodriguez, D. T. Chang, in *Seminars in immunology*. (Elsevier, 2008),
643 vol. 20, pp. 86-100.

644 52. R. Sridharan, A. R. Cameron, D. J. Kelly, C. J. Kearney, F. J. O'Brien, Biomaterial based
645 modulation of macrophage polarization: a review and suggested design principles.
646 *Materials Today* **18**, 313-325 (2015).

647 53. P. Graney, S. Ben-Shaul, S. Landau, A. Bajpai, B. Singh, J. Eager, A. Cohen, S. Levenberg,
648 K. Spiller, Macrophages of diverse phenotypes drive vascularization of engineered tissues.
649 *Science advances* **6**, eaay6391 (2020).

650 54. W. Wang, K. W. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A
651 review. *Bioactive materials* **2**, 224-247 (2017).

652 55. C. M. Girish, A. Sasidharan, G. S. Gowd, S. Nair, M. Koyakutty, Confocal Raman imaging
653 study showing macrophage mediated biodegradation of graphene in vivo. *Advanced
654 healthcare materials* **2**, 1489-1500 (2013).

655 56. J. Pan, H. Li, K. Jin, H. Jiang, K. Li, Y. Tang, Z. Liu, K. Zhang, K. Chen, Z. Xu, Periosteal
656 topology creates an osteo-friendly microenvironment for progenitor cells. *Materials Today
657 Bio* **18**, 100519 (2023).

658 57. S. J. Roberts, N. Van Gastel, G. Carmeliet, F. P. Luyten, Uncovering the periosteum for
659 skeletal regeneration: the stem cell that lies beneath. *Bone* **70**, 10-18 (2015).

660 58. R. Tevlin, M. Griffin, K. Chen, M. Januszyk, N. Guardino, A. Spielman, S. Walters, G. E.
661 Gold, C. K. Chan, G. C. Gurtner, Denervation during mandibular distraction osteogenesis
662 results in impaired bone formation. *Scientific Reports* **13**, 2097 (2023).

663 59. A. E. Jakus, A. L. Rutz, S. W. Jordan, A. Kannan, S. M. Mitchell, C. Yun, K. D. Koube,
664 S. C. Yoo, H. E. Whiteley, C.-P. Richter, Hyperelastic “bone”: A highly versatile, growth
665 factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. *Science
666 translational medicine* **8**, 358ra127-358ra127 (2016).

667 60. M. Zhang, R. Lin, X. Wang, J. Xue, C. Deng, C. Feng, H. Zhuang, J. Ma, C. Qin, L. Wan,
668 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone
669 regeneration. *Science advances* **6**, eaaz6725 (2020).

670 61. X. Xue, Y. Hu, S. Wang, X. Chen, Y. Jiang, J. Su, Fabrication of physical and chemical
671 crosslinked hydrogels for bone tissue engineering. *Bioactive materials* **12**, 327-339 (2022).

672 62. J. Guo, X. Tian, D. Xie, K. Rahn, E. Gerhard, M. L. Kuzma, D. Zhou, C. Dong, X. Bai, Z.
673 Lu, Citrate-based tannin-bridged bone composites for lumbar fusion. *Advanced Functional
674 Materials* **30**, 2002438 (2020).

675 63. H. Wang, S. Huddleston, J. Yang, G. A. Ameer, Enabling Proregenerative Medical Devices
676 via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials.
677 *Advanced Materials*, 2306326 (2023).

678 64. X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao, L. Geng, Y. Yuan, J. Lu, Z. Wang, The
679 promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate
680 scaffold with different interconnection sizes via activation of PI3K/Akt pathways.
681 *Scientific reports* **5**, 9409 (2015).

682 65. H. Mehdizadeh, S. Sumo, E. S. Bayrak, E. M. Brey, A. Cinar, Three-dimensional modeling
683 of angiogenesis in porous biomaterial scaffolds. *Biomaterials* **34**, 2875-2887 (2013).

684 66. S. Gordon, P. R. Taylor, Monocyte and macrophage heterogeneity. *Nature reviews
685 immunology* **5**, 953-964 (2005).

686 67. H.-Y. Tan, N. Wang, S. Li, M. Hong, X. Wang, Y. Feng, The reactive oxygen species in
687 macrophage polarization: reflecting its dual role in progression and treatment of human
688 diseases. *Oxidative medicine and cellular longevity* **2016**, (2016).

689 68. Y. Zhang, S. Choksi, K. Chen, Y. Pobezinskaya, I. Linnoila, Z.-G. Liu, ROS play a critical
690 role in the differentiation of alternatively activated macrophages and the occurrence of
691 tumor-associated macrophages. *Cell research* **23**, 898-914 (2013).

692 69. S. Mukherjee, P. Sriram, A. K. Barui, S. K. Nethi, V. Veeriah, S. Chatterjee, K. I. Suresh,
693 C. R. Patra, Graphene oxides show angiogenic properties. *Advanced healthcare materials*
694 **4**, 1722-1732 (2015).

695 70. Y. Zhu, H. Liang, X. Liu, J. Wu, C. Yang, T. M. Wong, K. Y. Kwan, K. M. Cheung, S.
696 Wu, K. W. Yeung, Regulation of macrophage polarization through surface topography
697 design to facilitate implant-to-bone osteointegration. *Science advances* **7**, eabf6654 (2021).

698 71. A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Matrix elasticity directs stem cell
699 lineage specification. *Cell* **126**, 677-689 (2006).

700 72. B. Conrad, C. Hayashi, F. Yang, Gelatin-based microribbon hydrogels support robust MSC
701 osteogenesis across a broad range of stiffness. *ACS biomaterials science & engineering* **6**,
702 3454-3463 (2020).

703 73. H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, J. Wei, Hydroxyapatite based materials for bone
704 tissue engineering: A brief and comprehensive introduction. *Crystals* **11**, 149 (2021).

705 74. D. G. Castner, B. D. Ratner, Proteins controlled with precision at organic, polymeric, and
706 biopolymer interfaces for tissue engineering and regenerative medicine. *Principles of
707 Regenerative Medicine*, 523-534 (2019).

708 75. A. M. Arnold, B. D. Holt, L. Daneshmandi, C. T. Laurencin, S. A. Sydlik, Phosphate
709 graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration.
710 *Proceedings of the National Academy of Sciences* **116**, 4855-4860 (2019).

711 76. W. Zhang, Q. Chang, L. Xu, G. Li, G. Yang, X. Ding, X. Wang, D. Cui, X. Jiang, Graphene
712 oxide-copper Nanocomposite-coated porous CaP scaffold for vascularized bone
713 regeneration via activation of Hif-1 α . *Advanced healthcare materials* **5**, 1299-1309 (2016).

714 77. C. Santos, C. Piedade, P. Uggowitzer, M. Montemor, M. Carmezim, Parallel nano-
715 assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for
716 biodegradable implants. *Applied Surface Science* **345**, 387-393 (2015).

717 78. Q. Wang, Y. Chu, J. He, W. Shao, Y. Zhou, K. Qi, L. Wang, S. Cui, A graded graphene
718 oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering.
719 *Materials Science and Engineering: C* **80**, 232-242 (2017).

720 79. J. H. Lee, Y. C. Shin, S.-M. Lee, O. S. Jin, S. H. Kang, S. W. Hong, C.-M. Jeong, J. B.
721 Huh, D.-W. Han, Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite
722 nanocomposites. *Scientific reports* **5**, 18833 (2015).

723 80. W. Nie, C. Peng, X. Zhou, L. Chen, W. Wang, Y. Zhang, P. X. Ma, C. He, Three-
724 dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-
725 hydroxyapatite composites for bone tissue engineering. *Carbon* **116**, 325-337 (2017).

726 81. J. M. Aamodt, D. W. Grainger, Extracellular matrix-based biomaterial scaffolds and the
727 host response. *Biomaterials* **86**, 68-82 (2016).

728 82. K. H. Vining, D. J. Mooney, Mechanical forces direct stem cell behaviour in development
729 and regeneration. *Nature reviews Molecular cell biology* **18**, 728-742 (2017).

730 83. X. Wu, T. Zhang, B. Hoff, S. Suvarnapathaki, D. Lantigua, C. McCarthy, B. Wu, G. Camci-
731 Unal, Mineralized hydrogels induce bone regeneration in critical size cranial defects.
732 *Advanced Healthcare Materials* **10**, 2001101 (2021).

733 84. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Biocompatibility of graphene
734 oxide. *Nanoscale Res Lett* **6**, 1-8 (2011).

735