

1 **Unveiling chemotherapy-induced immune landscape remodeling and metabolic**  
2 **reprogramming in lung adenocarcinoma by scRNA-sequencing**

3

4 Yiwei Huang<sup>1\*</sup>; Gujie Wu<sup>1\*</sup>; Guoshu Bi<sup>1\*</sup>; Lin Cheng<sup>2,3\*</sup>; Jiaqi Liang<sup>1</sup>; Ming Li<sup>1</sup>;  
5 Huan Zhang<sup>4</sup>; Guangyao Shan<sup>1</sup>; Zhengyang Hu<sup>1</sup>; Zhencong Chen<sup>1</sup>; Zongwu Lin<sup>1</sup>;  
6 Wei Jiang<sup>1</sup>; Qun Wang<sup>1</sup>; Junjie Xi<sup>1#</sup>; Shanye Yin<sup>2,3#</sup>; Cheng Zhan<sup>1#</sup>

7

8 Affiliations:

9 1. Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180,  
10 Fenglin Road, Shanghai, 200032, China.

11 2. Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461,  
12 USA.

13 3. Einstein Pathology Single-cell & Bioinformatics laboratory, Bronx, NY 10461,  
14 USA.

15 4. Department of Thoracic Surgery, Sichuan Cancer Hospital, University of Electronic  
16 Science and Technology of China, No. 55, Renmin Road, Chengdu, Sichuan, 610041,  
17 China.

18

19

20

21 \* Yiwei Huang, Gujie Wu, Guoshu Bi, and Lin Cheng contributed equally to this  
22 work.

23

24 # Correspondence and Reprints to:

25 1. Cheng Zhan, Email: czhan10@fudan.edu.cn, Department of Thoracic Surgery,  
26 Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032,  
27 China; Phone: 86-21-64041990; Fax: 86-21-64041990

28 2. Shanye Yin, Email: [Shanye.yin@einsteinmed.edu](mailto:Shanye.yin@einsteinmed.edu), Department of Pathology, Albert  
29 Einstein College of Medicine, Bronx, NY 10461, USA.

30 3. Junjie Xi, Email: xi.junjie@zs-hospital.sh.cn, Department of Thoracic Surgery,  
31 Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.

32 Tel: +86-21-64030736; fax: +86-21-64030736

33

34 **Abstract**

35 **Background:** Chemotherapy is widely used to treat lung adenocarcinoma (LUAD)  
36 patients comprehensively. Considering the limitations of chemotherapy due to drug  
37 resistance and other issues, it is crucial to explore the impact of chemotherapy and  
38 immunotherapy on these aspects.

39 **Methods and Materials:** Tumor samples from nine LUAD patients, of which four  
40 only received surgery and five received neoadjuvant chemotherapy, were subjected to  
41 scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry,  
42 immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out  
43 to validate our findings.

44 **Results:** A total of 83,622 cells were enrolled for subsequent analyses. The  
45 composition of cell types exhibited high heterogeneity across different groups.  
46 Functional enrichment analysis revealed that chemotherapy drove significant  
47 metabolic reprogramming in tumor cells and macrophages. We identified two  
48 subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells  
49 (CD45+CD11b+ARG+) and sorted them by flow cytometry. The proportion of Pro-  
50 mac cells in lung adenocarcinoma tissues increased significantly after neoadjuvant  
51 chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also  
52 suppress tumor immunity. Moreover, through analyzing the remodeling of T and B  
53 cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively  
54 more robust immune cytotoxic response towards tumor cells.

55 **Conclusion:** Our study demonstrates that chemotherapy induces metabolic  
56 reprogramming within the TME of LUAD, particularly affecting the function and  
57 composition of immune cells such as macrophages and T cells. We believe our  
58 findings will offer insight into the mechanisms of drug resistance and provide novel  
59 therapeutic targets for LUAD in the future.

60

61 **Keywords:** Lung adenocarcinoma, chemotherapy, phenotype atlas, metabolic  
62 reprogramming

63

64 **Introduction**

65 Lung cancer is the most common cancer among all human tumor types, with  
66 more than  $1.7 \times 10^6$  new cases worldwide each year. According to the Global Cancer  
67 Report data, lung adenocarcinoma (LUAD) accounts for most lung cancers (1). The  
68 application of adjuvant or neoadjuvant chemotherapy (NCT) has significantly  
69 improved the long-term survival of LUAD patients. At present, for most LUADs that  
70 need chemotherapy after being assessed, chemotherapy will be used before and after  
71 surgery (2). However, chemotherapy drugs are highly toxic and can often become  
72 ineffective (3). In addition, continued ineffective chemotherapy will lead to the  
73 generation of drug-resistant tumor cell clones (4, 5) and a delay in tumor removal.  
74 Almost all cancer patients show inherent or acquired drug resistance, leading to  
75 treatment failure and unsatisfactory overall survival. Therefore, to accurately develop  
76 therapies that can overcome drug resistance, it is essential to understand the  
77 alterations in the tumor microenvironment driven by chemotherapy.

78 Many studies have increasingly proved the tumor microenvironment (TME) to be  
79 an essential source of intratumoral heterogeneity (6). The heterogeneity within the  
80 tumor microenvironment (TME) encompasses not only the variations between  
81 different tumor cells but also among various stromal and immune cell types.  
82 Investigating the dynamic changes in multiple cell populations within the TME of  
83 LUAD following chemotherapy may provide crucial insights into overcoming  
84 chemotherapy resistance in LUAD. In this study, we demonstrated the changes in the  
85 microenvironment of lung adenocarcinoma with chemotherapy. In particular, we  
86 focused on the effect of chemotherapy on the metabolic reprogramming of tumor cells,  
87 stromal cells, and immune cells.

88 Formerly, it was generally believed that consuming glucose in TME by cancer  
89 cells may promote nutritional competition, a metabolic mechanism of  
90 immunosuppression (7). However, recent studies have shown that tumor-infiltrating  
91 immune cells rely on glucose for their energy needs and functionality, with immune  
92 cells, particularly macrophages, consuming more glucose than malignant cells. The  
93 impaired immune cell metabolism in the tumor microenvironment (TME) helps tumor  
94 cells escape immunity (8). The internal metabolic changes in the cells drive immune

95 cells and cancer cells to preferentially obtain glucose and glutamine. It is believed that  
96 the selective cellular allocation of these nutrients can be used to develop therapeutic  
97 and imaging strategies to enhance or monitor the metabolic processes and activities of  
98 specific cell populations in TME (9). Metabolic reprogramming in various cell types  
99 in the tumor microenvironment after undergoing chemotherapy may be an essential  
100 feature that affects chemotherapy. Our research fully demonstrated the metabolic  
101 reprogramming landscape of tumor cells, stromal cells, and immune cells before and  
102 after chemotherapy.

103

## 104 **Materials and Methods**

### 105 **Patients**

106 All patients included in this study understood and signed written informed  
107 consent, (Approval number: B2019-436). The clinical samples of scRNA-seq came  
108 from patients diagnosed with LUAD, of which 4 cases received no treatment before  
109 surgery, and 5 cases received chemotherapy (Pemetrexed + Cisplatin). These samples  
110 were donated by inpatients in the Department of Thoracic Surgery, Zhongshan  
111 Hospital of Fudan University. After the lung adenocarcinoma tissue sample was taken,  
112 a small part was cut for paraffin sections, and the remaining tissue was dissociated  
113 into a single-cell suspension.  $1 \times 10^6$  cells were drawn from the single-cell suspension  
114 for single-cell RNA sequencing.

115

### 116 **Preparation of single-cell suspensions**

117 For each patient, as described above, we dissociated the lung adenocarcinoma  
118 tumor sample into a single-cell suspension and then took  $1 \times 10^6$  cells for single-cell  
119 RNA sequencing. We used the Tumor Dissociation Kit (Miltenyi Biotec, Gladbach,  
120 Germany) to digest tumor tissues with enzymes according to the manufacturer's  
121 instructions. In short, we first cut the lung adenocarcinoma tissue sample into small  
122 tissue pieces about  $1 \text{cm}^3$  with a surgical scalpel. We then transferred these small tissue  
123 pieces to the MACS C tube containing 4.7 mL DMEM serum-free medium, 200  $\mu\text{L}$   
124 Enzyme H, 100  $\mu\text{L}$  Enzyme R, and 25  $\mu\text{L}$  Enzyme A. After the tissue was incubated  
125 and digested in a constant temperature incubator  $37^\circ\text{C}$  for 1 hour, the tissue was  
126 mechanically separated by the MACS™ instrument. This procedure was repeated  
127 twice. After the tissue sample was dissociated, the sample was filtered with a 40  $\mu\text{m}$   
128 filter to remove the remaining large particles from the single-cell suspension.

129 Centrifuge the suspension at 300 × g for 7 minutes, then discard the supernatant.

130 Next, we used red blood cell lysate (10×) (Sigma-Aldrich, St. Louis, MO, USA)  
131 to remove red blood cells from the single-cell suspension. In short, add 1x Lysis  
132 Buffer to the centrifuge tube containing the single-cell pellet described above. The  
133 cell suspension was then incubated at room temperature for 15 minutes. To improve  
134 the quality of our samples, we also used a Dead Cell Removal Kit (Miltenyi Biotec) to  
135 ensure that the cell survival rate of our sequencing samples was >90%.

136

### 137 **The 10x scRNA-seq data analysis**

138 The R version used in our scRNA-seq data analysis study is 3.6.1. The cell  
139 quality control criteria are as follows: 1) The number of expressed genes is less than  
140 300 or greater than 5000; 2) 10% or more of UMI is localized to mitochondrial or  
141 ribosomal genes. If they meet one of the criteria, the cells are excluded. After quality  
142 standardization, we applied the Seurat R package (10) to analyze the scRNA-seq data.  
143 First, we convert the scRNA-seq data into Seurat identifiable objects, and then we use  
144 the "FindVariableFeatures" function to find the first 2000 highly variable genes. After  
145 that, we applied principal component analysis (PCA) to reduce the dimensionality of  
146 scRNA-seq data. The "RunTSNE" function is used to perform t-distributed random  
147 neighborhood embedding (TSNE) to visualize various types of cells. The  
148 "FindClusters" and "FindAllMarkers" functions are used for cluster analysis of cell  
149 subclusters and detection of marker genes of cell subclusters.

150 Finally, according to the SingleR package (11), the CellMarker (<http://bigdata.hrbmu.edu.cn/CellMarker/>) data set, and a previous report (12), we annotated  
151 different cell types. Simultaneously, some new potential marker genes were verified  
152 through experiments.

154

### 155 **Analysis of Sub-Clusters of Cells in LUAD**

156 After preliminary classification and annotation of all cells, epithelial cells,  
157 stromal cells, and immune cells are extracted through the "SubsetData" function. Then,  
158 we apply the "FindClusters" and "FindAllMarkers" functions to find the marker genes  
159 of each cell and perform dimensionality reduction clustering on each extracted cell  
160 through TSNE. The sub-clusters are annotated by dominantly expressed cell markers  
161 published by previous researchers. To select the marker genes that meet the

162 requirements, we set the following cut-off thresholds to reveal the marker genes of  
163 each cluster: adjusted P-value  $<0.01$  and multiple Log2FC  $>0.5$ .

164

### 165 **Estimation of the copy number variations**

166 To estimate the initial copy number variation (CNV) of each region, the R  
167 package "scCancer" (13) was applied. The expression level of each cell was used as  
168 the original input file for calculating CNV. Immune cells served as a background  
169 reference for calculating the CNVs scores of other cells. In addition, the R package  
170 "inferCNV" was used to quantify CNV in tumor cells as described previously (14).

171

### 172 **Definition of cell scores and signature**

173 To evaluate the M1/M2 polarization state and pro-/anti-inflammatory potential of  
174 macrophages, we performed a GSVA (Gene Set Variation Analysis) analysis. We  
175 retrieved gene sets related to the above functions from previous studies (15) and used  
176 them as references in this analysis.

177 We used the average expression of a published list of characteristic genes for T  
178 cell toxicity and exhaustion to define T cells' cytotoxicity, exhaustion, and  
179 costimulation scores.

180

### 181 **Identification of gene markers of malignant cells**

182 We used the identified malignant cell marker genes in tumor cells to identify gene  
183 expression characteristics in malignant cells. Then, we performed unsupervised NMF  
184 (Non-negative Matrix Factorization) to reveal the malignant characteristics of tumor  
185 cells through the NMF R package (16).

186

### 187 **Trajectory analysis**

188 We used the monocle2 R package to analyze the trajectory of all cells to explore  
189 the trajectory progression of various types of cells in a single cell (17). First, apply  
190 the function "newCellDataSet" to construct a data object that the monocle 2 R  
191 package can recognize. Afterward, the differentially expressed genes identified by the  
192 Seurat R package were selected for cell trajectory analysis. The "reduceDimension"  
193 function was used to reduce the dimensionality. We used the "orderCells" function to

194 project cells on a pseudo-time trajectory to show the trend of cell evolution. A state  
195 consisting of cells mainly derived from nonmalignant tissues in a cluster identified as  
196 epithelial cells was defined as "root cells."

197

### 198 **Analyses of metabolic pathways**

199 To evaluate the activity of various metabolic pathways of each cell type, we  
200 applied the algorithm developed by Xiao et al. (18). In short, the analysis of  
201 metabolic programs is based on the average expression level of metabolic genes  
202 across cell types to indirectly reflect the metabolic activity of cells.

203 A variety of environmental factors may potentially affect the metabolic  
204 reprogramming of tumors, such as chemotherapy, nutrient supply, and the  
205 environment where the cells are located. Therefore, exploring these factors and the  
206 cross-conversion between glycolysis and mitochondrial activity in various cells in the  
207 tumor microenvironment is essential for understanding the metabolic reprogramming  
208 of tumors.

209 We calculated the average gene expression levels in glycolysis and OXPHOS as  
210 indicators of glucose supply and mitochondrial activity, respectively. The data of  
211 genes that were responsive to the two groups of genes (known to be responsive to  
212 glycolysis and OXPHOS) used in the calculations were retrieved from the MsigDB  
213 database. At the same time, the cells were sorted by flow cytometry, and the contents  
214 of various metabolites were tested, in turn, to verify whether they were consistent  
215 with gene expression levels.

216

### 217 **Cell Interaction Network analysis**

218 To study the cell-to-cell interactions between tumors and nonmalignant cells,  
219 immune cells, and stromal cells, we applied the R package "CellChat" (19) and  
220 "CellPhoneDB" Python package for analysis (20). The crosstalk analysis between  
221 cells through the "CellChat" package was as follows: (1) First, use the  
222 "createCellChat" function to create a data set object that can be identified by  
223 "CellChat"; (2) Then use "aggregateNet", "computeCommunProbPathway", and  
224 "computeCommunProb" function to automatically infer the possible cellular  
225 communication network between cells; (3) Finally, the "netVisual\_aggregate",

226 "netVisual\_bubble" and "netVisual\_signalingRole" functions were used to visualize  
227 the interaction between these cells. Then use the built-in parameters to apply the  
228 "CellPhoneDB" R package.

229

### 230 **Immunohistochemistry and immunofluorescence**

231 The paraffin-embedded lung cancer tissue sections were deparaffinized with  
232 xylene and rehydrated. Discard the blocking solution, add the primary antibody, and  
233 incubate overnight at 4 degrees. After removing the primary antibody and washing  
234 thoroughly, add the secondary antibody to incubate for 1 hour, and then add DAB  
235 chromogenic reagent (Gene Tech, China) for color development. Finally, hematoxylin  
236 is used for nuclear dyeing.

237 As mentioned in the above immunohistochemistry experiment, the steps before  
238 incubating the primary antibody are the same. Incubate with the corresponding  
239 primary and secondary antibodies with green and red fluorescent dyes, respectively,  
240 and then use DAPI to stain the nuclei.

241

### 242 **Flow cytometry assay**

243 Cells and APC-conjugated mouse anti-human CD45, FITC-conjugated mouse  
244 anti-human CD11b, BV421-conjugated mouse anti-human ARG1, as well as pe-cy-  
245 conjugated mouse anti-human CD86 (5  $\mu$ L/10<sup>6</sup> cells; BD Biosciences) were incubated  
246 on ice for 30 minutes. Then, FACSaria III (BD Biosciences) was used to quantify the  
247 required cells, and FlowJo software (TreeStar, Woodburn, OR, USA) was used to  
248 analyze the results.

249

### 250 **Animal experiments**

251 All animals involved in this study were treated humanely and received standard  
252 care. The animal experimental procedures were approved by the Institutional Review  
253 Board of Zhongshan Hospital of Fudan University (Shanghai, China). In this  
254 experiment, we housed male athymic nude mice (BALB/cASlac-*nu*) in a specific  
255 pathogen-free environment. We mixed treated A549 cells and TAMs to make a 1:1  
256 cell mixture at a cell concentration of 5x10<sup>6</sup> cells/ml. Take 0.05ml of the mixed  
257 suspension of cells and Matrigel, and implant them into the lung thoracic cavity of

258 nude mice for in situ tumor formation experiments.

259 Animals were sacrificed when one of the following signs of disease was observed:  
260 tumor ulceration (greater than 0.5 cm); inability to move or eat; or serious injury.  
261 Changes in tumor size were detected using an optical imaging system for in vivo  
262 small animals (IVIS Spectrum, PerkinElmer, USA).

263

## 264 **Statistical Analysis**

265 The statistical tools, methods, and thresholds of each analysis are clearly  
266 described in the results or detailed in the legend or materials and methods.

267

## 268 **Results**

### 269 **Single-cell transcriptomic profiling of LUAD**

270 A total of 9 patients with non-metastatic LUAD underwent lobectomy with  
271 curative intent in the Department of Thoracic Surgery, Zhongshan Hospital of Fudan  
272 University. Among them, five received three cycles of preoperative neoadjuvant  
273 combination chemotherapy with cisplatin plus pemetrexed (defined as NCT group),  
274 while others only received surgery (defined as the Control group). Following  
275 resection, a malignant lung tumor sample was obtained from each patient, rapidly  
276 digested to a single-cell suspension, and analyzed using 10X scRNA-seq (Figure 1a).  
277 After quality control, a total of 83,622 cells that met the inclusion criteria were  
278 subjected to subsequent analyses, with 33,567 and 50,055 cells derived from the  
279 control and NCT groups, respectively (Figure 1a-c, S1a). Next, we classified cell  
280 types through dimensional reduction and unsupervised clustering using the Seurat  
281 package and relative maker genes.

282 Using the SingleR package, the CellMarker dataset, and our previous studies (21,  
283 22), we identified cell clusters that could be assigned to known cell lineages:  
284 epithelial cells (marked by SFTA2 and KRT8), T cells (marked by CD3D and  
285 TRBC2), B cells (marked by CD79A and CD19), endothelial cells (marked by EMCN  
286 and CXorf36), mast cells (marked by TPSB2 and TPSAB1), macrophages (marked by  
287 CD68 and APOE), monocytes (marked by FGL2 and LGALS2), fibroblasts (marked  
288 by LUM and DCN), neutrophils (marked by FCGR3B and CMTM2). Meanwhile, the  
289 consensus clustering of these cells also exhibited the consistency and homogeneity of

290 the expression profile within each identified cell type (Figure 1b). For instance,  
291 clusters 1, 3, 6, 7, and 15, all designated as epithelial cells, were adjacent to each other  
292 in the consensus heatmap. This result confirms the robustness and reliability of our  
293 data pre-processing. Detailed distributions of these marker genes in each cluster are  
294 depicted in Figure S1.

295 By comparing the composition of different types of cells in each group, we  
296 noticed tumor microenvironment heterogeneity: the proportion of cells other than  
297 tumor cells, especially immune cells (mainly T and B), was significantly higher in the  
298 NCT (Figure 1e). Therefore, to identify subclusters within each of these nine major  
299 cell types, we observed a complex cellular ecosystem containing eight different  
300 epithelial subclusters and 43 non-epithelial clusters. Interestingly, the epithelial  
301 subclusters, mainly composed of cancer cells, were highly patient-specific, while the  
302 immune cell subclusters mostly consisted of cells derived from four or more patients  
303 (Figure 1f). This observation demonstrated the substantial variation and heterogeneity  
304 of tumor microenvironment among groups and individuals. Therefore, we further  
305 explored these alterations associated with the therapeutic regimen in greater detail for  
306 the primary cell types in subsequent analyses.

307

308 **Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant  
309 chemotherapy.**

310 Metabolic reprogramming is a hallmark of malignant tumors. Recent studies have  
311 also shown that tumors' metabolic characteristics and preferences change during  
312 cancer progression (23). In each type of cell derived from the Control and NCT  
313 groups, more significantly up-regulated metabolic pathways were enriched in cancer  
314 cells, nonmalignant epithelial cells, fibroblasts, and macrophages (Figure 2a). The  
315 enrichment of oxidative phosphorylation, glycolysis, pyruvate metabolism, and the  
316 tricarboxylic acid cycle indicates active glucose metabolism in these four cell types.  
317 By analyzing the activity of metabolic pathways in cells from different sources, we  
318 found that the activity scores of the metabolic pathways of tumor cells and  
319 macrophages were significantly higher than those of other types of cells. Notably, the  
320 metabolic pathway activity of macrophages and malignant cells increased after  
321 chemotherapy (Figure 2b).

322

323 **Changes in metabolism and gene expression of tumor cells after neoadjuvant  
324 chemotherapy**

325 To accurately analyze the effect of chemotherapy on the cancer cells, we first re-  
326 clustered the epithelial cells, and 12 clusters were identified (Figure 3a). Copy number  
327 variations (CNVs) (Figure S2a) and marker genes were used to accurately separate  
328 malignant and nonmalignant epithelial cells in Control and NCT samples. They were  
329 finally defined as MalignantSA cells (Marker genes: FOXL2/MET/CD74),  
330 MalignantNCT cells (Marker genes: RAC1/MAF/CXCL1), and Nonmalignant cells  
331 (Marker genes: ABCA3/SFTPB/LPCAT) (Figure 3d). These marker genes were  
332 further confirmed by immunofluorescence experiments (Figure S2d). We found that  
333 the proportion of malignant cells was significantly reduced after chemotherapy  
334 (Figure 3b, c, Figure S2b). Although malignant cells were significantly reduced after  
335 chemotherapy, genetic aberrations by CNVs analysis revealed that MalignantNCT  
336 cells exhibited significantly higher malignant scores compared to MalignantSA cells  
337 (Figure S2a).

338 We performed trajectory analysis to track the reprogramming of epithelial cells  
339 across the three groups. Nonmalignant cells evolved in two directions and developed  
340 into two clusters of cells (Figure 3e). In this evolutionary process, glycolysis-related  
341 genes (ENO1, LDHB, GAPDH), oxidative phosphorylation-related genes (NDUFA4),  
342 mitochondrial repair-related genes (TOMM7), glucose and lipid metabolism  
343 regulation genes (S100A16), ATPase activity-related genes (CCT6A), tumor immune  
344 regulation-related genes (CCL20, CXCL1, PAEP, PPP1R14B), hypoxia response  
345 regulation genes (CHCHD2), apoptosis regulation genes (MEG3, CEACAM5),  
346 mRNA alternative splicing-related genes (LSM5), and Ras-related protein (RAC1,  
347 RALA) gradually increased over time in the pseudotime analysis. These findings  
348 indicate that these genes play an essential role in the transformation of epithelial cells  
349 into tumor cells (Figure 3f, Figure S2e). Correspondingly, during the process of  
350 epithelial cells transforming into malignant tumor cells, the activity of the glycolysis  
351 pathway, oxidative phosphorylation pathway, angiogenesis pathway, DNA repair  
352 pathway, mTORC1 signaling pathway gradually increased over time. However, P53  
353 pathway, apoptosis signaling pathway activity then steadily decreased (Figure S2f).

354 Similarly, we performed GSVA analysis on malignant and nonmalignant cells from  
355 the three groups. We found that the glycolysis pathway, oxidative phosphorylation  
356 pathway, MYC-targets, E2F-targets, DNA repair pathway, and mTORC1 signaling  
357 pathway were significantly enriched in MalignantNCT cells derived from the NCT  
358 group (Figure 3g). The metabolic reprogramming enables cancer cells to resist anti-  
359 cancer drugs, thereby developing chemoresistance (24). To find the hub genes that  
360 cause the malignant transformation of epithelial cells, through Single-Cell Regulatory  
361 Network Inference and Clustering (SCENIC) analysis, we found that E2F1, BRCA1,  
362 PURA, NKX2-1, NFIC, ETV7, STAT1, EGR1, and CEBPD were highly expressed in  
363 malignant cells (cluster 2, 6, 11) from the Control group. In contrast, the malignant  
364 cells from the NCT group (clusters 1, 7, 8, 9) have high expression of transcription  
365 factors (TFs) such as PATZ1, SIX5, BATF, IRF1, FOXA1, and CEBPG. After  
366 neoadjuvant chemotherapy, the increased expression of these TFs promoted the  
367 occurrence of lung adenocarcinoma complex phenotypic remodeling (Figure 3h).

368 Tumor cells have significant heterogeneity. We re-clustered the malignant cells  
369 and obtained 13 sub-clusters (Figure 3i). Cluster 1, 2, 5, 6, 8, and 10 were derived  
370 from the NCT group (Figure 3i). Through the analysis of the metabolism of these cell  
371 subclusters, we found that clusters 5 (marker genes: PCP4/NPW/VSIG1), 6 (marker  
372 genes: ERG1/HSPA6), and 10 (marker genes: C9orf172/SLC39A10) from the NCT  
373 group showed high levels of glycolysis, oxidative phosphorylation and pyruvate  
374 metabolism (Figure 3k). GSVA analysis also showed that the glycolysis and oxidative  
375 phosphorylation signaling pathway-related genes were significantly enriched in  
376 clusters 5, 6, and 10 (Figure 3l). Similarly, we re-clustered nonmalignant cells to  
377 obtain 16 sub-clusters, of which clusters 1, 3, 8, 11, 12, 13, 15 were from the NCT  
378 group, and the rest were from the Control group (Figure S2g, h). Clusters 4 and 7  
379 from the Control group showed high levels of glycolysis and oxidative  
380 phosphorylation (Figure S2i, j), which contrasts with the glucose metabolism  
381 observed in malignant cells from the Control group.

382

### 383 **Changes in stroma cells resulted from neoadjuvant chemotherapy.**

384 To investigate stromal cell dynamics in the tumor microenvironment (TME), we  
385 obtained 8944 presumed stromal cells, as shown in Figure 1c. We re-clustered them

386 into five sub-populations, including COL14A1-positive fibroblasts, endothelial-1,  
387 endothelial-2, myofibroblasts, pericytes, and smooth muscle cells (SMC) (Figure 4a-c)  
388 (25-27). Detailed expression of the marker genes in each cell type is outlined in  
389 Figure 4c. Herein, we noticed a significant difference between the distribution of each  
390 of these five clusters in patients receiving varied types of treatment. The COL14A1-  
391 positive fibroblasts comprised the main fibroblast types in NCT groups, in which both  
392 endothelial 1 & 2 were mainly found. Pericyte and SMC were presented in all three  
393 groups. In contrast, myofibroblasts exclusively originated from the control group.  
394 According to previous research, myofibroblasts have been described as cancer-  
395 associated fibroblasts that participate in extensive tissue remodeling, angiogenesis,  
396 and tumor progression (25, 26). Therefore, this finding revealed that NCT and  
397 immunotherapy significantly altered the stromal cell composition in the tumor  
398 microenvironment.

399 To explore the activity of known biological pathways in these stromal cells, we  
400 performed functional enrichment analysis. In particular, GSVA analysis exhibited that  
401 endothelial 1 & 2 shared several up-regulated pathways related to cell proliferation  
402 and fate regulation, including IL6-JAK-STAT3, TGF $\beta$ , and WNT- $\beta$  catenin signaling.  
403 Besides, pathways associated with energy metabolisms such as glycolysis and  
404 hypoxia were up-regulated in myofibroblast, whereas pericyte was characterized by  
405 enriched oxidative phosphorylation and adipogenesis (Figure 4d). Meanwhile, when  
406 comparing the GSVA scores of these biological processes between patients from  
407 control or NCT groups, we noted that the stromal cells exhibited enhanced metabolic  
408 levels after NCT, as represented by up-regulated glycolysis, oxidative  
409 phosphorylation, and fatty acid metabolism pathways (Figure 4e).

410 Considering the essential role of fibroblasts and their complicated function in  
411 shaping the tumor microenvironment, we further re-clustered them into ten subgroups  
412 (Figure 4f-h). As shown in Figure 4i-j, the GSVA score of the metabolic pathways,  
413 including glycolysis and oxidative phosphorylation, and pyruvate metabolism and  
414 citrate cycle (TCA cycle), were up-regulated in clusters 5, 6, and 9. Intriguingly, the  
415 upregulation of these pathways was mainly observed in NCT groups (Figure S3a).  
416 The three clusters were represented by distinct gene expression profiles, such as  
417 overexpressed MYH11 in cluster 5, RGS5 in cluster 6, and TOP2A in cluster 9. Since

418 the potential involvement of these genes in the manipulation of fibroblast metabolism  
419 has never been proposed yet, they might serve as new specific markers of the  
420 fibroblast subtype with such a high metabolic rate in the tumor microenvironment.  
421 Besides, the SCENIC analysis demonstrated that MEF2C, NFIA, and RAD21 might  
422 drive the formation of these clusters, respectively (Figure S3c). Further in vitro  
423 studies are required to elucidate these notable fibroblasts' potential function and driver  
424 genes in LUAD's development and response to NCT. Conclusively, cellular dynamics  
425 in stromal cells support a consistent phenotypic shift of fibroblasts towards an  
426 increased metabolic level after preoperative chemotherapy.

427

428 **Chemotherapy drove tumor-associated macrophages to turn more into  
429 phenotypes that promote tumor progression.**

430 In the process of cancer formation, tumor-associated macrophages (Tumor-  
431 Associated Macrophages, TAM) have an essential influence on the inflammatory  
432 response in the tumor microenvironment (28). To study the effects of chemotherapy  
433 on TAMs, we first extracted all macrophages (10526 cells) and re-clustered them into  
434 ten cell clusters (Figure 5a). From Figure 1e, we can see that the proportion of  
435 macrophages after chemotherapy was reduced.

436 The cell clusters derived from the Control group were 1/2/3/5/7 clusters, those  
437 from the NCT group were mainly 0/4/8 clusters, and the number of cells in the 6/9  
438 clusters from the Control group and the NCT group was similar (Figure 5a). The  
439 proportion of cells in cluster 0 (marker genes: CXCL8/ CCL20/CHIT1), 4 (marker  
440 genes: CCL3/ CCL4/ SEPP1), 8 (marker genes: ARG2/ S100A2) decreased after  
441 chemotherapy, while the remaining cell clusters increased (Figure 5b, c). Through the  
442 GSVA analysis, we found that glycolysis, angiogenesis, PI3K-AKT-mTOR-signaling,  
443 IL6-JAK-STAT3-signaling, hypoxia, TGF-beta-signaling, and other signaling  
444 pathways were significantly enriched in cluster 0/1/8. Promoting inflammation-related  
445 signaling pathways such as TNF-signaling-via-NFKB, inflammatory-response, Notch-  
446 signaling, fatty-acid-metabolism, and oxidative-phosphorylation were increased  
447 dramatically in clusters 2/4/7/9 (Figure 5d).

448 Similarly, we found that glycolysis/gluconeogenesis, amino sugar and nucleotide  
449 sugar metabolism, alanine, aspartate, and glutamate metabolism were more active in

450 the 0/1/8 cluster. In contrast, oxidative phosphorylation, citrate cycle, pyruvate  
451 metabolism, fatty acid elongation, fatty acid biosynthesis, etc., were more active in  
452 clusters 2/4/7/9 (Figure 5e). According to the GSVA analysis, the  
453 glycolysis/gluconeogenesis signaling pathway was significantly enriched in  
454 macrophages from the NCT group. In contrast, macrophages from the Control group  
455 showed a high activity in oxidative phosphorylation, fatty acid elongation, fatty acid  
456 degradation, fatty acid biosynthesis, and citrate cycle (TCA cycle) (Figure 5f). These  
457 results indicate that significant metabolic reprogramming occurred in tumor-  
458 associated macrophages after chemotherapy, and different TAMs cell clusters also  
459 showed huge metabolic differences. In general, our results revealed that  
460 chemotherapy could promote glycolysis of TAMs and inhibit fatty acid metabolism.

461 To explore the key genes that regulate the differences in the metabolism of each  
462 subcluster of macrophages, we performed a SCENIC analysis. We found that HES,  
463 PPARG, SPI1, CEBPB, and IRF7 were highly expressed in cluster 0/1, which may be  
464 the key genes that regulate the conversion of macrophages into M2-like TAMs, while  
465 clusters 2/4/7/9 highly expressed STAT1, STAT2, NFKB1, JUN, and FOS that  
466 regulate the conversion of macrophages to M1-like TAMs (Figure 5g).

467 According to the gene expression of macrophages, we divided these 10 clusters of  
468 cells into three subtypes of macrophages through cluster analysis (Figure 5h). We  
469 scored the expression levels of pro-inflammatory and anti-inflammatory genes in all  
470 macrophages. We displayed each color-coded macrophage subtype's M1 and M2  
471 scores (left) and pro-inflammatory and anti-inflammatory scores (right) through a  
472 scatter plot.

473 Similarly, we found that 0/1/8 cluster cells exhibited M2-like polarization and  
474 anti-inflammatory properties, while 2/4/7/9 exhibited M1-like polarization and pro-  
475 inflammatory properties (Figure 5i). Based on these analyses, we divided these 10  
476 clusters of macrophage subtypes into three categories: M1-like polarized phenotype  
477 was defined as Anti-mac; M2-like polarized phenotype was defined as Pro-mac; those  
478 without obvious polarized phenotype were defined as Mix (Figure 5j). We found that  
479 the proportion of Pro-mac in the tumor microenvironment increased after  
480 chemotherapy, especially in the case of NCT-1 (Figure 5k). Interestingly, via  
481 trajectory analysis we found that two subtypes, Anti-mac and Mix, can be converted

482 to Pro-mac. In this evolution process, the high expression of LYZ, FBP1, ALOX5AP,  
483 MARCO, S100A9, FN1, CXCL8, APOC1CTSL, and other genes may have played an  
484 essential role in promoting the conversion of Anti-mac to Pro-mac (Figure 5l,m). This  
485 suggests that we can change the phenotype of TAMs in the tumor microenvironment  
486 by altering the expression of these genes.

487

488 **Chemo-driven Pro-mac and Anti-mac metabolic reprogramming exerted  
489 diametrically opposite effects on tumor cells.**

490 To further verify the remodeling effect of chemotherapy on the functional  
491 phenotype of TAMs in the tumor microenvironment, we first used the FindAllMarkers  
492 function in the Seurat package to find the marker genes of Pro-mac, Anti-mac, and  
493 Mix cells. Pro-mac was mainly characterized by high expression of CXCL8, ARG1,  
494 CREM, CD206, STAT6, CCL22, MMP7, and CCL3L3, while Anti-mac was mainly  
495 characterized by high expression of CD86, HLA-DR, PLAC8, CXCL10, COX2,  
496 IL15R, and SCGB3A1 (Figure 6a). Based on these marker genes, we sorted out Anti-  
497 mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG+) by  
498 flow cytometry (Figure 6b). To verify whether the cells we sorted were the cell  
499 population we wanted, we re-verified the positive rates of Pro-mac and Anti-mac cells  
500 by flow cytometry (Figure 6c). Our results showed that the proportion of Pro-mac  
501 cells in lung adenocarcinoma tissues after neoadjuvant chemotherapy increased  
502 significantly (Figure 6d). In fact, by performing immunofluorescence staining on lung  
503 adenocarcinoma tissue samples derived from surgery alone and neoadjuvant  
504 chemotherapy, we also found that the proportion of cells marked by the marker gene  
505 CD206 of M2-like TAMs increased significantly after chemotherapy (Figure 6e).  
506 Macrophages can promote tumor progression by secreting many cytokines. By  
507 analyzing the differentially expressed genes of Pro-mac and Anti-mac cells, we found  
508 IL10, PDCD1LG2, PDGF, VEGF, MMP9, CXCL9, CXCR4, IL22, KLF4, and TGF- $\beta$   
509 were highly expressed in Pro-mac cells that promote tumor growth, angiogenesis and  
510 suppress tumor immunity (Figure 6f). We obtained the Pro-mac and Anti-mac cells  
511 from 12 cases (6 cases of surgery alone, 6 cases of surgical samples after neoadjuvant  
512 chemotherapy) by flow cytometry. We named them Control Anti-mac, Control Pro-  
513 mac, NCT Anti-mac, NCT Pro-mac. After placing them in a cell culture flask for 24

514 hours, the content of some key cytokines in the supernatant of the culture medium  
515 was detected by enzyme-linked immunosorbent assay (ELISA). The levels of MMP9,  
516 EGF, and VEGF secreted by Pro-mac after neoadjuvant chemotherapy were  
517 significantly higher than those of Pro-mac from the surgery alone group. MMP9, EGF,  
518 VEGF, and IL10 secreted by Pro-mac were significantly higher than Anti-mac (Figure  
519 6g). Similarly, when Control Anti-mac, Control Pro-mac, NCT Anti-mac, and NCT  
520 Pro-mac were inoculated subcutaneously with A549 cells at a ratio of 1:1 (Reinjection  
521 of macrophages two weeks later), we also found that NCT Pro-mac can significantly  
522 promote tumor growth. Interestingly, NCT Anti-mac in the tumor microenvironment  
523 after chemotherapy can significantly inhibit the growth of tumor cells, and this  
524 inhibitory ability was stronger than Control Anti-mac (Figure 6h, i).

525 Our previous analysis found that Pro-mac glycolysis-related signaling pathways  
526 were significantly enriched, while in Anti-mac, oxidative phosphorylation and fatty  
527 acid metabolism signaling pathways were greatly enhanced (Figure 6j). In vitro  
528 experiments show that NCT Pro-mac's ability to take up glucose and produce lactate  
529 was considerably more potent than other cells (Figure 6k). It was worth noting that  
530 the glycolysis level of NCT Anti-mac was markedly higher than that of Control Anti-  
531 mac (Figure 6l). When we placed the Pro-mac and Anti-mac in a 24-well plate and co-  
532 cultured with A549 cells in the Transwell chamber, we found that NCT Pro-mac can  
533 significantly enhance the invasion ability of A549 cells. At the same time, NCT Anti-  
534 mac showed a stronger ability to inhibit tumor invasion than Control Anti-mac (Figure  
535 6m). However, when we used 2-DG (800uM, the concentration determined in pre-  
536 experiment) to inhibit the glycolysis of TAMs, the ability of Pro-mac to promote  
537 tumor progression was significantly weakened, and the power of NCT Anti-mac to  
538 suppress tumors was also considerably reduced (Figure 6m). By mixing these cells  
539 with macrophages for 3D culture, we found that the ability of NCT Anti-mac to  
540 inhibit tumor proliferation was significantly weakened when inhibiting its glycolytic  
541 activity. This showed that glycolysis could enhance the ability of Pro-mac to promote  
542 tumor progression and increase the capacity of Anti-mac to inhibit tumors (Figure 6n).  
543 Finally, through in vivo experiments, we inoculated a mixture of TAMs and A549 to  
544 nude mice and obtained the same experimental results as in Figure 6m/n (Figure 6o).

545

546

547 **Chemotherapy treatment-induced remodeling of T and B cells.**

548 Considering the essential role of the tumor microenvironment, especially the  
549 immune infiltration level, in tumor development and response to therapy, we next  
550 investigated the characteristics of T and B cells. In our study, 22530 T cells were  
551 detected, which accounted for 26.9% of the total. We noticed that the re-clustered T  
552 cells could not be visibly distinguished among patients receiving different therapeutic  
553 regimens (Supplementary Figure 6a-b). According to the expression of a series of  
554 canonical markers of T cell subtypes, the T cells were divided into CD4+ T (marked  
555 by LTB, CD45RO, etc.), CD8+ T (marked by NKG7, GZMA, GZMB, CD8A, etc.),  
556 and Tregs (marked by FOXP3, CTLA4, etc.) (12, 21, 29) (Supplementary Figure 6c-  
557 d). The detailed expression profile of these marker genes is exhibited in  
558 Supplementary Figure 6e. Meanwhile, aside from these previously published T-cell  
559 markers, we also noted the specific upregulation of several genes in a particular  
560 cluster. At the same time, their expression specificity has not been elucidated yet.

561 As the major executor of tumor immunology, CD8+ T cells are thought to  
562 differentiate into cytotoxic T cells (CTLs) and specifically recognize endogenous  
563 antigenic peptides presented by the major histocompatibility complex I, thereby  
564 eliminating tumor cells (30). By comparing the composition of T cell subtypes in  
565 LUAD cells derived from different groups, we found that the proportion of CD8+T  
566 cells in the NCT group was significantly higher than those in patients receiving only  
567 surgical treatment (Supplementary Figure 6d). Therefore, we focused on CD8+ T cells  
568 for subsequent analyses and re-clustered them into five new subgroups, in which  
569 clusters 1-4 were mainly derived from the NCT group. In contrast, cluster 5 was  
570 predominantly enriched in the control group (Supplementary Figure 6f-k).

571 We next explored the expression profile of genes associated with T cell's function  
572 in each CD8+ T sub-cluster. As depicted in Supplementary Figure 6i, clusters 1 and 2  
573 were characterized by up-regulated naïve T cell markers, such as TCF7, LEF1, and  
574 CCR7, whereas genes associated with immune inhibition, like TIGIT, CTLA4,  
575 PDCD1, and HAVCR2, were enriched explicitly in cluster 3. Cytotoxic function-  
576 related genes, including GZMA GNLY, PRF1, GZMP, and GZMK, IFNG, IL2, were  
577 respectively overexpressed in clusters 4 and 5. Based on this evidence, we defined

578 clusters 1 and 2 as naive T, three as regulatory/exhausted T, and 4 & 5 as cytotoxic T  
579 cells. Intriguingly, regarding both the sample origins and expression profiles of CD8+  
580 T cells in clusters 4 and 5, we can reasonably hypothesize that NCT treatment  
581 potentially induces the reprogramming of CD8+ cytotoxic cells. To further verify this  
582 statement, we performed pseudotime-ordered trajectory analysis to monitor the  
583 dynamic view of CD8+ T cells' reprogramming process via Monocle. As shown in  
584 Supplementary Figure 6l-p, three phases were detected in these clusters. Cluster 1,  
585 which exhibited the lowest cytotoxicity, was designated as the "root" state according  
586 to pseudotime.

587 In contrast, the immune inhibition-related genes like LAG3, TIGIT, and PDCD1,  
588 and cytotoxicity-related genes such as GZMB and IFNG were respectively activated  
589 in phases 2 and 3. This phenomenon is consistent with our T cell phenotype  
590 classification mentioned above. Then, our results showed differentiation paths from  
591 naive T to Treg/exhausted cells and cytotoxic cells. Considering the transcriptional  
592 changes associated with T cell reprogramming, naive T cells (phase 1) expressing  
593 high CCR6 and TCF7 differentiate into two distinct fates, clusters 4 and 5, in phase 3.  
594 Notably, the cells positioned at the cluster 4 branch were characterized by higher  
595 cytotoxicity than in cluster 5 (Supplementary Figure 6l, m, o). Regarding the sample  
596 origins of the two clusters, these findings demonstrated that NCT treatment ignites a  
597 relatively more robust immune cytotoxic response towards tumor cells, which could  
598 be partly explained by the excessive production of neoantigen caused by NCT-  
599 induced DNA damage.

600 SCENIC analyses suggested that distinct transcriptional mechanisms drove the  
601 differentiation of naive T cells to either cluster 4 or 5. As revealed in Supplementary  
602 Figure 6q, the cytotoxic cells derived from NCT-treated LUAD patients (cluster 4)  
603 were characterized by increased activation of FOSL2-extended, REL, YBX1, and NF-  
604 KB pathways. In contrast, those from the control group (cluster 5) had up-regulated  
605 JUN, FOSB, and ELF3 extended pathways. Together, our results revealed that  
606 preoperative chemotherapy prompts the naïve T cells to differentiate towards a more  
607 cytotoxic phenotype.

608 As for B cells, only 3902 (4.6%) cells were detected. 475 cells were derived from  
609 the control group, while 3427 were from the NCT group (Supplementary Figure 4a).

610 Herein, we re-clustered the B cells into two sub-clusters. Based on canonical cell  
611 markers, class-switched memory B-cells (marked by CD19, CD37, and HLA-DRA)  
612 and plasma cells (marked by IGHM2, IGHG4, and CD38) were defined  
613 (Supplementary Figure 4a-c). The former compromised the majority of the total B  
614 cells (80.7%). Notably, the sample origins of the B cells demonstrated that a higher  
615 proportion of plasma cells characterized the control groups. In contrast, the class-  
616 switched memory B cells were significantly enriched in preoperatively treated  
617 patients.

618 Meanwhile, we performed GSVA analysis to explore several key biological  
619 pathways in the B cells derived from different groups. As depicted in Supplementary  
620 Figure 4d, B cells from the control group exhibited significant activating ways  
621 associated with metabolism and energy supply, including glycolysis and oxidative  
622 phosphorylation. However, the B cells derived from the NCT group exerted essential  
623 roles in most of the pathways, including glycolysis, fatty acid metabolism, apoptosis,  
624 and hypoxia. Overall, our observations demonstrated that NCT not only induced T  
625 cell reprogramming but also extensively impacted the composition and function of B  
626 cells in the tumor microenvironment.

627

## 628 **Crosstalk among tumor and immune cells**

629 The tumor microenvironment consists of numerous cell types, and the importance  
630 of crosstalk between cancer and immune cells has been implicated in various  
631 biological processes associated with tumor development (21, 29, 31). As depicted in  
632 Supplementary Figure 7a-b and Supplementary Figure 5a, the interactions between  
633 malignant cells and macrophages exhibited the strongest activity in both control and  
634 NCT groups, highlighting the important role of the macrophage in tumor immunology.  
635 Notably, we noted that the cell-to-cell communications among different cell types,  
636 especially between tumoral and immune cells such as cytotoxic CD8+ T, Treg, and  
637 memory B, were significantly strengthened in the NCT group. Specifically, we further  
638 investigated the ligand-receptor atlas within and between tumor cells and immune  
639 cells, which seemed to be quite reshaped by NCT (Supplementary Figure 7c-d,  
640 Supplementary Figure 5b). For example, MIF-CXCR4, whose activation usually  
641 promotes leukocyte recruitment (32), was increasingly activated in the NCT group

642 between malignant and memory B, CD4+ T, and cytotoxic CD8+ T, whereas inhibited  
643 in macrophages. Meanwhile, MDK-NCL exhibited a similar activating phenotype  
644 with MIF-CXCR4, but its function in shaping the tumor microenvironment has never  
645 been reported. So, it might serve as a potential target of immune checkpoint inhibitor  
646 treatment in the future.

647 Given the above-mentioned NCT-induced immune activation, which was  
648 characterized by CD8+ T with higher cytotoxicity and an increased proportion of  
649 class-switched memory B cells, these findings further clarified that NCT could ignite  
650 a strong intrinsic immune response towards tumor cells. However, the inhibitory  
651 interaction pairs LGALS9-CD44 and LGALS9-HAVCR2 was abnormally activated in  
652 the NCT group between malignant and several T cells or macrophages (33). Its exact  
653 role in such conditions still requires further exploration.

654 In summary, our study revealed that the LUAD tissues that have experienced  
655 NCT had a distinct landscape of intracellular interactions, which might provide new  
656 ideas for future research focusing on implementing immunotherapy in the  
657 comprehensive anti-tumor therapeutic regimen.

658

## 659 **Discussion**

660 Although important advances in chemotherapy have reduced the mortality of  
661 cancer patients, the 5-year survival rate is still low, mainly due to the inherent or  
662 acquired mechanism of anti-tumor drug resistance (34). Chemoresistance results  
663 from complex reprogramming processes, such as drug export/import, drug  
664 detoxification, DNA damage repair, and cell apoptosis. Recently, the correlation  
665 between metabolic regulation and chemoresistance has received great attention. More  
666 efforts are devoted to targeting cell metabolism to overcome chemoresistance (35).  
667 The classic mechanism is to target the transport of anti-cancer drugs by increasing the  
668 activity of the efflux pump, such as the adenosine triphosphate (ATP) binding cassette  
669 (ABC) transporter. Cancer cells exhibit a special metabolic phenotype-aerobic  
670 glycolysis, quickly transporting and consuming glucose to produce ATP and promote  
671 drug efflux. PI3K/AKT pathway is activated by producing 3'-phosphorylated  
672 phosphoinositol, which is an important signaling pathway for lung cancer MDR (36).  
673 Glycolysis is beneficial to cancer cells by producing ATP faster, providing many

674 intermediates for violent biosynthesis, maintaining redox balance, and creating a  
675 microenvironment with low immunity (24). The combination therapy of shikonin+2-  
676 DG could inhibit glycolytic phenotype, migration, and invasion by regulating the  
677 Akt/HIF1 $\alpha$ /HK-2 signal axis (37).

678 Normal and healthy cells mainly produce energy through OXPHOS. However,  
679 due to rapid cell growth and frequent division, cancer cells face impressive metabolic  
680 challenges, which force them to adjust their energy metabolism to meet these needs  
681 (38). It is generally believed that cancer cells mainly obtain energy through glycolysis,  
682 which is named the Warburg effect. After chemotherapy, cancer cells change their  
683 metabolism from glycolysis to OXPHOS. This process is regulated by the SIRT1-  
684 PGC1 $\alpha$  signaling pathway, thus increasing the resistance of cells to chemotherapy  
685 (39). Drug-resistant cancer cells can often be re-sensitized to anti-cancer treatments  
686 by targeting the metabolic pathways of import, catabolism, and synthesis of basic cell  
687 components (40). Recent studies have determined the cancer-promoting function of  
688 mitochondrial oxidative phosphorylation (OXPHOS) by regulating cell growth and  
689 redox homeostasis (41). Our study also found that after chemotherapy, the glycolysis  
690 and oxidative phosphorylation of tumor cells was enhanced. This metabolic  
691 reprogramming may enable cancer cells to have higher proliferation, invasion, and  
692 metastasis capabilities.

693 Tumor endothelial cells (ECs) have high glycolytic metabolism, shunting  
694 intermediates to nucleotide synthesis. Blocking of the glycolysis activator PFKFB3 in  
695 EC cells does not affect tumor growth. Still, it reduces cancer cell invasion,  
696 intravascular, and metastasis by normalizing tumor blood vessels, thereby improving  
697 blood vessel maturation and perfusion. PFKFB3 inhibition tightens the vascular  
698 barrier by reducing VE-cadherin endocytosis in endothelial cells and reduces  
699 glycolysis to make cells more quiescent and adherent (by up-regulating N-cadherin);  
700 it also reduces NF- $\kappa$ B signaling to reduce the expression of cancer cell adhesion  
701 molecules in ECs. PFKFB3 blockade therapy also improves chemotherapy for  
702 primary and metastatic tumors (42).

703 Due to rapid cell growth and frequent division in tumor cells, cancer cells face  
704 impressive metabolic challenges, which force them to adjust energy metabolism to  
705 meet these needs, namely metabolic reprogramming (43). However, studies have

706 shown that metabolic plasticity in tumors is contributed by the glycolytic phenotype  
707 (as explained by Warburg) and that mitochondrial energy reprogramming has recently  
708 been identified as a feature of tumors (44). Chemotherapy can increase  
709 SIRT1/PGC1 $\alpha$ -dependent oxidative phosphorylation (OXPHOS) in tumor cells,  
710 thereby promoting the survival of colorectal tumors during treatment. This  
711 phenomenon was also observed in chemotherapy-exposed liver metastases, which  
712 strongly suggests that chemotherapy causes long-term changes in tumor metabolism,  
713 which may interfere with drug efficacy (39). In addition, elevated glycolysis and  
714 OXPHOS promote epithelial-mesenchymal transition and cancer stem cell (CSC)  
715 phenotype in tumor cells (45). Therefore, recent research emphasizes the mixed  
716 glycolysis/OXPHOS phenotype rather than the phenotype that relies excessively on  
717 glycolysis to meet cellular energy requirements, thereby significantly promoting  
718 aggressiveness and treatment resistance (44). Chemotherapy has a significant effect  
719 on the metabolic reprogramming of tumor cells and profoundly affects stromal and  
720 immune cells' metabolism in the tumor microenvironment.

721 Theoretically, chemical drugs can inhibit tumorigenesis by blocking the  
722 proliferation of tumor cells or depositing in tumor cell apoptosis, but this  
723 unintentionally causes "tissue damage." The body will mistake this tumor-specific  
724 damage for normal tissue damage and then inevitably activate the tissue damage  
725 repair mechanism dominated by TAM (46). The result of this effect is that tumors will  
726 grow rapidly, and patients will develop resistance to anti-tumor chemotherapy.

727 Meanwhile, as suggested by Parra et al., neoadjuvant chemotherapy exerted PD-  
728 L1 upregulation in NSCLC patients. It increased the density of CD68+ macrophages,  
729 which were associated with better outcomes in both univariate and multivariate  
730 analyses (47). However, opposite results were also reported by Talebian et al. that  
731 NSCLC patients treated with radiotherapy, rather than a platinum-based standard-of-  
732 care chemotherapy, displayed a decrease in lymphoid cells and a relative increase in  
733 macrophages (48). Therefore, the role of TAMs in LUAD cells' response to  
734 chemotherapy still requires further investigation.

735 Our research reveals the remodeling effect of chemotherapy on tumor  
736 microenvironment. However, this study still has many limitations. Firstly, only 9  
737 samples were included in our study, and the number of samples is a defect of our  
738 study. Secondly, our study did not detect other causes of tumor heterogeneity, such as

739 EGFR-mutant or ALK-translocated. We explored the possible impact of these factors  
740 and found that there was no significant difference in the expression of EGFR and  
741 other genes between the NCT group and the Control group (Supplementary Table 1).  
742 Thirdly, our data can only reflect the change in gene expression of various types of  
743 cells in the tumor microenvironment after chemotherapy. We can not draw a direct  
744 conclusion on whether chemotherapy will benefit patients or not. These need further  
745 study in the future.

746

#### 747 **Abbreviations**

748 LUAD: lung adenocarcinoma  
749 NCT: neoadjuvant chemotherapy  
750 TME: tumor microenvironment  
751 TSNE: t-distributed random neighborhood embedding  
752 CNV: copy number variation  
753 SCENIC: Single-Cell Regulatory Network Inference and Clustering  
754 SMC: smooth muscle cells  
755 TCA cycle: pyruvate metabolism and citrate cycle  
756 TAM: Tumor-Associated Macrophages  
757 CTLs: cytotoxic T cells  
758 OXPHOS: oxidative phosphorylation  
759 CSC: cancer stem cell  
760 GSVA: Gene Set Variation Analysis  
761 NMF: Non-negative Matrix Factorization

762

763

#### 764 **Declarations**

765 A total of 9 patients were included in this study. The Ethics Committee of Zhongshan  
766 Hospital of Fudan University approved our research (B2021-230R), and the content of  
767 the study complies with the Helsinki Declaration.

768 A total of 60 animals were involved in this study. They were treated humanely and  
769 received standard care. The animal experimental procedures were approved by the  
770 Institutional Review Board of Zhongshan Hospital of Fudan University (Shanghai,  
771 China).

772

#### 773 **Availability of data and material**

774 The single-cell sequencing data used in this study and meta data (including) can be

775 obtained from the figshare (10.6084/m9.figshare.24797265).

776

777 **Acknowledgment**

778 We thank OE Biotechnology Co., Ltd. (Shanghai, China) for helping us perform  
779 single-cell sequencing analysis of lung adenocarcinoma surgical samples. We thank  
780 International Science Editing Co. for providing language editing services for our  
781 papers.

782

783 **Author contributions**

784 S.Y.Y, Y.W.H., G.S.B, C.Z., and G.J.W. designed the research; Y.W.H., L.C., J.Q.L.,  
785 T.L., M.N.Z., G.S.B., M.L., J.Q.L., Z.Y.H., Y.S.Z., J.J.X, C.Z., Z.W.L., W.J., Q.W.,  
786 and L.J.T. performed the research; Y.W.H., G.J.W., C.Z., L.X., and G.S.B. analyzed  
787 the data; Y.W.H., G.J.W., G.S.B., J.Q.L., L.X., and C.Z. wrote the paper. Final  
788 approval of the manuscript: All authors.

789

790 **Competing interests**

791 The authors have no conflicts of interest to declare.

792

793 **Consent for publication**

794 All of the authors have consented to publication.

795

796 **Funding**

797 This research was funded by the Sailing Program of Shanghai (No. 22YF107300), the  
798 National Natural Science Foundation of China (No. 82203645), the China  
799 Postdoctoral Science Foundation (No. 2023M730655), the Natural Science  
800 Foundation of Shanghai, China (No. 22ZR1411900), and the Special Foundation for  
801 Supporting Biomedical Technology of Shanghai, China (No. 22S11900300).

802

803 **Figure Legend**

804

805 **Figure 1.** Single-cell atlas of lung adenocarcinoma (LUAD) tissues from the control,  
806 and NCT group. **(a)** Workflow depicting collection and processing of LUAD samples

807 for scRNA-seq analysis. **(b)** Consensus clustering based on the correlations among the  
808 20 clusters identified through the tSNE algorithm. **(c)** TSNE of the 83622 cells  
809 enrolled here, with each cell color indicating: its sample type of origin, the  
810 corresponding patient, predicted cell type, and the transcript counts. **(d)** Expression of  
811 marker genes for the cell types defined above each panel. **(e)** The proportion of each  
812 cell type in different groups and samples. **(f)** For each of the eight epithelial  
813 subclusters and 43 non-epithelial clusters (left to right): the fraction of cells  
814 originating from the three groups, the fraction of cells originating from each of the  
815 nine patients, the number of cells and box plots of the number of transcripts (with plot  
816 center, box, and whiskers corresponding to the median, IQR and  $1.5 \times \text{IQR}$ ,  
817 respectively). NCT: Neoadjuvant chemotherapy.

818

819

820 **Supplementary Figure 1.** Figures related to Figure 1. **(a)** The tSNE plots of all  
821 clusters in this research. **(b)** The heatmap showed the marker genes in the different  
822 cell types.

823

824

825 **Figure 2.** Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant  
826 chemotherapy. **(a)** The metabolic pathway activities of different cells from the Control  
827 group and NCT group showed significant differences. **(b)** The metabolic pathway  
828 activity of macrophages and malignant cells increased significantly after  
829 chemotherapy.

830

831

832 **Figure 3.** Tumor cells and epithelial cells had significant phenotypic changes before  
833 and after chemotherapy. **(a)** The tSNE plots and overview of the tumor cells and  
834 epithelial cells. **(b)** The proportion of malignant cells and nonmalignant cells in the  
835 Control group and NCT group. **(c)** Flow cytometry showed that the proportion of  
836 malignant cells was significantly reduced after chemotherapy and immunotherapy. **(d)**  
837 Marker genes of MalignantSA cells, MalignantNCT cells, and Nonmalignant cells. **(e)**  
838 Pseudotime analysis showed that nonmalignant cells evolved in two directions. **(f)**

839 The heat map showed that a series of genes play an important role in transforming  
840 epithelial cells into tumor cells. **(g)** GSVA analysis was performed for malignant and  
841 nonmalignant cells. **(h)** SCENIC analysis revealed the hub genes in the malignant  
842 transformation of epithelial cells. **(i)** The tSNE plots for re-clustered malignant cells.  
843 **(j)** Marker genes of 13 sub-clusters from malignant cells. **(k)** Metabolic characteristics  
844 in different malignant cell sub-clusters. **(l)** GSVA analysis reveals the characteristics  
845 of pathway activity in different malignant cell sub-clusters.

846

847

848 **Supplementary Figure 2.** Figures related to Figure 3. **(a)** Copy number variations  
849 (CNVs) of malignant and nonmalignant epithelial cells. **(b)** The proportion of  
850 malignant cells and nonmalignant cells from different patients. **(c)** The heatmap  
851 showed differentially expressed genes of epithelial cells in the Control group and  
852 NCT group. **(d)** Immunofluorescence showed LPCAT1, FOXL2, and RAC1 were  
853 highly expressed in normal lung tissues, the Control group, and the NCT group,  
854 respectively. **(e)** Some genes played an important role in the transformation of  
855 epithelial cells into tumor cells. **(f)** Changes in the activity of several important  
856 pathways during the transformation of epithelial cells to tumor cells. **(g)** The tSNE  
857 plots and overview of the non-malignant cells. **(h)** Heat map of marker genes for  
858 nonmalignant cells sub-clusters. **(i)** Metabolic characteristics in different  
859 nonmalignant cell sub-clusters. **(j)** GSVA analysis revealed the characteristics of  
860 pathway activity in different nonmalignant cell sub-clusters.

861

862

863 **Figure 4.** The scRNA profile of stromal cells derived from LUAD samples in control  
864 and NCT groups. **(a)** The tSNE plots an overview of the 6 clusters of stromal cells. **(b)**  
865 Proportions of the six predicted clusters of stromal cells in different groups and  
866 samples. **(c)** Heatmap exhibiting the expression level of marker genes in each stromal  
867 cell cluster. **(d)** GSVA analysis estimated the pathway activation levels of different  
868 stromal cell subtypes. The scores have been normalized. **(e)** GSVA analysis revealed  
869 the activation level of hallmark pathways in stromal cells (control vs. NCT groups) **(f)**  
870 Heatmap exhibiting the expression level of marker genes in each fibroblast cluster. **(g-**

871 **h)** The tSNE plots revealed the group origins (**g**) and predicted subclusters (**h**) of  
872 fibroblast. **(i-j)** GSVA analysis estimated the pathway activation levels of different  
873 fibroblast subtypes.

874

875

876 **Supplementary Figure 3.** Figures related to Figure 4. **(a)** The activity of various  
877 metabolic processes in fibroblasts from the Control group and NCT group. **(b)** GSVA  
878 analysis was performed for fibroblasts from the Control group and NCT group. **(c)**  
879 SCENIC analysis revealed the hub genes in fibroblast.

880

881

882 **Figure 5.** Three newly identified subtypes of tumor-associated macrophages (TAMs)  
883 displayed distinct genetic and metabolic features. **(a)** The tSNE plots showed the  
884 group origins, sample origins, and clusters of TAMs. **(b)** Proportions of the 10 clusters  
885 of TAMs in different groups and samples. **(c)** Marker genes of the 10 clusters of  
886 TAMs. **(d)** GSVA analysis was performed for the 10 clusters of TAMs. **(e)** The  
887 activity of various metabolic processes in the 10 clusters of TAMs. **(f)** GSVA analysis  
888 was performed for TAMs from the Control group and NCT group. **(g)** SCENIC  
889 analysis was performed for the 10 clusters of TAMs. **(h)** Consensus clustering based  
890 on the correlations among the 10 clusters of TAMs identified through the tSNE  
891 algorithm. **(i)** Polarization score (left) and inflammatory score (right) for 10 clusters  
892 of TAMs based on the expression of polarization marker genes and inflammatory  
893 genes. **(j)** The tSNE plots for three types of TAMs. **(k)** Proportions of the three  
894 subtypes of TAMs in different groups and samples. **(l)** Development trajectory  
895 analysis for the three subtypes of TAMs. **(m)** Pseudotime analysis revealed a series of  
896 genes that affect the differentiation and development of macrophages.

897

898

899 **Figure 6.** Metabolic switching in tumor-associated macrophages (TAMs) contributed  
900 to diametrical effects on tumor cells. **(a)** The heatmap showed the essential marker  
901 genes for three subtypes of TAMs. **(b)** Based on Pro-mac and Anti-mac marker genes,  
902 these two types of cells were sorted by flow cytometry from lung adenocarcinoma

903 tissue. **(c)** Flow cytometry verified the sorted cells. **(d)** The proportion changes of  
904 Pro-mac and Anti-mac cells in lung adenocarcinoma tissues before and after  
905 chemotherapy. **(e)** Immunofluorescence showed the changes in the proportion of  
906 TAMs with high CD206 and CD86 after neoadjuvant therapy. **(f)** The heatmap  
907 showed the differences in the cytokines secreted by the three subtypes of  
908 macrophages. **(g)** ELISA detected the secretion of VEGF, EGF, IL10, and MMP9. **(h)**  
909 The intensity of fluorescence changes in Luciferase-labeled A549 cells mixed with  
910 different TAMs. **(i)** The histogram showed the average fluorescence intensity emitted  
911 by the subcutaneous tumor. **(j)** GSVA analysis performed for Pro-mac, Anti-mac, and  
912 Mix. **(k)** Glucose uptake and lactate production in the TAMs cell subtypes. **(l)**  
913 Seahorse XFe96 cell outflow analyzer detected the glycolysis level of TAMs cell  
914 subtypes (Extracellular acidification rate: ECAR). **(m)** Transwell experiment detected  
915 the influence of TAMs subtypes on the invasion ability of A549 cells. **(n)** The 3D cell  
916 culture experiment detected the effect of 2-DG on the spheroidization ability of A549  
917 cells when cultured with subtypes of TAMs. **(o)** In vivo experiments verified the  
918 effect of 2-DG on the tumorigenesis ability of A549 after inhibiting glycolysis of  
919 TAMs. All error bars are mean  $\pm$  SD. NS, not significant. \*\*\*P < 0.001, \*\*P < 0.01,  
920 \*P < 0.05; determined by two-tailed Student's t-test (95% confidence interval).  
921

922 **Supplementary Figure 4.** The scRNA profile of B cells derived from LUAD samples  
923 in the control, neoadjuvant chemotherapy, and immunotherapy group. **(a)** The tSNE  
924 plots revealed the sample origins, group origins, and predicted clusters of B cells. **(b)**  
925 The two predicted clusters of B cells (plasma cells, class-switched memory B-cells)  
926 were reported in different groups and samples. **(c)** Heatmap exhibiting the expression  
927 level of marker genes in each B cell cluster. **(d)** GSVA analysis estimated the pathway  
928 activation levels of different B cell subtypes.  
929

930 **Supplementary Figure 5.** Crosstalk between cancer and immune cells. **(a)** Each cell  
931 type and the other cell types expressed some of the ligands. **(b)** Bubble plot revealing  
932 the specific ligand-receptor interactions between cancer cells and immune cells in the

933 control group. The circle size indicates P values, with the scale to the right  
934 (permutation test), and color indicates communication probability.

935

936 **Supplementary Figure 6.** The scRNA profile of T cells derived from LUAD samples  
937 in the control, neoadjuvant chemotherapy, and immunotherapy group. **(a-c)** The tSNE  
938 plots revealed the sample origins **(a)**, group origins **(b)**, and predicted clusters **(c)** of T  
939 cells. **(d)** The three indicated clusters of T cells (CD4+ T, CD8+ T, and Tregs) were  
940 reported in different groups and samples. **(e)** Bubble plot exhibiting the expression  
941 level of marker genes in each T cell cluster. **(f-h)** The tSNE plots revealed the sample  
942 origins **(f)**, group origins **(g)**, and predicted subclusters **(h)** of CD8+ T cells. **(i)**  
943 Heatmap exhibiting the expression level of marker genes corresponding to naïve,  
944 Treg/exhausted, and cytotoxic phenotypes in each CD8+ T cell subcluster. **(j-k)**  
945 Proportions of the five predicted clusters of CD8+ T cells in different samples **(j)** and  
946 groups **(k)**. **(l)** Dynamic changes in gene expression of CD8+ T cells during the  
947 transition (divided into three phases). **(m-p)** Pseudotime-ordered analysis of CD8+ T  
948 cells **(m-n)** revealing the dynamics of their cytotoxic **(o)** and exhausted levels **(p)**. **(l)**  
949 SCENIC analysis of CD8+ T cells.

950

951 **Supplementary Figure 7.** Crosstalk between cancer and immune cells. **(a)** Overview  
952 of selected ligand-receptor interactions of cancer cells and immune cells in control  
953 and NCT groups. The line thickness indicates the number of ligands when cognate  
954 receptors are present in the recipient cell type. The loops indicate autocrine circuits. **(b)**  
955 Detailed view of the ligands expressed by each cell type and the other cell types. **(c)**  
956 Bubble plot revealing the specific ligand-receptor interactions between cancer cells  
957 and immune cells in the NCT group. The circle size indicates P values, with the scale  
958 to the right (permutation test), and color indicates communication probability.

959

960

961

## 962 **References**

963 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.  
964 <https://doi.org/10.3322/caac.21590>.

965 2. Ren L, Zhong X, Liu W, Xu D, Lei Y, Zhou J, et al. Clinical significance of a circulating tumor

966 cell-based classifier in stage ib lung adenocarcinoma: a multicenter, cohort study. Ann Surg 2021.  
967 <https://doi.org/10.1097/SLA.00000000000004780>.

968 3. Ekoh OC, Okoro U, Ugwu D, Ali R, Okafor S, Ugwuja D, et al. Novel dipeptides bearing  
969 sulfonamide as antimalarial and antitrypanosomal agents: synthesis and molecular docking. Med  
970 Chem 2021. <https://doi.org/10.2174/1573406417666210604101201>.

971 4. Cai X, Hu B, Liu S, Liu M, Huang Y, Lei P, et al. Overexpression of close homolog of 11  
972 enhances the chemosensitivity of lung cancer cells via inhibition of the akt pathway. Oncol Lett 2020;  
973 20(4): 111. <https://doi.org/10.3892/ol.2020.11972>.

974 5. Bondarenko M, Le Grand M, Shaked Y, Raviv Z, Chapuisat G, Carrère C, et al. Metronomic  
975 chemotherapy modulates clonal interactions to prevent drug resistance in non-small cell lung cancer.  
976 Cancers (Basel) 2021; 13(9). <https://doi.org/10.3390/cancers13092239>.

977 6. Katsumata S, Aokage K, Miyoshi T, Tane K, Nakamura H, Sugano M, et al. Differences of  
978 tumor microenvironment between stage i lepidic-positive and lepidic-negative lung adenocarcinomas.  
979 J Thorac Cardiovasc Surg 2018; 156(4): 1679-88. <https://doi.org/10.1016/j.jtcvs.2018.05.053>.

980 7. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate  
981 is a metabolic checkpoint of anti-tumor t cell responses. Cell 2015; 162(6): 1217-28.  
982 <https://doi.org/10.1016/j.cell.2015.08.012>.

983 8. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition  
984 in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229-41.  
985 <https://doi.org/10.1016/j.cell.2015.08.016>.

986 9. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed  
987 nutrient partitioning in the tumour microenvironment. Nature 2021; 593(7858): 282-8.  
988 <https://doi.org/10.1038/s41586-021-03442-1>.

989 10. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel  
990 genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5):  
991 1202-14. <https://doi.org/10.1016/j.cell.2015.05.002>.

992 11. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung  
993 single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72.  
994 <https://doi.org/10.1038/s41590-018-0276-y>.

995 12. Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of  
996 stromal cells in the lung tumor microenvironment. Nat Med 2018; 24(8): 1277-89.  
997 <https://doi.org/10.1038/s41591-018-0096-5>.

998 13. Guo W, Wang D, Wang S, Shan Y, Liu C, Gu J. ScCancer: a package for automated processing  
999 of single-cell RNA-seq data in cancer. Brief Bioinform 2021; 22(3). <https://doi.org/10.1093/bib/bbaa127>.

1000 14. Müller S, Liu SJ, Di Lullo E, Malatesta M, Pollen AA, Nowakowski TJ, et al. Single-cell  
1001 sequencing maps gene expression to mutational phylogenies in pdgf- and egf-driven gliomas. Mol Syst  
1002 Biol 2016; 12(11): 889. <https://doi.org/10.15252/msb.20166969>.

1003 15. Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem  
1004 in early-relapse hepatocellular carcinoma. Cell 2021; 184(2): 404-21.  
1005 <https://doi.org/10.1016/j.cell.2020.11.041>.

1006 16. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. Bmc  
1007 Bioinformatics 2010; 11: 367. <https://doi.org/10.1186/1471-2105-11-367>.

1008 17. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding  
1009 resolves complex single-cell trajectories. Nat Methods 2017; 14(10): 979-82.

1010 https://doi.org/10.1038/nmeth.4402.

1011 18. Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell  
1012 resolution. *Nat Commun* 2019; 10(1): 3763. <https://doi.org/10.1038/s41467-019-11738-0>.

1013 19. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis  
1014 of cell-cell communication using cellchat. *Nat Commun* 2021; 12(1): 1088.  
1015 <https://doi.org/10.1038/s41467-021-21246-9>.

1016 20. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell rna-  
1017 seq highlights intratumoral heterogeneity in primary glioblastoma. *Science* 2014; 344(6190): 1396-401.  
1018 <https://doi.org/10.1126/science.1254257>.

1019 21. Chen Z, Huang Y, Hu Z, Zhao M, Li M, Bi G, et al. Landscape and dynamics of single tumor  
1020 and immune cells in early and advanced-stage lung adenocarcinoma. *Clin Transl Med* 2021; 11(3):  
1021 e350. <https://doi.org/10.1002/ctm2.350>.

1022 22. Chen Z, Huang Y, Hu Z, Zhao M, Bian Y, Chen Z, et al. Dissecting the single-cell  
1023 transcriptome network in patients with esophageal squamous cell carcinoma receiving operative  
1024 paclitaxel plus platinum chemotherapy. *Oncogenesis* 2021; 10(10): 71. <https://doi.org/10.1038/s41389-021-00359-2>.

1025 23. Faubert B, Solmonson A, Deberardinis RJ. Metabolic reprogramming and cancer progression.  
1026 *Science* 2020; 368(6487). <https://doi.org/10.1126/science.aaw5473>.

1027 24. Tuerhong A, Xu J, Shi S, Tan Z, Meng Q, Hua J, et al. Overcoming chemoresistance by  
1028 targeting reprogrammed metabolism: the achilles' heel of pancreatic ductal adenocarcinoma. *Cell Mol  
1029 Life Sci* 2021; 78(14): 5505-26. <https://doi.org/10.1007/s00018-021-03866-y>.

1030 25. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell rna sequencing  
1031 demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. *Nat  
1032 Commun* 2020; 11(1): 2285. <https://doi.org/10.1038/s41467-020-16164-1>.

1033 26. Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, et al. Single-cell deconvolution of  
1034 fibroblast heterogeneity in mouse pulmonary fibrosis. *Cell Rep* 2018; 22(13): 3625-40.  
1035 <https://doi.org/10.1016/j.celrep.2018.03.010>.

1036 27. Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del GF, et al. A molecular atlas of cell  
1037 types and zonation in the brain vasculature. *Nature* 2018; 554(7693): 475-80.  
1038 <https://doi.org/10.1038/nature25739>.

1039 28. Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-  
1040 associated macrophage status in cancer treatment. *Cancers* 2020; 12(7): 1987.  
1041 <https://doi.org/10.3390/cancers12071987>.

1042 29. Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, et al. Single-cell transcriptome atlas of lung  
1043 adenocarcinoma featured with ground glass nodules. *Cell Discov* 2020; 6: 69.  
1044 <https://doi.org/10.1038/s41421-020-00200-x>.

1045 30. Uzhachenko RV, Shanker A. Cd8(+) t lymphocyte and nk cell network: circuitry in the  
1046 cytotoxic domain of immunity. *Front Immunol* 2019; 10: 1906.  
1047 <https://doi.org/10.3389/fimmu.2019.01906>.

1048 31. Raredon M, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, et al. Single-cell connectomic  
1049 analysis of adult mammalian lungs. *Sci Adv* 2019; 5(12): w3851.  
1050 <https://doi.org/10.1126/sciadv.aaw3851>.

1051 32. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. Mif is a noncognate  
1052 ligand of cxc chemokine receptors in inflammatory and atherogenic cell recruitment. *Nat Med* 2007;  
1053

1054 13(5): 587-96. <https://doi.org/10.1038/nm1567>.

1055 33. Anand P, Guillaumet-Adkins A, Dimitrova V, Yun H, Drier Y, Sotudeh N, et al. Single-cell  
1056 rna-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion  
1057 programs in etp-all. *Blood* 2021; 137(18): 2463-80. <https://doi.org/10.1182/blood.2019004547>.

1058 34. Sharma A. Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic  
1059 tumor heterogeneity. *Nanomedicine (Lond)* 2017; 12(17): 2137-48. <https://doi.org/10.2217/nmm-2017-0184>.

1060 35. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. *Cell  
1061 Death Dis* 2013; 4(3): e532. <https://doi.org/10.1038/cddis.2013.60>.

1062 36. Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, et al. Prospective  
1063 genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for  
1064 matching patients to targeted and immune therapies. *Clin Cancer Res* 2019; 25(7): 2116-26.  
1065 <https://doi.org/10.1158/1078-0432.CCR-18-2293>.

1066 37. Gupta P, Jagavelu K, Mishra DP. Inhibition of nadph oxidase-4 potentiates 2-deoxy-d-glucose-  
1067 induced suppression of glycolysis, migration, and invasion in glioblastoma cells: role of the akt/hif1 $\alpha$   
1068 /hk-2 signaling axis. *Antioxid Redox Signal* 2015; 23(8): 665-81. <https://doi.org/10.1089/ars.2014.5973>.

1069 38. Vander LC, Corbet C, Bastien E, Martherus R, Guilbaud C, Petit L, et al. Therapy-induced dna  
1070 methylation inactivates mct1 and renders tumor cells vulnerable to mct4 inhibition. *Cell Rep* 2021;  
1071 35(9): 109202. <https://doi.org/10.1016/j.celrep.2021.109202>.

1072 39. Vellinga TT, Borovski T, de Boer VC, Fatrai S, van Schelven S, Trumpp K, et al. Sirt1/pgc1 $\alpha$ -  
1073 dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer.  
1074 *Clin Cancer Res* 2015; 21(12): 2870-9. <https://doi.org/10.1158/1078-0432.CCR-14-2290>.

1075 40. Butler EB, Zhao Y, Muñoz-Pinedo C, Lu J, Tan M. Stalling the engine of resistance: targeting  
1076 cancer metabolism to overcome therapeutic resistance. *Cancer Res* 2013; 73(9): 2709.  
1077 <https://doi.org/10.1158/0008-5472.CAN-12-3009>.

1078 41. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. *Mol Cell* 2016; 61(5): 667-76.  
1079 <https://doi.org/10.1016/j.molcel.2016.02.011>.

1080 42. Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, et al. Inhibition of the  
1081 glycolytic activator pfkfb3 in endothelium induces tumor vessel normalization, impairs metastasis, and  
1082 improves chemotherapy. *Cancer Cell* 2016; 30(6): 968-85. <https://doi.org/10.1016/j.ccr.2016.10.006>.

1083 43. Vander HM, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic  
1084 requirements of cell proliferation. *Science* 2009; 324(5930): 1029-33.  
1085 <https://doi.org/10.1126/science.1160809>.

1086 44. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the metabolic plasticity of  
1087 cancer: mitochondrial reprogramming and hybrid metabolic states. *Cells-Basel* 2018; 7(3).  
1088 <https://doi.org/10.3390/cells7030021>.

1089 45. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, Da CA, Gaude E, et al. Fumarate is an  
1090 epigenetic modifier that elicits epithelial-to-mesenchymal transition. *Nature* 2016; 537(7621): 544-7.  
1091 <https://doi.org/10.1038/nature19353>.

1092 46. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. *Trends  
1093 Immunol* 2019; 40(4): 310-27. <https://doi.org/10.1016/j.it.2019.02.003>.

1094 47. Parra ER, Villalobos P, Behrens C, Jiang M, Pataer A, Swisher SG, et al. Effect of neoadjuvant  
1095

1096 chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by  
1097 multiplex immunofluorescence and image analysis approaches. *J Immunother Cancer* 2018; 6(1): 48.  
1098 <https://doi.org/10.1186/s40425-018-0368-0>.  
1099 48. Talebian YM, Schinkelshoek MS, Loof NM, Taube C, Hiemstra PS, Welters MJ, et al. Standard  
1100 radiotherapy but not chemotherapy impairs systemic immunity in non-small cell lung cancer.  
1101 *Oncoimmunology* 2016; 5(12): e1255393. <https://doi.org/10.1080/2162402X.2016.1255393>.  
1102  
1103













