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33

34  Abstract

35 Background: Chemotherapy is widely used to treat lung adenocarcinoma (LUAD)
36  patients comprehensively. Considering the limitations of chemotherapy due to drug
37 resistance and other issues, it is crucial to explore the impact of chemotherapy and
38  immunotherapy on these aspects.

39 Methods and Materials: Tumor samples from nine LUAD patients, of which four
40  only received surgery and five received neoadjuvant chemotherapy, were subjected to
41 scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry,
42  immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out
43  tovalidate our findings.

44 Results. A total of 83,622 cells were enrolled for subsequent analyses. The
45  composition of cell types exhibited high heterogeneity across different groups.
46  Functional enrichment analysis reveded that chemotherapy drove significant
47  metabolic reprogramming in tumor cells and macrophages. We identified two
48  subtypes of macrophages. Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells
49 (CD45+CD11b+ARG+) and sorted them by flow cytometry. The proportion of Pro-
50 mac cells in lung adenocarcinoma tissues increased significantly after neoadjuvant
51  chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also
52  suppress tumor immunity. Moreover, through analyzing the remodeling of T and B
53 cellsinduced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively
54 more robust immune cytotoxic response towards tumor cells.

55 Conclusion: Our study demonstrates that chemotherapy induces metabolic
56  reprogramming within the TME of LUAD, particularly affecting the function and
57  composition of immune cells such as macrophages and T cells. We believe our
58  findings will offer insight into the mechanisms of drug resistance and provide novel
59  therapeutic targets for LUAD in the future.

60

61 Keywords: Lung adenocarcinoma, chemotherapy, phenotype atlas, metabolic
62  reprogramming
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63

64 Introduction

65 Lung cancer is the most common cancer among al human tumor types, with
66  more than 1.7 x 10° new cases worldwide each year. According to the Global Cancer
67 Report data, lung adenocarcinoma (LUAD) accounts for most lung cancers (1). The
68 application of adjuvant or neoadjuvant chemotherapy (NCT) has significantly
69 improved the long-term survival of LUAD patients. At present, for most LUADS that
70 need chemotherapy after being assessed, chemotherapy will be used before and after
71 surgery (2). However, chemotherapy drugs are highly toxic and can often become
72 ineffective (3). In addition, continued ineffective chemotherapy will lead to the
73 generation of drug-resistant tumor cell clones (4, 5) and a delay in tumor removal.
74  Almost al cancer patients show inherent or acquired drug resistance, leading to
75  treatment failure and unsatisfactory overall survival. Therefore, to accurately develop
76 therapies that can overcome drug resistance, it is essentia to understand the
77  dterationsin the tumor microenvironment driven by chemotherapy.

78 Many studies have increasingly proved the tumor microenvironment (TME) to be
79  an essential source of intratumoral heterogeneity (6). The heterogeneity within the
80 tumor microenvironment (TME) encompasses not only the variations between
81 different tumor cells but also among various stromal and immune cell types.
82 Investigating the dynamic changes in multiple cell populations within the TME of
83 LUAD following chemotherapy may provide crucial insights into overcoming
84  chemotherapy resistance in LUAD. In this study, we demonstrated the changes in the
85  microenvironment of lung adenocarcinoma with chemotherapy. In particular, we
86  focused on the effect of chemotherapy on the metabolic reprogramming of tumor cells,
87  stromal cells, and immune cells.

88 Formerly, it was generally believed that consuming glucose in TME by cancer
89 cells may promote nutritional competition, a metabolic mechanism of
90 immunosuppression (7). However, recent studies have shown that tumor-infiltrating
91  immune cells rely on glucose for their energy needs and functionality, with immune
92 cdls, particularly macrophages, consuming more glucose than malignant cells. The
93 impaired immune cell metabolism in the tumor microenvironment (TME) helps tumor

94  cells escape immunity (8). The internal metabolic changes in the cells drive immune
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95 cellsand cancer cells to preferentially obtain glucose and glutamine. It is believed that
96 the selective cellular alocation of these nutrients can be used to develop therapeutic
97  and imaging strategies to enhance or monitor the metabolic processes and activities of
98  gpecific cell populationsin TME (9). Metabolic reprogramming in various cell types
99 in the tumor microenvironment after undergoing chemotherapy may be an essential
100 feature that affects chemotherapy. Our research fully demonstrated the metabolic
101 reprogramming landscape of tumor cells, stromal cells, and immune cells before and
102  after chemotherapy.
103
104 Materialsand Methods
105  Patients
106 All patients included in this study understood and signed written informed
107  consent, (Approval number: B2019-436). The clinical samples of scRNA-seq came
108  from patients diagnosed with LUAD, of which 4 cases received no treatment before
109  surgery, and 5 cases received chemotherapy (Pemetrexed + Cisplatin). These samples
110 were donated by inpatients in the Department of Thoracic Surgery, Zhongshan
111 Hospital of Fudan University. After the lung adenocarcinoma tissue sample was taken,
112  a small part was cut for paraffin sections, and the remaining tissue was dissociated
113 into asingle-cell suspension. 1x10° cells were drawn from the single-cell suspension
114 for single-cell RNA sequencing.
115

116  Preparation of single-cell suspensions

117 For each patient, as described above, we dissociated the lung adenocarcinoma
118 tumor sample into a single-cell suspension and then took 1x10° cells for single-cell
119  RNA sequencing. We used the Tumor Dissociation Kit (Miltenyi Biotec, Gladbach,
120  Germany) to digest tumor tissues with enzymes according to the manufacturer's
121 instructions. In short, we first cut the lung adenocarcinoma tissue sample into small
122 tissue pieces about 1cm? with asurgical scalpel. We then transferred these small tissue
123  pieces to the MACS C tube containing 4.7 mL DMEM serum-free medium, 200 L
124 Enzyme H, 100 pL Enzyme R, and 25 pL Enzyme A. After the tissue was incubated
125  and digested in a constant temperature incubator 371 for 1 hour, the tissue was
126  mechanically separated by the MACS™ instrument. This procedure was repeated
127  twice. After the tissue sample was dissociated, the sample was filtered with a 40 um
128 filter to remove the remaining large particles from the single-cell suspension.
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129  Centrifuge the suspension at 300 x g for 7 minutes, then discard the supernatant.

130 Next, we used red blood cell lysate (10x) (Sigma-Aldrich, St. Louis, MO, USA)
131 to remove red blood cells from the single-cell suspension. In short, add 1x Lysis
132  Buffer to the centrifuge tube containing the single-cell pellet described above. The
133  cell suspension was then incubated at room temperature for 15 minutes. To improve
134  the quality of our samples, we also used a Dead Cell Removal Kit (Miltenyi Biotec) to
135  ensure that the cell survival rate of our sequencing samples was >90%.

136

137 The10x scRNA-seq data analysis

138 The R version used in our scRNA-seq data analysis study is 3.6.1. The cell
139  quality control criteria are as follows: 1) The number of expressed genes is less than
140 300 or greater than 5000; 2) 10% or more of UMI is localized to mitochondrial or
141 ribosomal genes. If they meet one of the criteria, the cells are excluded. After quality
142  standardization, we applied the Seurat R package (10) to analyze the sScRNA-seq data.
143  First, we convert the sScRNA-seq data into Seurat identifiable objects, and then we use
144  the "FindVariableFeatures" function to find the first 2000 highly variable genes. After
145  that, we applied principal component analysis (PCA) to reduce the dimensionality of
146 scRNA-seq data. The "RunTSNE" function is used to perform t-distributed random
147  neighborhood embedding (TSNE) to visualize various types of cells. The
148  "FindClusters" and "FindAlIMarkers' functions are used for cluster analysis of cell
149  subclusters and detection of marker genes of cell subclusters.

150 Finaly, according to the SingleR package (11), the CellMarker (http://bio-
151  bigdata.hrbmu.edu.cn/CellMarker/) data set, and a previous report (12), we annotated
152  different cell types. Smultaneously, some new potential marker genes were verified

153  through experiments.

154
155  Analysisof Sub-Clusters of Cellsin LUAD
156 After preliminary classification and annotation of all cells, epithelial cells,

157  stromal cells, and immune cells are extracted through the "SubsetData" function. Then,
158  we apply the "FindClusters' and "FindAlIMarkers" functions to find the marker genes
159  of each cell and perform dimensionality reduction clustering on each extracted cell
160  through TSNE. The sub-clusters are annotated by dominantly expressed cell markers
161  published by previous researchers. To select the marker genes that meet the
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162  requirements, we set the following cut-off thresholds to reveal the marker genes of
163  each cluster: adjusted P-value <0.01 and multiple Log2FC >0.5.

164

165  Estimation of the copy number variations

166 To estimate the initial copy number variation (CNV) of each region, the R
167  package "scCancer" (13) was applied. The expression level of each cell was used as
168  the original input file for calculating CNV. Immune cells served as a background
169  reference for calculating the CNV's scores of other cells. In addition, the R package
170  "inferCNV" was used to quantify CNV in tumor cells as described previousy (14).
171

172  Definition of cell scoresand signature

173 To evaluate the M1/M2 polarization state and pro-/anti-inflammatory potential of
174  macrophages, we performed a GSVA (Gene Set Variation Analysis) analysis. We
175  retrieved gene sets related to the above functions from previous studies (15) and used
176  them asreferencesin this analysis.

177 We used the average expression of a published list of characteristic genes for T
178 cell toxicity and exhaustion to define T cells cytotoxicity, exhaustion, and
179  costimulation scores.

180

181  ldentification of gene mar kers of malignant cells

182 We used the identified malignant cell marker genes in tumor cells to identify gene
183  expression characteristics in malignant cells. Then, we performed unsupervised NMF
184  (Non-negative Matrix Factorization) to reveal the malignant characteristics of tumor
185  cellsthrough the NMF R package (16).

186

187  Trajectory analysis

188 We used the monocle2 R package to analyze the trgjectory of all cells to explore
189  the trajectory progression of various types of cellsin asingle cell (17). First, apply
190 the function "newCellDataSet" to construct a data object that the monocle 2 R
191  package can recognize. Afterward, the differentially expressed genes identified by the
192  Seurat R package were selected for cell trajectory analysis. The "reduceDimension”
193  function was used to reduce the dimensionality. We used the "orderCells" function to
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194  project cells on a pseudo-time trajectory to show the trend of cell evolution. A state
195  consigting of cells mainly derived from nonmalignant tissues in a cluster identified as
196  epithelial cells was defined as "root cells.”

197

198  Analyses of metabolic pathways

199 To evaluate the activity of various metabolic pathways of each cell type, we
200 applied the algorithm developed by Xiao et al. (18). In short, the analysis of
201 metabolic programs is based on the average expression level of metabolic genes
202  acrosscell typesto indirectly reflect the metabolic activity of cells.

203 A variety of environmental factors may potentially affect the metabolic
204  reprogramming of tumors, such as chemotherapy, nutrient supply, and the
205 environment where the cells are located. Therefore, exploring these factors and the
206  cross-conversion between glycolysis and mitochondrial activity in various cells in the
207  tumor microenvironment is essential for understanding the metabolic reprogramming
208  of tumors.

209 We calculated the average gene expression levels in glycolysis and OXPHOS as
210 indicators of glucose supply and mitochondria activity, respectively. The data of
211 genes that were responsive to the two groups of genes (known to be responsive to
212 glycolysis and OXPHOS) used in the calculations were retrieved from the MsigDB
213  database. At the same time, the cells were sorted by flow cytometry, and the contents
214 of various metabolites were tested, in turn, to verify whether they were consistent
215 with gene expression levels.

216

217  Cell Interaction Network analysis

218 To study the cell-to-cell interactions between tumors and nonmalignant cells,
219  immune cells, and stromal cells, we applied the R package "CellChat" (19) and
220 "CellPhoneDB" Python package for analysis (20). The crosstalk analysis between
221 cells through the "CelChat" package was as follows. (1) First, use the
222  "createCellChat" function to create a data set object that can be identified by
223 "CellChat"; (2) Then use "aggregateNet", "computeCommunProbPathway", and
224 "computeCommunProb” function to automatically infer the possible cellular

225 communication network between cells; (3) Finaly, the "netVisua_aggregate”,
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226  "netVisua_bubble" and "netVisua_signalingRole" functions were used to visualize
227 the interaction between these cells. Then use the built-in parameters to apply the
228  "CellPhoneDB" R package.

229

230  Immunohistochemistry and immunofluorescence

231 The paraffin-embedded lung cancer tissue sections were deparaffinized with
232 xylene and rehydrated. Discard the blocking solution, add the primary antibody, and
233  incubate overnight at 4 degrees. After removing the primary antibody and washing
234 thoroughly, add the secondary antibody to incubate for 1 hour, and then add DAB
235 chromogenic reagent (Gene Tech, China) for color development. Finally, hematoxylin
236  isused for nuclear dyeing.

237 As mentioned in the above immunohistochemistry experiment, the steps before
238  incubating the primary antibody are the same. Incubate with the corresponding
239 primary and secondary antibodies with green and red fluorescent dyes, respectively,
240  and then use DAPI to stain the nuclei.

241

242  Flow cytometry assay

243 Cells and APC-conjugated mouse anti-human CD45, FITC-conjugated mouse
244 anti-human CD11b, BV421-conjugated mouse anti-human ARGL1, as well as pe-cy-
245  conjugated mouse anti-human CD86 (5 uL/10° cells; BD Biosciences) were incubated
246 onicefor 30 minutes. Then, FACSArialll (BD Biosciences) was used to quantify the
247  required cells, and FlowJo software (TreeStar, Woodburn, OR, USA) was used to
248  analyzetheresults.

249

250  Animal experiments

251 All animals involved in this study were treated humanely and received standard
252  care. The animal experimental procedures were approved by the Institutional Review
253 Board of Zhongshan Hospital of Fudan University (Shanghai, Chind). In this
254  experiment, we housed male athymic nude mice (BALB/cASlac-nu) in a specific
255  pathogen-free environment. We mixed treated A549 cells and TAMs to make a 1:1
256 cell mixture at a cell concentration of 5x10° cells/ml. Take 0.05ml of the mixed

257  suspension of cells and Matrigel, and implant them into the lung thoracic cavity of
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258  nude micefor in situ tumor formation experiments.
259 Animals were sacrificed when one of the following signs of disease was observed:
260  tumor ulceration (greater than 0.5 cm); inability to move or eat; or serious injury.
261  Changes in tumor size were detected using an optical imaging system for in vivo
262  small animals (IVIS Spectrum, PerkinElmer, USA).

263
264  Statistical Analysis
265 The statistical tools, methods, and thresholds of each analysis are clearly

266  described in the results or detailed in the legend or materials and methods.

267

268 Results

269  Single-cell transcriptomic profiling of LUAD

270 A total of 9 patients with non-metastatic LUAD underwent lobectomy with
271  curative intent in the Department of Thoracic Surgery, Zhongshan Hospital of Fudan
272 University. Among them, five received three cycles of preoperative neoadjuvant
273  combination chemotherapy with cisplatin plus pemetrexed (defined as NCT group),
274  while others only received surgery (defined as the Control group). Following
275  resection, a malignant lung tumor sample was obtained from each patient, rapidly
276  digested to a single-cell suspension, and analyzed using 10X scRNA-seq (Figure 1a).
277  After quality control, a total of 83,622 cells that met the inclusion criteria were
278  subjected to subsequent analyses, with 33,567 and 50,055 cells derived from the
279  control and NCT groups, respectively (Figure la-c, Sl1a). Next, we classified cell
280 types through dimensional reduction and unsupervised clustering using the Seurat
281  package and relative maker genes.

282 Using the SingleR package, the CellM arker dataset, and our previous studies (21,
283 22), we identified cell clusters that could be assigned to known cell lineages:
284  epithelial cells (marked by SFTA2 and KRTS8), T cells (marked by CD3D and
285 TRBC2), B cdlls (marked by CD79A and CD19), endothelial cells (marked by EMCN
286  and CXorf36), mast cells (marked by TPSB2 and TPSAB1), macrophages (marked by
287 CD68 and APOE), monocytes (marked by FGL2 and LGALS2), fibroblasts (marked
288 by LUM and DCN), neutrophils (marked by FCGR3B and CMTM2). Meanwhile, the

289  consensus clustering of these cells also exhibited the consistency and homogeneity of
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290 the expression profile within each identified cell type (Figure 1b). For instance,
291 clusters 1, 3, 6, 7, and 15, all designated as epithelial cells, were adjacent to each other
292  in the consensus heatmap. This result confirms the robustness and reliability of our
293 data pre-processing. Detailed distributions of these marker genes in each cluster are
294  depicted in Figure S1.

295 By comparing the composition of different types of cells in each group, we
296  noticed tumor microenvironment heterogeneity: the proportion of cells other than
297  tumor cells, especialy immune cells (mainly T and B), was significantly higher in the
298 NCT (Figure 1e). Therefore, to identify subclusters within each of these nine major
299 cell types, we observed a complex cellular ecosystem containing eight different
300 epithelia subclusters and 43 non-epithelial clusters. Interestingly, the epithelial
301  subclusters, mainly composed of cancer cells, were highly patient-specific, while the
302 immune cell subclusters mostly consisted of cells derived from four or more patients
303  (Figure 1f). This observation demonstrated the substantial variation and heterogeneity
304 of tumor microenvironment among groups and individuals. Therefore, we further
305 explored these alterations associated with the therapeutic regimen in greater detail for
306 theprimary cell typesin subsequent analyses.

307

308 Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant
309 chemotherapy.

310 Metabolic reprogramming is a hallmark of malignant tumors. Recent studies have
311 aso shown that tumors' metabolic characteristics and preferences change during
312 cancer progression (23). In each type of cell derived from the Control and NCT
313  groups, more significantly up-regulated metabolic pathways were enriched in cancer
314  cells, nonmalignant epithelia cells, fibroblasts, and macrophages (Figure 2a). The
315  enrichment of oxidative phosphorylation, glycolysis, pyruvate metabolism, and the
316  tricarboxylic acid cycle indicates active glucose metabolism in these four cell types.
317 By analyzing the activity of metabolic pathways in cells from different sources, we
318 found that the activity scores of the metabolic pathways of tumor cells and
319  macrophages were significantly higher than those of other types of cells. Notably, the
320 metabolic pathway activity of macrophages and malignant cells increased after
321  chemotherapy (Figure 2b).

10
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322

323 Changes in metabolism and gene expression of tumor cells after neoadjuvant
324  chemotherapy

325 To accurately analyze the effect of chemotherapy on the cancer cells, we first re-
326  clustered the epithelial cells, and 12 clusters were identified (Figure 3a). Copy number
327 variations (CNVs) (Figure S2a) and marker genes were used to accurately separate
328  malignant and nonmalignant epithelia cells in Control and NCT samples. They were
329 findly defined as MalignantSA cells (Marker genes. FOXL2/MET/CD74),
330 MalignantNCT cells (Marker genes: RACL/MAF/CXCL1), and Nonmalignant cells
331 (Marker genes. ABCA3/SFTPB/LPCAT) (Figure 3d). These marker genes were
332  further confirmed by immunofluorescence experiments (Figure S2d). We found that
333 the proportion of malignant cells was significantly reduced after chemotherapy
334  (Figure 3b, ¢, Figure S2b). Although malignant cells were significantly reduced after
335 chemotherapy, genetic aberrations by CNVs analysis revealed that MalignantNCT
336  cells exhibited significantly higher malignant scores compared to MalignantSA cells
337  (Figure S2a).

338 We performed trgjectory analysis to track the reprogramming of epithelia cells
339  across the three groups. Nonmalignant cells evolved in two directions and developed
340 into two clusters of cells (Figure 3e). In this evolutionary process, glycolysis-related
341 genes (ENO1, LDHB, GAPDH), oxidative phosphorylation-related genes (NDUFA4),
342  mitochondrial repair-related genes (TOMM7), dlucose and lipid metabolism
343  regulation genes (S100A16), ATPase activity-related genes (CCT6A), tumor immune
344  regulation-related genes (CCL20, CXCL1, PAEP, PPP1R14B), hypoxia response
345 regulation genes (CHCHD2), apoptosis regulation genes (MEG3, CEACAMYS),
346  mRNA alternative splicing-related genes (LSM5), and Ras-related protein (RACL,
347 RALA) gradually increased over time in the pseudotime analysis. These findings
348 indicate that these genes play an essentia role in the transformation of epithelial cells
349 into tumor cells (Figure 3f, Figure S2e). Correspondingly, during the process of
350 epithelial cells transforming into malignant tumor cells, the activity of the glycolysis
351 pathway, oxidative phosphorylation pathway, angiogenesis pathway, DNA repair
352  pathway, mTORCL signaling pathway gradually increased over time. However, P53
353  pathway, apoptosis signaling pathway activity then steadily decreased (Figure S2f).

11
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354  Similarly, we performed GSVA analysis on malignant and nonmalignant cells from
355 the three groups. We found that the glycolysis pathway, oxidative phosphorylation
356 pathway, MY C-targets, E2F-targets, DNA repair pathway, and mTORC1 signaling
357 pathway were significantly enriched in MalignantNCT cells derived from the NCT
358  group (Figure 3g). The metabolic reprogramming enables cancer cells to resist anti-
359  cancer drugs, thereby developing chemoresistance (24). To find the hub genes that
360 cause the malignant transformation of epithelial cells, through Single-Cell Regulatory
361  Network Inference and Clustering (SCENIC) analysis, we found that E2F1, BRCAL,
362 PURA, NKX2-1, NFIC, ETV7, STAT1, EGR1, and CEBPD were highly expressed in
363 malignant cells (cluster 2, 6, 11) from the Control group. In contrast, the malignant
364  cells from the NCT group (clusters 1, 7, 8, 9) have high expression of transcription
365 factors (TFs) such as PATZ1, SIX5, BATF, IRF1, FOXALl, and CEBPG. After
366 neoadjuvant chemotherapy, the increased expresson of these TFs promoted the
367  occurrence of lung adenocarcinoma complex phenotypic remodeling (Figure 3h).

368 Tumor cells have significant heterogeneity. We re-clustered the malignant cells
369 and obtained 13 sub-clusters (Figure 3i). Cluster 1, 2, 5, 6, 8, and 10 were derived
370  from the NCT group (Figure 3i). Through the analysis of the metabolism of these cell
371 subclusters, we found that clusters 5 (marker genes: PCPA/NPW/VSIG1), 6 (marker
372  genes. ERG1/HSPAG), and 10 (marker genes: C9orf172/SLC39A10) from the NCT
373 group showed high levels of glycolysis, oxidative phosphorylation and pyruvate
374  metabolism (Figure 3k). GSVA analysis also showed that the glycolysis and oxidative
375 phosphorylation signaling pathway-related genes were significantly enriched in
376 clusters 5, 6, and 10 (Figure 3l). Similarly, we re-clustered nonmalignant cells to

377  obtain 16 sub-clusters, of which clusters 1, 3, 8, 11, 12 , 13, 15 were from the NCT

378 group, and the rest were from the Control group (Figure S2g, h). Clusters 4 and 7
379 from the Control group showed high levels of glycolysis and oxidative
380 phosphorylation (Figure S2i, j), which contrasts with the glucose metabolism
381  observed in malignant cells from the Control group.

382

383 Changesin stroma cellsresulted from neoadjuvant chemotherapy.

384 To investigate stromal cell dynamics in the tumor microenvironment (TME), we

385  obtained 8944 presumed stromal cells, as shown in Figure 1c. We re-clustered them
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386 into five sub-populations, including COL14A1-positive fibroblasts, endothelial-1,
387 endothelia-2, myofibroblasts, pericytes, and smooth muscle cells (SMC) (Figure 4a-C)
388  (25-27). Detailed expression of the marker genes in each cell type is outlined in
389  Figure 4c. Herein, we noticed a significant difference between the distribution of each
390 of these five clusters in patients receiving varied types of treatment. The COL14A1-
391  positive fibroblasts comprised the main fibroblast types in NCT groups, in which both
392 endothelial 1 & 2 were mainly found. Pericyte and SMC were presented in all three
393 groups. In contrast, myofibroblasts exclusively originated from the control group.
394  According to previous research, myofibroblasts have been described as cancer-
395 associated fibroblasts that participate in extensive tissue remodeling, angiogeness,
396 and tumor progression (25, 26). Therefore, this finding revealed that NCT and
397 immunotherapy significantly altered the stroma cell composition in the tumor
398  microenvironment.

399 To explore the activity of known biological pathways in these stromal cells, we
400 performed functional enrichment analysis. In particular, GSVA analysis exhibited that
401  endothelia 1 & 2 shared several up-regulated pathways related to cell proliferation
402  and fate regulation, including IL6-JAK-STAT3, TGFj, and WNT- catenin signaling.
403 Besides, pathways associated with energy metabolisms such as glycolysis and
404  hypoxia were up-regulated in myofibroblast, whereas pericyte was characterized by
405 enriched oxidative phosphorylation and adipogenesis (Figure 4d). Meanwhile, when
406  comparing the GSVA scores of these biological processes between patients from
407  control or NCT groups, we noted that the stromal cells exhibited enhanced metabolic
408 levels after NCT, as represented by up-regulated glycolysis, oxidative
409  phosphorylation, and fatty acid metabolism pathways (Figure 4€).

410 Considering the essential role of fibroblasts and their complicated function in
411 shaping the tumor microenvironment, we further re-clustered them into ten subgroups
412 (Figure 4f-h). As shown in Figure 4i-j, the GSVA score of the metabolic pathways,
413 including glycolysis and oxidative phosphorylation, and pyruvate metabolism and
414  citrate cycle (TCA cycle), were up-regulated in clusters 5, 6, and 9. Intriguingly, the
415  upregulation of these pathways was mainly observed in NCT groups (Figure S3a).
416  The three clusters were represented by distinct gene expression profiles, such as
417  overexpressed MYH11 in cluster 5, RGS5 in cluster 6, and TOP2A in cluster 9. Since
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418  the potential involvement of these genes in the manipulation of fibroblast metabolism
419  has never been proposed yet, they might serve as new specific markers of the
420  fibroblast subtype with such a high metabolic rate in the tumor microenvironment.
421  Besides, the SCENIC analysis demonstrated that MEF2C, NFIA, and RAD21 might
422  drive the formation of these clusters, respectively (Figure S3c). Further in vitro
423  studies are required to elucidate these notable fibroblasts' potential function and driver
424  genesin LUAD’s development and response to NCT. Conclusively, cellular dynamics
425 in stroma cells support a consistent phenotypic shift of fibroblasts towards an
426  increased metabolic level after preoperative chemotherapy.

427

428 Chemotherapy drove tumor-associated macrophages to turn more into
429  phenotypes that promote tumor progression.

430 In the process of cancer formation, tumor-associated macrophages (Tumor-
431  Associated Macrophages, TAM) have an essentia influence on the inflammatory
432  response in the tumor microenvironment (28). To study the effects of chemotherapy
433 on TAMs, we first extracted all macrophages (10526 cells) and re-clustered them into
434  ten cell clusters (Figure 5a). From Figure 1le, we can see that the proportion of
435  macrophages after chemotherapy was reduced.

436 The cell clusters derived from the Control group were 1/2/3/5/7 clusters, those
437  from the NCT group were mainly 0/4/8 clusters, and the number of cells in the 6/9
438 clusters from the Control group and the NCT group was similar (Figure 5a). The
439  proportion of cells in cluster 0 (marker genes: CXCL8/ CCL20/CHIT1), 4 (marker
440 genes. CCL3/ CCL4/ SEPP1), 8 (marker genes: ARG2/ S100A2) decreased after
441  chemotherapy, while the remaining cell clusters increased (Figure 5b, c). Through the
442  GSVA analysis, we found that glycolysis, angiogenesis, PI3K-AKT-mTOR-signaling,
443  IL6-JAK-STAT3-signaling, hypoxia, TGF-beta-signaling, and other signaling
444  pathways were significantly enriched in cluster 0/1/8. Promoting inflammation-related
445  signaling pathways such as TNF-signaling-viaaNFK B, inflammatory-response, Notch-
446  dignaling, fatty-acid-metabolism, and oxidative-phosphorylation were increased
447  dramatically in clusters 2/4/7/9 (Figure 5d).

448 Similarly, we found that glycolysis/gluconeogenesis, amino sugar and nucleotide

449  sugar metabolism, alanine, aspartate, and glutamate metabolism were more active in
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450 the 0/1/8 cluster. In contrast, oxidative phosphorylation, citrate cycle, pyruvate
451  metabolism, fatty acid elongation, fatty acid biosynthesis, etc., were more active in
452  clusters 2/4/7/9 (Figure 5e). According to the GSVA analysis, the
453  glycolysis/gluconeogenesis signaling pathway was significantly enriched in
454  macrophages from the NCT group. In contrast, macrophages from the Control group
455  showed a high activity in oxidative phosphorylation, fatty acid elongation, fatty acid
456  degradation, fatty acid biosynthess, and citrate cycle (TCA cycle) (Figure 5f). These
457  results indicate that significant metabolic reprogramming occurred in tumor-
458  associated macrophages after chemotherapy, and different TAMs cell clusters also
459 showed huge metabolic differences. In general, our results revealed that
460  chemotherapy could promote glycolysis of TAMs and inhibit fatty acid metabolism.
461 To explore the key genes that regulate the differences in the metabolism of each
462  subcluster of macrophages, we performed a SCENIC analysis. We found that HES,
463 PPARG, SPI1, CEBPB, and IRF7 were highly expressed in cluster 0/1, which may be
464  the key genes that regulate the conversion of macrophages into M2-like TAMs, while
465  clusters 2/4/7/19 highly expressed STAT1, STAT2, NFKB1, JUN, and FOS that
466  regulate the conversion of macrophagesto M1-like TAMs (Figure 5g).

467 According to the gene expression of macrophages, we divided these 10 clusters of
468 cells into three subtypes of macrophages through cluster analysis (Figure 5h). We
469  scored the expression levels of pro-inflammatory and anti-inflammatory genes in all
470  macrophages. We displayed each color-coded macrophage subtype's M1 and M2
471 scores (left) and pro-inflammatory and anti-inflammatory scores (right) through a
472  scatter plot.

473 Similarly, we found that 0/1/8 cluster cells exhibited M2-like polarization and
474  anti-inflammatory properties, while 2/4/7/9 exhibited M1-like polarization and pro-
475 inflammatory properties (Figure 5i). Based on these analyses, we divided these 10
476  clusters of macrophage subtypes into three categories: M1-like polarized phenotype
477  was defined as Anti-mac; M 2-like polarized phenotype was defined as Pro-mac; those
478  without obvious polarized phenotype were defined as Mix (Figure 5)). We found that
479 the proportion of Pro-mac in the tumor microenvironment increased after
480 chemotherapy, especially in the case of NCT-1 (Figure 5k). Interestingly, via
481  trajectory analysis we found that two subtypes, Anti-mac and Mix, can be converted
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482  to Pro-mac. In this evolution process, the high expression of LY Z, FBP1, ALOX5AR,
483 MARCO, S100A9, FN1, CXCL8, APOCI1CTSL, and other genes may have played an
484  essential role in promoting the conversion of Anti-mac to Pro-mac (Figure 5I,m). This
485  suggests that we can change the phenotype of TAMs in the tumor microenvironment
486 by atering the expression of these genes.

487

488 Chemo-driven Pro-mac and Anti-mac metabolic reprogramming exerted
489  diametrically opposite effects on tumor cells.

490 To further verify the remodeling effect of chemotherapy on the functional
491  phenotype of TAMs in the tumor microenvironment, we first used the FindAlIMarkers
492  function in the Seurat package to find the marker genes of Pro-mac, Anti-mac, and
493  Mix cells. Pro-mac was mainly characterized by high expression of CXCL8, ARG1,
494  CREM, CD206, STAT6, CCL22, MMP7, and CCL3L3, while Anti-mac was mainly
495  characterized by high expression of CD86, HLA-DR, PLAC8, CXCL10, COX2,
496 IL15R, and SCGB3AL1 (Figure 6a). Based on these marker genes, we sorted out Anti-
497 mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG+) by
498 flow cytometry (Figure 6b). To verify whether the cells we sorted were the cell
499  population we wanted, we re-verified the positive rates of Pro-mac and Anti-mac cells
500 by flow cytometry (Figure 6c). Our results showed that the proportion of Pro-mac
501 cells in lung adenocarcinoma tissues after neoadjuvant chemotherapy increased
502  dignificantly (Figure 6d). In fact, by performing immunofluorescence staining on lung
503 adenocarcinoma tissue samples derived from surgery alone and neoadjuvant
504  chemotherapy, we also found that the proportion of cells marked by the marker gene
505 CD206 of M2-like TAMs increased significantly after chemotherapy (Figure 6e€).
506  Macrophages can promote tumor progression by secreting many cytokines. By
507  analyzing the differentially expressed genes of Pro-mac and Anti-mac cells, we found
508 1L10, PDCDI1LG2, PDGF, VEGF, MMP9, CXCL9, CXCR4, IL22, KLF4, and TGF-$
509  were highly expressed in Pro-mac cells that promote tumor growth, angiogenesis and
510  suppress tumor immunity (Figure 6f). We obtained the Pro-mac and Anti-mac cells
511 from 12 cases (6 cases of surgery alone, 6 cases of surgical samples after neoadjuvant
512  chemotherapy) by flow cytometry. We named them Control Anti-mac, Control Pro-
513  mac, NCT Anti-mac, NCT Pro-mac. After placing them in a cell culture flask for 24
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514  hours, the content of some key cytokines in the supernatant of the culture medium
515  was detected by enzyme-linked immunosorbent assay (ELISA). The levels of MM P9,
516 EGF, and VEGF secreted by Pro-mac after neoadjuvant chemotherapy were
517  gignificantly higher than those of Pro-mac from the surgery alone group. MMP9, EGF,
518  VEGF, and IL10 secreted by Pro-mac were significantly higher than Anti-mac (Figure
519  6g). Similarly, when Control Anti-mac, Control Pro-mac, NCT Anti-mac, and NCT
520  Pro-mac were inoculated subcutaneously with A549 cells at aratio of 1:1 (Reinjection
521 of macrophages two weeks later), we aso found that NCT Pro-mac can significantly
522  promote tumor growth. Interestingly, NCT Anti-mac in the tumor microenvironment
523  after chemotherapy can significantly inhibit the growth of tumor cells, and this
524 inhibitory ability was stronger than Control Anti-mac (Figure 6h, i).

525 Our previous analysis found that Pro-mac glycolysis-related signaling pathways
526  were significantly enriched, while in Anti-mac, oxidative phosphorylation and fatty
527  acid metabolism signaling pathways were greatly enhanced (Figure 6j). In vitro
528  experiments show that NCT Pro-mac's ability to take up glucose and produce lactate
529  was considerably more potent than other cells (Figure 6k). It was worth noting that
530 the glycolysis level of NCT Anti-mac was markedly higher than that of Control Anti-
531  mac (Figure 61). When we placed the Pro-mac and Anti-mac in a 24-well plate and co-
532  cultured with A549 cells in the Transwell chamber, we found that NCT Pro-mac can
533  dgnificantly enhance the invasion ability of A549 cells. At the same time, NCT Anti-
534  mac showed astronger ability to inhibit tumor invasion than Control Anti-mac (Figure
535  6m). However, when we used 2-DG (800uM, the concentration determined in pre-
536  experiment) to inhibit the glycolysis of TAMs, the ability of Pro-mac to promote
537  tumor progression was significantly weakened, and the power of NCT Anti-mac to
538  suppress tumors was also considerably reduced (Figure 6m). By mixing these cells
539  with macrophages for 3D culture, we found that the ability of NCT Anti-mac to
540 inhibit tumor proliferation was significantly weakened when inhibiting its glycolytic
541  activity. This showed that glycolysis could enhance the ability of Pro-mac to promote
542 tumor progression and increase the capacity of Anti-mac to inhibit tumors (Figure 6n).
543  Finaly, through in vivo experiments, we inoculated a mixture of TAMs and A549 to
544  nude mice and obtained the same experimental results as in Figure 6m/n (Figure 60).
545
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546

547  Chemotherapy treatment-induced remodeling of T and B célls.

548 Considering the essential role of the tumor microenvironment, especially the
549  immune infiltration level, in tumor development and response to therapy, we next
550 investigated the characteristics of T and B cells. In our study, 22530 T cells were
551  detected, which accounted for 26.9% of the total. We noticed that the re-clustered T
552  cells could not be visibly distinguished among patients receiving different therapeutic
553  regimens (Supplementary Figure 6a-b). According to the expression of a series of
554  canonical markers of T cell subtypes, the T cells were divided into CD4+ T (marked
555 by LTB, CD45RO0, etc.), CD8+ T (marked by NKG7, GZMA, GZMB, CD8A, etc.),
556  and Tregs (marked by FOXP3, CTLAA4, etc.) (12, 21, 29) (Supplementary Figure 6¢-
557 d). The detailed expression profile of these marker genes is exhibited in
558  Supplementary Figure 6e. Meanwhile, aside from these previously published T-cell
559 markers, we also noted the specific upregulation of several genes in a particular
560  cluster. At the same time, their expression specificity has not been elucidated yet.

561 As the mgor executor of tumor immunology, CD8+ T cells are thought to
562 differentiate into cytotoxic T cells (CTLs) and specificaly recognize endogenous
563  antigenic peptides presented by the magor histocompatibility complex I, thereby
564  eliminating tumor cells (30). By comparing the composition of T cell subtypes in
565 LUAD cells derived from different groups, we found that the proportion of CD8+T
566  cellsin the NCT group was significantly higher than those in patients receiving only
567  surgical treatment (Supplementary Figure 6d). Therefore, we focused on CD8+ T cells
568  for subsequent analyses and re-clustered them into five new subgroups, in which
569 clusters 1-4 were mainly derived from the NCT group. In contrast, cluster 5 was
570  predominantly enriched in the control group (Supplementary Figure 6f-k).

571 We next explored the expression profile of genes associated with T cell’s function
572  ineach CD8+ T sub-cluster. As depicted in Supplementary Figure 6i, clusters 1 and 2
573  were characterized by up-regulated naive T cell markers, such as TCF7, LEF1, and
574 CCRY7, whereas genes associated with immune inhibition, like TIGIT, CTLAA4,
575 PDCD1, and HAVCR2, were enriched explicitly in cluster 3. Cytotoxic function-
576  related genes, including GZMA GNLY, PRF1, GZMP, and GZMK, IFNG, IL2, were
577  respectively overexpressed in clusters 4 and 5. Based on this evidence, we defined
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578 clusters 1 and 2 as naive T, three as regulatory/exhausted T, and 4 & 5 as cytotoxic T
579 cells. Intriguingly, regarding both the sample origins and expression profiles of CD8+
580 T cells in clusters 4 and 5, we can reasonably hypothesize that NCT treatment
581  potentially induces the reprogramming of CD8+ cytotoxic cells. To further verify this
582  statement, we performed pseudotime-ordered trgectory analysis to monitor the
583 dynamic view of CD8+ T cells reprogramming process via Monocle. As shown in
584  Supplementary Figure 6l-p, three phases were detected in these clusters. Cluster 1,
585  which exhibited the lowest cytotoxicity, was designated as the “root” state according
586  to pseudotime.

587 In contrast, the immune inhibition-related genes like LAG3, TIGIT, and PDCD1,
588  and cytotoxicity-related genes such as GZMB and IFNG were respectively activated
589 in phases 2 and 3. This phenomenon is consistent with our T cell phenotype
590 classification mentioned above. Then, our results showed differentiation paths from
591 nave T to Treg/exhausted cells and cytotoxic cells. Considering the transcriptional
592  changes associated with T cell reprogramming, naive T cells (phase 1) expressing
593  high CCR6 and TCF7 differentiate into two distinct fates, clusters 4 and 5, in phase 3.
594  Notably, the cells positioned at the cluster 4 branch were characterized by higher
595  cytotoxicity than in cluster 5 (Supplementary Figure 61, m, 0). Regarding the sample
596  origins of the two clusters, these findings demonstrated that NCT treatment ignites a
597  relatively more robust immune cytotoxic response towards tumor cells, which could
598 be partly explained by the excessive production of neoantigen caused by NCT-
599  induced DNA damage.

600 SCENIC analyses suggested that distinct transcriptional mechanisms drove the
601 differentiation of naive T cells to either cluster 4 or 5. As reveadled in Supplementary
602 Figure 6q, the cytotoxic cells derived from NCT-treated LUAD patients (cluster 4)
603  were characterized by increased activation of FOSL2-extended, REL, YBX1, and NF-
604 KB pathways. In contrast, those from the control group (cluster 5) had up-regulated
605 JUN, FOSB, and ELF3 extended pathways. Together, our results revealed that
606  preoperative chemotherapy prompts the naive T cells to differentiate towards a more
607  cytotoxic phenotype.

608 Asfor B cells, only 3902 (4.6%) cells were detected. 475 cells were derived from
609 the control group, while 3427 were from the NCT group (Supplementary Figure 4a).
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610 Herein, we re-clustered the B cells into two sub-clusters. Based on canonical cell
611  markers, class-switched memory B-cells (marked by CD19, CD37, and HLA-DRA)
612 and plasma cells (marked by IGHA2, IGHG4, and CD38) were defined
613  (Supplementary Figure 4a-c). The former compromised the mgority of the total B
614  cells (80.7%). Notably, the sample origins of the B cells demonstrated that a higher
615  proportion of plasma cells characterized the control groups. In contrast, the class-
616  switched memory B cells were significantly enriched in preoperatively treated
617  patients.

618 Meanwhile, we performed GSVA analysis to explore several key biological
619 pathways in the B cells derived from different groups. As depicted in Supplementary
620 Figure 4d, B cells from the control group exhibited significant activating ways
621  associated with metabolism and energy supply, including glycolysis and oxidative
622  phosphorylation. However, the B cells derived from the NCT group exerted essential
623 rolesin most of the pathways, including glycolysis, fatty acid metabolism, apoptosis,
624  and hypoxia Overall, our observations demonstrated that NCT not only induced T
625  cell reprogramming but also extensively impacted the composition and function of B
626  cellsin the tumor microenvironment.

627

628  Crosstalk among tumor and immune cells

629 The tumor microenvironment consists of numerous cell types, and the importance
630 of crosstalk between cancer and immune cells has been implicated in various
631  biological processes associated with tumor development (21, 29, 31). As depicted in
632  Supplementary Figure 7a-b and Supplementary Figure 5a, the interactions between
633 malignant cells and macrophages exhibited the strongest activity in both control and
634  NCT groups, highlighting the important role of the macrophage in tumor immunol ogy.
635 Notably, we noted that the cell-to-cell communications among different cell types,
636  especially between tumoral and immune cells such as cytotoxic CD8+ T, Treg, and
637 memory B, were significantly strengthened in the NCT group. Specifically, we further
638 investigated the ligand-receptor atlas within and between tumor cells and immune
639 cells, which seemed to be quite reshaped by NCT (Supplementary Figure 7c-d,
640  Supplementary Figure 5b). For example, MIF-CXCR4, whose activation usually
641  promotes leukocyte recruitment (32), was increasingly activated in the NCT group
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642  between malignant and memory B, CD4+ T, and cytotoxic CD8+ T, whereas inhibited
643 in macrophages. Meanwhile, MDK-NCL exhibited a similar activating phenotype
644  with MIF-CXCR4, but its function in shaping the tumor microenvironment has never
645  been reported. So, it might serve as a potential target of immune checkpoint inhibitor
646  treatment in the future.

647 Given the above-mentioned NCT-induced immune activation, which was
648 characterized by CD8+ T with higher cytotoxicity and an increased proportion of
649 class-switched memory B cells, these findings further clarified that NCT could ignite
650 a strong intrinsic immune response towards tumor cells. However, the inhibitory
651 interaction pairs LGALS9-CD44 and LGALS9-HAV CR2 was abnormally activated in
652  the NCT group between malignant and several T cells or macrophages (33). Its exact
653  rolein such conditions till requires further exploration.

654 In summary, our study revealed that the LUAD tissues that have experienced
655 NCT had a distinct landscape of intracellular interactions, which might provide new
656 ideas for future research focusing on implementing immunoctherapy in the
657  comprehensive anti-tumor therapeutic regimen.

658

659 Discussion

660 Although important advances in chemotherapy have reduced the mortality of
661 cancer patients, the 5-year survival rate is still low, mainly due to the inherent or
662 acquired mechanism of anti-tumor drug resistance (34). Chemoresistance results
663 from complex reprogramming processes, such as drug export/import, drug
664  detoxification, DNA damage repair, and cell apoptosis. Recently, the correlation
665  between metabolic regulation and chemoresistance has received great attention. More
666  efforts are devoted to targeting cell metabolism to overcome chemoresistance (35).
667  The classic mechanism isto target the transport of anti-cancer drugs by increasing the
668  activity of the efflux pump, such as the adenosine triphosphate (ATP) binding cassette
669 (ABC) transporter. Cancer cells exhibit a special metabolic phenotype-aerobic
670 glycolysis, quickly transporting and consuming glucose to produce ATP and promote
671 drug efflux. PISBK/AKT pathway is activated by producing 3'-phosphorylated
672  phosphoinasitol, which is an important signaling pathway for lung cancer MDR (36).
673  Glycolysis is beneficial to cancer cells by producing ATP faster, providing many
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674 intermediates for violent biosynthesis, maintaining redox balance, and creating a
675  microenvironment with low immunity (24). The combination therapy of shikonin+2-
676 DG could inhibit glycolytic phenotype, migration, and invasion by regulating the
677  Akt/HIFla/HK-2 signal axis (37).

678 Normal and healthy cells mainly produce energy through OXPHOS. However,
679 dueto rapid cell growth and frequent division, cancer cells face impressive metabolic
680 challenges, which force them to adjust their energy metabolism to meet these needs
681  (38). It is generaly believed that cancer cells mainly obtain energy through glycolysis,
682  which is named the Warburg effect. After chemotherapy, cancer cells change their
683 metabolism from glycolysis to OXPHOS. This process is regulated by the SIRT1-
684 PGCla signaling pathway, thus increasing the resistance of cells to chemotherapy
685  (39). Drug-resistant cancer cells can often be re-sensitized to anti-cancer treatments
686 by targeting the metabolic pathways of import, catabolism, and synthesis of basic cell
687 components (40). Recent studies have determined the cancer-promoting function of
688  mitochondrial oxidative phosphorylation (OXPHOS) by regulating cell growth and
689  redox homeostasis (41). Our study also found that after chemotherapy, the glycolysis
690 and oxidative phosphorylation of tumor cells was enhanced. This metabolic
691  reprogramming may enable cancer cells to have higher proliferation, invasion, and
692 metastasis capabilities.

693 Tumor endothelial cells (ECs) have high glycolytic metabolism, shunting
694  intermediates to nucleotide synthesis. Blocking of the glycolysis activator PFKFB3 in
695 EC cels does not affect tumor growth. Still, it reduces cancer cell invasion,
696 intravascular, and metastasis by normalizing tumor blood vessels, thereby improving
697 blood vessel maturation and perfuson. PFKFB3 inhibition tightens the vascular
698 barrier by reducing VE-cadherin endocytosis in endothelial cells and reduces
699 glycolysis to make cells more quiescent and adherent (by up-regulating N-cadherin);
700 it also reduces NF«B signaling to reduce the expression of cancer cell adhesion
701  molecules in ECs. PFKFB3 blockade therapy also improves chemotherapy for
702  primary and metastatic tumors (42).

703 Due to rapid cell growth and frequent division in tumor cells, cancer cells face
704  impressive metabolic challenges, which force them to adjust energy metabolism to

705 meet these needs, namely metabolic reprogramming (43). However, studies have
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706  shown that metabolic plasticity in tumors is contributed by the glycolytic phenotype
707  (asexplained by Warburg) and that mitochondrial energy reprogramming has recently
708 been identified as a feature of tumors (44). Chemotherapy can increase
709 SIRT1/PGCla-dependent oxidative phosphorylation (OXPHOS) in tumor cells,
710  thereby promoting the survival of colorectal tumors during treatment. This
711 phenomenon was also observed in chemotherapy-exposed liver metastases, which
712 strongly suggests that chemotherapy causes long-term changes in tumor metabolism,
713 which may interfere with drug efficacy (39). In addition, elevated glycolysis and
714 OXPHOS promote epithelial-mesenchymal transition and cancer stem cell (CSC)
715  phenotype in tumor cells (45). Therefore, recent research emphasizes the mixed
716 glycolysissOXPHOS phenotype rather than the phenotype that relies excessively on
717  glycolysis to meet cellular energy requirements, thereby significantly promoting
718  aggressiveness and treatment resistance (44). Chemotherapy has a significant effect
719  on the metabolic reprogramming of tumor cells and profoundly affects stromal and
720  immune cells' metabolism in the tumor microenvironment.

721 Theoretically, chemical drugs can inhibit tumorigenesis by blocking the
722 proliferation of tumor cells or depositing in tumor cell apoptosis, but this
723  unintentionally causes "tissue damage." The body will mistake this tumor-specific
724  damage for normal tissue damage and then inevitably activate the tissue damage
725  repair mechanism dominated by TAM (46). The result of this effect is that tumors will
726 grow rapidly, and patients will develop resistance to anti-tumor chemotherapy.

727 Meanwhile, as suggested by Parra et al., neoadjuvant chemotherapy exerted PD-
728 L1 upregulation in NSCLC patients. It increased the density of CD68+ macrophages,
729  which were associated with better outcomes in both univariate and multivariate
730  analyses (47). However, opposite results were also reported by Talebian et al. that
731 NSCLC patients treated with radiotherapy, rather than a platinum-based standard-of-
732 care chemotherapy, displayed a decrease in lymphoid cells and a relative increase in
733  macrophages (48). Therefore, the role of TAMs in LUAD cells response to

734  chemotherapy still requires further investigation.

735 Our research reveas the remodeling effect of chemotherapy on tumor
736  microenvironment. However, this study still has many limitations. Firstly, only 9
737  samples were included in our study, and the number of samples is a defect of our
738  study. Secondly, our study did not detect other causes of tumor heterogeneity, such as
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739 EGFR-mutant or ALK-translocated. We explored the possible impact of these factors
740  and found that there was no significant difference in the expression of EGFR and
741 other genes between the NCT group and the Control group (Supplementary Table 1).
742  Thirdly, our data can only reflect the change in gene expression of various types of
743  cdls in the tumor microenvironment after chemotherapy. We can not draw a direct
744  conclusion on whether chemotherapy will benefit patients or not. These need further
745  study inthe future.
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803 FigurelLegend

804

805 Figure 1. Single-cell atlas of lung adenocarcinoma (LUAD) tissues from the control,

806 and NCT group. (a) Workflow depicting collection and processing of LUAD samples
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807  for scRNA-seq analysis. (b) Consensus clustering based on the correlations among the
808 20 clusters identified through the tSNE algorithm. (c) TSNE of the 83622 cells
809 enrolled here, with each cell color indicating: its sample type of origin, the
810  corresponding patient, predicted cell type, and the transcript counts. (d) Expression of
811  marker genes for the cell types defined above each panel. (€) The proportion of each
812 cell type in different groups and samples. (f) For each of the eight epithelial
813  subclusters and 43 non-epithelial clusters (left to right): the fraction of cells
814  originating from the three groups, the fraction of cells originating from each of the
815  nine patients, the number of cells and box plots of the number of transcripts (with plot
816  center, box, and whiskers corresponding to the median, IQR and 1.5 x IQR,
817  respectively). NCT: Neoadjuvant chemotherapy.

818

819

820 Supplementary Figure 1. Figures related to Figure 1. (a) The tSNE plots of all
821  clusters in this research. (b) The heatmap showed the marker genes in the different
822  cdll types.

823

824

825  Figure 2. Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant
826  chemotherapy. (a) The metabolic pathway activities of different cells from the Control
827 group and NCT group showed significant differences. (b) The metabolic pathway
828 activity of macrophages and malignant cells increased significantly after
829  chemotherapy.

830

831

832  Figure 3. Tumor cells and epithelial cells had significant phenotypic changes before
833 and after chemotherapy. (a) The tSNE plots and overview of the tumor cells and
834  epithelia cells. (b) The proportion of malignant cells and nonmalignant cells in the
835  Control group and NCT group. (c) Flow cytometry showed that the proportion of
836  malignant cells was significantly reduced after chemotherapy and immunotherapy. (d)
837  Marker genes of MalignantSA cells, MalignantNCT cells, and Nonmalignant cells. (e)
838  Pseudotime analysis showed that nonmalignant cells evolved in two directions. (f)
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839  The heat map showed that a series of genes play an important role in transforming
840  epithelial cells into tumor cells. (g) GSVA analysis was performed for malignant and
841  nonmalignant cells. (h) SCENIC analysis revealed the hub genes in the malignant
842  transformation of epithelia cells. (i) The tSNE plots for re-clustered malignant cells.
843  (j) Marker genes of 13 sub-clusters from malignant cells. (k) Metabolic characteristics
844  in different malignant cell sub-clusters. (I) GSVA analysis reveals the characteristics
845  of pathway activity in different malignant cell sub-clusters.

846

847

848  Supplementary Figure 2. Figures related to Figure 3. (a) Copy number variations
849 (CNVs) of malignant and nonmalignant epithelial cells. (b) The proportion of
850 malignant cells and nonmalignant cells from different patients. (¢) The heatmap
851  showed differentially expressed genes of epithelial cells in the Control group and
852  NCT group. (d) Immunofluorescence showed LPCAT1, FOXL2, and RAC1 were
853  highly expressed in normal lung tissues, the Control group, and the NCT group,
854  respectively. (e) Some genes played an important role in the transformation of
855  epithelia cells into tumor cells. (f) Changes in the activity of several important
856  pathways during the transformation of epithelial cells to tumor cells. (g) The tSNE
857  plots and overview of the non-malignant cells. (h) Heat map of marker genes for
858 nonmalignant cells sub-clusters. (i) Metabolic characteristics in different
859 nonmalignant cell sub-clusters. (j) GSVA analysis reveded the characteristics of
860  pathway activity in different nonmalignant cell sub-clusters.

861

862

863  Figure 4. The scRNA profile of stromal cells derived from LUAD samples in control
864 and NCT groups. (a) The tSNE plots an overview of the 6 clusters of stromal cells. (b)
865  Proportions of the six predicted clusters of stromal cells in different groups and
866  samples. (c) Heatmap exhibiting the expression level of marker genes in each stromal
867  cdll cluster. (d) GSVA analysis estimated the pathway activation levels of different
868  stromal cell subtypes. The scores have been normalized. () GSVA analysis revealed
869 theactivation level of hallmark pathways in stromal cells (control vs. NCT groups) (f)

870  Heatmap exhibiting the expression level of marker genes in each fibroblast cluster. (g-
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871  h) The tSNE plots revealed the group origins (g) and predicted subclusters (h) of
872  fibroblast. (i-j)) GSVA analysis estivated the pathway activation levels of different
873  fibroblast subtypes.

874

875

876  Supplementary Figure 3. Figures related to Figure 4. (a) The activity of various
877  metabolic processes in fibroblasts from the Control group and NCT group. (b) GSVA
878 analysis was performed for fibroblasts from the Control group and NCT group. (c)
879  SCENIC analysis revealed the hub genesin fibroblast.

880

881

882  Figure 5. Three newly identified subtypes of tumor-associated macrophages (TAMS)
883 displayed distinct genetic and metabolic features. (a) The tSNE plots showed the
884  group origins, sample origins, and clusters of TAMSs. (b) Proportions of the 10 clusters
885 of TAMs in different groups and samples. () Marker genes of the 10 clusters of
886 TAMs. (d) GSVA analysis was performed for the 10 clusters of TAMs. (e) The
887  activity of various metabolic processes in the 10 clusters of TAMSs. (f) GSVA anaysis
888 was performed for TAMs from the Control group and NCT group. (g) SCENIC
889  analysis was performed for the 10 clusters of TAMs. (h) Consensus clustering based
890 on the correlations among the 10 clusters of TAMs identified through the tSNE
891  agorithm. (i) Polarization score (left) and inflammatory score (right) for 10 clusters
892 of TAMs based on the expression of polarization marker genes and inflammatory
893 genes. (j) The tSNE plots for three types of TAMs. (k) Proportions of the three
894  subtypes of TAMs in different groups and samples. (I) Development trgjectory
895 analysis for the three subtypes of TAMs. (m) Pseudotime analysis revealed a series of
896  genesthat affect the differentiation and development of macrophages.

897

898

899  Figure 6. Metabolic switching in tumor-associated macrophages (TAMS) contributed
900 to diametrical effects on tumor cells. (a) The heatmap showed the essential marker
901  genes for three subtypes of TAMS. (b) Based on Pro-mac and Anti-mac marker genes,

902 these two types of cells were sorted by flow cytometry from lung adenocarcinoma
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903 tissue. (c) Flow cytometry verified the sorted cells. (d) The proportion changes of
904 Pro-mac and Anti-mac cells in lung adenocarcinoma tissues before and after
905 chemotherapy. (€) Immunofluorescence showed the changes in the proportion of
906 TAMs with high CD206 and CD86 after neoadjuvant therapy. (f) The heatmap
907 showed the differences in the cytokines secreted by the three subtypes of
908  macrophages. (g) ELISA detected the secretion of VEGF, EGF, IL10, and MMP9. (h)
909 The intensity of fluorescence changes in Luciferase-labeled A549 cells mixed with
910 different TAMs. (i) The histogram showed the average fluorescence intensity emitted
911 by the subcutaneous tumor. (j) GSVA analysis performed for Pro-mac, Anti-mac, and
912  Mix. (k) Glucose uptake and lactate production in the TAMs cell subtypes. (I)
913  Seahorse XFe96 cell outflow analyzer detected the glycolysis level of TAMs cell
914  subtypes (Extracellular acidification rate: ECAR). (m) Transwell experiment detected
915  theinfluence of TAMs subtypes on the invasion ability of A549 cells. (n) The 3D cell
916  culture experiment detected the effect of 2-DG on the spheroidization ability of A549
917  cells when cultured with subtypes of TAMs. (0) In vivo experiments verified the
918  effect of 2-DG on the tumorigenesis ability of A549 after inhibiting glycolysis of
919  TAMSs. All error bars are mean £ SD. NS, not significant. ***P < 0.001, **P < 0.01,
920 *P< 0.05; determined by two-tailed Student’s t-test (95% confidence interval).

921

922  Supplementary Figure 4. The scRNA profile of B cells derived from LUAD samples
923 in the control, neoadjuvant chemotherapy, and immunotherapy group. (a) The tSNE
924  plots revealed the sample origins, group origins, and predicted clusters of B cells. (b)
925  The two predicted clusters of B cells (plasma cells, class-switched memory B-cells)
926  were reported in different groups and samples. (c) Heatmap exhibiting the expression
927  level of marker genes in each B cell cluster. (d) GSVA analysis estivated the pathway
928  activation levels of different B cell subtypes.

929

930  Supplementary Figure 5. Crosstalk between cancer and immune cells. (a) Each cell
931  type and the other cell types expressed some of the ligands. (b) Bubble plot revealing

932 the specific ligand-receptor interactions between cancer cells and immune cells in the
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933  control group. The circle size indicates P values, with the scale to the right

934  (permutation test), and color indicates communication probability.

935

936  Supplementary Figure 6. The scRNA profile of T cells derived from LUAD samples
937  inthe control, neoadjuvant chemotherapy, and immunotherapy group. (a-c) The tSNE
938 plots revealed the sample origins (a), group origins (b), and predicted clusters (c) of T

939 cdls. (d) The three indicated clusters of T cells (CD4+ T, CD8+ T, and Tregs) were
940 reported in different groups and samples. (e) Bubble plot exhibiting the expression

941  level of marker genesin each T cell cluster. (f-h) The tSNE plots revealed the sample
942  origins (f), group origins (g), and predicted subclusters (h) of CD8+ T cells. (i)

943  Heatmap exhibiting the expression level of marker genes corresponding to naive,

944  Treg/lexhausted, and cytotoxic phenotypes in each CD8+ T cell subcluster. (j-k)

945  Proportions of the five predicted clusters of CD8+ T cells in different samples (j) and

946  groups (k). (I) Dynamic changes in gene expression of CD8+ T cells during the
947  trangition (divided into three phases). (m-p) Pseudotime-ordered analysis of CD8+ T

948  cells (m-n) revealing the dynamics of their cytotoxic (0) and exhausted levels (p). (1)

949  SCENIC analysis of CD8+ T cells.

950

951  Supplementary Figure 7. Crosstalk between cancer and immune cells. (a) Overview
952  of selected ligand-receptor interactions of cancer cells and immune cells in control

953 and NCT groups. The line thickness indicates the number of ligands when cognate
954  receptors are present in the recipient cell type. The loops indicate autocrine circuits. (b)
955 Detaled view of the ligands expressed by each cell type and the other cell types. (c)

956  Bubble plot revealing the specific ligand-receptor interactions between cancer cells
957  and immune cellsin the NCT group. The circle size indicates P values, with the scale
958  totheright (permutation test), and color indicates communication probability.

959

960
961
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