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 33 

Abstract 34 

Background: Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) 35 

patients comprehensively. Considering the limitations of chemotherapy due to drug 36 

resistance and other issues, it is crucial to explore the impact of chemotherapy and 37 

immunotherapy on these aspects. 38 

Methods and Materials: Tumor samples from nine LUAD patients, of which four 39 

only received surgery and five received neoadjuvant chemotherapy, were subjected to 40 

scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, 41 

immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out 42 

to validate our findings. 43 

Results: A total of 83,622 cells were enrolled for subsequent analyses. The 44 

composition of cell types exhibited high heterogeneity across different groups. 45 

Functional enrichment analysis revealed that chemotherapy drove significant 46 

metabolic reprogramming in tumor cells and macrophages. We identified two 47 

subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells 48 

(CD45+CD11b+ARG+) and sorted them by flow cytometry. The proportion of Pro-49 

mac cells in lung adenocarcinoma tissues increased significantly after neoadjuvant 50 

chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also 51 

suppress tumor immunity. Moreover, through analyzing the remodeling of T and B 52 

cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively 53 

more robust immune cytotoxic response towards tumor cells. 54 

Conclusion: Our study demonstrates that chemotherapy induces metabolic 55 

reprogramming within the TME of LUAD, particularly affecting the function and 56 

composition of immune cells such as macrophages and T cells. We believe our 57 

findings will offer insight into the mechanisms of drug resistance and provide novel 58 

therapeutic targets for LUAD in the future. 59 

 60 

Keywords: Lung adenocarcinoma, chemotherapy, phenotype atlas, metabolic 61 

reprogramming 62 
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 63 

Introduction  64 

Lung cancer is the most common cancer among all human tumor types, with 65 

more than 1.7 x 106 new cases worldwide each year. According to the Global Cancer 66 

Report data, lung adenocarcinoma (LUAD) accounts for most lung cancers  (1). The 67 

application of adjuvant or neoadjuvant chemotherapy (NCT) has significantly 68 

improved the long-term survival of LUAD patients. At present, for most LUADs that 69 

need chemotherapy after being assessed, chemotherapy will be used before and after 70 

surgery  (2). However, chemotherapy drugs are highly toxic and can often become 71 

ineffective  (3). In addition, continued ineffective chemotherapy will lead to the 72 

generation of drug-resistant tumor cell clones  (4, 5) and a delay in tumor removal. 73 

Almost all cancer patients show inherent or acquired drug resistance, leading to 74 

treatment failure and unsatisfactory overall survival. Therefore, to accurately develop 75 

therapies that can overcome drug resistance, it is essential to understand the 76 

alterations in the tumor microenvironment driven by chemotherapy. 77 

Many studies have increasingly proved the tumor microenvironment (TME) to be 78 

an essential source of intratumoral heterogeneity  (6). The heterogeneity within the 79 

tumor microenvironment (TME) encompasses not only the variations between 80 

different tumor cells but also among various stromal and immune cell types. 81 

Investigating the dynamic changes in multiple cell populations within the TME of 82 

LUAD following chemotherapy may provide crucial insights into overcoming 83 

chemotherapy resistance in LUAD. In this study, we demonstrated the changes in the 84 

microenvironment of lung adenocarcinoma with chemotherapy. In particular, we 85 

focused on the effect of chemotherapy on the metabolic reprogramming of tumor cells, 86 

stromal cells, and immune cells. 87 

Formerly, it was generally believed that consuming glucose in TME by cancer 88 

cells may promote nutritional competition, a metabolic mechanism of 89 

immunosuppression  (7). However, recent studies have shown that tumor-infiltrating 90 

immune cells rely on glucose for their energy needs and functionality, with immune 91 

cells, particularly macrophages, consuming more glucose than malignant cells. The 92 

impaired immune cell metabolism in the tumor microenvironment (TME) helps tumor 93 

cells escape immunity  (8). The internal metabolic changes in the cells drive immune 94 
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cells and cancer cells to preferentially obtain glucose and glutamine. It is believed that 95 

the selective cellular allocation of these nutrients can be used to develop therapeutic 96 

and imaging strategies to enhance or monitor the metabolic processes and activities of 97 

specific cell populations in TME  (9). Metabolic reprogramming in various cell types 98 

in the tumor microenvironment after undergoing chemotherapy may be an essential 99 

feature that affects chemotherapy. Our research fully demonstrated the metabolic 100 

reprogramming landscape of tumor cells, stromal cells, and immune cells before and 101 

after chemotherapy. 102 

 103 

Materials and Methods 104 

Patients 105 

All patients included in this study understood and signed written informed 106 

consent, (Approval number: B2019-436). The clinical samples of scRNA-seq came 107 

from patients diagnosed with LUAD, of which 4 cases received no treatment before 108 

surgery, and 5 cases received chemotherapy (Pemetrexed + Cisplatin). These samples 109 

were donated by inpatients in the Department of Thoracic Surgery, Zhongshan 110 

Hospital of Fudan University. After the lung adenocarcinoma tissue sample was taken, 111 

a small part was cut for paraffin sections, and the remaining tissue was dissociated 112 

into a single-cell suspension. 1x106 cells were drawn from the single-cell suspension 113 

for single-cell RNA sequencing.  114 

 115 

Preparation of single-cell suspensions  116 

For each patient, as described above, we dissociated the lung adenocarcinoma 117 

tumor sample into a single-cell suspension and then took 1x106 cells for single-cell 118 

RNA sequencing. We used the Tumor Dissociation Kit (Miltenyi Biotec, Gladbach, 119 

Germany) to digest tumor tissues with enzymes according to the manufacturer's 120 

instructions. In short, we first cut the lung adenocarcinoma tissue sample into small 121 

tissue pieces about 1cm3 with a surgical scalpel. We then transferred these small tissue 122 

pieces to the MACS C tube containing 4.7 mL DMEM serum-free medium, 200 µL 123 

Enzyme H, 100 µL Enzyme R, and 25 µL Enzyme A. After the tissue was incubated 124 

and digested in a constant temperature incubator 37� for 1 hour, the tissue was 125 

mechanically separated by the MACS™ instrument. This procedure was repeated 126 

twice. After the tissue sample was dissociated, the sample was filtered with a 40 μm 127 

filter to remove the remaining large particles from the single-cell suspension. 128 
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Centrifuge the suspension at 300 × g for 7 minutes, then discard the supernatant. 129 

Next, we used red blood cell lysate (10×) (Sigma-Aldrich, St. Louis, MO, USA) 130 

to remove red blood cells from the single-cell suspension. In short, add 1x Lysis 131 

Buffer to the centrifuge tube containing the single-cell pellet described above. The 132 

cell suspension was then incubated at room temperature for 15 minutes. To improve 133 

the quality of our samples, we also used a Dead Cell Removal Kit (Miltenyi Biotec) to 134 

ensure that the cell survival rate of our sequencing samples was >90%. 135 

 136 

The 10x scRNA-seq data analysis 137 

The R version used in our scRNA-seq data analysis study is 3.6.1. The cell 138 

quality control criteria are as follows: 1) The number of expressed genes is less than 139 

300 or greater than 5000; 2) 10% or more of UMI is localized to mitochondrial or 140 

ribosomal genes. If they meet one of the criteria, the cells are excluded. After quality 141 

standardization, we applied the Seurat R package  (10) to analyze the scRNA-seq data. 142 

First, we convert the scRNA-seq data into Seurat identifiable objects, and then we use 143 

the "FindVariableFeatures" function to find the first 2000 highly variable genes. After 144 

that, we applied principal component analysis (PCA) to reduce the dimensionality of 145 

scRNA-seq data. The "RunTSNE" function is used to perform t-distributed random 146 

neighborhood embedding (TSNE) to visualize various types of cells. The 147 

"FindClusters" and "FindAllMarkers" functions are used for cluster analysis of cell 148 

subclusters and detection of marker genes of cell subclusters. 149 

Finally, according to the SingleR package (11), the CellMarker (http://bio-150 

bigdata.hrbmu.edu.cn/CellMarker/) data set, and a previous report (12), we annotated 151 

different cell types. Simultaneously, some new potential marker genes were verified 152 

through experiments. 153 

 154 

Analysis of Sub-Clusters of Cells in LUAD 155 

After preliminary classification and annotation of all cells, epithelial cells, 156 

stromal cells, and immune cells are extracted through the "SubsetData" function. Then, 157 

we apply the "FindClusters" and "FindAllMarkers" functions to find the marker genes 158 

of each cell and perform dimensionality reduction clustering on each extracted cell 159 

through TSNE. The sub-clusters are annotated by dominantly expressed cell markers 160 

published by previous researchers. To select the marker genes that meet the 161 
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requirements, we set the following cut-off thresholds to reveal the marker genes of 162 

each cluster: adjusted P-value <0.01 and multiple Log2FC >0.5. 163 

 164 

Estimation of the copy number variations  165 

To estimate the initial copy number variation (CNV) of each region, the R 166 

package "scCancer"  (13) was applied. The expression level of each cell was used as 167 

the original input file for calculating CNV. Immune cells served as a background 168 

reference for calculating the CNVs scores of other cells. In addition, the R package 169 

"inferCNV" was used to quantify CNV in tumor cells as described previously  (14). 170 

 171 

Definition of cell scores and signature 172 

To evaluate the M1/M2 polarization state and pro-/anti-inflammatory potential of 173 

macrophages, we performed a GSVA (Gene Set Variation Analysis) analysis. We 174 

retrieved gene sets related to the above functions from previous studies  (15) and used 175 

them as references in this analysis. 176 

We used the average expression of a published list of characteristic genes for T 177 

cell toxicity and exhaustion to define T cells' cytotoxicity, exhaustion, and 178 

costimulation scores. 179 

 180 

Identification of gene markers of malignant cells 181 

We used the identified malignant cell marker genes in tumor cells to identify gene 182 

expression characteristics in malignant cells. Then, we performed unsupervised NMF 183 

(Non-negative Matrix Factorization) to reveal the malignant characteristics of tumor 184 

cells through the NMF R package  (16). 185 

 186 

Trajectory analysis 187 

We used the monocle2 R package to analyze the trajectory of all cells to explore 188 

the trajectory progression of various types of cells in a single cell  (17). First, apply 189 

the function "newCellDataSet" to construct a data object that the monocle 2 R 190 

package can recognize. Afterward, the differentially expressed genes identified by the 191 

Seurat R package were selected for cell trajectory analysis. The "reduceDimension" 192 

function was used to reduce the dimensionality. We used the "orderCells" function to 193 
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project cells on a pseudo-time trajectory to show the trend of cell evolution. A state 194 

consisting of cells mainly derived from nonmalignant tissues in a cluster identified as 195 

epithelial cells was defined as "root cells." 196 

 197 

Analyses of metabolic pathways 198 

To evaluate the activity of various metabolic pathways of each cell type, we 199 

applied the algorithm developed by Xiao et al.  (18). In short, the analysis of 200 

metabolic programs is based on the average expression level of metabolic genes 201 

across cell types to indirectly reflect the metabolic activity of cells. 202 

A variety of environmental factors may potentially affect the metabolic 203 

reprogramming of tumors, such as chemotherapy, nutrient supply, and the 204 

environment where the cells are located. Therefore, exploring these factors and the 205 

cross-conversion between glycolysis and mitochondrial activity in various cells in the 206 

tumor microenvironment is essential for understanding the metabolic reprogramming 207 

of tumors.  208 

We calculated the average gene expression levels in glycolysis and OXPHOS as 209 

indicators of glucose supply and mitochondrial activity, respectively. The data of 210 

genes that were responsive to the two groups of genes (known to be responsive to 211 

glycolysis and OXPHOS) used in the calculations were retrieved from the MsigDB 212 

database. At the same time, the cells were sorted by flow cytometry, and the contents 213 

of various metabolites were tested, in turn, to verify whether they were consistent 214 

with gene expression levels. 215 

 216 

Cell Interaction Network analysis 217 

To study the cell-to-cell interactions between tumors and nonmalignant cells, 218 

immune cells, and stromal cells, we applied the R package "CellChat"  (19) and 219 

"CellPhoneDB" Python package for analysis  (20). The crosstalk analysis between 220 

cells through the "CellChat" package was as follows: (1) First, use the 221 

"createCellChat" function to create a data set object that can be identified by 222 

"CellChat"; (2) Then use "aggregateNet", "computeCommunProbPathway", and 223 

"computeCommunProb" function to automatically infer the possible cellular 224 

communication network between cells; (3) Finally, the "netVisual_aggregate", 225 
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"netVisual_bubble" and "netVisual_signalingRole" functions were used to visualize 226 

the interaction between these cells. Then use the built-in parameters to apply the 227 

"CellPhoneDB" R package. 228 

 229 

Immunohistochemistry and immunofluorescence 230 

The paraffin-embedded lung cancer tissue sections were deparaffinized with 231 

xylene and rehydrated. Discard the blocking solution, add the primary antibody, and 232 

incubate overnight at 4 degrees. After removing the primary antibody and washing 233 

thoroughly, add the secondary antibody to incubate for 1 hour, and then add DAB 234 

chromogenic reagent (Gene Tech, China) for color development. Finally, hematoxylin 235 

is used for nuclear dyeing. 236 

As mentioned in the above immunohistochemistry experiment, the steps before 237 

incubating the primary antibody are the same. Incubate with the corresponding 238 

primary and secondary antibodies with green and red fluorescent dyes, respectively, 239 

and then use DAPI to stain the nuclei. 240 

 241 

Flow cytometry assay 242 

Cells and APC-conjugated mouse anti-human CD45, FITC-conjugated mouse 243 

anti-human CD11b, BV421-conjugated mouse anti-human ARG1, as well as pe-cy-244 

conjugated mouse anti-human CD86 (5 μL/106 cells; BD Biosciences) were incubated 245 

on ice for 30 minutes. Then, FACSAria III (BD Biosciences) was used to quantify the 246 

required cells, and FlowJo software (TreeStar, Woodburn, OR, USA) was used to 247 

analyze the results. 248 

 249 

Animal experiments 250 

All animals involved in this study were treated humanely and received standard 251 

care. The animal experimental procedures were approved by the Institutional Review 252 

Board of Zhongshan Hospital of Fudan University (Shanghai, China). In this 253 

experiment, we housed male athymic nude mice (BALB/cASlac-nu) in a specific 254 

pathogen-free environment. We mixed treated A549 cells and TAMs to make a 1:1 255 

cell mixture at a cell concentration of 5x106 cells/ml. Take 0.05ml of the mixed 256 

suspension of cells and Matrigel, and implant them into the lung thoracic cavity of 257 
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nude mice for in situ tumor formation experiments. 258 

Animals were sacrificed when one of the following signs of disease was observed: 259 

tumor ulceration (greater than 0.5 cm); inability to move or eat; or serious injury. 260 

Changes in tumor size were detected using an optical imaging system for in vivo 261 

small animals (IVIS Spectrum, PerkinElmer, USA).  262 

 263 

Statistical Analysis 264 

The statistical tools, methods, and thresholds of each analysis are clearly 265 

described in the results or detailed in the legend or materials and methods. 266 

 267 

Results 268 

Single-cell transcriptomic profiling of LUAD  269 

A total of 9 patients with non-metastatic LUAD underwent lobectomy with 270 

curative intent in the Department of Thoracic Surgery, Zhongshan Hospital of Fudan 271 

University. Among them, five received three cycles of preoperative neoadjuvant 272 

combination chemotherapy with cisplatin plus pemetrexed (defined as NCT group), 273 

while others only received surgery (defined as the Control group). Following 274 

resection, a malignant lung tumor sample was obtained from each patient, rapidly 275 

digested to a single-cell suspension, and analyzed using 10X scRNA-seq (Figure 1a). 276 

After quality control, a total of 83,622 cells that met the inclusion criteria were 277 

subjected to subsequent analyses, with 33,567 and 50,055 cells derived from the 278 

control and NCT groups, respectively (Figure 1a-c, S1a). Next, we classified cell 279 

types through dimensional reduction and unsupervised clustering using the Seurat 280 

package and relative maker genes. 281 

Using the SingleR package, the CellMarker dataset, and our previous studies (21, 282 

22), we identified cell clusters that could be assigned to known cell lineages: 283 

epithelial cells (marked by SFTA2 and KRT8), T cells (marked by CD3D and 284 

TRBC2), B cells (marked by CD79A and CD19), endothelial cells (marked by EMCN 285 

and CXorf36), mast cells (marked by TPSB2 and TPSAB1), macrophages (marked by 286 

CD68 and APOE), monocytes (marked by FGL2 and LGALS2), fibroblasts (marked 287 

by LUM and DCN), neutrophils (marked by FCGR3B and CMTM2). Meanwhile, the 288 

consensus clustering of these cells also exhibited the consistency and homogeneity of 289 
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the expression profile within each identified cell type (Figure 1b). For instance, 290 

clusters 1, 3, 6, 7, and 15, all designated as epithelial cells, were adjacent to each other 291 

in the consensus heatmap. This result confirms the robustness and reliability of our 292 

data pre-processing. Detailed distributions of these marker genes in each cluster are 293 

depicted in Figure S1. 294 

By comparing the composition of different types of cells in each group, we 295 

noticed tumor microenvironment heterogeneity: the proportion of cells other than 296 

tumor cells, especially immune cells (mainly T and B), was significantly higher in the 297 

NCT (Figure 1e). Therefore, to identify subclusters within each of these nine major 298 

cell types, we observed a complex cellular ecosystem containing eight different 299 

epithelial subclusters and 43 non-epithelial clusters. Interestingly, the epithelial 300 

subclusters, mainly composed of cancer cells, were highly patient-specific, while the 301 

immune cell subclusters mostly consisted of cells derived from four or more patients 302 

(Figure 1f). This observation demonstrated the substantial variation and heterogeneity 303 

of tumor microenvironment among groups and individuals. Therefore, we further 304 

explored these alterations associated with the therapeutic regimen in greater detail for 305 

the primary cell types in subsequent analyses. 306 

 307 

Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant 308 

chemotherapy. 309 

Metabolic reprogramming is a hallmark of malignant tumors. Recent studies have 310 

also shown that tumors' metabolic characteristics and preferences change during 311 

cancer progression  (23). In each type of cell derived from the Control and NCT 312 

groups, more significantly up-regulated metabolic pathways were enriched in cancer 313 

cells, nonmalignant epithelial cells, fibroblasts, and macrophages (Figure 2a). The 314 

enrichment of oxidative phosphorylation, glycolysis, pyruvate metabolism, and the 315 

tricarboxylic acid cycle indicates active glucose metabolism in these four cell types. 316 

By analyzing the activity of metabolic pathways in cells from different sources, we 317 

found that the activity scores of the metabolic pathways of tumor cells and 318 

macrophages were significantly higher than those of other types of cells. Notably, the 319 

metabolic pathway activity of macrophages and malignant cells increased after 320 

chemotherapy (Figure 2b).  321 
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 322 

Changes in metabolism and gene expression of tumor cells after neoadjuvant 323 

chemotherapy  324 

To accurately analyze the effect of chemotherapy on the cancer cells, we first re-325 

clustered the epithelial cells, and 12 clusters were identified (Figure 3a). Copy number 326 

variations (CNVs) (Figure S2a) and marker genes were used to accurately separate 327 

malignant and nonmalignant epithelial cells in Control and NCT samples. They were 328 

finally defined as MalignantSA cells (Marker genes: FOXL2/MET/CD74), 329 

MalignantNCT cells (Marker genes: RAC1/MAF/CXCL1), and Nonmalignant cells 330 

(Marker genes: ABCA3/SFTPB/LPCAT) (Figure 3d). These marker genes were 331 

further confirmed by immunofluorescence experiments (Figure S2d). We found that 332 

the proportion of malignant cells was significantly reduced after chemotherapy 333 

(Figure 3b, c, Figure S2b). Although malignant cells were significantly reduced after 334 

chemotherapy, genetic aberrations by CNVs analysis revealed that MalignantNCT 335 

cells exhibited significantly higher malignant scores compared to MalignantSA cells 336 

(Figure S2a).  337 

We performed trajectory analysis to track the reprogramming of epithelial cells 338 

across the three groups. Nonmalignant cells evolved in two directions and developed 339 

into two clusters of cells (Figure 3e). In this evolutionary process, glycolysis-related 340 

genes (ENO1, LDHB, GAPDH), oxidative phosphorylation-related genes (NDUFA4), 341 

mitochondrial repair-related genes (TOMM7), glucose and lipid metabolism 342 

regulation genes (S100A16), ATPase activity-related genes (CCT6A), tumor immune 343 

regulation-related genes (CCL20, CXCL1, PAEP, PPP1R14B), hypoxia response 344 

regulation genes (CHCHD2), apoptosis regulation genes (MEG3, CEACAM5), 345 

mRNA alternative splicing-related genes (LSM5), and Ras-related protein (RAC1, 346 

RALA) gradually increased over time in the pseudotime analysis. These findings 347 

indicate that these genes play an essential role in the transformation of epithelial cells 348 

into tumor cells (Figure 3f, Figure S2e). Correspondingly, during the process of 349 

epithelial cells transforming into malignant tumor cells, the activity of the glycolysis 350 

pathway, oxidative phosphorylation pathway, angiogenesis pathway, DNA repair 351 

pathway, mTORC1 signaling pathway gradually increased over time. However, P53 352 

pathway, apoptosis signaling pathway activity then steadily decreased (Figure S2f). 353 
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Similarly, we performed GSVA analysis on malignant and nonmalignant cells from 354 

the three groups. We found that the glycolysis pathway, oxidative phosphorylation 355 

pathway, MYC-targets, E2F-targets, DNA repair pathway, and mTORC1 signaling 356 

pathway were significantly enriched in MalignantNCT cells derived from the NCT 357 

group (Figure 3g). The metabolic reprogramming enables cancer cells to resist anti-358 

cancer drugs, thereby developing chemoresistance  (24). To find the hub genes that 359 

cause the malignant transformation of epithelial cells, through Single-Cell Regulatory 360 

Network Inference and Clustering (SCENIC) analysis, we found that E2F1, BRCA1, 361 

PURA, NKX2-1, NFIC, ETV7, STAT1, EGR1, and CEBPD were highly expressed in 362 

malignant cells (cluster 2, 6, 11) from the Control group. In contrast, the malignant 363 

cells from the NCT group (clusters 1, 7, 8, 9) have high expression of transcription 364 

factors (TFs) such as PATZ1, SIX5, BATF, IRF1, FOXA1, and CEBPG. After 365 

neoadjuvant chemotherapy, the increased expression of these TFs promoted the 366 

occurrence of lung adenocarcinoma complex phenotypic remodeling (Figure 3h). 367 

 Tumor cells have significant heterogeneity. We re-clustered the malignant cells 368 

and obtained 13 sub-clusters (Figure 3i). Cluster 1, 2, 5, 6, 8, and 10 were derived 369 

from the NCT group (Figure 3i). Through the analysis of the metabolism of these cell 370 

subclusters, we found that clusters 5 (marker genes: PCP4/NPW/VSIG1), 6 (marker 371 

genes: ERG1/HSPA6), and 10 (marker genes: C9orf172/SLC39A10) from the NCT 372 

group showed high levels of glycolysis, oxidative phosphorylation and pyruvate 373 

metabolism (Figure 3k). GSVA analysis also showed that the glycolysis and oxidative 374 

phosphorylation signaling pathway-related genes were significantly enriched in 375 

clusters 5, 6, and 10 (Figure 3l). Similarly, we re-clustered nonmalignant cells to 376 

obtain 16 sub-clusters, of which clusters 1, 3, 8, 11, 12，13，15 were from the NCT 377 

group, and the rest were from the Control group (Figure S2g, h). Clusters 4 and 7 378 

from the Control group showed high levels of glycolysis and oxidative 379 

phosphorylation (Figure S2i, j), which contrasts with the glucose metabolism 380 

observed in malignant cells from the Control group. 381 

 382 

Changes in stroma cells resulted from neoadjuvant chemotherapy. 383 

To investigate stromal cell dynamics in the tumor microenvironment (TME), we 384 

obtained 8944 presumed stromal cells, as shown in Figure 1c. We re-clustered them 385 
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into five sub-populations, including COL14A1-positive fibroblasts, endothelial-1, 386 

endothelial-2, myofibroblasts, pericytes, and smooth muscle cells (SMC) (Figure 4a-c) 387 

(25-27). Detailed expression of the marker genes in each cell type is outlined in 388 

Figure 4c. Herein, we noticed a significant difference between the distribution of each 389 

of these five clusters in patients receiving varied types of treatment. The COL14A1-390 

positive fibroblasts comprised the main fibroblast types in NCT groups, in which both 391 

endothelial 1 & 2 were mainly found. Pericyte and SMC were presented in all three 392 

groups. In contrast, myofibroblasts exclusively originated from the control group. 393 

According to previous research, myofibroblasts have been described as cancer-394 

associated fibroblasts that participate in extensive tissue remodeling, angiogenesis, 395 

and tumor progression (25, 26). Therefore, this finding revealed that NCT and 396 

immunotherapy significantly altered the stromal cell composition in the tumor 397 

microenvironment. 398 

To explore the activity of known biological pathways in these stromal cells, we 399 

performed functional enrichment analysis. In particular, GSVA analysis exhibited that 400 

endothelial 1 & 2 shared several up-regulated pathways related to cell proliferation 401 

and fate regulation, including IL6-JAK-STAT3, TGFβ, and WNT-β catenin signaling. 402 

Besides, pathways associated with energy metabolisms such as glycolysis and 403 

hypoxia were up-regulated in myofibroblast, whereas pericyte was characterized by 404 

enriched oxidative phosphorylation and adipogenesis (Figure 4d). Meanwhile, when 405 

comparing the GSVA scores of these biological processes between patients from 406 

control or NCT groups, we noted that the stromal cells exhibited enhanced metabolic 407 

levels after NCT, as represented by up-regulated glycolysis, oxidative 408 

phosphorylation, and fatty acid metabolism pathways (Figure 4e).  409 

Considering the essential role of fibroblasts and their complicated function in 410 

shaping the tumor microenvironment, we further re-clustered them into ten subgroups 411 

(Figure 4f-h). As shown in Figure 4i-j, the GSVA score of the metabolic pathways, 412 

including glycolysis and oxidative phosphorylation, and pyruvate metabolism and 413 

citrate cycle (TCA cycle), were up-regulated in clusters 5, 6, and 9. Intriguingly, the 414 

upregulation of these pathways was mainly observed in NCT groups (Figure S3a). 415 

The three clusters were represented by distinct gene expression profiles, such as 416 

overexpressed MYH11 in cluster 5, RGS5 in cluster 6, and TOP2A in cluster 9. Since 417 
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the potential involvement of these genes in the manipulation of fibroblast metabolism 418 

has never been proposed yet, they might serve as new specific markers of the 419 

fibroblast subtype with such a high metabolic rate in the tumor microenvironment. 420 

Besides, the SCENIC analysis demonstrated that MEF2C, NFIA, and RAD21 might 421 

drive the formation of these clusters, respectively (Figure S3c). Further in vitro 422 

studies are required to elucidate these notable fibroblasts' potential function and driver 423 

genes in LUAD’s development and response to NCT. Conclusively, cellular dynamics 424 

in stromal cells support a consistent phenotypic shift of fibroblasts towards an 425 

increased metabolic level after preoperative chemotherapy. 426 

 427 

Chemotherapy drove tumor-associated macrophages to turn more into 428 

phenotypes that promote tumor progression. 429 

In the process of cancer formation, tumor-associated macrophages (Tumor-430 

Associated Macrophages, TAM) have an essential influence on the inflammatory 431 

response in the tumor microenvironment  (28). To study the effects of chemotherapy 432 

on TAMs, we first extracted all macrophages (10526 cells) and re-clustered them into 433 

ten cell clusters (Figure 5a). From Figure 1e, we can see that the proportion of 434 

macrophages after chemotherapy was reduced.  435 

The cell clusters derived from the Control group were 1/2/3/5/7 clusters, those 436 

from the NCT group were mainly 0/4/8 clusters, and the number of cells in the 6/9 437 

clusters from the Control group and the NCT group was similar (Figure 5a). The 438 

proportion of cells in cluster 0 (marker genes: CXCL8/ CCL20/CHIT1), 4 (marker 439 

genes: CCL3/ CCL4/ SEPP1), 8 (marker genes: ARG2/ S100A2) decreased after 440 

chemotherapy, while the remaining cell clusters increased (Figure 5b, c). Through the 441 

GSVA analysis, we found that glycolysis, angiogenesis, PI3K-AKT-mTOR-signaling, 442 

IL6-JAK-STAT3-signaling, hypoxia, TGF-beta-signaling, and other signaling 443 

pathways were significantly enriched in cluster 0/1/8. Promoting inflammation-related 444 

signaling pathways such as TNF-signaling-via-NFKB, inflammatory-response, Notch-445 

signaling, fatty-acid-metabolism, and oxidative-phosphorylation were increased 446 

dramatically in clusters 2/4/7/9 (Figure 5d).  447 

Similarly, we found that glycolysis/gluconeogenesis, amino sugar and nucleotide 448 

sugar metabolism, alanine, aspartate, and glutamate metabolism were more active in 449 
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the 0/1/8 cluster. In contrast, oxidative phosphorylation, citrate cycle, pyruvate 450 

metabolism, fatty acid elongation, fatty acid biosynthesis, etc., were more active in 451 

clusters 2/4/7/9 (Figure 5e). According to the GSVA analysis, the 452 

glycolysis/gluconeogenesis signaling pathway was significantly enriched in 453 

macrophages from the NCT group. In contrast, macrophages from the Control group 454 

showed a high activity in oxidative phosphorylation, fatty acid elongation, fatty acid 455 

degradation, fatty acid biosynthesis, and citrate cycle (TCA cycle) (Figure 5f). These 456 

results indicate that significant metabolic reprogramming occurred in tumor-457 

associated macrophages after chemotherapy, and different TAMs cell clusters also 458 

showed huge metabolic differences. In general, our results revealed that 459 

chemotherapy could promote glycolysis of TAMs and inhibit fatty acid metabolism.  460 

To explore the key genes that regulate the differences in the metabolism of each 461 

subcluster of macrophages, we performed a SCENIC analysis. We found that HES, 462 

PPARG, SPI1, CEBPB, and IRF7 were highly expressed in cluster 0/1, which may be 463 

the key genes that regulate the conversion of macrophages into M2-like TAMs, while 464 

clusters 2/4/7/9 highly expressed STAT1, STAT2, NFKB1, JUN, and FOS that 465 

regulate the conversion of macrophages to M1-like TAMs (Figure 5g).  466 

According to the gene expression of macrophages, we divided these 10 clusters of 467 

cells into three subtypes of macrophages through cluster analysis (Figure 5h). We 468 

scored the expression levels of pro-inflammatory and anti-inflammatory genes in all 469 

macrophages. We displayed each color-coded macrophage subtype's M1 and M2 470 

scores (left) and pro-inflammatory and anti-inflammatory scores (right) through a 471 

scatter plot. 472 

Similarly, we found that 0/1/8 cluster cells exhibited M2-like polarization and 473 

anti-inflammatory properties, while 2/4/7/9 exhibited M1-like polarization and pro-474 

inflammatory properties (Figure 5i). Based on these analyses, we divided these 10 475 

clusters of macrophage subtypes into three categories: M1-like polarized phenotype 476 

was defined as Anti-mac; M2-like polarized phenotype was defined as Pro-mac; those 477 

without obvious polarized phenotype were defined as Mix (Figure 5j). We found that 478 

the proportion of Pro-mac in the tumor microenvironment increased after 479 

chemotherapy, especially in the case of NCT-1 (Figure 5k). Interestingly, via 480 

trajectory analysis we found that two subtypes, Anti-mac and Mix, can be converted 481 
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to Pro-mac. In this evolution process, the high expression of LYZ, FBP1, ALOX5AP, 482 

MARCO, S100A9, FN1, CXCL8, APOC1CTSL, and other genes may have played an 483 

essential role in promoting the conversion of Anti-mac to Pro-mac (Figure 5l,m). This 484 

suggests that we can change the phenotype of TAMs in the tumor microenvironment 485 

by altering the expression of these genes.  486 

 487 

Chemo-driven Pro-mac and Anti-mac metabolic reprogramming exerted 488 

diametrically opposite effects on tumor cells. 489 

To further verify the remodeling effect of chemotherapy on the functional 490 

phenotype of TAMs in the tumor microenvironment, we first used the FindAllMarkers 491 

function in the Seurat package to find the marker genes of Pro-mac, Anti-mac, and 492 

Mix cells. Pro-mac was mainly characterized by high expression of CXCL8, ARG1, 493 

CREM, CD206, STAT6, CCL22, MMP7, and CCL3L3, while Anti-mac was mainly 494 

characterized by high expression of CD86, HLA-DR, PLAC8, CXCL10, COX2, 495 

IL15R, and SCGB3A1 (Figure 6a). Based on these marker genes, we sorted out Anti-496 

mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG+) by 497 

flow cytometry (Figure 6b). To verify whether the cells we sorted were the cell 498 

population we wanted, we re-verified the positive rates of Pro-mac and Anti-mac cells 499 

by flow cytometry (Figure 6c). Our results showed that the proportion of Pro-mac 500 

cells in lung adenocarcinoma tissues after neoadjuvant chemotherapy increased 501 

significantly (Figure 6d). In fact, by performing immunofluorescence staining on lung 502 

adenocarcinoma tissue samples derived from surgery alone and neoadjuvant 503 

chemotherapy, we also found that the proportion of cells marked by the marker gene 504 

CD206 of M2-like TAMs increased significantly after chemotherapy (Figure 6e). 505 

Macrophages can promote tumor progression by secreting many cytokines. By 506 

analyzing the differentially expressed genes of Pro-mac and Anti-mac cells, we found 507 

IL10, PDCD1LG2, PDGF, VEGF, MMP9, CXCL9, CXCR4, IL22, KLF4, and TGF-β 508 

were highly expressed in Pro-mac cells that promote tumor growth, angiogenesis and 509 

suppress tumor immunity (Figure 6f). We obtained the Pro-mac and Anti-mac cells 510 

from 12 cases (6 cases of surgery alone, 6 cases of surgical samples after neoadjuvant 511 

chemotherapy) by flow cytometry. We named them Control Anti-mac, Control Pro-512 

mac, NCT Anti-mac, NCT Pro-mac. After placing them in a cell culture flask for 24 513 
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hours, the content of some key cytokines in the supernatant of the culture medium 514 

was detected by enzyme-linked immunosorbent assay (ELISA). The levels of MMP9, 515 

EGF, and VEGF secreted by Pro-mac after neoadjuvant chemotherapy were 516 

significantly higher than those of Pro-mac from the surgery alone group. MMP9, EGF, 517 

VEGF, and IL10 secreted by Pro-mac were significantly higher than Anti-mac (Figure 518 

6g). Similarly, when Control Anti-mac, Control Pro-mac, NCT Anti-mac, and NCT 519 

Pro-mac were inoculated subcutaneously with A549 cells at a ratio of 1:1 (Reinjection 520 

of macrophages two weeks later), we also found that NCT Pro-mac can significantly 521 

promote tumor growth. Interestingly, NCT Anti-mac in the tumor microenvironment 522 

after chemotherapy can significantly inhibit the growth of tumor cells, and this 523 

inhibitory ability was stronger than Control Anti-mac (Figure 6h, i).  524 

Our previous analysis found that Pro-mac glycolysis-related signaling pathways 525 

were significantly enriched, while in Anti-mac, oxidative phosphorylation and fatty 526 

acid metabolism signaling pathways were greatly enhanced (Figure 6j). In vitro 527 

experiments show that NCT Pro-mac's ability to take up glucose and produce lactate 528 

was considerably more potent than other cells (Figure 6k). It was worth noting that 529 

the glycolysis level of NCT Anti-mac was markedly higher than that of Control Anti-530 

mac (Figure 6l). When we placed the Pro-mac and Anti-mac in a 24-well plate and co-531 

cultured with A549 cells in the Transwell chamber, we found that NCT Pro-mac can 532 

significantly enhance the invasion ability of A549 cells. At the same time, NCT Anti-533 

mac showed a stronger ability to inhibit tumor invasion than Control Anti-mac (Figure 534 

6m). However, when we used 2-DG (800uM, the concentration determined in pre-535 

experiment) to inhibit the glycolysis of TAMs, the ability of Pro-mac to promote 536 

tumor progression was significantly weakened, and the power of NCT Anti-mac to 537 

suppress tumors was also considerably reduced (Figure 6m). By mixing these cells 538 

with macrophages for 3D culture, we found that the ability of NCT Anti-mac to 539 

inhibit tumor proliferation was significantly weakened when inhibiting its glycolytic 540 

activity. This showed that glycolysis could enhance the ability of Pro-mac to promote 541 

tumor progression and increase the capacity of Anti-mac to inhibit tumors (Figure 6n). 542 

Finally, through in vivo experiments, we inoculated a mixture of TAMs and A549 to 543 

nude mice and obtained the same experimental results as in Figure 6m/n (Figure 6o). 544 

 545 
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 546 

Chemotherapy treatment-induced remodeling of T and B cells. 547 

Considering the essential role of the tumor microenvironment, especially the 548 

immune infiltration level, in tumor development and response to therapy, we next 549 

investigated the characteristics of T and B cells. In our study, 22530 T cells were 550 

detected, which accounted for 26.9% of the total. We noticed that the re-clustered T 551 

cells could not be visibly distinguished among patients receiving different therapeutic 552 

regimens (Supplementary Figure 6a-b). According to the expression of a series of 553 

canonical markers of T cell subtypes, the T cells were divided into CD4+ T (marked 554 

by LTB, CD45RO, etc.), CD8+ T (marked by NKG7, GZMA, GZMB, CD8A, etc.), 555 

and Tregs (marked by FOXP3, CTLA4, etc.)  (12, 21, 29) (Supplementary Figure 6c-556 

d). The detailed expression profile of these marker genes is exhibited in 557 

Supplementary Figure 6e. Meanwhile, aside from these previously published T-cell 558 

markers, we also noted the specific upregulation of several genes in a particular 559 

cluster. At the same time, their expression specificity has not been elucidated yet.  560 

As the major executor of tumor immunology, CD8+ T cells are thought to 561 

differentiate into cytotoxic T cells (CTLs) and specifically recognize endogenous 562 

antigenic peptides presented by the major histocompatibility complex I, thereby 563 

eliminating tumor cells (30). By comparing the composition of T cell subtypes in 564 

LUAD cells derived from different groups, we found that the proportion of CD8+T 565 

cells in the NCT group was significantly higher than those in patients receiving only 566 

surgical treatment (Supplementary Figure 6d). Therefore, we focused on CD8+ T cells 567 

for subsequent analyses and re-clustered them into five new subgroups, in which 568 

clusters 1-4 were mainly derived from the NCT group. In contrast, cluster 5 was 569 

predominantly enriched in the control group (Supplementary Figure 6f-k).  570 

We next explored the expression profile of genes associated with T cell’s function 571 

in each CD8+ T sub-cluster. As depicted in Supplementary Figure 6i, clusters 1 and 2 572 

were characterized by up-regulated naïve T cell markers, such as TCF7, LEF1, and 573 

CCR7, whereas genes associated with immune inhibition, like TIGIT, CTLA4, 574 

PDCD1, and HAVCR2, were enriched explicitly in cluster 3. Cytotoxic function-575 

related genes, including GZMA GNLY, PRF1, GZMP, and GZMK, IFNG, IL2, were 576 

respectively overexpressed in clusters 4 and 5. Based on this evidence, we defined 577 
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clusters 1 and 2 as naive T, three as regulatory/exhausted T, and 4 & 5 as cytotoxic T 578 

cells. Intriguingly, regarding both the sample origins and expression profiles of CD8+ 579 

T cells in clusters 4 and 5, we can reasonably hypothesize that NCT treatment 580 

potentially induces the reprogramming of CD8+ cytotoxic cells. To further verify this 581 

statement, we performed pseudotime-ordered trajectory analysis to monitor the 582 

dynamic view of CD8+ T cells’ reprogramming process via Monocle. As shown in 583 

Supplementary Figure 6l-p, three phases were detected in these clusters. Cluster 1, 584 

which exhibited the lowest cytotoxicity, was designated as the “root” state according 585 

to pseudotime. 586 

In contrast, the immune inhibition-related genes like LAG3, TIGIT, and PDCD1, 587 

and cytotoxicity-related genes such as GZMB and IFNG were respectively activated 588 

in phases 2 and 3. This phenomenon is consistent with our T cell phenotype 589 

classification mentioned above. Then, our results showed differentiation paths from 590 

naive T to Treg/exhausted cells and cytotoxic cells. Considering the transcriptional 591 

changes associated with T cell reprogramming, naive T cells (phase 1) expressing 592 

high CCR6 and TCF7 differentiate into two distinct fates, clusters 4 and 5, in phase 3. 593 

Notably, the cells positioned at the cluster 4 branch were characterized by higher 594 

cytotoxicity than in cluster 5 (Supplementary Figure 6l, m, o). Regarding the sample 595 

origins of the two clusters, these findings demonstrated that NCT treatment ignites a 596 

relatively more robust immune cytotoxic response towards tumor cells, which could 597 

be partly explained by the excessive production of neoantigen caused by NCT-598 

induced DNA damage. 599 

SCENIC analyses suggested that distinct transcriptional mechanisms drove the 600 

differentiation of naive T cells to either cluster 4 or 5. As revealed in Supplementary 601 

Figure 6q, the cytotoxic cells derived from NCT-treated LUAD patients (cluster 4) 602 

were characterized by increased activation of FOSL2-extended, REL, YBX1, and NF-603 

KB pathways. In contrast, those from the control group (cluster 5) had up-regulated 604 

JUN, FOSB, and ELF3 extended pathways. Together, our results revealed that 605 

preoperative chemotherapy prompts the naïve T cells to differentiate towards a more 606 

cytotoxic phenotype. 607 

As for B cells, only 3902 (4.6%) cells were detected. 475 cells were derived from 608 

the control group, while 3427 were from the NCT group (Supplementary Figure 4a). 609 
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Herein, we re-clustered the B cells into two sub-clusters. Based on canonical cell 610 

markers, class-switched memory B-cells (marked by CD19, CD37, and HLA-DRA) 611 

and plasma cells (marked by IGHA2, IGHG4, and CD38) were defined 612 

(Supplementary Figure 4a-c). The former compromised the majority of the total B 613 

cells (80.7%). Notably, the sample origins of the B cells demonstrated that a higher 614 

proportion of plasma cells characterized the control groups. In contrast, the class-615 

switched memory B cells were significantly enriched in preoperatively treated 616 

patients. 617 

Meanwhile, we performed GSVA analysis to explore several key biological 618 

pathways in the B cells derived from different groups. As depicted in Supplementary 619 

Figure 4d, B cells from the control group exhibited significant activating ways 620 

associated with metabolism and energy supply, including glycolysis and oxidative 621 

phosphorylation. However, the B cells derived from the NCT group exerted essential 622 

roles in most of the pathways, including glycolysis, fatty acid metabolism, apoptosis, 623 

and hypoxia. Overall, our observations demonstrated that NCT not only induced T 624 

cell reprogramming but also extensively impacted the composition and function of B 625 

cells in the tumor microenvironment. 626 

 627 

Crosstalk among tumor and immune cells 628 

The tumor microenvironment consists of numerous cell types, and the importance 629 

of crosstalk between cancer and immune cells has been implicated in various 630 

biological processes associated with tumor development (21, 29, 31). As depicted in 631 

Supplementary Figure 7a-b and Supplementary Figure 5a, the interactions between 632 

malignant cells and macrophages exhibited the strongest activity in both control and 633 

NCT groups, highlighting the important role of the macrophage in tumor immunology. 634 

Notably, we noted that the cell-to-cell communications among different cell types, 635 

especially between tumoral and immune cells such as cytotoxic CD8+ T, Treg, and 636 

memory B, were significantly strengthened in the NCT group. Specifically, we further 637 

investigated the ligand-receptor atlas within and between tumor cells and immune 638 

cells, which seemed to be quite reshaped by NCT (Supplementary Figure 7c-d, 639 

Supplementary Figure 5b). For example, MIF-CXCR4, whose activation usually 640 

promotes leukocyte recruitment (32), was increasingly activated in the NCT group 641 
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between malignant and memory B, CD4+ T, and cytotoxic CD8+ T, whereas inhibited 642 

in macrophages. Meanwhile, MDK-NCL exhibited a similar activating phenotype 643 

with MIF-CXCR4, but its function in shaping the tumor microenvironment has never 644 

been reported. So, it might serve as a potential target of immune checkpoint inhibitor 645 

treatment in the future.  646 

Given the above-mentioned NCT-induced immune activation, which was 647 

characterized by CD8+ T with higher cytotoxicity and an increased proportion of 648 

class-switched memory B cells, these findings further clarified that NCT could ignite 649 

a strong intrinsic immune response towards tumor cells. However, the inhibitory 650 

interaction pairs LGALS9-CD44 and LGALS9-HAVCR2 was abnormally activated in 651 

the NCT group between malignant and several T cells or macrophages (33). Its exact 652 

role in such conditions still requires further exploration.  653 

In summary, our study revealed that the LUAD tissues that have experienced 654 

NCT had a distinct landscape of intracellular interactions, which might provide new 655 

ideas for future research focusing on implementing immunotherapy in the 656 

comprehensive anti-tumor therapeutic regimen.  657 

 658 

Discussion 659 

Although important advances in chemotherapy have reduced the mortality of 660 

cancer patients, the 5-year survival rate is still low, mainly due to the inherent or 661 

acquired mechanism of anti-tumor drug resistance  (34). Chemoresistance results 662 

from complex reprogramming processes, such as drug export/import, drug 663 

detoxification, DNA damage repair, and cell apoptosis. Recently, the correlation 664 

between metabolic regulation and chemoresistance has received great attention. More 665 

efforts are devoted to targeting cell metabolism to overcome chemoresistance  (35). 666 

The classic mechanism is to target the transport of anti-cancer drugs by increasing the 667 

activity of the efflux pump, such as the adenosine triphosphate (ATP) binding cassette 668 

(ABC) transporter. Cancer cells exhibit a special metabolic phenotype-aerobic 669 

glycolysis, quickly transporting and consuming glucose to produce ATP and promote 670 

drug efflux. PI3K/AKT pathway is activated by producing 3'-phosphorylated 671 

phosphoinositol, which is an important signaling pathway for lung cancer MDR  (36). 672 

Glycolysis is beneficial to cancer cells by producing ATP faster, providing many 673 
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intermediates for violent biosynthesis, maintaining redox balance, and creating a 674 

microenvironment with low immunity (24). The combination therapy of shikonin+2-675 

DG could inhibit glycolytic phenotype, migration, and invasion by regulating the 676 

Akt/HIF1α/HK-2 signal axis  (37).  677 

Normal and healthy cells mainly produce energy through OXPHOS. However, 678 

due to rapid cell growth and frequent division, cancer cells face impressive metabolic 679 

challenges, which force them to adjust their energy metabolism to meet these needs  680 

(38). It is generally believed that cancer cells mainly obtain energy through glycolysis, 681 

which is named the Warburg effect. After chemotherapy, cancer cells change their 682 

metabolism from glycolysis to OXPHOS. This process is regulated by the SIRT1-683 

PGC1α signaling pathway, thus increasing the resistance of cells to chemotherapy  684 

(39). Drug-resistant cancer cells can often be re-sensitized to anti-cancer treatments 685 

by targeting the metabolic pathways of import, catabolism, and synthesis of basic cell 686 

components  (40). Recent studies have determined the cancer-promoting function of 687 

mitochondrial oxidative phosphorylation (OXPHOS) by regulating cell growth and 688 

redox homeostasis  (41). Our study also found that after chemotherapy, the glycolysis 689 

and oxidative phosphorylation of tumor cells was enhanced. This metabolic 690 

reprogramming may enable cancer cells to have higher proliferation, invasion, and 691 

metastasis capabilities. 692 

Tumor endothelial cells (ECs) have high glycolytic metabolism, shunting 693 

intermediates to nucleotide synthesis. Blocking of the glycolysis activator PFKFB3 in 694 

EC cells does not affect tumor growth. Still, it reduces cancer cell invasion, 695 

intravascular, and metastasis by normalizing tumor blood vessels, thereby improving 696 

blood vessel maturation and perfusion. PFKFB3 inhibition tightens the vascular 697 

barrier by reducing VE-cadherin endocytosis in endothelial cells and reduces 698 

glycolysis to make cells more quiescent and adherent (by up-regulating N-cadherin); 699 

it also reduces NF-κB signaling to reduce the expression of cancer cell adhesion 700 

molecules in ECs. PFKFB3 blockade therapy also improves chemotherapy for 701 

primary and metastatic tumors  (42).  702 

Due to rapid cell growth and frequent division in tumor cells, cancer cells face 703 

impressive metabolic challenges, which force them to adjust energy metabolism to 704 

meet these needs, namely metabolic reprogramming  (43). However, studies have 705 
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shown that metabolic plasticity in tumors is contributed by the glycolytic phenotype 706 

(as explained by Warburg) and that mitochondrial energy reprogramming has recently 707 

been identified as a feature of tumors  (44). Chemotherapy can increase 708 

SIRT1/PGC1α-dependent oxidative phosphorylation (OXPHOS) in tumor cells, 709 

thereby promoting the survival of colorectal tumors during treatment. This 710 

phenomenon was also observed in chemotherapy-exposed liver metastases, which 711 

strongly suggests that chemotherapy causes long-term changes in tumor metabolism, 712 

which may interfere with drug efficacy (39). In addition, elevated glycolysis and 713 

OXPHOS promote epithelial-mesenchymal transition and cancer stem cell (CSC) 714 

phenotype in tumor cells  (45). Therefore, recent research emphasizes the mixed 715 

glycolysis/OXPHOS phenotype rather than the phenotype that relies excessively on 716 

glycolysis to meet cellular energy requirements, thereby significantly promoting 717 

aggressiveness and treatment resistance  (44). Chemotherapy has a significant effect 718 

on the metabolic reprogramming of tumor cells and profoundly affects stromal and 719 

immune cells' metabolism in the tumor microenvironment. 720 

Theoretically, chemical drugs can inhibit tumorigenesis by blocking the 721 

proliferation of tumor cells or depositing in tumor cell apoptosis, but this 722 

unintentionally causes "tissue damage." The body will mistake this tumor-specific 723 

damage for normal tissue damage and then inevitably activate the tissue damage 724 

repair mechanism dominated by TAM (46). The result of this effect is that tumors will 725 

grow rapidly, and patients will develop resistance to anti-tumor chemotherapy.  726 

Meanwhile, as suggested by Parra et al., neoadjuvant chemotherapy exerted PD-727 

L1 upregulation in NSCLC patients. It increased the density of CD68+ macrophages, 728 

which were associated with better outcomes in both univariate and multivariate 729 

analyses (47). However, opposite results were also reported by Talebian et al. that 730 

NSCLC patients treated with radiotherapy, rather than a platinum-based standard-of-731 

care chemotherapy, displayed a decrease in lymphoid cells and a relative increase in 732 

macrophages (48). Therefore, the role of TAMs in LUAD cells’ response to 733 

chemotherapy still requires further investigation. 734 

Our research reveals the remodeling effect of chemotherapy on tumor 735 

microenvironment. However, this study still has many limitations. Firstly, only 9 736 

samples were included in our study, and the number of samples is a defect of our 737 

study. Secondly, our study did not detect other causes of tumor heterogeneity, such as 738 
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EGFR-mutant or ALK-translocated. We explored the possible impact of these factors 739 

and found that there was no significant difference in the expression of EGFR and 740 

other genes between the NCT group and the Control group (Supplementary Table 1). 741 

Thirdly, our data can only reflect the change in gene expression of various types of 742 

cells in the tumor microenvironment after chemotherapy. We can not draw a direct 743 

conclusion on whether chemotherapy will benefit patients or not. These need further 744 

study in the future. 745 
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 802 

Figure Legend 803 

 804 

Figure 1. Single-cell atlas of lung adenocarcinoma (LUAD) tissues from the control, 805 

and NCT group. (a) Workflow depicting collection and processing of LUAD samples 806 
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for scRNA-seq analysis. (b) Consensus clustering based on the correlations among the 807 

20 clusters identified through the tSNE algorithm. (c) TSNE of the 83622 cells 808 

enrolled here, with each cell color indicating: its sample type of origin, the 809 

corresponding patient, predicted cell type, and the transcript counts. (d) Expression of 810 

marker genes for the cell types defined above each panel. (e) The proportion of each 811 

cell type in different groups and samples. (f) For each of the eight epithelial 812 

subclusters and 43 non-epithelial clusters (left to right): the fraction of cells 813 

originating from the three groups, the fraction of cells originating from each of the 814 

nine patients, the number of cells and box plots of the number of transcripts (with plot 815 

center, box, and whiskers corresponding to the median, IQR and 1.5 × IQR, 816 

respectively). NCT: Neoadjuvant chemotherapy. 817 

 818 

 819 

Supplementary Figure 1. Figures related to Figure 1. (a) The tSNE plots of all 820 

clusters in this research. (b) The heatmap showed the marker genes in the different 821 

cell types.  822 

 823 

 824 

Figure 2. Metabolic reprogramming in lung adenocarcinoma driven by neoadjuvant 825 

chemotherapy. (a) The metabolic pathway activities of different cells from the Control 826 

group and NCT group showed significant differences. (b) The metabolic pathway 827 

activity of macrophages and malignant cells increased significantly after 828 

chemotherapy. 829 

 830 

 831 

Figure 3. Tumor cells and epithelial cells had significant phenotypic changes before 832 

and after chemotherapy. (a) The tSNE plots and overview of the tumor cells and 833 

epithelial cells. (b) The proportion of malignant cells and nonmalignant cells in the 834 

Control group and NCT group. (c) Flow cytometry showed that the proportion of 835 

malignant cells was significantly reduced after chemotherapy and immunotherapy. (d) 836 

Marker genes of MalignantSA cells, MalignantNCT cells, and Nonmalignant cells. (e) 837 

Pseudotime analysis showed that nonmalignant cells evolved in two directions. (f) 838 
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The heat map showed that a series of genes play an important role in transforming 839 

epithelial cells into tumor cells. (g) GSVA analysis was performed for malignant and 840 

nonmalignant cells. (h) SCENIC analysis revealed the hub genes in the malignant 841 

transformation of epithelial cells. (i) The tSNE plots for re-clustered malignant cells. 842 

(j) Marker genes of 13 sub-clusters from malignant cells. (k) Metabolic characteristics 843 

in different malignant cell sub-clusters. (l) GSVA analysis reveals the characteristics 844 

of pathway activity in different malignant cell sub-clusters. 845 

 846 

 847 

Supplementary Figure 2. Figures related to Figure 3. (a) Copy number variations 848 

(CNVs) of malignant and nonmalignant epithelial cells. (b) The proportion of 849 

malignant cells and nonmalignant cells from different patients. (c) The heatmap 850 

showed differentially expressed genes of epithelial cells in the Control group and 851 

NCT group. (d) Immunofluorescence showed LPCAT1, FOXL2, and RAC1 were 852 

highly expressed in normal lung tissues, the Control group, and the NCT group, 853 

respectively. (e) Some genes played an important role in the transformation of 854 

epithelial cells into tumor cells. (f) Changes in the activity of several important 855 

pathways during the transformation of epithelial cells to tumor cells. (g) The tSNE 856 

plots and overview of the non-malignant cells. (h) Heat map of marker genes for 857 

nonmalignant cells sub-clusters. (i) Metabolic characteristics in different 858 

nonmalignant cell sub-clusters. (j) GSVA analysis revealed the characteristics of 859 

pathway activity in different nonmalignant cell sub-clusters. 860 

 861 

 862 

Figure 4. The scRNA profile of stromal cells derived from LUAD samples in control 863 

and NCT groups. (a) The tSNE plots an overview of the 6 clusters of stromal cells. (b) 864 

Proportions of the six predicted clusters of stromal cells in different groups and 865 

samples. (c) Heatmap exhibiting the expression level of marker genes in each stromal 866 

cell cluster. (d) GSVA analysis estimated the pathway activation levels of different 867 

stromal cell subtypes. The scores have been normalized. (e) GSVA analysis revealed 868 

the activation level of hallmark pathways in stromal cells (control vs. NCT groups) (f) 869 

Heatmap exhibiting the expression level of marker genes in each fibroblast cluster. (g-870 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.02.18.580893doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.18.580893


28 

 

h) The tSNE plots revealed the group origins (g) and predicted subclusters (h) of 871 

fibroblast. (i-j) GSVA analysis estivated the pathway activation levels of different 872 

fibroblast subtypes. 873 

 874 

 875 

Supplementary Figure 3. Figures related to Figure 4. (a) The activity of various 876 

metabolic processes in fibroblasts from the Control group and NCT group. (b) GSVA 877 

analysis was performed for fibroblasts from the Control group and NCT group. (c) 878 

SCENIC analysis revealed the hub genes in fibroblast. 879 

 880 

 881 

Figure 5. Three newly identified subtypes of tumor-associated macrophages (TAMs) 882 

displayed distinct genetic and metabolic features. (a) The tSNE plots showed the 883 

group origins, sample origins, and clusters of TAMs. (b) Proportions of the 10 clusters 884 

of TAMs in different groups and samples. (c) Marker genes of the 10 clusters of 885 

TAMs. (d) GSVA analysis was performed for the 10 clusters of TAMs. (e) The 886 

activity of various metabolic processes in the 10 clusters of TAMs. (f) GSVA analysis 887 

was performed for TAMs from the Control group and NCT group. (g) SCENIC 888 

analysis was performed for the 10 clusters of TAMs. (h) Consensus clustering based 889 

on the correlations among the 10 clusters of TAMs identified through the tSNE 890 

algorithm. (i) Polarization score (left) and inflammatory score (right) for 10 clusters 891 

of TAMs based on the expression of polarization marker genes and inflammatory 892 

genes. (j) The tSNE plots for three types of TAMs. (k) Proportions of the three 893 

subtypes of TAMs in different groups and samples. (l) Development trajectory 894 

analysis for the three subtypes of TAMs. (m) Pseudotime analysis revealed a series of 895 

genes that affect the differentiation and development of macrophages. 896 

 897 

 898 

Figure 6. Metabolic switching in tumor-associated macrophages (TAMs) contributed 899 

to diametrical effects on tumor cells. (a) The heatmap showed the essential marker 900 

genes for three subtypes of TAMs. (b) Based on Pro-mac and Anti-mac marker genes, 901 

these two types of cells were sorted by flow cytometry from lung adenocarcinoma 902 
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tissue. (c) Flow cytometry verified the sorted cells. (d) The proportion changes of 903 

Pro-mac and Anti-mac cells in lung adenocarcinoma tissues before and after 904 

chemotherapy. (e) Immunofluorescence showed the changes in the proportion of 905 

TAMs with high CD206 and CD86 after neoadjuvant therapy. (f) The heatmap 906 

showed the differences in the cytokines secreted by the three subtypes of 907 

macrophages. (g) ELISA detected the secretion of VEGF, EGF, IL10, and MMP9. (h) 908 

The intensity of fluorescence changes in Luciferase-labeled A549 cells mixed with 909 

different TAMs. (i) The histogram showed the average fluorescence intensity emitted 910 

by the subcutaneous tumor. (j) GSVA analysis performed for Pro-mac, Anti-mac, and 911 

Mix. (k) Glucose uptake and lactate production in the TAMs cell subtypes. (l) 912 

Seahorse XFe96 cell outflow analyzer detected the glycolysis level of TAMs cell 913 

subtypes (Extracellular acidification rate: ECAR). (m) Transwell experiment detected 914 

the influence of TAMs subtypes on the invasion ability of A549 cells. (n) The 3D cell 915 

culture experiment detected the effect of 2-DG on the spheroidization ability of A549 916 

cells when cultured with subtypes of TAMs. (o) In vivo experiments verified the 917 

effect of 2-DG on the tumorigenesis ability of A549 after inhibiting glycolysis of 918 

TAMs. All error bars are mean ± SD. NS, not significant. ***P < 0.001, **P < 0.01, 919 

*P < 0.05; determined by two-tailed Student’s t-test (95% confidence interval). 920 

 921 

Supplementary Figure 4. The scRNA profile of B cells derived from LUAD samples 922 

in the control, neoadjuvant chemotherapy, and immunotherapy group. (a) The tSNE 923 

plots revealed the sample origins, group origins, and predicted clusters of B cells. (b) 924 

The two predicted clusters of B cells (plasma cells, class-switched memory B-cells) 925 

were reported in different groups and samples. (c) Heatmap exhibiting the expression 926 

level of marker genes in each B cell cluster. (d) GSVA analysis estivated the pathway 927 

activation levels of different B cell subtypes. 928 

 929 

Supplementary Figure 5. Crosstalk between cancer and immune cells. (a) Each cell 930 

type and the other cell types expressed some of the ligands. (b) Bubble plot revealing 931 

the specific ligand-receptor interactions between cancer cells and immune cells in the 932 
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control group. The circle size indicates P values, with the scale to the right 933 

(permutation test), and color indicates communication probability. 934 

 935 

Supplementary Figure 6. The scRNA profile of T cells derived from LUAD samples 936 

in the control, neoadjuvant chemotherapy, and immunotherapy group. (a-c) The tSNE 937 

plots revealed the sample origins (a), group origins (b), and predicted clusters (c) of T 938 

cells. (d) The three indicated clusters of T cells (CD4+ T, CD8+ T, and Tregs) were 939 

reported in different groups and samples. (e) Bubble plot exhibiting the expression 940 

level of marker genes in each T cell cluster. (f-h) The tSNE plots revealed the sample 941 

origins (f), group origins (g), and predicted subclusters (h) of CD8+ T cells. (i) 942 

Heatmap exhibiting the expression level of marker genes corresponding to naïve, 943 

Treg/exhausted, and cytotoxic phenotypes in each CD8+ T cell subcluster. (j-k) 944 

Proportions of the five predicted clusters of CD8+ T cells in different samples (j) and 945 

groups (k). (l) Dynamic changes in gene expression of CD8+ T cells during the 946 

transition (divided into three phases). (m-p) Pseudotime-ordered analysis of CD8+ T 947 

cells (m-n) revealing the dynamics of their cytotoxic (o) and exhausted levels (p). (l) 948 

SCENIC analysis of CD8+ T cells. 949 

 950 

Supplementary Figure 7. Crosstalk between cancer and immune cells. (a) Overview 951 

of selected ligand-receptor interactions of cancer cells and immune cells in control 952 

and NCT groups. The line thickness indicates the number of ligands when cognate 953 

receptors are present in the recipient cell type. The loops indicate autocrine circuits. (b) 954 

Detailed view of the ligands expressed by each cell type and the other cell types. (c) 955 

Bubble plot revealing the specific ligand-receptor interactions between cancer cells 956 

and immune cells in the NCT group. The circle size indicates P values, with the scale 957 

to the right (permutation test), and color indicates communication probability. 958 

 959 

 960 
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