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Abstract 38 

 39 

Untargeted tandem mass spectrometry (MS/MS) has become a high-throughput method to measure small 40 
molecules in complex samples. One key goal is the transformation of these MS/MS spectra into chemical 41 
structures. Computational techniques such as MS/MS library search have enabled the re-identification of 42 
known compounds. Analog library search and molecular networking extend this identification to unknown 43 
compounds. While there have been advancements in metrics for the similarity of MS/MS spectra of structurally 44 
similar compounds, there is still a lack of automated methods to provide site specific information about 45 
structural modifications. Here we introduce ModiFinder that leverages the alignment of peaks in MS/MS 46 
spectra between structurally related known and unknown small molecules. Specifically, ModiFinder focuses on 47 
shifted MS/MS fragment peaks in the MS/MS alignment. These shifted peaks putatively represent 48 
substructures of the known molecule that contain the site of the modification. ModiFinder synthesizes these 49 
information together and scores the likelihood for each atom in the known molecule to be the modification site. 50 
We demonstrate in this manuscript how ModiFinder can effectively localize modifications which extends the 51 
capabilities of MS/MS analog searching and molecular networking to accelerate the discovery of novel 52 
compounds.  53 
  54 
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 55 
Figure 1: Illustration of the intuition behind ModiFinder. The MS/MS of Compound 1 and Compound 2 are56 
and matched peaks along with the substructures assigned to them are visualized. The matched peaks are shown57 
for the unshift peak and red for the shift peak. The matched shift peaks differ by the mass of the modification 58 
puzzle piece) and contain the modification site (green puzzle piece). 59 

Introduction 60 

 61 
Tandem mass spectrometry (MS/MS) is a powerful analytical technique for identifying the structure o62 
molecules1. However, translating the MS/MS spectra to 2D chemical structures poses a significant chall63 
the field2. Spectrum library matching3 is a key strategy within the field of metabolomics to annotate64 
compounds. However, in untargeted mass spectrometry experiments, on average 87% of MS/MS 65 
remain unidentified by spectral library search4. To bridge this gap, modification aware spectral matchin66 
such as analog library search5 and molecular networking6,7 leverage the concept of structural propaga67 
known to unknown compounds - bridging between molecules with a conserved core structure but 68 
structural modifications8–10. A key shortcoming of these approaches is that they determine which p69 
MS/MS are putatively similar in structure, but do not describe explicitly the structural difference, leav70 
manual interpretation up to chemists. To tackle this shortcoming, we have developed a compu71 
approach, ModiFinder, that builds upon MS/MS matching and produces putative suggestions on the str72 
difference between known and unknown structural analogs. 73 
 74 
Our approach borrows a concept from the computational challenge of site localization of post-trans75 
modifications (PTM) of peptides in bottom-up proteomics11–13. In PTM site localization, b/y ions that fla76 
modification site are used to localize the putative PTM on a linear peptide. Here, we translate this con77 
localize structural modifications of small molecule graphs - representing 2D molecular structures. In con78 
PTM site localization, the ability to explain the MS/MS fragmentation, while  simpler in peptides , is signi79 
more difficult in small molecules14. This complexity is underscored by the plethora of methodologies, in80 
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MetFrag15, MAGMa16, MIDAS17, and MS-Finder18 developed to tackle the small molecule fragmentation 81 
analysis. Despite the ongoing challenge of explaining MS/MS fragmentation19, we have found that these in 82 
silico approaches are still useful in addressing the problem of localizing structural modifications on small 83 
molecules.  84 
 85 
ModiFinder leverages the insight that flanking masses for small molecule modifications can be determined by 86 
comparing the MS/MS spectrum of an unknown structure with a modification (MS2-unknown) with the MS/MS 87 
spectrum of the unmodified known structure (MS2-known). Specifically, the peaks that are shifted by the mass 88 
of the modification between the MS2-known and MS2-unknown putatively represent substructures that contain 89 
the modification site. Conversely, peaks that do not shift in mass between MS2-known and MS2-unknown, are 90 
less likely to include the modification (Fig. 1). Combining this information, ModiFinder computes a likelihood 91 
score for the specific site of modification across all atoms in the known compound (S-known). To accomplish 92 
this, each peak is assigned a set of possible substructures using combinatorial fragmentation16. Then, for each 93 
peak of MS2-known that has a corresponding shifted peak in MS2-unknown (signifying the substructure 94 
includes site of the modification), ModiFinder increases the likelihood scores of atoms in the assigned 95 
substructures for the shifted peaks. If the peak is unshifted, the likelihood is decreased. Finally, ModiFinder is 96 
able to map out the likelihood landscape for where the modification may occur across the S-known using the 97 
likelihood scores (Fig. 2). 98 
 99 
We complement here the present of the ModiFinder approach with an evaluation of ModiFinder's performance 100 
and limitations in identifying the modification site. Additionally, ModiFinder is presented as a command line tool 101 
and an interactive graphical web interface. Finally, we showcase empirical examples of how ModiFinder’s 102 
computational approach can be combined with domain knowledge expertise to facilitate the discovery of new 103 
natural products.  104 
 105 
 106 
 107 
 108 
 109 

110 
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111 
Figure 2 - The Overview of ModiFinder algorithm. A) The input of ModiFinder, includes the known structure (S112 
spectra of the known compound (MS2-known), and spectra of the unknown compound (MS2-unknown). B) First,113 
fragmentation methods compute potential substructure annotations for each MS/MS peak. Then, these substructu114 
refined by molecular formula and with helper MS/MS with a similar structure. C) Spectral alignment is perfo115 
identify corresponding peaks (shifted and unshifted). The atoms in the substructures assigned to the shifted pe116 
positively rewarded (increase in score) and atoms in the substructures assigned to the unshifted peaks are ne117 
penalized (decrease in score). D) Finally, a likelihood score is calculated proportionally to each atom’s score. 118 
 119 
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 120 
Results and Discussion 121 
 122 
Benchmarking Data and Assessment Criteria  123 
 124 
Pairs of structurally similar compounds with a single structural modification were used to assess the 125 
performance and accuracy of ModiFinder. These pairs were derived from the data available in four reference 126 
MS/MS libraries. In aggregate, the benchmark set contains 12,909 pairs with M+H adducts, that differ by a 127 
single structural modification, measured under the same experimental conditions, i.e., the same adduct and 128 
instrument (See Data availability). An additional filtering process was applied to these MS/MS pairs to only 129 
include pairs that have at least one shifted peak which can be explained by a substructure of the parent 130 
compound. After this filter, the majority (62% of the total pairs, 8033 pairs) of the pairs remain (Fig. 7). 131 
 132 
Any evaluation metric that assesses the effectiveness of ModiFinder must strike a balance between two 133 
essential criteria: proximity cover and ambiguity cover. 134 
 135 
Proximity cover assesses the distribution of likelihood scores relative to the true modification site and 136 
examines whether the high-scoring atoms are in close proximity to the actual modification site.  137 
 138 
Ambiguity cover evaluates the entropy of the prediction array and its informativeness. For instance, an array 139 
where most atoms have the same high-score exhibits high ambiguity and may not be helpful for localization.  140 
 141 
Several baseline metrics were considered but exhibited specific weaknesses. For example, if an evaluation 142 
function only checks if an algorithm assigns the highest score to the true modification site, an algorithm that 143 
always assigns the same score to all the atoms will achieve the best result, demonstrating weakness in 144 
ambiguity cover. The Average-distance evaluation is introduced and adopted as the main evaluation metric 145 
offering good balance between the proximity cover and ambiguity cover (See Methods - Evaluation and SI 146 
Fig. SI-2). Throughout the rest of this manuscript, “Average-distance” is referred to as ”Evaluation Score”. 147 
Illustrative examples are provided in SI Figure SI-5 to offer intuition and insight for different values of the 148 
evaluation score. 149 
 150 
ModiFinder Outperforms Baseline 151 
 152 
We introduce three versions of the ModiFinder method. First, is the basic version of ModiFinder (MF-N). 153 
Second, is the refined version of ModiFinder (MF-R) that utilizes molecular formula filtration and substructure 154 
ambiguity refinement utilizing structurally related helper MS/MS spectra (See Methods Substructure 155 
Refinement by Formula and Methods Refinement by Helpers). Third, an Oracle Method (MF-O) is 156 
introduced that has knowledge of the true modification site to provide an approximate upper bound of 157 
ModiFinder performance. This is achieved by simulating the ability to reduce the ambiguity of substructure 158 
assignments to the MS/MS peaks (See Methods Oracle) by eliminating substructures that do not contain the 159 
modification site in shifted MS/MS peaks. Additionally, the site localization performance is evaluated on two 160 
random baselines: Random choice (RC) and Random Distribution (RD) (See Methods Site Localization 161 
baselines and alternative approaches). Finally, an alternative in silico prediction  benchmarking approach is 162 
introduced which utilizes MS/MS fragmentation prediction of CFM-ID20 (See Methods Site Localization 163 
baselines and alternative approaches).  164 
 165 
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ModiFinder’s performance (MF-R in Fig. 3-A and SI Fig. SI-4 ) lies above the random baselines (RC and RD) 166 
and the CFM-ID approach and below the Oracle (MF-O). Specifically, MF-R when compared to RC and RD 167 
baselines shows an average Evaluation Score increase of 0.181 and 0.180, respectively, across all MS/MS 168 
pairs (Fig. 3-A). Moreover, MF-R outperforms these baselines in 81% and 80% percent of benchmark pairs (SI 169 
Fig. SI-3 A). In comparison, the MF-O version of ModiFinder outperforms the RC and RD in 85% of benchmark 170 
pairs (SI Figure SI-3 B) and shows an average increase of 0.208 and 0.207, respectively (Fig. 3-A). MF-R 171 
exhibits enhanced performance not only relative to random baseline comparisons but also over the CFM-ID 172 
based alternative approach evidenced by an increment of 0.266 in the average evaluation score (Fig. 3-A). 173 
Surprisingly, the CFM-ID based approach is found to be worse than RC and RD. This is because when 174 
simulating all regio-isomers, the resulting simulated MS/MS spectra were highly similar. This resulted in a 175 
nearly uniform likelihood distribution across all atoms, which was penalized in the “Ambiguity Cover” evaluation 176 
dimension. Because the “evaluation score” penalizes high levels of ambiguity, in other benchmark metrics that 177 
deemphasize “Ambiguity Cover”, e.g. “Is-max” (See SI Figure SI-2 and SI Note 1).  178 
 179 
We note that the gap in performance between MF-R and other baselines is greatest in lib4, which constitutes 180 
the majority of our database and might introduce a bias in the result. Nevertheless, MF-R maintains a clear 181 
advantage over the baseline across all the libraries (SI Figure SI-4 ). Of the specific cases where MF-R does 182 
not outperform the RC and RD, manual analysis indicates in the majority of cases, this is  because of a lack of 183 
shifted fragmentation peaks and or incomplete in silico substructure explanation of the MS/MS peaks.  184 
 185 
With decreasing ambiguity of substructure assignments to MS/MS peaks, an increase in site localization 186 
performance is observed with MF-R improving upon MF-N, 0.625 vs 0.603 evaluation score respectively and 187 
MF-O, with the lowest ambiguity, further increases performance to 0.652 (Fig. 3-A, Results Section 188 
Improving the Quality of Annotation and reducing the Ambiguity increases the Evaluation Score for 189 
more details).  190 
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191 
Figure 3 – Performance Results. A Evaluation scores across pairs in all the libraries for different methods where192 
at least one shifted peak. ModiFinder outperforms the Random and CFM-ID baselines. MF-R, which utilizes help193 
formula constraints, improves upon MF-N, closing the gap to our upper bound performance of MF-O. B Evaluatio194 
across pairs in all libraries for MF-O and MF-R based on the number of annotated shifted peaks. By increa195 
number of shifted peaks, the performance of ModiFinder increases. This performance increase is consistent196 
different datasets and even for the MF-O demonstrating the utility of shifted peaks in finding modification sites.  197 
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Importance of Peak Annotation 198 
 199 
Shifted Peaks Matter in Site Localization 200 
 201 
The results highlight the significance of annotated shifted peaks in the identification of the modification site 202 
where the MS/MS spectrum pairs featuring at least one shifted peak exhibit higher evaluation scores compared 203 
to those without any shifted peaks (Fig. 3-B). Furthermore, when there is an increase in the number of shifted 204 
peaks, the measured performance of MF-R and MF-O increases (Fig. 3-B). We hypothesize that the increase 205 
in shifted peaks potentially enriches the diversity of potential substructures, each MS/MS peak focusing on 206 
different segments of the compound. This diversity may reduce the overlap among substructures, thereby 207 
refining the precision in pinpointing the modification's location. MF-O utilizes the shifted peaks more efficiently 208 
than the MF-R as it can remove the ambiguity introduced by more annotations on the extra shifted peaks.  209 
 210 
Increasing the Fragmentation Depth Increases Ambiguity 211 
 212 
One of the key steps of ModiFinder is substructure annotation of MS/MS fragment peaks. ModiFinder utilizes 213 
combinatorial fragmentation, i.e. MAGMa16 (one of the state of the art approaches21,22), to generate a set of 214 
potential fragmentation substructures for every MS/MS peak. Varying the fragmentation depth from two to four 215 
modulates the site localization performance. An increase in performance with MF-O is observed as the 216 
fragmentation depth increases (Fig. 4-A). This increase in performance can be attributed to the introduction of 217 
more substructures to the peaks, revealing the true substructure, especially for the peaks that were previously 218 
unannotated. Benchmark datasets show a 19% increase in the number of annotated shifted peaks when 219 
increasing fragmentation depth from two to four. While this increased explanation benefited MF-O, at higher 220 
fragmentation depths MF-R performance decreases. This is due to increased substructure ambiguity (average 221 
number of annotations assigned to each shifted peak). MF-O can counteract the increased ambiguity by 222 
utilizing the true fragmentation site to filter out substructures that do not benefit the localization. On the other 223 
hand, both the MF-R and MF-N are unable to filter incorrect substructures, leading to a loss of focus on the 224 
true modification site. Given the performance differences, fragmentation depth of 2 is chosen as the default 225 
value for MF-R. However, we anticipate that the optimal fragmentation depth might increase with 226 
enhancements in substructure assignments to MS/MS peaks. 227 
  228 
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 229 

230 
Figure 4 – Correlation of ambiguity and performance. A) Impact of Fragmentation Depth on MF-N, MF-R, a231 
O Performance over pairs in all libraries. By increasing the fragmentation depth, the Oracle method (MF-O)232 
higher scores, benefiting from more explanatory fragmentation. However, due to ambiguity introduced with more 233 
fragmentation, MF-N and MF-R do not benefit in site localization performance B) Correlation of ambigu234 
evaluation scores at the pairwise level over pairs in all libraries. The evaluation score improvement f235 
unrefined ModiFinder (MF-N) for MF-O and MF-R based on the ambiguity reduction (difference in ambiguity).236 
ambiguity difference increases, i.e., structural annotation becomes increasingly less ambiguous, the evaluatio237 
difference increases. C) Comparison of Average Ambiguity and Average Evaluation score across different s238 
of ModiFinder and Oracle for pairs in all datasets. Methods that yield lower ambiguity correspondingly achiev239 
evaluation scores.  240 
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Improving the Quality of Annotation and reducing the Ambiguity increases the Evaluation Score 241 

 242 
MF-N calculates the likelihood scores using annotations derived from MAGMa16. Upon refining the molecular 243 
formula with SIRIUS23 (MF-S) or Buddy24 (MF-B) applied to MF-N, there was a decrease in ambiguity by 0.11 244 
and 0.01, respectively (Fig. 4-C). This resulted in minimal improvements to the site localization evaluation 245 
score (Fig. 4-C). A larger magnitude reduction in MS/MS peak annotation ambiguity (reduction of 1.37) when 246 
helper compounds are utilized (MF-R) is observed. The most significant reduction in ambiguity (1.94) is 247 
observed, predictably, with the oracle (MF-O) (Fig. 4-C). There is a noticeable correlation between the 248 
decrease in annotation ambiguity and the improvement in evaluation scores; specifically, when the ambiguity 249 
of shifted peaks is reduced through refinements or the oracle's knowledge, there is a corresponding increase in 250 
the evaluation score (Fig. 4-C). Additionally, the impact of ambiguity reduction was analyzed on a pair-by-pair 251 
basis. By categorizing pairs of MS/MS spectra based on the extent of ambiguity reduction, it was found that 252 
larger decreases in ambiguity corresponded to more significant improvements in site localization evaluation 253 
scores (Fig. 4-B). Figure RSF-B further indicates that for a comparable reduction in ambiguity, the oracle, on 254 
average, achieves greater improvements. This outcome is anticipated, as the oracle's role extends beyond 255 
merely reducing ambiguity and skews the distribution of unambiguous peaks towards the actual modification 256 
site by eliminating substructures that do not contain the modification site.  257 
 258 
Web User Interface for Domain-Based Improvements 259 
 260 
An interactive analysis platform was developed to facilitate the utilization and refinement of site localization by 261 
chemists and mass spectrometrists using ModiFinder. Although the integration of helper compounds and 262 
formula refinement significantly enhances ModiFinder performance, these techniques do not fully eliminate 263 
substructure annotation ambiguity. Therefore, this interface enables expert users to apply their domain 264 
knowledge to eliminate incorrect substructures for each MS/MS peak. The web interface then synthesizes this 265 
user input (or multiple user refinements) with ModiFinder to produce a refined likelihood distribution.  266 
 267 
As proof of principle, the web interface of ModiFinder and domain expertise were employed to solve the 268 
location of structural modifications of two natural products: Kirromycin and Naphthomycin B, two structurally 269 
complex natural product antibiotics25,26. These compounds were selected as they exhibited high structural 270 
complexity and there existed a large diversity of structural analogs that remain unidentified. First example 271 
demonstrates the ability to localize the N-methylation of Kirromycin that leads to its derivative Goldinodox (Fig. 272 
5). In ModiFinder’s initial prediction, the true modification site was among the highest scoring. However, these 273 
existed two regions on the structure with non-zero likelihood scores (Fig. 5-A). MF-R computationally assigned 274 
seven possible substructures to each of the 112.04 m/z and 178.05 m/z peaks. By taking the polarization of the 275 
neighboring bonds to the carbonyl as well as the numbers of (single) bonds to be broken into account, domain 276 
experts were able to limit the substructures assigned to the peak 112.04 m/z to one (visualized by the green 277 
dotted rectangle in Fig. 5). Similarly, the set of substructures assigned to the 178.05 m/z peak was also 278 
manually reduced to one, i.e. the unlikely events of double bond breaking, forming of terminal amides through 279 
alkene loss, or alkene side chain methyl cleavage were eliminated. This reduction in ambiguity improved the 280 
site localization of the methylation and increased the evaluation score from 0.86 to 0.93. 281 
 282 
Second example demonstrates the methylation of Naphthomycin B (Fig. 6-A and B). The specific challenge of 283 
Naphthomycin B, is due to the cyclic 2D structure, which causes MS/MS fragments (133.07 m/z and 147.08 284 
m/z) to be ambiguous between multiple substructures around the 2D cycle (Fig. 6-D). This ambiguity leads to 285 
24 high scoring sites (atoms) across the compound. In the case of Naphthomycin B, taking into account the 286 
likely gas phase fragmentation site at the amide bond, the substructure ambiguity for 133.07 m/z and 147.08 287 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.17.580849doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.17.580849
http://creativecommons.org/licenses/by/4.0/


 

 

m/z decreased from 27 and 40 substructures to 2 substructures each. This resulted in a decrease of 24 high 288 
scoring modification sites to two high scoring modification sites above the true modification site. Further, the 289 
site localization was narrowed to a single likelihood region for the potential methyl-carrying site. This manual 290 
refinement improved the evaluation score from 0.56 to 0.74. However, ModiFinder, even given this ambiguity 291 
reduction, reported the highest likelihood two atoms away from the true site. The small number of shifted peaks 292 
likely limited the ability to localize to a specific site, but the ambiguity reduction provided by domain experts  293 
enabled ModiFinder to reach the limits of localization with the given MS/MS fragmentation.  294 
 295 
Discussion 296 
 297 
Here we introduced the challenge of site localization of chemical modifications in small molecules and 298 
presented our computational solution: ModiFinder. As demonstrated in our benchmarking results, ModiFinder 299 
and its refinements are able to outperform random baselines and in silico prediction alternative strategies. 300 
Promisingly, we also observe that due to refinements, ModiFinder makes significant progress to approach the 301 
performance of the oracle method, that is an estimate of the upper bound on performance. To bridge this gap 302 
for practical usage, our web interface enables an expert user to input their knowledge to bring the performance 303 
closer to the oracle performance and in some cases could even exceed the oracle.  304 
 305 
Despite the promise of this presented work, we would reemphasize that the overall site localization problem as 306 
approached by ModiFinder is limited by two factors: first, the number of shifted peaks. Since the Oracle only 307 
simulates a reduction in substructure ambiguity, the Oracle’s performance is limited by the number of shifted 308 
peaks and the MS/MS fragmentation more generally. This is evidenced by the fact that our Oracle cannot 309 
reach perfect performance in our evaluation metric (Fig. 3-A) even with knowledge of the true modification site. 310 
Second, the substructure annotation ambiguity of the MS/MS peaks. Specifically, we note that ModiFinder and 311 
the Oracle method struggle in situations where the molecules exhibit high levels of 2D structure symmetry (SI 312 
Note 2). Given these limiting factors to ModiFinder performance, we anticipate (i) future instrumentation and 313 
method developments will produce richer and more complementary MS/MS fragmentation; (ii)computational 314 
and data acquisition advancements that aid in the reduction of substructure ambiguity of MS/MS fragmentation 315 
in small molecules, both of which will enhance ModiFinder’s performance going forward. 316 
 317 
Although we have provided two example applications in the natural product field, we hope and anticipate that 318 
modification site localization will be broadly used in other communities that utilize small molecule untargeted 319 
mass spectrometry, e.g. toxicology, pharmacology, metabolism, exposomics, drug discovery, chemical biology, 320 
to name a few.  321 
  322 
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 323 

 324 
Figure 5 – Combination of domain knowledge with ModiFinder’s user interface to improve the modificat325 
prediction for Kirromycin. For the pair of Kirromycin and an unknown compound (Goldinodox), the initial pred326 
improved by manually selecting the likely substructures for peak 112.04 m/z and 178.05 m/z improving the ev327 
score from 0.86 to 0.93. A ModiFinder prediction before the refinement. B ModiFinder prediction after the refinem328 
true modification site is highlighted by the green circle. C The alignment of Kirromycin and the unknown compou329 
peaks of Kirromycin are shown at the top and the peaks of the unknown compound are shown at the bottom where330 
and unshifted peaks are highlighted with red and blue colors respectively. D, E shows the substructures assi331 
peaks with 112.04 m/z and 178.05 m/z, due to the high number of substructures (ambiguity) only three substructu332 
shown. The green dotted box shows the substructure manually selected based on expert understanding of ga333 
fragmentation. 334 
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335 
Figure 6 - Combination of domain knowledge with ModiFinder’s user interface to improve the modificat336 
prediction for Naphthomycin B. For the pair of Naphthomycin B and an unknown compound (Naphthomycin337 
initial prediction is improved by manually eliminating the unlikely substructures for peaks 133.07 m/z and 147.338 
improving the evaluation score from 0.56 to 0.74. A, B ModiFinder prediction before and after the refinem339 
modification site is highlighted by the green circle. C The alignment of Naphthomycin B and the unknown compou340 
peaks of Naphthomycin B are shown at the top and the peaks of the unknown compound are shown at the bottom341 
shifted and unshifted peaks are highlighted with red and blue colors respectively. D shows the substructures ass342 
peak with 133.07 m/z, due to the abundance of substructures (ambiguity) only four substructures are shown. Th343 
dotted box shows the substructures manually selected based on expert understanding of gas phase fragm344 
specific to amide bonds, which are indicated by green arrows. E. Same filtration applied to the peak with 147.08 m345 
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Methods 347 

 348 
Definitions 349 
 350 
MS2-known: The MS/MS spectra of known compound 351 
S-known: The 2D chemical structure of the known compound 352 
MS2-unknown : The MS/MS spectra of unknown compound 353 
 354 
ModiFinder Overview 355 
 356 
Given the MS/MS of known (MS2-known) and unknown (MS2-unknown) compounds and the structure of the 357 
known compound (S-known) as input (Fig. 2-A), ModiFinder produces a likelihood distribution of the 358 
modification site location (Fig. 2-D). The process begins with ModiFinder assigning a set of potential 359 
substructures to the peaks in the MS2-known spectrum through in-silico fragmentation of S-known (Fig. 2-B). 360 
Subsequently, the MS2-known and MS2-unknown are aligned to find the matching peaks in each respective 361 
spectrum, producing peaks that have shifted in mass (shifted) and those that remain unchanged (unshifted). 362 
To predict the site localization, a likelihood score is assigned to each atom, where atoms in the substructures 363 
of the shifted peaks are rewarded while the atoms in the substructures in unshifted peaks are penalized (Fig. 364 
2-C). Finally, The likelihood score of each atom is calculated. The following sections provide a detailed 365 
explanation of each step in this process. 366 
 367 
MS/MS Alignment 368 
 369 
First, as a preprocessing step, all the peaks with intensities less than 1% of the base peak are removed, and 370 
the peaks are normalized to sum to a Euclidean norm of 1 to reduce noise4. Then, the GNPS7 alignment 371 
method is utilized to identify matched peaks between the known and unknown spectrum, by accounting for the 372 
mass delta of their respective precursors7,27. In the alignment process, the GNPS alignment method considers 373 
two types of matches: one where peaks have the same mass (non-shift), and another where peaks are offset 374 
by the difference in their precursor masses (shift). For each peak in the known compound’s spectrum, the 375 
availability of both non-shift and shift peaks are examined and all possible matched candidates of each peak 376 
are considered; Out of all these possibilities, the GNPS alignment method efficiently approximates the best-377 
scoring match. Specifically, A bipartite graph is created where the nodes represent the peaks of MS2-known 378 
and MS2-unknown. An edge is drawn between an MS2-known peak and an MS2-unknown peak under two 379 
conditions: if their difference is less than a predefined threshold, indicating an unshifted match, or if it lies within 380 
the threshold range relative to the difference in precursor masses of the known and unknown compound, 381 
indicating an unshifted peak. The weight of each edge is the product of the intensities of the corresponding 382 
peaks. The goal is to find the maximum-scoring match. A greedy algorithm is used to approximate this 383 
matching. At each step, the maximum remaining edge is selected and added to the result. Then both ends of 384 
that edge along with all the edges connected to them are removed from the graph. In our experiments, a 385 
tolerance of 40 (ppm) is adopted as the threshold used to calculate the edges. 386 

Combinatorial Fragmentation and Refinement For Substructure Assignment 387 

 388 
The peaks of MS2-known are annotated by assigning each peak a series of potential substructures using 389 
substructures generated from S-known following the MAGMa method16.  In short, the fragmentation of S-known 390 
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goes as follows: First, each of S-known’s heavy (non-hydrogen) atoms are removed once, each time yielding 391 
one or more substructures. Then the same process is repeated for each of the resulting substructures. The full 392 
fragmentation of the S-known is performed in a breadth-first search traversal. The generated substructures are 393 
stored as a bitstring where each bit represents one of the heavy atoms in S-known. ModiFinder begins with the 394 
initial structure (S-known) and continues the aforementioned breadth-first fragmentation approach up to a 395 
predetermined depth; a maximum depth of 2 is chosen here for the experimental setup. 396 
 397 
Once the fragmentation step is done, for each substructure, the theoretical charged-m/z is calculated and 398 
compared to each peak’s m/z in the MS2-known. The maximum charge is assumed to be 1. If the theoretical 399 
m/z of a substructure falls within a specified m/z tolerance to the empirical m/z of a peak, then that 400 
substructure is assigned to that peak. Here, 40 ppm was chosen as the default m/z tolerance. 401 
 402 
Substructure Refinement by Formula 403 
 404 
Predicted formulas provided by SIRIUS23 or BUDDY24 were used to filter the possible substructures for each 405 
MS/MS peak. SIRIUS, given the spectra of a compound, generates a pool of potential candidates using the 406 
information of the MS1. Next, it evaluates the interpretability of MS/MS spectra for each candidate by 407 
constructing a fragmentation tree28. The ModiFinder algorithm leverages this information by parsing the 408 
fragmentation tree and retrieving the formula assigned to each peak. This formula is then used to remove any 409 
substructure assigned to that peak with a different formula. Due to the performance complexity, SIRIUS is only 410 
computed for compounds with a precursor mass of 500 Da or less. For each compound, a mgf file is generated 411 
using the data retrieved from the MS/MS spectral library. This mgf file is then passed to v5.6.3 of the runnable 412 
script [https://github.com/boecker-lab/sirius/releases]. Then, the non-hydrogen part of the formula of each peak 413 
is compared with the formula of all the potential substructures assigned to that peak; filtering out all the 414 
substructures that have a different formula. 415 
 416 
BUDDY’s `assign_subformula` function is employed as an alternative to annotate formulas of fragmentation 417 
peaks24 with the same parameter set as ModiFinder (40 ppm is applied for the experiments), -1.0 for the 418 
`dbe_cutoff` (the default value). The provided formulas are used to refine the substructures assigned to each 419 
peak by removing substructures that have different formulas. 420 
 421 
Refinement by Helpers 422 
 423 
ModiFinder leverages additional compounds in MS/MS libraries that exhibit structural similarities to the known 424 
compound S-known, referring as helper compounds, to refine the substructure annotations. Specifically, the 425 
compounds within the same MS/MS library as S-known that share identical adducts and instruments but differ 426 
from S-known at precisely one modification site are identified as potential helper compounds. To ensure there 427 
is no information leakage and the unknown compound is not among the helpers, any compound that 428 
possesses a precursor mass within a 0.5 range of the precursor mass of the unknown compound is eliminated. 429 
Suppose HS-known = {h1, …, hn} as the set of selected helper compounds for S-known. For each helper 430 
compound, denoted as hi, the same in-silico fragmentation process is performed on hi’s structure to annotate 431 
hi’s peaks. Next, hi’s spectra are aligned to the MS2-known to find matched peaks (shift and unshift). For every 432 
peak that has shifted, any substructure assigned to that peak in MS2-known that does not include the 433 
modification site between S-known and hi is eliminated.  434 
 435 
Calculating the Site Localization  436 
 437 
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A score for each atom is computed, indicative of the likelihood of being the modification site. This438 
termed as the "likelihood score" and shown by � (�i for atom with index i in the graph), aims to ser439 
score that measures the amount of evidence of an atom's candidacy for being the site of modificatio440 
scoring is performed under the assumption that there is only one modification site. Under this assu441 
shifted peaks are probable hosts of the modification site. In Contrast, the atoms presenting in match442 
unshifted peaks are penalized. 443 
 444 
Each matched peak assigns a contribution score to each atom. i,j shows the contribution score assig445 
atom j by peak i. For i-th matched peak, the scores for the atoms are calculated as follows: initia446 
contribution scores for all atoms are assigned a value of 0. Then, assuming S i is the set of 447 
substructures assigned peak i: 448 

 449 
Where |s| is the number of atoms in substructure s, |S i| is the number of structures assigned to peak i, a450 

 is the indicator function that is 1 if j-th atom exists in substructure s and 0 otherwise. 451 

 452 
Each matched peak itself receives a clarity score that represents how informative its substructures a453 
example, if a peak has one substructure assigned to it but the substructure contains all the atoms454 
compound or if the peak has multiple substructures assigned to it and overall each atom appears the455 
number of times, then the peak is not informative and must receive a low clarity score. Similarly, if th456 
has few structures and they all focus on a specific and small part of the atom, then the peak is con457 
informative and will receive a high clarity score. To compute this clarity score, the Shannon entro458 
calculated. The clarity score of the peak i, Ci, is proportional to this entropy score: 459 

 460 
Where n is the total number of atoms. Finally, �j is updated. If the peak is shifted, it is increased by ci x 461 
if it is unshifted, �j is decreased by ci x �i,j. 462 
 463 
For the final step, after normalizing � so that the maximum value is 1, Then any value below 0.5 is set to464 
to further highlight the differences, especially in the high-scoring atoms, all the values are raised to the465 
of 4 as a dynamic range adjustment. Finally, the values are normalized again to have a sum of 1. 466 
 467 
Evaluation Score  468 
 469 
To measure the performance of ModiFinder and compare it to alternative approaches and baselin470 
evaluation function is needed.  This evaluation function takes in the predicted likelihood array togethe471 
with the true modification site, i.e. the 2D graph structure of the known compound and the actual modi472 

his score, 
erve as a 
tion. This 
sumption, 
tched but 

signed to 
itially, the 
of all the 

, and the 

 are. For 
ms in the 
the same 
 the peak 
onsidered 
tropy29 is 

�i,j, and 

t to 0 and 
the power 

lines, an 
her along 
dification 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.17.580849doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.17.580849
http://creativecommons.org/licenses/by/4.0/


 

 

site location. The evaluation produces a score between zero and one. Scores approaching one signif473 
accurate predictions, while those closer to zero indicate less accurate predictions. 474 
 475 
The Average-distance evaluation method is proposed for the evaluation. 476 

477 
 478 
Where di,� denotes the distance between the atom with index ‘i’ and true modification site �  on the 2D479 
structure and  denotes the diameter (greatest shortest distance between any two nodes in the graph480 
2D graph structure. Using the diameter helps normalize the distances based on the size and structure481 
compound. Normalization ensures uniformity in the evaluation metric across molecules of varying si482 
Average-distance, the impact of each atom on the total score decreases exponentially with its distanc483 
the actual modification site. Atoms with high predicted likelihood situated far away from the true site con484 
less to the evaluation score, whereas those in closer proximity contribute more. This aspect address485 
Average-distance’s capacity to account for the proximity cover. In addition, since the scores are norma486 
have a sum of 1, the likelihood scores are directly proportional to each atom's relative influence. Conseq487 
in ambiguous scenarios where many atoms have high predicted likelihood, the relative likelihood of a488 
atom diminished. This reduction, in turn, lessens their overall effect on the evaluation score, encapsula489 
method's ambiguity cover (SI Figure SI-5). Beyond this evaluation score, the performance of ModiFi490 
also examined over Is-max, Proximity, and Sorted-rank evaluation methods (See SI Note 1). 491 
 492 
Site Localization baselines and alternative approaches 493 
 494 
Random Choice (RC) adopts a random selection approach for designating one of the atoms 495 
modification site. In contrast, our second baseline, termed "Random Distribution" assigns a likelihood sc496 
to atom i, where  . 497 
 498 
The Oracle approach is built on top of ModiFinder and uses the extra information of the true modificati499 
After ModiFinder has annotated the peaks with putative substructures using the combinatorial fragme500 
and formula and helper refinements, Oracle applies an extra elimination step. Specifically, for every 501 
peak of MS2-known, Oracle filters out any substructure assigned to that peak that does not contain t502 
modification site. Once this step is completed, all the substructures assigned to the shifted pea503 
guaranteed to contain the modification site. 504 
 505 
In addition, utlizing the MS/MS fragmentation prediction property of CFM-ID20 a different modificati506 
method is developed as an alternative approach and a baseline to compare against. CFM-ID is a tool to507 
spectra based on a given molecular structure. This alternative approach is only developed for evaluatio508 
uses the structure of the “unknown compound” which is paradoxical and impractical in real-world scen509 
serves merely as a reference for comparison, and the ability of ModiFinder to surpass its performance, 510 
the latter's theoretical omniscience, further emphasizes the effectiveness of ModiFinder. This alte511 
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method is designed to use CFM-ID as a black box to find the modification site (Refer to SI Fig. SI-6 for a visual 512 
illustration of this method). First, using the extra information provided by the structure of the “unknown” 513 
compound, the modification substructure is calculated. Then, this modification substructure is permuted across 514 
the known structure (S-known). With each permutation, the modification is attached to an atom in S-known, 515 
creating an analog to S-known and a possible candidate for the unknown compound. To attach the modified 516 
part to an atom, first the same original bond type is tried, if that does not produce a valid structure, other bond 517 
types are tried. After this step, CFM-ID tool is used to predict spectra for each structure (SI Figure SI-6. C.). To 518 
run CFM-ID, the docker container provided [https://hub.docker.com/r/wishartlab/cfmid is used with 0.001 for 519 
‘prob_thresh’ (the default value), ‘trained_models_cfmid4.0/[M+H]+/param_output.log’ for param_file, 520 
‘/trained_models_cfmid4.0/[M+H]+/param_config.txt’ for config file. 521 
 522 
The similarity of the predicted spectra and MS2-unknown is measured using the cosine similarity score (SI 523 
Figure SI-6. D). This similarity is reported as the likelihood score of the atom corresponding to the permutation 524 
SI (Figure SI-6. E.). In addition to the visualization of the algorithm, two examples for Deoxyadenosine and 525 
Deoxyadenosine Monophosphate (Fig. SI-7), and Tyramine and 3-MethoxyTyramine (Fig. SI-8) are also 526 
provided. 527 
 528 
  529 
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MS/MS Spectral Library Data Preparation 530 

 531 
The creation of the database used for ModiFinder evaluation involved a multi-step process. Initially, 532 
compounds with known 2D structures were selected from MS/MS libraries containing compounds with known 533 
structure30–35. the following public MS/MS spectral libraries were used to retrieve the MS/MS and structure 534 
pairs: [1-GNPS-MSMLS, 2-GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE, 3-GNPS-NIH-535 
SMALLMOLECULEPHARMACOLOGICALLYACTIVE34, and 4-BERKELEY-LAB]. In addition, data from the 536 
TUEBINGEN-NATURAL-PRODUCT-COLLECTION was used for the web tool performance demonstration.  537 
 538 
For each library, every possible pair in that library are analyzed to verify their eligibility. For each pair with 539 
known structure, (i) their precursor mass is checked to be less than 2000 Da, (ii) the difference in precursor 540 
masses is less than 50% of the precursor mass of the smaller compound, (iii) they share the same M+H 541 
adduct, and finally, (iv) the structures are examined to differ in exactly once modification site. In the final 542 
verification step, both SMILES structures are converted to an RDKit36 molecule object, then the 543 
“GetSubstructMatch” function is called on the heavier compound’s object with the smaller compound’s object 544 
as input. If the smaller compound is a substructure of the larger compound, the number of edges between the 545 
atoms in the substructure set and the atoms not in the substructure set is calculated as the number of 546 
modification sites. Any pair with more than one edge is discarded. 547 
  548 
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549 
 550 

Figure 7 Distribution of Data in benchmarking libraries. A Shows the average and the distribution of m/z o551 
different libraries for pairs with at least one annotated shifted peak. B Shows the average and the distribution552 
number of atoms in the compounds for each benchmark library for pairs with at least one annotated shifted peak553 
each library, the percentage of the pair of spectra with no annotated shifted peak is shown, the rest of the pairs a554 
categorized and shown based on their number of helpers. The majority of pairs have at least one shifted peak.  555 
 556 
  557 
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Natural Product Data Acquisition Methods 558 

Kirromycin, Goldinodox, Naphthomycin B, and Naphthomycin A samples were dissolved in DMSO. 559 
Subsequently, the samples were pooled and diluted with ACN/water (80/20) to a final concentration of 8 µg/mL 560 
(Kirromycin, Goldinodox) resp. 7 µg/mL (Naphthomycin A and B). LC-MS/MS Data was acquired on a 561 
Vanquish ultrahigh-performance liquid chromatography (UHPLC) coupled to a Q executive HF apparatus 562 
(Thermo Fisher Scientific) equipped with an heated electrospray ionization (HESI) source. The 563 
chromatographic separation was performed with a constant flow rate of 0.5 mL/min with mobile phase A (H2O 564 
+0.1% formic acid) and mobile phase B (ACN +0.1% formic acid). The separation gradient started with 5% B 565 
as initial conditions, which was linearly increased to 50% B at 8 minutes, and then to 99% B at 10 minutes, 566 
followed by a washing phase with 99% B, and a re-equilibration phase at the initial conditions. As reversed 567 
phase HPLC column, a Phenomenex Kinetex 1.7 µm EVO C18 RP, 100 Å pore size, dimension: 50 x 2.0 (mm, 568 
length x inner diameter) was employed. The MS/MS method was previously optimized37, the HESI source 569 
parameters were set as follows: auxiliary gas flow and temperature were respectively 12 AU and 400 °C, 570 
sweep gas flow was 1 L/min, sheath gas flow rate was set to 50 AU.  The MS was operated in positive mode, 571 
The spray voltage was set to 3.5 kV while an inlet capillary temperature of 250 °C was adopted.  The scan 572 
range was set to 150-1500 m/z and the resolution to 30,000. The fragmentation was performed in Data 573 
Dependent Analysis (DDA) mode, the 5 most abundant ions were fragmented per MS survey scan with a 574 
resolution of 15,000, an isolation window of 1 m/z, and with the following stepped normalized collision energy: 575 
25, 35, 45 eV.  Finally, data  were deposited as a spectral library in GNPS 576 
(https://external.gnps2.org/gnpslibrary/TUEBINGEN-NATURAL-PRODUCT-COLLECTION.mgf).  577 
 578 
 579 
Code Availability 580 
 581 
The standalone source code of the ModiFinder tool (written in python) can be accessed via  582 
 583 
https://github.com/mshahneh/SmallMol_Mod_Site_Localization 584 
 585 
The web-interface software for ModiFinder can be found here: 586 
 587 
https://github.com/mshahneh/ModiFinder-dash 588 
 589 
Additionally, all the necessary code to replicate the experiments, benchmarking, and analysis conducted with 590 
ModiFinder is provided at: 591 
 592 
https://github.com/mshahneh/ModiFinder_Analysis 593 
 594 
A public and interactive version of ModiFinder can be accessed here: https://modifinder.gnps2.org/  595 
 596 
Please note that this website is continually improved and results may not match exactly as presented in this 597 
manuscript. To reproduce the results, please find the software deposited in Zenodo.  598 
 599 
The specific version of the repositories utilized in this study has been archived on Zenodo here: 600 
 601 
XXX 602 
XXX 603 
XXX 604 
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 605 
Data Availability 606 
 607 
The benchmarking libraries for ModiFinder are available for download at  608 
 609 
https://external.gnps2.org/gnpslibrary.  610 
 611 
The set of pairs with single modifications for benchmarking in this manuscript are available here: 612 
 613 
https://www.dropbox.com/scl/fi/t07mpuzdde2k3oe0hh15o/GNPS-614 
MSMLS.csv?rlkey=xh98imxmri5b82y3lipwsfd39&dl=0 615 
https://www.dropbox.com/scl/fi/8nw80ayxshk2lpti6mr4r/BERKELEY-616 
LAB.csv?rlkey=udv2rjxbk9ol02y6gx5kc4lwg&dl=0 617 
https://www.dropbox.com/scl/fi/ni88vniggcy21eif0v3c8/GNPS-NIH-618 
NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE.csv?rlkey=y18q7bea8i64rgz96cb174ovc&dl=0 619 
https://www.dropbox.com/scl/fi/8nw80ayxshk2lpti6mr4r/BERKELEY-620 
LAB.csv?rlkey=udv2rjxbk9ol02y6gx5kc4lwg&dl=0 621 
 622 
The CFM-ID Results are available here: 623 
 624 
https://www.dropbox.com/scl/fi/hcg76wkqa0r8lj9p0y3dp/cfmid_exp.zip?rlkey=371yuhokh20l5btpeklq7vqh7&dl=625 
0 626 
 627 
The pairs of helpers we used for refinement of sub-structure annotation can be found here: 628 
 629 
https://www.dropbox.com/scl/fi/55r9cyjanw9cft95v65x5/helpers.zip?rlkey=vm3jltxbnq2f4c998chgs7m6h&dl=0 630 
 631 
The Sirius computed results can be found here: 632 
 633 
https://www.dropbox.com/scl/fi/ejnfd0j04qrjzryj5i7cl/SIRIUS.zip?rlkey=bxnyxefol5tfojp4cdmsyl8d2&dl=0 634 
 635 
 636 
 637 
Supplementary information 638 
 639 
https://docs.google.com/document/d/1zjkrOw1CWtgu0b-640 
tQYr4HDKcyq3ukH_82OJdDp2CBlQ/edit?usp=sharing 641 
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