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ABSTRACT

Endoplasmic reticulum (ER) and inflammatory stress responses are two pathophysiologic factors
contributing to islet dysfunction and failure in Type 2 Diabetes (T2D). However, how human islet cells
respond to these stressors and whether T2D-associated genetic variants modulate these responses is
unknown. To fill this knowledge gap, we profiled transcriptional (RNA-seq) and epigenetic (ATAC-seq)
remodeling in human islets exposed to ex vivo ER (thapsigargin) or inflammatory (IL-1B+IFN-y) stress.
5,427 genes (~32%) were associated with stress responses; most were stressor-specific, including
upregulation of genes mediating unfolded protein response (e.g. DDIT3, ATF4) and NFKB signaling (e.g.
NFKB1, NFKBIA) in ER stress and cytokine-induced inflammation respectively. Islet single-cell RNA-seq
profiling revealed strong but heterogeneous beta cell ER stress responses, including a distinct beta cell
subset that highly expressed apoptotic genes. Epigenetic profiling uncovered 14,968 stress-responsive
cis-regulatory elements (CREs; ~14%), the majority of which were stressor-specific, and revealed
increased accessibility at binding sites of transcription factors that were induced upon stress (e.g. ATF4
for ER stress, IRF8 for cytokine-induced inflammation). Eighty-six stress-responsive CREs overlapped
known T2D-associated variants, including 20 residing within CREs that were more accessible upon ER
stress. Among these, we linked the rs6917676 T2D risk allele (T) to increased in vivo accessibility of an
islet ER stress-responsive CRE and allele-specific beta cell nuclear factor binding in vitro. We showed
that MAP3K5, the only ER stress-responsive gene in this locus, promotes beta cell apoptosis. Consistent
with its pro-apoptotic and putative diabetogenic roles, MAP3K5 expression inversely correlated with beta
cell abundance in human islets and was induced in beta cells from T2D donors. Together, this study
provides new genome-wide insights into human islet stress responses and putative mechanisms of T2D

genetic variants.
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INTRODUCTION

Type 2 diabetes (T2D) is a complex metabolic disorder, characterized by an interplay between genetics
and environment that leads to pancreatic islet beta cell dysfunction and/or death, and inadequate insulin
secretion in response to insulin resistance’°. Genome-wide association studies (GWAS) have linked DNA
sequence variants in >600 loci in the human genome with increased T2D risk or progression®. The
abundance of non-coding locations of these variants, combined with previous studies demonstrating
significant enrichment of variants in islet cis-regulatory elements (CREs), suggests that these variants
contribute to islet dysfunction and failure by altering CRE use or function and effector gene expression®*’~
% We and others have discovered that a subset of T2D-associated variants alter in vivo CRE chromatin
accessibility and/or effector gene expression in human islets under steady-state conditions*’1-13,
However, as T2D pathogenesis is heavily influenced by the dynamic interaction between genetic variants
and environmental stressors’2*°, the functional effects of these variants, particularly in the context of islet
stress responses such as endoplasmic reticulum (ER) stress and pro-inflammatory cytokine responses,

are largely unknown.

ER stress is crucial in the context of T2D as it is integral to protein quality control and insulin synthesis in
beta cells''®. Under chronic hyperglycemia, a sustained demand for insulin production can overwhelm
the beta cell ER, leading to heightened stress and activation of the unfolded protein response (UPR)
machinery'. Prolonged or excessive ER stress can contribute significantly to beta cell dysfunction and
death'*'°_ Beta cell dysfunction has been further linked to high levels of pro-inflammatory cytokines in
the blood'"’, which have been shown to trigger the NFKB pathway, resulting in impaired insulin

secretion'’"

'®_ Although ER and inflammatory stressors have been associated with T2D?°?, it is unclear
how pancreatic islet cells respond to each specific stressor and whether any T2D-associated variants are

linked to response-associated genomic regions.

To fill these knowledge gaps, we defined transcriptional regulatory programs controlling human islet
responses to ER stress and pro-inflammatory cytokines by mapping genome-wide CRE accessibility (via
ATAC-seq) and gene expression (via RNA-seq) in islets exposed to the ER stress-inducing agent
thapsigargin or inflammation-inducing cytokines (IL-18 and IFN-y). Comparison of the stress response
genes and CREs revealed complementary, stress- and cell type-specific changes in transcriptional
regulatory programs and expression of the factors mediating these stress responses. We identify T2D-
associated variants in 38 signals overlapping ER stress- or cytokine-induced CREs as candidate causal
variants and link them to stress-responsive target (and putative T2D effector) genes. Targeted variant-to-
function analyses in the SLC35D3 locus link the rs6917676 T2D risk allele to increased ER stress-
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responsive CRE accessibility and demonstrate that the putative T2D effector MAP3KS, the only ER stress-

responsive gene in the locus, promotes stress-responsive beta cell apoptosis.

RESULTS

Comprehensive comparative mapping of ER stress- and cytokine-responsive genes in human
islets

To define the characteristic responses of human pancreatic islets to ER stress and pro-inflammatory
cytokines, we procured primary human islets from 30 non-diabetic donors (Supplementary Table 1) and

)11,22,23

exposed them to a 24-hour treatment with either thapsigargin (vs. DMSO solvent control oran IL-

1B+IFN-y cocktail (vs. untreated control)?*, respectively. We determined and compared the genome-wide
gene expression changes elicited by these two T2D-relevant stressors using whole islet RNA sequencing

(RNA-seq)®.

In total, ~32% (5,427/17,096) of autosomal protein-coding genes (Methods) expressed in human
pancreatic islets responded significantly (FDR<5%; |[FC|=1.5) to at least one of the stressors compared to
control conditions (Supplementary Table 2). 2,967 genes were differentially expressed (DE) upon ER
stress (1,517 induced; 1,450 reduced), whereas 3,443 genes were DE upon cytokine-induced
inflammation (1,893 induced; 1,550 reduced) (Supplementary Table 2). Transcriptional responses to ER
stress and cytokines were largely distinct. For example, ~85% of induced genes were stressor-specific,
including 1,064 ER stress-specific genes and 1,440 cytokine-specific genes (Figure 1A; Supplementary
Table 2). As anticipated, ER stress treatment induced genes facilitating both the homeostatic (e.g., ATF4,
ERN1, EIF2AK3, HERPUD1, HSPAS5) and terminal (e.g., DDIT3, MAP3K5) arms of UPR and ER protein
processing related pathways (Figure 1B; Supplementary Table 2), which are centrally linked to
regulating insulin synthesis, managing ER stress responses, and controlling apoptosis - critical processes

for beta cell function and survival®*®*=2 (Figures 1B-C).

Cytokine-induced genes were enriched in NFKB and chemokine signaling related pathways (Figure 1A;
Supplementary Table 2), including NFKB complex members (e.g., NFKB1, NFKBIA) and important
signaling molecules (e.g., JAK2, STAT2) (Figures 1B-C; Supplementary Table 2), consistent with
previous reports®*3*. These genes have been linked to modulating inflammatory responses, promoting
immune cell infiltration, and contributing to islet beta cell dysfunction®***'. 453 genes were consistently
induced by both ER and pro-inflammatory cytokine stressors (Figure 1A; Supplementary Table 2), which
were enriched in pathways related to: 1) metal ion response, including metallothioneins (MT1 genes),
which scavenge free radicals and heavy metals in stressed cells and are associated with reduced insulin

secretion upon stress; and 2) processing of DNA double-strand breaks (DSBs), including RAD9A, which
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is involved in repairing DNA damage and double-strand breaks associated with T2D**** 12/22/23
12:17:00 PM(Figures 1B-C; Supplementary Table 2).

Similarly, ~79% of reduced genes were stressor-specific, including 920 ER stress-specific genes, and
1,020 cytokine-specific genes (Supplementary Figure 1A; Supplementary Table 2). PDX1, ADCYS5,
GLP1R and IGFBP5, which encode factors integral to islet identity and function**~*® were reduced upon
ER stress (Supplementary Figures 1B-C; Supplementary Table 2). In contrast, SLC1A1, COL2A1,
NPNT and ITGA10, which participate in protein digestion/absorption and extracellular matrix (ECM)

receptor signaling related pathways and are important for beta cell function**->!

, were reduced upon
cytokine-induced inflammation (Supplementary Figures 1B-C; Supplementary Table 2). 530 genes
were reduced by both stressors (Supplementary Figure 1A; Supplementary Table 2), including
CDC20, CDC45, UGT2B11 and UGT2B15, which are involved in cell cycle and retinol metabolism and

50-52,52

are crucial for islet function -7 (Supplementary Figures 1B-C; Supplementary Table 1).

Together, these results provide a comprehensive genome-wide perspective on the genes and pathways
modulated by ER stress and pro-inflammatory cytokines. Comparative analyses suggest that they elicit
largely distinct, complementary transcriptional responses, inducing specific response pathways and

repressing islet cell type-specific critical functions in response to stress.

ER stress induces strong and heterogeneous responses in beta cells

To uncover the cell type-specific effects of ER stress and cytokines on islets, we completed single cell
(sc) transcriptome profiling of islets (n=3 donors per condition) treated with thapsigargin or pro-
inflammatory cytokines (Supplementary Table 1), yielding 18,945 single cell transcriptomes from
stressed or control conditions (Supplementary Figure 2A; Supplementary Table 3). Unsupervised
clustering analyses identified each cell type (Figure 2A; Supplementary Table 3), which we annotated
using previously reported marker genes such as GCG for alpha cells and INS for beta cells
(Supplementary Figures 2A-B; Supplementary Table 3). As expected, alpha (~38%) and beta cells
(~37%) constituted the majority of islet cells (Supplementary Figure 2C; Supplementary Table 3). In
striking contrast to the alpha and other islet cell types, beta cells exhibited distinct and increased sensitivity
to ER and cytokine stressors, strongly suggested by the identification of a distinct cluster comprised

exclusively of stressed beta cells (Figure 2A).

To determine the relative alpha and beta cell contributions to whole islet transcriptional responses, we
assessed expression changes for 1,020 ER stress-specific, 1,395 cytokine-specific, and 437 shared islet
stress response genes detected in alpha and beta cell scRNA-seq (Figure 2B; Supplementary Table 3).

These data suggested that beta cells exhibit stronger responses to ER stress than alpha cells. To quantify
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this, we generated ‘response scores’ (Methods) using the expression levels of the stress-responsive
genes. Interestingly, the response scores showed that, although both alpha and beta cells contribute to
ER stress and cytokine responses, beta cells were more likely to yield a response to both ER stress
(p<1.0E-10; two-sided Wilcoxon test) and cytokines (p<1.0E-10; two-sided Wilcoxon test) compared to
alpha cells (Figure 2C). For example, DDIT3, S100A6, and MT1F were significantly induced in beta cells
but not in alpha cells (Figure 2D; Supplementary Table 3). Similarly, reduced genes detected in ER
stressed islets were more significantly (p<1.0E-10; two-sided Wilcoxon test) reduced in beta vs. alpha
cells (Supplementary Figures 2D-E). For example, genes critical for beta cell function such as MAFB,
SCG2, and SHISAL2B*®**®° were robustly reduced in beta cells (Supplementary Figure 2F;
Supplementary Table 3).

Further inspection of the islet scRNA-seq profiles revealed two ER-stressed beta cell subpopulations
(Figure 2E), comprising ~94% (ER stress - Beta Cluster 1 (BC1); n=1,700 cells) vs. ~6% (ER stress -
Beta Cluster 2 (BC2); n=105 cells) of the total ER stressed beta cells (Supplementary Table 3). This
heterogeneity in beta cell response was specific to the ER stress condition and was not observed upon
cytokine-induced inflammation, nor in alpha cells for either stressor (Figure 2E, Supplementary Figure
2G). The distinct ER stressed beta cell subclusters were detected in all 3 donors (Supplementary Figure
2H; Supplementary Table 3), suggesting that this is a coherent and robust transcriptional state. To further
study the distinct ER stress responses of these beta cell clusters, we compared the transcriptional profiles
of each subset to the control condition, which revealed 113 response genes (96 induced; 17 reduced) for
ER stress-BC1 and 170 response genes (147 induced; 23 reduced) for ER stress-BC2 (Figure 2F,
Supplementary Table 3). 89 (~58%) of the response genes were shared between the two beta cell
subclusters and included bona fide ER stress and unfolded protein response (UPR) genes such as DDIT3,
ATF4, and HERPUD1 (Figures 2G-H). Interestingly, genes induced only in ER stress-BC2 (n=58) were
enriched in cellular death-related pathways which consisted of genes in the proteasome superfamily that
function to degrade misfolded proteins and regulate apoptosis®, such as PSMB8, PSMB9, and PSMB10
(Figures 2G-H). These signatures of ubiquitination, degradation, and apoptosis were specific to ER

stress-BC2 cluster (Supplementary Figures 2I-J, Supplementary Table 3).

In summary, scRNA-seq data revealed that beta cells respond more strongly to ER stress compared to
alpha cells. Beta cell responses are composed of two distinct transcriptional states including a smaller
subset of beta cells that highly express apoptosis-related genes upon ER stress treatment. This subset of
beta cells may represent a distinct beta cell subpopulation that is more sensitive or vulnerable to ER
stress-induced cell death or inherent beta cell heterogeneity in the temporal dynamics of ER stress

response.
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Identification of ER and inflammatory stress-responsive islet cis-regulatory architecture

To determine the cis-regulatory elements (CREs) that mediate ER and cytokine stress responses, we
mapped and compared genome-wide CRE accessibility in ER or cytokine stressed islets vs. their
respective DMSO or untreated controls (Methods) using whole islet assay for transposase-accessible
chromatin sequencing (ATAC-seq)®® (Supplementary Table 1). ~14% of CREs (14,968/109,399) were
significantly (FDR < 5%) remodeled in response to stress; 7,171 CREs were ER stress-responsive (3,375
opening; 3,796 closing) and 8,819 CREs were cytokine-responsive (5,768 opening; 3,051 closing)
(Supplementary Table 4). The majority of the responsive CREs exhibited stress-specific accessibility
changes (Figure 3A; Supplementary Figure 3A; Supplementary Table 4). Among the opening CREs,
2,982 were ER stress-specific, 5,375 cytokine-specific, and only 393 were shared between the two stress
conditions.

The majority of these stress-responsive CREs were distal, i.e., >1kb from transcription start site (TSS)%¢’
of the nearest expressed gene (Figure 3B; Supplementary Figure 3B; Supplementary Table 4),
emphasizing the importance of non-promoter CREs in mediating stress responses. We associated the
opening and closing distal CREs with the nearest expressed genes in islets and conducted enrichment
analyses (Supplementary Table 4). As anticipated, there was a significant correlation between the stress-
responsive induced islet chromatin accessibility and gene expression changes (ER stress-specific:
p=4.5E-16; cytokine-specific: p=1E-62; shared: p=5.9E-12; Fisher’s exact test) (Supplementary Table
4). For example, we captured ER stress-specific opening CREs in the introns of ERN1 and AOPEP
(Figure 3C; Supplementary Table 4), genes that were significantly induced by ER stress (Figure 3D;
Supplementary Table 2). ERN1 encodes IRE1a, a central ER stress sensor that initiates UPR and
catalyzes unconventional splicing of the ER stress factor XBP1, while AOPEP catalyzes N-terminal

68—

peptide and amino acid hydrolysis®®"°. Cytokine-responsive CREs included those within introns of NFKB1
and CALCOCO?2 (Figure 3C; Supplementary Table 4), two genes that were induced upon cytokine-
induced inflammation (Figure 3D; Supplementary Table 2). NFKB1 is a central mediator of inflammatory
responses including in beta cells”~"* CALCOCO2 encodes a selective autophagy receptor and has been
recently identified as a putative T2D effector gene that maintains proper beta cell mitochondrial
morphology, insulin granule homeostasis, and insulin content’’®. Further, we identified increased
chromatin accessibility at the NCKAP5 and ARID5B introns upon both stressors, two genes that were

induced by both stressors (Figure 3C-D; Supplementary Tables 2-3).

We identified concordant reductions in CREs and nearest gene expression upon ER stress and exposure
to cytokines (ER stress-specific: p=9E-53; cytokine-specific: p=3.9E-09; shared: p=3.5E-08; Fisher’s exact
test) (Supplementary Table 4). RAB27B and SLC6A17 play key roles in insulin granule exocytosis and
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6-80 These genes were reduced and linked with closing CREs

amino acid vesicular trafficking, respectively
upon ER stress (Supplementary Figures 3C-D; Supplementary Table 4). Similarly, IGF1R and PCSK1,
which play pivotal roles in glucose homeostasis, and proinsulin to insulin processing, respectively?'=3,
were reduced and linked with chromatin closing upon cytokine-induced inflammation (Supplementary
Figures 3C-D; Supplementary Table 4). SORL1, involved in insulin receptor sorting® and PAX4, which
is crucial for islet development®®® were reduced and linked to chromatin closing upon both stressors

(Supplementary Figures 3C-D; Supplementary Table 4).

To elucidate the regulatory drivers of islet ER and cytokine stress responses, we identified transcription
factor (TF) binding motifs enriched in differential distal peaks (Supplementary Table 4). Motifs for ATF4,

R®-% were enriched in ER stress-

CHOP, and NFIL3, which are key transcriptional mediators of UP
specific opening distal peaks (Figure 3E). In contrast, cytokine-specific opening distal peaks were
enriched in motifs for interferon response factors IRF8 and IRF3, as well as the NFKB family member
NFKB-p65 (alias RELA) (Figure 3E). TF motifs for STAT1, BCL6, and CEBPB were enriched in distal
peaks opening upon both stress conditions (Figure 3E). TF motif enrichment analysis for closing distal
CREs (Supplementary Table 4), revealed that EOMES, PDX1, and MAFA were enriched in the cytokine-
specific, ER stress-specific and shared closing distal CREs, respectively (Supplementary Figure 3E).
We also observed a concordant downregulation of EOMES, PDX1, and MAFA under these stress
conditions (Supplementary Figure 3F). EOMES, PDX1, and MAFA are TFs involved in development-
related processes*>*"%2, The downregulation of these genes, therefore, suggests a potentially coordinated
response to stress that could impair the function of the islets, thereby having a significant impact on

glucose homeostasis, which can contribute to T2D.

TF footprinting analyses that integrate TF binding motifs with the chromatin accessibility maps® confirmed
that, genome-wide, there was a significant increase in chromatin accessibility at the binding sites of ATF4
upon ER stress (p=2.60E-02) and IRF8 upon cytokine-induced inflammation (p=2.95E-04) (Figure 3F).
Increased accessibility at the binding sites of these TFs was concordant with the expression changes for
the genes encoding these TFs. ATF4, DDIT3, and NFIL3 were induced upon ER stress, whereas IRF8,
IRF3 and RELA induced upon cytokine-induced inflammation, and STAT1, BCL6, and CEBPB induced by
both stressors (Figure 3G).

Together, our ATAC-seg-based analyses reveal that: i) ER stress and cytokine responses in islets
substantially remodel the islet epigenome, particularly modulating distal non-coding CREs, and ii) each
stressor elicits a distinct epigenetic profile, mediated by different TFs (e.g., CHOP and ATF4 in ER stress;
IRF8, NFkB-p65 in cytokines) whose own expression (e.g., CHOP-encoding DDIT4, ATF4 upon ER

stress;) is itself modulated by that stressor.
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253 T2D-associated genetic variants overlap stress-responsive cis-regulatory elements

254  After comparing ER and cytokine stress-responsive cis-regulatory networks, we sought to understand if
255  genetic variants associated with diabetes (T2D/type 1 diabetes (T1D) GWAS) or related glycemic traits
256  might modulate the CREs and processes. Using a set of index and proxy variants (Methods) collected

94—

257  from multiple genome-wide studies and meta-analyses®~"'% (Supplementary Table 5), we identified 212
258 T2D, T1D, or related glycemic trait-associated variants that overlap stress responsive (opening or closing)
259 CREs (Figure 4A; Supplementary Figure 4A; Supplementary Table 5). Twenty-one and 24 T2D-
260 associated variants overlapped ER stress- or cytokine-specific opening CREs, respectively (Figure 4A;
261  Supplementary Table 5). Among these, 11 variants overlapped ER stress-specific opening CREs that
262  are within 500kb of an ER stress response gene (Figure 4B; Supplementary Table 5), including AOPEP
263 - akey gene involved in peptide processing’® and robustly induced by ER stress in beta cells (Figure 4C;
264  Supplementary Tables 2-3). We detected an ER stress-specific induced CRE in the AOPEP intron, which
265 harbors the T2D-associated variant rs4744423 (Figure 4D; Supplementary Tables 4-5). The chromatin
266  accessibility of this CRE increased with the T2D risk allele (plus strand: T) of this variant (Figures 4D-E).
267  The risk allele is predicted to increase the binding affinity of BATF (Figure 4F; Supplementary Table 5),
268 which is itself an ER stress-responsive islet gene (Figure 4G; Supplementary Table 2). Together, these
269  datasuggest that the T2D risk allele rs4744423 is associated with stronger binding of BATF in ER stressed
270 islets, which might lead to increased upregulation of the putative effector gene AOPEP. This is supported
271 by the increased expression (p<1.0E-02; two-sided Wilcoxon test) of AOPEP in the beta cells of diabetic
272  (T2D) donors compared to non-diabetic (ND) donors (Figure 4H) using targeted analysis of human islet
273  single cell transcriptome data we generated in a parallel study'®.

274

275  Similarly, we identified a CRE that was more accessible upon ER stress and harbors the T2D variant

104—106, Wthh

276  rs6444081. The putative effector gene of this CRE is ETV5, a modulator of insulin secretion
277 was induced by ER stress in beta cells (Figures 41-J; Supplementary Tables 2-5). The T2D risk allele
278  of rs6444081 (plus strand: C) was associated with reduced CRE accessibility (Figures 4K) and is
279  predicted to disrupt an NRF2 (encoded by NFE2L2) TF binding motif (Figure 4L; Supplementary Table
280 5), which we previously identified as a putative regulator of islet chromatin accessibility®>. NRF2 was
281 induced by ER stress (Figure 4M) and, together with KEAP1, it facilitates stress-responsive ETV5
282  activation. These data suggest that upon ER stress, the CRE harboring rs6444081 becomes more
283  accessible and regulates ETV5 activation. However, our data indicate the T2D risk allele rs6444081-C
284 leads to diminished chromatin accessibility, presumably by disrupting NRF2 binding, which would
285  contribute to diminished ETV5 responses. In alignment, Etv5” mice exhibit impaired insulin secretion and
286  glucose tolerance defects. Knockout islets are smaller and contain smaller beta cells than those from
105

287  wildtype littermates'®, and reduced ETV5 expression was previously reported in T2D vs. ND islets
288
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Fourteen T2D-associated variants overlapped 11 cytokine-specific opening CREs that are within 500kb
of a cytokine-induced gene (Supplementary Figure 4B; Supplementary Table 5), including GALNT15
(Supplementary Figure 4C; Supplementary Tables 2-3) - a member of the GALNT family involved in
protein metabolism'%”1%, We detected a cytokine-induced CRE in the intron of ANKRD28 that harbors the
T2D variant rs4685264; the T2D risk allele of rs4685264 (plus strand: G) was associated with increased
chromatin accessibility at this CRE (Supplementary Figures 4D-E) and increased the binding affinity of
the MAX TF (Supplementary Figure 4F; Supplementary Table 5), which was induced by cytokines
(Supplementary Figure 4G; Supplementary Table 2). These data suggest that, upon exposure to
cytokines, the CRE harboring rs4685264 becomes more accessible, which allows for increased MAX
binding. The T2D risk allele for this variant strengthens predicted MAX binding, potentially leading to the
increased upregulation of the putative effector gene GALNT15, and ultimately, affecting protein
metabolism in islets upon exposure to cytokines. These analyses revealed novel functional roles for T2D

variants in modulating cellular responses to ER stress and cytokine-induced inflammation.

Variant-to-function dissection of ER stress-responsive T2D variant in the SLC35D3 locus

Integrated analysis of islet multi-omic data from this and previous studies converged to provide new
variant-to-function insights for the T2D-associated variant rs6917676, which overlapped an ER stress-
responsive, opening CRE that resides in a human islet enhancer hub. This CRE was previously linked to
the promoters of nearby genes MAP3K5, SLC35D3, and IL20RA"® by promoter capture Hi-C data (Figure
5A). Among these linked genes and other genes in this locus (MAP7, PEX7, and IFNGR1), only MAP3K5
expression was induced by ER stress, and specifically in beta cells, thereby nominating MAP3K5 as the
likely effector gene of this variant (Figures 5B-C; Supplementary Figure 5A; Supplementary Tables 2-
3). The T2D risk allele for rs6917676 (plus strand: T) was associated with increased chromatin
accessibility at this ER stress-responsive CRE (Figure 5D). We previously demonstrated that rs6917676
is the expression-modulating variant (emVar) in this CRE using massively parallel reporter assays (MPRA)
in mouse MING beta cells, with the T risk allele increasing MPRA activity'%?. To test if the rs6917676-T risk
allele is differentially bound by beta cell nuclear/transcription factor(s), we completed electrophoretic
mobility shift assays (EMSAs)'"® using human EndoC-BH3 nuclear extracts (Figure 5E; Supplementary
Table 6). EMSA revealed robust T allele-specific binding (red arrows) in untreated, ER stressed, or DMSO
solvent control B-cell extracts. The rs6917676-T risk allele is predicted to strengthen an NFIL3 binding
motif, (Figure 5F; Supplementary Table 5), and the NFIL3 gene was induced by ER stress in beta cells
(Figure 5G; Supplementary Tables 2-3). These data suggest that the T2D risk allele rs6917676-T
contributes to islet dysfunction or death by increasing ER stress-responsive MAP3K5 expression via
increased NFIL3 binding activity at this ER stress-responsive opening CRE. In alignment, we detected an

increased MAP3K5 expression (p<1.0E-02; two-sided Wilcoxon test) in the beta cells of T2D vs. non-
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diabetic individuals (Figure 5H) using the human islet single cell transcriptome data we analyzed in a
103

parallel study

MAP3K5 encodes the MAPK kinase ASK1, which activates JNK and p38 in stress responses''’. ASK1 is
activated by ER stress in MING B cells, and Ask1/Map3k5 knockdown or germline deletion increases MING
cell survival and reduces islet caspase activity, respectively'. To test if MAP3K5 modulates ER stress-
responsive apoptosis in human beta cells, we assessed how MAP3K5 shRNA knockdown altered
apoptosis in EndoC-BH3 cells exposed to a (patho)physiologic range of thapsigargin concentrations (125-
2000 nM). We achieved approximately 80% knockdown of MAP3K5 (Supplementary Figure 5B).
MAP3K5 deficient cells exhibited significantly fewer apoptotic (Annexin V-positive) cells compared to the
non-targeting shRNA control cells exposed to pathophysiologic thapsigargin concentrations (Figure 5I;
Supplementary Figure 5C; Supplementary Table 6). Interestingly and consistent with its pro-apoptotic
role in ER-stressed EndoC-BH3, we found that increased MAP3K5 expression was significantly
associated with reduced beta cell in human islets (Figure 5J). Taken together, these data suggest that
MAP3K5 plays a pivotal role in modulating ER stress-induced beta cell apoptosis and that the T2D-
associated rs6917676-T risk allele contributes to T2D risk or progression by enhancing ER stress-

responsive MAP3K5 expression.

DISCUSSION

This study provides novel genome-wide insights into the transcriptional regulatory circuitry mediating
pancreatic islet stress responses, particularly to ER stress and pro-inflammatory cytokines, two
pathophysiologic stressors implicated in T2D pathogenesis. Through comprehensive RNA-seq and ATAC-
seq analyses, we identified distinct sets of genes and CREs that are responsive to ER stress and cytokine-
induced inflammation. The majority of stress-responsive genes and CREs were specific to either ER stress
or cytokines. Using scRNA-seq, we uncovered alpha and beta cell specificity of these responses. The
context-specific responses of islets to ER stress and cytokines are intriguing yet not entirely unexpected.
The specificity likely reflects a finely tuned cellular mechanism, which allows for islets to adapt to and tailor
their responses to diverse pathophysiologic stimuli. For example, we found that ER stress predominantly
triggered pathways related to protein folding and secretion, which are crucial for beta cells' insulin-
producing function'". In contrast, cytokine treatment activated pro-inflammatory and signaling pathways

that can interfere with crucial islet function such as insulin secretion®'"4,

scRNA-seq profiling of these stress responses in human islets revealed cell type-specificity of responses
to ER stress and cytokine-induced inflammation. Beta cells responded more substantially than alpha cells

to both stressors. These data also uncovered heterogeneity in beta cell responses to ER stress, marked
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by the presence of two transcriptionally distinct heterogeneous beta cell subpopulations. One of these
subsets (ER stress-BC1) reflected the activation of bona fide ER stress response genes and pathways
(e.g., DDIT3 and ATF4) whereas the other smaller subset (ER stress-BC2) also included the induction of
apoptosis-related genes (e.g., PSMB8 and PSMB9). Interestingly, this apoptotic beta cell subpopulation
was detected in all donors. These findings suggest that a fraction of beta cells are prone to ER stress-

induced cell death, which could contribute to beta cell death associated with T2D'"%"16.

Epigenetic responses to these stressors mostly occurred in the distal regulatory regions of the genome,
highlighting the importance of the noncoding genome in cellular responses to stress. Stress-responsive
opening CREs were enriched in binding sites for critical TFs (e.g., ATF4 upon ER stress, IRF8 upon
cytokine-induced inflammation). Genes encoding these TFs were also activated upon these stressors,
suggesting that cellular responses are tightly regulated at the epigenetic level by the activation of critical
TFs as well as by the increased chromatin accessibility at their binding sites. By intersecting T2D-
associated genetic variants with stress-responsive CREs, we uncovered 52 variants residing in 38 ER or
cytokine stress-induced CREs, suggesting that these candidate functional T2D variants contribute to T2D
etiology by altering these responses. Although the identification of stress-responsive CREs, their overlap
with T2D-associated variants, and targeted allelic analyses implicate this subset of T2D variants as genetic
modulators of these responses, larger sample sizes are needed to formally demonstrate their allelic effects
on stress-responsive chromatin accessibility and gene expression using allelic imbalance or quantitative
trait locus approaches. Additionally, the exploration of additional T2D-associated pathophysiologic
stressors (e.g., glucolipotoxicity or oxidative stress) or various stimuli, and their interaction with genetic
variants, could further help elucidate the complex molecular landscape of T2D, stratify T2D association

variants/signals into functional bins, and identify new therapeutic gene targets and pathways.

Taken together, our data and analyses uncovered novel functional associations of T2D variants in
modulating cellular responses to ER stress and cytokine-induced inflammation. Among these variants, we
identified an ER stress-responsive CRE that contains the T2D variant rs6917676. Human islet pcHi-C
data from Ferrer and colleagues and RNA-seq from this study converge to nominate MAP3K5 as the
target gene of this CRE and the T2D effector gene for this genetic association signal. MAP3K5 encodes
MAP3K5 (alias ASK1), a kinase that promotes apoptosis via activation of JNK and p38 signaling

M217-119 This association suggests a potential mechanism in which the rs6917676 T2D risk

pathways
allele enhances ER stress-induced beta cell MAP3K5 expression, which promotes excessive apoptosis
to exacerbate beta cell loss in T2D. In alignment with this, MAP3K5 expression levels were inversely
correlated with beta cell abundance in a 48-donor islet scRNA-seq cohort, and T2D donors in this cohort
had a higher MAP3K5 expression and significantly fewer beta cells comprising their islets'. Selonsertib,

a MAP3K5 (ASK1) inhibitor, and its structural analog GS-444217'2%'2" have been shown to improve
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122-124 " Randomized

diabetic nephropathy by targeting p38 in pre-clinical rodent models of diabetes
placebo-controlled double-blind Phase 2 clinical trials (Clinical Trial Identifier: NCT04026165)'% for
diabetic complications, such as diabetic kidney disease'?®'?", have been successful, and Selonsertib has
now been approved for Phase 3 clinical trials to prevent/treat moderate to advanced diabetic
nephropathy'?*'2¢, Our data suggests that this compound might also be an effective primary intervention
to combat progression to T2D by preserving mass and function of ER-stressed beta cells. More broadly,
these findings highlight the significance of studying GWAS variants in the context of stress conditions,

which more closely reflect cellular state during disease, including for T2D.

In conclusion, this comprehensive and comparative multi-omic mapping study provides important new
mechanistic insights into how human islet cells respond to two important stressors: ER stress and
cytokine-induced inflammation. Importantly, these maps enabled the nomination of new candidate causal
T2D-associated genetic variants that likely contribute to T2D risk or progression by modulating these
responses. These findings support the growing literature emphasizing the importance of cell- and context-
specific responses in the pathophysiology of and approaches to combat islet dysfunction in T2D. Our
study not only enhances our understanding of T2D pathogenesis, but also offers potential new genetics-
based avenues or insights, such as repurposing ASK1 inhibitors to combat ER stress-induced beta cell

apoptosis, for targeted interventions to preserve beta cell function under pathophysiologic ER stress.

MATERIALS AND METHODS

Study Subjects and Primary Islet Culture

Fresh human cadaveric pancreatic islets were procured from Prodo Labs or the Integrated Islet
Distribution Program (lIDP) (Supplementary Table 1). Upon arrival, cells were transferred into PIM(S)
media (Prodo Labs) supplemented with PIM(ABS) (Prodo Labs) and PIM(G) (Prodo Labs) and incubated
in a T-150 non-tissue culture treated flask (VWR) for recovery at 37°C and 5% CO: overnight. The
following day, media was changed to CMRL (10% FBS, 1% Glutamax) supplemented with either 0.025%v
DMSO, 250nM thapsigargin or 25 U/mL of IL13 + 1000 U/mL of IFNy (R&D Systems). After 24-hr
incubation at 37°C and 5% CO», nuclei and total RNA were isolated for RNA-seq and ATAC-seq library

preparation as previously described®.

RNA-seq Library Preparation and Sequencing

Human islet RNA-seq libraries were prepared from total RNA using the stranded TruSeq kit (lllumina).
ERCC Mix 1 or Mix 2 spike-ins were randomly added to each sample (Thermo Fisher, catalog #4456740)
before pooling and sequencing on lllumina NovaSeq S4 to an average depth of 50 million paired-end

reads per sample as previously described®. The paired-end (2x150 bp) RNA-seq FASTQ files for each
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islet were aligned against the human genome (GRCh38/hg38) using STAR'®>'? and counts were

generated using QoRTs' (Supplementary Table 2).

RNA-seq Analyses

Genes were annotated using Ensembl™', and only genes in autosomal chromosomes were considered
for downstream analysis. Non-protein coding genes in autosomal chromosomes, including RNA and
pseudogenes (annotated as ‘transcribed_unprocessed_pseudogene’, ‘processed_pseudogene’,
‘IncRNA’, ‘unprocessed_pseudogene’, ‘TR_V_pseudogene, snRNA’, ‘misc_RNA’, ‘rRNA_pseudogene’,
IG_V_pseudogene’, ‘IG_C_pseudogene’, ‘TEC, scRNA’, ‘translated_processed_pseudogene’,
‘vault_ RNA’, ‘sRNA’, ‘pseudogene’, ‘transcribed_unitary_pseudogene’,
‘transcribed_processed_pseudogene’, ‘unitary_pseudogene’, ‘MiRNA’, ‘snoRNA’, TRNA',
‘TR_J_pseudogene’, ‘ribozyme’, IG_J_ pseudogene’, ‘scaRNA’, ‘translated_unprocessed_pseudogene’,
and ‘IG_pseudogene’) were filtered out. The remaining (protein coding) genes were then filtered for
expression by requiring >0 CPM in 28 samples, and ERCCs were filtered for expression by requiring >5
reads in 22 samples. Normalization of protein coding genes with ERCC was performed using RUVSeq'*?,
which also estimated unwanted variation (W_1) in the data. Surrogate variable analysis was then
performed using svaseq'®®, and the surrogate variables that explained >10% of variance in the data (n=3)
were considered in downstream analysis. Genes were then tested for differential expression (FDR<5%;
|[LFC|=0.585) between their respective control (DMSO; untreated) and treatment (thapsigargin; IL-1p+IFN-
y) conditions (Supplementary Table 2), with gene expression adjusted for age, sex, batch, BMI, surrogate
variables and W_1, using edgeR’s'* ‘tagwise’ and robust dispersion estimation parameter on TMM
normalized counts. FDR was calculated using Benjamini-Hochberg p-value adjustment. The differentially
expressed genes were classified as specific or shared using a Venn diagram, and were input into DAVID'3®
to find the enriched pathways (FDR<10%) using KEGG'™® Reactome™’, and WikiPathways'®
(Supplementary Table 2).

Single Cell RNA-seq Library Preparation and Sequencing

After a 24-hour treatment, as described above, islets from six organ donors (Supplementary Table 1)
were treated with Accutase for 8-10 min at 37°C to generate a single cell suspension. Cells were then
washed and suspended in Staining buffer (PBA, 2%BSA, 0.01%TweenS), and immediately processed as
follows: incubated with Fc Blocking reagent (FcX, BioLegend) for 10 minutes at 4 ‘C, incubated with 0.5ug
of a unique Cell Hashing antibody (TotalseqTM-A0251 to A0257 anti-human hashtag antibody,
BioLegend) for 20 minutes at 4'C, and washed two times with Staining buffer and once with
PBS+0.04%BSA. Cell viability was assessed on a Countess Il automated cell counter (ThermoFisher),
and up to 30,000 cells (~5,000 cells from each hash-tagged (HTO) sample) were loaded onto one lane of

a 10X Chromium Controller. One single-cell suspension was loaded twice, i.e. onto two lanes of a 10x


https://doi.org/10.1101/2024.02.17.580646
http://creativecommons.org/licenses/by-nc-nd/4.0/

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.17.580646; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

chip. Two gene expression and two HTO libraries were generated per islet sample, which were combined
into a single set of gene expression and HTO outputs. Single cell capture, barcoding and library
preparation were performed using the 10X Chromium platform V3 chemistry and according to the
manufacturer’s protocol (#GC000103). cDNA and libraries were checked for quality on Agilent 4200
Tapestation, quantified by KAPA gPCR, and pooled and sequenced on an lllumina NovaSeq 6000 S2/S4
flow cell lane, targeting an average sequencing depth of 50,000 reads per cell. lllumina base call files for
all libraries were converted to FASTQ using lllumina’s bcl2fastq'®. The FASTQ files were then associated
with the gene expression libraries, aligned to the GRCh38.93 reference genome and merged, including
all transcribed unitary pseudogenes, using the 10x Genomics Cell Ranger’s count pipeline'®'*'. FASTQ
t142

files representing the HTO libraries were processed into hashtag-count matrices using CITE-seq-Coun

(Supplementary Table 3).

Single Cell RNA-seq Clustering and Annotation

Sample identities were determined using demuxlet'?

. Ambient RNA for each islet was removed using
SoupX'** by setting contamination fraction to 20%. SoupX-adjusted data were then demultiplexed based
on enrichment of HTO using Seurat'®. Only cells with genes >2000 and mitochondrial percentage <40%
were considered for downstream analysis. Doublet cells were then identified using Scrublet™® and
removed. To filter out any remaining potential doublets or multiplets, cells in the >0.95 quantile with respect
to the number of genes expressed were removed (Supplementary Table 3). These data were then
merged into a single object using Seurat'®, and corrected for batch effect using Harmony'#’. Seurat’s'*®
‘FindClusters’ was implemented to identify cell clusters, which were then annotated for cell type identity
using islet marker genes (Supplementary Table 3). Seurat clusters that expressed more than one marker

gene were classified as doublets and removed from downstream analyses.

Single Cell RNA-seq Data Analyses

To generate response scores, the differentially expressed genes from bulk data were curated into ER
stress-specific, CYT-specific and shared response gene modules. UCell’s® ‘AddModuleScore_UCell’
was then used to calculate each module’s enrichment (i.e. response) scores (Supplementary Table 3).
To identify expressed genes between the control (DMSO; untreated) and treatment (thapsigargin; IL-
1B+IFN-y) conditions in alpha and beta cells, Seurat’s'*® ‘FindMarkers’ was implemented using the
MAST™® test and adjusted with respect to batch and disease state (Supplementary Table 3). This
methodology was also implemented on only those genes that were detected in a minimum of 10% of cells
in either of the beta cell subpopulations to identify differentially expressed genes between ER stress-BC1
vs. DMSO (FDR<5% and |LFC|=0.585), ER stress-BC2 vs. DMSO (FDR<5% and |LFC|=0.585), and ER
stress-BC1 vs. ER stress-BC2 (FDR<5%) comparisons (Supplementary Table 3). These differentially
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expressed genes were then input into DAVID'** to find the enriched pathways (FDR<10%) using KEGG'?,
Reactome'’, and WikiPathways'*® (Supplementary Table 3).

ATAC-seq Library Preparation and Sequencing

Human islet ATAC-seq libraries were prepared following the Active motif ATAC prep kit (Active motif
catalog# 53150). Briefly, 50 islet equivalents (50,000 cells) per sample were transposed in triplicate,
libraries were barcoded, pooled into 3-islet batches, and sequenced using 2 x 150 bp lllumina NovaSeq
S4 chemistry as previously described®. The paired-end (2x150 bp) ATAC-seq FASTQ files for each islet

were trimmed using Trimmomatic'*°

, and aligned against the human genome (GRCh38/hg38) using BWA-
MEM'™'. Duplicate reads were removed, and the remaining reads were shifted as previously
described'?'®3, Using SAMtools', technical replicates were merged and peaks were called using
MACS2's'® ‘BAMPE’ parameter. TDF files were generated using IGVTools'® to visualize peaks on
IGV'*®. Separate consensus peaksets for ER stress and CYT samples were generated by considering
peaks that were present in at least two samples; peaks mapping to ENCODE Exclusion List Regions'’
were removed using DiffBind'®®. The union of all peaks from ER stress and CYT samples was determined

using GenomicRanges'®®, and counts were normalized using CPM (Supplementary Table 4).

ATAC-seq Data Analyses

Only peaks in autosomal chromosomes were considered, which were then filtered for depth by requiring
>0 CPM in =8 samples. Surrogate variable analysis was then performed using svaseq'®, and the
surrogate variables that explained >10% of variance in the data (ER stress: n=2; cytokines: n=3) were
considered in downstream analysis. Peaks were then tested for differential accessibility (FDR<5%)
between their respective control (DMSO; untreated) and treatment (thapsigargin; IL-1B+IFN-y) conditions
(Supplementary Table 4), with accessibility adjusted for age, sex, batch, BMI, and surrogate variables
using the edgeR"* ‘tagwise’ and robust dispersion estimation parameter on TMM normalized counts. FDR
was calculated using Benjamini-Hochberg p-value adjustment. Peaks were then annotated to the nearest
expressed protein-coding gene extracted from GENCODE v35' in islets using HOMER's™' °
annotatePeaks.pl’ command. Peaks with distance <1kb to the nearest expressed gene’s TSS were

18159£

considered proximal, and the other peaks were considered distal®®®’. IRange subsetByOverlaps’

function was used to classify proximal and distal peaks as specific or shared (Supplementary Table 4).

Enrichment and Footprinting Analysis

Nearest genes to differentially accessible peaks were used as input into DAVID'™® to find the enriched
pathways (FDR<10%) using KEGG'®, Reactome'’, and WikiPathways'® (Supplementary Table 4). TF
motifs present in the differentially accessible peaks were found using HOMER’s'®" ‘findMotifsGenome.pl’

command. FDR of TFs was calculated using Benjamini-Hochberg p-value adjustment, and the fold change
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was calculated by dividing "% of Targets Sequences with Motif’ by the "% of Background Sequences with
Motif (Supplementary Table 4). Using SAMtools'*, samples of the same control or treatment conditions
were merged, and peaks were called using MACS2'%° with ‘BAMPE’ parameter. HINT-ATAC®was used
to identify TF footprints and to calculate differences in TF activity between the respective control and

treatment conditions (Supplementary Table 4).

Overlapping Genetic Variants with Peaks

Index variants associated with T1D, T2D, and glycemic traits (fasting glucose, fasting insulin, HbA1c, 2-
hour glucose, HOMA-B, HOMA-IR, proinsulin, modified Stumvoll insulin sensitivity index, and disposition
index) were obtained from the largest and most recent genome-wide association meta-analyses for each

t94—1 02(

trai Supplementary Table 5). Proxy variants, or variants in strong linkage disequilibrium (LD) with

the index variant, were defined as any variant that was in LD r220.75 with the index variant calculated

using the 1000 Genomes Phase 3 reference panel'®?

which was accessed through ‘https://Idlink.nih.gov’
using the global ancestry group that most closely matched the original GWAS meta-analysis; all individuals
in the reference panel were used for GWAS meta-analyses of multi-ancestry populations. When
necessary, index and proxy variants were lifted over to hg38 genome; variants that we were unable to lift
over were not included in our analyses (Supplementary Table 5). Index and proxy variants with a
reference SNP ID (rsID) assigned by dbSNP'®® were then overlapped with differentially accessible peaks
using IRange’s'® “findOverlapPairs’ function to find T2D variants that are harbored by stress-responsive
peaks (Supplementary Table 5). T2D variants that overlapped stress-responsive peaks and were located
<500kb from the nearest induced or reduced gene were then entered into atSNP'® to identify all TF motifs
being disrupted by the variant in the sense or antisense strands, and only those motifs with a ‘SNP impact
p-value’ <0.05 were considered downstream. This list of motifs was then cross-referenced against the list
of enriched TF motifs identified by HOMER'™' (as described above) to determine relevant TF motifs
(Supplementary Table 5). ATAC-seq read pileups were used to infer the genotypes of donors for the

T2D variants using pysam'®>'%® (Supplementary Table 5).

EndoC-BH3 Cell Culture

EndoC-BH3 cells were cultured in Advanced DMEM F-12 media (Invitrogen) containing 2% BSA (Sigma),
2mM Glutamax (Gibco), 50uM 2-beta mercaptoethanol (Sigma), 10mM nicotinamide (SIGMA), 6.7ng/ml
sodium selenite (Sigma), 1% Penicillin/Streptomycin (Gibco) and 10ug/ml Puromycin (Calbiochem) on

167

ECM (Sigma) and Fibronectin (Sigma) coated flasks

shRNA knockdown in EndoC-H3
Plasmid pLKO-puro shRNA clones (Mission shRNA) were purchased from Sigma (SHC016 (shCTRL);
TRCNO0000000993 (shMAP3K5). Lentivirus was produced in HEK293T cells co-expressing the shRNA
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plasmid together with psPAX2 packaging plasmid and pVSV-G envelope plasmid (Addgene). Virus was
concentrated using Lenti-X Concentrator (Takara) and titer quantified using p24 ELISA antigen assay
(Takara). MOI=5 was used to transduce 1x10%" EndoC-BH3 cells in culture media without pen/strep and

puromycin.

Cells were collected for RNA extraction 96 hrs post transduction using TRIZOL (Invitrogen), phase
separation was achieved using Chloroform. Isopropanol was used for RNA precipitation using glycogen
as a carrier, the pellets were washed using 75% ethanol, air-dried, and resuspended in DEPC water. RNA
was measured using Qubit RNA HS Assay (ThermoFisher). Total RNA was used to perform gPCR using
RNA to CT kit (Invitrogen) and FAM-Tagman probes (Invitrogen) and analyzed on QuantStudio 7 (Applied
Biosystems) normalized to TBP/HPRT1 Tagman probe (Supplementary Table 6).

Flow cytometry analysis of beta cell apoptosis

Eighteen hours post-transduction, media was changed to pen/strep and puromycin complete media with
0, 125, 250, 500, 1000, 1500, 2000nM thapsigargin (Sigma Aldrich) dissolved in DMSO or 0.5% DMSO
solvent control (VWR). Ninety hours after transduction, cells were collected using Trypsin (Gibco) and
stained using PE-Annexin V Apoptosis Detection Kit (BioLegend) according to manufacturer’s instructions.
The samples were assessed on Fortessa (BD Sciences) and annexin V-positive cells were analyzed and

quantified using FlowJo Software (BD Sciences) (Supplementary Table 6).

EMSA

Electrophoretic mobility shift assays (EMSAs) were carried as previously described''®. Nuclear extracts
were prepared from EndoC-BH3 cells using NE-PER Extraction kit (Thermo Fisher Scientific), quantified
using Pierce BCA protein assay kit (Thermo Fisher Scientific), and stored in -80°C until use. Twent-one-
bp biotin end-labeled, complementary oligonucleotides were designed to the variant rs6917676 (5-bio-
TAATGACTGT[GI/T]TTCTTAAGAT-3’, Integrated DNA Technologies), and double stranded probes were
generated for both alleles. The Lightshift EMSA optimization and control kit (Thermo Fisher Scientific) was
used according to the manufacturer's instructions. Each reaction consisted of a 10x binding buffer, Poly
Di-Dc, 4ug of nuclear extract, and 200nM of labeled probe. Reactions were incubated at 25°C for 25
minutes. DNA-protein complexes were detected using Lightshift Chemiluminescent Nucleic Acid Detection
kit (Thermo Fisher Scientific) according to manufacturer’s protocol. EMSAs were repeated at least three

times and yielded comparable results.

DATA AVAILABILITY: All cadaveric human islet ATAC-seq, RNA-seq, and single cell RNA-seq data
generated in this study are available via the Gene Expression Omnibus under study accession
GSE251913.
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FIGURE LEGENDS

Figure 1: Induced transcriptional responses of human pancreatic islets to ER stress (ERS) and
pro-inflammatory cytokines (CYT). (A) Heatmap of genes induced by ERS and/or CYT treatment
(FDR<5%; FC=1.5). Induced genes are categorized as ERS-specific, CYT-specific, or shared between
both conditions; the number of genes in each category is denoted in parentheses on the left. Note that the
majority of genes exhibit stress-specific induction. Expression values are scaled using z-scores. (B)
Enriched pathways for induced genes; FDR values and example genes for each pathway are as indicated.
(C) Examples of enriched pathway genes induced by ERS, CYT, or both. Dot-and-box plots show gene
expression levels (CPM) per islet donor in ERS (green), CYT (orange), or control samples (grey).
***=FDR<5% and FC=1.5; ns=not significant. FDRs were calculated using Benjamini-Hochberg p-value

adjustment. FDR, False Discovery Rate; FC, fold change; CPM, counts per million.

Figure 2: Single-cell transcriptome analysis of human pancreatic islet responses to ER stress
(ERS) and pro-inflammatory cytokines (CYT). (A) Uniform Manifold Approximation and Projections
(UMAPSs) of aggregated single cell transcriptomes from islets exposed to ERS (thapsigargin), CYT (IL-18
+ IFNy) or respective control conditions for 24 hours (n=3 donors per condition; Supplementary Table
1). UMAPs are color-coded based on cell type annotations (top) or condition (bottom). n=number of cells
per cell type (top) or condition (bottom). (B) Scaled fold-change of alpha or beta cell expression of genes
induced by ERS or CYT in whole islets. Genes are grouped into genes whose induction is ERS-specific,
CYT-specific, or shared between conditions. (C) Response scores for the islet-induced genes in alpha

*kk

and beta cells. ***=p<1.0E-10; ns=not significant, two-sided Wilcoxon test. (D) Violin plots of alpha or beta
cell expression for representative genes from the three induced gene sets in panel B. ***=FDR<5%,
FC=1.5; ns=not significant. (E) UMAP visualization of islet scRNA-seq profiles (left) reveals two beta cell
clusters (BC) in ER stressed islets (middle), designated ERS-Beta Cluster 1 (ERS-BC1) or ERS-Beta
Cluster 2 (ERS-BC2), respectively (right). The number of cells is indicated in parentheses. (F) Heatmaps
of significantly induced genes in ERS-BC1 (top) or ERS-BC2 (bottom) versus DMSO control (FDR<5%;
FC=1.5). Number of induced genes in each category is indicated in parentheses. Expression values are
scaled using z-scores. (G) Venn diagram (left) of significantly induced genes in ERS-BC1 or ERS-BC2
(FDR<5%, FC=1.5) and the significantly associated pathways from KEGG, Reactome, and WikiPathways
for the intersecting vs. unique gene sets (right). FDR values for enriched pathways are reported beneath
each category. Note that genes specifically induced in ERS-BC2 are significantly associated with
apoptosis-related pathways. (H) Violin plots showing expression levels of selected unfolded protein
response (UPR) or apoptosis genes in ERS-BC1, ERS-BC2, and DMSO control conditions. ***=FDR<5%,
FC=1.5. False discovery rates (FDR) are calculated using Benjamini-Hochberg p-value adjustment. FC,

fold-change; DEGs, differentially expressed genes; a, alpha; B, beta.
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Figure 3: Increased chromatin accessibility changes and associated induced transcriptional
regulatory effects of human islet ER stress (ERS) and pro-inflammatory cytokine (CYT) responses.
(A) Heatmap of human islet cis-regulatory elements (CREs) whose accessibility is increased by ERS
and/or CYT treatment (FDR<5%). n=number of CREs in each category. Accessibility values are scaled
using z-scores. (B) Pie chart showing the percent of opening CREs that are proximal vs. distal (€1kb vs.
>1kb to nearest transcription start site (TSS), respectively). Bar chart (right) indicates the percentage of
opening CREs per condition. (C) Integrative Genomics Viewer (IGV) browser tracks of representative loci
highlighting CREs whose increased accessibility is ERS-specific, CYT-specific, or shared. (D) Dot-and-
box plots of gene expression levels (CPM) per islet donor in treated versus control conditions for
responsive genes in representative loci in panel C. ***=FDR<5%, FC=1.5; ns=not significant. (E) Heatmap
of enriched transcription factor (TF) motifs identified in ERS-specific, CYT-specific, or shared opening
distal CREs. The color gradient indicates the scaled fold change of the motif (i.e., motif instances found in
target sequences compared to the background sequences). *****=FDR<1.0E-200; ****=FDR<1.0E-100;
***=FDR<1.0E-50; **=FDR<1.0E-10; *=FDR<1.0E-1; ns=not significant. (F) Chromatin footprint analyses
indicating average islet chromatin accessibility in IRF8 (left), ATF4 (middle), or STAT1:STATZ2 (right) TF
binding sites of CYT-specific (left), ERS-specific (middle), or shared opening CREs (right). The number of
footprints is indicated with “n=" at the bottom of each footprint plot. (G) Dot-and box plots of islet RNA-seq
expression levels (CPM) in ERS, CYT, or control conditions for TF-encoding genes with enriched TF motifs
or chromatin footprints in panels E or F, respectively. ***FDR<5%, FC=1.5; ns, not significant. False
discovery rates (FDR) are calculated using Benjamini-Hochberg p-value adjustment. FC, fold-change;

CPM, counts per million.

Figure 4: Type 2 Diabetes (T2D)-associated variants overlapping stress-responsive opening CREs.
(A) Bar chart displaying the number of T2D- or glycemic trait-associated genome-wide association study
(GWAS) variants that overlap opening cis-regulatory elements (CREs). (B) T2D-associated variants
overlapping ER stress (ERS)-specific opening CREs located <500 kb from the TSS of an ERS-specific
induced gene. (C) Expression of AOPEP, the putative effector gene of T2D variant rs4744423, under ERS
and pro-inflammatory cytokine (CYT) conditions in human islet RNA-seq (left) or scRNA-seq (right)
profiles. Dot-and-box plots show gene expression levels (CPM) per islet donor in treated versus control
samples. ***=FDR<5%, FC=1.5 or ns=not significant. Dot plot of AOPEP expression in alpha vs. beta cell
scRNA-seq profiles in ERS or CYT treated human islets (right). Dot size indicates the percent of AOPEP-
expressing cells in each cell type; dot color denotes the scaled average AOPEP expression in those cells.
(D) Integrative Genomics Viewer (IGV) browser track showing an ERS-specific opening CRE containing
T2D-associated variant rs4744423. (E) Dot-and-box plots of islet chromatin accessibility levels (CPM) in
donors with rs4744423 TC or TT genotypes (on the plus strand). Note that the homozygous T2D risk allele

(TT) genotype is associated with the highest in vivo chromatin accessibility. (F) Composite logo plot
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(generated using atSNP'®) illustrates that the rs4744423 T2D risk allele (T on plus strand, A on minus
strand) significantly alters a BATF (indicated by the position weight matrix) transcription factor (TF) binding
motif (atSNP p-value=3.33E-02) to create a binding site. (G) Expression of BATF, the gene encoding
BATF, in ERS, CYT or control conditions. Dot-and-box plots show gene expression levels (CPM) per islet
donor in treated versus control samples. ***=FDR<5%; FC=1.5. (H) Expression of AOPEP, the putative
effector gene of T2D-associated variant rs4744423, in human islet alpha and beta cells. Dot-and-box plots
show pseudobulk gene expression levels per (CPM) islet donor in cells obtained from non-diabetic (ND)
or diabetic (T2D) donors. **=p<1.0E-02; ns=not significant, two-sided Wilcoxon test. (I) Expression of
ETVS5, the putative effector gene of T2D-associated variant rs6444081, in ERS, CYT, or control conditions
(left). Dot-and-box plots show gene expression levels (CPM) per islet donor in treated vs. control samples.
***=FDR<5%, FC=1.5; ns=not significant. Dot plot of sScRNA-seq data illustrating alpha vs. beta cell ETV5
expression in ERS or CYT treated human islets (right). Dot size indicates the percent of cells expressing
ETV5 in each cell type; dot color denotes the scaled average expression level of ETV5 in those cells. (J)
IGV browser track showing an ERS-specific opening CRE containing T2D-associated variants rs6444081,
rs146872661, rs937563893, and rs150111048. (K) Dot-and-box plots display islet chromatin accessibility
levels (CPM) in donors with rs6444081 TT, TC or CC genotypes (on the plus strand). Note that the
homozygous T2D risk allele (CC) genotype is associated with the lowest in vivo chromatin accessibility.
(L) Composite logo plot (generated using atSNP'®) illustrates that the rs6444081 T2D risk allele (C on
plus strand, G on minus strand) significantly disrupts the NFE2L2 (indicated by the position weight matrix)
TF binding site (atSNP p-value=3.88E-03). (M) Expression of NFE2L2, the gene encoding NFE2L2, in
ERS, CYT or control conditions. Dot-and-box plots show gene expression levels (CPM) per islet donor in
treated versus control samples. **=FDR<5%; FC>1. False discovery rates (FDR) are calculated using

Benjamini-Hochberg p-value adjustment. FC, fold-change ; CPM, counts per million.

Figure 5: Type 2 Diabetes (T2D)-associated variant rs6917676 potentially modulates beta cell
apoptosis in response to ER stress (ERS) via its effector gene, MAP3K5. (A) Integrated Genomics
Viewer (IGV) browser track showing a +500kb window (blue gene annotations) centered on T2D-
associated variant rs6917676 and an enhancer hub (magenta) identified by Miguel-Escalada et al.
(2019)'°. The enhancer hub encompasses several individual enhancers, with one enhancer (inset)
mapping to the ERS-specific, opening distal (<1kb distance to nearest transcription start site (TSS)) cis-
regulatory element (CRE) containing T2D-associated variants rs6937795 and rs6917676. All genes
located within this £500kb window are shown; ERS-induced genes are denoted with a green check mark;
non-expressed/non-protein coding (grey text) or non-responsive genes are marked by a red “X”. (B)
Expression of MAP3K5, the putative effector gene of T2D-associated variant rs6917676, in human islets
in ERS, pro-inflammatory cytokine (CYT), or control conditions. Dot-and-box plots show gene expression

levels (CPM) per islet donor in treated vs. control samples. ***=FDR<5%, FC=1.5; ns=not significant. (C)


https://doi.org/10.1101/2024.02.17.580646
http://creativecommons.org/licenses/by-nc-nd/4.0/

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.17.580646; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Dot plot of alpha or beta cell MAP3K5 scRNA-seq expression in ERS or CYT treated human islets. Dot
size indicates the percent of MAP3K5 expressing cells in each cell type; dot color represents the scaled
average expression level of MAP3K5 in the cells. (D) Dot-and-box plots display islet chromatin
accessibility levels (CPM) in donors, stratified by rs6917676 plus strand genotype (GG, TG or TT). Note
that in vivo chromatin accessibility increases with T2D risk allele (T). (E) Electrophoretic mobility shift
assay (EMSA) using nuclear extracts (NE) prepared from untreated, DMSO solvent control, or
thapsigargin-treated human EndoC-BH3 cells. Red arrows highlight nuclear factors specifically binding
the T2D risk allele rs6917676-T. Representative image shown from n=3 EMSAs. (F) Composite logo plot
(generated using atSNP'%) illustrates that the rs6917676 T2D risk allele (T on plus strand) significantly
alters a NFIL3 (indicated by the position weight matrix) transcription factor (TF) binding motif (atSNP p-
value=2.37E-03) to create a binding site. (G) Expression of NFIL3, the putative effector gene of T2D
variant rs6917676, under ERS and pro-inflammatory cytokine (CYT) conditions in human islet RNA-seq
(left) or scRNA-seq (right) profiles. Dot-and-box plots show gene expression levels (CPM) per islet donor
in treated versus control samples. ***=FDR<5%, FC=1.5; ns=not significant. Dot plot of NFIL3 expression
in alpha vs. beta cell scRNA-seq profiles in ERS or CYT treated human islets (right). Dot size indicates
the percent of NFIL3-expressing cells in each cell type; dot color denotes the scaled average NFIL3
expression in those cells. (H) Expression of MAP3K), the putative effector gene of T2D-associated variant
rs6917676, in alpha and beta cells. Dot-and-box plots show pseudobulked gene expression levels (CPM)
per islet donor in cells obtained from non-diabetic (ND) and diabetic (T2D) donors. **=p<1.0E-02; ns=not
significant, two-sided Wilcoxon test. (I) Bar plots showing percent of apoptotic (Annexin V-positive) cells
detected in human EndoC-BH3 cells exposed to 500nM thapsigargin or DMSO solvent control (Annexin
V staining) after MAP3K5 knockdown (shMAP3K5) vs. non-targeting shRNA control (nt-shCTRL). n=5
biological replicates per condition. **=p<1.0E-02; ns=not significant, two-tailed t-test. (J) Plot of the
correlation between normalized MAP3K5 expression (CPM) and the proportion of endocrine cells that are

beta cells for 48 human islet donors (Motakis and Nargund et al., in preparation'®)

. Note the statistically
significant inverse relationship between MAP3K5 expression and beta/endocrine percentages. False
discovery rates (FDR) are calculated using Benjamini-Hochberg p-value adjustment. FC, fold-change;

Untx, untreated; Tg, thapsigargin.
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