
Impact of a national tsetse control programme to eliminate Gambian sleeping sickness in Uganda: 

a spatio-temporal modelling study. 

Joshua Longbottom1, Johan Esterhuizen1, Andrew Hope1, Mike J. Lehane1, TN Clement Mangwiro2, 

Albert Mugenyi3, Sophie Dunkley1, Richard Selby1, Inaki Tirados1, Steve J. Torr1, Michelle C. Stanton1 

 

Author Affiliations: 
1Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA 
2Bindura University of Science Education, Bindura, Zimbabwe 
3Coordinating Office for Control of Trypanosomiasis in Uganda, Kampala, Uganda 

 

Abstract 

Introduction 

Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes gambiense human 

African trypanosomiasis (gHAT). As part of national efforts to eliminate gHAT as a public health 

problem, Uganda implemented a large-scale programme of deploying Tiny Targets, which comprise 

panels of insecticide-treated material which attract and kill tsetse. At its peak, the programme was 

the largest tsetse control operation in Africa. Here, we quantify the impact of Tiny Targets and 

environmental changes on the spatial and temporal patterns of tsetse abundance across north-

western Uganda. 

Methods 

We leverage a 100-month longitudinal dataset detailing Glossina fuscipes fuscipes catches from 

monitoring traps between October 2010 and December 2019 within seven districts in north-western 

Uganda. We fitted a boosted regression tree model assessing environmental suitability which was 

used alongside Tiny Target data to fit a spatio-temporal geostatistical model predicting tsetse 

abundance across our study area (~16,000 km2). We used the spatio-temporal model to quantify the 

impact of Tiny Targets and environmental changes on the distribution of tsetse, alongside metrics of 

uncertainty. 

Results 

Environmental suitability across the study area remained relatively constant over time, with 

suitability being driven largely by elevation and distance to rivers. By performing a counterfactual 

analysis using the fitted spatio-temporal geostatistical model we show that deployment of Tiny 

Targets across an area of 4000 km2 reduced the overall abundance of tsetse to low levels (median 

daily catch = 1.1 tsetse/trap, IQR = 0.85-1.28) with no spatial-temporal locations having high (>10 

tsetse/trap/day) numbers of tsetse compared to 18% of locations for the counterfactual.   

Conclusions 

In Uganda, Tiny Targets reduced the abundance of G. f. fuscipes and maintained tsetse populations 

at low levels. Our model represents the first spatio-temporal model investigating the effects of a 

national tsetse control programme. The outputs provide important data for informing next steps for 

vector-control and surveillance. 
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Key questions 

What is already known on this topic? 

Small panels of insecticide-treated fabric, called Tiny Targets, are used to attract, and kill riverine 

tsetse, the vectors of T. b. gambiense which causes gambiense human African trypanosomiasis 
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(gHAT). In large-scale (250-2000 km2) trials conducted in five countries, deployment of Tiny Targets 

reduced the densities of tsetse by between 60 and >90%. 

 

What this study adds 

We report an analysis of, and data from, a large-scale (~4,000km2) national tsetse control 

programme, implemented in Uganda to eliminate gHAT as a public health problem. We found that 

Tiny Targets reduced tsetse abundance across the study period (2011-2019) and maintained 

densities at low (<1 tsetse/trap/day) levels. We produce maps which detail spatial variances in tsetse 

abundance in response to vector control. 

 

How this study might affect research, practice, or policy 

In 2022, Uganda received validation from the World Health Organisation (WHO) that it had 

eliminated gHAT as a public health problem. The large-scale deployment of Tiny Targets contributed 

to this achievement. Our findings provide evidence that Tiny Targets are an important intervention 

for other countries aiming to eliminate gHAT. 

 

Background 

Human African trypanosomiasis (HAT), commonly called sleeping sickness, is caused by subspecies of 

Trypanosoma brucei transmitted by tsetse flies (Glossina). In West and Central Africa, gambiense 

HAT (gHAT) is caused by T. b. gambiense transmitted by riverine species of tsetse (e.g., G. palpalis 

palpalis, G. fuscipes). In East and Southern Africa, T. b. rhodesiense transmitted by savanna species 

of tsetse (e.g., G. morsitans morsitans, G. pallidipes) causes rhodesiense HAT (rHAT). Both diseases 

are fatal without medical intervention. Uganda is the only country where both forms of HAT occur 

[1]. 

 

The last major epidemic of HAT in Uganda occurred in the last ~20 years of the twentieth century 

when political and economic upheavals disrupted national control programmes. Between 1990 and 

1999, Uganda reported an average of 1,384 cases/year (range: 971-2,066) of gHAT and 516 

cases/year (178-1,417) of rHAT [2]. Since then, numbers of both forms of HAT have declined. In the 

last five years for which data are available (2018-2022), there have been a total of four cases of gHAT 

and 13 cases of rHAT reported in Uganda. The dramatic decline in gHAT has been achieved through 

mass screening and treatment of human cases supported by the deployment of Tiny Targets to 

control tsetse [3]. For rHAT, the decline has been achieved through mass treatment of cattle with 

trypanocides and insecticides because in Uganda cattle are important reservoir hosts for T. b. 

rhodesiense [4] and cattle form the main source of a tsetse’s diet. 

 

The achievements of Uganda over the past 20 years are part of a larger continental effort, led by the 

WHO, to eliminate gHAT as a public health problem by 2020 and eliminate transmission by 2030. 

Uganda’s achievement of the first goal was ratified by the WHO in May 2022 [5]. The second goal is 

defined as the “reduction to zero of the incidence of infection in a defined geographical area, with 

minimal risk of reintroduction, as a result of deliberate efforts”; this target involves 15 endemic 

countries by 2030 [6]. 

 

For the last decade, deployment of Tiny Targets has formed an important part of Uganda’s strategy 

to control gHAT. Tiny Targets are small panels composed of blue cloth (25 × 25 cm) flanked by a 

panel (25 × 25 cm) of black netting. The cloth and netting are impregnated with insecticide; tsetse 

are attracted visually to the target contact it and die [7]. In Uganda, Tiny Targets are deployed at a 
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density of 20 targets per linear kilometre along the rivers and streams where riverine tsetse 

concentrate. This intervention reduces the density of tsetse populations by 60-99% [7-11].  

Epidemiological models [12, 13] and empirical evidence [10, 11, 14] suggests that this reduction is 

sufficient to interrupt transmission. The very first trials of Tiny Targets were carried out in Uganda in 

2011 [7] and from an initial trial covering ~250 km2 the intervention grew to an operation of ~4000 

km2 across seven districts. At its peak, Uganda was implementing the largest national tsetse control 

operation in Africa. Tiny Targets are also making important contributions to the elimination of gHAT 

in Côte d’Ivoire [9], Chad [10], DRC [15] and Guinea [11]. 

 

The large-scale deployment of Tiny Targets in Uganda has been accompanied by an extensive 

monitoring programme comprising a network of entomological sentinel sites, where pyramidal 

tsetse traps are used to quantify the abundance of tsetse before and after targets were deployed [7, 

8]. This monitoring programme has produced a decade of data on the distribution and abundance of 

tsetse in and near the places where Tiny Targets have been deployed in north-west Uganda. 

 

Prior analyses of the impact of targets in Uganda [7, 8] and elsewhere [9-11, 15] have shown that the 

reductions in density varied between 55 and >99%. The causes of this variation are unknown but we 

hypothesize that the differences are due, in part, to underlying environmental factors. Previous 

estimates compared catches from individual sites before and after an intervention and could not 

consider what happened in places where we did not sample. The spatial and temporal scale of the 

monitoring data accompanying control operations in Uganda provides a unique opportunity to 

quantify the impact of a large-scale tsetse control programme and assess the relative contributions 

of Tiny Targets and environmental factors to the reduction in tsetse abundance throughout Uganda, 

in areas which were not measured empirically. To do this, we first developed temporally varying 

estimates of tsetse habitat suitability within north-western Uganda, using pre-intervention 

entomological survey data, remotely sensed environmental data and a species distribution model. 

Suitability outputs were then combined with data from subsequent post-intervention surveys to 

quantify the impact of both environmental change and vector control on the abundance of Glossina 

fuscipes fuscipes, the main g-HAT vector in Uganda, through a spatio-temporal geostatistical 

modelling approach.  

 

Methods 

Study area 

Trapping was performed to quantify the impact of Tiny Targets on the abundance of tsetse [7, 16]. 

Between October 2010 and December 2019, pyramidal traps [17] were deployed within seven 

districts in north-western Uganda to monitor the abundance of G. f. fuscipes [7, 18]. Traps were 

deployed for 1-4 consecutive days (median 2 days), with tsetse collected and counted at 24-hour 

intervals [7, 19]. Monitoring and control activities were scaled-up in phases according to need and 

available funding, therefore initial deployment of traps and targets varied between and within 

districts. The year in which intervention was initiated in each district is displayed in Figure 1, utilising 

watersheds as a nominal metric of coverage [14] – further detail regarding survey dates and 

distribution are provided within Appendix: Supplementary Methods. 
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Figure 1:  Districts within north-western Uganda in which tsetse monitoring was performed, alongside watersheds 

controlled by Tiny Targets. The seven districts which form the basis of this analysis cover a total of ~16,419km2, combined 

coverage of intervention areas is ~4,000 km2. Colours represent the years in which the Tiny Target intervention was first 

rolled out within each district, constructed using data from [14]. Targets were replaced every six months. Map produced 

using QGIS 3.16.5 [20]. 

 

Identification of intervention areas 

Tiny Targets are along riverbanks within the intervention area twice a year. They are deployed at 

100m intervals along each bank, i.e., 20 targets per kilometre of river, with their location recorded 

using global positioning systems (GPSs). We generated a 30m × 30m resolution grid for the entire 

study area and the distance from the centre of each grid cell to the nearest Tiny Target was 

calculated per deployment period. We assumed that targets were effective for six months following 

their deployment (Appendix: Table 1) based on other work [7]. These distance surfaces were used to 

produce a categorical variable classifying each gridded pixel as (1) within 500m of a target, (2) 

>500m but <5000m or (3) >5000m from a target [15]. Henceforth, the three categories are termed 

Inside, Edge and Outside respectively. 
 

Tsetse data for model 

Geographic locations of monitoring traps were recorded using GPSs alongside additional variables 

outlined in Appendix: Table 2. From collected records, we produced two separate datasets: one for 

use in a species distribution model (SDM) predicting habitat suitability, and another for use in a 

geostatistical spatio-temporal modelling framework predicting tsetse abundance over time. The 

main differences between the data requirements for the two models were that the spatio-temporal 

geostatistical model was fitted to count data of tsetse from all traps, and the SDM used presence-

absence data with observations being limited to traps considered to be unaffected by the 

intervention, i.e., operated before any intervention or ≥5km from a Tiny Target. As the geographical 
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extent of the intervention increased, some traps classed initially as being ‘non-intervention’ 

transitioned to an ‘intervention’ status. 

 

Assembling explanatory variables 

Gridded surfaces for temperature, elevation and vegetation were assembled for the seven districts 

(extent shown in Figure 1, covariates summarised in Table 1). These variables have been shown 

previously to influence the distribution of tsetse [21-25]. Covariates were generated from remotely 

sensed satellite imagery collected at a spatial resolution of 30 × 30m during the dry season – 

December-February. Cloud coverage and clear scene availability affected our capability to collate 

imagery for other times of year. Where available, temporally varying covariates were collated 

annually. Non-temporally varying covariates (elevation, distance to rivers, slope) were included as 

synoptic surfaces (Table 1). To account for tsetse dispersal [26], a buffer with a radius of 150m was 

used to produce a smoothed mean covariate derived from averaging all 30m cells across 300m of 

the true sample location. An overview of the covariate production process is provided in the 

Appendix, Supplementary Methods. 
 

Table 1: Description and source of covariates used within the presence-absence modelling framework. 

Temporal resolution Covariate (unit) Rationale 
(reference) 

Source 

Synoptic 
 

Elevation (meters) [23, 24] Shuttle Radar Topography Mission (SRTM) [27] 
Distance to rivers (meters) [26] Derived from Shuttle Radar Topography Mission (SRTM) 

elevation data [27] 
Slope (percentage gain)  Derived from Shuttle Radar Topography Mission (SRTM) 

elevation data [27] 

Annual (2011-2019) 
[Dry season] 

Land surface temperature (LST) 
day (mean) (°Celsius) 

[21, 22] Derived from Landsat 5 [28] 
Derived from Landsat 8 [29] 

Normalised difference 
vegetation index (NDVI) (-1 – 1) 

[25] Derived from Landsat 5 [28] 
Derived from Landsat 8 [29] 

Proportion of vegetation (PVI) 
(0 – 1) 

[25] Derived from Landsat 5 [28] 
Derived from Landsat 8 [29] 

 

Species distribution model 

To estimate tsetse densities in locations where no sampling was performed, we produced annual 

estimates of habitat suitability using a presence-absence species distribution model (SDM). SDMs 

predict the distribution of a species across a landscape [30] by combining information on species 

occurrence with environmental variables (covariates) at the same location [31]. Using the species 

occurrence dataset and covariates detailed above, we constructed a presence-absence boosted 

regression tree (BRT) model using the ‘caret’ package within R (version 3.5.1) [32, 33].  

 

BRTs are a machine learning algorithm which combine both regression trees and boosting 

(iteratively combining a group of simple models) to build a linear combination of many trees [34], 

and have been used to predict the distributions of a number of diseases and disease vectors [15, 35-

37]. The BRT method models a suitability index from 0 to 1 for tsetse based on the values of 

environmental covariates at the locations corresponding to presence-absence inputs [30]. In this 

instance, ‘presence’ and ‘absence’ records refer to sampling locations where tsetse were caught or 

not. The absence of tsetse from a monitoring trap may reflect the true absence of tsetse or that 

tsetse were present but the trap failed to catch any. Accordingly, ‘absence’ records are commonly 

referred to as ‘background points’ and serve the purpose of exposing the model to locations where 

the species is presumed to be absent [38]. Further information regarding the covariates used within 

the model, model fitting, and methods of model evaluation can be found in the Appendix: 

Supplementary Methods. 
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Spatio-temporal model 

To evaluate the impact of Tiny Targets and environmental variables on tsetse, a geostatistical spatio-

temporal model was constructed using catch data. Data for this model included repeat catches from 

sites within the same year. Prior to constructing the spatio-temporal model, a series of exploratory 

plots and analyses were performed. An empirical variogram was constructed to test for spatial 

autocorrelation and to obtain starting parameter values for use within the model; this variogram 

was fit using the ‘PrevMap’ R package [39]. A Pearson’s Chi2 test was performed to determine the 

level of dispersion within the data using the ‘msme’ R package [40]. Given the high number of zero 

catches, our a priori assumption was a high level of overdispersion. This was confirmed (dispersion = 

4.79), and therefore a negative binomial distribution was most appropriate for modelling [41]. As 

trapping success is highly variable, and zeros may arise due to either the true absence of the species, 

or due to trapping failure, we opted to model excess zeros independently through use a zero-

inflated negative binomial (ZINB) model. 

 

The underlying statistical model was a spatially and temporally explicit hierarchical generalised linear 

regression model for ZINB data, using the log link function and a type 1 likelihood. A type 1 likelihood 

accounts for two different types of zeros within the dataset: structural or true zeros which represent 

the true absence of tsetse in a location, and sampling zeros, where a zero is recorded as a reflection 

of chance [42]. Further information regarding model construction, including a full model description, 

can be found in the Appendix: Supplementary Methods. 

 

Model fitting and validation 

Models were fit through integrated nested Laplace approximations (INLA) and a stochastic partial 

differential equation (SPDE) representation of the Gaussian-Markov random field (GMRF) 

approximation to the Gaussian process model, based on a Matérn covariance function, using the R 

INLA package [43]. To evaluate the significance of fixed and random effects on tsetse abundance, an 

iterative process was performed where varying combinations of fixed and random effects were used 

within models to identify the optimal model construction.  

 

A priori, we hypothesised that the effect ’suitability’, the output of the BRT environmental suitability 
model, would be positively associated with the catch of tsetse. We hypothesised further that the 
‘intervention’ effect, i.e., proximity to Tiny Targets, would have a negative association on tsetse 
abundance. An interaction term between ’suitability’ and ’intervention’ was also included in the 
fitting process. Temporal effects were included in the form of ’season’, a categorical ’wet’ and ’dry’ 
variable, to investigate temporal changes in abundance and through the inclusion of an 
autoregressive process of order 1, i.e., AR(1). It was hypothesised that there will be seasonal changes 
in abundance, with a higher abundance of tsetse being observed in the wet season [7, 44]. 
 

Measures of the goodness of fit for the spatio-temporal model were obtained using the deviance 

information criterion (DIC). The DIC is a Bayesian generalization of the Akaike information criterion 

(AIC), where models are penalised by their deviance and the number of parameters included [45]. 

Using the variables identified from the model with the lowest DIC, we fitted a separable 

geostatistical spatio-temporal model described fully in Appendix: Supplementary Methods. The INLA 

approach does not allow for the combined fitting of a regression model for the zero-inflation 

probability of the zero-inflated model, therefore an additional function (’pred.zinb’) was defined to 

apply the zero-inflation probability to a posterior sample (1000 draws) of non-zero inflated data 

derived from the negative binomial model [46]. Model validation was performed using a spatial 

leave-one-out cross-validation (SLOO-CV) approach, based on an adaptation of methods described in 
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[47, 48], and described further within the Appendix: Supplementary Methods. Validation statistics 

included assessing the correlation between the predicted and observed tsetse densities through 

summaries of the root-mean-square error (RMSE) and the mean absolute error (MAE) [49]. 

 

Posterior predictive distributions (1000 draws) were simulated for each 30 × 30m cell to determine 

the probability of tsetse catches exceeding predefined abundance categories defined as low, 0-1 

flies, medium, >1 - 10 flies, and high, >10 flies. These categories were determined by discussion with 

field entomologists regarding policy-relevant values. The number of draws within each category was 

used to produce probabilities for each cell, low (𝑝𝐿), medium (𝑝𝑀), and high (𝑝𝐻) respectively, and 

each category was assigned a predictive score using the log-odds. Following Lowe et al. [50], we 

used the receiver operating characteristic (ROC) to define optimal probability thresholds for 

assigning a final category to each cell by comparing the predictive score with the observed class, 

using the ‘ROCit’ R package [51]. The probabilistic results were mapped using a ternary plotting 

technique [52], and the ‘tricolore’ R package [53] to visualise category certainty. Within the maps, 

the predicted category for each cell was expressed as a colour determined by a combination of the 

three probabilities assigned, with colour saturation used to indicate the associated certainty. Maps 

of the final category per cell were produced using QGIS and threshold values obtained from the ROC 

curves. 

 

Counterfactual analysis 

To estimate the relative contribution of Tiny Targets to changes in tsetse abundance, a 

counterfactual analysis was performed using a 50% random sample of the longitudinal trapping 

data, i.e., 4180 trap-month records. Using the optimal spatio-temporal model, all covariate values 

were held fixed except for the categorical intervention variable. The predicted mean flies per trap 

day was then compared for two predictions, where the value assigned to the intervention variable 

was changed: 

 

1. 50% of records were assigned the intervention category ‘inside’ for the purpose of 

prediction and estimates of the mean daily catch of tsetse were generated for these 

locations. 

2. In a different model run, the same 50% of records were assigned the intervention category 

‘outside’ and estimates of the mean daily catch were generated for these locations. 

 

To compare the abundances predicted by the original and counterfactual models, we quantified 

changes in the frequency of catches in the low, medium and high catch categories. 

 

Results 

Tsetse occurrence data 

The dataset comprised 31,426 records from 569 locations sampled between October 2010 and 

December 2019 (Figure 2). A total of 52,544 tsetse were captured over 31,553 trapping days (mean 

1.67 flies/trap/day across all locations) (Appendix: Table 3).  

 

After spatial and temporal aggregation to retain one record per 30m × 30m cell per year (presence at 

one time point replaces absence at another time within the same year), 538 unique location-year 

records situated outside the intervention area remained: 376 presence and 162 absence. The 

number of records per year is provided as Appendix: Table 4. We sampled predominantly where we 

presumed tsetse to be present and so locations outside the intervention area reporting absences are 

relatively few. 
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Figure 2. Location (left) and number of tsetse traps per parish (right), north-western Uganda. Parish administrative boundaries obtained 

from www.GADM.org. Map produced using QGIS 3.16.5 [20]. 

 

Habitat suitability maps 

A BRT model was fitted to presence-absence data from 2010-2019 obtained outside the intervention 

area. Optimal values of the BRT model parameters, based on minimising the Brier score, were 

number of trees = 350, interaction depth = 29 and shrinkage = 0.1. The evaluation measures for the 

resulting optimal BRT are as follows: AUC = 0.81 and Brier score = 0.21, representing a moderate 

model fit. The specificity and sensitivity of the model were 0.86 and 0.59 respectfully, indicating a 

greater ability to correctly identify absence records (high specificity) and a greater error when 

predicting presence locations (low sensitivity). The BRT model may be calibrated to favour 

optimising either sensitivity or specificity or calibrated to equally prioritise both. For this study, we 

used default settings for balancing sensitivity and specificity. 

 

The relative importance of each of the environmental variables included, with respect to their 

contribution to the final BRT, is presented in Appendix: Table 5. Elevation (m), NDVI and distance to 

rivers (m) were equally important contributors (19.14%, 18.57%, 18.47% respectively), to variation in 

suitability. Using the fitted BRT model, predictions of habitat suitability for tsetse were made for 

each 30m x 30m cell for eight years: 2010, 2013-2019. Maps showing suitability for the years 2010 

and 2019 are presented in Figure 3; maps for other years are provided as Appendix:  Figure 1. Areas 

of high suitability follow rivers, vegetated and high-elevation areas neighbouring the Albert Nile and 

parts of Amuru and Adjumani districts. Spatial trends are visible across years, and for parts of Amuru 

and Adjumani districts predicted suitability was greater in 2019 than 2010 ignoring the impact of 

targets, however, this may be an artefact of the low sensitivity of the model (0.59). 
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Figure 3. Predicted habitat suitability for Glossina f. fuscipes within north-western Uganda, for 2010 and 2019. Dark green locations 

indicate areas of higher environmental suitability; whiter areas indicate areas of lower environmental suitability. Map created using QGIS 

3.16.5 [20]. 

 

Spatio-temporal Model 

After collating all sampling records, a 100-month continuous longitudinal dataset consisting of 416 

sites was produced for north-western Uganda. The series consisted of records from September 2011 

to December 2019 and included 8360 trap-month combinations (total flies [count] reported at a 

trap, for a specific month). These data formed the basis of the spatio-temporal model. 

 

To identify which fixed and random effects optimise the performance of the spatio-temporal model, 

a range of ZINB generalised linear geostatistical models (GLGMs) were fitted to the series data, 

varying the fixed and/or random effects across models. A list of considered models, alongside their 

corresponding evaluation metrics (DIC, WAIC and CPO) is provided as Appendix: Table 6. The optimal 

ZINB had an DIC of 35538, compared with a median and maximum DIC of 36100 and 37064, 

respectively (Appendix: Table 6).  

 

The equation for the final model is as follows: 

 

log(𝜂(𝑠, 𝑡)) = 𝛽0 + 𝛽1𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 +  𝛽2𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠,𝑡 + 

𝛽3𝑠𝑒𝑎𝑠𝑜𝑛𝑠,𝑡 +  𝛽4𝐿𝑇𝑇𝑠,𝑡 + 𝛽5𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠,𝑡 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠,𝑡 + 

𝛽6𝑠𝑒𝑎𝑠𝑜𝑛𝑠,𝑡 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠,𝑡 + 𝛽7𝐿𝑇𝑇𝑠,𝑡 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠,𝑡 + 

𝑈𝑠 + 𝑉𝑠,𝑡 

          (Equation 1) 

 

𝛽𝑛, 𝑛 = 1, … ,7 represents the coefficients for each covariate associated with observations at 

location 𝑠 at time 𝑡. The abbreviation 𝐿𝑇𝑇 refers to a linear temporal trend, representing the 

sequential month in the continuous time series. 𝑈𝑠 represents the spatially uncorrelated random 

effect (𝑠𝑖𝑡𝑒𝐼𝐷), and 𝑉𝑠,𝑡 represents the spatially and temporally structured random effects fully 

defined in Appendix: Supplementary Methods. 
 

Table 2 displays the posterior mean estimates and 95% Bayesian credible intervals (𝐶𝑟𝐼) for the 

effects included within the optimal spatio-temporal model, fit to all observed locations and time 

periods (100-month series). Posterior distributions and 𝐶𝑟𝐼 are visualised as Appendix: Figure 2. 

Starting parameter and hyperparameter values for priors used within the model are provided within 

Appendix: Table 7. 
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Table 2. Posterior mean estimates and credible intervals (CrI), alongside rate ratio estimates for the best fitting model (Model 10, 

Supplementary Table 6). Blank (dashed) rows represent the reference category used with each interaction term. LTT = Linear temporal 

trend, RF = Gaussian random field, CrI = Credible interval. 

Variable Mean 2.5% CrI 50% CrI 97.5% CrI Rate ratio (95% CrI) 
Suitability 0.089 -0.079 0.089 0.257 1.09 (0.92, 1.29) 
Inside intervention area (<500m) 0.420 -30.647 0.420 31.461 1.52 (4.90e-14, 4.61e13) 
Edge of intervention area (>500m, ≤5000m) 0.769 -30.299 0.768 31.810 2.16 (6.94e-14, 6.53e13) 
Outside of intervention area (>5000m) -0.036 -31.104 -0.036 31.006 0.96 (3.30e-14, 2.85e13) 
Season: Dry - - - - - 
Season: Wet 0.011 -0.070 0.011 0.092 1.01 (0.93, 1.10) 
Linear temporal trend (LTT) -0.025 -0.027 -0.025 -0.023 0.98 (0.97, 0.98) 
Suitability*Inside of intervention area - - - - - 
Suitability*Edge of intervention area 0.387 0.035 0.388 0.734 1.61 (0.96, 2.69) 
Suitability*Outside of intervention area 1.463 1.056 1.464 1.867 4.72 (2.66, 8.36) 
Wet season*Inside of intervention area - - - - - 
Wet season*Edge of intervention area 0.044 -0.135 0.044 0.223 1.06 (0.81, 1.37) 
Wet season*Outside of intervention area 0.269 0.098 0.269 0.439 1.32 (1.03, 1.70) 
LTT*Inside of intervention area - - - - - 
LTT*Edge of intervention area -0.009 -0.012 -0.009 -0.005 0.97 (0.96, 0.97) 
LTT*Outside of intervention area -0.009 -0.013 -0.009 -0.005 0.97 (0.96, 0.97) 
Spatial range of the RF: 𝝆 0.097 0.095 0.097 0.715 - 
Marginal standard deviation of the RF: 𝝈𝟐 1.597 1.578 1.597 1.616 - 
Size for nbinomial zero-inflated 
observations: 𝜶 

0.704 0.699 0.704 0.710 - 

Zero-probability parameter for zero-inflated 
nbinomial: 𝝅 

0.039 0.039 0.039 0.040 - 

 

We performed a SLOO-CV using the optimal spatio-temporal model configuration. In total, 415 

separate sub-models were produced (𝑘 − 1). Each sub-model was fitted to data excluding one 

randomly selected trap, and all traps within a radius of 0.097 decimal degrees from that trap. This 

radius was equivalent to ~12.8km, the value defined by the posterior range of spatial 

autocorrelation (𝜌) identified within the optimal model. The zero-inflation probability (𝜋 = 0.039, 

95% 𝐶𝑟𝐼 = 0.039, 0.040) was applied to a posterior sample consisting of 1000 draws of non-zero 

inflated data within each model, and the mean predicted values across all 1000 draws for the 

excluded data were compared to the observed values. Resulting validation statistics include a RMSE 

of 8.021 and MAE of 6.048, lower than another published model from the region (RMSE = 15.2)[16]. 

 

Through the conversion of posterior mean values into rate ratios, we determined the mean effect of 

each variable on the predictions. Habitat suitability is significantly and positively associated with fly 

catches outside of the intervention area (Rate Ratio [𝑅𝑅] = 4.72, 95% 𝐶𝑟𝐼 = 2.66, 8.36). This effect 

weakens at the edge of intervention areas (𝑅𝑅 = 1.61, 95% 𝐶𝑟𝐼 = 0.96, 2.69) and inside the 

intervention areas (𝑅𝑅 = 1.09, 95% 𝐶𝑟𝐼 = 0.92, 1.29) (Table 2). Other significant predictors include a 

linear temporal trend (significant negative effect, 𝑅𝑅 = 0.98, 95% 𝐶𝑟𝐼 = 0.97, 0.98), and interactions 

between (1) season (wet) and intervention (significant positive effect, edge 𝑅𝑅 = 1.06, 95% 𝐶𝑟𝐼 = 

0.81, 1.37; outside 𝑅𝑅 = 1.32, 95% 𝐶𝑟𝐼 = 1.03, 1.70), implying higher abundance of tsetse within the 

wet season and on the edge and outside of intervention areas compared to the dry season reference 

class, and (2) intervention and the linear temporal trend (significant negative effect, 𝑅𝑅 = 0.97, 95% 

𝐶𝑟𝐼 = 0.96, 0.97) (Table 2, Appendix: Figure 2). 

 

For traps inside the intervention areas, the counterfactual increased the median daily catch from 1.1 

(IQR = 0.93-1.28) to 2.3 (IQR = 1.79-7.14) tsetse/trap. Conversely, for traps outside the intervention 

area, the counterfactual reduced the median daily catch from 3.8 (IQR = 0.77-14.17) to 1.0 (IQR = 

0.94-1.28) tsetse/trap. The counterfactuals had marked effects on the frequency distribution of 

catches in the high categories (Figure 4). For traps inside the intervention area, none were predicted 

to have mean daily catches of >10 tsetse/trap whereas for the counterfactual, 18.0% were in this 
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category. Conversely, for traps outside the intervention area, 33.8% were predicted to have high 

catches compared to none for the counterfactual. 

 

 
Figure 4. Frequency of catches (tsetse/trap/day) in low (0-1), medium (>1-10) and high (>10) categories for the factual and 

counterfactual models of tsetse abundance. 

 

To determine threshold values for converting predictions into categorical estimates, a sample of 

1000 draws were taken from the posterior distribution of the fitted model for each gridded cell. The 

probability of the prediction belonging to low, medium, and high fly categories was produced (𝑝𝐿, 

𝑝𝑀 and 𝑝𝐻 respectively). These probabilities were compared with the true category from observed 

data, and ROC curves were generated (Appendix: Figure 3). The model was able to distinguish 

between ‘low’ and ‘high’ categories with high accuracy, with AUC values of 0.83 and 0.91. In the 

operational setting, identifying these extremes will help prioritise area for control and/or 

monitoring. The ability to correctly identify the ‘medium’ category (between 1-10 flies) was lower 

than the other two, with an AUC value of 0.7 (Appendix: Figure 3). Using the ROC curves, threshold 

values were obtained for assigning predictions to a specific category. If 𝑝𝐿 ≥ 0.44, a cell was 

assigned the category ‘low’ abundance, if 𝑝𝐿 < 0.44 and 𝑝𝑀 ≥ 0.468, a cell was assigned the 

category ‘medium’ abundance, if 𝑝𝐿 < 0.44 and 𝑝𝑀 < 0.468, a cell was assigned the category ‘high’ 

abundance. 

 

Predictions of tsetse abundance were produced for four periods: February 2012, 2015, 2017 and 

2019, representing in turn (i) first trials of Tiny Targets [7], (ii) first expansion from two to five 

districts [8], (iii) second expansion to cover seven districts and (iv) time of maximum coverage 

(2019). The outputs are visualised as ternary maps, displaying the assigned abundance category 

(low, medium, and high) and associated certainty per gridded cell (Figure 5). Plots showing the 

relative abundance of tsetse for each period are provided as Appendix: Figure 4. 

 

Comparing the categorical predictions from 2012 with those for 2019 (Figure 5) highlights a striking 

reduction in tsetse abundance over time. Generally, many ‘high’ abundance areas transition to areas 

of ‘low’ abundance between the two periods, starting with Yumbe district (2015) and expanding to 

areas of Adjumani, Arua and Amuru in 2017. The overall relative distribution and abundance of 

tsetse, however, does not appear to change across years (Appendix: Figure 4) despite the overall 

reductions in absolute abundance (Appendix: Table 8). Persistent tsetse populations, albeit with a 

lower abundance, can be seen in northwest and eastern Arua, Maracha, central Adjumani and north-

eastern Amuru (Figure 5 & Appendix: Figure 4). Several of the relatively high abundance areas, such 

as central Adjumani and eastern Arua, are in places outside the 2019 intervention area (Appendix: 
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Figure 4). Maps representing the categorical prediction after applying the threshold values 

determined by the ROC curves are given as Appendix: Figure 5; these maps can be used to inform 

additional monitoring and tsetse control operations. 
 

 
Figure 5. Comparison of categorised (low, medium, and high) G. f. fuscipes abundance during four time periods.  
The prediction period relates to February of each year (2012, 2015, 2017 and 2019). The continuous colour palette portrays the 

probabilities assigned to low, medium and high-abundance categories, with the low category representing 0 flies, medium 1-10 flies and 

high >10 flies. The greater the vibrancy, the more certain the prediction. Vibrant pink represents a high probability of a high-abundance of 

tsetse, vibrant green represents a high probability of low-abundance. 
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Discussion  

We used a 100-month series of catches of tsetse from traps deployed at 416 sites across North-

Western Uganda to produce species distribution and spatio-temporal models of the abundance of G. 

f. fuscipes, an important vector of sleeping sickness in Uganda and neighbouring countries (South 

Sudan, Democratic Republic of Congo). The species distribution model showed that the presence of 

tsetse was correlated negatively with elevation and positively with NDVI and proximity to rivers, in 

accordance with previous studies [15, 16]. Whilst temporal variation in habitat suitability occurs over 

the study period, few locations show trends of decreased suitability (areas in Maracha, Koboko, Arua 

and Yumbe when comparing 2013 and 2019 estimates) with some areas in Amuru and Adjumani 

showing increased suitability over time. In contrast, the spatio-temporal model showed that there 

was a in the median and range of abundance of tsetse in areas where Tiny Targets were deployed. In 

particular, catches predicted to be high (>10 tsetse/trap/day) were absent in areas where Tiny 

Targets were deployed.  

 

In 2019, as the national incidence of gHAT declined to record lows, Uganda commenced scale back 

of tsetse control operations in Maracha district, and currently (January 2024) there are no plans to 

deploy Tiny Targets in the future. This will mark the first time that no Tiny Targets are deployed in 

Uganda in over ten years. Our results describe the impact of a successful national tsetse control 

programme and also produce maps which identify places highly suitable for tsetse and where they 

may rebound fastest. 

 

Our findings add to earlier smaller-scale studies showing that Tiny Targets are a highly cost-effective 

method of controlling gHAT vectors [54, 55] leading to their adoption in national programmes to 

eliminate gHAT [3]. We leverage one of the most data-rich longitudinal datasets of abundance of 

riverine tsetse in existence (31,553 trapping days), to produce a high-spatial resolution spatio-

temporal geostatistical model of tsetse abundance across a ~16,000km2 area (within which Tiny 

Targets were deployed over an area of ~4,000km2). This approach expanded upon earlier work 

performed in select districts, and for one time period (2010) [16]. Here, we produce a separate 

model which considered both spatial and temporal variation, as well as the incorporation and 

assessment of intervention measures on abundance, through information on the deployment of Tiny 

Targets between 2011-2019. The spatio-temporal model outperforms that for the previous spatial 

analysis when looking at metrics of predictive power for known trapping locations, i.e., RMSE of 8.02 

flies vs 15.2. However, the RMSE for our model remains inflated due to the generation of mean 

estimates across posterior samples containing high numbers of zeros. Metrics looking at the 

accuracy of categorised predictions, i.e., low (0-1 flies), medium (>1-10), and high (>10) indicate 

greater accuracy than direct counts (Appendix: Figure 3). 

 

By performing a counterfactual analysis using the fitted ZINB geostatistical model and varying the 

intervention category, we show that Tiny Targets reduced the catches of tsetse from monitoring 

traps between 2011 and 2019. Our results accord with analyses from trials of Tiny Targets in Uganda 

[7, 8] and suggest that implementation by District tsetse control teams was highly effective. Our 

results are also comparable to those from the Democratic Republic of Congo where a 85.5% 

reduction was attributed to the deployment of Tiny Targets [15]. In Chad, an even higher level of 

control (99.5%) was achieved, [10] probably reflecting local agro-ecological differences. The most 

important of such differences was perhaps that intervention in Chad was directed against a relatively 

small and isolated population of tsetse associated with a wetland, whereas in Uganda and DRC the 

tsetse population was distributed throughout a complex and extensive river network. 

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.16.580671doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580671
http://creativecommons.org/licenses/by-nd/4.0/


Our analyses identified several ‘hotspots’ within the intervention areas where tsetse are predicted 

to be relatively abundant (Appendix: Figure 4). Indeed, whilst the abundance of tsetse declined over 

time (Figure 5), we did not see complete elimination of tsetse within areas which have been subject 

to prolonged control. Tiny Targets are deployed to reduce populations to a level where transmission 

is interrupted rather than eliminate tsetse themselves. Modelling analysis indicates a ~60% 

population suppression is required to achieve interruption of transmission within DRC [56].  

 

The predicted reduction of tsetse in areas where Tiny Targets were not deployed, e.g., central 

Adjumani and southern Arua (Figure 5), may be attributable to temporal changes not explicitly 

incorporated within our model but which were captured via the inclusion of a temporal random 

effect, i.e., noise within the auto-regressive order 1 model, and a linear temporal trend (𝑅𝑅 = 0.98, 

95% 𝐶𝐼 = 0.97-0.98). Additional temporally varying covariates to consider incorporating within future 

iterations of the model include human population density, climatic variables such as precipitation, 

and land-use change, which may further explain the temporal trends observed within the data [57, 

58]. North-western Uganda has experienced large levels of development within the last decade, 

primarily due to an influx of refugees resulting in land-use change, i.e., degraded grasslands, 

woodlands, and tree plantations [59, 60] and human population growth (averaging 3.4% between 

2010 and 2020)[61], among other factors. Despite these developments, our species distribution 

models show that things have either remained the same or improved for tsetse.   

 

Further research is required to determine the link between suitable tsetse habitat and/or tsetse 

abundance and the geographical distribution of reported gHAT cases. Prior work has shown that 

proximity to Tiny Targets reduces risk of gHAT in north-western Uganda [16]. However, not all tsetse 

infested areas are areas of gHAT risk, with tsetse also transmitting trypanosome species pathogenic 

to livestock but not to humans [19, 62]. Modelling the spatio-temporal variation in gHAT risk 

requires not only the accurate quantification of the distribution and abundance of parasite, vector, 

and host populations but also treatment seeking behaviours and diagnostic accessibility. Quantifying 

each of these factors would aid planning and implementation of interventions to eliminate 

transmission of gHAT. 

 

Uganda, along with other countries which have eliminated gHAT, or are preparing elimination 

dossiers for submission to WHO, need to identify and monitor remaining tsetse populations [63]. 

The methods and predictions described here may be combined with estimates of geographic 

accessibility to provide a rationale for the placement of cost-effective sentinel monitoring sites to 

monitor and confirm tsetse population suppression, as demonstrated by Longbottom et al. 2020 

[64]. Additionally, the models produced identify locations for which we have the least certainty 

regarding abundance of tsetse, aiding the identification of areas where baseline data may improve 

our understanding, thus quantifying a process which was previously driven solely by expert opinion 

and ease of sampling. 

 

Conclusions  

We show that a large-scale national programme of tsetse control, covering ~4,000 km2 across seven 

districts, in which district-level teams deployed Tiny Targets, greatly reduced the overall abundance 

of tsetse and contributed to the elimination of gHAT as a public health problem in Uganda.   

 

Tiny Targets reduced the abundance of tsetse in all areas, but tsetse remained at low numbers, 

particularly in places where the habitat and environment are highly suitable for them. Such sites 
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should be monitored for any re-bound of tsetse and transmission of gHAT. Maps produced by this 

study can help to optimise surveillance strategies. 

 

There was no clear and consistent decline in the environmental suitability for tsetse, suggesting that 

natural and anthropogenic change have had little impact on tsetse in north-western Uganda over 

the last decade. 
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