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ABSTRACT

Gaeumannomyeces tritici is responsible for take-all disease, one of the most important wheat
root threats worldwide. High-quality annotated genome resources are sorely lacking for this
pathogen, as well as for the closely related antagonist and potential wheat take-all biocontrol
agent, G. hyphopodioides. As such, we know very little about the genetic basis of the
interactions in this host-pathogen-antagonist system. Using PacBio HiFi sequencing
technology we have generated nine near-complete assemblies, including two different
virulence lineages for G. tritici and the first assemblies for G. hyphopodioides and G. avenae
(oat take-all). Genomic signatures support the presence of two distinct virulence lineages in
G. tritici (types A and B), with A strains potentially employing a mechanism to prevent gene
copy-number expansions. The CAZyme repertoire was highly conserved across
Gaeumannomyces, while candidate secreted effector proteins and biosynthetic gene clusters
showed more variability and may distinguish pathogenic and non-pathogenic lineages. A
transition from self-sterility (heterothallism) to self-fertility (homothallism) may also be a key
innovation implicated in lifestyle. We did not find evidence for transposable element and
effector gene compartmentalisation in the genus, however the presence of Starship giant
transposable elements likely contributes to genomic plasticity in the genus. Our results depict
Gaeumannomyces as an ideal system to explore interactions within the rhizosphere, the
nuances of intraspecific virulence, interspecific antagonism, and fungal lifestyle evolution. The
foundational genomic resources provided here will enable the development of diagnostics and

surveillance of understudied but agriculturally important fungal pathogens.

INTRODUCTION

Gaeumannomyces is a broadly distributed genus of Poaceae grass-associated root-fungi
(Hernandez-Restrepo et al. 2016), best known for the species Gaeumannomyces tritici (Gt)
which causes take-all disease, the most serious root disease of wheat (Palma-Guerrero et al.
2021). Gaeumannomyces is a comparatively understudied genus despite belonging to the

Magnaporthales, an economically important order of pathogens including the rice and wheat
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blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae (Zhang et al. 2016)). This is perhaps
due to a historical research bias towards above-ground pathogens, in part simply due to the
fact that characteristic symptoms of root pathogen diseases are hidden from view
(Raaijmakers et al. 2009; Balmer and Mauch-Mani 2013). Recently the rhizosphere has
received more research attention as its key role in plant health and productivity has become
apparent (van der Heijden et al. 2008). There have also been considerable difficulties in
producing a reliable transformation system for Gt, preventing gene disruption experiments to

elucidate function (Freeman and Ward 2004).

Although genetic studies of Gt have been limited, single-locus phylogenetic analyses of Gt
have consistently recovered two distinct lineages within the species (Daval et al. 2010), which
we will refer to using the ‘A/B’ characterisation established by Freeman et al. (2005) based on
ITS2 polymorphism. Although very little is known about the dynamics of these two lineages,
each is found across the world and both lineages persistently co-occur in the same field,
prompting the suggestion that the two lineages may actually be cryptic species (Daval et al.
2010; Palma-Guerrero et al. 2021). Although variation within lineages is high, there is also
some evidence that type A strains are more virulent (Bateman et al. 1997; Lebreton et al.
2004, 2007), which is a major impetus for improving our understanding of these two lineages.
The sister species to Gt, G. avenae (Ga), can also infect wheat, but is not the predominant
agent of wheat take-all, and is distinguished by the fact that production of avenacinase enables

Ga to additionally infect oat roots (Osbourn et al. 1991; Bowyer et al. 1995).

Magnaporthales are also home to several commensal and/or mutualistic fungi (Xu et al. 2014),
including those with the potential to inhibit take-all (Chancellor 2022). For instance, G.
hyphopodioides (Gh) — a species closely related to Gt that also grows on wheat roots— is
not only non-pathogenic, but actually capable of suppressing take-all to varying degrees
(Osborne et al. 2018). It is now apparent that prior Gh colonisation primes the host plant’s
immune response (Chancellor et al. 2023), a mechanism that has been reported in various

other plant—microbe interactions associated with disease prevention (Van Wees et al. 2008;
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Zamioudis and Pieterse 2012). This has prompted interest in Gh as a potential biocontrol
agent, for instance by adding Gh inoculant to wheat seedstock via seed coating (Accinelli et
al. 2016) and/or selecting for wheat cultivars that support enhanced levels of Gh root system
colonisation (Osborne et al. 2018). Novel disease prevention approaches for take-all are
especially desirable as up to 30% of Gt strains are found to be naturally resistant to the seed-

dressing fungicide routinely used to treat take-all, silthiofam (Freeman et al. 2005).

Understanding the genetic machinery underpinning virulence and lifestyle in
Gaeumannomyces has previously been hampered by a lack of genomic data. Prior to the
present study, a single annotated Gt assembly (strain R3-111a-1), sequenced using the 454
platform, was available on NCBI (accession GCF_000145635.1) (Okagaki et al. 2015) — one
other more recent PacBio assembly has been released for the same strain, but remains
unannotated (GCA _016080095.1). This scarcity of genomic resources has not only limited our
understanding of the genetics of the system, but also accounts for a lack of molecular
diagnostics for take-all. Given the increase in research activities since 2005 following the
production of genomic resources for P. oryzae (Sperr 2023; Dean et al. 2005), we are
optimistic that providing similar high-quality assemblies for Gaeumannomyces species will

bolster research efforts in the global take-all community.

Here, we have addressed the gap in genomic resources for Gaeumannomyces by generating
near-complete assemblies for nine strains, including both type A and B Gt lineages and the
first assemblies for Gh and Ga. Using an evolutionary genomics approach, we identified
variation in structure as well as gene features known to be involved in plant-fungal interactions
— candidate secreted effector proteins (CSEPSs), carbohydrate-active enzymes (CAZymes)
and biosynthetic gene clusters (BGCs) — to address the questions: (1) Are there genomic
signatures distinguishing Gt A/B virulence lineages? (2) How do gene repertoires differ
between pathogenic Gt and non-pathogenic Gh? and (3) Is there evidence of genome

compartmentalisation in Gaeumannomyces? In the process of doing so, we also identified
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81 (giant cargo-carrying transposable elements belonging to the recently established Starship

82  superfamily (Gluck-Thaler et al. 2022).

83 RESULTS

84  Evidence of greater take-all severity caused by G. tritici type A strains

85  As the five Gt strains sequenced in this study included representatives of both the type A and
86 B lineages, we performed a season long inoculation experiment to determine the relative
87  capacity for each strain to cause take-all disease symptoms. From general visual inspection,
88 inoculation of GtA strains into the highly susceptible winter wheat cultivar Hereward resulted
89  in notably depleted roots compared to a control and, to a lesser extent, GtB strains (Fig. 1a).
90 Inoculation with GtA strains also resulted in a visible reduction of overall plant size compared
91 tothe control, while GtB-inoculated plants were less easily distinguished from the control (Fig.
92  1b). Although above- and below-ground characteristics of wheat varied depending on Gt
93  strain, our statistical analysis showed that the GtA strains had a greater capacity to reduce
94  plant height and reduce root length, and both GtA strains consistently produced the greatest
95 root disease symptoms, i.e. highest Take-all Index (TAIl) scores (Bateman et al. 2004) (Fig.
96  1c). Furthermore, five out of six wheat plants that died during the experiment were inoculated
97 with GtA strains. Several characteristics were inconsistently affected by Gt inoculation,
98 including mean floral spike (ear) length; dried root biomass; number of roots; and number of

99  roots per tiller.

100 Nine near-complete Gaeumannomyces assemblies, including first genome assemblies

101 for G. avenae and G. hyphopodioides

102 We used PacBio HiFi sequencing technology to produce highly contiguous genome
103 assemblies for five Gt, two Gh and two Ga strains. All nine assembled genomes had N50
104  values of more than 4 Mb (Supplemental Table S1), a 100-fold increase on the N50 of the
105 existing annotated Gt RefSeq assembly (NCBI accession GCF_000145635.1). In addition,

106  transcriptomes were sequenced for all nine strains to inform gene prediction, and between
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107  22-29% of annotated gene models had two or more isoforms across all strains (Supplemental
108 Fig. S1). Contigs corresponding to mitochondrial genomes were identified from all assemblies
109 (Supplemental Table S1), however circularisation was only successfully detected for two
110 strains (Gt-23d and Ga-CB1). For most strains the overall mitogenome size, GC content and
111 number of genes fell within the expected range for ascomycetes (Fonseca et al. 2021),
112  however the mitogenome assembly for Gt-LH10 is likely incomplete, as it was a third of the
113  size of the other GtB strains, and only had 23 genes annotated compared to the 38—40 genes

114  found for all other strains (Table S1).

115 Combined GENESPACE (Lovell et al. 2022) and telomere prediction results suggested six
116  chromosomes for Gaeumannomyces (Fig. 2), one less than P. oryzae (Dean et al. 2005).
117  Telomere-to-telomere sequences were assembled for at least five out of six
118 pseudochromosomes for most strains. By plotting GC content alongside transposable element
119 (TE) and gene density, we also identified AT- and TE-rich but gene-poor regions, which are
120 putative candidates for centromeres (Supplemental Fig. S2). Some of these regions
121  additionally correspond well with points of fragmentation in other strains, presumably due to
122  the difficulties associated with assembly of such highly repetitive regions. Other than these
123  occasional splits into two fragments, in most cases pseudochromosomes were entire, the

124  exception being Gh-1B17 pseudochromosome 2 which was fragmented across five contigs.

125 Both GtA and, to a slightly lesser degree, GtB were broadly syntenic across whole
126  pseudochromosomes, with the exception of a major chromosomal translocation between
127  pseudochromosomes 2 and 3 in Gt-LH10 (Fig. 2). Visualisation of the spanning reads and
128 coverage across the regions of the apparent translocation suggests the depicted arrangement
129 is correct and not an artefact due to misassembly (Supplemental Fig. S3a), moreover there
130 was no evidence of a block of repeats consistent with a telomere anywhere but at the ends of
131 the pseudochromosomes (Supplemental Fig. S3c). Ga was also largely syntenic with Gt,
132  although there were a number of inversions in Ga-CB1 pseudochromosome 3 (Fig. 2). The

133 more distantly related Gh showed chromosomal translocations involving
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134  pseudochromosomes 1, 2 and 5, which were again supported by spanning reads and the

135 absence of intrachromosomal telomeric repeats (Supplemental Fig. S3b, c).

136  No evidence for significant colocalisation of transposable elements and effectors

137 Compartmentalisation of effectors within genomic regions enriched in transposable elements
138 (TEs) has previously been reported for various fungal phytopathogens (Dong et al. 2015). In
139 all the Gaeumannomyces strains sequenced here, however, we did not observe that predicted
140 CSEPs were more likely to occur in regions of high TE density (Fig. 3a). We found a weak
141  significant positive correlation between CSEP density and TE density for a minority of strains,
142  however the scatterplot and local polynomial regression lines were unconvincing (Fig. 3b).
143  CSEP density was more frequently found to significantly correlate with gene density, although
144 this was still only a weak association (Fig. 3b). For all but one strain, there was no significant
145  difference in mean distance to closest TE for CSEPs versus other genes (Fig. 3c). For strain
146  Gt-19d1, the mean distance from a CSEP to the closest TE was marginally lower (10,036 bp)
147  than for other genes (12,565 bp), which permutation analysis confirmed was closer than
148  expected based on the overall gene universe (p=0.03), although this only remained significant
149 for pseudochromosomes 2 and 6 when testing pseudochromosomes separately
150 (Supplemental Fig. S4a). Individual pseudochromosomes for other strains also had lower than
151 expected CSEP-TE distances, but with low z-scores (a proxy for strength) across the board.
152  Comparing across strains, mean gene-TE distance was significantly different both within and
153 between lineages, and lowest in GtB (Fig. 3c). Within GtB, Gt-LH10 had significantly lower
154 mean gene-TE distance, and the same strain has also undergone an apparent expansion in

155 total number of TEs compared to all other strains (Supplemental Fig. S5).

156  Although CSEPs were not broadly colocalised with TEs, we did observe that they appeared
157  to be non-randomly distributed in some pseudochromosomes (Fig. 3a). Permutation analyses
158 confirmed that overall CSEPs were significantly closer to telomeric regions in all strains
159 (p=<0.008), although by testing pseudochromosomes separately we found that this pattern

160 varied across the genome (Supplemental Fig. S4b). CSEPs on pseudochromosomes 1, 2 and
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161 5 were consistently closer to telomeric regions, whereas for pseudochromosomes 3 and 4
162 CSEPs were no closer than expected based on the gene universe. CSEPs were also closer

163  to telomeres in pseudochromosome 6, but only in Gt strains.

164  Core gene content in Gaeumannomyces

165 The total number of genes was relatively similar for all strains, although, as indicated in Fig.
166 2, GtB and Gh strains had 3—6% more genes than GtA or Ga (Fig. 4a). GtA and GtB had a
167  very similar number of CSEPs, CAZymes and BGCs, however, and more CSEPs and BGCs
168 than either Ga or Gh. Almost all total genes, CSEPs and CAZymes were core or soft-core (i.e.
169 present in all but one strain) in Gt, while there was a greater proportion of BGCs that were
170  accessory or strain-specific. From a pangenome perspective, the core gene content for Gt
171  from sampling these five strains amounted to ~10,000 genes (Fig. 4b), which equates to ~88%
172  of genes per strain being core, consistent with reports in other fungi (McCarthy and Fitzpatrick
173  2019). The majority of BUSCO genes found to be missing in the assemblies were missing
174  from all strains (Supplemental Fig. S6), suggesting that they are not present in the genus,
175 rather than being missed as a result of sequencing or assembly errors. Three of these 18
176  missing core genes belonged to the Snf7 family, which is involved in unconventional secretion
177  of virulence factors in fungi (da C. Godinho et al. 2014), and is essential for pathogenicity in
178 P. oryzae (Cheng et al. 2018). The next greatest set of missing BUSCOs (8) also seemed to

179  be lineage specific — i.e. missing in Gh but present in Gt/Ga (Supplemental Fig. S6).

180 The avenacinase gene required for virulence on oat roots (Osbourn et al. 1991; Bowyer et al.
181 1995) was identified in all strains in a conserved position on pseudochromosome 4
182  (Supplemental Fig. S7a). Two mating-type (MAT) loci were identified in Gt and Ga, with
183 homologues of Pyricularia grisea MAT1-1 and MAT1-2 idiomorphs located in conserved but
184  unlinked positions on pseudochromosomes 2 and 3, while only one MAT locus and idiomorph,

185 MAT1-1, was identified in Gh on pseudochromosome 3 (Supplemental Fig. S8).
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186  Differences in effectors and secondary metabolite production potential between

187 pathogenic and non-pathogenic Gaeumannomyces species

188 The predicted BGC content ranged from 9 to 17 per strain, which is low compared to many
189  other ascomycete fungi (Gluck-Thaler et al. 2020; Franco et al. 2021, Llewellyn et al. 2023).
190 Using a phylogenetically-informed permutational multivariate analysis of variance
191 (PERMANOVA) method (Mesny and Vannier 2020) to identify associations between gene
192 variance and lifestyle, we also found BGCs to have the lowest level of variance described
193  purely by ancestry, 61% compared to 75%—-85% for all genes, CSEPs and CAZymes (Fig.
194  4a). This was coupled with a relatively high proportion of BGC variance described by lifestyle
195 (17%), which was also the case for all genes (17%) and CSEPs (14%), while lifestyle had
196  much less descriptive power for CAZymes (7%). CAZymes that are known to act on plant cell
197 wall substrates were highly conserved across the genus, and there were highly similar
198 numbers of each CAZyme family across all strains (Supplemental Fig. S9a). The only
199 discernible pattern was marginally more copies of GH55 and GH2 (hemicellulose and pectin)

200 in Ghversus the other lineages.

201 In total, 9% of CSEP genes could be attributed to a known gene in the Pathogen-Host
202 Interactions database (PHI-base) (Urban et al. 2020), most of which only had one copy in all
203  strains (Supplemental Fig. S9b). Sixteen of the 19 ‘named’ CSEPs have been associated with
204  virulence via reverse genetics experiments, including five from P. oryzae infecting Oryza sativa
205  (rice) — MHP1 (ID PHI:458); MOAAT (PHI:2144); MoCDIP4 (PHI:3216); MoHPX1 (PHI:5188);
206 and MoMAS3 (PHI:123065). The latter two were assigned to genes that were only present in
207  Gh, although a separate gene present in GtB was also characterised as MoHPX1. Six CSEPs
208 in total were present in all lineages except Gh or vice versa. PBC1, also a CAZyme, the
209 disruption of which causes complete loss of pathogenicity of Pyrenopeziza brassicae in
210 Brassica napus, was present in Gt and Ga but not Gh. While PBC1 was absent in Gh, all
211  Gaeumannomyces strains did have some genes belonging to the same CAZyme family (CES5;

212  Supplemental Fig. S9a).
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213 The BGC families were predominantly classified as terpenes, type 1 polyketide synthases
214  (PKSI) and hybrid polyketide synthase-nonribosomal peptides (PKS-NRP) (Supplemental Fig.
215 S9c). Presence-absence of each BGC was highly variable across strains, most notably
216  amongst PKSI families which also had high copy-number for certain families. There were five
217 BGCs that were present or absent in Gh versus other lineages, four of which belonged to the

218 PKS-NRP hybrids (Supplemental Fig. S9c).

219 Gene copy-number reduction in G. tritici type A

220  GtB, Ga and Gh all had high copy-number (HCN) gene outliers (>10 copies) that were absent
221 in GtA (Fig. 4a). These 22 HCN genes were duplicated both within and across
222 pseudochromosomes (Supplemental Fig. S10a). GO term enrichment analyses found various
223  terms to be significantly overrepresented amongst the HCN genes, namely: vacuolar proton-
224  transporting V-type ATPase complex assembly (Gh-1B17, Fisher’'s exact test, p=0.01);
225  ubiguinone biosynthetic process (Gh-2C17, p=0.01); golgi organisation (Ga-CB1, p=0.03);
226 mRNA cis splicing, via spliceosome (Gt-4e, p=0.03); mitochondrial respiratory chain complex
227 | assembly (Gt-4e, p=0.05); proton-transporting ATP synthase complex assembly (Gt-LH10,
228 p=0.03); and protein localisation to plasma membrane (Gt-LH10, p=0.03). Visualising the
229 location of the HCN genes across the genomes (Supplemental Fig. S11) showed them to vary
230 interms of distribution — from relatively localised to broadly expanded — and in terms of multi-
231 lineage versus lineage specific expansions. HCN genes were also significantly closer to TEs

232  compared to other genes (Supplemental Fig. S10b).

233 Interestingly, of the 22 HCN genes, six that were shared among all species were also present
234  in at least one GtA strain but at low copy-number, while seven genes were completely absent
235 in GtA (Fig. 4c). In total, nine genes that were HCN in at least one other lineage had low-copy
236  orthologues in GtA. Moreover, these were mostly present in just one strain within the type A
237 lineage (Gt-8d), clustered in a ~1 Mbp region on pseudochromosome 3 (Supplemental Fig.
238 S10c). This region was flanked by repetitive regions that have been subjected to repeat

239  induced point mutation (RIP), as measured by the composite RIP index (CRI) (Lewis et al.

10
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240  2009), although the region had average CRI of -0.3 compared to an average CRI of -0.5 for
241  the whole pseudochromosome. Average genome-wide RIP levels were highest in GtA and Gh
242  (13.8% and 13.6% of the genome RIP’d, respectively), compared to GtB (10.8%) and Ga

243 (12.4%).

244  Gaeumannomyces genomes contain Starship giant transposable elements

245  All nine Gaeumannomyces strains were found to contain at least one giant TE belonging to
246  the Starship superfamily of giant cargo-carrying TEs (Gluck-Thaler et al. 2022), identified using
247  the tool starfish (Gluck-Thaler and Vogan 2023). Currently the most reliable identifying feature
248  of Starships is a single ‘captain’ gene — a tyrosine recombinase gene containing a DUF3435
249  domain which is found in the first position of each Starship and directs the mobilisation of the
250 element (Urguhart et al. 2023b). We found that tyrosine recombinase annotation with starfish
251 largely overlapped with results from a separate blast search to identify DUF3435 homologues
252  at the head of insertions. Overall, only a relatively small number of genes were in agreement
253  as full Starship captains after downstream automated (starfish) or manual element inference
254  (Fig. 5a). A gene tree of all tyrosine recombinase and putative captain genes showed the
255  presence of two distinct lineages but no consistent clustering of either gene types or method
256  of identifying them. Note the highly divergent nature of the genes and therefore the difficulty

257  of alignment and subsequent poor branch support throughout the tree (Fig. 5a).

258  Starship size varied considerably, ranging from 34—688 kbp. GtB strains harboured notably
259  more elements, followed by Ga strains which included a nested element (Fig. 5b). GtA and
260 Gh strains each contained a single smaller (<100 kbp) element, which in both cases we predict
261 to have been vertically transmitted based on similar gene content and conserved location
262  within the genome (Fig. 5b, Supplemental Fig. S12). GtA elements were exceptional in that

263  each was gene-poor and positive for element-wide RIP (average CRI=0.2-0.3).

264  DISCUSSION

11
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265 In this study we have established foundational genome resources for the genus
266  Gaeumannomyces. A particular strength of the Gt assemblies reported here is the structural
267  annotation methodology, which capitalised on the fact that multiple strains were sequenced,
268 assembled and annotated in the same way, each with its own transcriptome but also
269  employing a novel ‘multiple lift-off’ approach that provided additional evidence for robust gene
270  models. Another benefit of the annotation approach is that the REAT-Mikado-minos pipeline
271  (El-CoreBioinformatics 2023b) provides models for gene isoforms alongside the primary
272  transcripts. Alternative splicing has been implicated in regulation of virulence in
273  phytopathogens (Fang et al. 2020), for instance by mediating transcriptome remodelling
274  during pathogenesis in P. oryzae (Jeon et al. 2022). Alternative splicing has been reported to
275 be more frequent in pathogens than non-pathogens (Grutzmann et al. 2014), however we
276  found a similar overall percentage of genes with multiple isoforms in Gh compared to Gt and
277  Ga (Supplemental Fig. S1). There was perhaps a skew towards a greater proportion of genes
278  with exactly two or three isoforms in Gt, particularly GtA, raising the question as to whether
279  this somehow relates to their apparent higher virulence in wheat. These rich annotations
280  resources will allow further exploration of the isoform content of Gaeumannomyces and its

281  potential role in virulence.

282 A major finding from our synteny analyses was the presence of a large chromosomal
283  translocation in Gt-LH10 (Fig. 2). Similar largescale translocations have been identified in
284  Pyricularia (Bao et al. 2017; Gomez Luciano et al. 2019). It is entirely plausible that we have
285 identified a genuine translocation, however confidence would be increased by obtaining Hi-C
286  evidence and/or by corroborating with population-level data. Such rearrangements are thought
287  to be aroute to accessory chromosome formation (Croll et al. 2013; Hartmann 2022), and this
288  has specifically been reported in P. oryzae (Langner et al. 2021). Although we did not find any
289  evidence for accessory chromosomes in our Gaeumannomyces strains, it is interesting that
290 the Gt-LH10 translocation resulted in one of the chromosomes being much smaller, size being

291 a hallmark of accessory or ‘mini-chromosomes’. It is also notable that this large translocation
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292  occurred in the same strain we found to have an expansion of TEs (Supplemental Fig. S5), as
293  TEs have been found to mediate interchromosomal rearrangements (Bao et al. 2017; Fourie
294  etal. 2020; Langner et al. 2021). Hi-C data would also allow us to robustly locate centromeres
295 (Varoquaux et al. 2015), which are also implicated in chromosomal rearrangements (Yadav et
296  al. 2020; Guin et al. 2020). Here we used a minimal approach to estimate potential centromeric
297  regions, based simply on the fact that AT-rich regions are a common defining feature of
298 centromeres in P. oryzae (Yadav et al. 2019), which we also cross-checked with gene sparsity
299  (Supplemental Fig. S2) — however, we were only able to distinguish potential centromeres

300 for a subset of the pseudochromosomes.

301 In addition to the chromosomal translocation, Gt-LH10 also stood out from other strains in
302 terms of TE content, with an expansion in total number of TEs (Supplemental Fig. S5) and
303 smaller gene-TE distances (Fig. 3). Aside from the atypical features of the Gt-LH10 genome,
304 there was additional intraspecific variability within the Gt A/B lineages in terms of both genome
305 structure and gene content. For instance, there were strain-specific inversions (Fig. 2) and
306 many of the HCN genes were present in low copy-number in one GtA strain, but completely
307 absent in the other (Fig. 4c). These findings emphasise the need for pangenome references,
308 as an individual strain alone cannot sufficiently represent the variability across the whole
309 species (Golicz et al. 2020; Badet and Croll 2020). Pangenomics is still relatively young and
310 the practicalities of how to define, store and use pangenomes and the tools necessary to do
311  so are continuously evolving (Eizenga et al. 2020). There is also the outstanding question of
312  how best to coordinate pangenome initiatives to ensure high-quality results without duplicating
313  efforts — at least three different pangenomes have been reported for the wheat pathogen
314  Zymoseptoria tritici to date (Plissonneau et al. 2018; Badet et al. 2020; Chen et al. 2023). The
315 five Gt strains reported here can act as a UK pangenome, but future research must work
316 towards building a global pangenome so that we can provide a reference for Gt which captures

317  afuller representation of the species.
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318  Another structural feature that these high-quality assemblies allowed us to explore in
319 Gaeumannomyces was genome compartmentalisation. A number of fungal phytopathogens
320 exhibit TE- and effector-rich compartments that enable rapid evolution in the plant—fungal arms
321 race, dubbed the ‘two-speed’ genome model (Dong et al. 2015), which has since been
322  extended to ‘multi-speed’ models (Frantzeskakis et al. 2019). Accordingly, we hypothesised
323 that we would find CSEPs and TEs to colocalise across our assemblies, however we did not
324  find consistent evidence for such compartments in Gaeumannomyces (Fig. 3). Our results are
325 not altogether surprising as a previous study of selection signatures in Gt and two other
326  Magnaporthales taxa also found no evidence for multi-speed genomes (Okagaki et al. 2016).
327  We therefore consider Gaeumannomyces taxa to have ‘one-compartment’ genomes in
328 relation to TE/effector content — a term that was introduced by Frantzeskakis et al. (2019) for
329 genomes that do not conform to the two- or multi-speed models, and with ‘compartment’
330 suggested as an alternative to ‘speed’ as the defining features of these compartments does
331 not necessarily equate to them being fast-evolving (Torres et al. 2020). With the rising number
332  of high-quality genome resources, more examples are emerging that contradict the suggestion
333 that phytopathogenicity is routinely accompanied by TE/effector compartmentalisation
334  (Frantzeskakis et al. 2019). In fact, TE/effector compartmentalisation has been found in the
335 non-pathogenic arbuscular mycorrhizal fungus Rhizophagus irregularis (Yildirir et al. 2022),
336 and TE/virulence factor compartmentalisation has also been found in chytrid animal
337 pathogens (Wacker et al. 2023), demonstrating that it is not necessarily central to
338 phytopathogenicity, but may instead be a mechanism driving genome plasticity in fungi of
339  various lifestyles (Torres et al. 2020). While we did not find compelling evidence for TE/effector
340 compartmentalisation in Gaeumannomyces, we did observe non-random patterns in the
341  distribution of CSEPs (Fig. 3a), which permutation analyses found to be closer to telomeric
342  regions in a pseudochromosome-dependent manner (Supplemental Fig. S4b). This could

343  suggest that alternative mechanisms of effector compartmentalisation may be at play.
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344  Our results indicate conserved genetic machinery for plant cell wall deconstruction/
345  modification across both pathogenic and non-pathogenic Gaeumannomyces (Fig. 4a, S11a),
346  suggesting that the mechanism(s) by which species first colonise roots may be similar, if not
347 the final outcome of the plant-fungal interaction (Chancellor et al. 2023). Using spatial
348 transcriptomics to visualise not only how Gt and Gh individually colonise wheat roots, but also
349  how they interact with each other in the plant and the gene expression associated with this
350 process, would undoubtedly shed light on this host-pathogen-antagonist system. Two putative
351 orthologues of CSEP genes that have previously been implicated in pathogenicity were
352 present in Gt and Ga pathogenic taxa but missing in non-pathogenic Gh, making them
353  promising targets for future experiments to determine if either is important for Gt pathogenicity
354  in wheat. UvHripl1 (from Ustilaginoidea virens) is thought to be involved in suppressing host
355 immunity and has already been reported in Gt (Wang et al. 2020), while PBC1 (from
356  Pyrenopeziza brassicae) is a cutinase implicated in host penetration (Li et al. 2003). It was
357 intriguing that none of the CSEPs assigned to PHI-base genes were unique to Gt, perhaps
358  suggesting that there is relatively high overlap in effector-mediated virulence mechanisms in
359 Gt and Ga. In a similar pattern to the CSEPs, only one BGC (a PKS-NRP hybrid) was found
360 to be specific to Gt, with most otherwise scattered across the genus (Supplemental Fig. S9c).
361 There were more differences between Gh and the other lineages, and indeed the relative
362  descriptive power of relatedness versus lifestyle on BGC variance (Fig. 4a) suggests that the
363  production of secreted metabolites may be a key factor distinguishing the outcome of plant—
364  fungal interactions in this genus. A single BGC has been shown to determine whether there is
365 a mutualistic or pathogenic outcome of the interaction between root fungus Colletotrichum
366 tofieldiae and Arabidopsis thaliana (Hiruma et al. 2023), demonstrating that minimal
367 differences in metabolite repertoire can have considerable impacts on fungal lifestyle. In terms
368 of host range, Gt has been shown to have low avenacinase activity relative to Ga (Osbourn et
369 al. 1991), which is understood to be the reason Gt is incapable of also infecting oat roots
370 (Osbourn et al. 1994). The avenacinase gene was nonetheless present in all strains across

371 the genus; whether sequence polymorphism (Supplemental Fig. S7c) or differences in
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372  regulatory machinery are responsible for the variation in avenacinase activity remains to be
373 determined. It is notable that Gh has also been found to be capable of colonising oat roots
374  (Osborne et al. 2018) despite greater divergence of the Gh avenacinase protein sequence

375  from Ga when compared to Gt (Supplemental Fig. S7b).

376 In line with the common understanding that Gt is self-fertile or homothallic (Palma-Guerrero et
377 al. 2021), we found both MAT1-1 and MAT1-2 idiomorphs to be present in the GtA and GtB
378  strains. These idiomorphs were located on two unlinked MAT loci, an atypical but occasionally
379  observed homothallic MAT locus architecture in ascomycetes (Wilken et al. 2017; Dyer et al.
380 2016; Thynne et al. 2017). Although it is homothallic, Gt is also capable of outcrossing
381  (Pilgeram and Henson 1992; Blanch et al. 1981), the rates of which may be underestimated
382 in many other homothallic fungi (Billiard et al. 2012; Attanayake et al. 2014). Similarly to Gt,
383 for Ga both MAT loci were identified. To our knowledge, the sex determination system of Gh
384  has not previously been reported, but our results indicate only one idiomorph at a single MAT
385 locus suggesting this species is self-sterile, or heterothallic. Evolutionary transitions between
386  heterothallism and homothallism are common in ascomycetes (Thynne et al. 2017; Sun et al.
387  2019; Gioti et al. 2012; Ene and Bennett 2014), but the implications on fitness are not fully
388 understood. In the scenario of a fungus infecting a crop monoculture, it may be advantageous
389 for the fungus to be homothallic when rapidly expanding across the niche, as it will not be
390 delayed by a reliance on the presence of compatible mating types. A higher rate of outcrossing
391 due to heterothallism could be unfavourable, as it could break up combinations that are
392  already well adapted to the genetically uniform host (Hill and McMullan 2023). Together, this
393  could suggest a selective pressure towards homothallism for crop fungal pathogens, and a
394  switch from heterothallism to homothallism may, therefore, have been a key innovation

395 underlying lifestyle divergence between non-pathogenic Gh and pathogenic Gt and Ga.

396  An unanticipated result was the absence of HCN genes in the GtA lineage (Fig. 4a), despite
397 all other strains in the genus, including earlier diverging Gh, having genes which had

398 undergone copy-number expansions (Supplemental Fig. S11). These HCN genes were on
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399 average significantly closer to TEs than other genes (Fig. 5c¢), which aligns with the fact that
400 TEs are known to play a role in gene duplication (Cerbin and Jiang 2018). GO enrichment
401 analysis identified a variety of fundamental biological processes to be significantly
402  overrepresented amongst HCN genes in the other lineages: regulation of cellular pH and
403  respiratory activity in non-pathogenic strains; and golgi organisation, protein localisation,
404 mRNA cis-splicing and respiratory activity in pathogenic strains. As previously mentioned,
405  alternative splicing has previously been linked to pathogenicity; respiratory activity has been
406  shown to induce a developmental switch to symbiosis in an arbuscular mycorrhizal fungus
407  (Tamasloukht et al. 2003); and mediation of cellular pH by V-ATPase has specifically been
408 linked to pathogenesis in P. oryzae (Chen et al. 2013), although here it was implicated in a
409 non-pathogenic Gh strain. Further investigation into the specific function of these genes is
410 required to determine whether any of these processes are essential to lifestyle or virulence in

411 Gaeumannomyces.

412  Gene duplicates are generally understood to be readily removed unless they serve to improve
413  host fitness, for instance by favourably modifying expression levels or rendering a completely
414  new function (Lynch and Conery 2000; Wapinski et al. 2007). RIP is a genome defence
415 response against unchecked proliferation of duplicated sequences (Hane et al. 2015). In
416  Gaeumannomyces we found 10-14% of the genome contained signatures of RIP, which is a
417  moderate level relative to other ascomycetes, e.g. Pyronema confluens (0.5%) (Traeger et al.
418  2013), Fusarium spp. (<1-6%) (Van Wyk et al. 2019), Neurospora spp. (8—23%) (Gioti et al.
419  2013), Zymoseptoria tritici (14—35%) (Lorrain et al. 2021) and Hymenoscyphus spp. (24—41%)
420  (Elfstrand et al. 2021). Genome-wide RIP was highest in GtA, which was consistent with its
421  low level of gene duplication, but not fully explanatory as Gh had only marginally lower levels
422  of RIP while still maintaining HCN outliers. We can only presume that GtA strains have been
423 under stronger selective pressures to remove duplicates, although the evolutionary

424  mechanisms driving this requires further investigation.
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425 There was a similar pattern when exploring the RIP patterns across giant transposable
426  Starship elements. We found only a single Starship in GtA strains, which was gene-poor and
427  had undergone extensive RIP (Fig. 5b), supporting the idea that this lineage employs stringent
428 genome defence measures. By contrast, GtB strains contained a proliferation of Starships,
429  including one closely approaching the largest size reported thus far (Urquhart et al. 2023a).
430 We expect that the increased availability of highly contiguous, long-read assemblies such as
431  we report here will make the upper size extremes of such giant TEs more feasible to detect
432  (Arkhipova and Yushenova 2019). Giant cargo-carrying TEs that can be both vertically and
433  horizontally transmitted were first identified in bacteria (Johnson and Grossman 2015).
434  Recently the Starship superfamily was identified as specific to and widespread in ascomycetes
435 and, aside from the characteristic ‘captain’ tyrosine recombinase gene, each Starship contains
436  a highly variable cargo (Gluck-Thaler et al. 2022). Mobilisation of cargo genes by Starships
437  has been linked to the acquisition of various adaptive traits in fungal species, such as metal
438 resistance (Urquhart et al. 2022), formaldehyde resistance (Urquhart et al. 2023a), virulence
439 (McDonald et al. 2019), climatic adaptation (Tralamazza et al. 2023) and lifestyle switching
440  (Gluck-Thaler et al. 2022). However, Starships are not inherently beneficial to the fungal host.
441  One of the earliest groups of genes associated with the cargo of certain Starships was spore-
442  Kkiller or Spok genes, which bias their own transmission via the process of meiotic drive (i.e.
443 by killing spores that do not inherit them) (Vogan et al. 2019). By incorporating Spok genes, a
444  Starship element also biases its transmission, leading to it being referred to as a ‘genomic
445  hyperparasite’ (Vogan et al. 2021). This corresponds to the concept of TEs as selfish genetic
446  elements, which can prevail in the genome despite being neutral or deleterious to the overall
447  fitness of the host. Whether mobilisation of an element and associated cargo is beneficial or
448  detrimental to the host, TEs such as Starships are nonetheless drivers of genome evolution.
449  Further detailed investigation of the specific cargo in the elements we have identified in
450 Gaeumannomyeces is a priority to explore how these giant TEs may be contributing to lifestyle

451 and virulence.
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452  While the differences in the overall appearance of the wheat plants and their root systems
453  when infected with GtA versus GtB were visually compelling (Fig. 1A), our sample size was
454  extremely limited and the quantitative data did not show such a strong distinction (Fig. 1C). A
455  study by Lebreton et al. (2004) with a much larger sample size found Gt type A strains to be
456  significantly more aggressive in vitro despite high intraspecific variability in take-all severity
457  (type A=G2 in their study (Daval et al. 2010)). The dominance of type A strains in a site has
458  also been reported to positively correlate with disease severity (Lebreton et al. 2007). It is also
459  notable that five out of six wheat plants which died were inoculated with GtA strains. Our
460 phylogenomic analysis confirmed with significant branch support that the two lineages are
461 indeed monophyletic (Supplemental Fig. S13b) and, together with our comparative genomics
462  results, the question naturally arises as to whether GtA and GtB are in fact distinct species.
463  We did not find evidence that genetic divergence between Ga and Gt species was more
464  pronounced than between the GtA and GtB lineages, and host alone is not a sufficient
465  distinction since, despite being a separate species, Ga is also able to infect wheat (Freeman
466 and Ward 2004). Lebreton et al. (2004) suggested that ‘genetic exchanges between [A and B]
467  groups are rare events or even do not exist’, but this was based on analysis of a limited number
468  of genetic markers. Much broader whole-genome sequencing efforts are required to assess
469 gene flow between lineages at the population-level, as well as the level of recombination.
470  Understanding population dynamics could also shed light on the observed changes in ratio of
471  GtA and GtB across wheat cropping years (Lebreton et al. 2004), which has implications for

472  strategic crop protection measures.

473 Conclusions

474  We have generated near-complete assemblies with robust annotations for under-explored but
475  agriculturally important wheat-associated Gaeumannomyces species. In doing so we
476  confirmed that Gaeumannomyces taxa have one-compartment genomes in the context of
477  TEleffector colocalisation, however the presence of giant cargo-carrying Starship TEs likely

478  contributes to genomic plasticity. Genomic signatures support the separation of Gt into two
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479  distinct lineages, with copy-number as a potential mechanism underlying differences in
480 virulence. We also found evidence that variation amongst the relatively low number of BGCs
481  may be a key factor contributing to lifestyle differences in Gt and Gh. In addition to providing
482  foundational data to better understand this host—pathogen—antagonist system, these new
483  resources are also an important step towards developing much-needed molecular diagnostics
484  for take-all, whether conventional amplicon sequencing, rapid in situ assays (Hariharan and
485  Prasannath 2021) or whole-genome/metagenomic sequencing approaches (Weisberg et al.
486  2021). Future research will require whole-genome sequencing of taxa from a broader
487  geographical range to produce a global pangenome, which will provide a comprehensive
488 reference for expression analyses to explore the role of virulence in Gt lineages, as well as

489  population genomics to shed light on their evolution and distribution.

490 METHODS

491  Samples

492 Nine Gaeumannomyces strains were selected from the Rothamsted Research culture
493  collections, including five Gt strains (two type A and three type B), two Ga strains and two Gh
494  strains (Supplemental Table S2). All were collected from various experimental fields at

495 Rothamsted Farm (Macdonald et al. 2018) between 2014 and 2018.

496  G. tritici virulence test in adult wheat plants

497  To test the virulence of the five Gt strains, we performed inoculations of each strain (six
498 replicates) into the highly susceptible winter wheat cultivar Hereward. First the roots of
499  seedling plants were inoculated with the fungus by using plastic drinking cups (7.5 cm wide x
500 11 cm tall) as pots, ensuring that all seedlings were well colonised before transferring to a
501 larger pot. Pots were drilled with four drainage holes 3 mm in diameter. A 50 cm? layer of damp
502 sand was added to each pot, followed by a 275 g layer of naive soil collected from a field at
503 Rothamsted Farm after a non-legume break crop. Inoculum was prepared by taking a 9 mm

504  fungal plug with a cork borer number 6 from the outer part of a fungal colony grown on a potato
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505 dextrose agar (PDA) plate and mixing with sand to make up a 25 g inoculum layer. A final 150
506 g layer of naive soil was added on top of the inoculum layer. One wheat seed was sown on
507 the surface of the soil and covered with a 50 cm? layer of grit to aid germination and create a
508 humid environment for fungal colonisation. Pots were watered well and placed in a controlled
509 environment room (16 hr day, light intensity 250 pmoils, 15°C day, 10°C night, watered twice
510 a week from above). A randomised block design was generated in Genstat 20th Edition to

511 take potential environmental differences across the growth room into account.

512  After two weeks of growth, each wheat seedling in a small pot was transferred by removing
513 the plastic cup and placing the entire contents undisturbed into a larger 20 cm diameter pot
514  containing a 2 cm layer of clay drainage pebbles. Three small pots were transferred to each
515 large pot and filled in with more sail, resulting in three plants per pot. There were 6 replicates
516 for each treatment, and a control pot with no fungus was also set up in the same manner, but
517 a PDA plate without fungus was used for preparing the inoculum layer. The pots were
518 transferred to a screenhouse and arranged randomly within blocks containing one pot per
519 treatment. The pots were established in September and remained outside in the screenhouse

520 to ensure exposure to winter conditions and therefore allow plant vernalisation to take place.

521 Measurements of the above-ground characteristics were first undertaken to note the severity
522  of any take-all symptoms once the floral spike (ear) was fully emerged. The height of each
523 labelled plant was measured from the stem base to the tip of the ear to the nearest 0.5 cm to
524  identify whether there was stunted growth. Additionally, the length of the ear and flag leaf were

525 recorded, again to the nearest 0.5 cm. The number of ears per plant was also recorded.

526  For below-ground measurements, the pots were washed out post full plant senescence and
527  the plants were well rinsed to remove the soil while minimising damage to the roots. Any roots
528 that broke off were collected and put into the cup with the main plants to maintain accuracy of
529  the biomass measurements. The stems were then cut about 10 cm from the base. The plants
530 were placed in a white tray filled with water to enable clear observation of the roots. The

531 number of tillers for each plant was counted. The severity of take-all infection was then
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532  estimated by using the Take-All Index (TAl), classified through the following categories: Slight
533 1 (0-10% of roots infected), slight 2 (11-25%), moderate 1 (25-50%), moderate 2 (51-75%)
534 and severe (76—100%). This was then input into the following formula: TAI = ((1 x % plants
535 slight 1) + (2 x % plants slight 2) + (3 x % plants moderate 1) + (4 X % plants moderate 2) + (5
536 X % plants severe)) / 5 (Bateman et al. 2004). Following this, the length of the roots was
537 measured to the nearest 0.5 cm. By cutting off one root at a time, the number of roots for each
538 plant was counted and the roots transferred into cardboard trays, one per pot. These were
539 then dried at 80°C on metal trays for 16 hours. One tray at a time was removed from the oven
540 to reduce any moisture gain before weighing. The dried root biomass per pot was then

541 recorded.

542  To statistically test for mean differences in the various characteristics between strains, we first
543 made Q-Q plots using the ggqgplot function from ggpubr v0.6.0 (Kassambara 2020) to confirm
544  approximate data normality. We then used the levene_test function from the package rstatix
545 v0.7.2 (Kassambara 2021) to assess the assumption of homogeneity of variance, where a
546  significant p value (p < 0.05) means that the assumption is violated. If we could ascertain
547  homogeneity of variance, a multiple comparison test between strains was performed with the
548 tukey hsd rstatix function. Where homogeneity of variance was Vviolated, the
549  games_howell_test rstatix function was instead used for multiple comparison testing (Sauder

550 and DeMars 2019).

551 Genome sequencing

552  For DNA and RNA extractions of all nine Gaeumannomyces taxa, a 4 mm plug of mycelium
553 from axenic cultures was transferred to 500 ml of potato dextrose broth treated with
554  penicillium/streptomycin (10,000 U/mL) using a sterile 4 mm corer. Cultures were grown at
555  20°C in dark conditions on an orbital shaker at 140 rpm for ~ 7-14 days. Mycelia were
556  collected via vacuum filtration and flash frozen using liquid nitrogen and stored at -80°C, before

557  grinding with a sterilised mortar and pestle until a fine powder was created.
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558 DNA was extracted using one of two kits: the Phytopure Nucleon Genomic DNA kit (Cytiva,
559 MA, USA) eluted in 50 pl low-pH TE buffer; and the NucleoBond HMW DNA kit (Macherey-
560 Nagel, North Rhine- Westphalia, Germany) eluted in 100 ul-200 pl low-pH TE buffer. The
561 manufacturer's protocols were modified to optimise for high molecular weight (M. Grey,
562  personal communication). Sufficient DNA concentration (50 ng/pl DNA) was confirmed by
563  Qubit fluorometer (Invitrogen, MA, USA) and purity (260/280 absorbance ratio of
564  approximately 1.6—2.0 and 260/230 absorbance ratio of approximately 1.8—2.4) confirmed with
565 aNanoDrop spectrophotometer (Thermo Fisher Scientific, MA, USA). Sufficient strand lengths
566 (80% > 40 Kbp length) were confirmed using the Femto Pulse System (Agilent Technologies,

567 Inc, CA, USA).

568 RNA from the same sample material was extracted using the Quick-RNA Fungal/Bacterial
569  miniprep kit (Zymo Research, CA, USA) using the manufacturer’s protocol and eluted in 25 pl
570 of DNase/RNase free water. Sufficient RNA concentration (71 ng/ul RNA) was confirmed by
571  Qubit fluorometer (Invitrogen, MA, USA) and purity (260/280 absorbance ratio of
572  approximately 1.8-2.1 and 260/230 absorbance ratio of > 2.0) confirmed with a NanoDrop
573  spectrophotometer (Thermo Fisher Scientific, MA, USA). An RNA integrity number > 8 was

574  confirmed by Bioanalyzer RNA analysis (Agilent Technologies, Inc, CA, USA).

575 DNA and RNA extractions were sent to the Genomics Pipelines Group (Earlham Institute,
576  Norwich, UK) for library preparation and sequencing. 2-5.5 ug of each sample was sheared
577 using the Megaruptor 3 instrument (Diagenode, Liege, Belgium) at 18-20ng/ul and speed
578 setting 31. Each sample underwent AMPure PB bead (PacBio, CA, USA) purification and
579  concentration before undergoing library preparation using the SMRTbell Express Template
580 Prep Kit 2.0 (PacBio) and barcoded using barcoded overhang adapters 8A/B (PacBio) and
581 nuclease treated with SMRTbell enzyme cleanup kit 1.0 (PacBio). The resulting libraries were
582  quantified by fluorescence (Invitrogen Qubit 3.0) and library size was estimated from a smear
583  analysis performed on the Femto Pulse System (Agilent). The libraries were equimolar pooled

584 into four multiplex pools and each pool was size fractionated using the SageELF system (Sage
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585  Science, MA, USA), 0.75% cassette (Sage Science). The resulting fractions were quantified
586 by fluorescence via Qubit and size estimated from a smear analysis performed on the Femto
587  Pulse System, and 1-2 fractions per pool were selected for sequencing and pooled equimolar
588 to have equal representation of barcodes per pool. The loading calculations for sequencing
589 were completed using the PacBio SMRTLink Binding Calculator v10.1.0.119528 or
590 v10.2.0.133424. Sequencing primer v2 or v5 was annealed to the adapter sequence of the
591 library pools. Binding of the library pools to the sequencing polymerase was completed using
592  Sequel Il Binding Kit v2.0 or 2.2 (PacBio). Calculations for primer to template and polymerase
593 to template binding ratios were kept at default values. Sequel 1l DNA internal control was
594  spiked into the library pool complexes at the standard concentration prior to sequencing. The
595 sequencing chemistry used was Sequel Il Sequencing Plate 2.0 (PacBio) and the Instrument
596  Control Software v10.1.0.119549 or 10.1.0.125432. Each pool was sequenced on 1-2 Sequel
597 Il SMRTcells 8M (PacBio) on the Sequel lle instrument. The parameters for sequencing were
598 as follows: CCS sequencing mode; 30-hour movie; 2-hour adaptive loading set to 0.85 or
599  diffusion loading; 2-hour immobilisation time; 2—4-hour pre-extension time; and 70-86pM on

600 plate loading concentration.

601 RNA libraries were constructed using the NEBNext Ultra Il RNA Library prep for lllumina kit
602 (New England Biolabs, MA, USA), NEBNext Poly(A) mRNA Magnetic Isolation Module and
603  NEBNext Multiplex Oligos for lllumina (96 Unique Dual Index Primer Pairs) at a concentration
604 of 10 uM. RNA libraries were equimolar pooled, g-PCR was performed, and the pool was
605 sequenced on the lllumina NovaSeq 6000 (lllumina, CA, USA) on one lane of a NVS300S4

606 flowcell with v1.5 chemistry producing a total of 3,370,873,981 reads.

607 Genome assembly

608 See Supplemental Fig. S14a for a schematic summarising the bioinformatics analyses. HiFi
609 reads were assembled using hifiasm v0.16.1-r375 (Cheng et al. 2021) with the -l O option to
610 disable purging of duplicates in these haploid assemblies. The assemblies were checked for

611 content correctness with respect to the input HiFi reads using the COMP tool from KAT v2.3.4
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612 (Mapleson et al. 2017), and QUAST v5.0.2 (Mikheenko et al. 2018) was used to calculate
613  contiguity statistics. BlobTools v1.0.1 (Laetsch and Blaxter 2017) was used to check for
614  contamination (Supplemental Fig. S15) — this required a hits file, which we produced by
615 searching contigs against the nt database (downloaded 21/05/2021) using blastn v2.10, and
616 a BAM file of mapped HiFi reads, which we produced using minimap2 v2.21 (Li 2018) and

617  samtools v1.13 (Li et al. 2009).

618 Gene set completeness was assessed using the ascomycota_o0db10.2020-09-10 dataset in
619 BUSCO v5.2.1 (Manni et al. 2021). This revealed some gene duplication due to the presence
620 of small contigs that had exceptionally low coverage (median of 1 across each small
621 sequence) when projecting the kmer spectra of the reads onto them using KAT's SECT tool.
622  This was taken as evidence that the sequences did not belong in the assemblies. A custom
623  script was written to filter out these small, low-coverage sequences, using the output of KAT
624  SECT. KAT COMP, BUSCO and QUAST were re-run for the coverage filtered assemblies to
625  verify that duplicated genes were removed without losing core gene content and produce final

626  assembly contiguity statistics (Supplemental Fig. S16, Supplemental Table S1).

627 Genome annotation

628 Repeats were identified and masked using RepeatModeler v1.0.11 (Smit and Hubley 2015)
629 and RepeatMasker v4.0.7 (Smit et al. 2015) via EIRepeat v1.1.0 (Kaithakottil and Swarbreck
630 2023). Gene models were annotated via the Robust and Extendable Eukaryotic Annotation
631  Toolkit (REAT) v0.6.3 (EI-CoreBioinformatics 2023b) and MINOS v1.9 (El-CoreBioinformatics
632 2023a). The REAT workflow consists of three submodules: transcriptome, homology, and
633  prediction. The transcriptome module utilised lllumina RNA-Seq data, reads that were mapped
634 to the genome with HISAT2 v2.1.0 (Kim et al. 2019) and high-confidence splice junctions
635 identified by Portcullis v1.2.4 (Mapleson et al. 2018). The aligned reads were assembled for
636 each tissue with StringTie2 v1.3.3 (Kovaka et al. 2019) and Scallop v0.10.2 (Shao and
637  Kingsford 2017). A filtered set of non-redundant gene models were derived from the combined

638 set of RNA-Seq assemblies using Mikado v2.3.4 (Venturini et al. 2018). The REAT homology
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639  workflow was used to generate gene models based on alignment of protein sequences from
640 publicly available annotations of 27 related species (Supplemental Table S3) and a set of
641  proteins downloaded from UniProt including all the proteins from the class Sordariomycetes
642  (taxid:147550) and excluding all proteins from the publicly available annotation of Gt R3-111a-
643 1 (GCF_000145635). The prediction module generated evidence-guided models based on
644  transcriptome and proteins alignments using AUGUSTUS v3.4.0 (Stanke et al. 2006), with
645 four alternative configurations and weightings of evidence, and EVidenceModeler v1.1.1
646  (Haas et al. 2008). In addition, gene models from the Gt R3-111a-1 annotation were projected
647 via Liftoff v1.5.1 (Shumate and Salzberg 2021), and filtered via the multicompare script from
648 the ei-liftover pipeline (Venturini and Yanes 2020), ensuring only models with consistent gene

649  structures between the original and transferred models were retained.

650 The filtered Liftoff, REAT transcriptome, homology and prediction gene models were used in
651  MINOS to generate a consolidated gene set with models selected based on evidence support
652  and their intrinsic features. Confidence and biotype classification was determined for all gene
653 models based on available evidence, such as homology support and expression. TE gene

654 classification was based on overlap with identified repeats (> 40 bp repeat overlap).

655 To make best use of having multiple identically generated annotations for the genus, we opted
656 to additionally repeat a lift-over process projecting the gene models from each MINOS run to
657 all nine assemblies. We then removed gene models overlapping rRNA genes from the
658  multiple-lift-over annotations and the previously consolidated MINOS annotation using
659 RNAmmer v1.2 (Lagesen et al. 2007) and BEDTools v2.28 (Quinlan and Hall 2010). The
660 MINOS consolidation stage was repeated using four files as input: the high-confidence models
661 from the lift-over; the high-confidence genes of the previous MINOS run for the specific
662  assembly; the low-confidence models of the previous MINOS run for the specific assembly;
663 and the low-confidence models of the lift-over of all the closely related species. This multiple-
664 lift-over approach allowed us to cross-check gene sets across strains and determine whether

665  missing genes were truly absent from individual assemblies or had just been missed by the
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666  annotation process. Finally, mitochondrial contigs were identified using the MitoHiFi v2.14.2
667  pipeline (Uliano-Silva et al. 2023), with gene annotation using MitoFinder v1.4.1 (Allio et al.
668  2020) and the mitochondrion sequence from Epichloé novae-zelandiae AL0725 as a reference

669 (GenBank accession NC_072722.1).

670  Functional annotation of the gene models was performed using AHRD v3.3.3 (Hallab et al.
671 2023), with evidence from blastp v2.6.0 searches against the Swiss-Prot and TrEMBL
672 databases (both downloaded on 19/10/2022), and mapping of domain names using
673 InterProScan v5.22.61 (Jones et al. 2014). Additional annotations were produced using
674 eggNOG-mapper v2.1.9 (Cantalapiedra et al. 2021) with sequence searches against the
675 eggNOG orthology database (Huerta-Cepas et al. 2019) using DIAMOND v2.0.9 (Buchfink et
676 al. 2021). CAZymes were predicted using run_dbcan v3.0.1 (Le and Yohe 2021) from the
677 dbCAN2 CAZyme annotation server (Zhang et al. 2018) this process involved (i) HMMER
678 v3.3.2 (Mistry et al. 2013) search against the dbCAN HMM (hidden Markov model) database;
679 (i) DIAMOND v2.0.14 search against the CAZy pre-annotated CAZyme sequence database
680 (Drula et al. 2022) and (iii) eCAMI (Xu et al. 2020) search against a CAZyme short peptide
681 library for classification and motif identification. A gene was classified as a CAZyme if all three

682 methods were in agreement.

683 CSEPs were predicted using a similar approach to Hill et al. (2022), with some
684  additions/substitutions of tools informed by Jones et al. (2021); see Supplemental Fig. S14b
685  for a schematic overview. Briefly, we integrated evidence from SignalP v3.0 (Dyrlgv Bendtsen
686 et al. 2004), v4.1g (Petersen et al. 2011), v6.0g (Teufel et al. 2022); TargetP v2.0 (Almagro
687  Armenteros et al. 2019); DeepSig v1.2.5 (Savojardo et al. 2018); Phobius v1.01 (Kall et al.
688 2004); TMHMM v2.0c (Krogh et al. 2001); Deeploc v1.0 (Almagro Armenteros et al. 2017);
689 ps_scan v1.86 (Gattiker et al. 2002); and EffectorP v1.0 (Sperschneider et al. 2016), v2.0
690 (Sperschneider et al. 2018) and v3.0 (Sperschneider and Dodds 2021). CSEPs were then
691 matched to experimentally verified genes in the PHI-base database (Urban et al. 2020)

692 (downloaded 21/07/2023) using a BLAST v2.10 blastp search with an e-value cutoff of 1e-25.
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693 In the event of multiple successful hits, the hit with the top bitscore was used. Secondary
694 metabolites were predicted using antiSMASH v6.1.1 (Blin et al. 2021). Reference protein
695 sequences for avenacinase from Ga (GenBank accession AAB09777.1) and mating-type
696 locus idiomorphs MAT1-1 and MAT1-2 from Pyricularia grisea (Latorre et al. 2022) were used
697  to identify their respective genes in each of the nine assemblies using a blastp search (e-value

698  cutoff 1e-25).

699 Phylogenetic classification of G. tritici types

700  To confirm the classification of Gt strains within established genetic groups — sensu Daval et
701 al. (2010) and Freeman et al. (Freeman et al. 2005) — gene trees were produced for gentisate
702  1,2-dioxygenase (gdo; GenBank accessions FJ717712—-FJ717728) and ITS2. GenePull (Hill
703  2021) was used to extract the two marker sequences from the new assemblies reported here.
704 ITS2 could not be found in the existing Gt R3-111a-1 assembly (RefSeq accession
705 GCF_000145635.1), so that strain was only included in the gdo gene tree. We aligned each
706  marker gene separately using MAFFT v7.271 (Katoh and Standley 2013) and manually
707 checked the gene alignments. The gene trees were estimated using RAXML-NG v1.1.0
708 (Kozlov et al. 2019) and the GTR+G nucleotide substitution model (Supplemental Fig. S13a).
709 Branch support was computed using 1,000 Felsenstein’s bootstrap replicates, or until
710 convergence according to the default 3% cutoff for weighted Robinson-Foulds distances
711  (Pattengale et al. 2009), whichever occurred first. An avenacinase gene tree was produced in

712  the same way but using the JTT+G4 amino acid substitution model.

713 Phylogenomics of Gaeumannomyces

714 A genome-scale species tree was produced to provide evolutionary context for comparative
715 analyses. We used OrthoFinder v2.5.4 (Emms and Kelly 2019) to cluster predicted gene
716  models for primary transcripts into orthogroups — in addition to the newly sequenced
717  Gaeumannomyces taxa, this also included Gt R3-111a-1 and the outgroup Magnaporthiopsis

718 poae ATCC 64411 (GenBank accession GCA 000193285.1). Alongside the coalescent
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719  species tree produced within OrthoFinder by STAG (Emms and Kelly 2018), we also used a
720  concatenation-based approach. We used MAFFT to produce gene alignments for 7,029
721  single-copy phylogenetic hierarchical orthogroups or HOGs (hereafter, genes) that were
722  present in all taxa. These were trimmed using v1.4.revl5 (Capella-Gutiérrez et al. 2009),
723  concatenated using AMAS and run in RAXML-NG with genes partitioned and the JTT+G4

724 amino acid substitution model. Branch support was calculated as above.

725  Alongside the species tree we visualised assembly N50; the number of gene models; the
726  proportion of these that were functionally annotated by AHRD; and the number of unassigned
727 gene models from OrthoFinder (Supplemental Fig. S17). Due to concerns regarding the
728  comparability of the existing Gt R3-111a-1 annotation to the strains reported in this study, and
729 to avoid introducing computational bias, the existing Gt R3-111a-1 annotation was excluded

730 from downstream comparative analyses for the sake of consistency.

731 Genome structure and synteny

732  To identify both potential misassemblies and real structural novelty in our strains, we used
733 GENESPACE v1.1.8 (Lovell et al. 2022) to visualise syntenic blocks across the genomes.
734  Fragments were considered to have telomeres at the ends if Tapestry v1.0.0 (Davey et al.
735  2020) identified at least five telomeric repeats (TTAGGG), and this was used together with the
736  GENESPACE results to inform pseudochromosome designation. Telomeric repeats were also
737  cross-checked with results from tidk v0.2.31 (Brown 2023). We calculated GC content across
738  pseudochromosomes in 100,000 bp windows using BEDTools v2.29.2 (Quinlan and Hall
739 2010), and TE, gene and CSEP density were calculated in 100,000 bp windows with a custom
740  script, plot_ideograms.R. The composite RIP index (CRI) (Lewis et al. 2009) was calculated

741  in 500 bp windows using RIP_index_calculation.pl (Stajich 2023).

742  To statistically test for correlations between CSEP density and TE and /or gene density, we
743  again made Q-Q plots using the ggqgplot function to assess approximate data normality. This

744  being violated, we calculated Kendall's tau for each strain (rstatix cor_test function,
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745  method="kendall"). The assumption of normality being similarly violated for distances from
746  CSEPs/other genes to the closest TE, we performed a Wilcoxon rank sum test (wilcox_test
747  function) to compare mean distances for CSEPs versus other genes for each strain. To
748 compare the mean gene-TE distance across strains, we used a Games-Howell test
749  (games_howell_test function) for multiple comparison testing. Comparison of distances

750 between HCN genes and TEs versus other genes and TEs was tested in the same way.

751 We also performed permutation tests of CSEP-TE distances using the meanDistance
752  evaluation function from the R package regioneR v1.32.0 (Gel et al. 2016), with the
753  resampleRegions function used for randomisation of the gene universe over 1,000
754  permutations. Permutation tests of CSEP—-telomere distances were performed in the same
755  way, having assigned the first and last 10,000 bp of each pseudochromosome as telomeric

756  regions.

757 Comparative genomics

758 Functional annotations were mapped to orthogroups using a custom script,
759  orthogroup_assigner.R, adapted from Hill et al. (2022), which also involved retrieval of
760 CAZyme names from the ExplorEnz website (McDonald et al. 2009) using the package rvest
761  v1.0.3 (Wickham 2020). CAZyme families known to act on the major plant cell wall substrates
762  were classified as by Hill et al. (2022) based on the literature (Glass et al. 2013; Levasseur et
763  al. 2013; Zhao et al. 2013; Miyauchi et al. 2020; Hage and Rosso 2021; Mesny et al. 2021).
764  For Gt, gene content was categorised as core (present in all strains), soft-core (present in all

765  but one strain), accessory (present in at least two strains) and specific (present in one strain).

766  Broadscale differences in gene repertoires due to lifestyle (pathogenic Gt and Ga and non-
767 pathogenic Gh) were statistically tested using a permutational analysis of variance
768 (PERMANOVA) approach to estimate residual variance of gene content after accounting for
769 variance explained by phylogenetic distance (Mesny and Vannier 2020). To analyse the

770  potential for secondary metabolite production with this PERMANOVA approach, a presence-
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771 absence matrix for biosynthetic gene cluster families was produced from the antiSMASH

772  results using BiG-SCAPE v1.1.5 (Navarro-Mufioz et al. 2020).

773  Gene duplicates were categorised as intrachromosomal (on the same pseudochromosome)
774  orinterchromosomal (on a different pseudochromosome) using the pangenes output files from
775 GENESPACE. We conducted gene ontology (GO) enrichment analysis for high copy-number
776  (HCN) genes using the R package topGO v2.50.0 (Alexa and Rahnenfuhrer 2022) with

777  Fisher's exact test and the weight01 algorithm.

778  Starship element identification

779  Giant transposable Starship elements were identified in our assemblies after noting dense
780  blocks of transposons forming gaps between annotated genes. Manual inspection of these
781 regions via synteny plots built with OMA v2.5.0 (Altenhoff et al. 2019) and Circos v0.69
782  (Krzywinski et al. 2009) revealed Starship-sized insertions (Gluck-Thaler et al. 2022), and an
783 NCBI blastp search of the first gene in one such insertion in strain Gt-8d (Gt-
784  8d_EIvl_0041140) returned 85% identity with an established Gt R3-111a-1 DUF3435 gene
785  (GenBank accession EJT80010.1). These two genes were then used for a local blastp v2.13.0
786  search against all nine Gaeumannomyces assemblies reported here, which identified 33 full
787  length hits (>95% identity) that were associated with insertions when visualised in Circos plots.
788  This manual approach was then compared to Starship element identification using starfish
789  v1.0 (Gluck-Thaler and Vogan 2023). One element identified by starfish was discounted as it
790 consisted solely of a single predicted captain gene with no cargo or flanking repeats. A gene
791 tree of all tyrosine recombinases predicted by starfish (including Starship captains), blastp-
792  identified DUF3435 homologues, and previously reported Starship captain genes (Gluck-
793 Thaler et al. 2022) was built using the same methods described above for phylogenetic
794  classification and the JTT+G4 amino acid substitution model, with the addition of alignment

795  trimming using trimAl v1.4.rev15 (Capella-Gutiérrez et al. 2009) with the -gappyout parameter.
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796  Data visualisation was completed in R v4.3.1 (R Core Team 2022) using the packages ape
797 v5.7-1 (Paradis and Schliep 2019), aplot v0.2.2 (Yu et al. 2023), ComplexUpset v1.3.3
798  (Krassowski 2022), cowplot v1.1.1 (Wilke 2020), data.table v1.14.8 (Dowle and Srinivasan
799  2023), eulerr v7.0.0 (Larsson 2020), ggforce v0.4.1 (Pedersen 2021), ggh4x v0.2.6 (van den
800 Brand 2023), gggenomes v0.9.12.9000 (Hackl et al. 2023), ggmsa v1.6.0 (Zhou et al. 2022),
801 ggnewscale v0.4.9 (Campitelli 2020), ggplot2 v3.4.4 (Wickham 2016), ggplotify v0.1.2 (Yu
802  2021), ggpubr v0.6.0 (Kassambara 2020), ggrepel v0.9.3 (Slowikowski 2020), ggtree v3.9.1
803  (Yu et al. 2017), Gviz v1.44.2 (Hahne and Ivannek 2016), matrixStats v1.0.0 (Bengtsson
804  2021), multcompView v0.1-9 (Graves et al. 2019), patchwork v1.1.3 (Pederson 2022),
805 rtracklayer v1.60.1 (Lawrence et al. 2009), scales v1.2.1 (Wickham and Seidel 2020),
806 segmagick v0.1.6 (Yu 2023), tidyverse v2.0.0 (Wickham et al. 2019). All analysis scripts are

807 available at https://github.com/Rowena-h/GaeumannomycesGenomics.

808 DATA ACCESS

809 WGS data and annotated genome assemblies are available on GenBank under the BioProject
810 accession PRINA935249 (assemblies pending release). Additional data files are deposited in
811 Zenodo do0i:10.5281/zen0do.10277622 (pending release). All bioinformatics scripts are

812  available at https://github.com/Rowena-h/GaeumannomycesGenomics.
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Figure 1 Intraspecific variation in Gaeumannomyces tritici (Gt) virulence assessed from
inoculation of wheat plants. Representative photos of wheat roots (a) and above-ground
features (b) following inoculation treatment. Inoculated strains from top left to bottom right:

no Gt (control), Gt-8d, Gt-19d1, Gt-23d, Gt-4e and Gt-LH10. ¢ Box and violin plots showing
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the impact of the five Gt strains sequenced in this study on above- and below-ground
characteristics in winter wheat. Control, Gt type A and type B groups are indicated by
different colours. Strains with a significant mean difference for the characteristic as
calculated by either the Tukey HSD or Games-Howell test are shown by letters above the

plots.

Figure 2 GENESPACE plot showing synteny across the nine Gaeumannomyces strains.
A/B lineages are indicated for G. tritici strains. Fragments are labelled with numbers
corresponding to pseudochromosomes, and an asterisk indicates that a fragment was
inverted in the visualisation. Black bars on the ends of fragments indicate telomeres

predicted using Tapestry.

Figure 3 The relationship between candidate secreted effector proteins (CSEPSs) and
transposable elements (TEs) in Gaeumannomyces. a TE density (per 100,000 bp) and the
location of CSEPs (black ticks) across fragments. Fragments are ordered syntenically
according to GENESPACE (Fig. 2). b Scatterplot showing the relationship between CSEP
density versus TE and gene density (per 100,000 bp) with local polynomial regression lines
(ggplot2 function geom_smooth, method = “loess”). Significant correlation is indicated with
Kendall’s tau (1). ¢ Box and violin plots showing the distance of genes to the closest TE, with
CSEPs and other genes distinguished by colour. An asterisk indicates where a Wilcoxon
rank sum test found the mean TE distance to be significantly different for CSEPs versus
other genes. Strains with a significant mean difference in overall gene-TE distance as

calculated by the Games-Howell test are shown by letters above the plots.

Figure 4 Summary of predicted gene content for the Gaeumannomyces strains reported in
this study. a Number of total genes, candidate secreted effector proteins (CSEPS),
carbohydrate-active enzymes (CAZymes) and biosynthetic gene clusters (BGCs) for each
Gaeumannomyces strain. The A/B lineages are indicated for Gaeumannomyces tritici (Gt)
strains. The dashed line in the phylogeny indicates bootstrap support <70 found within the GtB

lineage (see Supplemental Fig. S13b for the full genome-scale Gaeumannomyces species
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1480 tree). The Gt pangenome (within dashed box) is categorised as core (present in all strains),
1481  soft-core (present in all but one strain), accessory (present in at least two strains) and specific
1482  (present in one strain). The lefthand inset box shows the results of PERMANOVA statistical
1483 tests which calculate the descriptive power of relatedness (phylogeny) versus lifestyle
1484  categorisation (Gt and G. avenae as pathogenic in wheat, G. hyphopodioides as non-
1485  pathogenic) on gene variance. Gene copy-number is shown on a scatterplot to the right, with
1486  points jittered vertically to improve visualisation. b Accumulation curves of pan and core genes
1487  for the Gt pangenome (Siozios 2021). ¢ Euler diagram summarising whether high copy-
1488 number genes in each lineage are present but in low copy-number in GtA, or completely

1489 absent.

1490 Figure 5 Gaeumannomyces genomes contain Starship giant transposable elements. a Gene
1491 tree of Starship ‘captain’ genes, including captains and other tyrosine recombinases identified
1492  from our assemblies via starfish, captain homologues identified via blastp, and previously
1493  published captain genes. b A summary of the Starship elements identified by starfish with the
1494  composite RIP index (CRI) shown above each element. The yellow highlight distinguishes a
1495 nested element. cap=captain gene, DR=direct repeat, RIP=repeat-induced point mutation,
1496  TE=transposable element gene, TIR=terminal inverted repeat, tyr=tyrosine recombinase

1497  gene.
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