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Abstract

Tissue maintenance is underpinned by resident stem cells whose activity is
modulated by microenvironmental cues. Using Drosophila as a simple model to
identify regulators of stem cell behaviour and survival in vivo, we have identified
novel connections between the conserved transmembrane proteoglycan Syndecan,
nuclear properties and stem cell function. In the Drosophila midgut, Syndecan
depletion in intestinal stem cells results in their loss from the tissue, impairing tissue
renewal. At the cellular level, Syndecan depletion alters cell and nuclear shape, and
causes nuclear lamina invaginations and DNA damage. In a second tissue, the
developing Drosophila brain, live imaging revealed that Syndecan depletion in neural
stem cells results in nuclear envelope remodelling defects which arise upon cell
division. Our findings reveal a new role for Syndecan in the maintenance of nuclear

properties in diverse stem cell types.
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Introduction

Most tissues are renewed by resident stem cells, capable of producing new
specialised cells when required. Mechanisms promoting stem cell maintenance
include genome protection, induced quiescence and stem cell self-renewal through
asymmetric cell divisions (Beumer & Clevers, 2024). Deregulation of these
mechanisms can lead to acquisition of mutations and cancer development or stem

cell loss and tissue attrition (Beumer & Clevers, 2024).

Stem cell survival and fate decisions are influenced by the basement membrane, a
specialised extracellular matrix whose complex structure and composition varies
dynamically with physiological context (Jayadev & Sherwood, 2017; Pozzi et al.,
2017; Sekiguchi & Yamada, 2018). Whilst in vitro systems are often used to study
stem cell behaviour, they incompletely recapitulate this extracellular environment,
highlighting the ongoing value of in vivo models to further our understanding of stem
cell biology and disease. To investigate stem cells in their native milieu, we turned to
the simple, genetically tractable Drosophila. The adult Drosophila gut is maintained
throughout life by resident stem cells (Micchelli & Perrimon, 2006; Ohlstein &
Spradling, 2006) (Figure 1A-A’), allowing long term assessment of stem cell
maintenance and tissue-level effects, while the developing larval brain contains
rapidly dividing neural stem cells highly amenable to live imaging, facilitating a more
dynamic understanding of cell biological events. While testing the role of basement
membrane receptors in stem cell activity, we investigated the single Drosophila
ortholog of Syndecan (Sdc) (Spring et al., 1994).

Sdc proteins are transmembrane proteoglycans bearing heparan and chondroitin
sulfate chains on their extracellular domain, via which they bind to basement
membrane components including Laminin and Collagen IV (Xian et al., 2010;
Gondelaud & Ricard-Blum, 2019). Mammals possess four sdc genes with varying
extracellular domains and a highly conserved small cytoplasmic domain involved in
protein-protein interactions, including direct and indirect association with the
microtubule and actin cytoskeletons (Yoneda & Couchman, 2003; Gondelaud &
Ricard-Blum, 2019). Sdc proteins play important and diverse roles during
development, inflammation, disease, and tissue repair, through adhesion and
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signalling (Couchman et al., 2015; Afratis et al., 2017; Ravikumar et al., 2020;
Ricard-Blum & Couchman, 2023). However, so far, little is known about Sdc’s role in

stem cell maintenance and tissue homeostasis.

Here we report that Drosophila Sdc contributes to intestinal stem cell maintenance,
through pro-survival mechanisms associated with nuclear properties and genome
protection. Furthermore, we identify an additional role in regulating nuclear envelope
remodelling during asymmetric division of neural stem cells. Our findings uncover a

novel connection between Sdc and nuclear properties in multiple stem cell types.

Results

Syndecan is required for long-term Drosophila intestinal stem cell

maintenance.

Sdc, a previously uncharacterised player in the adult Drosophila intestine, is
expressed throughout the intestinal epithelium, in all cell types (Figure 1B-C). To test
whether Sdc contributes to intestinal cell production, we knocked down Sdc by RNAI
expression in progenitor cells (Figure 1A) using the esg® F/O (“escargot flip out”)
system (Jiang et al., 2009) (Methods). This system also drives heritable GFP
expression in progenitor cells and their progeny, allowing assessment of progenitor
maintenance and new cell production. Expression of three independent RNAI lines
resulted in a lack of cell production (Figure 1D-F and Figure S1A-B), and a

progressive loss of progenitor cells (Figure 1D and Figure S1C).

To identify in which cell type(s) of the posterior midgut Sdc is required, we performed
RNAIi knockdown with cell type-specific GAL4 drivers (Figure 1A and Methods). We
monitored the proportion of each cell type to assess whether Sdc is required for its
maintenance. In addition, since failure in new cell production is accompanied by low
epithelial cell density (Figure 1F), we measured cell density as a proxy for new cell
production. Sdc knockdown in ISCs (Figure 1A) resulted in a progressive reduction
in ISC proportion (Figure 1G-H). This ISC loss was associated with reduced cell
density (Figure 11), presumably due to a failure in new cell production (Figure 1E).

Fly survival was not compromised (Figure S2), consistent with other reports using
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Figure 1. Sdc is required for Drosophila intestinal stem cell maintenance.

(A) Intestinal cell lineages. Intestinal stem cells (ISCs) self-renew and give rise to enteroblasts (EBs)
which differentiate into absorptive enterocytes (ECs); and pre-enteroendocrine cells (pre-EEs) which
undergo one division before differentiating into a pair of secretory enteroendocrine cells. Progenitor
cells comprise ISCs, EBs and pre-EEs. Cell type-specific genes shown in italics. (A’) Side and surface
view schematics of the posterior midgut. (B) Side views of midguts carrying either UAS-CD8-GFP alone
(i) or with syndecan-GAL4 (ii-iv). Progenitor cells are identified by their small, basally located nuclei.
ECs are identified by their large nuclei. DNA stain (blue) marks nuclei; GFP (green) reports sdc
expression; Phalloidin (magenta) marks the visceral muscle and EC microvilli. (C) Side (i-iii) and
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(Figure 1 legend, continued)

......

its C-terminus. ECs (empty arrowheads) show diffuse, basal Sdc signal. Progenitors/EEs (filled
arrowheads) show Sdc enrichment. DNA stain (blue) marks nuclei; Scarlet, anti-HA and anti-Sdc (all
white) mark Sdc protein. (D) Surface views of midguts expressing control RNAi or Sdc RNAI using the
esg’s F/O system. GFP (black) marks small progenitor cells and their progeny. (E) Proportion of medium
and large GFP**¢ cells (corresponding to newly produced differentiating and terminally differentiated
ECs, respectively), and (F) Cell density. n=number of guts, from three replicates. (G) Surface views of
midguts expressing Sdc RNAI in ISCs using the esgSu(H) system. DNA stain (blue) marks the nuclei
of all cells; YFP (green) marks ISCs. (H) ISC proportion and (I) Cell density. n=number of guts, from
two (Day 14) or three (Day 28) replicates. (J) Cell type proportion and (K) Cell density of midguts
expressing Sdc RNAI in EBs (KIu®), ECs (Myo1A¥) or pre-EEs and EEs (pros®). n=number of guts,
from one (EBs) or three (ECs & EEs) replicates.

alternative modes of ISC elimination (Jin et al., 2017; Resende et al., 2017).
Knockdown in other cell types did not perturb their proportion, except for EEs which
became more abundant (Figure 1J). Cell density was comparable to control guts
(Figure 1K), suggesting Sdc is dispensable in other epithelial cell types. We then
tested whether Sdc overexpression in ISCs would induce an opposite effect on ISC
proportion or cell density, but it did not (Figure 1H-I). Altogether, we have identified
Sdc as a previously unrecognised but important regulator of stem cell maintenance
in the adult Drosophila intestine.

Sdc-depleted intestinal stem cells are partially lost through apoptosis and
display aberrant cell shapes.

ISCs can be eliminated from the tissue by differentiation or cell death. Differentiation
is ruled out by the reduction in differentiated cells upon expression of Sdc RNAi with
the esg™ F/0 lineage tracing system (Figure 1D-E and Figure S1; compare to control
guts where production of large GFP*'¢ enterocytes is clear). To test whether ISC loss
occurs by apoptosis, a common form of programmed cell death, we expressed the
inhibitor of apoptosis, DIAP1 (Steller, 2008), in these cells. DIAP1 expression
partially rescued (~50%) ISC loss caused by Sdc depletion, and did not affect ISC
numbers in control guts (Figure 2A-B). Thus, some ISCs depleted of Sdc are

eliminated by apoptosis.
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Figure 2. Sdc-depleted ISCs adopt abnormal cell shapes independently of apoptosis.

(A) Surface views of midguts expressing +/- DIAP1 and +/- Sdc RNAI in ISCs. DNA stain (blue) marks
the nuclei of all cells; YFP (green) marks ISCs. (B) ISC proportion. n=number of guts, from three
replicates. (C) Surface views of ISCs. DNA stain (blue/white) marks nuclei; YFP (green) marks ISCs.
Images are from either 14 or 28 days expression with esgSu(H). (D) ISC cytoplasmic area; (E) ISC
aspect ratio and (F) ISC form factor. n=number of ISCs analysed, from 227 guts, from three replicates.
(G) Time lapse of control or Sdc RNAi-expressing ISCs. YFP (black) marks ISCs. Right panels show
colour-coded snapshots of the cell outline during the time lapse.
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We then sought to determine the cellular changes induced by loss of Sdc, which
could cause ISC elimination. Observation of labelled Sdc-depleted ISCs at high
magnification revealed striking changes in cell shape. Drosophila ISCs are normally
small and triangular shaped (Ohlstein & Spradling, 2006; Marianes & Spradling,
2013; Hung et al., 2020) (Figure 2Ci-ii). In contrast, Sdc-depleted ISCs showed a
variety of morphological defects including larger size, cytoplasmic protrusions, and
occasional blebs (Figure 2Ciii-vii). These phenotypes were observed both with and
without DIAP1 expression (Figure 2C), indicating that these cell shapes are not
caused by apoptosis. Quantification of ISC area and shape revealed that, compared
to controls, ISCs expressing Sdc RNAI are significantly larger (Figure 2D), more
elongated (Figure 2E) and more convoluted (Figure 2F).

Abnormal cell shape and size might reflect changes in the cortical cytoskeleton and
cellular dynamics. We therefore turned to live imaging of fluorescently labelled ISCs
in ex vivo guts to compare dynamic cellular behaviour over approximately eight
hours (>400 ISCs imaged across >14 guts for each genotype). Whilst most control
ISCs remained static (Figure 2Gi), Sdc RNAi-expressing ISCs displayed more
dynamic protrusions and shape changes (Figure 2Gii). In addition, rare Sdc RNAI-
expressing ISCs appeared to attempt but fail in cell division (Figure 2Giii), a
behaviour that we have never observed in controls. We concluded that Sdc regulates
stem cell shape and that its loss can contribute to changes in cellular morphology
compatible with defective divisions.

Sdc is dispensable for intestinal stem cell abscission but prevents nuclear
lamina invaginations and DNA damage.

How could Sdc interfere with stem cell morphology and maintenance? Sdc-4 links
the abscission machinery to the plasma membrane in mammalian cultured cells, with
Sdc-4 depletion delaying abscission or more rarely causing abscission failure,
generating binucleate cells (Addi et al., 2020). To explore whether Sdc depletion
from proliferating Drosophila ISCs impairs their resolution into two separate daughter
cells and causes them to become binucleate prior to their elimination, we
immunostained guts with Lamin B to label the nuclear compartment and a-catenin to

label the cell perimeter (Figure 3A). To confirm that our approach could detect
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Figure 3. Sdc prevents nuclear lamina invaginations and DNA damage.

(A) Control ISC, and ISC expressing Aurora B RNAi or Sdc RNAIi. DNA stain (white) marks nuclei; YFP
(green) marks ISCs; anti-a-catenin (magenta) marks cell junctions; anti-Lamin B (white) marks nuclear
lamina. (B) The Drosophila LINC complex. (C) ISC nuclear lamina invaginations (Lamin B pixels located
in the nuclear interior), (D) ISC nuclear eccentricity, and (E) ISC nuclear form factor n=number ISCs
analysed, from a minimum of 17 guts per genotype, from a minimum of two replicates. (F) Surface view
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(Figure 3 legend, continued)

images of midguts. DNA stain (blue) marks nuclei; YFP (green) marks ISCs; anti-yH2Av (white) marks
DNA damage. (G) Proportion of ISCs, per gut, with DNA damage. n=number of guts, from a minimum
of two replicates. >100 ISCs analysed per genotype per timepoint. (H) Relationship between ISC
nuclear lamina invaginations and DNA damage. Each dot represents an individual ISC, coloured orange
if ISC has DNA damage and grey if ISC does not. ISCs are defined as having nuclear lamina
invaginations if there are 22000 Lamin B pixels in the nuclear interior. n=number ISCs analysed, from
=222 guts per genotype, from four replicates. Example ISCs, with and without nuclear lamina
invaginations and DNA damage. DNA stain (white) marks nuclei; YFP (green) marks ISCs; anti-Lamin
B (white) marks the nuclear lamina; anti-yH2Av (white) marks DNA damage. () Model representing the
role of Sdc in Drosophila ISCs.

binucleate cells, we used RNAi to knockdown the cytokinesis-promoting Aurora B
(Steigemann et al., 2009) (Figure 3Ai-ii). We did not detect any binucleate stem cells
upon Sdc knockdown (n>100 ISCs examined across >20 guts) (Figure 3Aiii),
indicating that Sdc is not required for ISC abscission.

We noted, however, that unlike control ISC nuclei which appeared approximately
spherical, with a smooth, round nuclear lamina (Figure 3Ai), the nuclei of Sdc-
depleted ISCs presented frequent nuclear lamina invaginations (Figure 3Aiii,C) and
aberrant nuclear shapes, with more elongated and lobed nuclei (Figure 3D-E). These
phenotypes were also seen with other Sdc RNAI lines and when DIAP1 was co-
expressed with Sdc RNAI (Figure S3A), indicating that they were neither an off-target
effect of the RNAI nor a secondary effect of apoptotic cell death.

We reasoned that Sdc depletion could impair a relay from the plasma membrane to
the nucleus, which would in turn alter nuclear properties. The Linker of
Nucleoskeleton and Cytoskeleton (LINC) complex is a conserved multiprotein
complex that connects the cytoskeleton with the nucleoskeleton, allowing
transmission of mechanical force from the cell surface to the nucleus, regulating
nuclear deformation, positioning and functions (Horn, 2014; King, 2023). The
Drosophila LINC complex consists of two KASH proteins, Klarsicht (Klar) and
Msp300, and two SUN proteins, Klaroid (Koi) and the testes-specific SPAG4 (Figure
3B) (Horn, 2014). We hypothesised that Sdc might act via the LINC complex and
thus tested whether individual knockdowns of Klar, Koi and Msp300 in ISCs
recapitulated the lamina invaginations and nuclear shape changes seen upon Sdc
depletion. Only Msp300 knockdown resulted in increased lamina invaginations
compared to control nuclei, but not to the same extent as Sdc knockdown (Figures
3C and S3A). Knockdown of Klar or Koi produced only modest nuclear elongation

10
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(Figure 3D) and nuclear lobing was unaffected (Figure 3E). This suggests Sdc
function is unlikely to be fully accounted for by individual LINC complex proteins,
although these proteins may act redundantly (Horn, 2014; King, 2023).

Disruptions to the nuclear lamina are often associated with DNA damage (Gauthier &
Comaills, 2021; Graziano et al., 2018). Immunolabelling of DNA double strand
breaks with yH2Av (Madigan et al., 2002) revealed striking DNA damage acquisition
in ISCs upon Sdc knockdown but not in control ISCs (Figure 3F-G). Increased DNA
damage was also seen with a second Sdc RNA. line, albeit at a lower frequency
(Figure S3B). These results suggest that Sdc regulates a mechanism protecting the
genome. Knockdown of individual LINC complex components from ISCs did not
recapitulate the level of DNA damage seen upon Sdc depletion (Figure 3F-G),
supporting the notion that Sdc does not mediate its effects via the LINC complex.
Notably, DNA damage was not a secondary consequence of apoptosis (Figure S3C),

and thus may instead contribute to ISC elimination.

To uncover the relationship between nuclear lamina invaginations and DNA damage,
we carefully examined the frequency of both features in a large number of ISCs
(Figure 3H). DNA damage was found more frequently in Sdc-depleted ISCs with
lamina invaginations compared to those without (Figure 3H), supporting a model
whereby the development of nuclear lamina invaginations precedes the acquisition
of DNA damage.

Altogether, our results suggest that Sdc regulates nuclear shape and the nuclear
lamina, in a manner that is not dependent on single members of the LINC complex.
In the absence of Sdc, nuclear aberrations arise early, with lamina invaginations
likely preceding acquisition of DNA damage, which then conceivably triggers ISC
elimination (Figure 3I).

Sdc controls nuclear envelope remodeling of neural stem cells and is

dispensable from female germline stem cells.

Next, to test whether Sdc plays similar roles in other stem cell types, we examined
female germline stem cells (fGSCs) and larval neural stem cells (neuroblasts).
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In the female Drosophila germline (Figure S4A), Sdc depletion from fGSCs did not
cause germline loss (Figure S4), suggesting that Sdc is dispensable for f{GSC
survival. Moreover, we did not detect any evidence of germline stem cysts, which
arise upon defective fGSC abscission (Mathieu et al., 2013) (Figure S4A-B), nor
DNA damage (Figure S4C), indicating that Sdc is not required for abscission or
genome protection in these cells. Our results suggest Sdc is dispensable in f{GSCs,
supporting previous data (Hayashi et al., 2021).

In the larval Drosophila brain, which is highly amenable to live imaging (Cabernard &
Doe, 2013; Lerit et al., 2014), neuroblasts undergo rapid asymmetric cell division,
generating a large self-renewing neuroblast with a large nucleus and a smaller
differentiating ganglion mother cell (GMC) with a small nucleus (Homem & Knoblich,
2012) (Figure 4A). Wildtype neuroblasts undergo semi-closed mitosis, whereby the
nuclear envelope persists throughout mitosis, dependent on the maintenance of a
supporting nuclear lamina (Roubinet et al., 2021). Some reservoirs of nuclear
membrane are also present in the cytoplasm of the renewing neuroblast and
contribute to differential nuclear growth of the daughter cells (Roubinet et al., 2021)
(Figure 4A-B).

After confirming the presence of Sdc in neuroblasts (data not shown), we examined
whether its depletion affected cell division and nuclear properties. Sdc-depleted
neuroblasts exhibited prolonged cell division (Figure 4B,D-E) and had a variety of
cell division, nuclear envelope, and nuclear shape defects. Approximately 50% of
mitotic neuroblasts expressing Sdc RNAI displayed abnormal mitotic nuclear
envelope remodelling (Figure 4C-C’) including ruptures (Figure 4C-D) and dispersion
(Figure 4C,E) of the nuclear envelope, which appeared as early as metaphase.
Outside of mitosis, Sdc-depleted neuroblasts had aberrant nuclear shape and size
(Figure 4F-G) and abnormal cell size (Figure 4H).

Furthermore, Sdc depletion resulted in abnormal ratio in nuclear size between the
renewed neuroblast and the newly formed GMC (Figure 4l1). This was sometimes
caused by mispositioning of the cleavage furrow and abnormal nuclear membrane
partitioning between the daughter cells, resulting in abnormally large GMC nuclei

(Figure 4D), and in other cases was caused by impaired nuclear growth, resulting in
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Figure 4: Sdc knockdown in neural stem cells alters nuclear envelope remodeling and
asymmetric cell division.

(A) Drosophila neuroblast division. (B-C & D-E) Klaroid::GFP (white/green) marks inner nuclear
membrane; Cherry::Jupiter (magenta) marks mitotic spindle. Neuroblast outlined with white dashed line.
Time stamp in minutes and seconds, with anaphase onset defined as time 0. (B) Time lapse of a control
mitotic neuroblast. Representative time lapse from 36 neuroblasts from 4 independent experiments (20
brains total). (C) Example images of mitotic neuroblasts expressing Sdc RNAi with mitotic nuclear
envelope phenotypes. Representative images from 45 neuroblasts from two independent experiments
(7 brains total). (C’) Prevalence of mitotic nuclear envelope phenotypes. n numbers same as B&C. (D)
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(Figure 4 legend, continued)

Time lapse of a mitotic neuroblast expressing Sdc RNAI, with a large rupture of the nuclear envelope
(yellow arrowheads). Yellow dashed line marks cleavage furrow. (E) Time lapse of a mitotic neuroblast
expressing Sdc RNAI, with complete dispersion of the nuclear envelope. Arrowheads mark abnormal
nuclear membrane aggregates in the cytoplasm of the renewing neuroblast. (F) Neuroblast nuclear
form factor, (G) Neuroblast nuclear size and (H) Neuroblast cell size, measured during interphase.
n=number of neuroblast, from 13 brains from 3 independent experiments (control) or 7 brains from 2
independent experiments (Sdc RNAI). (I) Nuclear size ratio between the renewed neuroblast and newly
formed GMC, measured at telophase. Neuroblast nuclear envelope phenotype indicated for each data
point. n=number of neuroblast/GMC pairs measured, from 13 brains from 3 independent experiments
(control) or 7 brains from 2 independent experiments (Sdc RNAI)

abnormally small neuroblast nuclei (Figure 4E). These defects in nuclear size ratio
were predominantly associated with divisions where the nuclear envelope was either
ruptured or completely dispersed (Figure 4l), suggesting that mitotic nuclear
envelope remodelling defects induced by Sdc knockdown might have a causative

effect on nuclear size ratio.

Thus, in at least two different somatic stem cell types, in the adult gut and developing
brain, the transmembrane protein Sdc modulates nuclear properties, with major

impacts on cell division and tissue renewal.

Discussion

Stem cell activity underpins tissue renewal and disease, and stem cells are highly
regulated by the complex, dynamic environment in which they reside. The adult
Drosophila gut has proven an excellent in vivo system allowing functional
characterisation of proteins involved in basement membrane adhesion and
mechanostransduction, from the molecular to tissue level (Lee et al., 2012; Lin et al.,
2013; Okumura et al., 2014; You et al., 2014; Patel et al., 2015; Chen et al., 2018;
Howard et al., 2019; Mlih & Karpac, 2022; F. Chen et al., 2021; Ferguson et al.,
2021; Bohere et al., 2022). Here we have identified previously unknown connections
between the conserved transmembrane proteoglycan Sdc, nuclear properties and

stem cell behaviour.
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Our temporal analysis of Drosophila ISCs depleted of Sdc revealed early nuclear
lamina defects (Figure 3A,C) and gradual acquisition of DNA damage (Figure 3G)
followed by ISC loss (Figure 1G-H) suggesting that Sdc regulates nuclear lamina
organisation and safeguards genomic integrity to protect stem cells. How could Sdc
regulate nuclear properties and cell survival? Sdc could prevent initiation of cell
death programmes which subsequently alter the nucleus (Ambrosini et al., 2019).
However, when we blocked apoptosis nuclear abnormalities were still observed

(Figure S3A,C), arguing against such a mechanism.

Alternatively, Sdc could regulate nuclear properties, which in turn promote stem cell
survival. In the female Drosophila germline, mutations inducing deformation of the
nuclear lamina promote DNA damage and stem cell loss (Barton et al., 2018; Duan
et al., 2020). This is compatible with our results which show a strong association
between nuclear lamina defects and DNA damage in Sdc-depleted ISCs (Figure 3H).
However, Sdc did not contribute to f{GSC protection (Figure S4), suggesting tissue-
specific roles. In ISCs, the proximal cause of death upon Sdc knockdown remains to
be determined, although the DNA damage acquired by these cells seems a likely
driving force, with physiological DNA damage and genotoxic stress known to
contribute to ISC elimination (Nagy et al., 2018; Sharma et al., 2020).

Might Sdc be required at a particular phase of the cell cycle? Sdc depletion in
neuroblasts perturbs mitotic nuclear envelope remodelling and impairs cell and
nuclear division, with effects seen as early as metaphase (Figure 4A,C-E), revealing
additional roles of Sdc in cell division, divergent from those found in mammalian cell
culture (Keller-Pinter et al., 2010; Addi et al., 2020). It is notable that in the gut, which
is predominantly composed of post-mitotic cells, Sdc depletion was only deleterious
in the cell population capable of dividing (Figure 1). Future live imaging of the
Drosophila gut would allow dynamic assessment of ISC behaviour and analysis of
whether nuclear aberrations are precipitated by cell division, as appears to be the

case in neural stem cells.
As our results pointed towards a connection between Sdc and nuclear properties, we

reasoned that Sdc might be involved in force transmission between the plasma
membrane and nucleus (Kalukula et al., 2022; Miroshnikova & Wickstrom, 2022).
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Indeed, mammalian Sdc-1 and -4 can act as mechanosensors, transmitting force via
their interaction with the cytoskeleton (Chronopoulos et al., 2020; Le et al., 2021),
although Sdc’s involvement in mechanical signalling remains understudied in
comparison to its involvement in chemical signalling. Excitingly, we found that
knockdown of individual components of the LINC complex, stereotypically
considered the major machinery relaying force to the nucleus, did not produce
similar nuclear aberrations seen upon Sdc depletion, suggesting that Sdc might act
via a LINC-independent route. Alternatively, LINC complex components may act
redundantly (Horn, 2014), or the environment may influence their requirement. For
example, Klar facilitates nuclear movement as ISCs migrate locally during tissue
repair but is dispensable under unchallenged conditions when ISCs are relatively
immotile (Hu et al., 2021; Marchetti et al., 2022) (Figure 2G).

If changes to the nucleus are not mediated via the LINC complex, we speculate that
Sdc regulates the cytoskeleton, with subsequent effects on nuclear properties
(Figure 3l). There is a large body of evidence showing that the cytoskeleton can
influence nuclear properties (Davidson & Cadot, 2021; Dos Santos & Toseland,
2021; Shokrollahi & Mekhail, 2021; Miroshnikova & Wickstrom, 2022), and altered
cytoskeletal dynamics could also drive cell shape changes induced upon Sdc
knockdown (Figure 2B,G). Recent work in mammalian cells has uncovered a
laminin-keratin link which shields the nucleus from actomyosin-mediated mechanical
deformation, with keratin intermediate filaments forming a protective meshwork
around the nucleus (Kechagia et al., 2023). While Drosophila cells lack these
cytoplasmic intermediate filaments, it is possible that microtubule and/or actin
networks instead modulate the nucleus in a force-dependent manner, as reported in
other contexts (Almonacid et al., 2019; Biedzinski et al., 2020). Notably, Sdc can
directly bind tubulin (K. Chen & Williams, 2013; Gondelaud & Ricard-Blum, 2019)
and actin-binding proteins, such as FERM domain-containing proteins (Granés et al.,
2003; Gondelaud & Ricard-Blum, 2019). Future work should seek to identify the
precise molecular mechanism(s) via which Sdc elicits its effects at the nucleus, and
whether these depend on its interaction with the extracellular matrix.

In conclusion, using a simple, tractable in vivo model, we have discovered that Sdc

regulates nuclear properties and cell function of intestinal and neural stem cells.
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Whilst there will be microenvironmental differences between cell types and
organisms, given Sdc’s high conservation, the broad relationship between Sdc and
nuclear properties is likely to be upheld across organisms. This may be
therapeutically relevant, especially as nuclear changes and genomic instability are
hallmarks of cancer cells, and that Sdc proteins are often deregulated in cancer and

inflammatory diseases (Gopal, 2020; Czarnowski, 2021).

Material and Methods

Fly strains

All Drosophila stocks were maintained at 18°C or amplified at 25°C on standard
medium (cornmeal, yeast, glucose, agar, water, Nipagin food medium). Fly strains

are referenced in Table 1.

We used FlyBase (release FB2023_06) to find information on
phenotypes/function/stocks/gene expression etc. (Jenkins et al., 2022).

Full genotype

Informal name

Reference/source

w ; esg-GAL4, tub-GAL80ts, UAS-GFP / CyO ;
UAS-flp, act>CD2> GAL4 / TM6B ; +/ +

esg® F/O

(Jiang et al., 2009)

+/+; UAS-CD8-GFP ; +/+;+/+

UAS-CD8-GFP

y[1] w[*] ; Mi{Trojan-GAL4.0}Sdc[MI03925-TG4.0] /
SM6a;+/+;+/+

syndecan-GAL4

BDSC 76652

w; esg-GAL4 UAS-YFP / CyO ; Su(H) GBE-GALS0,
tub-GAL80ts / TM3, Sb ; +/ +

esgSu(H) (expresses
in ISCs)

Cedric Polesello

w; UAS-CD8-GFP, tub-GAL8O0ts ; Klu-GAL4, UAS-
H2B-RFP / SM6a, TM6B ; + / +

Kiu®™ (expresses in
EBs)

(Reiff et al., 2019)

+/+ ; UAS-YFP / CDY ; voila-GAL4 / TM6B ; + / +

pros’ (expresses in
pre-EEs & EEs)

Irene Miguel-Aliaga

+/ +; Syndecan-Scarlet-2xHA / (CyO) ; + / + ; + / + | Sdc-Scarlet this study

yw ; MyolA-GAL4, tub-GAL8Ots / Cyo ; UAS-GFP / | MyolA® (expresses in

TM6b ; + / + ECs) Kolahgar lab
y[1] sc[*] v[1] sev[21] ; P{y[+t7.7] ; + | +; mCherry / Control
v[+t1.8]=VALIUM20-mCherry.RNAi}attP2 ; + / + RNAI BDSC 35785
y[1] sc[*] v[1] sev[21] ; P{y[+t7.7]

v[+t1.8]=TRiP.HMCO03287}attP2 / TM3, Sb[1] Ser[1] | Sdc RNAi 1 BDSC 51723
T+

+/+ ; UAS-Syndecan RNAi (KK) ; +/+; +/+ Sdc RNAI 2 VDRC 107320

+/+;+/+; UAS-Syndecan RNAi (GD); +/ +

Sdc RNAi 3 (also
referred to as Sdc
RNAI in main figures)

VDRC 13322
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y[1]1 w[*]; P{w[+mC]=UAS-Sdc.J}3 ; +/+; +/ + Sdc-J BDSC 8564

W[1118] ; +/+ ; +/+ ; +/+ w'""8 / Control Celia Garcia Cortes

w ; UAS-DIAP1 / Cyo, Kr-GAL4, UAS-GFP ; TM2 /

TM6. DE-YFP : +/ + DIAP1 Jean-Paul Vincent

w ; UAS-DIAP1 / CyO ; UAS-Sdc RNAi (VDRC

13322) / TM6C, DF-YFP ; +/ + Sdc RNAI, DIAP1 Kolahgar lab

+/+ ; UAS-AuroraB-RNAi (KK) ; +/+; +/ + AuroraB RNAi VDRC 104051

y[1] sc[*] v[1] sev[21] ; P{y[+t7.7]

V[+t1.8]=TRIP.HMS02172}attP40 ; + / + ; + / + Klaroid RNAI BDSC 40924
y[1] sc[*] v[1] sev[21]; P{y[+t7.7]; + | +; . .
V[+t1.8]=TRIP.HMS01612}attP2 ; +/ + Klarsicht RNAI BDSC 36721
y[1] sc[*] v[1] sev[21]; + / + ; P{y[+17.7] .
V[+t1.8]=TRIP.HMS00632}attP2 : + / + Msp300 RNA 1 BDSC 32848
P{UAS-Dcr-2.D}1, w[1118]; nosP-GAL4-NGT40 nos-GAL4 BDSC 25751

w; Wor-GAL4, KlaroidCB04483, UAS wor-GAL4 (Roubinet et al.,
Cherry::Jupiter / Cyo; UAS Dicer / TM6B,Tb 2021)

Table 1. Fly stocks used in this work.

The fly line expressing Sdc-Scarlet-2xHA was produced by Genetivision. The
following guide RNAs (gRNA) were selected for CRISPR/Cas9 mediated double
strand breaks, for targeting immediately after the final codon of the syndecan gene:
TATCTCAGGCGTAGAACTCG CGG and GTGTGCGTATGACTGGACGA AGG. The
donor template for homology directed repair was designed to contain a four-serine
linker, Scarlet and a HA-GG-HA tag.

Experimental conditions for gut analyses
All analyses were performed on mated females.

For experiments involving GAL80', flies were reared at 18°C throughout embryonic,
larval and pupal development, with crosses flipped every 3-4 days. Flies were
collected every 3-4 days after hatching and transferred to 29°C, (which was defined
as day 1) and transferred to new food every two days.

For the survival experiment, crosses of 15 esgSu(H) virgins and 6 w'!'® or Sdc RNAI
males were set up at 18°C and flipped every 3-4 days. Upon hatching, adult flies
were collected and transferred to 29°C for two days to allow mating. On day 2, flies
were anesthetised for minimal time to retrieve female flies of the correct genotypes,
which were transferred into vials of standard medium at a density of 12 females per
vial. All vials were placed horizontally at 29°C, with vial position randomised to
control for any variation in temperature or humidity in the incubator. Survival was
recorded daily, and flies were transferred to fresh food every 2 days until the end of
the experiment, when the final fly died.
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esg’s F/O (“escargot flip out”) experiments (Jiang et al., 2009) were performed as in
(Bohere et al., 2022). At the non-permissive temperature (18°C), GAL80' which is
expressed under the ubiquitous tubulin promoter, inhibits GAL4 preventing
expression of UAS-GFP, UAS RNAi and UAS-flp-recombinase. Upon hatching, adult
flies are transferred to the permissive temperature (29°C). This inactivates GAL80ts,
allowing the intestinal progenitor cell-specific esg-GAL4 to drive expression of UAS-
transgenes. The flp-recombinase excises a STOP codon between the ubiquitous
actin promotor and GAL4, resulting in permanent and heritable GAL4, and thus UAS-
transgene expression, regardless of cell type. Thus, all cells which arise from
progenitors after the temperature shift will express GFP, providing a visual readout
for new cell production.

Gut dissection and immunostaining

Midguts were dissected in 1X PBS (Oxoid, BR0014G) and fixed for 20 minutes at
room temperature in fresh 4% methanol-free paraformaldehyde (Polysciences,
18814-10) diluted in PBS, 0.025% Triton X-100 (Sigma Aldrich, X100). Samples
were given three 5-minute washes in 0.25% PBST and permeabilised for 30 minutes
in 1% PBST. Samples were then incubated for 30 minutes at room temperature in
blocking buffer (0.1% PBST, 0.1% BSA (Sigma, A2153-10G)), followed by incubation
overnight at 4°C with primary antibodies diluted in blocking buffer. Samples were
next given three 20-minute washes in 0.25% PBST and incubated for 2 hours at
room temperature in secondary antibodies diluted in 0.25% PBST. Finally, guts were
given three 20-minute washes in 0.25% PBST. Guts were mounted in Vectashield
(Vector Laboratories, H-1000) on a glass slide (VWR International, SuperFrost
1.0mm, ISC 8037/1) with coverslip (Menzel-Glaser, 22x50mm#1, 12342118). The
following primary antibodies were used: chicken anti-GFP, 1/1000 (Abcam,
ab13970); rat anti-a-catenin, 1/20 (DSHB, D-CAT-1-s); rabbit anti-HA, 1/500 (Cell
Signaling, 3724T); rabbit anti-H2Av, 1/700 (Rockland, 600-401-914); mouse anti-
LaminDmO (Lamin B), 1/10 (DSHB, ADL84.12). Alexa-488-, 555-, and 647-
conjugated secondary goat antibodies (Molecular Probes) were used. F-actin was
stained with Phalloidin (Molecular Probes, A12380 or A22287). Nuclei were stained
with DAPI (Molecular Probes, D1306) or Hoechst (Molecular Probes, H1399).

Ovary dissection and immunostaining

Ovaries were dissected and collected in 1X PBS and then fixed for 25 minutes in 4%
formaldehyde in 0.3 PBSTX (0.3% Triton-X in 1X PBS) at room temperature.
Samples were given three 15-minute washes in 0.3% PBSTX and then incubated for
one hour in blocking buffer (0.2 ug/pl BSA in 0.3% PBSTX), followed by incubation
overnight at 4°C with primary antibodies and Phalloidin diluted in blocking buffer.
Samples were then given three 15-minute washes in 0.3% PBSTX and incubated for
2 hours at room temperature in secondary antibodies diluted in blocking buffer.
Samples were then given three 15-minute washes in 0.3% PBSTX, including
Hoechst (33342) DNA stain in the first wash. Samples were mounted in VectaShield
media (Vector Laboratories, H-1000). The following primary antibodies were used:
mouse anti-H2Av, 1/200 (DSHB UNC93-5.2.1); mouse anti-a-Spectrin, 1/200
(DSHB, 3A9).
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Image acquisition and processing

Confocal images of fixed samples were acquired on a Leica TCS SP8 advanced
confocal microscope with laser gain and power consistent within experiments. Gut
overview images were acquired on a Leica M165FC microscope with Leica
DFC3000G camera or EVOS M7000 (ThermoFisher Scientific). All images were
processed and analysed with FiJi (Schindelin et al., 2012). Imaris 3 64 7.5.2 was
used to analyse neuroblast data presented in Figure 4. Figures were compiled in
Adobe lllustrator.

Unless otherwise specified, all images show the R4/5 posterior midgut region.
Midgut surface views are z-projections through half the gut depth. Images of single
ISCs for nuclear lamina and shape qualifications are single z sections.

Live imaging of larval neuroblasts

Live imaging experiments were performed on intact brains. Larvae expressing
nuclear membrane and spindle marker (Klaroid::GFP and UAS-Cherry::Jupiter)
together with UAS-Dicer, UAS-Sdc RNAi (VDRC 13322) and worniu-GAL4 were
dissected seventy two or ninety-six hours after egg laying, respectively, in imaging
medium (Schneider’s insect medium mixed with 10% fetal bovine serum (FBS)
(Sigma, F7524), 2% PenStrepNeo (Sigma, P4083), 0.02 mg/mL insulin (Sigma,
11070), 20mM L-glutamine (Sigma, G8540), 0.04 mg/mL L-glutathione (Sigma,
G4251) and 5 mg/mL 20-hydroxyecdysone (Sigma, H5142)) warmed up to room
temperature before use. Brains were then transferred onto IbiTreat micro-slide 15
well 3D (Ibidi, 81506) and imaged with a confocal spinning disc. All images
presented in Figure 4 are single z sections. Anaphase onset is defined as t=0.

Live imaging and analysis of adult intestinal stem cells

Guts expressing YFP +/- UAS Sdc RNAi in ISCs (with esgSu(H) system) were
carefully dissected 7 to 16 days after induction of GAL4 expression at 29°C in Shield
and Sang M3 medium (Sigma S3652), keeping the crop, Malpighian tubules and
ovaries attached. Guts were mounted in imaging medium (Shields and Shang M3
medium, supplemented with 2% Fetal Bovine Serum, 0.5% penicillin-streptomycin
(Invitrogen, 15140-122) and methylcellulose (Sigma, M0387-100G) 2.5% wt/vol, to
stabilise the gut in the chamber (Aldaz et al., 2010) between a concanavalin-A
coated coverslip and an oxygen permeable membrane and left to settle for Smin. All
guts were live imaged for 10 to 15 hours with a 2-minute interval between each scan
comprising 20 to 25 sections of 1Tum, on a 40X air objective using the EVOS M7000
(ThermoFisher Scientific). Image files were processed in Fidi, using Bleach
correction and Stackreg plugins. Regions of interest (25x25um) were cropped,
upscaled to 512X512 pixels and reduced to 264 images (528min). Cells shapes at
specified timepoints were drawn and superposed using Adobe lllustrator.

Image analysis and quantifications

Cell density and cell type proportion: The total number of epithelial cells (using nuclei
as a proxy) and the total number of each cell type (identified by their expression of
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fluorescent protein or nuclear size (small, medium and large cells in esg’s F/O
experiment)) were manually counted using the cell counter tool in Fiji, and a ratio
was calculated. Cell density was calculated as the total number of cells per
80x200um area. Measurements were done on z projections of half the intestinal
epithelium depth, except for Figure 1E-F and Figure S1B, where single z slices were
analysed, on both sides of the gut tube where possible.

Posterior midgut progenitor cell retention and new cell production: Posterior midguts
were visually inspected and manually assigned to one of five phenotypic categories.

Intestinal stem cell size and shape: Masks of ISCs were manually drawn around
cytoplasmic YFP signal with the Fiji freehand line on z-projections encompassing
half the gut depth. The following parameters were calculated with the Fiji ‘analyse
particles’ function: size, aspect ratio (defined as the major axis / minor axis, where a
value of 1.0 indicates a shape with equal dimensions in both axes, and higher values
indicate increasingly elongated shapes) and form factor (defined as 411 x area /
perimeter?, where a value of 1.0 indicates a perfect circle and lower values indicate
increasingly convoluted shapes).

Nuclear lamina invaginations and nuclear shape: High magnification single z
confocal images of individual ISCs were acquired through the centre of the nucleus
and processed with the Cell Profiler pipeline described in (Janssen et al., 2022).
Information was extracted about nuclear eccentricity (defined as c / a, where ¢? = a2
— b2, with a defined as half the length of the equivalent eclipse and b as half the
width of the equivalent eclipse. A resulting value of 0 indicates a perfect circle and
higher values indicate increasingly elongated shapes) and nuclear form factor
(defined as 41 x area / perimeter?, where a value of 1.0 indicates a perfect circle and
lower values indicate increasingly convoluted shapes). To identify Lamin B which
localises to the nuclear periphery versus that which forms invaginations, the nucleus
is shrunk by a defined number of pixels. High Lamin B areas located outside this
shrunk nucleus are defined as corresponding to the nuclear periphery, whereas high
Lamin B areas located within the shrunk nucleus, in the nuclear interior, are defined
as corresponding to invaginations.

DNA damage: ISCs were scored DNA damage positive if they possessed a bright,
large H2Av puncta colocalising with the nucleus or H2Av staining covering a large
amount of the nuclear area. The proportion of ISCs with DNA damage was
calculated for each gut as the number of ISCs with DNA damage divided by the total
number of ISCs.

Neuroblast nuclear and cell size: Areas were obtained by manually drawing around
the border of each nucleus and cell using the Fiji freehand line tool. For
quantification of nuclear division asymmetry, the nuclear diameter corresponding to
the daughter neuroblast nucleus and to the daughter ganglion mother cell nucleus
were measured using Imaged, after completion of cytokinesis once nuclear growth is
finished.

Statistical analyses
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Data were plotted with GraphPad Prism 10 for Mac OS X. In all graphs, red line
represents median. For pairwise comparisons, statistical significance was calculated
using a Mann—-Whitney test and p values <0.05 were considered statistically
significant. Categorical data were compared using the Chi square test. Survival was
assessed using the Log-rank test.
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Supplemental Figures and Legends
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Figure S1: Sdc knockdown in progenitor cells, using three independent RNAI lines, causes
progressive progenitor cell loss and failure in new differentiated cell production.

(A & B) Whole midgut views (i-iv) and posterior midgut zooms (i’-iv’) from flies expressing control RNAI
(i) or one of three Sdc RNAI lines (ii-iv) using the esg® F/O system. Anterior left, posterior right. GFP
(black) marks progenitor cells and their progeny. Dashed boxes indicate zoomed area, with the colour
of the box indicating the phenotypic category to which the gut was assigned. Graphs show the
distribution of posterior midgut phenotypes, with the size of the coloured bar representing the proportion
of guts assigned to the phenotypic category in each genotype. n=number of guts, from three replicates.
(C) Surface views of midguts expressing control RNAI (i-iv) or Sdc RNAI (i-iv’) using the esg® F/O
system. DNA stain (blue) marks nuclei; GFP (green) marks progenitor cells and their progeny. Graph
shows the proportion of small GFP*¢ cells (corresponding to progenitors (ISCs, EBs and pre-EEs) and
newly differentiated EEs). n=number of guts, from three replicates.
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Figure S2: Sdc knockdown in ISCs does not compromise fly survival under unchallenged
conditions.

(A) Survival during continuous feeding (unchallenged conditions). Log-rank test. (B) Surface views of
control midguts, or midguts expressing Sdc RNAI using the esgSu(H) system. DNA stain (blue) marks
nuclei of all cells; YFP (green) marks ISCs.
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Figure S3: Sdc knockdown, but not knockdown of LINC complex components, in ISCs causes
these cells to acquire nuclear lamina invaginations and DNA damage.

(A) Control ISC, and ISCs expressing various RNAis. DNA stain (white) marks nuclei; YFP (green)
marks ISCs; anti-Lamin B (white) marks nuclear lamina. (B) Proportion of ISCs, per gut, with DNA
damage. n=number of guts, from three replicates. >100 ISCs analysed per genotype. (C) Proportion of
ISCs, per gut, with DNA damage. n=number of guts, from three replicates. >400 ISCs analysed per
genotype.
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Figure S4: Sdc is dispensable from female germline stem cells.

(A) Schematic of female germline development. Female germline stem cells (fGSCs) are maintained in
a stem cell niche at the anterior of the ovary in a structure called the germarium. fGSCs provide an
excellent model for identifying factors involved in stem cell maintenance (i) and abscission (ii), with clear
phenotypic readouts (Sanchez et al., 2016). (B) Germaria from control and germline-specific
knockdown of Sdc. White dashed line outlines germarium, yellow dashed line outlines fGSCs, yellow
asterisk indicates stem cell niche. DNA stain (blue) marks nuclei; Phalloidin (white) marks F-actin; anti-
a-Spectrin (green) marks spectrosome/fusome, allowing identification of fGSCs. (C) Germaria from
control and germline-specific knockdown of Sdc. White dashed line outlines germaria, yellow dashed
line outlines fGSCs, yellow asterisk indicates stem cell niche. DNA stain (blue) marks nuclei; Phalloidin
(white) marks F-actin; anti-yH2Av (magenta) marks DNA damage.
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