bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Genome-AC-GAN: Enhancing Synthetic Genotype Generation
through Auxiliary Classification

Shaked Ahronoviz! and Ilan Gronau'

'Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel

February 15, 2024

Abstract

In recent years, there have been increasing attempts to develop computational methods for generating
synthetic genomic data that aim to mimic real genomic datasets. Artificial genomes (AGs) generated by
these methods have emerged as a promising potential solution for privacy concerns raised by public genomic
datasets and as means to provide adequate representation of under-sampled populations. However, existing
methods for generating AGs provide a very limited capability for faithfully capturing features of different sub-
populations within a larger cohort. In this study, we propose a novel method called the Genome Auxiliary
Classifier Generative Adversarial Network (Genome-AC-GAN), which generates AGs tailored to specific sub-
populations. We conducted experiments to evaluate the performance of the Genome-AC-GAN and compare
the AGs it generates with real genomic data as well as with AGs generated by previously published methods.
The Genome-AC-GAN outperforms other methods and faithfully models population structure, which is not
adequately captured by existing methods. We also demonstrate the use of AGs generated by the Genome-
AC-GAN in augmentation of datasets used as training sets for classifying genomes into populations. These
experiments demonstrate the benefits of AGs in enhancing classification accuracy, especially when dealing
with under-sampled and closely related populations.

1 Introduction

The field of genomics has been transformed in the past two decades by the emergence of largescale genomic
data sets, such as the 1000 Genomes [37], and the UK Biobank [33]. However, these datasets raise privacy
concerns regarding sampled individuals, and they are limited in their capabilities to represent under-sampled
populations. In recent years, generative computational models have been suggested as promising solutions for
these problems. These models can learn the distribution of genome variants from real largescale datasets and
then generate artificial genomes (AGs) that will hopefully capture features of the real distribution. The use
of generative models has been shown to be very effective in other domains, such as image synthesis and style
transfer [10, 15, 16, 42, 36, 21]. In genomics, the great promise of synthetic data is that if they are sufficiently
realistic, they can replace real genomes in downstream analyses. This would potentially reduce the amount of
private information leaked from the sampled genomes and allow the generation of sufficient numbers of genomes
to alleviate concerns of under-sampling.

Two studies recently published by Yelmen and colleagues examine the utility of different techniques in
machine learning in generating AGs [40, 39]. These techniques include generative adversarial networks (GANs)
[10], restricted Boltzmann machines (RBMs) [9], and Variational autoencoders (VAE) [18]. The two studies
assess the capability of these different approaches in capturing features of real genomes, such as allele frequencies,
linkage disequilibrium, and distribution of genomic variants. These comparisons suggests that GANs typically
provide the most faithful representation, when compared to real genomes. Another recent study [6] showed that
hidden Chow-Liu trees (HCLTSs), and their representation as probabilistic circuits, improve the accuracy and
efficiency of generating AGs by combining the tractability of a probabilistic model with the expressivity of a
deep network. Additional earlier approaches also exist [4, 7, 17], but none of them appear to have significant
advantages over the baseline methods considered by Yelmen and colleagues [40, 39].

All existing methods for creating AGs primarily focus on population-level characteristics, and are thus limited
in their capabilities to synthesize AGs that capture characteristic features of certain sub-populations within the

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

larger cohort. To address this limitation, we propose here to apply the approach of the auxiliary classifier
GAN (AC-GAN), which incorporates in its input a class label that can represent a sub-population of interest.
AC-GANSs have been shown to be very effective in generating synthetic data for under-sampled populations.
For example, a recent study used an AC-GAN to improve the detection of COVID-19 from chest X-rays [38].
An AC-GAN was trained on 721 images taken from healthy individuals and 403 images taken from COVID-19-
positive patients. The trained AC-GAN was then used to generate 1399 synthetic images of negative cases and
1669 synthetic images of positive cases. A separate classifier was then trained for COVID-19 detection on the
original training set, as well as on a training set augmented with synthetic images generated by the AC-GAN,
and the added synthetic images were shown to improve detection accuracy from 85% to 95%. Here, we examine
the potential of AC-GANSs in improving the representation of under-sampled populations in AGs. We show
that the Genome-AC-GAN outperforms existing methods for generating AGs, and we demonstrate its potential
for generating AGs that can augment training sets for population classification methods. In particular, we
show that the Genome-AC-GAN faithfully captures features of under-sampled populations, which is the main
limitation of exiting methods.

2 Background

In this section we provide some basic background on GANs, including notations, different variants of GANs,
and common training practices.

2.1 Standard GAN

A GAN is made up of two separate neural networks: a generator (G) and a discriminator (D). The generator’s
primary objective is to produce synthetic data that closely resembles real data, and the discriminator’s primary
objective is to distinguish between real and synthetic data (Figure 1). The generator takes input noise from a
simple distribution, z ~ Ppise, and transforms it into a data instance, G(z), which we refer to as an image.
The discriminator takes in an image, =, and determines whether it belongs to the distribution of real images
(z ~ Preqi) or synthetic images (G(z)|z ~ Ppoise)- The output of the discriminator, D(x), is the probability
that x is a real image (and not synthetic). The generator and discriminator are evaluated jointly, according to

GAN cGAN AC-GAN

¥ A ¥
Real > « Real >
OR Synthetic? D OR Synthetic? D
Which |
Cla

ss?
Synthetic Real Synthetic Real Synthetic Real
Images Images Images Images

Synthetic?

Real OR .

Sequences Images

) 4

Label Label

Figure 1: Different types of GANs. In all GANs, the generator (G) converts a noise vector into a sequence encoding
a synthetic image, while the discriminator (D) aims to distinguish synthetic images generated by G from real ones.
The generator and discriminator are trained simultaneously using feedback regarding the discriminator’s accuracy (red
arrows). In conditional GANs (cGANs) and Auxiliary Classifier GANs (AC-GANSs), each image is associated with a
(discrete) class label. In cGANS, the class is provided as input to both the generator and discriminator, and thus assists
the discriminator in its task. In AC-GANS, the class is provided as input only to the generator, and the discriminator
is expected to produce it as output. Thus, the discriminator of an AC-GAN is trained to distinguish real images from
synthetic ones and also determine the class label of a given image.

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

the following expected log-likelihood function:
Lean (G, D) = Eunp,.,[log(D(2))] + Eznp,,..[log(l — D(G(2)))] - (1)

The first term in this expected log-likelihood quantifies the expected accuracy of the discriminator in iden-
tifying real images, and the second term quantifies the expected accuracy of the discriminator in identifying
synthetic images generated by the generator. Note that a good discriminator maximizes the expected log-
likelihood, whereas a good generator minimizes it, by making the discriminator wrongly classify synthetic
images that it generates as real. Thus, an optimal generator and discriminator may be obtained by solving the
following min-max problem:

(D*,G*) «+ arg max argmén {Lean(G,D)} . (2)

2.2 Conditional GAN (cGAN)

A conditional GAN (cGAN) incorporates contextual information during image generation. This approach
has been shown to be effective in tasks such as image-to-image translation [13] and attribute-based image
synthesis [1]. The contextual information can range from simple discrete class labels to more complex features
[25, 28, 26], but for simplicity, we will model it here is a discrete class label, ¢. In cGANSs, both the generator and
discriminator receive the class label, which consequently improves the realism of the synthetic images generated
by G, and assists D in distinguishing between real and synthetic images. The expected log-likelihood for cGANs
is given by considering the conditional distribution of images given each class label, z ~ P,.cqc:

Legan(G.D) = Y (Eonp,,. [log(D(@,)] + Enp,,,.. log(l — D(G(2,0),0)]) - 3)

(6]

2.3 Auxiliary Classifier GAN (AC-GAN)

An auxiliary classifier GAN (AC-GAN) also incorporates class labels as auxiliary information, but unlike in
c¢GANSs, the discriminator does not receive the class labels as input, and is expected to produce it as output.
Thus, in AC-GANS, the discriminator assumes the responsibility of both discriminating between real and syn-
thetic data and predicting the class label. AC-GANs have been applied in various domains, including image
generation for data augmentation and conditional image synthesis tasks [38, 22]. The generator of an AC-GAN is
similar to that of cGANS, as it takes a class label and a noise vector as inputs and produces a suitable synthetic
image, G(z,¢). The discriminator of an AC-GAN, on the other hand, includes an additional output vector,
denoted as D jqss(2), which associates each class label with its predicted probability. Specifically, Dgjgss=c()
denotes the probability that the discriminator assigns to an input image x belonging to class c¢. The expected
log-likelihood for AC-GANSs considers the joint distribution of images and class labels, (z,¢) ~ Pyeq, and is
made up of two separate components: a component evaluating the ability of D to distinguish synthetic images
from real ones (Lgistinguish), and a component evaluating the classification accuracy of D (Lciassify):

LAC—GAN(Ga D) = Ldistinguish(Ga D) + Lclassify(G, D) (4)
Ldistingm’sh(Gv D) = Ey~p,,,, log(D(z))] + E(Z,C)’\’Pnoise [log(1 — D(G(z,¢))] (5)
Lclassify(Ga D) = E(z,C)NPTmz [IOg(DclaSSZC(x))] + E(z,c)~Pmise [log(Dclass:c(G(Z7 C))] (6)

The first component, Lg;siinguish (G, D), is similar to that of the standard GAN (see Equation 1). The
second component, Lessify(G, D), measures the accuracy of the discriminator in predicting the class labels
associated with the real and synthetic images. The discriminator’s objective is to maximize both components.
The generator in an AC-GAN is only adversarial in the distinction task and not the classification task, meaning
that its objective is to fool the discriminator to think its generated images are real, but to assist it in correctly
predicting the class label. Thus, the objective of the generator is to minimize Lgjstinguish(G, D) and maxi-
mize Lejgssify (G, D). In summary, both the generator and discriminator strive to minimize the classification
likelihood in addition to their opposing (min-max) objectives related to discrimination.

2.4 Training GANs

Training a GAN involves iterative optimization of the appropriate components of the expected log-likelihood,
as presented above. The probability distribution over real images (P,cq:) is represented using a training set. In
cGANs and AC-GANSs the prevalence of each class in the training set is often set to improve the relative accuracy

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

of generation (and classification) of certain classes of interest. Each iteration of the training procedure involves
examining the training set of n real images alongside a collection of n synthetic images generated by applying
the current version of G to m noise vectors sampled from P,ise. The parameters (neural network weights)
of the generator and discriminator are modified in each iteration by applying backpropagation to decrease a
certain loss function. The loss function is designed such that its minimization will increase (or decrease) the
appropriate component of the expected log-likelihood. The standard loss function used for GANs, and for the
Lgistinguish, component in AC-GANS, is binary cross entropy (BCE; [11]). In this context, let y(x) denote the
label associated with a given image: y(x) = 1 if x is real and y(x) = 0 if « is synthetic. The contribution of a
given image (real or synthetic) to the BCE loss function is defined as follows:

Lpop(D,x) = —y(x)log(D(x)) — (1 — y(z))log(1 — D(x)) (7)

The standard loss function used for the classification task of the discriminator in AC-GANSs is the categorical
cross-entropy (CCE; [12]), which is a natural extention of BCE to multiple classes. In this context, let 7(x)
denote the indicator vector for the class label of image x: #.(x) = 1 iff the class label of x is ¢ (and g.(z) =0
otherwise). Then, if Djass(x) denotes the vector of class label probabilities outputted by the discriminator on
image z, the CCE loss function is defined by the following vector product:

LCCE(Dv 1’) = _g(x) : log(Dclass(x)) (8)

The overall loss considered when updating the discriminator in an AC-GAN is given by summing Lpcg (D,)+
Lcor(D,) over the n training images and n synthetic images generated by the current version of G. Note
that minimizing this loss is expected to increase the expected log-likelihood of Equation 4-6. The overall loss
considered when updating the generator in an AC-GAN is given by summing Lcecr(D,x) — Lpcr(D, x) over
the n synthetic images alone. The n real images are ignored here because their contribution to the loss is not
affected by G. The difference in sign stems from the fact that the generator is adversarial to the discriminator
in the distinction task (measured by Lpcr) and not in the classification task (measured by Lccg).

The iterative training procedure is applied until it reaches some convergence. If successful, convergence occurs
when the generator produces synthetic images that are indistinguishable from real ones. However, in practice,
training GANs can be challenging and time-consuming, and requires careful selection of hyperparameters [3, 19].
One common phenomenon, which is important to avoid is mode collapse, where the generator captures only a
subspace of the real image distribution, leading to overfitting and a loss of diversity in the generated images
[31].

2.5 Polyloss

BCE and CCE are natural candidates for loss functions used when training AC-GANSs, because they provide
straightforward approximations for the expected log-likelihood in Equations 4-6. However, CCE has a funda-
mental drawback that can hinder the convergence of the learning process, as illustrated in the following example.
Suppose a certain image (z) belongs to the second class among four possible classes (7(z) = [0,1,0,0]). Now
consider two different discriminators, D' and D?, with the following outputs:
DY (r)=10.15, 055, 0.15, 0.15] ; D3,(z)=[045,055,0,0].

Both discriminators assign the highest probability (0.55) to the true class label and they thus produce the same
CCE score: Locr(DY,) = Locr (D3,) = —log(0.55). However, the two discriminators assign different
probabilities to faulty class labels: D' assigns probability 0.15 to each of the three faulty labels, while D?
assigns a relatively high probability of 0.45 to one of them and probability 0 to the other two. While both
discriminators lead to the correct prediction, D' produces a more confident prediction, which is something we
wish to encourage in the learning process. Thus, we would like to consider loss functions that associate D? with
a greater loss than that of D!. The poly-loss cross entropy (PLCE) family of loss functions extends the CCE
loss to address this issue by taking into account the probabilities associated with faulty class labels [20]. The
PLCE loss is given by adding to the CCE loss a penalty term tuned using two hyperparameters, o and e:

e ~
Lprce(D,z,6,a) = Loce(D,x) + € (6 +(1- a)y(x)) (1 = softmaz(Delass(x))) - (9)
The polyloss penalty is given by a product of two vectors. The first vector is a smoothed version of the class

indicator vector (i(z)), in which all faulty classes are assigned weight & (instead of 0), and the true class is
assigned the remaining weight of 1 —a+ & (instead of 1). The second vector is a smoothed version of the output

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

prediction probabilities (Dgqss()), obtained by applying a softmax transformation and taking the complement
to 1. Note that the softmax transformation exponentiates each prediction probability and normalizes the
resulting values to sum to 1. Minimizing the polyloss penalty acts to reduce the probabilities assigned to faulty
classes, which typically leads to higher confidence in the (correct) classification. Hyperparameter « controls
the extent to which prediction probabilities for faulty classes influence the penalty term, and hyperparameter
€ controls the contribution of the penalty term to the total loss function. Note that when fixing € = 0, we get
the standard CCE loss function (regardless of the value of «). Selecting effective values for hyperparameters o
and e typically involves various finetuning experiments that examine the convergence properties of the training
process.

3 Materials and Methods

3.1 Genome-AC-GAN architecture

The Genome-AC-GAN model is an adaptation of the basic AC-GAN architecture presented in [25] customized
for genotype data. We model genetic data as a sequence of alleles corresponding to a collection of M pre-
specified genomic locations, which will typically be biallelic SNPs. Thus, an individual genome is specified as a
binary sequence of length M. The architecture of the generator and discriminator is specified below and also
illustrated in Figure 2. The input of the generator is a binary noise vector of some pre-specified length (which we
set to 600 in all experiments here) and a binary indicator vector (of length C') for the class label. The first three
(hidden) layers of the generator are of increasing lengths, M /1.3, M/1.2, and M/1.1, and they all utilize the
LeakyReLU activation function with an « slope of 0.2. The fourth (output) layer uses a tanh activation function
and produces a vector of length M of values in the rage [—1, 1]. In the trained generator, this output is converted
to binary genetic data by rounding up negative values to 0 and positive values to 1. The discriminator takes in
as input a binary vector of length M representing a genome, and passes it through three layers of decreasing
lengths, M /2, M/3, and M /4. All three layers employ the LeakyReLU activation function with an « slope of
0.2. There is a dropout layer after each hidden layer with a dropout rate of 0.2 for the first and second layers,
and a dropout rate of 0.1 for the third layer. The discriminator’s validity output (probability of being ‘real’)
is provided by applying a sigmoid transformation to the output of the final layer, and the classification output
(class probabilities) is provided by applying a softmax transformation. The regularizers parameter is set to
0.0001 through the network, and all layers have a pre-specified width (B), which corresponds to the batch size
used when training the network.

3.2 Training procedure

The training process of Genome-AC-GAN adheres to standard practices for AC-GANs with certain modifica-
tions. The amount of data considered in each training epoch is determined by the batch size, B, which was
set to 256 in all experiments reported here. Each epoch involves three stages. First, the loss computed on a
set of B real genomes from the training set is used to update the parameters of the discriminator. Then, the

Generator

Dense (7692, B) LeakyRelu

Dense (8333, B) |Leavren oo Dense (9090, B) LeakyRelu Dense (10000, B) Tanh

Validity (1, B) Sigmoid

Dropuout LeakyRelu Dense (2500, B)

Dropuout LeakyRelu Dense (3333, B) gDropuout LeakyRelu | Dense (5000, B)

Classifier (C, B) Softmax

Discriminator

Figure 2: Genome-AC-GAN Architecture. The generator and discriminator of the AC-GAN consist of a sequence
of fully-connected neural networks layers. For each layer, we specify its activation function and length. Lengths specified
here assume genotype sequences of length M = 10,000, and an arbitrary number of classes (C'). Each layer also has a
width (B) corresponding to batch size used during training.

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

AFR AMR EAS SAS EUR

pop. #samples | pop. #samples | pop. #samples | pop. F#samples | pop. Fsamples
GWD 226 PUR 208 CDX 186 ITU 204 CEU 198
ACB 192 CLM 188 KHV 198 PJL 192 FIN 198
ESN 198 MXL 128 CHB 206 STU 204 GBR 182
MSL 170 PEL 170 CHS 210 BEB 172 IBS 212
YRI 216 JPT 208 GIH 206 TSI 214
LWK 198

ASW 122

total 1322 total 694 total 1008 total 978 total 1004

Table 1: Overview of the 1000 Genome dataset used for training and testing. The number of haploid genome
sequences is specified for each of the 26 national populations, with populations grouped by continent: AFR-Africa,
AMR~-America, EAS-East Asia, SAS-South Asia, EUR-Europe.

parameters of the discriminator are updated again using a loss computed on B synthetic genomes created by
the generator. Finally, a separate collection of B synthetic genomes is used to compute a loss for the parameter
update of the generator. The BCE and PLCE loss functions are used as described in Sections 2.4 and 2.5,
and parameter updates are done using RMSprop optimization. To improve training stability and avoid overfit-
ting, label smoothing is applied, where random noise sampled uniformly in [0,0.1] is added to the data labels
(y(z) and ¢(x)) when computing the loss functions [34]. The number of training epochs is set based on visual
inspection of convergence of the loss function.

3.3 Training and test set

For training and testing, we used data from the 1000 Genomes Project [5], which provides public genome
sequences for 2,504 individuals from 26 different national populations worldwide. One individual was assigned
to two populations and was removed for our purposes. Each of the remaining 2,503 individuals contributed
two separate haploid genome sequences, which we could use for training or testing. Each national population
is represented by 120 - 230 haploid genomes, and each of the five continental groups is represented by 690 -
1330 haploid genomes (see Table 1). Following previous studies of methods for generating AGs [40, 39], we
focused on 10,000 single nucleotide polymorphisms (SNPs) within 3 Mbp on chromosome 6 that contain the
human leukocyte antigen (HLA) genes. SNPs in this dataset are all biallelic, so each genome (real or synthetic) is
represented by a binary sequence of length M = 10, 000. To ensure consistency in our experimental comparisons
with methods described in [40, 39], we used the exact same phased genome sequences used in these studies,
without any additional modifications. We set aside 4,004 genomes for training (~ 80%) and 1,002 for testing
(~ 20%), making sure that each continental group is split using similar ratios between the two sets. We trained
two types of Genome-AC-GAN: one in which class labels correspond to the national populations (C' = 26
classes), and one in which class labels correspond to continental groups (C' =5 classes).

3.4 Code availability

The Genome-AC-GAN is implemented in Python using the TensorFlow framework, with code accessible via
GitHub at: https://github.com/Shaked35/Genome-AC-GAN. The repository contains a complete implementa-
tion of the network as well as code required for training the Genome-AC-GAN and reproducing the experiments
described in the following section.

4 Results

4.1 Finetuning the Polyloss penalty

We started with a series of exploratory analyses aimed at finetuning the polyloss penalty in the PLCE loss
function (see Section 2.5). In this initial exploration, we found that setting hyperparameters to values € =
0.2, = 0.1 leads to effective and efficient training. To demonstrate the influence of the polyloss penalty on the
trained AC-GAN, we compare Genome-AC-GANSs trained using a PLCE loss function with ¢ = 0.2, = 0.1,

https://github.com/Shaked35/Genome-AC-GAN
https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

with a standard CCE loss function (corresponding to setting e = 0). In particular, we trained Genome-AC-
GANs with C = 5 continental population labels for 5,000 epochs, and examined the classification accuracy of
the discriminator.

CCE PLCE
Kappa: 0.78, Accuracy: 0.82, F1 Score: 0.83 Kappa: 0.84, Accuracy: 0.88, F1 Score: 0.87

269 2 0 3 0 270
AFR WYPY™ 07% 00% 11% 0.0% AFR T

3 0
11% 0.0%

80 - 80
12 0 65 1 43 6
AMR g 09, 0.7% AMR 287% 4.0%
g 0 54 0 1 . % 3 0 6 B
2 EAS 00% | 26.0% 0.5% 2 EAS 00% 14% 2.9%
= -40 2 - 40
1 12 2 0 31 0 1
EUR 05% 6.4% 11% N o EUR 0.0% 165% 0.0% | 55
0 9 1 14 0 3 3 2
SAS 00% 50% 06% 7.8% -0 SAS 00% 17% 1T7% 1.1% -0
AFR AMR EAS EUR SAS AFR AMR EAS EUR SAS
Predicted Label Predicted Label

Figure 3: Classification accuracy of Genome-AC-GANs trained using two different loss functions. A
Genome-AC-GAN trained using a standard CCE loss function (left) is compared against a Genome-AC-GAN trained
using a PLCE loss function with hyperparameters e = 0.2, @ = 0.1. Both models were trained for 5,000 epochs with C' = 5
continental population labels. For each Genome-AC-GAN, we report a confusion matrix measuring the classification
accuracy of its discriminator on the test set. Rows correspond to the true class label of the test samples and columns
correspond to predicted class label (i.e., the class with maximum predicted probability). For each pair of population
labels, (p, ¢), we report the absolute number (and percentage) of test samples from population p that are predicted to be
in population ¢g. Above each confusion matrix, we also report the total accuracy, Cohen’s Kappa, and the F1 score [32].

CCE
PLCE
25
20
>
Q
=
315
o
o
[
10
5
0
0.65 0.70 0.75 0.80 0.85

Accuracy

Figure 4: Consistently improved accuracy when training with polyloss penalty. Three Genome-AC-GANs
were trained using a standard CCE loss function and three Genome-AC-GANs were trained using a PLCE loss function
with hyperparameters ¢ = 0.2, = 0.1. For each model, total classification accuracy was measured every 50 epochs for
a total of 5,000 epochs. Measurements were then grouped across the three models trained using the same loss function,
and outlier measurements were removed (see text). The distribution of the remaining 289 values is shown here for the
standard CCE loss function (blue) and for the PLCE loss function (orange).

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

When comparing the two different Genome-AC-GANSs, we see that the model trained with a polyloss penalty
attained total classification accuracy 0.88, whereas the model trained without it attained total accuracy 0.82
(Figure 3). The improved accuracy was observed for four of the five continental populations (genomes belong-
ing to EUR were less accurately classified). We wished to confirm that this improved accuracy is observed
consistently through the training process and across independent training trials. We thus trained three models
using each of the two loss functions, and measured total classification accuracy of the discriminator every 50
epochs (for a total of 5,000 epochs). Through this process, we obtained for each loss function a total of 303
accuracy measurements. We then removed the top and bottom 2.5% values in each set, and examined the dis-
tribution of the remaining 289 values per loss function (Figure 4). A two-sample t-test indicates that the PLCE
loss function with hyperparameters € = 0.2, = 0.1 leads to significantly higher accuracy throughout training
(p = 0.00042). Since we posit that higher classification accuracy throughout the training process implies an
overall better AC-GAN [14, 31], we use the PLCE loss function with e = 0.2, « = 0.1 in all Genome-AC-GANs
mentioned in the following experiments.

4.2 Detailed evaluation of artificial genomes generated by the Genome-AC-GAN

We carried out a series of analyses to assess the artificial genomes (AGs) generated by the Genome-AC-GAN. To
this end, we trained two different Genome-AC-GANs: One used C = 5 continental populations as class labels
(AC-GAN-Con), the other used C' = 26 national populations as class labels (AC-GAN-Nat). Both Genome-

Model Description

AC-GAN-Con An AC-GAN trained with C = 5 continental groups as class labels. 4,004 AGs were
generated using this model

AC-GAN-Nat An AC-GAN trained with C = 26 national populations as class labels. 4,004 AGs were
generated using this model

GAN19 A GAN based on the architecture presented in [40], which was re-trained using the process
described in [40] on the same training set as the two AC-GANs. 2,048 AGs were generated
using this model

RBM23 A Restricted Boltzmann Machines (RBMs) described in [39]. An RBM is a probabilistic
graphical model with two layers of random variables: a visible layer representing observed

variables (the genotypes in our case) and a hidden layer representing latent variables (a
noise vector). The two layers are typically fully connected. The model was not retrained.
Instead, we used AGs generated by a pretrained RBM and published by Yelmen and
colleagues. The RBM was trained on the same 1000 Genomes data we used for training and
testing, but the actual set used for training was different from the one we used for the AC-
GANSs and thus likely overlaps with our test set. 5,000 AGs were were downloaded for this
model from https://gitlab.inria.fr/ml_genetics/public/artificial_genomes/-/
blob/master/RBM_AGs/10K_SNP_RBM_AG_1050epochs.hapt.zip

WGAN23 A Wasserstein GAN (WGAN) described in [39]. WGAN uses a loss function which con-
siders the Wasserstein distance between real and generated data. This approach has been
shown to improve robustness and ease of training. As with RBM23, the model was not
retrained. Instead, we used AGs generated by a pretrained WGAN and published by Yel-
men and colleagues. The WGAN was trained on the same 1000 Genomes data we used
for training and testing, but the actual set used for training was different from the one
we used for the AC-GANs and thus likely overlaps with our test set. 5,008 AGs were
were downloaded for this model from https://gitlab.inria.fr/ml_genetics/public/
artificial_genomes/-/blob/master/GAN_AGs/10K_SNP_WGAN_AG.hapt.zip

Table 2: Artificial genomes used in comparative analysis. AC-GAN-Con and AC-GAN-Nat are the two AC-
GANs we developed, trained on the same training set, but with different class label resolutions. Other models were
highlighted in recent studies [40, 39] for their robust performance. The GAN19 model was retrained on the same training
set as our AC-GANs, while AGs for the RBM23 and WGAN23 models were downloaded from the code repository of [39].
All five sets of AGs were compared using a series of measures and analyses against the test set as well as the training
set.

https://gitlab.inria.fr/ml_genetics/public/artificial_genomes/-/blob/master/RBM_AGs/10K_SNP_RBM_AG_1050epochs.hapt.zip
https://gitlab.inria.fr/ml_genetics/public/artificial_genomes/-/blob/master/RBM_AGs/10K_SNP_RBM_AG_1050epochs.hapt.zip
https://gitlab.inria.fr/ml_genetics/public/artificial_genomes/-/blob/master/GAN_AGs/10K_SNP_WGAN_AG.hapt.zip
https://gitlab.inria.fr/ml_genetics/public/artificial_genomes/-/blob/master/GAN_AGs/10K_SNP_WGAN_AG.hapt.zip
https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

AC-GANSs were trained using the PLCE loss function with € = 0.2, « = 0.1 for 10,000 epochs. Each trained
AC-GAN was used to generate 4,004 AGs, matching the number of genomes and the distribution of class labels
in the training set (see Table 1). The two collections of AGs were compared to the collection of real genomes
in the test set using a series of measures and analyses that are commonly applied to population genetic data.
For reference, we also examined collections of AGs generated by the three top generative models highlighted
by Yelmen and colleagues in [40, 39] (Table 2). One of these models (GAN19) was retrained using the exact
same training set we used for the two AC-GANs, while for the other two models (RBM23 and WGAN23) we
used AGs downloaded from from the authors’ repository. The models that generated these AGs were trained
on the same 1000 Genomes data we used, but since we do not know which genomes were used for training these
models, there is likely considerable overlap between their training sets and our test set. We note that this gives
these two models a slight potential advantage in the comparisons we conducted against the test set. Finally,
we also compared the 4,004 real genomes in the training set to the test set, to provide an upper bound on the
expected similarity, since AGs are not expected to appear more realistic than real genomes on which they were
trained.

Genetic variation by principal component analysis

We started by examining the overall genetic variation as depicted by principal component analysis (PCA). We
wished to see how well different collections of AGs captured the typical pattern of variation observed when
projecting population genetic data onto its two major principal components (PCs) [24]. From the initial sets of
AGs generated by each model (Table 2), we resampled 50 subsets of 1,002 AGs, matching the size of the test
set. Each set of 1,002 AGs was then projected onto its two main PCs and compared to the projection of the real
genomes in the test set by computing the Wasserstein distance between them [27]. For comparison purposes,
we did the same resampling process with the genomes in the training set. The distribution of Wasserstein
distances for each generative model is shown in Figure 5. We observe that the Wasserstein distances of AGs
generated by the two AC-GANs (906 & 62 and 920 4 79) are only slightly larger than those of the training set
(897 £ 69). The distances observed for GAN19 and RBM23 are significantly larger (2662 +43 and 1657 £ 166),
indicating a considerably poorer fit. For the WGAN23 model, the Wasserstein distance of an average collection
of AGs is only slightly larger than that obtained by our AC-GANs, but the variation is larger (992 + 123).
This observation highlights the need to examine the variance of features of AG sets and not just their expected
values. Interestingly, the WGAN23 model did not outperform our AC-GANs despite the fact that its training
set likely had a significant overlap with our test set. Thus, the genetic variation represented by the test set is
best captured by the two AC-GANs, which shows only a slight degradation relative to the real genomes in the
training set. This is illustrated in Figure 6, where we plot for each model the set of resampled AGs with the
smallest Wasserstein distance from the test set. Here, we see that the two AC-GANSs appear to better capture
some of the subtleties in the distribution of real genomes, such as the gap between the cluster representing

2750

2500

Mean: 2661.82
2250 Std: 42.77

N
=3
=3
S

-
]
o
S

-
o
=]
=)

Wasserstein Distance

905.56 | Mean: 920.27
Std: 62.17 Std: 79.46

-
N
a
=3

Mean: 897.31 ==
Std: 69.37
1000 —— '
%0 = \ |

Train Set GAN19 RBM23 WGAN23 AC-GAN-Nat AC-GAN-Con

Figure 5: Wasserstein distance between PCA projections of AGs and real genomes. For each collection of
AGs, 50 subsets of size 1,002 were resampled and projected onto their two main PCs together with the test set. The
boxplots depict the median, quartiles and outliers of the Wasserstein distances between the two projections across the 50
resampled sets, with the mean and standard deviation specified above each boxplot. A similar analysis was conducted
with the training set to provide an estimate for best expected performance.

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Train Set

Figure 6: PCA for optimal set of AGs per generative model. Each collection of 1,002 AGs was projected
onto its two main PCs together with the 1,002 genomes in the test set (black circles in the background). For
each generative model, we show the collection of AGs (out of 50) with minimum Wasserstein distance from the
test set (see Figure 5).

(a) Real genomes (b) AC-GAN-Con (c) AC-GAN-Nat

Figure 7: PCA with samples labeled by continental group. Sets of real and synthetic genomes projected onto
their two main PCs and colored by continental group: AFR — white, AMR — blue, EAS — green, EUR — yellow,
SAS —red. (a) 5,006 real genomes from the training and test sets. (b) 4,004 AGs generated by AC-GAN-Con.
(b) 4,004 AGs generated by AC-GAN-Nat.

African populations (bottom right of PCA) and other populations.

Unlike previous models for generating AGs, our two Genome-AC-GANs explicitly model genetic variation
within and between continental groups. We examined how well this is done by conducting additional PCAs
for all real genomes and AGs generated by AC-GAN-Con and AC-GAN-Nat, and coloring each genome based
on its continental group (Figure 7). For this purpose, we merged the test and training set to view all 5,006
real genomes, and used all 4,004 AGs for each AC-GAN. In AC-GAN-Con, we colored each AG according to
the continental group associated with its class label, and in AC-GAN-Nat, we colored each AG according to
the continental group to which its national population belongs (see Table 1). The distribution of the different
continental groups in the two sets of AGs closely follows the distribution observed in the real genomes and is
consistent with previously reported spatial distribution [24]. This observation suggests that genetic variation

10

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 8: PCA by population. AGs generated for a specific population class label were projected onto two
main PCs together with all genomes from the training and test set with the same population label (black circles
in the background). The top five panels show AGs generated by AC-GAN-Con (blue) partitioned according
to each of the five continental groups. The remaining 25 panels show AGs generated by AC-GAN-Nat (green)
partitioned according to 25 national populations. The GIH population from South Asia (Gujarati Indians in
Houston) was omitted from this visualization to obtain a 5 x 5 layout. It produced very similar distributions
for its AGs and real genomes as ITU (Indian Telugu in the U.K.).

11

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

within and between different continental groups is faithfully modeled by the two Genome-AC-GANs using the
national and continental class labels. For a more detailed comparison, we examined genetic variation for each
population separately (Figure 8). For each of the five continental groups, we projected AGs generated by AC-
GAN-Con under that class label onto the main two PCs, together with real genomes from the test and training
set from that continental group. We then did the same thing with AGs generated by AC-GAN-Nat under each
of the 26 national populations. Real genomes from the training set were included in this comparison because
some of the national populations were sparsely represented in the test set. A visual comparison of AGs from
AC-GAN-Con and real genomes confirms that the genetic variation of each continental group is captured with
reasonable accuracy. The performance of AC-GAN-Nat appears to vary across national populations. For most
populations, the real genetic variation is captured quite well by the AGs. This is particularly impressive in the
case of the populations that have a multi-modal distribution in the 2D PCA, such as PJL, KHV, and BEB.
However, the AGs generated for some populations with multi-modal distributions, such as PUR, ACB, and
ASW, appear to be modeling well only the main modes of the distribution, at the expense of the secondary
modes. This is perhaps not very surprising, given the fact that the training set typically includes fewer than 200
genomes from each of these populations (roughly 80% of the genomes in each population; see in Table 1). Thus,
our analysis suggests that the Genome-AC-GAN is effective in modeling genetic variation within and between
multiple classes, as long as classes are represented reasonably well in the training set and do not have an overly
complex pattern of genetic variation.

Allele frequencies

After confirming that the Genome-AC-GAN adequately models global patterns of genetic variation, we wanted
to evaluate its effectiveness in capturing the allele frequencies in each of the 10,000 genomic locations. This is a
highly desired feature for AGs, especially for downstream analyses that concern low-frequency alleles [35]. Thus,

Train Set GAN19 RBM23 WGAN23 AC-GAN-Nat AC-GAN-Con
Correlation=99.9% Correlation=98.22% Correlation=99.2% Correlation=99.39% Correlation=99.4% Correlation=99.3%
° MAE=0.0058 ° MAE=0.0307 ° MAE=0.019 o MAE=0.0146 ° MAE=0.0158 ° MAE=0.0196
S S S BF. S S S
))) s) 2 2
E., £, £ o £ £, E-]
3 z z 4 z 3 3
5. 5. H 7 H 5. 5.
H 3 S Ve 3 3 3
g g -y g g g
Lo s w v w [rg w
@ o o / ° o @
2. 2. =, B 2 2]
< o . <, 0 . 0 <, - . e R - o . . < . <
Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real
Train Set - -Nat AC-GAN-Con
Correlation=98.58% Correlation=88.66% Correlation=88.39% Correlation=90.9% Correlation=91.12% Correlation=91.26%
° MAE=0.0084 ° MAE=0.0558 ° MAE=0.0219 ° MAE=0.0185 ° MAE=0.0209 ° MAE=0.0351
@ e) 2 7 @ @
£ 2 £ £ £ = £
< S < € - c c c
: o g g g :. g
g g g g g g
5. e F s 7 s s s
2 o 2 2 2 2 2
L T S . S, o .
Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real
Train Set GAN19 RBM23 AC-GAN-Nat AC-GAN-Con
Correlation=99.32% Correlation=91.61% Correlation=93.3% Correlation=94.94% Correlation=95.58% Correlation=94.94%
° MAE=0.0032 ° MAE=0.012 ° MAE=0.0107 ° MAE=0.009 ° MAE=0.0086 ° MAE=0.0095
Eor £ g £ €. €
@ " @ o B @ 3
£ £ < &% c c. £
g g. g - g g g
w e [5 [w w
2 B e 2 2 2 2
2 2 2 2 2 2
T s v v v o v o o oo s s s s s e e i K e o o o o o K s s s con o o e i o o i e e o e e K o e o o
Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real Allele Frequency In Real

Figure 9: Allele frequencies in real and synthetic genomes. The allele frequency in each of the 10,000 SNPs was
measured for AGs generated by each of the five methods (Table 2) and plotted against the allele frequency measured for
that SNP in the test set. In each SNP, one of the two alleles was arbitrarily selected to be measured here. In each plot,
the X axis corresponds to the frequency in the test set, the Y axis corresponds to the frequency in the set of AGs, and
the correlation and the mean absolute error (MAE) between the two frequencies are reported. Allele frequencies were
also computed for the training set to provide an estimate for best expected performance. The top row shows all SNPs,
the middle row shows SNPs with real allele frequencies greater than 0.8, and the bottom row shows SNPs with real allele

frequencies smaller than 0.2.

12

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

for each of the 10,000 SNPs, an arbitrary allele out of the two was selected and its frequency was measured
in the test set. These (real) allele frequencies were compared against the frequencies measured using each of
the five collections of AGs, and frequencies measured using the training set (Figure 9). Overall, all models for
generating AGs appear to produce allele frequencies highly correlated with real ones, with correlations above
98% for all methods. The deviations from real genomes in all models is most prominent in SNPs with allele
frequencies above 0.8 and below 0.2. When focusing on these SNPs, we see that the WGAN23 model produces
the most accurate allele frequencies. The two AC-GANs produce slightly more noisy allele frequencies, with
AC-GAN-Nat producing slightly more accurate allele frequencies when compared to the AC-GAN-Con, likely

EAS AMR SAS
Correlation=99.2% Correlation=99.25% Correlation=98.48% Correlation=99.08% Correlation=98.73%
MAE=0.0222 MAE=0.0301 MAE=0.0223 MAE=0.0277

MAE=0.0187

€ € € € €
@ @ @ @ @
£ £ £ £ £
W W W W W
< < < < . < i
AF In Real AF In Real AF In Real AF In Real AF In Real
GBR FIN CHS PUR CDX
Correlation=98.02% Correlation=97.33% Correlation=98.4% Correlation=93.98% Correlation=98.82%
MAE=0.0244 MAE=0.0309 MAE=0.0236 MAE=0.0535 MAE=0.0206
L 7 L] L L
c c c c c
) & & & &
£ £ £ £ £
w w w w w
< A3 < < X < <
AF In Real AF In Real AF In Real AF In Real AF In Real
CLM IBS PEL PJL KHV
Correlation=97.63% Correlation=98.23% Correlation=97.97% Correlation=97.53% Correlation=98.37%
MAE=0.0288 MAE=0.0243 MAE=0.0291 MAE=0.0272 MAE=0.024
o e Tl SHT 8 i
£ ; £ £ £ : £
c c c c c
)) & & &
£ £ £ £ £
w w w w w
< < 3 < < . < q
AF In Real AF In Real AF In Real AF In Real AF In Real
ACB GWD ESN BEB MSL
Correlation=97.14% Correlation=97.68% Correlation=98.0% Correlation=97.54% Correlation=97.75%
MAE=0.0396 MAE=0.0318 MAE=0.03 MAE=0.0311 MAE=0.0308
L g} : L 4 ° o ¥y L
c c c c c
) & & & &
£ £ £ £ £
w w w w w
< < 3 < ; < : < :
AF In Real AF In Real AF In Real AF In Real AF In Real
STU ITU CEU YRI CHB
Correlation=97.11% Correlation=98.01% Correlation=98.54% Correlation=98.07% Correlation=98.66%
MAE=0.0314 MAE=0.0259 MAE=0.0256 MAE=0.0326 MAE=0.0216
g 3%) . a ¥ o g i g v
c c c c c
) & & & &
£ £ £ £ £
w w w w w
< < < < < :
AF In Real AF In Real AF In Real AF In Real AF In Real
JPT LWK ASW MXL TSI
Correlation=98.49% Correlation=97.69% Correlation=96.76% Correlation=96.33% Correlation=98.39%
MAE=0.0238 MAE=0.0344 MAE=0.0441 MAE=0.0402 MAE=0.0219
L L L 9] vr™ o ot
3 3 3 3 3
2] (2] 2] 2] 2]
£ £ £ £ £
w w w w w O
< < < < < e
AF In Real AF In Real AF In Real AF In Real AF In Real

Figure 10: Population-specific allele frequencies in real and synthetic genomes. Allele frequencies were
measured in each population for each of the 10,000 SNPs for AGs and plotted against allele frequencies measured in
real genomes (test and training set combined). The layout of each plot is similar to that used in Figure 9. The top five
panels (blue) show a comparison of AGs generated by AC-GAN-Con, measuring allele frequencies in each of the five
continental groups. The remaining 25 panels (green) show AGs generated by AC-GAN-Nat, measuring allele frequencies
in 25 national populations. The GIH population from South Asia (Gujarati Indians in Houston) was omitted from this
visualization to obtain a 5 x 5 layout. It produced very similar allele frequencies in AGs and real genomes as ITU (Indian
Telugu in the U.K.).

13

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

due to its higher resolution classes. The other two generative models (GAN19 and RBM23) produce somewhat
less accurate allele frequencies. As mentioned previously by Yelmen and colleagues in [39], the noise in allele
frequencies in all models (with the possible exception of WGAN23) is biased toward the extremes: low-frequency
alleles are under-sampled, and high-frequency alleles are over-sampled. Thus, Genome-AC-GAN provides an
adequate model for allele frequency, but shares some of the limitations of previously published generative models.

A unique feature of our AC-GANs, when compared to other generative models, is their ability to model
population-specific allele frequencies [23]. To evaluate how well this is achieved by our AC-GANSs, allele fre-
quencies were measured for each SNP in the five continental groups and the 26 national populations (Figure 10).
Since national populations are sparsely represented in the 1000 Genomes data (see Table 1), expected allele
frequencies were computed using all 5,006 real genomes in the test and training set. The continent-specific
allele frequencies measured in the AGs generated by AC-GAN-Con were highly correlated with those measured
in real genomes (> 98%) in all five continental groups, similar to what we saw globally in Figure 9. Producing
accurate allele frequencies for national populations, which are more sparsely sampled, appeared to pose a bigger
challenge to AC-GAN-Nat. Correlations were above 98% for 12 of the 26 national populations, and above 96%
for all populations other than PUR (Puerto Rico), for which the correlation was 94%. The reduced accuracy for
this population possibly stems from the fact that it experienced recent admixture, making it more difficult to
characterize. Overall, we observe that the AC-GAN model extends the capability of previous generative models
to model allele frequencies to population-specific allele frequencies. Accuracy of allele frequencies appears to
be higher when using more coarse-grained classes (as in AC-GAN-Con), but it remains reasonably accurate
(correlation above 96%) even for classes with fewer than 200 training samples, such as MXL (Mexican ancestry
in Los Angeles) and ASW (African Ancestry in Southwestern USA).

Population-specific allele frequencies are particularly important when studying population differentiation,
which is a fundamental component of population genetic analysis. Differentiation between two populations is
represented in our setting through the difference between allele frequencies observed in the two populations
across all 10,000 SNPs. Thus, to examine how well our AC-GANs model differentiation, allele frequency
differences were recorded in the real genomes using the training and test set combined, and then compared to
allele frequency differences measured using AGs generated by our AC-GANs. Such comparisons are presented
in Figure 11 for five pairs of continental groups and five pairs of national populations with varying degrees of
differentiation. First, we see that AC-GAN-Con models allele frequency differences quite well, even between
continents with lower genetic differentiation, such as America and East or South Asia (two upper left panels in
Figure 11). Similarly, AC-GAN-Nat models allele frequency differences quite well between national populations
from different continents (three lower right panels in Figure 11). We note that the accuracy in allele frequency

AMR-SAS EAS-AMR EAS-SAS EUR-EAS AFR-EUR
Correlation=88.92% Correlation=92.88% Correlation=96.06% Correlation=97.72% Correlation=97.77%
MAE=0.0261 MAE=0.0275 MAE=0.0198 MAE=0.0243 MAE=0.0299
o 10 o 10 o 10 e 10 o 10
g g T3 L o :
£ 05 £ 05 £ 05 £ 05 £ 05
c c c c c
@ 00 , & 00 & 00 / @ 00 & 00
£ . £ £ £ £
L5 L -05 05 o 05 L -05
< < < < oA < P
91070 05 00 05 109790 -05 00 05 1090 -05 00 05 107190 -05 00 05 1075 -05 00 05 10
AAF In Real AAF In Real AAF In Real AAF In Real AAF In Real
FIN-TSI BEB-GIH CHB-MXL CDX-TSI CEU-ESN
Correlation=66.14% Correlation=73.07% Correlation=81.51% Correlation=95.48% Correlation=95.97%
MAE=0.0338 MAE=0.0352 ‘ MAE=0.0467 MAE=0.0289 MAE=0.0366
o 10 o 10 o 10 o 10 o 10 g
3 % % o 3 A ¥
£ 05 \ o> £ 05 £ 05 £ 05 £ 05
c c - c 2 c c
@ 00 #' & 00 f & 0.0 f & 0.0 & 00
= e i £_ £_ . - o E_ £
e -05 e 05 y i 05 - e 05 ’ e 05 ‘
91070 05 00 05 109790 -05 00 05 1090 -05 00 05 100 -05 00 05 107G -05 00 05 10
AAF In Real AAF In Real AAF In Real AAF In Real AAF In Real

Figure 11: Population differentiation in real and synthetic genomes. Allele frequency differences were measured
for five pairs of continental groups and five pairs of national populations in each of the 10,000 SNPs. The setup and plot
layout are similar to those in Figure 10, but instead of allele frequencies, allele frequency differences are plotted (in the
range [—1,1]). Measurements for real genomes are based on all 5,006 genomes in the test and training set combined.
The top five panels (blue) show a comparison of AGs generated by AC-GAN-Con for five pairs of continental groups,
and the bottom five panels (green) show measurements obtained using AGs generated by AC-GAN-Nat for five pairs
of national populations. Pairs were selected to cover different levels of population differentiation (As indicated by the

range of allele frequency difference observed for each pair).

14

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

difference is only mildly reduced relative to that obtained by AC-GAN-Con, despite the substantial reduction
in the number of training samples per class. Not surprisingly, differentiation is much more difficult to model
between national populations from the same continent because differentiation between such populations is
typically more subtle. Nonetheless, AC-GAN-Nat was able to model allele frequency differences reasonably well
even for several weakly differentiated populations within the same continent (two lower left panels in Figure
11). Importantly, the slight bias observed in allele frequencies (Figure 9) does not manifest itself in allele
frequency differences, and as a result population differentiation is not systematically increased or decreased by
the Genome-AC-GAN.

Linkage disequilibrium

Another key aspect of genetic variation is the correlation between alleles in different genomic loci caused by
the way alleles are passed by inheritance from one generation to the next. Alleles in nearby loci are typically
passed to the next generation together, unless they are unlinked by genetic recombination. This causes linkage
disequilibrium (LD) between alleles in different loci, which has well-studied patterns along the genome [29].
In essence, LD measures the correlation between two loci, which tends to decay with distance. To compare
patterns of LD in AGs to those observed in real genomes, all (10’3 00) pairs of SNPs were partitioned into 50
bins according to the distance between them along the genome (from 1bp to ~6Mb). Then, for every bin, an
average LD was computed over all SNP-pairs in that bin for the real genomes in the test set, the real genomes in
the training set, and the AGs produced by the five models in Table 2. The resulting patterns of LD are shown
in Figure 12, and the performance of each model is summarized using the root mean square error (RMSE)
from its vector of LD measurements and the one computed for the test set. As expected, the real genomes in
the training set produced nearly identical patterns as observed in the test set (RMSE= 0.002). Furthermore,
as observed in [40, 39], generative models produce the expected pattern of LD decay, but with consistently
lower values of LD when compared to real genomes. Notably, the two AC-GANs produce higher average LD
than any of the other three generative models across all bins. AC-GAN-Con performed particularly well in
this respect, with RMSE= 0.032, which is roughly half of that measured for the previous best method (GAN19
with RMSE=0.063). Thus, the use of an AC-GAN appears to significantly improve the accuracy of LD in
AGs, with the coarse-grained class labels of AC-GAN-Con performing better than the higher resolution labels
of AC-GAN-Nat.

—— Real RMSE =0.0
=}« TrainSet RMSE =0.002
06 «:}+ GAN19 RMSE =0.063
RBM23 RMSE = 0.07

WGAN23 RMSE = 0.066

=:k- AC- GAN - Nat RMSE =0.05

05 —f— AC - GAN - Con RMSE =0.032

o
e

Average LD in bin

0.1

0.0

10 10' 10° 10° 10° 10° 10
Distance between SNPs (bp) [Left bound of distance bin]

Figure 12: Linkage disequilibrium (LD) in AGs. All (1%%) pairs of SNPs were partitioned into 50 bins according
to the distance between them along the genome. Then, for every bin and every set of genomes (test set, training set,
and five sets of AGs; see legend), the average LD and standard deviation were computed over all SNP-pairs in that bin.
The plot shows average LD (Y-axis) as a function of distance between SNPs (X-axis in log-scale), with vertical bars
representing standard deviations. The performance of each model was summarized using the root mean square error
(RMSE) from its vector of LD measurements and the one computed for the test set.

15

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4.3 Using synthetic genomes to augment training sets of classifiers

Finally, we wished to assess the potential advantages of utilizing synthetic genomes generated by the Genome-
AC-GAN to improve classification. The premise of this experiment, as demonstrated in [38] for detecting
COVID in chest X-rays, was that classification methods are often trained using a limited number of samples
from each class, and synthetic samples generated by an AC-GAN can be used to boost the training signal. In
our experiments, we considered the task of classifying genomes of individuals of African descent (AFR) into
national populations. We chose this specific classification task, since we expected it to be relatively challenging
due to lack of genetic differentiation between the seven African populations in the 1000 Genomes data set, as
suggested by their 3D PCA (Figure 13). For this purpose, we re-trained a version of the Genome-AC-GAN only
on AFR genomes, using C' = 7 national populations as class labels. We employed the same training procedure
described previously for AC-GAN-Con and AC-GAN-Nat. In particular, 80% of the AFR genomes were used
for training (1,056), and 20% were set aside for testing (266), maintaining this ratio across national populations.
Training used the PLCE loss function with € = 0.2, = 0.1 and proceeded for 10,000 epochs. The trained
Genome-AC-GAN was then used to generate 1,056 AGs (matching the size of the training set) that were later
used to augment the training set in the classification task.

We considered three fundamental models for classifying genomes into populations: a support vector classifier
(SVC) [2] with a radial basis function kernel, a K-nearest neighbors (KNN) model [2] with K = 5, and a
six-layer neural network (NN) [30]. The SVC and KNN were implemented using the appropriate functions
in scikit-learn with default parameters. The NN consisted of six fully-connected hidden layers with the
LeakyReLU activation function and Lo regularization, and an output layer with softmax transformation. It
was trained using a PLCE loss function and the RMSprop optimizer, with batch size set to 512. These three
classifiers were trained on various augmented versions of the training set, created by adding AGs generated by
the AC-GAN in ten increments of 10% of the original training set size. Thus, the smallest training set had 1, 056
real genomes and no AGs, and the largest training set had 1,056 real genomes and 1,056 AGs. In each case,
AGs were resampled for each of the seven national populations from the collection of 1,056 AGs according to
their prevalence in the original training set (Table 1). For each level of augmentation (0%-100%), we conducted
50 different replicate experiments to capture the randomness of the classification methods and resampling of
AGs. Throughout all experiments, the exact same training procedure was maintained for every classifier, to
ensure consistency of the results. Finally, the accuracy of the three trained classifiers was evaluated in each
replicate using the 266 genomes in the test set.

First, we observe a consistent pattern of improvement in classification accuracy for all classifiers as more

* ACB
°* GWD
ESN
MSL
® YRI
e LWK

ASW

Figure 13: PCA of individuals of Afican descent. The 1,322 genomes in the 1000 Genomes dataset are associated
with individuals of African descent (AFR; see Table 1) were projected onto the three main PCs. Genomes are labeled in
color according to their national population (see legend). The distributions of the seven national populations in this PCA
largely overlap, indicating that the classification of these genomes into national populations is expected to be challenging.

16

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

svc KNN NN
0.40 0.40 0.40 : :

0.38 0.38

o ER B

©
@
2

36.8% ‘W 37.0%

Accuracy
Accuracy
S
by
8

(k1 32.3% e

0.30

o
@
8

B 0% Aok o vk ook eon on o s 100w & 3_5’5 307} 0% S 6N Tm ek son oo u"/ WO oMo om o T o oo
Rscions) sysietic Samples Aactonal syminetc Samplos actons) Syninetc Samplos

Figure 14: Classification accuracy as a function of number of AGs added to the training set. The clas-
sification accuracy of three models (SVC, KNN, and NN) is evaluated as a function of the number of AGs
added to the training set. Each box plot depicts the distribution of classification accuracy across 50 replicates.
The middle bar in each box plot signifies the median, while the box itself spans the interquartile range (IQR),
encapsulating the central 50% of the data, and the whiskers extend to the minimum and maximum values. The
mean accuracy is specified at the top of each box plot, and the number of AGs added to the training set is

specified at the bottom together with and their percentage from the original set of 1,056 real genomes.

svC KNN NN

I Augmented training set
I Original training set
9

I Augmented training set
I Original training set

I Augmented training set
I Original training set

Mean Accuracy
Mean Accuracy

Mean Accuracy
°
b

o
[Ny

0.1

4.21%
00 MSL YRI LWK 0.00%, ACB GWD ESN MSL YRI

Population Name Population Name

Population Name

Figure 15: Population-specific classification accuracy when augmenting the training set with 100% AGs.
The classification accuracy of three models (SVC, KNN, and NN) is evaluated for each of the seven national
populations (which are the class labels) when trained on the original training set (red) and a training set doubled
by adding AGs generated by the Genome-AC-GAN (blue). Each bar represents the mean classification accuracy
across 50 replicate experiments, as measured on the test set (see Figure 14)

AGs are added to the training set (Figure 14). This is most prominent for the KNN model, which improves
from an average accuracy of 28.9% on the original training set to an average accuracy of 34.2% on the training
set doubled by adding AGs. The classification accuracy of the SVC model also increases consistently as more
AGs are added (from 32.3% to 36.1%). The NN model shows somewhat different behavior, with classification
accuracy increasing from 31.4% to 36.5% when adding 30% AGs, but then maintaining roughly the same level
of accuracy when more AGs are added. We then examined the improvement in classification accuracy for
each national population when doubling the training set by adding AGs (Figure 15). The three classifiers
show increased accuracy when trained on augmented data for all seven populations, with the exception of the
classification of the MSL population by the KNN model. Interestingly, the classification accuracy of the same
population is more than doubled for the NN model (from 12.8% to 27.4%). In 13 out of the total 21 cases, we
observed a relative increase in accuracy larger than 20%, indicating the utility of augmentation particularly in
classification tasks characterized by initially low accuracy rates. While this experiment illustrates the utility of
synthetic augmentations in specific models and scenarios, it also indicates that the outcomes and required level
of augmentation are variable for different classifiers.

5 Conclusion and discussion

This paper introduces the Genome-AC-GAN model, a novel approach for generating artificial genomes. Unlike
previous generative models, the AC-GAN approach allows Genome-AC-GAN to explicitly model sub-populations

17

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

within a larger cohort. The utility of an AC-GAN depends on the ability to effectively train the discriminator to
classify samples into these sub-populations. Careful finetuning of the polyloss cross entropy loss function allowed
us to improve the accuracy of classification (Figure 3), and as a result improve the realism of the generated
genomes. Our experimental analysis showcases the capabilities of the Genome-AC-GAN in generating artificial
genomes closely resembling real genomes, typically slightly outperforming other recently published models. The
only noteable exception to this rule was that the WGAN model of [39] produces slightly more accurate allele
frequencies than Genome-AC-GAN (Figure 9). On the other hand, Genome-AC-GAN produced much more
realistic LD patterns than the WGAN or any other model (Figure 12). This is an important (and somewhat
unexpected) advantage of the Genome-AC-GAN, since this was highlighted as one of the main deficiencies of
previous generative models for genomic data [40].

The fact that the Genome-AC-GAN considers sub-populations within a larger cohort enables it to model
more complex distributions of genetic variation, and likely contributes to its improved accuracy compared to
other methods. It also provides the generative model with the unique capability of modeling genetic differences
between populations (Figures 7 and 11). While a standard generative model might sacrifice accuracy in smaller
populations to improve overall accuracy, the AC-GAN approach can be used to guide the model toward more
accurate modeling of under-represented populations. This was apparent in our results for AC-GAN-Nat, in
which some populations had fewer than 200 training samples. An important consideration when implementing
an AC-GAN is to decide on the number of classes and their resolution. Higher-resolution classes can potentially
allow more complex modeling, but result in fewer training samples per class. Comparing our two Genome-AC-
GANSs, we see that the higher-resolution version (AC-GAN-Nat) was slightly more accurate in modeling overall
genetic variation and allele frequencies (Figures 5 and 9), but the lower-resolution version (AC-GAN-Con) more
accurately modeled LD (Figure 12). That said, both versions performed well in all measurements, confirming
the robustness of the AC-GAN approach to the number of classes and their size.

There are several potential applications of AC-GANs in genomics. Here, we examined the potential use in
augmenting training sets for classification tasks (Figures 14 and 15). We showed that data augmentation can be
used to improve classification accuracy in challenging tasks that involve similar classes with a small number of
training samples. While the improvement was not dramatic (e.g., from 32% to 36% for SVC), it was consistent
and robust across different classifiers and different classes. It is important to note that this approach has an
inherent limitation, since the artificial genomes used in augmentation do not carry information that is not present
in the original training set. Our results suggest that the augmented genomes effectively model this information
in a way that improves the classifiers’ capabilities to process it. One potential application where this approach
might be useful is the study of genetic contributors to rare phenotypes. While standard approaches require a
large number of sequenced genomes [8, 41], by utilizing an AC-GAN that considers phenotypes as classes, it
might be possible to make better use of smaller numbers of genomes. More generally, developing generative
methods that jointly model genotypes and phenotypes remains a major challenge that can be addressed using

AC-GANs.

References

[1] K. E. Ak. Deep learning approaches for attribute manipulation and text-to-image synthesis. 2020.
[2] M. Aly. Survey on multiclass classification methods. Neural Netw, 19(1-9):2, 2005.

[3] M. Arjovsky and L. Bottou. Wasserstein generative adversarial networks. In Proceedings of the 34th
International Conference on Machine Learning, volume 70, pages 214-223, 2017.

[4] J. Chen, M. E. Mowlaei, and X. Shi. Population-scale genomic data augmentation based on conditional gen-
erative adversarial networks. In Proceedings of the 11th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, pages 1-6, 2020.

[5] G. P. Consortium, A. Auton, L. Brooks, R. Durbin, E. Garrison, and H. Kang. A global reference for
human genetic variation. Nature, 526(7571):68-74, 2015.

[6] M. Dang, A. Liu, X. Wei, S. Sankararaman, and G. Van den Broeck. Tractable and expressive generative
models of genetic variation data. bioRxiv, pages 2023-05, 2023.

[7] S. Das and X. Shi. Offspring gan augments biased human genomic data. In Proceedings of the 153th ACM
International Conference on Bioinformatics, Computational Biology and Health Informatics, pages 1-10,
2022.

18

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[8] M. Elgart, G. Lyons, S. Romero-Brufau, N. Kurniansyah, J. A. Brody, X. Guo, H. J. Lin, L. Raffield,
Y. Gao, H. Chen, P. de Vries, D. M. Lloyd-Jones, L. A. Lange, G. M. Peloso, M. Fornage, J. I. Rotter,

S. S. Rich, A. C. Morrison, B. M. Psaty, D. Levy, S. Redline, T. Sofer, and P. de Vries. Non-linear machine
learning models incorporating SNPs and PRS improve polygenic prediction in diverse human populations.

Commun Biol, 5(1):856, Aug 2022.

[9] G. Fissore, Y. Han, A. Decelle, and C. Furtlehner. Robust multi-output learning with highly incomplete

data via restricted boltzmann machines. In S. Rudolph and G. Marreiros, editors, Proceedings of the 9th
FEuropean Starting AI Researchers’ Symposium 2020 co-located with 24th European Conference on Artificial
Intelligence (ECAI 2020), Santiago Compostela, Spain, August, 2020, volume 2655 of CEUR Workshop

Proceedings. CEUR-WS.org, 2020.

Generative adversarial networks. Communications of the ACM, 63(11):139-144, 2020.

cross-entropy loss. Entropy, 24(10):1414, 2022.

IEEFE access, 8:4806-4813, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

C. Guo, X. Chen, Y. Chen, and C. Yu. Multi-stage attentive network for motion deblurring via binary

Y. Ho and S. Wookey. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1125-1134, 2017.

M. Kang, W. Shim, M. Cho, and J. Park. Rebooting acgan: Auxiliary classifier gans with stable training.
Advances in neural information processing systems, 34:23505-23518, 2021.

IEEFE Transactions on Pattern Analysis and Machine Intelligence, 41(2):261-268, 2020.

[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.

image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8110-8119, 2020.

generative models. arXiv preprint arXiv:1712.06148, 2017.

[18] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

N. Killoran, L. J. Lee, A. Delong, D. Duvenaud, and B. J. Frey. Generating and designing dna with deep

[19] N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and stability of gans. International

Conference on Learning Representations, 2018.

expansion perspective of classification loss functions. arXiv preprint arXiv:2204.12511, 2022.

arXi:2305.13714, 2023.

Z. Leng, M. Tan, C. Liu, E. D. Cubuk, X. Shi, S. Cheng, and D. Anguelov. Polyloss: A polynomial

T. Luhman and E. Luhman. High fidelity image synthesis with deep vaes in latent space. arXiv preprint

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
M. Mitt, M. Kals, K. Parn, S. B. Gabriel, E. S. Lander, A. Palotie, S. Ripatti, A. P. Morris, A. Metspalu,

T. Esko, et al. Improved imputation accuracy of rare and low-frequency variants using population-specific

high-coverage wgs-based imputation reference panel. European Journal of Human Genetics, 25(7):869-876,
2017.

J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton, A. Indap, K. S. King, S. Bergmann,
M. R. Nelson, et al. Genes mirror geography within europe. Nature, 456(7218):98-101, 2008.
tional conference on machine learning, pages 2642-2651. PMLR, 2017.

with a pose estimator and an auxiliary classifier. Remote Sensing, 13(19):3939, 2021.

19

A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In Interna-

J. Oh and M. Kim. Peacegan: A gan-based multi-task learning method for sar target image generation

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580420; this version posted February 16, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[27] V. M. Panaretos and Y. Zemel. Statistical aspects of wasserstein distances. Annual review of statistics and
its application, 6:405-431, 2019.

[28] E. Piacentino, A. Guarner, and C. Angulo. Generating synthetic ecgs using gans for anonymizing healthcare
data. FElectronics, 10(4):389, 2021.

[29] D. E. Reich, M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter, T. Lavery, R. Kouyoumjian, S. F.
Farhadian, R. Ward, et al. Linkage disequilibrium in the human genome. Nature, 411(6834):199-204, 2001.

[30] K. Rimal, K. Shah, and A. Jha. Advanced multi-class deep learning convolution neural network approach for
insect pest classification using tensorflow. International Journal of Environmental Science and Technology,
20(4):4003-4016, 2023.

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for
training gans. Advances in neural information processing systems, 29, 2016.

[32] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for classification tasks.
Information processing & management, 45(4):427-437, 2009.

[33] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green,
M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, and
R. Collins. UK biobank: an open access resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Med, 12(3):e1001779, Mar 2015.

[34] C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2818-2826, 2016.

[35] M. E. Tabangin, J. G. Woo, and L. J. Martin. The effect of minor allele frequency on the likelihood of
obtaining false positives. In BMC proceedings, volume 3, pages 1-4. Springer, 2009.

[36] I. V. Tetko, P. Karpov, R. Van Deursen, and G. Godin. State-of-the-art augmented nlp transformer models
for direct and single-step retrosynthesis. Nature communications, 11(1):5575, 2020.

[37] M. Via, C. Gignoux, and E. G. Burchard. The 1000 genomes project: new opportunities for research and
social challenges. Genome medicine, 2(1):1-3, 2010.

[38] A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro. Covidgan: data aug-
mentation using auxiliary classifier gan for improved covid-19 detection. leee Access, 8:91916-91923, 2020.

[39] B. Yelmen, A. Decelle, L. L. Boulos, A. Szatkownik, C. Furtlehner, G. Charpiat, and F. Jay. Deep
convolutional and conditional neural networks for large-scale genomic data generation. PLoS Comput Biol,
19(10):e1011584, Oct 2023.

[40] B. Yelmen, A. Decelle, L. Ongaro, D. Marnetto, C. Tallec, F. Montinaro, C. Furtlehner, L. Pagani, and
F. Jay. Creating artificial human genomes using generative neural networks. PLoS genetics, 17(2):€1009303,
2021.

[41] L. Yengo, S. Vedantam, E. Marouli, J. Sidorenko, E. Bartell, S. Sakaue, M. Graff, A. U. Eliasen, Y. Jiang,
S. Raghavan, et al. A saturated map of common genetic variants associated with human height. Nature,
610(7933):704-712, 2022.

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2242-2251, 2017.

20

https://doi.org/10.1101/2024.02.14.580420
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Background
	Standard GAN
	Conditional GAN (cGAN)
	Auxiliary Classifier GAN (AC-GAN)
	Training GANs
	Polyloss

	Materials and Methods
	Genome-AC-GAN architecture
	Training procedure
	Training and test set
	Code availability

	Results
	Finetuning the Polyloss penalty
	Detailed evaluation of artificial genomes generated by the Genome-AC-GAN
	Using synthetic genomes to augment training sets of classifiers

	Conclusion and discussion

