

1 **Differential GTP-dependent *in-vitro* polymerization of recombinant**
2 ***Physcomitrella FtsZ* proteins**

3
4

5 Stella W. L. Milferstaedt^{1,3}, Marie Joest^{2,4}, Lennard L. Bohlender¹, Sebastian N. W. Hoernstein¹, Buğra
6 Özdemir^{1,6}, Eva L. Decker¹, Chris van der Does², Ralf Reski^{1,3,4,5,*}

7

8 ¹Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg,
9 Germany

10 ²Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104
11 Freiburg, Germany

12 ³Cluster of Excellence *livMatS* @ FIT – Freiburg Centre for Interactive Materials and Bioinspired
13 Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany

14 ⁴Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A,
15 79104 Freiburg, Germany

16 ⁵Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104 Freiburg, Germany

17 ⁶Present address: Euro-BioImaging Bio-Hub, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany

18

19 ORCID IDs:

20 S.W.L.M. 0000-0003-3357-4177

21 M.J. 0009-0004-4997-505X

22 L.L.B. 0000-0002-4599-7807

23 S.N.W.H. 0000-0002-2095-689X

24 B.Ö. 0000-0001-9823-0581

25 E.L.D. 0000-0002-9151-1361

26 C.v.d.D. 0000-0002-7348-7361

27 R.R. 0000-0002-5496-6711

28

29 *Corresponding author: ralf.reski@biologie.uni-freiburg.de

30

31 **1. Abstract**

32 Bacterial cell division and plant chloroplast division require self-assembling Filamentous temperature-
33 sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities
34 with eukaryotic tubulin. In the moss *Physcomitrella*, the morphology of the FtsZ polymer networks
35 varies between the different FtsZ isoforms. The underlying mechanism and foundation of the distinct
36 networks is unknown. Here, we investigated the interaction of *Physcomitrella* FtsZ2-1 with FtsZ1
37 isoforms *via* co-immunoprecipitation and mass spectrometry, and found protein-protein interaction *in*
38 *vivo*. We tagged FtsZ1-2 and FtsZ2-1 with different fluorophores and expressed both in *E. coli*, which
39 led to the formation of defined structures within the cells and to an influence on bacterial cell division
40 and morphology. Furthermore, we have optimized the purification protocols for FtsZ1-2 and FtsZ2-1
41 expressed in *E. coli* and characterized their GTPase activity and polymerization *in vitro*. Both FtsZ
42 isoforms showed GTPase activity. Stoichiometric mixing of both proteins led to a significantly
43 increased GTPase activity, indicating a synergistic interaction between them. In light scattering assays,
44 we observed GTP-dependent assembly of FtsZ1-2 and of FtsZ2-1 in a protein concentration dependent
45 manner. Stoichiometric mixing of both proteins resulted in significantly faster polymerization, again
46 indicating a synergistic interaction between them. Under the same conditions used for GTPase and light
47 scattering assays both FtsZ isoforms formed filaments in a GTP-dependent manner as visualized by
48 transmission electron microscopy (TEM). Taken together, our results reveal that *Physcomitrella*
49 FtsZ1-2 and FtsZ2-1 are functionally different, can synergistically interact *in vivo* and *in vitro*, and
50 differ in their properties from FtsZ proteins from bacteria, archaea and vascular plants.

51

52 **Keywords:** cytoskeleton, FtsZ polymerization, GTPase, *Physcomitrium*, plastoskeleton, self-assembly

53

54 **2. Introduction**

55 Plants harvest energy from oxygenic photosynthesis, during which light is the energy source for the
56 fixation of atmospheric CO₂ in organic compounds, while O₂ is produced as a side product. In
57 eukaryotic cells, photosynthesis depends on chloroplasts [1]. These cell organelles derived from
58 endosymbiosis, where a eukaryote engulfed a free-living, photoautotrophic cyanobacterial-like
59 prokaryote [2, 3, 4]. While some genes of prokaryotic origin disappeared over time, or were retained in
60 the organellar genome, respectively, most were transferred to the host nucleus after the endosymbiotic
61 event [5]. The relation of these organelles to prokaryotes explains why chloroplasts do not develop *de*
62 *novo* but divide by binary fission [6], while at the same time suggesting that prokaryotic cytokinesis
63 and cell organelle division are conserved mechanisms [7, 8].

64 Most bacteria and chloroplasts of bryophytes, comprising mosses, liverworts, and hornworts, are
65 surrounded by a peptidoglycan wall [9, 10], which needs to be remodelled during bacterial cell division
66 [11, 12]. Proteins involved in bacterial cell division are also responsible for plastid division in plants
67 [6, 8]. Both mechanisms require Filamentous temperature-sensitive Z (FtsZ) proteins as a key
68 component of the division machinery [13, 14]. FtsZ proteins were named after one of the filamentous
69 temperature-sensitive *Escherichia coli* (*E. coli*) mutants, which grows filamentous due to their inability
70 to divide at elevated temperatures [15]. FtsZ proteins assemble into a ring structure, the Z-ring, thus
71 determining the future division site of bacteria and chloroplasts [16, 17, 18]. In *E. coli* and
72 *Bacillus subtilis*, FtsZ-function is coupled to peptidoglycan synthesis [11, 19]. Remarkably, bacterial
73 cell division as well as division of moss chloroplasts, but not plastid division of vascular plants, is
74 sensitive to beta-lactam antibiotics [20].

75 FtsZ proteins are soluble guanosine triphosphatases (GTPases) [21, 22, 23] that share structural and
76 biochemical similarities with the eukaryotic cytoskeletal protein tubulin [24, 25]. FtsZ proteins have
77 similar functions in bacteria and plastids [7, 8]. The nuclear-encoded plant FtsZ proteins are imported
78 into the chloroplast [7], where they are required for plastid division as well as plastid shaping [26]. In
79 most bacteria, FtsZ is encoded by a single gene [27, 28], while plants and archaea, except the TACK
80 and ASGARD superphyla, encode predominantly two FtsZ isoforms [25, 29]. For instance, *Arabidopsis*
81 *thaliana* (*Arabidopsis*) encodes FtsZ1 and FtsZ2 [7, 14]. These arose from a gene duplication [29], in
82 which plant FtsZ1 arose from FtsZ2 [31, 32].

83 In the vascular plant *Arabidopsis*, both FtsZ isoforms have non-redundant functions since their
84 independent expression inhibition led in both cases to a reduced number of chloroplasts [14]. The rings
85 formed by *Arabidopsis* FtsZ1 and FtsZ2 colocalize *in vivo* at the chloroplast centre [17] and form
86 heteropolymers at the future division site upon recombinant expression in the yeast *Pichia pastoris*
87 (new species name *Komagataella phaffii*) [18]. Also, the polymerization behaviour of *Arabidopsis* FtsZ
88 isoforms has been characterized *in vitro* [33, 34]. Here, FtsZ1 and FtsZ2 show differences in their
89 GTPase activity and polymerization mechanism and only FtsZ2 polymerized on its own [34].

90 Furthermore, FtsZ1 and FtsZ2 show differences regarding their protein structure. In general, FtsZ
91 proteins contain two domains, a widely conserved N-terminal GTPase domain and a C-terminal region
92 [32, 35]. The GTPase domain comprises a GTP-binding domain and a GTPase-activating domain.
93 Together, they represent the core structure of FtsZ [18], since the C-terminal region is more variable
94 [36]. The N-terminal domain is responsible for GTP binding and hydrolysis [35]. FtsZ2 proteins contain
95 an additional short motif at the C-terminus that is missing in FtsZ1 [31, 32]. In *Arabidopsis*, this motif
96 is responsible for the interaction of FtsZ2 with transmembrane proteins [32]. Recently, a conserved
97 sequence motif of the C-terminal domain of *Arabidopsis* FtsZ1 was identified that is involved in
98 membrane binding and interactions with other proteins of the plastid division machinery [37].
99 Moreover, the N- as well as the C-terminus of both isoforms are involved in polymer formation of FtsZ1
100 and FtsZ2 [38].

101 The moss *Physcomitrella* (new species name *Physcomitrium patens*) encodes the high number of five
102 different FtsZ proteins (FtsZ1-1, FtsZ1-2, FtsZ2-1, FtsZ2-2, FtsZ3), which fall in three clades (FtsZ1,
103 FtsZ2, FtsZ3), indicating neofunctionalisation of the different isoforms during evolution [30, 39, 40].
104 *Arabidopsis* FtsZ1 and FtsZ2 are orthologues to *Physcomitrella* FtsZ1 and FtsZ2 [39, 40]. Among those
105 FtsZ isoforms, FtsZ2-1 was proven to be involved in chloroplast division [8, 41, 42].

106 The *Physcomitrella* FtsZ proteins assemble in network-like structures inside the chloroplast [26, 43].
107 Using reverse genetics, the diverse and non-redundant functions of the five FtsZ isoforms in
108 *Physcomitrella* were investigated [42]. Here, the analysis of distinct single and double knockout mutants
109 of *Physcomitrella ftsZ* genes revealed their roles in chloroplast division, chloroplast shaping, as well as
110 their network assembling properties within the chloroplast [26, 42]. Due to these characteristics, the
111 *Physcomitrella* FtsZ proteins ensure plastid stability and structural integrity [26, 44]. Since this FtsZ
112 network in moss plastids resembles the structure of the eukaryotic cytoskeleton, the term
113 ‘plastoskeleton’ was coined to describe its organization and function in plastids [26, 45]. Subsequently,
114 it was discovered that not only eukaryotes but also bacteria have a highly dynamic cytoskeleton at which
115 FtsZ is a part [46-49].

116 Unlike described for other plants, proteins of the nuclear *ftsZ* genes are not only imported into plastids
117 but are dually targeted to chloroplasts and the cytosol in *Physcomitrella*, suggesting that they have
118 functions beyond plastid division [50]. Interestingly, this coincides with a low diversification of the
119 cytoskeletal protein family tubulin in *Physcomitrella* [51]. Subsequently, *Physcomitrella* FtsZ proteins
120 were found to be involved in cell patterning, plant development, and gravity sensing [42]. Additionally,
121 distinct localization-dependent *in-vivo* interactions among four of the five *Physcomitrella* FtsZ isoforms
122 were revealed by using fluorescence resonance energy transfer (FRET) [52].

123 The morphology of the *Physcomitrella* FtsZ polymer networks varies between the different isoforms.
124 *In-vivo* network analysis using GFP-tagged FtsZ1-2 and FtsZ2-1 indicated functional differences
125 between them [53]. While the FtsZ2-1 network is exclusively formed within the chloroplast, FtsZ1-2
126 networks form long, extra-plastidic extensions and may play a role in the formation of stromules [53],

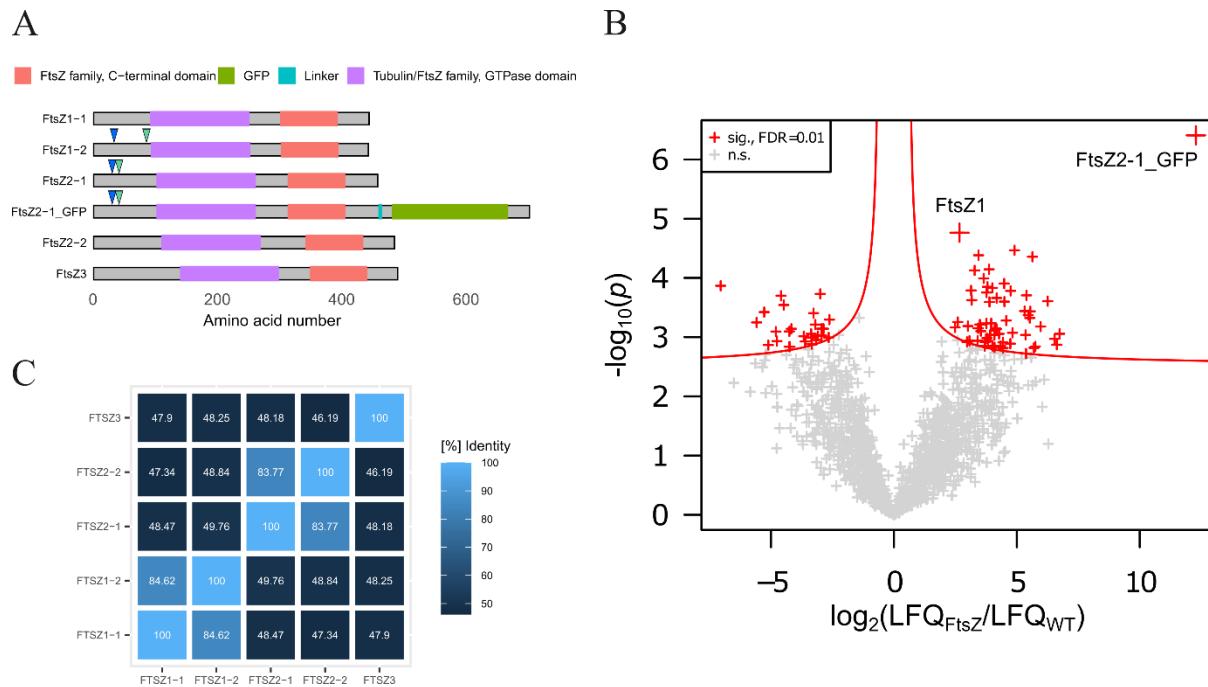
127 stroma-filled, tubular connections between chloroplasts [54]. The FtsZ1-2 network also contains
128 significantly more nodes than the FtsZ2-1 network, while so-called meganodes (extraordinarily large
129 nodes) occur only with FtsZ2-1. Moreover, FtsZ2-1 filaments are more curved *in vivo*, thicker in
130 segment size and resemble the microtubules of the cytoskeleton more than FtsZ1-2. This resemblance
131 hints towards mechanical properties that might be interesting when using *Physcomitrella* FtsZ filaments
132 to develop sustainable material systems [55]. Based on the identified morphological differences of
133 *Physcomitrella* FtsZ1-2 and FtsZ2-1 [53], the mechanical behaviour and load-bearing responses of the
134 two *Physcomitrella* FtsZ isoforms were investigated in *in-silico* experiments, relating the structure to
135 the function of the FtsZ protein networks [55-57]. The capability of the plastoskeleton to maintain its
136 load-bearing structure even under distortion is based on its material properties as polymers and more
137 importantly, on the structural features of the network [55].

138 Besides the mechanical properties of the FtsZ isoforms, knowledge about the polymer-forming
139 properties of *Physcomitrella* FtsZ proteins as a GTP-driven structure is of particular interest. Combining
140 the data about the load-bearing structure of the plastoskeleton with knowledge about the biochemical
141 foundations could pave the way for adaptive biomimetic materials [58] or 3D-printed biopolymer
142 materials for tissue engineering [59]. In various tissues, *Physcomitrella* FtsZ1-2 and FtsZ2-1 have
143 relatively high expression levels, suggesting division-independent, stable networks within the
144 chloroplast [53]. We examined GTPase activity, polymer assembly, and formation of the
145 *Physcomitrella* FtsZ network *in vitro*. We expressed *Physcomitrella* FtsZ1-2 and FtsZ2-1 in *E. coli*,
146 purified the proteins, and analysed their GTP-dependent polymerization individually and together.
147 Furthermore, we investigated the interaction of these isoforms *in vivo*, and visualised both FtsZ
148 isoforms in *E. coli* cells individually and in combination without potential interaction partners.

149 Different bacterial FtsZ (e.g., *B. subtilis* FtsZ and *E. coli* FtsZ [60], *Agrobacterium tumefaciens* FtsZ
150 [61], *Synechococcus elongatus* [23], archaeal FtsZ (*Haloferax volcanii* [62, 63]), and plant FtsZ
151 (*Arabidopsis* [23, 34]) were already investigated regarding their assembly and biochemical properties.
152 Here, we provide insights into the GTP-dependent polymerization and the assembly properties of
153 FtsZ1-2 and FtsZ2-1 of the moss *Physcomitrella*.

154

155 **3. Results**


156 **3.1. *In-vivo* interaction of *Physcomitrella* FtsZ2-1 with FtsZ1**

157 Distinct localization-dependent interactions among four of the five *Physcomitrella* FtsZ isoforms have
158 been revealed by overexpression as GFP fusions [52]. Here, we independently reassessed these results
159 on a physiological level with special focus on the interactions between FtsZ1 isoforms and FtsZ2-1.
160 To address this, an in-frame fusion of *Physcomitrella* FtsZ2-1 with a single linker-GFP (Figure 1A,
161 Supplemental Figure S1A) at the endogenous locus was generated *via* targeted knock-in (Supplemental
162 Table S1), employing the highly efficient homologous recombination in this moss [64, 65]. Twenty-

163 one selected lines were screened by PCR for the presence of the GFP coding sequence (CDS). From
 164 these, sixteen positive candidate lines were selected and the correct integration of the knock-in construct
 165 was analysed by PCR (Supplemental Figure S1A, B). From this analysis three of the fifteen positive
 166 lines were chosen for a test co-immunoprecipitation (Co-IP, Supplemental Figure S1C). Finally, line
 167 #513 was chosen for quantitative Co-immunoprecipitations (Co-IP), performed using GFP-Trap
 168 Magnetic Particles, with *Physcomitrella* wild type (WT) as a negative control. Label-free quantitation
 169 values (LFQ) obtained from a *MaxQuant* search [66, 67] were used and significant interacting partners
 170 were identified at a false discovery rate (FDR) of 1 % (Figure 1B). The significant interacting proteins
 171 can be found in Supplemental Table S2.

172 From this, *Physcomitrella* FtsZ1 isoforms were identified as significant interactors of FtsZ2-1
 173 (Figure 1). Thus, we confirmed that FtsZ2-1 is interacting with FtsZ1 proteins *in vivo*. However, due to
 174 their high sequence similarity (Figure 1C) and the limited number of matching peptides, the isoforms
 175 FtsZ1-1 and FtsZ1-2 could not be distinguished in these experiments. Hence, we were able to confirm
 176 that *Physcomitrella* FtsZ2-1 is interacting with *Physcomitrella* FtsZ1 proteins *in vivo*, but we could not
 177 explicitly narrow this down to an interaction with FtsZ1-2. As CO-IPs do not allow to assess spatial
 178 information of interactions, they can be direct or indirect.

179

180

181

182 **Figure 1 FtsZ domain structures, sequence identity and analysis of the co-immunoprecipitations**
 183 **(Co-IPs) against GFP-tagged FtsZ2-1 protein.**

184 (A) Domain structures of the five *Physcomitrella* FtsZ proteins and the FtsZ2-1_GFP fusion protein.
 185 Depicted are PFAM [68] domains (FtsZ family, C-terminal domain: PF12327; Tubulin/FtsZ family,
 186 GTPase domain: PF00091; GFP: PF01353) and the poly-G linker in the FtsZ2-1_GFP fusion protein.
 187 Arrows indicate predicted chloroplast transit peptide (cTP) cleavage sites (blue: ChloroP1.1; green:
 188 TargetP2.0). Predicted cTP cleavage sites of other FtsZ isoforms than FtsZ1-2 and FtsZ2-1 are not

189 shown. The image was created with the *R* package *drawProteins* [69]. **(B)** The Volcano plot shows the
190 \log_2 ratios of normalized LFQ (label-free quantitation) intensities plotted against \log_{10} of adjusted
191 p-values. Proteins significantly enriched in the GFP-tagged pulldown are shown as red crosses with a
192 false discovery rate (FDR) of 0.01 %. *Physcomitrella* wild type (WT) served as a negative control.
193 Proteins not significant for either WT nor FtsZ2-1-GFP are visualized as grey crosses. The Co-IP was
194 performed with GFP-Trap Magnetic Particles M-270 (ChromoTek GmbH, Planegg, Germany) and
195 *Physcomitrella* protonema tissue homogenized from suspension culture. The isoforms of FtsZ1
196 (FtsZ1-1, FtsZ1-2) could not be distinguished on the basis of the peptides identified in this approach
197 and are thus grouped (FtsZ1). **(C)** Matrix showing the sequence identity ([%]) between the five different
198 FtsZ isoforms. Identity values were obtained from a multiple sequence alignment using protein
199 sequences done with the UniProt *Align* tool (<https://www.uniprot.org/align>).
200

201 **3.2. Expression of *Physcomitrella* FtsZ1-2 and FtsZ2-1 in *E. coli***

202 The respective plastoskeletal morphologies of *Physcomitrella* FtsZ1-2 and FtsZ2-1, which were
203 elucidated before [53], hint towards functional differences of these two isoforms. Therefore, GTPase
204 activity, polymer assembly, and the formation of *Physcomitrella* FtsZ1-2 and FtsZ2-1 filaments *in vitro*
205 were studied.

206 In order to produce *Physcomitrella* FtsZ1-2 and FtsZ2-1 in *E. coli*, the coding sequences (CDS) of both
207 FtsZ isoforms were optimized for codon usage in bacteria (Supplemental Figures S2 and S3). In total,
208 304 bases were changed for FtsZ1-2 and 357 bases were changed for FtsZ2-1. The GC content was
209 concurrently increased from 49 % to 51 % for FtsZ1-2, and from 49 % to 52 % for FtsZ2-1. The
210 *in-silico* predicted N-terminal transit peptides for *Physcomitrella* FtsZ1-2 (Pp3c19_2490) and
211 *Physcomitrella* FtsZ2-1 (Pp3c11_17860) were 34 aa and 31 aa (ChloroP 1.1,
212 <http://www.cbs.dtu.dk/services/ChloroP/>), respectively. The predictions of TargetP-2.0
213 (<http://www.cbs.dtu.dk/services/TargetP/>) and ChloroP 1.1 differ (Table 1, Figure 1A) and the exact
214 estimation of cTPs remains challenging. The shorter predictions by ChloroP 1.1 were chosen so as not
215 to affect the functional domains of both proteins (Figure 1A).
216

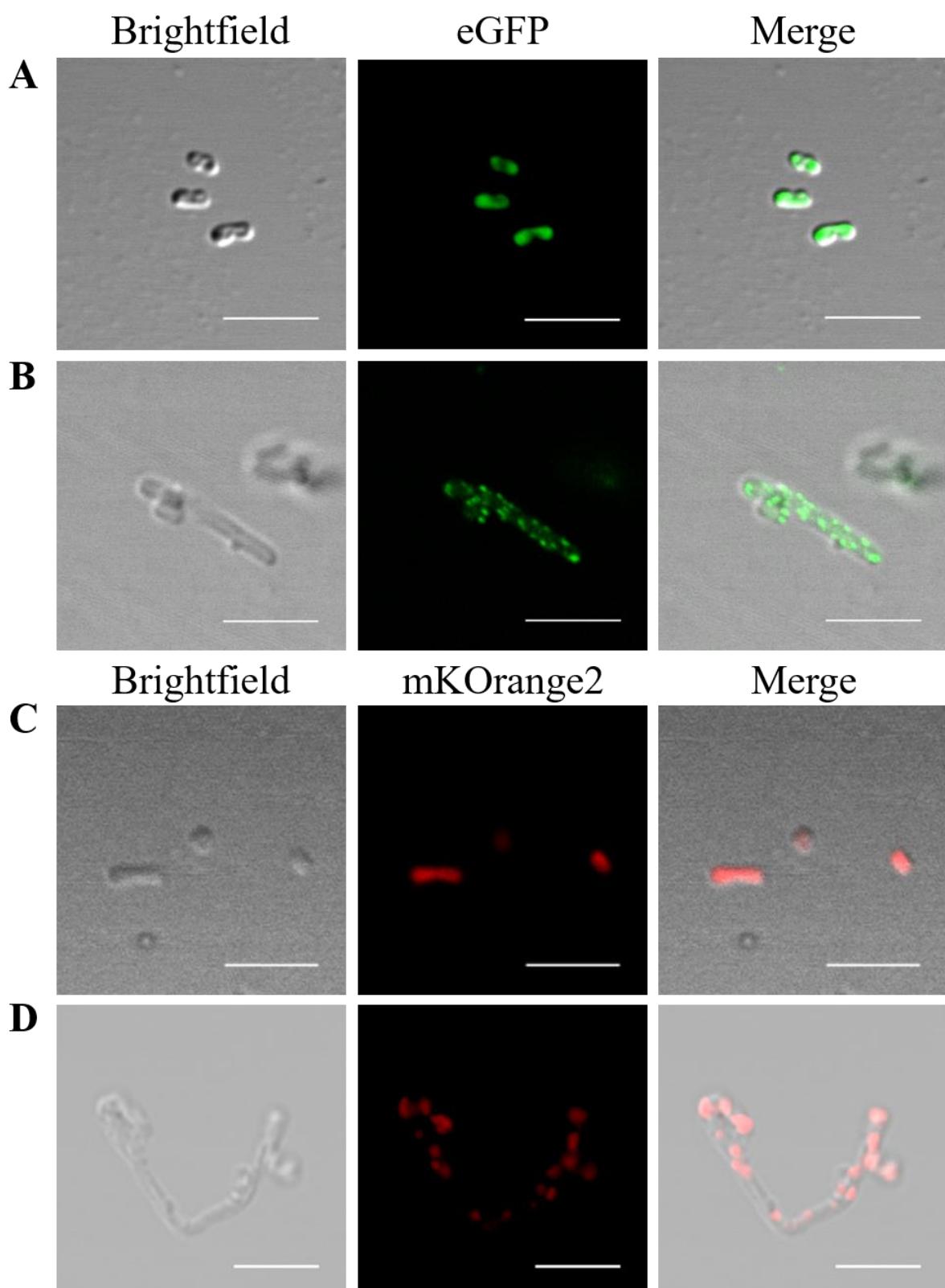
217 **Table 1 Comparison of sequence and length of the chloroplast transit peptide (cTP) for**
218 ***Physcomitrella* FtsZ1-2 and FtsZ2-1 predicted by ChloroP 1.1 and TargetP-2.0.** Length of cTP in
219 amino acids (aa).

	Tool	predicted cTP sequence	length [aa]
FtsZ1-2	ChloroP 1.1	MGSTARLRLSPSPSSVSGSLCPASARSVYPMGSV	34
	TargetP-2.0	MGSTARLRLSPSPSSVSGSLCPASARSVYPMGSVAVRVTSRCRW LGAESRLGKSQFFGAGKPLVHLQKRGWSLGWEGRAGRTVVM	86
FtsZ2-1	ChloroP 1.1	MALFSGCSGWAGLKVSRRVGGEACRTPPVVH	31
	TargetP-2.0	MALFSGCSGWAGLKVSRRVGGEACRTPPVHCSMHSRSSVRA	42

221

222 The respective codon-optimized FtsZ1-2 and FtsZ2-1 sequence, fused to a C-terminal 8 x His-tag
223 encoding sequence, were subcloned into the pLATE11 expression vector (Supplemental Tables S3 and
224 S4) and with the correct plasmids subsequently transformed into BL21 StarTM (DE3) cells. Immunoblots
225 of IPTG induced strains confirmed the expression of both isoforms (Supplemental Figure S4).

226


227 **3.3. *Physcomitrella* FtsZ proteins localize in foci in elongated *E. coli* cells**

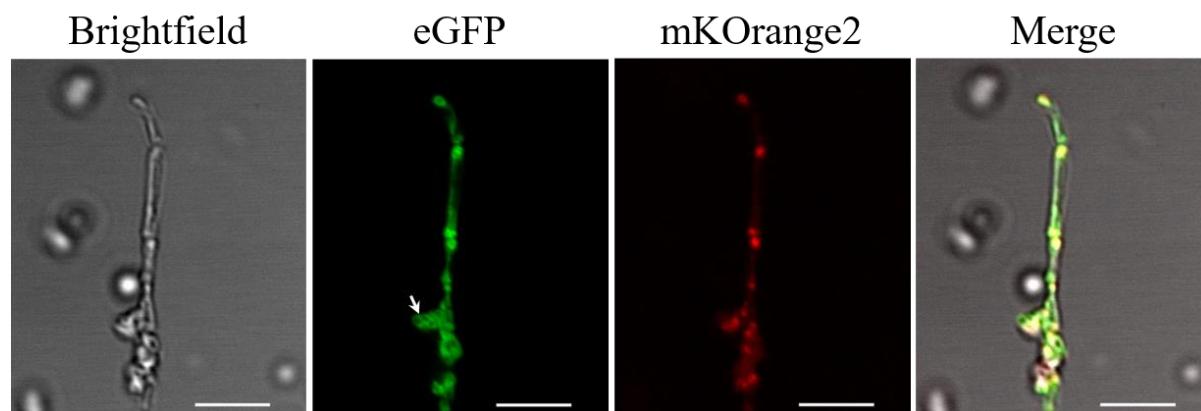
228 To investigate the behaviour of each isoform individually and in combination within a heterologous
229 system, fluorescent FtsZ fusions were employed. *E. coli* FtsZ, which is non-functional in *Physcomitrella*
230 and does not interact with *Physcomitrella* FtsZ isoforms in FRET experiments [51], is not anticipated
231 to interact with *Physcomitrella* proteins. FtsZ1-2 was fused at the N-terminus with enhanced Green
232 Fluorescent Protein (eGFP), while FtsZ2-1 was fused at the N-terminus with mKusabira-Orange2
233 (mKO2, mKO2). To serve as controls, eGFP-His and mKO2-His were used respectively. All CDS
234 were cloned into the inducible pLATE11 expression vector. For the co-expression of eGFP-FtsZ1-2
235 and mKO2-FtsZ2-1, the latter expression cassette was introduced into the initially generated
236 pLATE11_eGFP-FtsZ1-2 vector. BL21 StarTM (DE3) cells were transformed with the final plasmids.
237 Confocal microscopy of IPTG-induced bacteria revealed that the eGFP-His control was localized in a
238 diffuse pattern within the cell (Figure 2A). The cells expressing eGFP-His grew normally and were
239 approximately 1-2 μ m long. The eGFP-FtsZ1-2 protein was localized in numerous foci within the cell
240 (Figure 2B), and, in some instances, formed single filaments or filamentous networks (Figure 3,
241 Supplemental Figures S5A, B, E, and S7C). Cells expressing eGFP-FtsZ1-2 were longer than those
242 expressing eGFP-His, showing a length distribution between 5 and 10 μ m (Figure 2B, and
243 Supplemental Figure S5). The distribution of the eGFP-FtsZ1-2 signal suggests the assembly of
244 functional structures, which is further supported by the filamentous phenotype of the *E. coli* cells
245 expressing eGFP-FtsZ1-2, which resembles the phenotype of *E. coli* strains overexpressing FtsZ or *ftsZ*
246 depletion strains.

247 As with eGFP-His, the mKO2-His control exhibited a diffuse localization throughout the cell
248 (Figure 2C). Cells transformed with mKO2-His also grew normally and were approximately 1-2 μ m
249 long. The mKO2-FtsZ2-1 protein was distributed in foci throughout the whole cell. The cells were
250 elongated, ranging between 5 and 20 μ m in length (Figure 2D, Supplemental Figure S6). In analogy to
251 eGFP-FtsZ1-2, we infer that mKO2-FtsZ2-1 also assembles in functional structures when expressed in
252 *E. coli* cells.

253 In general, the signal of mKO2-FtsZ2-1 expressed in *E. coli* was weaker than the signal of
254 eGFP-FtsZ1-2. Furthermore, it was observed that the foci of the mKO2-FtsZ2-1 were less frequent than
255 in eGFP-FtsZ1-2 and were situated at regular intervals inside the cell. In contrast to eGFP-FtsZ1-2, no
256 filaments between the foci of mKO2-FtsZ2-1 were observed.

257

258
259


260 **Figure 2 Cellular positioning of *Physcomitrella* FtsZ1-2 and FtsZ2-1 fluorescent fusion proteins**
261 **in transformed *E. coli* cells.**

262 Confocal fluorescence microscopy of (A) eGFP-His, (B) eGFP-tagged *Physcomitrella* FtsZ1-2, (C)
263 mKOrange2-His and (D) mKOrange2-tagged *Physcomitrella* FtsZ2-1 in *E. coli*. Scale bars 5 μ m.

264

265 Confocal microscopy of *E. coli* cells containing the double construct eGFP-FtsZ1-2_mKO2-FtsZ2-1
266 confirmed the heterologous expression of eGFP-FtsZ1-2 and mKO2-FtsZ2-1 in *E. coli* (Figure 3). Cells
267 expressing eGFP-FtsZ1-2_mKO2-FtsZ2-1 were elongated and ranged between 5 and 20 μ m in length
268 (Figure 3, Supplemental Figure S7). In these cells, eGFP-FtsZ1-2 was once again localized in foci and
269 filamentous networks. Correspondingly, the distribution pattern of mKO2-FtsZ2-1 was similar as
270 observed in the cells transformed with the single constructs: mKO2-FtsZ2-1 was distributed in foci
271 throughout the whole cell. Remarkably, it was observed that eGFP-FtsZ1-2 and mKO2-FtsZ2-1 co-
272 localize in these foci within the cell (Figure 3) suggesting a direct or indirect interaction between the
273 two proteins. Furthermore, it was observed that bacterial cells expressing eGFP-FtsZ1-2,
274 mKO2-FtsZ2-1 and the construct with both FtsZ fusion proteins together exhibited highly aberrant
275 phenotypes (Figure 2, Figure 3, Supplemental Figures S5, S6 and S7), suggesting that expression of the
276 two moss FtsZ proteins affected bacterial cell division and shaping.

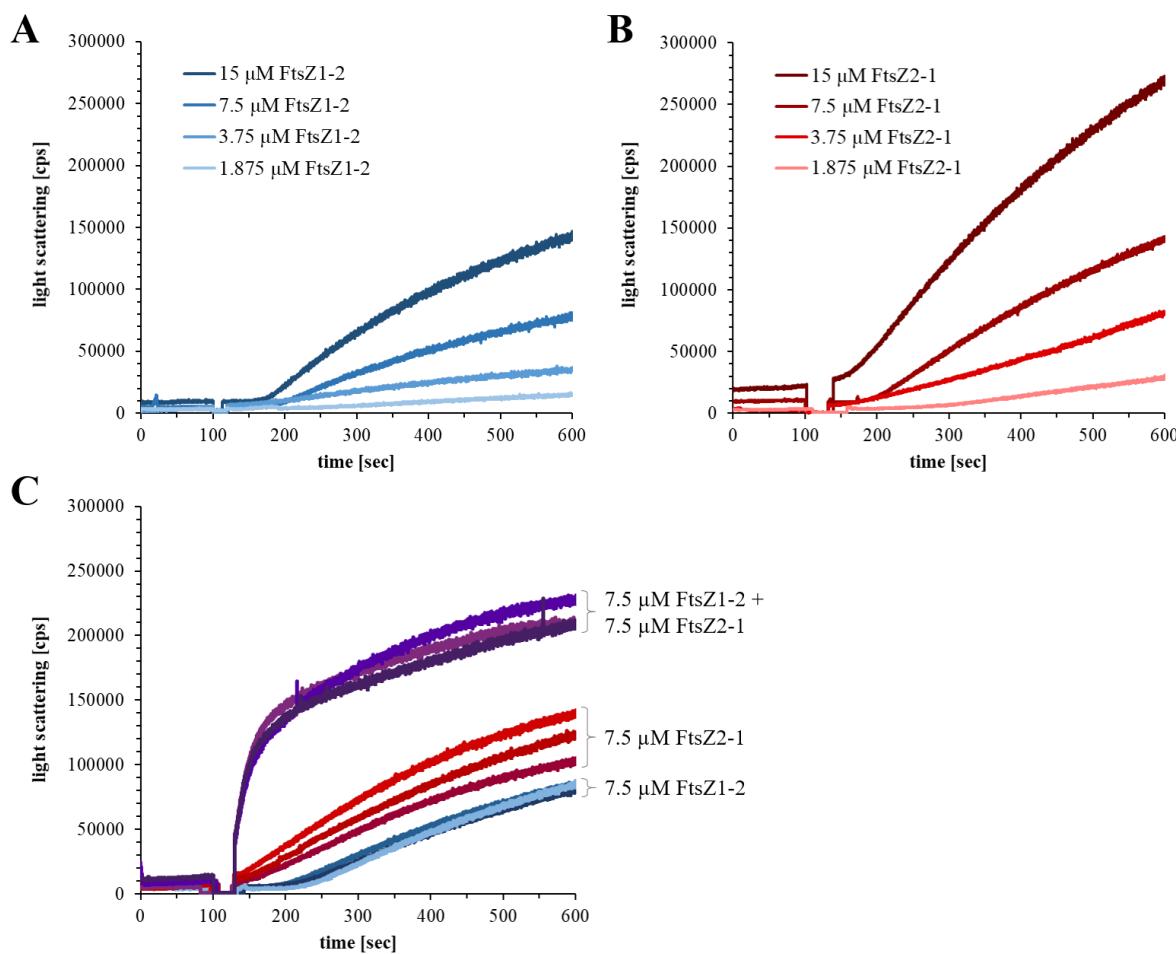
277

278
279

Figure 3 Cellular positioning of combined expression of Physcomitrella FtsZ1-2 and FtsZ2-1 fluorescent fusion proteins in *E. coli*.

280 Confocal fluorescence microscopy of *E. coli* cells co-expressing eGFP-tagged Physcomitrella FtsZ1-2
281 and mKO2Orange2-tagged Physcomitrella FtsZ2-1. Filamentous eGFP-FtsZ1-2-derived network
282 formation is highlighted with an arrow. Scale bars 5 μ m.
283
284

285 **3.4. Optimized purification of recombinant *Physcomitrella* FtsZ proteins**


286 To investigate whether *Physcomitrella* FtsZ1-2 and FtsZ2-1 can form plastoskeleton-like structures in
287 the absence of other proteins, we aimed to purify both proteins recombinantly produced in *E. coli*.
288 Overexpression and initial attempts to purify the C-terminally His-tagged *Physcomitrella* FtsZ1-2 and
289 FtsZ2-1 from *E. coli* revealed that both proteins were partially localized in inclusion bodies. Purification
290 of the soluble fractions using standard affinity purification protocols resulted in relatively low yields
291 and highly contaminated protein samples. Consequently, we sought to optimize the expression
292 strategies for both FtsZ isoforms. To enhance the stability of the FtsZ proteins and reduce inclusion
293 body formation, *Physcomitrella* FtsZ1-2 and FtsZ2-1, lacking the N-terminal transit peptides of 86 and
294 42 amino acids, respectively (Table 1), were fused to an N-terminal His6-SUMO tag, which was cleaved
295 off after the first purification step. Various expression conditions were tested, with the highest amounts
296 of soluble protein obtained after growth in a simplified version of autoinduction medium at 25 °C, as
297 described by [70]. The buffer composition used during the purification process was subsequently
298 optimized. Both proteins exhibited significant aggregation at lower and neutral pH values, as well as at
299 higher salt concentrations. Stabilization was achieved in the presence of GDP and glycerol, whereas the
300 presence of sodium inhibited activity after purification. The optimized purification buffer compositions
301 were as follows: for FtsZ1-2, 50 mM glycine (pH 9.5), 150 mM KCl, 1 mM MgCl₂, and 5% glycerol;
302 for FtsZ2-1, 25 mM glycine (pH 10.5), 50 mM KCl, 1 mM MgCl₂, and 5% glycerol. This resulted in
303 highly enriched FtsZ1-2 or FtsZ2-1, respectively (Supplemental Figure S8).

304

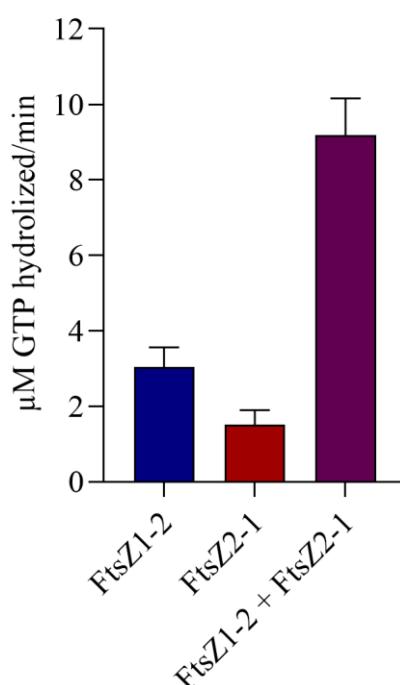
305 **3.5. *In vitro*-polymerization of *Physcomitrella* FtsZ1-2 and FtsZ2-1**

306 To evaluate the activity of both FtsZ proteins, polymer formation was assessed using light-scattering
307 assays. This method is highly effective for monitoring FtsZ filament formation in real-time, as the
308 intensity of light scattering is directly proportional to the mass of polymers formed [71]. The light-
309 scattering experiments were performed using the optimized purification buffers. For both proteins, a
310 protein concentration-dependent increase in light scattering was observed upon the addition of GTP,
311 indicating the formation of FtsZ filaments (Figure 4A and B). Interestingly, both proteins exhibited an
312 initial lag phase following GTP addition, during which no increase in light scattering was detected.
313 Attempts to enhance the polymerization rate of the two FtsZ proteins by altering the buffer conditions
314 to those typically favouring polymerizations in other FtsZ proteins, such as lowering the pH or
315 increasing the potassium concentration, resulted in protein precipitation. However, when equal
316 concentrations of the two FtsZ proteins were combined, a significantly faster increase in light scattering
317 was observed after GTP addition, indicating a synergistic interaction between the two proteins (Figure
318 4 C).

319

320

321


Figure 4 Light scattering experiments with FtsZ1-2 and FtsZ2-1, individually and in combination.

322 Light scattering experiments were conducted at 25 °C and GTP was added after 100 sec at a final
323 concentration of 5 mM. Individual light scattering experiments were performed using 1.875 μM,
324 3.5 μM, 7.5 μM or 15 μM of either of FtsZ1-2 in buffer C (A) or FtsZ2-1 in buffer B (B). The combined
325 light scattering experiments were performed in a buffer containing 37.5 mM glycine (pH 10), 100 mM
326 KCl, 5 mM MgCl₂, and 5% glycerol. For these experiments, 7.5 μM of each FtsZ1-2 and FtsZ2-1 were
327 mixed and analysed in technical triplicates. Additionally, 7.5 μM of each FtsZ variant was measured
328 separately in triplicates under the same buffer conditions (C). Light scattering in counts per seconds
329 (cps).

330

331 **3.6. *Physcomitrella* FtsZ proteins show GTPase activity *in vitro***

332 To further investigate the synergistic interaction between FtsZ1-2 and FtsZ2-1, the GTPase hydrolysis
333 rates of the proteins were measured. Both FtsZ proteins exhibited low but significant GTPase activities.
334 FtsZ1-2, which demonstrated a lower and slower increase in light scattering, displayed higher GTPase
335 activity compared to FtsZ2-1. Stoichiometric mixing of both FtsZ isoforms led to a significant increase
336 in GTPase activity, exceeding the activity observed for the individual proteins (Figure 5). This
337 observation further supports the existence of a synergistic interaction between the two FtsZ isoforms.

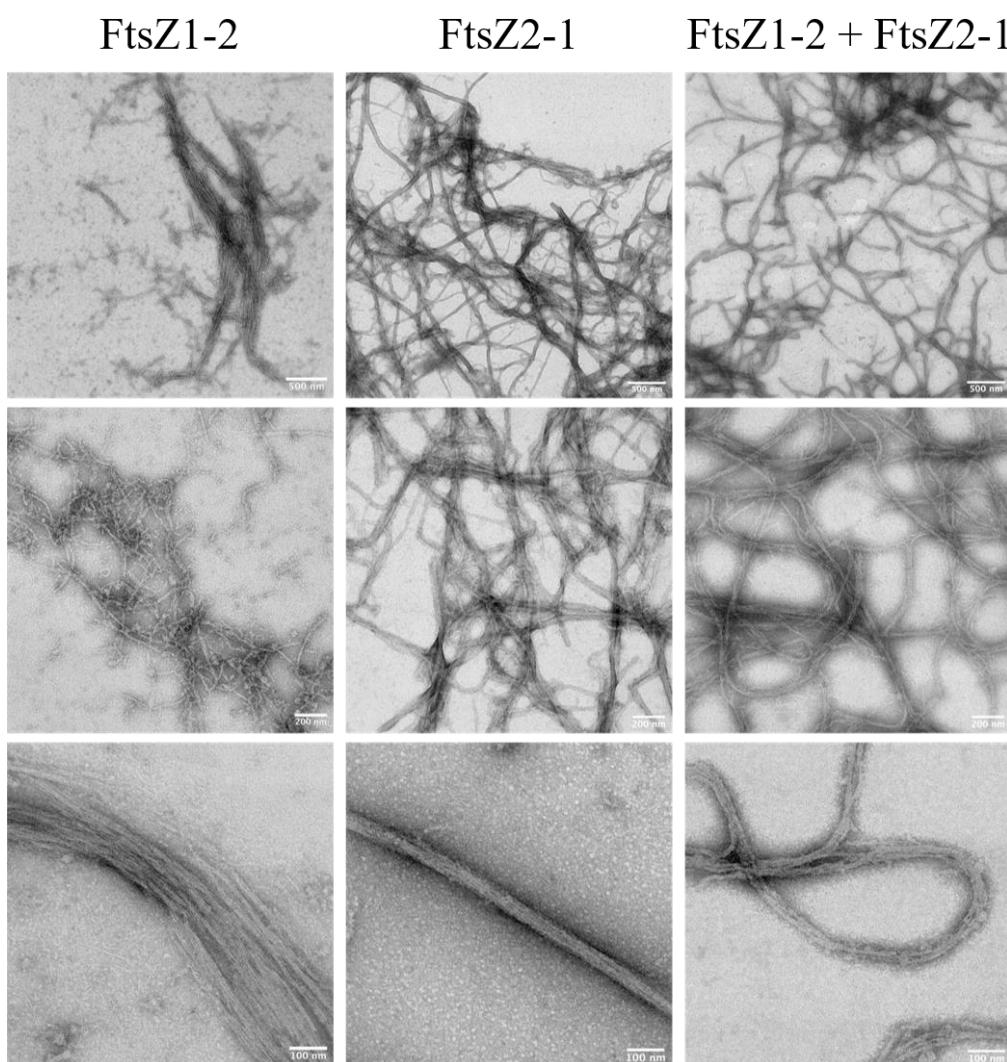
338

339

340 **Figure 5 GTPase activity of *Physcomitrella* FtsZ1-2 and FtsZ2-1, individually and in
341 combination.**

342 GTPase assays were performed at 25 °C using either 7.5 μM of FtsZ1-2 or 7.5 μM of FtsZ2-1
343 individually, or a mixture of 7.5 μM FtsZ1-2 with 7.5 μM FtsZ2-1. The assays were performed in a
344 buffer containing 37.5 mM glycine (pH 10), 100 mM KCl, 5 mM MgCl₂, and 5% glycerol in the
345 presence of 1 mM GTP and conducted in technical triplicates. To account for background GTP auto-
346 hydrolysis, parallel reactions without FtsZ variants were included for each replicate. Background values
347 were subtracted from the corresponding experimental measurements. Absorbance was measured at 620
348 nm after a 10-minute incubation. The amount of free phosphate (μM) released per minute was
349 determined using a phosphate standard calibration curve. Data are presented as mean \pm standard
350 deviation from three technical replicates.

351


352

353 **3.7 GTP-dependent filament formation of FtsZ1-2 and FtsZ2-1**

354 The formation of FtsZ filaments was further investigated using negative-stain transmission electron
355 microscopy. Under the same conditions used for the GTPase and light-scattering experiments, filaments
356 were observed for both FtsZ1-2 and FtsZ2-1 when incubated in the presence of 2 mM GTP (Figure 6),
357 while no filaments were detected in the absence of GTP (Supplemental Figure S9). FtsZ1-2 formed

358 small protofilaments, which further assembled into wider filaments, adopting a straight, bundle-like
359 conformation. In contrast, FtsZ2-1 mainly polymerized into curved filaments with straight filaments
360 being observed only occasionally. While filament bundles formed from FtsZ1-2 were wider, those
361 formed from FtsZ2-1 were notably thinner. When FtsZ1-2 and FtsZ2-1 were co-incubated in the
362 presence of GTP, both curved and straight filaments were observed with occasionally single
363 protofilaments also present. Overall the appearance of the filaments more closely resembled that of
364 FtsZ2-1. However, it was not possible to distinguish between FtsZ1-2, FtsZ2-1, or potential hybrid
365 FtsZ1-2/FtsZ2-1 filaments (Figure 6). In conclusion, purified *Physcomitrella* FtsZ1-2 and FtsZ2-1 are
366 active and capable of forming FtsZ filaments in the presence of GTP.

367

368
369

370 **Figure 6 Negative stain transmission electron microscopies of *Physcomitrella* FtsZ filaments.**
371 7.5 μ M of FtsZ1-2 (left), 7.5 μ M FtsZ2-1 (middle) and 7.5 μ M FtsZ1-2 mixed with 7.5 μ M FtsZ2-1
372 (right) were incubated at room temperature for 5 min with 2 mM GTP and then imaged by transmission
373 electron microscopy. Representative images are shown. Scale bars as indicated. Experiments were
374 repeated with two independent purifications with similar results.

375

376 **4. Discussion**

377 FtsZ proteins are GTPases and GTP binding is a prerequisite for their polymerization, and GTP
378 hydrolysis supports filament dynamics and turnover [21, 22, 34]. The moss *Physcomitrella* encodes five
379 different FtsZ proteins, suggesting neofunctionalisation of the different isoforms during evolution [30,
380 39, 40]. The interplay among the five FtsZ isoforms results in the formation of a filament network inside
381 the chloroplasts, where each isoform exhibits distinct filament characteristics [52]. Two of the five
382 isoforms (FtsZ1-2, FtsZ2-1) have relatively high expression levels in various moss tissues, indicating
383 division-independent, stable networks within the chloroplast [53]. Knowledge about the
384 polymer-forming properties of FtsZ1-2 and FtsZ2-1 as a GTP-driven non-equilibrium structure is of
385 particular interest to develop sustainable material systems [73]. Here, we expressed FtsZ1-2 and
386 FtsZ2-1 in *E. coli*. We studied the localization of fluorescence-tagged *Physcomitrella* FtsZ in *E. coli*
387 cells, established a purification protocol for the recombinant FtsZ isoforms, and characterized their
388 GTPase activity and polymerization *in vitro*. Expression of fluorescence-tagged *Physcomitrella* FtsZ1-2
389 and FtsZ2-1 in *E. coli* resulted in fluorescent foci and elongated cells. The distribution pattern of
390 fluorescence-tagged *Physcomitrella* FtsZ is similar to *E. coli* FtsZ tagged with GFP [74]. Elevated
391 levels of *E. coli* FtsZ tagged with GFP also localize in foci, and overexpression of *E. coli* FtsZ at least
392 10-fold above wild-type levels inhibits cell division, leading to filamentous cell shapes. In contrast,
393 mild overexpression induces the formation of minicells [74, 75]. The foci at higher FtsZ concentrations
394 were suggested to represent FtsZ nucleation sites [74]. In contrast, *Synechococcus elongatus* FtsZ
395 tagged with mCerulean and *Arabidopsis* FtsZ1 tagged with mVenus localize to long curved filaments
396 when expressed separately in yeast [23]. The localization of *Physcomitrella* FtsZ1-2 and FtsZ2-1 in
397 *E. coli* indicates that the FtsZ function is evolutionary conserved and that *Physcomitrella* FtsZ interferes
398 with cell division and morphology when overexpressed in *E. coli*.

399 To analyse the *in vitro*-polymerization of both *Physcomitrella* FtsZ isoforms individually and in
400 combination, GTPase assays and light scattering assays were performed. GTPase and light scattering
401 assays are FtsZ concentration dependent and are generally performed at concentrations between 1 and
402 15 μ M. For example, concentrations ranging up to 8 μ M for *Agrobacterium tumefaciens* FtsZ [63] and
403 12 μ M for *Bacillus subtilis* FtsZ and *E. coli* FtsZ [60] have been used previously. Notably, *E. coli* FtsZ
404 polymerizes rapidly and reaches a steady-state within only 30 seconds [72]. Indeed, both *Physcomitrella*
405 FtsZ proteins exhibited concentration-dependent polymerization at concentrations higher than \sim 2 μ M.
406 While the individual proteins exhibited a short lag phase prior to polymerization, a mixture of both
407 proteins initiated polymerization immediately. Although strong polymerization was observed, the
408 GTPase activity (\sim 0.2-0.4 GTP/min) was relatively low compared to that reported for FtsZ proteins
409 from other organisms [60]. This may, however, be attributed to the instability of both FtsZ proteins at
410 low and neutral pH as well as under high-salt conditions, limiting the assays to high-pH and low-salt
411 conditions. These conditions deviate from both the natural environment and the conditions under which

412 most FtsZ proteins exhibit optimal polymerization activity. GTP hydrolysis is essential for
413 depolymerization, and consistent with this, no depolymerization of the FtsZ proteins was observed
414 during the 10-minute duration of the experiments. Alternatively, our results support the idea [23] that a
415 low GTPase activity of plant FtsZ proteins compared to bacterial FtsZ is a conserved feature. One
416 reason might be that bacteria divide faster than chloroplasts, and thus require a higher GTPase activity
417 and faster assembly of the Z-ring. In contrast to bacteria, chloroplasts are not able to divide on their
418 own as chloroplast division relies on additional nuclear-encoded proteins [76]. This implies that only
419 the initiation of chloroplast division itself might take as much time as the whole division process in
420 bacteria. Furthermore, plant-specific components of the division machinery are involved in the rate of
421 chloroplast division, e.g. PLASTID DIVISION (PDV) proteins. The overexpression of PDV proteins
422 in both *Arabidopsis* and *Physcomitrella* led to an increase in chloroplast number and a decrease in
423 chloroplast size [76]. Additionally, the rates of chloroplast division might vary depending on the
424 developmental stage: during leaf development the level of PDV proteins decreased, leading to a
425 decrease in the chloroplast division rate [76]. This indicates another mechanism determining the rate of
426 chloroplast division, which might explain why chloroplasts take more time to divide, therefore not
427 depending on a high FtsZ GTPase activity. Thus, the relatively slow GTP-dependent polymerization of
428 the *Physcomitrella* FtsZ proteins at relatively high concentrations observed here is in accordance with
429 their participation in a plastoskeleton, which persists independent of the division process.

430 By performing Co-IPs, we confirmed that *Physcomitrella* FtsZ2-1 interacts with *Physcomitrella* FtsZ1
431 proteins *in vivo*. In FRET experiments, the *in-vivo* interaction between *Physcomitrella* FtsZ2-1 and
432 FtsZ1-1 was observed before [52]. Our Co-IPs were performed with an in-frame fusion of
433 *Physcomitrella* FtsZ2-1 with GFP at the endogenous locus and not with over-expression lines. Due to
434 the relatively low abundance and high similarity of these isoforms, the specific interacting FtsZ1
435 isoform could not be unequivocally identified based on the detected peptides. Consequently, it was
436 decided not to follow up on the approach to estimate the ratio of FtsZ1-2 and FtsZ2-1 forming
437 (hetero)polymers but to perform GTPase assays and polymerization assays with a mixture of
438 *Physcomitrella* FtsZ1-2 and FtsZ2-1 in a 1:1 ratio. This mixing resulted in a significantly enhanced
439 overall GTPase activity, suggesting that there is a synergistic interaction of the two FtsZ isoforms. This
440 result is different from findings regarding *Arabidopsis* FtsZ proteins [34], where no synergistic effects
441 were observed.

442 We were able to visualize GTP-dependent filament formation for both *Physcomitrella* FtsZ isoforms
443 using negative stain TEM, revealing distinct structural characteristics. For FtsZ1-2 small protofilaments
444 and larger filaments with a bundle-like architecture were observed, indicating that FtsZ1-2 primarily
445 polymerizes into small protofilaments, which subsequently assemble into straight filament bundles. In
446 contrast, FtsZ2-1 predominantly formed curved filaments, with straight filaments being less frequent.
447 No protofilaments were observed for this isoform. Additionally, a higher abundance of FtsZ2-1
448 filaments was observed in TEM images compared to FtsZ1-2. This is consistent with the light-scattering

449 data, which demonstrated that FtsZ2-1 achieved a higher scattering intensity (measured in counts per
450 second) than FtsZ1-2. The structural differences extended to filament thickness, where FtsZ1-2 bundles
451 were notably broader than those of FtsZ2-1. When both isoforms were co-incubated in the presence of
452 GTP, the resulting filaments displayed characteristics of both straight and curved morphologies, along
453 with occasional single protofilaments. Interestingly, the overall filament appearance was more similar
454 to FtsZ2-1. However, it was not possible to definitively attribute the observed filaments to FtsZ1-2,
455 FtsZ2-1, or hybrid assemblies. Differences in the polymer-forming abilities of plant FtsZ proteins have
456 been previously reported. *Arabidopsis* FtsZ2 forms filaments similar to those of *Physcomitrella* FtsZ1-
457 2 as observed by TEM, whereas *Arabidopsis* FtsZ1 does not independently assemble into filaments
458 under the tested conditions [34]. In *Physcomitrella*, FtsZ2-1 is directly involved in plastid division [8,
459 41] leading to enlarged plastids in basal chloronema cells of the $\Delta ftsZ2-1$ mutant [41]. Furthermore,
460 chloroplasts of $\Delta ftsZ2-1$ cells show complete loss of chloroplast integrity [53]. In contrast, chloroplasts
461 in the chloronema cells of the $\Delta ftsZ1-2$ mutant did not show morphological differences compared to
462 WT cells [53]. This indicates that FtsZ2-1 is essential for maintaining chloroplast shape and integrity,
463 while FtsZ1-2 might be less important. While filaments of FtsZ2-1 are exclusively formed within the
464 chloroplast, FtsZ1-2 filaments apparently need to be longer, as they form long, extra-plastidic
465 extensions to connect multiple chloroplasts *via* stromules [43, 53]. In general, it is reasonable to assume
466 that differences in filament morphology are due to the underlying differences in GTPase activity and
467 polymerization dynamics.

468

469 **Conclusions**

470 We observed GTPase activity and *in-vitro* polymerization of *Physcomitrella* FtsZ1-2 and FtsZ2-1. We
471 confirmed the polymer formation of both FtsZ isoforms using TEM and show that *Physcomitrella* FtsZ1
472 isoforms were identified as significant interactors of *Physcomitrella* FtsZ2-1 *in vivo*. We present the
473 heterologous expression of eGFP-tagged *Physcomitrella* FtsZ1-2 and mKO2-tagged FtsZ2-1 in *E. coli*.
474 The observation that the over-expression of both *Physcomitrella* FtsZ isoforms in *E. coli* leads to
475 elongated bacterial cells confirms that the FtsZ function for bacterial and organelle division is
476 evolutionary conserved. Furthermore, our results provide insights into the polymer-forming properties
477 of *Physcomitrella* FtsZ1-2 and FtsZ2-1. Based on the mutant phenotypes [42, 53] the localization of
478 *Physcomitrella* FtsZ in *E. coli* (this study), the *in vivo* ([53] and this study) and our *in-vitro* studies, we
479 postulate different roles for FtsZ1-2 and FtsZ2-1 regarding the assembly of the plastoskeleton. These
480 diverse functions of FtsZ1-2 and FtsZ2-1, as well as their interaction, impact the formation of the
481 *Physcomitrella* plastoskeleton, abidingly shaping chloroplast morphology.

482

483 **5. Methods**

484 *5.1. Design of the expression vectors FtsZ1-2 and FtsZ2-1*

485 The coding sequences (CDS) for *PpFtsZ1-2* (Pp3c19_2490) and *PpFtsZ2-1* (Pp3c11_17860) according
486 to the *Physcomitrella* genome [78] were optimized for bacterial expression. Changes in the CDS were
487 made accordingly to a codon usage table derived from the analysis of 16,000 *E. coli* genes using a
488 custom Perl script and the GC content was concurrently increased (script written by Dr. Oguz Top).
489 The putative N-terminal transit peptides for *PpFtsZ1-2* (Pp3c19_2490) and *PpFtsZ2-1* (Pp3c11_17860)
490 were determined using the ChloroP 1.1 Prediction Server (<http://www.cbs.dtu.dk/services/ChloroP/>).
491 The codon-optimized sequences lacking the predicted N-terminal transit peptides (34 and 32 amino
492 acids, respectively, Table 1) were synthesized by Eurofins Genomics Germany GmbH, Ebersberg,
493 Germany. For cloning of the final construct of FtsZ2-1, the primers were designed starting at the codon
494 for amino acid 33. The fragments for FtsZ1-2 and FtsZ2-1 were amplified via PCR using the respective
495 primers (Supplemental Tables S3 and S4). The final expression vectors were subcloned into the
496 pLATE11 bacterial expression vector via Ligation Independent Cloning (LIC, aLICator LIC Cloning
497 and Expression Kit 1, untagged; Thermo Fisher Scientific, Waltham, USA) following the
498 manufacturer's instructions. The pLATE11 expression vector allows high levels of target protein
499 expression. The 8 x His-tag was integrated into the primer and added either to the N- terminus or the
500 C-terminus of the CDS.

501

502 *5.2. Design of the expression vectors pLATE_eGFP_His, pLATE_eGFP_FtsZ1-2_His,*
503 *pLATE_mKO2_His, pLATE_mKO2_FtsZ2-1_His*

504 To generate the expression vectors pLATE_eGFP_His, pLATE_eGFP_FtsZ1-2_His,
505 pLATE_mKO2_His, pLATE_mKO2_FtsZ2-1_His, the CDS of FtsZ1-2, FtsZ2-1, eGFP and
506 mKO2 (mKO2) were amplified via PCR using the respective primers (Supplemental Table S3 and
507 S4). The mKO2 template was kindly provided by Dr. Roland Nitschke. The inserts were then assembled
508 via Gibson cloning [80] and subcloned into the pJET1.2 vector (CloneJET PCR cloning kit, Thermo
509 Fisher Scientific) following the manufacturer's instructions. After identification of the recombinant
510 clones, the correct construct was used as a template to be amplified using the respective primers for
511 LIC cloning (Supplemental Table S3). The PCR fragments were subcloned into the pLATE11
512 expression vector via Ligation Independent Cloning following the manufacturer's instructions. To
513 create the construct containing both fluorescence-tagged FtsZ isoforms, the pLATE_eGFP_FtsZ1-
514 2_His vector was linearized using Nde I. Subsequently, the mKO2-FtsZ2-1 expression cassette,
515 amplified from the pLATE_mKO2_FtsZ2-1_His vector, was inserted into the corresponding site by
516 Gibson cloning.

517

518

519 **Table 2 Plasmids used in this study**

Plasmid	Relevant characteristics
pLATE_FtsZ1-2_His ₈	Overproduction FtsZ1-2 with C-terminal His ₈
pLATE_FtsZ2-1_His ₈	Overproduction FtsZ2-1 with C-terminal His ₈
pLATE_eGFP_His ₈	Overproduction eGFP with His ₈
pLATE_eGFP_FtsZ1-2_His ₈	Overproduction FtsZ1-2 with N-terminal eGFP and C-terminal His ₈
pLATE_mKOrange2_His ₈	Overproduction mKOrange2 with His ₈
pLATE_mKOrange2_FtsZ2-1_His ₈	Overproduction FtsZ2-1 with N-terminal mKOrange2 and C-terminal His ₈
pLATE_eGFP_FtsZ1-2_His ₈ _mKOrange2_FtsZ2-1_His ₈	Overproduction FtsZ1-2 with N-terminal eGFP and C-terminal His ₈ and overproduction FtsZ2-1 with N-terminal mKOrange2 and C-terminal His ₈
His ₆ _SUMO_FtsZ1-2	Overproduction FtsZ1-2 with N-terminal His ₆ and SUMO-tag
His ₆ _SUMO_FtsZ2-1	Overproduction FtsZ2-1 with N-terminal His ₆ and SUMO-tag
pLATE31-Cm	Overproduction CAT

520

521 *5.3. Design of the expression vectors His₆_SUMO_FtsZ1-2 and His₆_SUMO_FtsZ2-1*

522 The CDS of FtsZ1-2 and FtsZ2-1 lacking the N-terminal transit peptides (86 and 42 amino acids,
523 respectively) were amplified via PCR (Supplemental Table S4) and subcloned into the linearized
524 pSVA13429 vector [76] via Gibson cloning [80]. The final vectors were sequenced with SUMO_fwd
525 and T7_rev (Supplemental Table S4).

526

527 *5.4. Transformation of E. coli cells*

528 BL21 Star™ (DE3) One Shot® (Invitrogen, Thermo Fisher Scientific) or NiCo (Invitrogen, Thermo
529 Fisher Scientific) cells were transformed with vectors listed in Table 2 according to the manufacturer's
530 instructions.

531

532 *5.5. Generation of a FtsZ2-1-eGFP fusion line*

533 The coding sequence of eGFP combined with a flexible 18 bp linker [82] fused FtsZ2-1 at the
534 endogenous locus via homologous recombination as described [81]. Homologous flanks for the
535 integration were chosen to remove the endogenous stop codon. Restriction sites for Esp3I to release the
536 linearized transfection construct from the final vector backbone were included at the 5' and the 3' end
537 of the knock-in construct. All necessary parts were amplified with Phusion polymerase (Thermo Fisher
538 Scientific) and assembled into the pJet1.2 vector backbone (Thermo Fisher Scientific) via triple
539 template PCR as described [82]. PCRs were performed with the primers listed in Supplemental Table

540 S1. The plasmid linearized *via* Alw26I digestion as well as a plasmid for co-transfection containing a
541 neomycin resistance cassette [83] were purified via ethanol precipitation and transfection and selection
542 was performed as described [64, 84]. Plants surviving the selection procedure were screened by PCR
543 (Phire Polymerase, Thermo Fisher Scientific) for targeted integration of the knock-in construct at the
544 desired locus as described [81]. Sequences of primers used for cloning and screening are listed in
545 Supplemental Table S3. *Physcomitrella* WT as well as the employed eGFP fusion line #516 is available
546 from the International Moss Stock Center (IMSC, www.moss-stock-center.org) with accessions 40095
547 and 40960, respectively. The plasmid containing the knock-in construct is also available from the IMSC
548 under accession P1779.

549

550 *5.6. Co-immunoprecipitation*

551 Co-immunoprecipitations of the GFP-tagged FtsZ2-1 line was performed in biological triplicates using
552 GFP-Trap Magnetic Particles M-270 (ChromoTek, Planegg-Martinsried, Germany). In brief, 300 mg
553 homogenized protonema of the bait line (GFP-tagged FtsZ2-1, line #513) and WT were dissolved in
554 2 mL ice-cold extraction buffer (25 mM HEPES-KOH, pH 7.5, 2 mM EDTA, 100 mM NaCl, 200 nM
555 DTT, 0.5 % Triton X-100, 1 % plant protease inhibitor cocktail (PPI, P9599, Sigma Aldrich, St. Louis,
556 USA). All further steps were performed as described [81]. MS analyses were performed on a Q-
557 Exactive Plus instrument (Thermo Fisher Scientific) coupled to an UltiMate 3000 RSLC nano system
558 (Dionex, Thermo Fisher Scientific) as described [85]. A database search of the test Co-IPs was
559 performed with Mascot Server V2.7.0 (Matrix Science). Results were subsequently loaded into the
560 Scaffold™ 5 software (V5.0.1, Proteome Software) and proteins were accepted at an FDR = 1 and
561 peptides at an FDR = 0.5. Database search and label free quantitation of the quantitative CoIP were
562 performed as described [81] using *MaxQuant* (2.1.4.0; Cox and Mann, 2008). The database contained
563 all *Physcomitrella* V3.3 protein models [78] as well as a fusion sequence of FtsZ2.1 (Pp3c11_17860)
564 and eGFP Data analysis was performed in Perseus (V2.0.10.0 [83]). Proteins with at least two LFQ
565 values in at least one group (FtsZ or WT) were used and missing values were imputed from a normal
566 distribution with a down-shift of 1.8 and distribution width of 0.5. True interaction partners were
567 accepted at an FDR of 0.01 % and a p-value < 0.01. The resulting table containing significantly
568 interacting proteins is available from Supplemental Table S2.

569

570 *5.7. Preparation of transformed BL21 Star™ (DE3) cells for confocal microscopy*

571 For confocal microscopy, 3 mL of LB medium containing 50 mg/mL ampicillin (amp) and 1 % glucose
572 was inoculated with a colony of respective transformed BL21 Star™ (DE3) cells, picked from a LB/amp
573 agarose plate. The inoculated culture was then incubated overnight at 37° C while shaking. On the
574 subsequent day, 200 µL of this overnight culture was transferred to 2.8 mL of LB/amp and further
575 incubated for 3 hours at 37° C. Subsequently, 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG)

576 was added, and the culture was incubated for an additional 45 minutes. For confocal microscopy, 1-5
577 μ L of the respective bacterial solution was transferred to a microscopy glass slide. Then the samples
578 were embedded using ProLongTM Glass Antifade Mountant (Thermo Fisher Scientific), covered with a
579 cover slide, and stored in darkness for 24 hours prior to confocal microscopy.

580

581 *5.8. Confocal microscopy of transformed BL21 StarTM (DE3) cells*

582 All images were taken with a Zeiss LSM880 NLO microscope (Carl Zeiss Microscopy GmbH, Jena,
583 Germany) using Plan-Apochromat 40x/1.4 Oil DIC(UV)VIS-IR objective with a zoom factor of 2. For
584 the excitation the laser was applied at 488 nm (eGFP) or 561 nm (mKO2) with an intensity of 2 % or
585 5 %, respectively. For eGFP images the pinhole was adjusted to 100.5 AU (12.11 μ m), and for mKO2
586 the pinhole was set to 115.4 AU (18.54 μ M), while no emission filter was used. The detection range
587 was set to 500-550 nm for the eGFP fluorescence and 560-600 nm for the mKO2 fluorescence.

588

589 *5.9. Overexpression and purification of His₆_SUMO_FtsZ1-2 and His₆_SUMO_FtsZ2-1*

590 NiCo cells (Invitrogen, Thermo Fisher Scientific) were transformed with the plasmids
591 His₆_SUMO_FtsZ1-2 and His₆_SUMO_FtsZ2-1, then directly transferred to 200 mL of LB medium
592 containing 50 mg/L kanamycin and 0.025% glucose. Cultures were grown overnight at 37 °C and
593 subsequently used to inoculate 1 litre of a simplified autoinduction medium (based on [70]) in a 5 L
594 baffled flask, to an OD₆₀₀ of 0.025. The medium contained 100 mg/L kanamycin, 6 g/L Na₂HPO₄, 3 g/L
595 KH₂PO₄, 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl. Glucose, lactose, and glycerol were
596 autoclaved separately as a 20× stock and added to achieve final concentrations of 3 g/L glucose, 8 g/L
597 lactose, and 11 g/L glycerol. The culture was grown at 37 °C until reaching an OD₆₀₀ of 1.0, after which
598 the temperature was lowered to 22 °C, and growth continued overnight. The next day, OD₆₀₀ was
599 monitored hourly until it remained constant for 2 hours. Cells were harvested by centrifugation at 7,500
600 rpm (SS-34 rotor) at 4 °C, washed with either buffer A (50 mM glycine, pH 9.5, 50 mM KCl, 1 mM
601 MgCl₂, 5% glycerol) containing 20 mM imidazole for FtsZ1-2, or buffer B (25 mM glycine, pH 9.5,
602 150 mM KCl, 1 mM MgCl₂, 5% glycerol) containing 20 mM imidazole for FtsZ2-1, and centrifuged
603 again. The supernatant was removed, and the cell pellets were flash-frozen in liquid nitrogen and stored
604 at -80 °C. Frozen pellets were thawed on ice and resuspended in their respective buffers (A or B)
605 containing 20 mM imidazole. All subsequent steps, including purification, were performed on ice or at
606 4 °C. Cells were lysed by passing them through a French press three times, followed by centrifugation
607 at 7,500 rpm (SS-34 rotor) and then at 45,000 rpm (Ti-60 rotor). Purification was performed using an
608 ÄKTA Purifier system (Cytiva). The supernatant was loaded onto a 5 mL HisTrap FF column (Cytiva)
609 equilibrated with buffer A or B containing 20 mM imidazole at a flow rate of 0.5 mL/min. The column
610 was washed with the same buffer at 2 mL/min until the OD₂₈₀ stabilized. Proteins were eluted with
611 buffer A or B containing 250 mM imidazole at 0.5 mL/min, and fractions containing protein were

612 collected and pooled. The His₆-SUMO tag was removed by cleavage with His-Ulp1 protease (80
613 ng/mL) for 6 hours at 4 °C in the presence of 2 mM DTT, 0.1% ND-40, and 500 μM GDP. SUMO
614 protease was produced in-house [79, 86]. Proteins were concentrated using Pierce™ Protein
615 Concentrators PES (10 kDa MWCO, Thermo Fisher Scientific). The concentrated proteins were applied
616 to a HiLoad® 16/600 Superdex® 200 pg (Cytiva) size-exclusion column equilibrated with buffer C (50
617 mM glycine, pH 10.5, 50 mM KCl, 1 mM MgCl₂, 5% glycerol) for FtsZ1-2 or buffer B for FtsZ2-1.
618 Protein concentrations in fractions containing FtsZ1-2 and FtsZ2-1 were determined using the Pierce
619 BCA Protein Assay Kit (Thermo Fisher Scientific) according to the manufacturer's instructions.
620

621 *5.10. GTP hydrolysis assay*

622 The GTPase activity was assessed using the malachite green assay. Experiments were conducted in a
623 buffer containing 37.5 mM glycine (pH 10), 100 mM KCl, 5 mM MgCl₂, and 5% glycerol, with a total
624 reaction volume of 50 μL. At 25 °C, released phosphate increased linearly for at least 15 minutes and
625 therefore the assay was performed at 25 °C for 10 minutes. The reaction was initiated by adding GTP
626 to a final concentration of 1 mM and stopped by the addition of EDTA to a final concentration of 10
627 mM. A 20 μL aliquot of the reaction mixture was incubated with 80 μL of malachite green working
628 reagent. Control reactions lacking either GTP or protein were performed under identical conditions.
629 Absorbance at 620 nm was measured using a plate reader (CLARIOstar® Plus, BMG LABTECH
630 GmbH, Ortenberg, Germany), and the amount of free phosphate in each sample was calculated using a
631 phosphate standard calibration curve.
632

633 *5.11. Light Scattering Assays*

634 Experiments were conducted using a temperature-controlled FluoroMax-4 spectrofluorometer (Horiba
635 Scientific) at 25 °C. The excitation and emission wavelengths were set to 350 nm, with an excitation
636 bandwidth of 1 nm and an emission bandwidth of 0.5 nm. Filament formation was initiated by the
637 addition of GTP to a final concentration of 5 mM. FtsZ1-2 and FtsZ2-1 were measured individually in
638 buffers C and B in the presence of 5 mM MgCl₂, and for the experiments were FtsZ1-2 and FtsZ2-1
639 were mixed in a buffer D containing 37.5 mM glycine (pH 10), 100 mM KCl, 5 mM MgCl₂, and 5%
640 glycerol.
641

642 *5.12. Transmission electron microscopy of FtsZ filaments*

643 For polymerization studies, FtsZ proteins (7.5 μM FtsZ1-2, 7.5 μM FtsZ2-1, or 7.5 μM each of FtsZ1-
644 2 and FtsZ2-1) were incubated at 25 °C for 10 minutes with or without 5 mM GTP in a buffer containing
645 37.5 mM glycine (pH 10), 100 mM KCl, 5 mM MgCl₂, and 5% glycerol, in a total volume of 60 μL. A
646 5 μL aliquot of each sample was immediately applied to freshly glow-discharged carbon/Formvar-
647 coated copper grids (300 mesh; Plano GmbH) and incubated for 30 seconds. Excess liquid was blotted

648 away, and the grids were washed three times with ddH₂O, followed by negative staining with 2% uranyl
649 acetate. Images were acquired using a Hitachi HT7800 transmission electron microscope operated at
650 100 kV and equipped with an EMSIS Xarosa 20-megapixel CMOS camera.

651

652 **6. References**

653

654 [1] Leister, D. Genetic engineering, synthetic biology and the light reactions of photosynthesis. *Plant*
655 *Phys.* **179**, 778–793 (2019).

656

657 [2] Gould, S.B., Waller, R.F., McFadden, G.I. Plastid evolution. *Ann. Rev. Plant Biol.* **59**, 491–517
658 (2008).

659

660 [3] Keeling, P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. *Ann.*
661 *Rev. Plant Biol.* **64**, 583–607 (2013).

662

663 [4] Zimorski, V., Ku, C., Martin, W.F., Gould, S.B. Endosymbiotic theory for organelle origins. *Curr.*
664 *Op. Microbio.* **22**, 38–48 (2014).

665

666 [5] Martin, W., et al. Gene transfer to the nucleus and the evolution of chloroplasts. *Nature* **393**, 162–
667 165 (1998).

668

669 [6] McFadden, G.I. Endosymbiosis and evolution of the plant cell. *Curr. Op. Plant Bio.* **2**, 513–519
670 (1999).

671

672 [7] Osteryoung, K.W., Vierling, E. Conserved cell and organelle division. *Nature* **376**, 473–474 (1995).

673

674 [8] Strepp, R., Scholz, S., Kruse, S., Speth, V., Reski, R. Plant nuclear gene knockout reveals a role in
675 plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. *PNAS*
676 **95**, 4368–4373 (1998).

677

678 [9] Hirano, T., et al. Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino
679 acids. *Plant Cell* **28**: 1521–1532 (2016).

680

681 [10] MacLeod, A.I., Knopp, M.R., Gould, S.B. A mysterious cloak: the peptidoglycan layer of algal
682 and plant plastids. *Protoplasma* **261**, 173–178 (2023).

683

684 [11] Bisson-Filho, A.W., et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and
685 bacterial cell division. *Science* **355**, 739–743 (2017).

686

687 [12] Barrows, J.M., Goley, E.D. FtsZ dynamics in bacterial division: What, how, and why? *Curr. Op.*
688 *Cell Biol.* **68**, 163–172 (2021).

689

690 [13] Dai, K., Lutkenhaus, J. *ftsZ* is an essential cell division gene in *Escherichia coli*. *J. Bac.* **173**, 3500–
691 3506 (1991).

692

693 [14] Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., Lee, W.Y. Chloroplast division
694 in higher plants requires members of two functionally divergent gene families with homology to
695 bacterial *ftsZ*. *Plant Cell* **10**, 1991–2004 (1998).

696

697 [15] Lutkenhaus, J.F., Wolf-Watz, H., Donachie, W.D. Organization of genes in the ftsA-envA region
698 of the *Escherichia coli* genetic map and identification of a new fts locus (ftsZ). *J. Bac.* **142**, 615–620
699 (1980).

700

701 [16] Bi, E., Lutkenhaus, J. FtsZ ring structure associated with division in *Escherichia coli*. *Nature* **354**,
702 161–164 (1991).

703

704 [17] Vitha, S., McAndrew, R.S., Osteryoung, K.W. FtsZ ring formation at the chloroplast division site
705 in plants. *J. Cell Bio.* **153**, 111–119 (2001).

706

707 [18] Yoshida, Y., Mogi, Y., TerBush, A.D., Osteryoung, K.W. Chloroplast FtsZ assembles into a
708 contractile ring via tubulin-like heteropolymerization. *Nat. Plants* **2**, 16095 (2016).

709

710 [19] Yang, X., et al. GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal
711 cell wall synthesis. *Science* **355**, 744–747 (2017).

712

713 [20] Kasten, B., Reski, R. beta-lactam antibiotics inhibit chloroplast division in a moss (*Physcomitrella*
714 *patens*) but not in tomato (*Lycopersicon esculentum*). *J. Plant Phys.* **150**, 137–140 (1997).

715

716 [21] de Boer, P., Crossley, R., Rothfield, L. The essential bacterial cell-division protein FtsZ is a
717 GTPase. *Nature* **359**, 254–256 (1992).

718

719 [22] Smith, A.G., Johnson, C.B., Vitha, S., Holzenburg, A. Plant FtsZ1 and FtsZ2 expressed in a
720 eukaryotic host: GTPase activity and self-assembly. *FEBS Lett.* **584**, 166–172 (2010).

721

722 [23] Porter, K.J., Cao, L., Osteryoung, K.W. Dynamics of the *Synechococcus elongatus* cytoskeletal
723 GTPase FtsZ yields mechanistic and evolutionary insight into cyanobacterial and chloroplast FtsZs. *J.*
724 *Biol. Chem.* **299**, 102917 (2023).

725

726 [24] Erickson, H.P. FtsZ, a prokaryotic homolog of tubulin? *Cell* **80**, 367–370 (1995).

727

728 [25] Santana-Molina, C., del Saz-Navarro, D., Devos, D.P. Early origin and evolution of the
729 FtsZ/tubulin protein family. *Front. Microbio.* **13**, 1100249 (2023).

730

731 [26] Kiessling, J., et al. Visualization of a cytoskeleton-like FtsZ network in chloroplasts. *J. Cell Bio.*
732 **151**, 945–950 (2000).

733

734 [27] Lutkenhaus, J., Addinall, S.G. Bacterial cell division and the Z ring. *Ann. Rev. Biochem.* **66**, 93–116
735 (1997).

736

737 [28] Osteryoung, K.W., Nunnari, J. The division of endosymbiotic organelles. *Science* **302**, 1698–1704
738 (2003).

739

740 [29] Ithurbide, S., Gribaldo, S., Albers, S.-V., Pende, N. Spotlight on FtsZ-based cell division in
741 archaea. *Trends Microbio.* **30**, 665–678 (2022).

742

743 [30] Rensing, S.A., Kiessling, J., Reski, R., Decker, E.L. Diversification of ftsZ during early land plant
744 evolution. *J. Mol. Evol.* **58**, 154–162 (2004).

745
746 [31] Miyagishima, S., et al. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts:
747 The duplication of FtsZ is implicated in endosymbiosis. *J. Mol. Evol.* **58**, 291–303 (2004).
748
749 [32] TerBush, A.D., Yoshida, Y., Osteryoung, K.W. FtsZ in chloroplast division: structure, function
750 and evolution. *Curr. Op. Cell Bio.* **25**, 461–470 (2013).
751
752 [33] Olson, B.J.S.C., Wang, Q., Osteryoung, K.W. GTP-dependent heteropolymer formation and
753 bundling of chloroplast FtsZ1 and FtsZ2. *J. Biol. Chem.* **285**, 20634–20643 (2010).
754
755 [34] Porter, K.J., et al. The *Arabidopsis thaliana* chloroplast division protein FtsZ1 counterbalances
756 FtsZ2 filament stability *in vitro*. *J. Biol. Chem.* **296**, 100627 (2021).
757
758 [35] Löwe, J., Amos, L.A. Crystal structure of the bacterial cell-division protein FtsZ. *Nature* **391**, 203–
759 206 (1998).
760
761 [36] Osteryoung, K.W., McAndrew, R.S. The plastid division machine. *Ann. Rev. Plant Phys. Plant*
762 *Mol. Bio.* **52**, 315–333 (2001).
763
764 [37] Liu, X., et al. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division.
765 *Plant Cell* **34**, 419–432 (2022).
766
767 [38] TerBush, A.D., Porzondek, C.A., Osteryoung, K.W. Functional analysis of the chloroplast division
768 complex using *Schizosaccharomyces pombe* as a heterologous expression system. *Micros. Microanal.*
769 **22**, 275–289 (2016).
770
771 [39] Martin, A., et al. A uniquely high number of ftsZ genes in the moss *Physcomitrella patens*. *Plant*
772 *Bio.* **11**, 744–750 (2009).
773
774 [40] Grosche, C., Rensing, S.A. Three rings for the evolution of plastid shape: a tale of land plant FtsZ.
775 *Protoplasma* **254**, 1879–1885 (2017).
776
777 [41] Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., Frank, W. Specific gene silencing by artificial
778 microRNAs in *Physcomitrella patens*: An alternative to targeted gene knockouts. *Plant Phys.* **148**, 684–
779 693 (2008).
780
781 [42] Martin, A., et al. Targeted gene knockouts reveal overlapping functions of the five *Physcomitrella*
782 *patens* FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development,
783 and gravity sensing. *Mol. Plant* **2**, 1359–1372 (2009).
784
785 [43] Suppanz, I., Sarnighausen, E., Reski, R. An integrated physiological and genetic approach to the
786 dynamics of FtsZ targeting and organisation in a moss, *Physcomitrella patens*. *Protoplasma* **232**, 1–9
787 (2007).
788
789 [44] Reski, R. Challenges to our current view on chloroplasts. *Biol. Chem.* **390**, 731–738 (2009).
790
791 [45] Reski, R. Rings and networks: the amazing complexity of FtsZ in chloroplasts. *Trends Plant Sci.*
792 **7**, 103–105 (2002).

793

794 [46] Shih, Y.L., Rothfield, L. The bacterial cytoskeleton. *Microbio. Mol. Bio. Rev.* **70**, 729-754 (2006).

795

796 [47] Erickson, H.P., Anderson, D.E., Osawa, M. FtsZ in bacterial cytokinesis: Cytoskeleton and force

797 generator all in one. *Microbio. Mol. Biol. Rev.* **74**, 504-528 (2010).

798

799 [48] Loose, M., Mitchison, T.J. The bacterial cell division proteins FtsA and FtsZ self-organize into

800 dynamic cytoskeletal patterns. *Nat. Cell Bio.* **16**, 38-46 (2014).

801

802 [49] Wagstaff, J., Löwe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. *Nat. Rev. Microbio.* **16**, 187-201 (2018).

803

804

805 [50] Kiessling, J., et al. Dual targeting of plastid division protein FtsZ to chloroplasts and the cytoplasm. *EMBO Rep.* **5**, 889-894 (2004).

806

807

808 [51] Jost, W., et al. Isolation and characterization of three moss-derived beta-tubulin promoters suitable

809 for recombinant expression. *Curr. Gen.* **47**, 111-120 (2005).

810

811 [52] Gremillon, L. et al. Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in

812 the chloroplasts and in the cytosol of *Physcomitrella patens*. *New Phytol.* **176**, 299–310 (2007).

813

814 [53] Özdemir, B., et al. Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1

815 network characteristics in *Physcomitrella patens*. *Sci. Rep.* **8**, 11165 (2018).

816

817 [54] Köhler, R.H., Cao, J., Zipfel, W.R., Webb, W.W., Hanson, M.R. Exchange of protein molecules

818 through connections between higher plant plastids. *Science* **276**, 2039-2042 (1997).

819

820 [55] Asgharzadeh, P., et al. (2020) A NanoFE simulation-based surrogate machine learning model to

821 predict mechanical functionality of protein networks from live confocal imaging. *Comp. Struct.*

822 *Biotech. J.* **18**, 2774-2788 (2020).

823

824 [56] Asgharzadeh, P., Özdemir, B., Reski, R., Röhrle, O., Birkhold, A.I. Computational 3D imaging to

825 quantify structural components and assembly of protein networks. *Acta Biomat.* **69**, 206-217 (2018).

826

827 [57] Özdemir, B., Reski, R. Automated and semi-automated enhancement, segmentation and tracing of

828 cytoskeletal networks in microscopic images: A review. *Comp. Struc. Biotech. J.* **19**, 2106-2120 (2021).

829

830 [58] te Brinke, E., et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils.

831 *Nat. Nanotech.* **13**, 849-855 (2018).

832

833 [59] Kalyan, B.G.P., Kumar, L. 3D printing: Applications in tissue engineering, medical devices, and

834 drug delivery. *AAPS PharmSciTech.* **23**, 92 (2022).

835

836 [60] Król, E., Scheffers, D.J. FtsZ polymerization assays: Simple protocols and considerations. *J. Vis.*

837 *Exp.* **81**, 50844 (2013).

838

839 [61] Howell, M., et al. *Agrobacterium tumefaciens* divisome proteins regulate the transition from polar

840 growth to cell division. *Mol. Microbio.* **111**, 1074–1092 (2019).

841

842 [62] Liao, Y., Ithurbide, S., Evenhuis, C., Löwe, J., Duggin, I.G. Cell division in the archaeon *Haloferax*
843 *volcanii* relies on two FtsZ proteins with distinct functions in division ring assembly and constriction.
844 *Nat. Microbiol.* **6**, 594-605 (2021).

845

846 [63] Ithurbide, S., Gribaldo, S., Albers, S.V., Pende, N. Spotlight on FtsZ-based cell division in
847 Archaea. *Trends Microbiol.* **30**, 665-678 (2022).

848

849 [64] Hohe, A., et al. An improved and highly standardised transformation procedure allows efficient
850 production of single and multiple targeted gene-knockouts in a moss, *Physcomitrella patens*. *Curr. Gen.*
851 **44**, 339-347 (2004).

852

853 [65] Wiedemann, G., et al. RecQ helicases function in development, DNA repair and gene targeting in
854 *Physcomitrella patens*. *Plant Cell* **30**, 717-736 (2018).

855

856 [66] Cox, J., Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range
857 mass accuracies and proteome-wide protein quantification. *Nat. Biotech.* **26**, 1367–1372 (2008).

858

859 [67] Cox, J., et al. Accurate proteome-wide label-free quantification by delayed normalization and
860 maximal peptide ratio extraction, termed MaxLFQ. *Mol. Cell. Prot.* **13**, 2513–2526 (2014).

861

862 [68] Mistry, J., et al. Pfam: The protein families database in 2021. *Nucl. Acids Res.* **49**, D412–D419
863 (2021).

864

865 [69] Brennan, P. drawProteins: a Bioconductor/R package for reproducible and programmatic
866 generation of protein schematics. *F1000Res.* **7**, 1105 (2018).

867

868 [70] Studier, F.W. Stable expression clones and auto-induction for protein production in *E. coli*. *Meth.*
869 *Mol. Bio.* **1091**, 17-32 (2014).

870

871 [71] Mukherjee, A., Lutkenhaus, J. Analysis of FtsZ assembly by light scattering and determination of
872 the role of divalent metal cations. *J. Bac.* **181**, 823–832 (1999).

873

874 [72] Mukherjee, A., Lutkenhaus, J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. *EMBO J.*
875 **17**, 462-469 (1998).

876

877 [73] Özdemir, B., Asgharzadeh, P., Birkhold, A., Röhrle, O., Reski, R. The plastid skeleton: a source
878 of ideas in the nano range in *Biomimetics for Architecture: Learning from Nature* (eds. Knippers, J.,
879 Schmid, U., Speck, T.) 163-166 (Birkhauser Verlag AG, 2019).

880

881 [74] Ma, X., Ehrhardt, D.W., Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to
882 cytoskeletal structures in living *Escherichia coli* cells by using green fluorescent protein. *PNAS* **93**,
883 12998–13003 (1996).

884

885 [75] Ward, J.E. Jr., Lutkenhaus, J. Overproduction of FtsZ induces minicell formation in *E. coli*. *Cell*
886 **42**, 941-949 (1985).

887

888 [76] Okazaki K., et al. The PLASTID DIVISION1 and 2 components of the chloroplast division
889 machinery determine the rate of chloroplast division in land plant cell differentiation. *Plant Cell* **21**,
890 1769-1780 (2009).

891

892 [77] Zupan, J.R., Cameron, T.A., Anderson-Furgeson, J., Zambryski, P.C. Dynamic FtsA and FtsZ
893 localization and outer membrane alterations during polar growth and cell division in *Agrobacterium*
894 *tumefaciens*. *PNAS* **110**, 9060–9065 (2013).

895

896 [78] Lang, D., et al. The *Physcomitrella patens* chromosome-scale assembly reveals moss genome
897 structure and evolution. *Plant J.* **93**, 515-533 (2018).

898

899 [79] Nußbaum, P., et al. PRC domain-containing proteins modulate FtsZ-based archaeal cell division.
900 *bioRxiv* <https://doi.org/10.1101/2023.03.28.534543> (2023).

901

902 [80] Gibson, D.G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* **6**, 343–345 (2009).

903

904

905 [81] Hoernstein, S.N.W., et al. A deeply conserved protease, acylamino acid-releasing enzyme
906 (AARE), acts in ageing in *Physcomitrella* and *Arabidopsis*. *Comm. Biol.* **6**, 61 (2023).

907

908 [82] Tian, G.W., et al. High-throughput fluorescent tagging of full-length *Arabidopsis* gene products *in*
909 *planta*. *Plant Phys.* **135**, 25-38 (2004).

910

911 [83] Mueller, S.J., et al. Quantitative analysis of the mitochondrial and plastid proteomes of the moss
912 *Physcomitrella patens* reveals protein macrocompartmentation and microcompartmentation. *Plant*
913 *Phys.* **164**, 2081-2095 (2014).

914

915 [84] Hohe, A., Reski, R. Optimisation of a bioreactor culture of the moss *Physcomitrella patens* for
916 mass production of protoplasts. *Plant Sci.* **163**, 69–74 (2002).

917

918 [85] Top, O., et al. Expression of a human cDNA in moss results in spliced mRNAs and fragmentary
919 protein isoforms. *Comm. Biol.* **4**, 964 (2021).

920

921 [86] Lau, Y.K., et al. Discovery and engineering of enhanced SUMO protease enzymes. *J. Biol. Chem.*
922 **293**, 13224-13233 (2018).

923

924 [87] Zhang, Y., Wen, Z., Washburn, M. P., Florens, L. Refinements to label free proteome quantitation:
925 how to deal with peptides shared by multiple proteins. *Anal. Chem.* **82**, 2272-2281 (2010).

926

927 **7. Acknowledgements**

928 This project was funded by the German Research Foundation DFG under Germany's Excellence
929 Strategy (*livMatS* - EXC-2193/1, Project ID 390951807, and CIBSS – EXC-2189, Project ID
930 390939984) to R.R. S.W.L.M. was supported by a state-funded completion scholarship of the
931 Landesgraduiertenförderung LGFG. M.J. was supported by a grant to Sonja-Verena Albers by the
932 Collaborative Research Centre SFB1381 funded by the DFG-Project-ID 403222702-SFB 1381. The
933 TEM (Hitachi HT7800) was funded by the DFG grant (project number 426849454) and is operated by
934 the University of Freiburg, Faculty of Biology, as a partner unit within the Microscopy and Image
935 Analysis Platform (MIAP) and the Life Imaging Center (LIC), Freiburg.

936 We thank Oğuz Top for codon optimizing the CDS of *Physcomitrella* FtsZ1-2 and FtsZ2-1 for bacterial
937 expression. We also thank the Life Imaging Center (LIC) of the University of Freiburg for help with
938 confocal microscopy. We thank Sonja-Verena Albers for providing the equipment for purification of
939 *Physcomitrella* FtsZ proteins and her overall support of this project, and Anne Katrin Prowse for
940 language editing.

941

942 **8. Author contributions**

943 S.W.L.M. designed the research, performed the experiments, analysed the data, and wrote the
944 manuscript. M.J. performed transmission electron microscopy. L.L.B. performed confocal microscopy,
945 designed figures and helped writing the manuscript. S.N.W.H. performed quantitative Co-IPs, analysis
946 of MS data and helped writing the manuscript. B.Ö. generated the FtsZ2-1-eGFP fusion line. E.L.D.
947 helped designing research and writing the manuscript. C.v.d.D. designed and performed experiments,
948 analysed data and helped writing the manuscript. R.R. designed and supervised the research, acquired
949 funding, and wrote the manuscript. All authors read and approved the final version of the manuscript.

950

951 **Data availability**

952 All relevant data is contained in the manuscript and in the supplementary materials. Plant material and
953 plasmids are available from the International Moss Stock Center (IMSC, www.moss-stock-center.org)
954 as described in the text.

955

956 **Competing Interests Statement**

957 All authors declare no conflict of interest.

958

959 **Supplementary Information**

960

961

962 **Table S1 Oligonucleotides and the respective template accessions or templates used for**
963 **the generation of the FtsZ2-1-eGFP fusion construct.**

964

Name	Sequence (5' to 3')
ftsZ2-1_5HR_Fwd	CGTCTCTCTGTTGGGCTTGAGGAA
ftsZ2-1_5HR_Rev	CTTGCTCACAGCTCCACCTCCACCTCCATGACGTGTCTGGCCTCGC
Kin 2-1 3'HR Rev	ACTCTCGGCATGGACGAGCTGTACAAGTAAAGGTCGTAACATTGGAATTAC
ftsZ2-1_3HR_Rev	CGTCTAACATGTGTGATCCGTTCG
Link_GFP_F	GGAGGTGGAGGTGGAGCTAGTAAAGGAGAAGAACCTTCAC
eGFP_Rev	GGCCCCAGCGGCCGCAGCAGCACCGCCTGTACAGCTCGTCCATGCC
FTSZ2_1_GFP_5int_fwd	GCCACAGGGATAGTCTGGAA
FTSZ2_1_GFP_5int_rev	GAACCTCAGGGTCAGCTTGC
FTSZ2_1_GFP_3int_fwd	CGACCACTACCAGCAGAACAA
FTSZ2_1_GFP_3int_rev	GTCTCACTGCGTCTCGTCA

965

966

967

968 **Table S2 List of proteins significantly interacting with *Physcomitrella* FtsZ2-1 as**
969 **determined by Co-IP and subsequent MS analysis.**

970

971 The list can be downloaded from Zenodo (<https://zenodo.org/records/10648779>).

972

973 **Table S3 Oligonucleotides used for Ligation Independent Cloning in this work.**

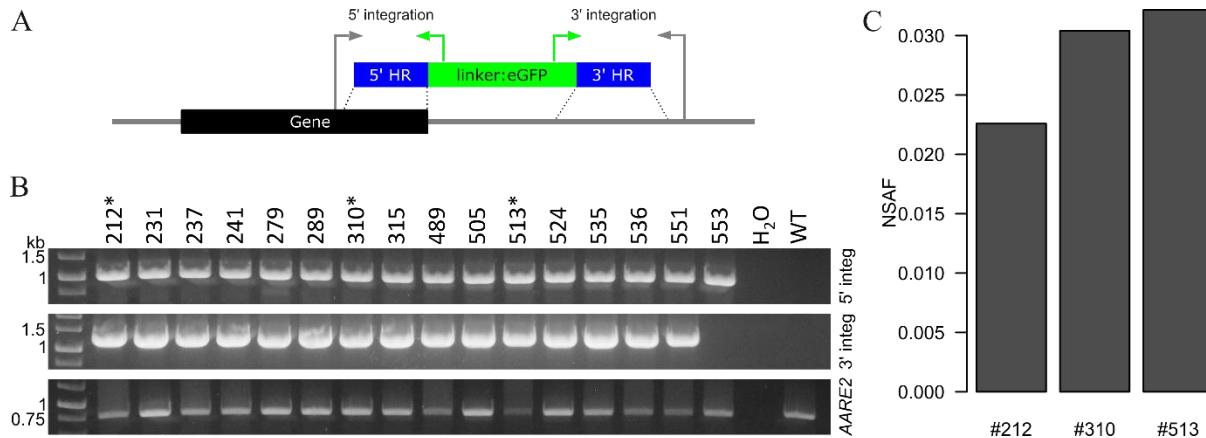
974 Due to the cloning strategy, all forward oligonucleotides (fwd) include the sequence
975 5' AGAAGGAGATATAACTATG 3' at their 5' end; all reverse oligonucleotides (rev) include the
976 sequence 5' GGAGATGGGAAGTCATTA 3' at their 5' end.

977

Name	Sequence (5' to 3')
C1pLATE_optiFtsZ1-2_fwd	GCTGTTCGTGTACCTCTCGTTGCC
C1optiFtsZ1-2_H_pLATE_rev	GTGGTGGTGGTGGTGGTGGTGCAGGAAACCTTACGGTT CAGACCCTG
C2pLATE_optieGFP_1-2_fwd	TTTCTAAAGGTGAAGAACTGTTCACCGGTG
C2optiFtsZ1-2_H_pLATE_rev	GTGGTGGTGGTGGTGGTGGTGCAGGAAACCTTACGGTT CAGACCCTG
C5pLATE_optieGFP_2-1_fwd	TTTCTAAAGGTGAAGAACTGTTCACCGGTG
C5optiFtsZ2-1_H_pLATE_rev	GTGGTGGTGGTGGTGGTGGTGGTGGTACGGGCTGACCAC TTTACG
C6pLATE_optiFtsZ2-1_fwd	TCTATGCACTCTCGTTCTCTGTTCG
C6optiFtsZ2-1_H_pLATE_rev	GTGGTGGTGGTGGTGGTGGTGGTGGTACGGGCTGACCAC GTTTA
C9_mKO2_optiFtsZ2-1_pLATE_fwd	AGAAGGAGATATAACTATGGTGAGTGTGATTAAACCAGAGA
C9_mKO2_optiFtsZ2-1_pLATE_H_rev	GGAGATGGGAAGTCATTAGTGGTGGTGGTGGTGGTGGTGGTGGT GGTACGGGCTGACCACG
C9_mKO2_H_pLATE_fwd	AGAAGGAGATATAACTATGGTGAGTGTGATTAAACCAGAGA TG
C9_mKO2_H_pLATE_rev	GGAGATGGGAAGTCATTAGTGGTGGTGGTGGTGGTGGTGGTGGT GTGAATGAGCTACTGCATCTTCTACC

978

979 **Table S4 Oligonucleotides used for Gibson cloning and sequencing in this work.**


980

Name	Sequence (5' to 3')
pre3pJET_oFtsZ1-2_fwd	TCTTCCGGATGGCTCGAGTTTCAGCAAGATATGGTCGTGTTACCTCTCGTGCCTG
pre3oFtsZ1-2_eGFP_rev	ACAACACCGGTGAACAGTTCTCACCTTAGAAACCAGGAAACCTTACGGTTCAGACCTG
pre3oFtsZ1-2_eGFP_fwd	TGTTCCGTAGGGTCTGAACCGTAAAGGTTCTGGTTCTAAAGGTGAAGAACTGTTCACCGGT
pre37oeGFP_pJET_rev	TGAGAATATTGTAGGAGATCTCTAGAAAGATTATTGTACAGTCGTCCATACCCAGGGT
pre7pJET_oFtsZ2-1_fwd	TCTTCCGGATGGCTCGAGTTTCAGCAAGATATGTCTATGCACTCTCGTCTGTTCG
pre7oFtsZ1-2_eGFP_rev	ACAACACCGGTGAACAGTTCTCACCTTAGAAACGTGACGGTCTGACCACGTTA
pre7oFtsZ1-2_eGFP_fwd	CGTCTTCCTCGTAAACGTGGTCAGACCCGTCACGTTCTAAAGGTGAAGAACTGTTCACCGGT
pre2oeGFP_FtsZ1-2_rev	GCACCCAGCCAACGGCAACGAGAGGTAACACGAACCTTGTCAGTCGTCCATACCCAGGGT
pre2oeGFP_FtsZ1-2_fwd	CTGGTATCACCCTGGGTATGGACGAACGTACAAAGTTCTGTTACCTCTCGTGTTCG
pre2oFtsZ1-2_pJET_rev	TGAGAATATTGTAGGAGATCTCTAGAAAGATTACAGGAAACCTTACGGTTCAGACCTG
pre25pJET_oeGFP_fwd	TCTTCCGGATGGCTCGAGTTTCAGCAAGATATGGTTCTAAAGGTGAAGAACTGTTCACCGGT
pre5oeGFP_FtsZ2-1_rev	CGCAGAGCACGAACAGAACGAGAGTCATAGATTGTCAGTTGCA
pre5oeGFP_FtsZ2-1_fwd	CTGGTATCACCCTGGGTATGGACGAACGTACAAATCTATGCACTCTCGTCTGTTCG
pre5oFtsZ2-1_pJET_rev	CTGAGAATATTGTAGGAGATCTCTAGAAAGATTAGTGACGGTCTGACCACGTTA
SUMO_FtsZ1-2_fwd	GAAGCGCATCGCAACAGATCGGTGGTATGGCTAACCTGTCGGTCTAAAGTTATCGG
SUMO_FtsZ1-2_rev	CTCACTGCCGCTTCCAGTCGGTCGACGGTTACAGGAAACCTTACGGTTCAGACCC
SUMO_FtsZ2-1_fwd	GAAGCGCATCGCAACAGATCGGTGGTATGTCTCTGCGTCGTATCGACCACGTC
SUMO_FtsZ2-1_rev	CTCACTGCCGCTTCCAGTCGGTCGACGGTTAGTGACGGGTCTGACCACGTTACGC
pre9_pJET_mKO2_oFtsZ2-1_fwd	GGATGGCTCGAGTTTCAGCAAGATATCATGGTGAGTGTGATTAAACCAAGAGATG
pre9_pJET_mKO2_oFtsZ2-1_rev	CAGAAGAACGAGAGTCATAGATGAATGAGCTACTGCATCTCTTAC
pre9oFtsZ2-1_mKO2_pJET_fwd	GTAGAAGATGCAGTAGCTCATTCTATGCACCTCGTTCTCTGTTC

pre9oFtsZ2-1_mKO2_pJET_rev	GTAGGAGATCTCTAGAAAGATATCCTAGTGACGGGTCTGACCACG
mKO2_FtsZ21_eGFP_FtsZ12_fwd	GCAGATTGTACTGAGAGTGCACCAAATTGTGAGCGGATAACAAATTGAGCTC
mKO2_FtsZ21_eGFP_FtsZ12_rev	CTGTGCGGTATTCACACCGCATACAAAAAACCCCTCAAGA CCCGTT
SUMO_fwd	GCGTAGAGGATCGAGATCTCGATCCCG
T7_rev	GGGGTGCCTAATGAGTGAGCTAACTCAC

981

982

983

984

985

**986 Figure S1 Identification of FtsZ2-1-GFP fusion lines via PCR and Co-immunoprecipitation (Co-
987 IP).**

988 Primers were designed to represent correct positioning of the knock-in construct at the desired genomic
989 locus (Pp3c11_17860V3). (A) Scheme representing the positioning of the knock-in construct and the
990 primers used for the screening PCR. (B) Results of the screening PCR. Expected amplicon sizes: 5'
991 integration: 1064 bp; 3' integration: 1302 bp; AARE2 (Pp3c12_21080V3): 768 bp. Stars (*) indicate
992 candidate lines that were selected for a first test Co-IP. Uncropped gel images are available from
993 Supplemental Figure S10. (C) Results from the first test Co-IP with selected FtsZ2-1:eGFP fusion lines.
994 Relative quantitative share of FtsZ2.1:eGFP in the analysed sample is represented by normalized
995 spectral abundance factors (NSAF, [87]). A full spectrum report is available from Supplemental Table
996 S2.

997

998

999

1000
1001

1001
1888

1002

1003

Figure S2 Pairwise sequence alignment of *Physcomitrella* FtsZ1-2 (PpFtsZ1-2) and the codon optimized FtsZ1-2 (FtsZ1-2) for codon usage in *E. coli*.
Alignment was performed with Jalview (Version 2.11.2.2).

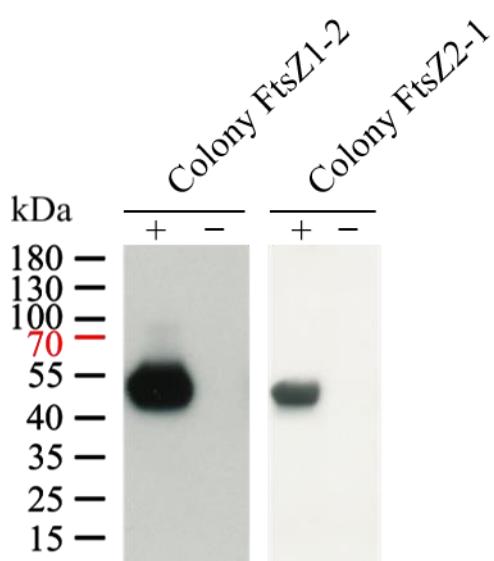
1005

1006

1007

1008

1009


1281

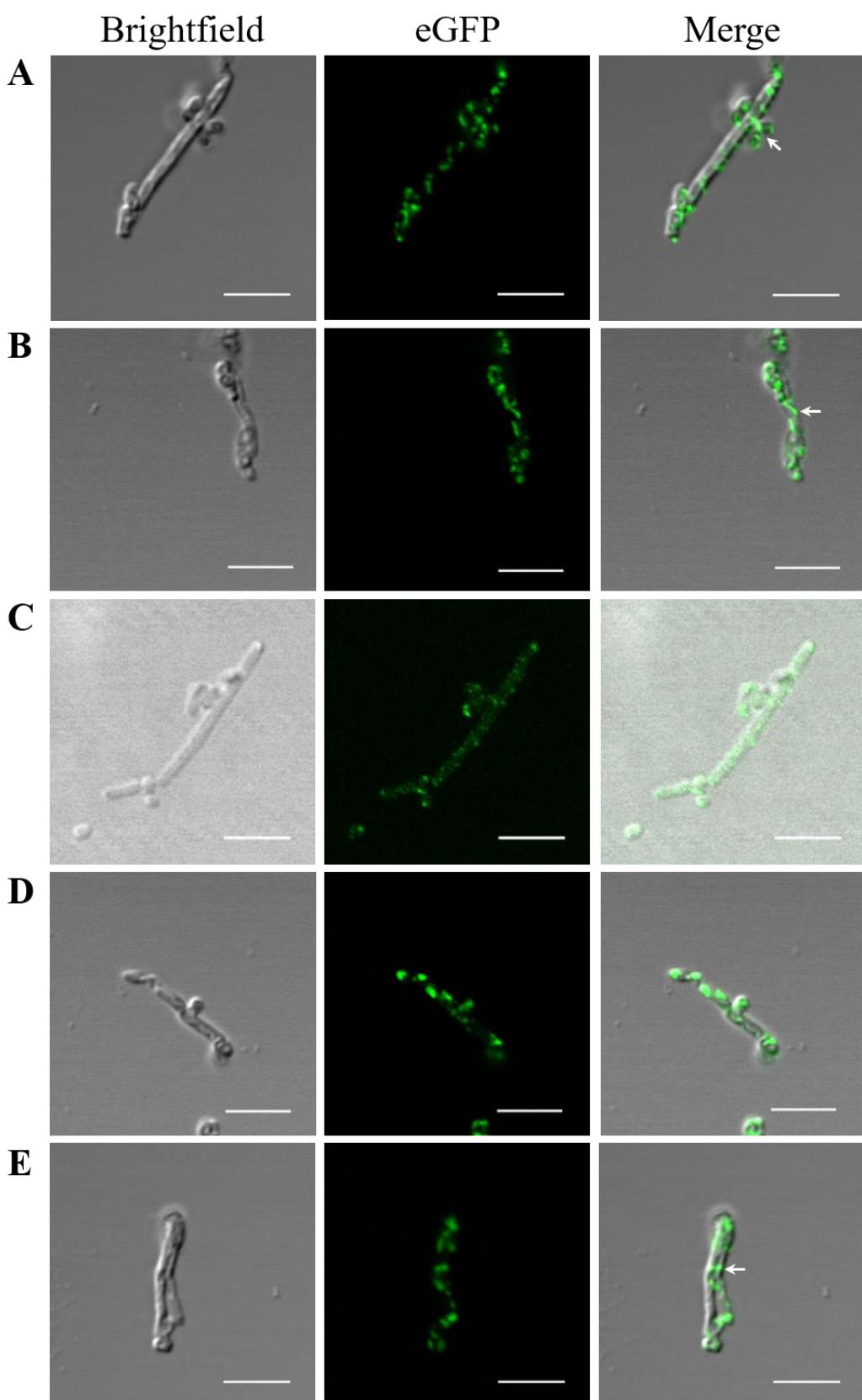

col

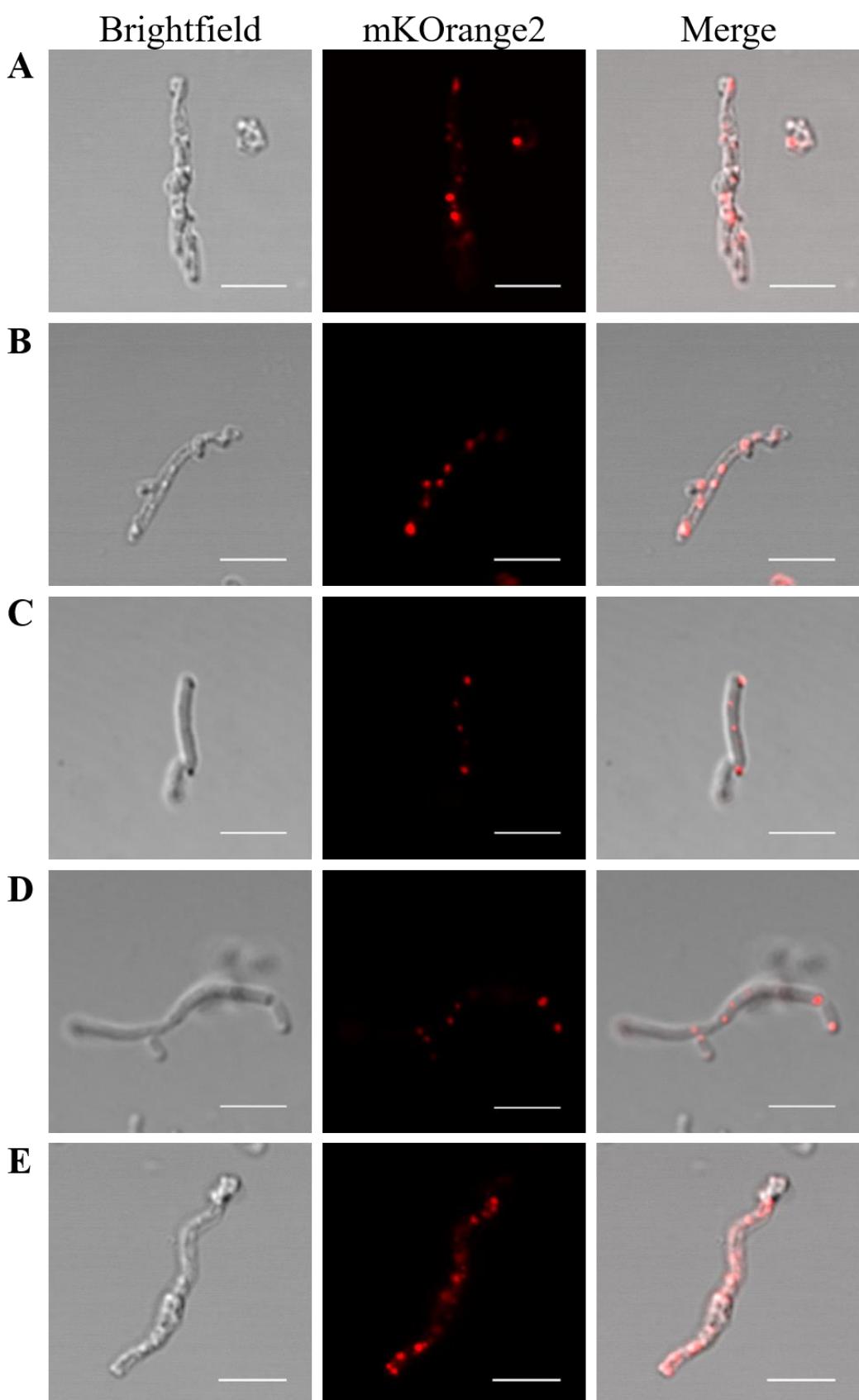
Figure S3 Pairwise sequence alignment of *Physcomitrella* FtsZ2-1 (PpFtsZ2-1) and the codon optimized FtsZ2-1 (FtsZ2-1) for codon usage in *E. coli*.

Alignment was performed with Jalview (Version 2.11.2.2).

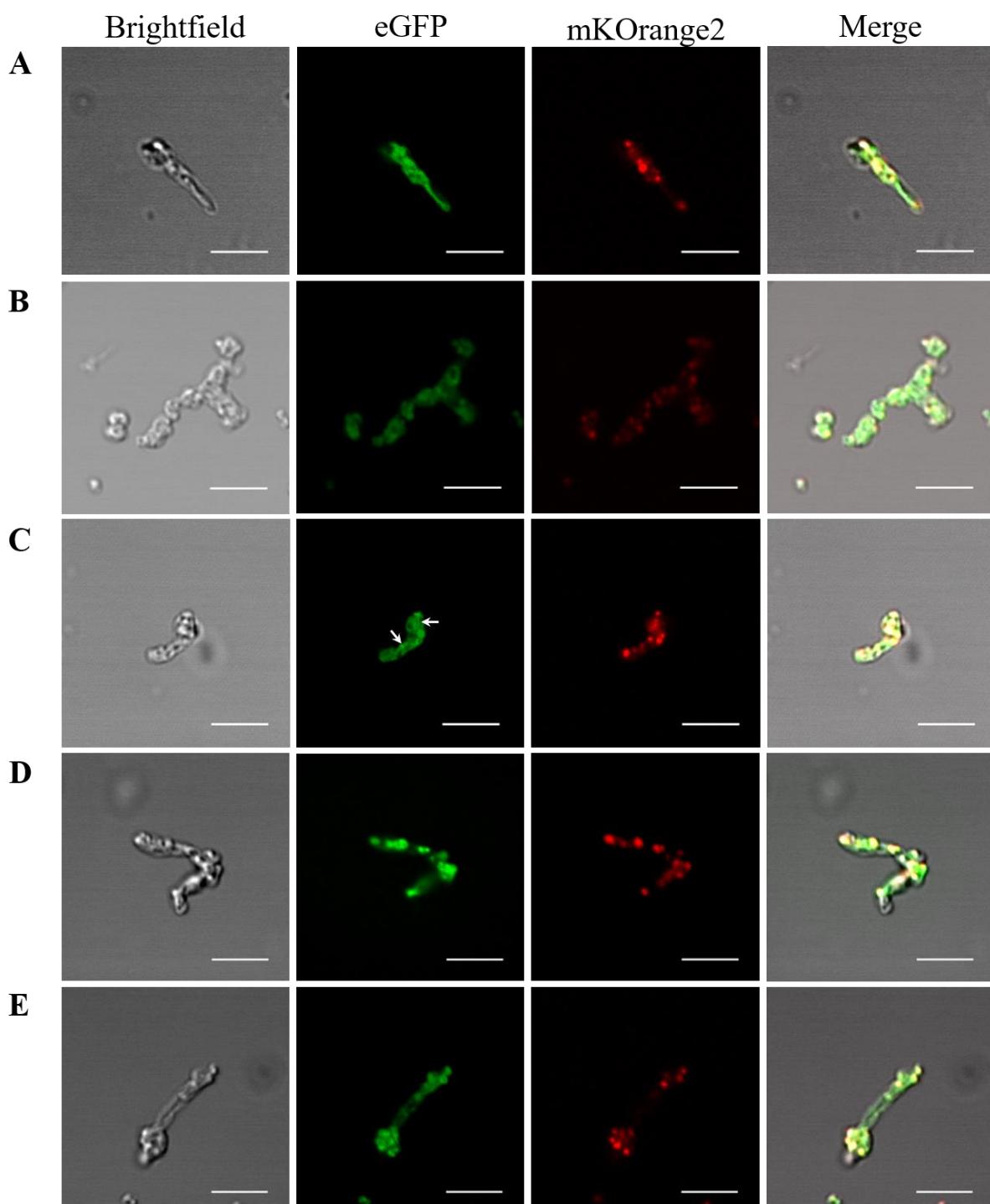
1011

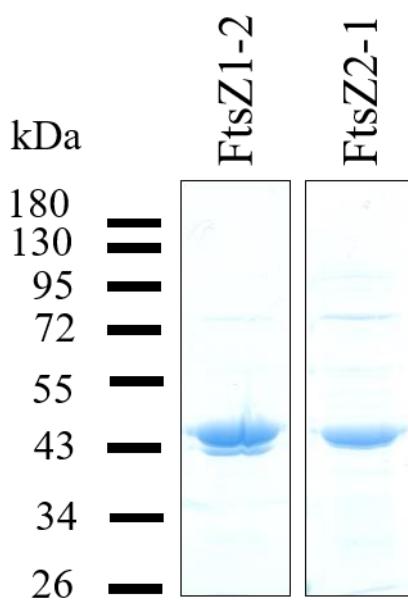
1028

Figure S5 Confocal microscopy of eGFP-tagged *Physcomitrella FtsZ1-2* in *E. coli*.

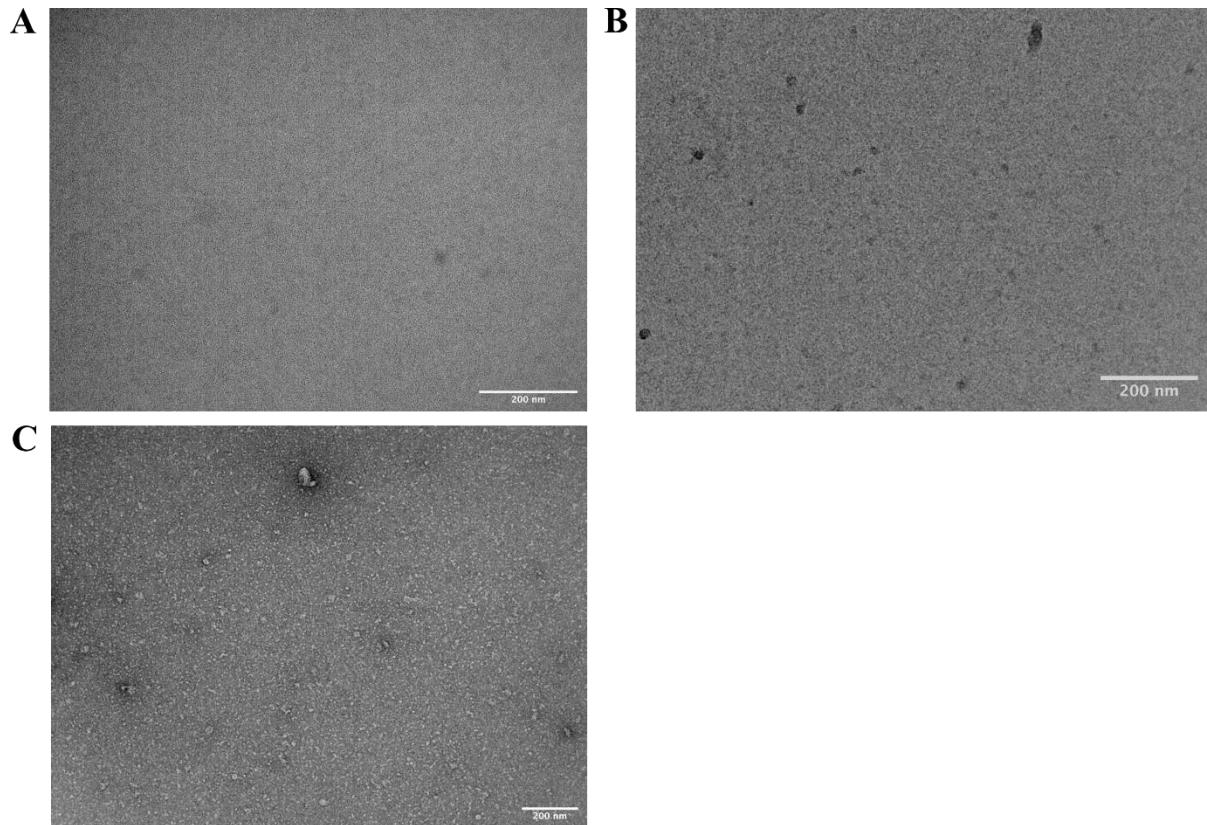

1029

BL21 StarTM (DE3) cells transformed with the constructs for eGFP-FtsZ1-2 were induced with 0.5 mM


1030


IPTG. Different elongated bacteria were observed (A-E). Filament formations are highlighted with arrows. Scale bars 5 μ m.

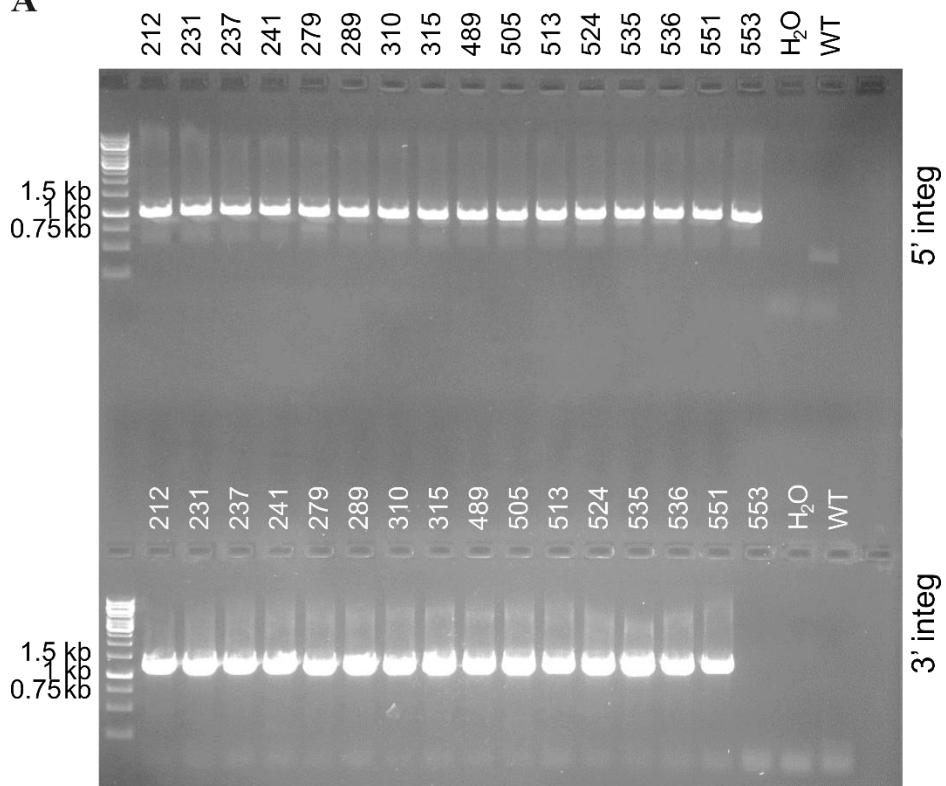
1031


1037

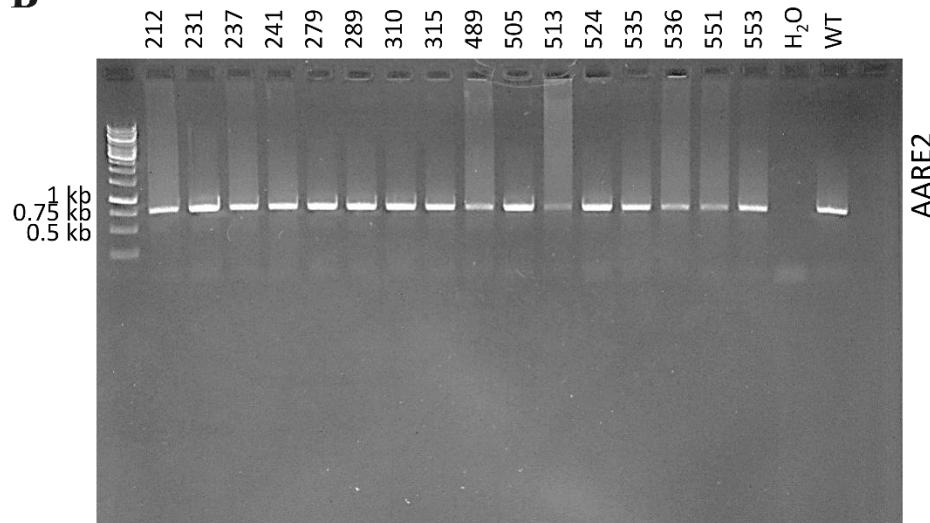
1046
1047
1048 **Figure S8 Coomassie-stained SDS-PAGE of purified FtsZ1-2 and FtsZ2-1.**
1049 Physcomitrella FtsZ1-2 and FtsZ2-1 were overexpressed in *E. coli* as His₆-SUMO fusion proteins. The
1050 proteins were purified using Ni-affinity chromatography, followed by removal of the His₆-SUMO tag
1051 and further purification *via* size exclusion chromatography. The fractions obtained after size exclusion
1052 chromatography are displayed.
1053

1054

1055


1056

1057 **Figure S9 Negative stain transmission electron microscopy of *Physcomitrella FtsZ1-2*,**
1058 ***Physcomitrella FtsZ2-1* together with *FtsZ2-1* without GTP as negative control.**


1059 15 μM of FtsZ1-2 (A), 15 μM FtsZ2-1 (B) and 7.5 μM FtsZ1-2 mixed with 7.5 μM FtsZ2-1 (C) were
1060 incubated at room temperature for 5 min without GTP and then imaged by transmission electron
1061 microscopy. Representative images are shown. Scale bars as indicated. Experiments were repeated
1062 independently twice with similar results.

1063

A

B

1064

1065

1066 **Figure S10 Uncropped gel image of the PCR result of the screening for transgenic FtsZ2-1-eGFP lines.**

1068 (A) PCR testing correct integration at the selected 5' and 3' region. Expected amplicon sizes were 1064
1069 bp (5' integration) and 1302 bp (3' integration). (B) Control PCR on AARE2 (Pp3c12_21080V3).
1070 Expected amplicon size was 768 bp. Primers for AARE2 were taken from [78].

1071

1072