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22 Abstract

23 The introduction of next generation sequencing technologies in the clinics has improved rare 

24 disease diagnosis. Nonetheless, for very heterogeneous or very rare diseases, more than half of cases still 

25 lack molecular diagnosis. Novel strategies are needed to prioritize variants within a single individual. The 

26 PSAP (Population Sampling Probability) method was developed to meet this aim but only for coding 

27 variants in exome data. To address the challenge of the analysis of non-coding variants in whole genome 

28 sequencing data, we propose an extension of the PSAP method to the non-coding genome called PSAP-

29 genomic-regions. In this extension, instead of considering genes as testing units (PSAP-genes strategy), 

30 we use genomic regions defined over the whole genome that pinpoint potential functional constraints.

31 We conceived an evaluation protocol for our method using artificially-generated disease exomes 

32 and genomes, by inserting coding and non-coding pathogenic ClinVar variants in large datasets of exomes 

33 and genomes from the general population.

34 We found that PSAP-genomic-regions significantly improves the ranking of these variants 

35 compared to using a pathogenicity score alone. Using PSAP-genomic-regions, more than fifty percent of 

36 non-coding ClinVar variants, especially those involved in splicing, were among the top 10 variants of the 

37 genome. In addition, our approach gave similar results compared to PSAP-genes regarding the scoring of 

38 coding variants. On real sequencing data from 6 patients with Cerebral Small Vessel Disease and 9 patients 

39 with male infertility, all causal variants were ranked in the top 100 variants with PSAP-genomic-regions. 

40  By revisiting the testing units used in the PSAP method to include non-coding variants, we have 

41 developed PSAP-genomic-regions, an efficient whole-genome prioritization tool which offers promising 

42 results for the diagnosis of unresolved rare diseases. PSAP-genomic-regions is implemented as a user-

43 friendly Snakemake workflow, accessible to both researchers and clinicians which can easily integrate up-

44 to-date annotation from large databases.
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45 Author summary

46 In recent years, improvement in DNA sequencing technologies has allowed the identification of 

47 many genes involved in rare diseases. Nonetheless, the molecular diagnosis is still unknown for more than 

48 half of rare diseases cases. This is in part due to the large heterogeneity of molecular causes in rare 

49 diseases. This also highlights the need for the development of new methods to prioritize pathogenic 

50 variants from DNA sequencing data at the scale of the whole genome and not only coding regions. With 

51 PSAP-genomic-regions, we offer a strategy to prioritize coding and non-coding variants in whole-genome 

52 data from a single individual in need of a diagnosis. The PSAP-genomic-regions combines information on 

53 the predicted pathogenicity and frequency of variants in the context of functional regions of the genome. 

54 In this work, we compare the PSAP-genomic-regions strategy to other variant prioritization strategies on 

55 simulated and real data. We show the better performance of PSAP-genomic-regions over a classical 

56 approach based on variant pathogenicity scores alone. PSAP-genomic-regions provides a straightforward 

57 approach to prioritize causal pathogenic variants, especially non-coding ones, that are often missed with 

58 other strategies and could explain the cause of undiagnosed rare diseases.
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59 Introduction

60 Each rare disease affects, by definition, a small number of individuals. However, as a whole, rare 

61 diseases affect about 350 million people world-wide (1). Approximately 80% of rare diseases have a 

62 genetic origin that mostly follows a Mendelian mode of inheritance (2–4). The advent of Next Generation 

63 Sequencing (NGS) and the development of variant pathogenicity prediction tools have allowed, in recent 

64 years, the identification of many genes involved in rare Mendelian diseases. Nonetheless, despite 

65 extensive efforts, the molecular diagnosis is still unknown for more than 50% of rare diseases cases (5–7). 

66 This can mainly be explained by the fact that many rare diseases are characterized by an extreme genetic 

67 heterogeneity, which results in only one individual carrying a specific pathogenic causal variant. This issue 

68 is referred to as the “n-of-one” problem (8). 

69 With the advent of high throughput sequencing technologies in clinics, molecular diagnosis is now 

70 often sought through whole exome or whole genome sequencing (WES and WGS respectively). However, 

71 due to the large number of rare variants in each individual genome, causal variants are sought among 

72 very rare and highly pathogenic variants in genes relevant to the current known disease mechanism. The 

73 limited knowledge about gene functions and disease mechanisms can make this strategy unfruitful. To 

74 address the issue of variant prioritization at the level of an individual, the Population Sampling Method 

75 (PSAP) (8)  was developed. PSAP computes, for each gene, a null distribution, which is the probability to 

76 observe in the general population a genotype with a CADD pathogenicity score (9) greater than or equal 

77 to the highest one to the highest one observed in the patient for this gene. This initial version of the PSAP 

78 method, which we will refer to as PSAP-genes, has been successfully applied to identify variants of interest 

79 in  diverse phenotypes, including male infertility (10–12), recurrent pregnancy loss (13) and ciliary 

80 diskynesia (14). 
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81 A current hindrance to the application and generalization of PSAP-genes as a tool for diagnosis is 

82 its restriction to the coding parts of the genome. Indeed, the majority of variants reside in non-coding 

83 parts of the genome (15). Non-coding variants may contribute to explain part of the etiology of rare 

84 diseases (16), as suggested by the large number of GWAS hits located in non-coding regions of the genome 

85 (17). The involvement of non-coding pathogenic variants in rare diseases is further corroborated by the 

86 fact that non-coding regions are heavily involved in the regulation of gene expression. Several prediction 

87 tools have been developed to this end (18–20), but most of them lack a variant-based score for both 

88 coding and non-coding regions. In addition, to be performant, they often require multiple annotations like 

89 Human Phenotype Ontology (HPO) terms (21) to characterize the symptoms or disease of a patient . Thus, 

90 they rely on previous knowledge and rarely go beyond candidate genes.

91 To move beyond the gene as a natural unit of testing for the PSAP method, we need to use 

92 predetermined regions across the whole genome. These regions also need to be defined using functional 

93 information to be used as a cohesive unit for the construction of PSAP null distributions. This challenge of 

94 defining regions along the whole genome has been tackled by Bocher et al. in the context of rare-variant 

95 association testing (22): they describe CADD regions, which are characterized by a lack of observed 

96 variants with high functionally-Adjusted CADD Scores (ACS) in the gnomAD database (23). CADD regions 

97 are expected to reflect functional constraints. CADD regions present the key advantage of providing pre-

98 defined and functionally-informed regions which can be used to construct PSAP null distributions. 

99 We have made available a new implementation of the PSAP method using Snakemake (24) 

100 workflows, called Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP), which features null 

101 distributions constructed with up-to-date allele frequency data and pathogenicity scores. Here, we 

102 introduce PSAP-genomic-regions, an extension of the PSAP method to the non-coding genome by using 

103 the pre-defined CADD regions as testing unit instead of genes. This is an innovative strategy to prioritize 

104 variants at the scale of an individual genome. PSAP-genomic-regions is now available in Easy-PSAP. We 
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105 devised an evaluation protocol using artificially-generated disease exomes and genomes, obtained by 

106 inserting coding and non-coding ClinVar (25) variants in general population whole genomes from the 1000 

107 Genomes Project (26) and exomes from the FrEnch EXome (FREX) project (27). We show the consistent 

108 improvement in prioritization by using PSAP-genomic-regions over pathogenicity scores alone for non-

109 coding and then coding variants. For coding variants, we also demonstrate the good performance of PSAP-

110 genomic-regions compared to PSAP-genes. On real-life data, we illustrate the power of PSAP-genomic-

111 regions on WES data from six resolved cases of Cerebral Small Vessel Disease (CSVD) and WGS data from 

112 three families affected by male infertility. These two diseases are particularly relevant to test our method, 

113 monogenic forms of CSVD (28) and male infertility (29) being extremely heterogeneous. 
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114 Results 

115 Construction of PSAP null distribution in coding and non-coding regions

116 The idea behind the original PSAP method, referred to as PSAP-genes, relies on the calculation of 

117 gene-specific null distributions of CADD pathogenicity scores. More precisely, for an individual exome or 

118 genome and in a given gene, PSAP-genes considers the genotype with the highest CADD score and 

119 evaluates the probability to observe such a high CADD score in this gene in the general population (see S1 

120 File for a detailed explanation of the calculation of PSAP null distributions). PSAP-genes deals separately 

121 with heterozygote and homozygote variants in the autosomal dominant (AD) and the autosomal recessive 

122 (AR) models respectively. As a result, PSAP-genes gives a p-value to the genotype with the highest CADD 

123 score in the gene for each gene, model, and individual. This p-value allows the ranking of the genes for an 

124 individual exome or genome. The PSAP principle can be generalized to any genomic unit. 

125 Here, with PSAP-genomic-regions, we extended the PSAP method to analyze whole-genome data 

126 using predefined CADD regions as testing units instead of genes (Fig 1). The same principle as before is 

127 employed, with the difference being that the genotype with the highest CADD score in the region can be 

128 coding or non-coding. We thus constructed PSAP-genomic-regions null distributions with two 

129 pathogenicity scores : the initial CADD score (PHRED scaled across the whole genome), or the ACS (22) 

130 (PHRED scaled CADD scores by “coding”, “regulatory” and “intergenic” regions) to mitigate the higher 

131 CADD scores of coding variants. Our two novel strategies will be referred to as PSAP-genomic-regions-

132 CADD and PSAP-genomic-regions-ACS. They were compared to the initial PSAP-genes strategy, also 

133 referred to as PSAP-genes-CADD.
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134  

135 Fig 1. Description of the PSAP-genomic-regions strategy.

136 We calculated PSAP null distributions for SNVs in genes and CADD regions, in the hg19 and hg38 

137 assemblies of the human genome. In hg19, PSAP null distributions were obtained for 19,283 genes and 

138 119,695 CADD regions. In hg38 PSAP null distributions were obtained for 18,395 genes and 123,991 CADD 

139 regions. PSAP null distributions and their parameters (unit of testing, allele frequencies and pathogenicity 

140 score) can be found in S1 Table.

141

142 Evaluating the performance of PSAP-genomic-regions on artificially-

143 generated disease exomes and genomes using ClinVar variants

144 Prioritization of non-coding pathogenic variants

145 First, to evaluate how PSAP-genomic-regions performed to prioritize non-coding pathogenic variants, 

146 we used artificially-generated disease genomes created by inserting non-coding ClinVar variants in the 

147 NFE genomes from 1000G project (see Material & Methods and S2 File for the list of variants). Because 

148 the 1000 Genomes project is population-based, we expect that some individuals might carry one or a few 
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149 pathogenic variants in their genome. These pathogenic variants are characterized by a high CADD score 

150 and a low PSAP p-value. Indeed, there is large variation in the maximal CADD score or lowest PSAP p-

151 value, whereas the rest of the distribution is extremely similar between individuals (S1 Fig). Thus, in order 

152 to summarize the rank of a ClinVar variant in an evaluation setting, we considered the best rank reached 

153 by the variant in at least 90% of the individuals. 

154 Most of the NFE genomes carried a variant with a higher pathogenicity score or a lower PSAP p-value 

155 than most of the ClinVar variants (S2 Fig). We thus compared the percentage of the non-coding pathogenic 

156 variants ranked among the top N (N = 1, 10, 50 and 100) in at least 90% of the NFE genomes. The ranking 

157 at the individual level was done among all heterozygous variants for the ClinVar variants under the AD 

158 model, and across homozygous variants for the ClinVar variants under the AR model. (Fig 2A). With both 

159 CADD and ACS pathogenicity scores, PSAP-genomic-regions performed systematically better than using 

160 the pathogenicity scores alone. The improvement was especially large for the top 10 ranking: 24.6% and 

161 79.2% of ClinVar variants reached the top 10 with PSAP-genomic-regions-CADD for the AD and AR models, 

162 respectively, while no ClinVar variant reached the top 10 with CADD scores alone. 
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163

164 Fig 2. Comparison of the PSAP-genomic-regions strategy versus a pathogenicity score alone for in 

165 artificially-simulated disease genomes. Percentage of non-coding and coding pathogenic ClinVar variants 

166 reaching the top N of variants in at least 90% of NFE genomes, with PSAP-genomic-regions (darker shade 

167 of blue or green) or the pathogenicity score alone (lighter shade of blue or green), CADD or ACS (A) N = 

168 175 non-coding AD variants and N = 96 non-coding AR variants (B) N = 4,965 coding AD variants and N = 

169 2,680 coding AR variants.

170

171 Using the ACS scores further improved the performance to detect non-coding-variants: 56.6% and 

172 83.3% of variants reached the top 10 with PSAP-genomic-regions-ACS for the AD and AR models, 

173 respectively. Nonetheless, we can note the pattern is different for the top 1 for the AR model: 51% with 

174 PSAP-genomic-regions-CADD to 5.5% with PSAP-genomic-regions-ACS. Indeed, switching from CADD 
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175 score to ACS score has lowered the PSAP p-value of non-coding variants shared by more than 10% of NFE 

176 genomes. This led to a defect of the top rank reached by the ClinVar variants, as we considered the lowest 

177 rank reached in at least 90% of individuals. For instance, a variant in the CADD region R109138 shared by 

178 70 of the NFE genomes went from a CADD score of 18.1 and a PSAP-genomic-regions-CADD p-value of 0.1 

179 to an ACS of 22.2 and a PSAP-genomic-regions-ACS p-value of 5.18x10-10. Thus, the ClinVar variants 

180 inserted in these individuals having a higher p-value than 5.18x10-10 do not rank first.

181 We further explored PSAP results for splicing ClinVar variants versus other type of non-coding ClinVar 

182 variants. Indeed, we observed that splicing variants are the major type of non-coding ClinVar variants. 

183 These splicing variants often had a very good ranking, especially with PSAP-genomic-regions-ACS (n=115 

184 splicing variants among 175 non-coding AD variants and n=72 splicing variants among 96 non-coding AR 

185 variants; S3 Table; Panel A in S3 Fig). Splicing ClinVar variants have a much higher ACS than CADD scores 

186 (Panel B in S3 Fig) which results in better ranking than for other types of non-coding ClinVar variants using 

187 PSAP-genomic-regions-ACS p-values (Panel C in S3 Fig). As a consequence, the percentage of splicing 

188 ClinVar variants ranked in the top 10 was largely improved when using PSAP-genomic-regions-ACS, for the 

189 AD model especially which was less powerful with PSAP-genomic-regions-CADD to begin with (Panel D in 

190 S3 Fig).

191 The full results of ranking by PSAP-genomic-regions-ACS for the non-coding non-splicing pathogenic 

192 ClinVar variants can be found in S3 File. With PSAP-genomic-regions-ACS, around half of the non-coding 

193 non-splicing variants are ranked in the top 100 of variants for more than 90% of NFE genomes (46 out of 

194 73 variants for the AD model and 19 out of 31 variants for the AR model). The other half of variants present 

195 a less significant PSAP-genomic-regions-ACS p-value and a poorer ranking. To confirm this pattern of 

196 ranking for non-coding non-splicing pathogenic variants on another set of variants, we evaluated with our 

197 artificially generated disease genomes protocol 320 non-coding SNVs used to train Genomiser (30). These 

198 variants were not associated with a mode of inheritance. Hence, we inserted them in the NFE genomes 
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199 and scored them with both AD and AR PSAP-genomic-regions-ACS null distributions. Among the 320 non-

200 coding variants, 169 reached the top 100 in at least 90% of NFE genomes, with either the AD or AR model 

201 (S4 File). This can be explained by the distributions of CADD scores compared to ACS scores for the ClinVar 

202 variants: the non-coding variants that do not reach the top 100 have a significantly lower CADD and ACS 

203 scores compared to all the other types of variants (S4 Fig). Overall, PSAP-genomic-regions-ACS prioritizes 

204 around half of non-coding ClinVar and Genomiser training variants in the top 100 of NFE genomes. The 

205 ones who have a higher ranking present much lower CADD and ACS scores and would never be well-

206 ranked by any PSAP strategy. 

207 PSAP-genomic-region is also relevant for the analysis of exome data. Indeed, exome sequencing 

208 captures variants outside of the bounds of coding regions (31), such as intronic variants. We explored the 

209 prioritization of non-coding ClinVar variants located within the WES-targeted regions of the FREX 

210 individuals using our artificially-generated disease exomes protocol (N=48 variants for the AD model and 

211 N=64 variants for the AR model, Panel A in S5 Fig). For both PSAP-genomic-regions-CADD and PSAP-

212 genomic-regions-ACS, there was a large increase in prioritization performance compared to using only the 

213 pathogenicity scores. Because there are fewer variants in an exome background than in a genome 

214 background, the rankings of these non-coding ClinVar variants were better in FREX than in NFE genomes. 

215 The best ranking was achieved using PSAP-genomic-regions-ACS, with 82% and 90.3% of variants reaching 

216 the top 10 for the AD and AR models, respectively. Most of these non-coding pathogenic variants were 

217 splicing variants (40 out of 73 variants for the AD model and 56 out of 64 variants for the AR model), and 

218 half of them were considered as having a functional “HIGH IMPACT” (26 variants for the AD model and 22 

219 variants for the AR model). Hence, prioritizing variants with PSAP on CADD regions allows identifying more 

220 variants even in exome data, that are in addition functionally-relevant.

221
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222 Prioritization of coding pathogenic variants

223 Similar evaluations were performed for ClinVar coding variants inserted in either WGS from 

224 1000G NFE individuals or WES from FREX. As observed for non-coding pathogenic variants, PSAP-genomic-

225 regions outperformed the pathogenicity scores alone (Fig 2B, Panel B in S5 Fig). However, in the context 

226 of coding pathogenic ClinVar variants, we observed that the strategy of PSAP-genomic-regions-CADD 

227 provided better prioritization compared with the PSAP-genomic-regions-ACS strategy. We observed that 

228 18.2% and 74.6% of the coding variants reached the top 1 in at least 90% of genomes backgrounds with 

229 the PSAP-genomic-regions-CADD for the AD and AR model respectively, against no variants with the CADD 

230 score alone, and against 5.3% and 2.5% reaching the top 1 with PSAP-genomic-regions-ACS. In the exome 

231 background and with PSAP-genomic-regions-CADD, 38.7% and 89.8% of AD variants reached the top 1 

232 and top 50, respectively; 80.3% and 97.9% of AR variants reached the top 1 and the top 50, respectively.

233

234 Fig.3. Comparison of PSAP-genomic-regions-CADD and PSAP-genes-CADD strategies in artificially-

235 simulated disease genomes. Number of coding pathogenic ClinVar variants reaching rank [x-y] of variants 

236 in at least 90% of 1000 Genomes Project NFE individuals for each strategy.

237
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238 We also compared the number of coding ClinVar variants reaching the tops in NFE genomes between 

239 PSAP-genomic-regions-CADD strategy and the initial PSAP-genes-CADD strategy (Fig 3). More differences 

240 were observed across the two PSAP strategies for the AD than for the AR model (Fig 3A). There were 362 

241 variants ranked first and 1,017 variants ranked [2-10] in common between the two strategies. However, 

242 908 variants that were ranked [2-10] with PSAP-genes-CADD were [11-50] with PSAP-genomic-regions-

243 CADD, and 395 variants that were ranked [2-10] with PSAP-genes-CADD were ranked first with PSAP-

244 genomic-regions-CADD. Regarding variants that are ranked more than a 100 with PSAP-genomic-regions-

245 CADD, 278 of them are ranked [11-50] and are ranked [51-100] by PSAP-genes-CADD. Regarding the AR 

246 model (Fig 3B), PSAP-genomic-regions-CADD performed similarly to PSAP-genes-CADD, and the majority 

247 of variants were ranked first with both strategies (1,550 variants). Even more promising results can be 

248 found when looking at the same comparison of ranks within the FREX exomes (S6 Fig). For instance, in the 

249 AD model, 592 variants that were ranked [2-10] with PSAP-genes-CADD are ranked first with PSAP-

250 genomic-regions-CADD, against 115 variants ranked [2-10] with PSAP-genomic-regions-CADD that 

251 become first with PSAP-genes-CADD.

252

253 Application of PSAP-genomic-regions to real data with different modes 

254 of inheritance

255 To illustrate our method in real-life settings, we analyzed two datasets (S4 Table), one with an AD 

256 mode of inheritance and the other with an AR mode of inheritance. The first dataset consisted of WES 

257 data for six individuals affected by monogenic forms of CSVD (32). Using PSAP-genomic-regions-CADD, all 

258 of the causal variants were ranked at least in the top 100 in each patient (Fig 4). The contribution of CADD 

259 regions as a unit of testing was especially visible for the variant in COL4A2 and one variant in HTRA1 which 
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260 were not well-ranked using genes as testing unit (rank 110 and 193 respectively with genes, and rank 3 

261 and 69 with CADD regions). Using their maximal CADD score by gene or CADD region alone, these variants 

262 would not have been prioritized in the top 100 for five out of six individuals. 

263

264 Fig. 4. Prioritization of 6 known CSVD mutations and 3 male infertility candidate variants with PSAP-

265 genomic-regions-CADD, PSAP-genes-CADD and the maximal CADD score on genes or CADD regions.

266

267 The second dataset consisted of WGS data for 9 individuals from three families with clinically 

268 diagnosed male infertility (33). All causal variants fell within the top 20 of variants with prioritization by 

269 PSAP-genes-CADD, and within the top 50 for at least one case per family with PSAP-genomic-regions-

270 CADD (within top 100 for all cases, Fig 4). PSAP-genomic-regions-CADD did not improve the ranking of 

271 these coding variants, which was expected considering the large number of variants in a WGS analysis 

272 (see S4 Table for the total number of variants in each analysis). The prioritization from PSAP-genomic-
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273 regions-CADD was still interesting to narrow the set of candidates for causal variants. In clinics when the 

274 CADD score alone is used, these variants would not have been prioritized (CADD score 

275 < 25, and rank > 100 with the maximal CADD score strategy). PSAP-genomic-regions-CADD thus allow a 

276 relevant prioritization of coding pathogenic variants in WGS sequencing and an unbiased exploratory 

277 analysis at the scale of the whole genome. 

278 Using PSAP-genomic-regions-ACS or the ACS score alone, almost all of the CSVD and male infertility 

279 coding pathogenic variants had a rank greatly exceeding the top 100 (S4 Table). The only exception is one 

280 variant in HTRA1 (10:124266885 G/A) that was ranked 3 by PSAP-genomic-regions-ACS and 10 by the 

281 maximal ACS score alone. This HTRA1 variant was a splicing variant, which confirms the good performance 

282 of the PSAP-genomic-regions-ACS strategy on this type of variant.
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283 Discussion

284 Variant prioritization, especially in the case of very heterogeneous rare diseases, is a clinically-

285 relevant methodological challenge for both clinicians and researchers. Mounting evidence suggests that 

286 current methods of analysis and their restriction to the coding genome are a hindrance to the discovery 

287 of new genetic variants implicated in rare diseases (16). We have developed PSAP-genomic-regions, an 

288 extension of the PSAP method to the whole genome using functionally-relevant genomic regions. PSAP-

289 genomic-regions broadens the scope of variants evaluated by PSAP and addresses the issue of variant 

290 prioritization at an individual whole-genome scale. 

291 PSAP-genomic-regions has been thoroughly tested and validated by using simulations emulating real-

292 life scenarios of causal variant prioritization. PSAP-genomic-regions achieves a prioritization of coding 

293 pathogenic SNVs in the top 100 variants of an exome or genome which is a relevant number of variants 

294 to analyze for clinicians. Without use of prior knowledge on the disease, PSAP-genomic-regions achieves 

295 relevant variant prioritization within millions of variants to analyze, which is illustrated by the ranking of 

296 6 variants involved in CSVD and 3 variants involved in familial cases of male infertility in the top 100 of 

297 WES and WGS data respectively. PSAP-genomic-regions thus helps with the diagnosis of such 

298 heterogeneous diseases in conjunction with other relevant information like the mode of transmission, 

299 prevalence or type of variant involved.

300 PSAP-genomic-regions also allows the scoring of variants otherwise discarded from the analysis, like 

301 splicing variants with a high predicted functional impact, and other non-coding variants of proven clinical 

302 significance. The only scenario for which PSAP-genomic-regions is not advantageous compared to the 

303 PSAP-genes strategy is for prioritizing coding variants in WGS data. In that case, using coding CADD 

304 regions, i.e. the coding parts of CADD regions for the analysis still yields better results compared to PSAP-

305 genes (S7 Fig). Our simulations using known pathogenic variants have shown which PSAP strategy 
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306 performs the best depending on the type of data and variant expected to be involved in the disease 

307 mechanism (S8 Fig). To effectively prioritize non-coding variants in WES and WGS, we advise the use of 

308 PSAP-genomic-regions-ACS. For coding variants, PSAP-genomic-regions-CADD gives the best results in 

309 WES, and PSAP-coding-genomic-regions-CADD performs best in WGS data. A two-step approach can also 

310 be carried out if there is no expected type of variant: first, the PSAP-genomic-regions-CADD or PSAP-

311 coding-genomic-regions-CADD strategy is applied depending on the type of data, and if no coding variant 

312 of interest for the disease is found within the top results, PSAP-genomic-regions-ACS can be applied to 

313 look for non-coding variants of interest.

314 To the best of our knowledge, there is no other score of predicted pathogenicity for all possible SNVs 

315 comparable to CADD. Other methods have been developed to distinguish between coding pathogenic and 

316 neutral variants (34–39), but often restrict to non-synonymous variants. These methods were shown to 

317 perform better or have advantages compared to CADD for the limited set of variants they explore (34–

318 39). Similar types of methods aim at prioritizing more constrained regions in the non-coding genome 

319 (18,20) or distinguishing deleterious non-coding variants from neutral ones (18,40). Other well-known 

320 methods for identification of pathogenic variants in exome and genome data rely on the use of HPO terms 

321 to make a prediction, like Exomiser (41) or Genomiser (30), making in comparison PSAP an unmatched 

322 prioritization tool. As any other bioinformatics variant prioritization method, it has to be used in 

323 conjunction with other lines of evidence to ultimately lead to any genetic diagnosis of a patient. PSAP-

324 genomic-regions does not make assumption on the type of variants and does explore the whole genome. 

325 The ranking by p-values coming from the application of PSAP-genomic-regions to an individual’s variants 

326 is a useful way to narrow-down the list of variants to further investigate for both researchers and clinicians 

327 in different scenarios. 

328 The method most comparable to the strategy followed by PSAP-genomic-regions is the recently-

329 developed machine-learning algorithm FINSURF (42). FINSURF aims to predict the functional impact of 
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330 non-coding variants in regulatory regions and has been applied to known pathogenic variants inserted in 

331 WGS data like we did. Nonetheless it has been difficult to compare properly the two methods considering 

332 FINSURF only scores non-coding variants in predefined regulatory regions, and the set of variants used to 

333 train the method is not available. 

334 The main limitation of PSAP-genomic-regions comes from the score used to calibrate null 

335 distributions, namely the CADD score. We have observed that known pathogenic non-coding ClinVar 

336 variants that were not well-ranked by PSAP-genomic-regions had significantly lower CADD and ACS scores 

337 compared to splicing and better-ranked non-coding variants. Because such CADD score is likely to be seen 

338 in the general population, PSAP-genomic-regions will not be able to prioritize such a variant with at a low 

339 rank. We also observed that some CADD regions were badly-calibrated and resulted in the assignment of 

340 very low PSAP-genomic-regions p-values to putatively neutral variants in the 1000 Genomes Project. As 

341 allele frequencies from larger databases and more accurate pathogenicity scores become available, this 

342 will lead to an improvement of the PSAP method as well. The most recent release of the CADD score v1.7 

343 (43) notably integrates regulatory annotations and may further improve the prioritization of non-coding 

344 pathogenic variants when integrated in PSAP-genomic-regions.

345 Many avenues of further development and improvement are open for PSAP-genomic-regions, 

346 including the inclusion and scoring of InDel variations and structural variants. Exploring the combination 

347 of the PSAP-genomic-regions p-values with other metrics or information coming from omics analysis could 

348 also improve prediction. Finally, the flexibility of the PSAP method makes it potentially adaptable to other 

349 more complex models like digenic and oligogenic models of inheritance, considering the increasing 

350 availability of information coming from gene networks and biological pathways.

351

352
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353 Materials and Methods

354 Construction of PSAP null distributions

355 The first parameter is the units in which to construct the PSAP null distribution. Here we considered 

356 two unit strategies: the genes and the CADD regions (S1 Table). For the genes, the coding regions of genes 

357 were defined based on the biomaRt R package: the gene coding sequences were retrieved from Ensembl 

358 (44) by requesting the “genomic_coding_start” and “genomic_coding_end”, on both the hg19 and hg38 

359 builds. To account for splicing regions, the coding regions were extended by two bases on both sides of 

360 the gene coding regions. In total, 19,780 genes were retrieved in hg19 and 23,163 in the hg38 build. For 

361 the CADD regions, their coordinates were downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/ for 

362 the hg19 build and were lifted over to hg38 using the Ensembl Assembly Converter. CADD regions 

363 coordinates in hg38 are available on Easy-PSAP GitHub (https://github.com/msogloblinsky/Easy-PSAP). 

364 There were 135,224 CADD regions in hg19 and 131,970 in hg38. For the coding CADD regions, i.e. the 

365 coding parts of CADD regions, we considered the intersection of the CADD regions and the gene coding 

366 regions for each build, which yielded 37,978 coding CADD regions in hg19 and 52,340 in hg38.

367 The second parameter is the allele frequencies database. Here we considered the global allele 

368 frequencies from the gnomAD database to calibrate the PSAP null distributions: gnomAD genome r2.0.1 

369 for hg19 and gnomAD V3 (45) for hg38. For our purpose, we considered only single nucleotide variants 

370 (SNVs) annotated as PASS by the Variant Quality Score Recalibration (VQSR) of GATK (46) and located in 

371 well-covered regions. Well-covered regions in gnomAD genome were defined as regions for which 90% of 

372 individuals have coverage at depth 10. Variants not seen in gnomAD genome, not annotated as PASS or 

373 not located in well-covered regions (gnomAD genome version according to the build) have a frequency of 

374 0 and thus did not contribute to the construction of the null distributions.
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375 To ensure reliability of PSAP null distribution, it is crucial that the units are well covered in the 

376 database from which the allele frequencies are taken. Thus, we only considered units for which at least 

377 half of the unit was well-covered (as defined previously) in gnomAD genome (version according to the 

378 build). Coding regions of genes and well-covered regions in gnomAD genome were intersected to get the 

379 percentage of each gene’s coding regions that were well-covered in the database. The same steps were 

380 carried out with CADD regions as genomic units for PSAP, for hg19 and hg38 builds. PSAP null distributions 

381 were thus constructed for 19,283 and 18,395 genes in hg19 and hg38 respectively, 119,695 and 123,991 

382 CADD regions, and 34,397 and 35,226 coding CADD regions in hg19 and hg38 respectively.

383 The third parameter is the pathogenicity score. Here, for the evaluation of PSAP on coding variants, 

384 we used the version 1.6 of CADD (47) for each build, accessible on the CADD website 

385 (https://cadd.gs.washington.edu/). For the evaluation on non-coding variants, which tend to have lower 

386 CADD scores than coding variants (48), we followed the strategy described in Bocher et al.(22) to adjust 

387 the RAW CADD score v1.6 of all possible SNVs on a PHRED scale stratifying by type of genomic regions: 

388 “coding”, “regulatory” and “intergenic”, resulting in “adjusted CADD scores”, referred to as “ACS”. 

389 Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP) was used to generate null distributions 

390 according to the previously described input files and parameters. This resulted in 4 sets of null 

391 distributions for the AD and AR models for both hg19 and hg38 assemblies (S1 Table). 

392

393 Evaluating the performance of PSAP-genomic-regions using artificially-

394 generated disease exomes and genomes

395 To evaluate the ability of PSAP-genomic-regions to prioritize known pathogenic variants in an 

396 individual, we leveraged artificially-generated disease exomes and genomes using available general 
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397 population cohorts. These different PSAP strategies (see Table 1) were compared in terms of their 

398 performances to prioritize the known pathogenic variants. 

399 The pathogenic ClinVar (25) SNVs with coordinates in hg19 and hg38 were downloaded from the NCBI 

400 website (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on the 3rd of June 2022). Some of these ClinVar 

401 variants had an annotated mode of inheritance ("moi autosomal recessive" and "moi autosomal 

402 dominant"). From ClinVar, there were 12,776 variants annotated as AD and 12,776 variants annotated as 

403 AR. Variants were filtered out to keep only autosomal pathogenic SNVs having as review status either 

404 “reviewed by expert panel” or “criteria provided, multiple submitters, no conflicts”, which are the two 

405 best review status in ClinVar. There were 1,518 AD and 1,118 AR variants meeting these criteria. 

406 For variants which did not have an annotated mode of inheritance, we used a curated version of the 

407 database OMIM, hOMIM (49) to retrieve a mode of inheritance, and kept variants that were always 

408 associated with an AD or AR mode of inheritance in hOMIM. The same filtering was applied, which left 

409 3,641 additional variants for the AD and 1,706 for the AR model. In total, we had a set of 5,159 variants 

410 for the AD model and 2,824 variants for the AR model. Among these ClinVar variants, 4,965 and 2,680 

411 variants were coding SNVs respectively for the AD and AR models. Similarly, 175 and 96 variants were 

412 non-coding variants for the AD model and AR models, among which 48 variants for the AD model and 64 

413 for AR model fell within the boundaries covered by FREX exomes. The list of pathogenic ClinVar variants 

414 and their mode of inheritance can be found in S2 File. 

415 We inserted each variant from our curated list of pathogenic ClinVar variants successively in each of 

416 the 533 high coverage genomes of Non-Finnish Europeans (NFE) from the 1000 Genomes Project phase 4 

417 (NFE genomes) and each of the 574 exomes from the FREX project. An individual-focused QC was applied 

418 on both datasets using the RAVAQ R package (50): we performed a genotype and variant QC with default 

419 parameters corresponding to standard GATK hard filtering criteria, mean allele balance computed across 
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420 heterozygous genotypes and call rates, except for MAX_AB_GENO_DEV = 0.25, MAX_ABHET_DEV, 

421 MIN_CALLRATE and MIN_FISHER_CALLRATE "disabled". 

422 We conducted the artificially-generated disease genome and exome evaluation with PSAP null 

423 distributions in hg19 and hg38 respectively, to match with the build of the data. We then applied the 3 

424 PSAP strategies mentioned previously (PSAP-genes-CADD, PSAP-genomic-regions-CADD and PSAP-

425 genomic-regions-ACS). For each strategy, we kept the maximal pathogenicity score (CADD or ACS) for each 

426 unit (gene or CADD regions) and then ranked the units according to their PSAP p-value or to their 

427 pathogenicity score alone within each genome or exome. We compared the PSAP-genes-CADD and PSAP-

428 genomic-regions-CADD strategies to using the maximal CADD score alone by gene or CADD regions, 

429 respectively; and the PSAP-genomic-regions-ACS strategy to using the maximal ACS score by CADD region. 

430 For each ClinVar variant, we retrieved its rank within each genome or exome. Coding ClinVar variants were 

431 evaluated with the 3 PSAP strategies whereas non-coding ClinVar variants were evaluated with the novel 

432 PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS strategies (see S2 Table for more details). 

433

434 Patient data analysis 

435 The PSAP strategies were applied to real WES data from six unrelated patients affected by a CSVD for 

436 which the causal variant is known, which allowed a comparison of performance between the different 

437 strategies. The full description of the dataset can be found in [Aloui et al. 2021] (32), with the exception 

438 of the QC process. For this analysis, the same QC as for the FREX and 1000 Genomes Project datasets was 

439 performed. We applied PSAP-genes-CADD and PSAP-genomic-regions-CADD in hg19 to the six resolved 

440 CSVD patients’ exome data. The other PSAP parameters were the ones by default as described previously. 

441 Two of the individuals had a causal pathogenic variant in the gene NOTCH3 (19:15303053 G/A and 

442 19:15303260 G/A), one individual in the gene COL4A2 (13:111132702 G/T) and three individuals in the 
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443 gene HTRA1 (10:124266285 T/G, 10:124266281 C/A and 10:124266885 G/A). The rank of the known CSVD 

444 variants among other heterozygote variants in the patient’s exome according to its PSAP p-value for the 

445 2 strategies was then retrieved. 

446 The PSAP strategies were also applied to WGS data of three families with clinically diagnosed forms 

447 of male infertility (33) and for which a pathogenic recessive variant was prioritized using a computational 

448 pipeline featuring the initial PSAP-genes implementation. Three affected individuals were analyzed for 

449 each family. The description of the whole dataset and candidate variant filtering process can be found in 

450 [Khan and Akbari et al. 2023] (33), except for the QC that was performed in the same way as for the CSVD 

451 data. Two other families were resolved from the same dataset, but considering that the causal variants 

452 were deletions we did not include them in the current analysis. The prioritized pathogenic variants were 

453 in the genes: SPAG6 (chr10:22389235 C/T) for family 3, TUBA3C (chr13:19177247 C/T) for family 7 and 

454 CCDC9 (chr19:47260609 C/T) for family 4. We applied PSAP–genes-CADD and PSAP-genomic-regions-

455 CADD in hg38 to the 9 cases and retrieved the rank of the known male infertility variants among other 

456 homozygote variants in the patient’s genomes according to its PSAP p-value for the 2 strategies.
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589 Supporting Information captions

590 S1 Fig. Summary statistics of pathogenicity scores and PSAP p-values (scale –log 10) for NFE individuals 

591 (one line by individual).

592 S2 Fig. Pathogenicity scores and PSAP p-values (scale –log 10) distributions for NFE individuals (maximal 

593 value for each genome), coding and non-coding ClinVar variants.

594 S3 Fig. Prioritization of splice variants versus other non-coding variants with PSAP on CADD regions with 

595 CADD or ACS. P-values at 0 were replaced by a p-value of 10-12, which is lower than all the other non-zero 

596 p-values, for visualization purposes.

597 S4 Fig. Distribution of CADD scores (A) and ACS scores (B) for ClinVar variants, by type of variant and 

598 mode of inheritance. Coding: N=4,253 variants AD model and 2,245 variants AR model, Splicing: 102 

599 variants AD model and 65 variants AR model, Non-coding top 100: 49 variants AD model and 19 variants 

600 AR model, Other non-coding: 24 variants AD model and 12 variants AR model.

601 S5 Fig. Comparison of the the PSAP-genomic-regions strategy versus a pathogenicity score alone in 

602 artificially-simulated disease exomes.  Percentage of pathogenic non-coding and coding ClinVar variants 

603 reaching the top N of variants in at least 90% of FREX individuals, with PSAP-genomic-regions (darker 

604 shade of blue or green) or the pathogenicity score alone (lighter shade of blue or green), CADD or ACS (A) 

605 N = 48 non-coding AD variants and N = 64 non-coding AR variants (B) N = 4,965 coding AD variants and N 

606 = 2,680 coding AR variants.

607 S6 Fig. Comparison of PSAP-genomic-regions-CADD and PSAP-genes-CADD for in artificially-simulated 

608 disease exomes. Number of coding pathogenic ClinVar variants reaching the top N of variants in at least 

609 90% of FREX individuals for each strategy.
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610 S7 Fig. Comparison of PSAP-coding-genomic-regions-CADD and PSAP-genes-CADD strategies for in 

611 artificially-simulated disease genomes. Number of coding pathogenic ClinVar variants reaching the top 

612 N of variants in at least 90% of NFE individuals for each strategy.

613 S8 Fig. Flowchart to choose the PSAP method of analysis depending on type of data and variants 

614 analyzed.

615 S1 Table. Currently available PSAP null distributions. At https://lysine.univ-

616 brest.fr/~msogloblinsky/share/data/).

617 S2 Table. Strategies applied to construct and test PSAP null distributions.

618 S3 Table. Number and percentage of non-coding ClinVar variants in the top 10 of NFE genomes with 

619 PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS, by category of VEP consequence. (A) 

620 Autosomal Dominant model (B) Autosomal Recessive Model.

621 S4 Table.  Ranks of 6 known CSVD variants and 3 male infertility candidate variants with PSAP-genes-

622 CADD and PSAP-genomic-regions-CADD (1 row per individual). Each CSVD variant was observed in a 

623 different individual. Each male infertility variant was observed in a different family consisting of three 

624 members each.

625 S1 File. Method to generate PSAP null distributions.

626 S2 File. Pathogenic ClinVar variants used for the evaluation of PSAP null distributions through 

627 artificially-generated disease exomes and genomes.

628 S3 File. Rank of AD and AR non-coding non-splicing pathogenic ClinVar variants using PSAP-genomic-

629 regions-ACS in artificially-generated disease genomes.

630 S4 File. Rank of Genomiser variants using PSAP-genomic-regions-ACS in artificially-generated disease 

631 genomes.
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