

Gaynor et al. - nQuack: Ploidal level prediction

nQuack: An R package for predicting ploidal level from sequence data using site-based heterozygosity

Michelle L. Gaynor^{1,2}, Jacob B. Landis³, Timothy K. O'Connor⁴, Robert G. Laport⁵, Jeff J. Doyle³, Douglas E. Soltis², José Miguel Ponciano², and Pamela S. Soltis^{1,2}

¹ Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, U.S.A.

² Department of Biology, University of Florida, Gainesville, FL 32611, U.S.A.

³School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, U.S.A.

⁴Department of Ecology and Evolution, University of Chicago Chicago IL, 60637, U.S.A.

⁵Department of Biology, The College of Idaho, Caldwell, ID, 83605, U.S.A.

Author for correspondence: shellyleegaynor@gmail.com

ABSTRACT:

- **Premise:** Traditional methods of ploidal level estimation are tedious; leveraging sequence data for cytotype estimation is an ideal alternative. Multiple statistical approaches to leverage DNA sequence data for ploidy prediction based on site-based heterozygosity have been developed. However, these approaches may require high-coverage sequence data, use improper probability distributions, or have additional statistical shortcomings that limit inference abilities. We introduce nQuack, an open-source R package, that addresses the main shortcomings of current methods.
- **Methods and Results:** nQuack performs model selection for improved ploidy predictions. Here, we implement expected maximization algorithms with normal, beta, and beta-binomial distributions. Using extensive computer simulations that account for variability in sequencing depth, as well as real data sets, we demonstrate the utility and limitations of nQuack.
- **Conclusion:** Inferring ploidal level based on site-based heterozygosity alone is discouraged due to the low accuracy of pattern-based inference.

KEYWORDS: Copy Number Variation, Expected Maximization, Ploidy, Polyploidy, Ploidal Inference

1 INTRODUCTION

2 Whole-genome duplication (WGD), or polyploidy, is ubiquitous across the plant tree of
3 life, with all extant angiosperms having evidence of at least one ancient WGD (Jiao et al., 2011;
4 Soltis et al., 2015; Landis et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019).
5 Identifying ploidal diversity is a crucial first step to understanding the impact of WGD on
6 patterns of biodiversity. Direct estimation is achieved through chromosome counting at either
7 mitosis or meiosis. However, indirect estimation (e.g., flow cytometry, stomatal cell
8 measurements, pollen size) can be used for broad surveys of select taxa when complemented
9 with known chromosome numbers and/or ploidal levels (Masterson, 1994; Beaulieu et al., 2008;
10 Sanders, 2021; Sliwinska et al., 2021). The application of flow cytometry to determine ploidal
11 level in naturally occurring populations (Galbraith et al., 1983; Keeler et al., 1987) has been
12 fundamental to understanding evolution and ecology of mixed-ploidy populations. Despite the
13 utility of laboratory-based approaches and the extension of flow cytometry to dried samples
14 (Galbraith et al., 1983; Keeler et al., 1987), the process remains specialized and may involve the
15 use of laboratory equipment that is difficult to access. Therefore, using DNA sequence data for
16 ploidal-level prediction affords a great opportunity to streamline estimation while revolutionizing
17 our understanding of chromosome evolution.

18 To date, multiple statistical approaches to leverage DNA sequence data for the prediction
19 of ploidy have been developed based on (1) k-mer and (2) site-based heterozygosity. Both of
20 these general methods for ploidal-level prediction require statistical tests to assign ploidal level
21 to a sample; the statistical approach varies among available software.

22 K-mer-based ploidal-level prediction relies on a k-mer profile, which classifies the
23 frequency of each distinct k-mer found across the dataset. K-mers are strings of length k, often

24 21 bases (Vurture et al., 2017), that are composed of a specific sequence of nucleotides. Popular
25 methods for k-mer-based ploidial-level prediction are tetmer (Becher et al., 2022) and
26 smudgeplot, which plots minor allele frequency by total coverage to predict copy number
27 variants (Ranallo-Benavidez et al., 2020). These methods have been recently expanded to single-
28 cell ATAC-seq data (Takeuchi and Kato, 2023). However, a limitation of these methods is that at
29 least 15-25x sequence coverage per homolog is required.

30 Site-based heterozygosity relies on biallelic single nucleotide polymorphisms (SNPs)
31 within an individual and the expected number of copies of each base at that SNP. For example,
32 in a diploid individual, at a biallelic site with alleles A and B, about 50% of all nucleotides
33 sequenced are expected to represent allele A. Comparatively, in a triploid, at a site with alleles A
34 and B, 33% of the nucleotides are expected to be allele A and 67% allele B, or vice versa (Figure
35 1), are expected. The most commonly used site-based heterozygosity software is nQuire (Weiβ et
36 al., 2018), but additional software exists for de novo sequences (Sun et al., 2023). As for k-mer-
37 based estimation, sequence coverage per site of at least 20-25x is recommended for the use of
38 nQuire (Weiβ et al., 2018).

39 In addition, the performance and limitations of nQuire are poorly understood in terms of
40 accuracy. Combining nQuire's model inference with additional data, such as genome size
41 estimates, and with goodness-of-fit tests has been suggested (Viruel et al., 2019). Notably,
42 nQuire's accuracy and limitations were assessed using only genome resequencing data for only
43 five samples, representing two taxonomic groups (Weiβ et al., 2018). Numerous studies have
44 since identified inconsistencies between nQuire's estimates and indirect or direct ploidial
45 estimates (Jantzen et al., 2022; Folk et al., 2023; Landis and Doyle, 2023).

46 Moreover, to concerns regarding accuracy, guidelines for data preparation are limited,
47 since it is unknown how nQuire predictions are influenced by the number of sites, sequencing
48 coverage, and amount of variance or noise in a dataset. In real data sets, this noise can be
49 introduced through sequence error or general mapping error, as well as through the inclusion of
50 non-single-copy loci.

51 Here we introduce nQuack, an R package that (1) provides expanded tools and
52 implementations to improve site-based heterozygosity inferences of ploidal level, and (2)
53 rigorously evaluates the accuracy of this method and an existing method, nQuire. Specifically,
54 nQuack implements expected maximization algorithms with normal, beta, and beta-binomial
55 distributions to identify the ploidal level (ranging from diploid to hexaploid) of samples based on
56 DNA sequence data, building upon the framework proposed by nQuire. We designed three new
57 implementations of the expected maximization algorithm which allow additional distributions to
58 be tested. Although we implement the normal distribution, as used in nQuire, this distribution
59 may be ill-suited for allele frequencies as they range from 0 to 1 and the normal distribution
60 ranges from negative infinity to infinity. Our second implementation uses a beta distribution to
61 match the constrained range of allele frequencies. Because sequence data provide allele counts,
62 frequencies represent transformed data, which may lack original data attributes and misrepresent
63 sampling variances and one or more sources of heterogeneity. Therefore, our final
64 implementation includes the beta-binomial distribution, which allows raw allele counts to be
65 leveraged.

66 We rigorously tested our new implementations to identify limitations to these new
67 methods and provide guidance for users. We examine nQuire's five samples in addition to 477
68 samples representing three additional taxonomic groups and three additional sequence data types

69 (genotype-by-sequencing, target enrichment, and RadCap). To provide recommendations
70 regarding coverage and the number of sites needed for each implementation and model type, we
71 also test our model on 355 simulated samples, representing two simulation approaches that vary
72 in the amount of variance introduced.

73

74 METHODS AND RESULTS

75 Likelihood calculations and model selection

76 The basis of our models is the expected allele frequency at variable biallelic sites for
77 each ploidial level including diploid (0.5), triploid (0.33, 0.67), tetraploid (0.25, 0.5, 0.75),
78 pentaploid (0.2, 0.4, 0.6, 0.8), and hexaploid (0.17, 0.33, 0.5, 0.67, 0.83), as described above
79 (Figure 1; Appendix S1). To use the expected allele frequencies to determine the most likely
80 ploidial level given a set of allele frequencies or allele counts, we developed three
81 implementations of expected maximization algorithms with the normal, beta, and beta-binomial
82 distributions, each with and without a uniform distribution to capture uniform noise components.
83 The normal distribution implemented here differs from that of nQuire in our augmented-
84 likelihood calculation (Appendix S1; see Supporting Information with this article), however, all
85 model comparisons were investigated with both the nQuire-style implementation and our
86 implementation of the normal distribution (Appendix S1). We found our implementation to have
87 lower confidence in incorrect models compared to nQuire's implementation, and therefore we
88 focus only on our implementation of the normal distribution here.

89 The details of our implementations, though summarized here, can be found in Appendix
90 S1. Given the expected frequencies, the likelihood for each ploidial level based on a set of
91 observed allele frequencies (or allele counts) is defined as the sum of the product of the mixture

92 proportion (alpha) and the relative likelihood of the observations, or probability density function,
93 based on the expected frequency (mean) and variance of that mixture and the given distribution
94 (Figure 2). To maximize the likelihood for a set of mixtures, values of alpha, variance, and mean
95 can be modified through the expected maximization algorithm and optimized with the Nelder-
96 Mead simplex optimization algorithm (Nelder and Mead, 1965). Furthermore, to allow model
97 selection via information criteria, where divergence among models can be estimated by
98 calculating the log-likelihood ratio, we allow ‘free’ and ‘fixed’ models, where all ‘fixed’ models
99 are nested in a ‘free’ model. In our free model, all parameter values (alpha, variance, and mean)
100 are estimated for a mixture of all potential ploidal levels. Although we have an expected value
101 for the mean of each mixture, the expected values of alpha, as well as the variance, are not well-
102 defined. We know that the proportions of each type of heterozygote may differ for an
103 allopolyploid compared to an autopolyploid (see Lloyd and Bomblies, 2016), so we were
104 interested in exploring models where alpha is free. Therefore, we tested three ‘fixed’ models: (1)
105 where only alpha is free, (2) where only variance is free, and (3) where both alpha and variance
106 are free. Therefore, for each implementation, we provide 32 model types, including three fixed
107 models, at each of the five ploidal levels examined here and one ‘free’ model, all of which can be
108 examined with and without a uniform distribution.

109 To evaluate each model, we examined the log-likelihood ratio and the Bayesian
110 Information Criteria, or BIC score. The BIC score is the log-likelihood of a model penalized by
111 both sample size and the number of parameters included, which leads to less error in model
112 selection (Taper et al., 2021). We examined both the log-likelihood ratio and BIC score for all
113 models and determined that BIC identified the correct ploidal level of more samples than the log-
114 likelihood ratio; thus, we focused on BIC scores in all model comparisons. In theory, the BIC

115 difference between the best and second-best model can be leveraged as an information criterion
116 to assess confidence in model selection (Jerde et al., 2019; Taper et al., 2021).

117 **Model evaluation**

118 To evaluate our models and determine guidelines for implementing these models, we
119 examined 513,792 models based on both simulated and real samples. Simulated data
120 representing all five ploidal levels varied in sequence coverage and number of sites, as well as
121 the amount of random noise. Real samples include 482 samples of known ploidy (Table 1),
122 inferred via indirect and direct estimates, and represent five taxonomic groups and four types of
123 sequence data.

124 **Simulated data**

125 We simulated samples based on two approaches that represent two sampling scenarios: a
126 “simplistic” one and a “realistic” scenario where the sampling is done at various levels of DNA
127 sequence coverage (3-120x). Simplistic simulated samples are simple, with little to no variance
128 introduced during the simulation process. The simplistic approach simulates heterozygous
129 biallelic sites based on a binomial distribution where coverage among sites is equal and all
130 expected frequencies have an equal probability of being sampled. For each ploidal level, we
131 simulated 11 samples that differed in coverage per site (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or
132 100). For the 55 simulated samples, models were evaluated at six different numbers of sites, or
133 the total number of SNPs (1250, 2500, 5000, 10000, 20000, 30000).

134 For our realistic simulations, we simulated samples where coverage across sites was
135 variable and allele frequencies had higher variance than the simplistic simulations. The variance
136 introduced in these simulations is meant to resemble noise introduced by sequencing errors and
137 data processing errors (e.g., mapping errors). We simulated 60 different coverage amounts for

138 each ploidial level; these simulations varied in the minimum and maximum coverage, as well as
139 the expected number of samples within an interval, or lambda. Based on the minimum and
140 maximum coverage, as well as the expected number of events (lambda), the total coverage for
141 each site is sampled from a truncated Poisson distribution, as coverage across a genome
142 resembles a Poisson distribution with multiple peaks (Pfenninger et al., 2022). For each of our 60
143 simulations, we set the minimum coverage as i , maximum coverage as $(i + 1) * 3$, and lambda as
144 half of the sum of the minimum and maximum coverage (Appendix S2: Figure S1). The resulting
145 mean coverage simulated by this method ranged from 3 to 120x. Given a randomly selected
146 proportion (i.e., mean and associated variance), the copies of allele A were then defined with a
147 binomial sample with the probability defined by the beta distribution (i.e., a beta-binomial) and
148 the copies of allele B are equal to the remainder. We then followed the data processing steps
149 applied to real data. First, the simulated data were filtered to remove any sites where only one
150 allele was sampled by chance. Next, we filtered the sites based on the total coverage and
151 sequencing coverage of each allele. This function can also filter sites based on truncated allele
152 frequencies. Finally, we randomly sampled an allele with equal probability at each site. The
153 resulting data set includes the total coverage per site and the coverage associated with a
154 randomly sampled allele. For the 300 simulated samples, models were evaluated at six different
155 numbers of sites, or the total number of SNPs (1250, 2500, 5000, 10000, 20000, 25000).

156 **Organismal data**

157 We applied our model to real datasets available for samples of *Saccharomyces cerevisiae*,
158 *Phytophthora infestans*, *Glycine* spp., *Larrea tridentata*, and *Galax urceolata*; for simplicity, we
159 refer to these as yeast, oomycete, *Glycine* spp., *Larrea*, and *Galax*, respectively. Both the yeast
160 and oomycete sample sets were included in nQuire (Weiß et al., 2018); thus, we chose to

161 investigate these samples with nQuack. The type of DNA sequence data varied across these
162 samples, including whole-genome resequencing, genotype-by-sequencing (Elshire et al., 2011),
163 target enrichment, and RadCap data (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019).
164 RadCap (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019) combines reduced-representation
165 3RAD library preparation (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019) with probe-based
166 target capture. These sample sets also vary in the number of samples, diversity in ploidal level,
167 taxonomic diversity, and quality of the reference genome (Table 1, Appendix S3, Appendix S4).

168 We aligned reads from each sample to the associated reference genome for that species
169 (Appendix S3) with bwa-mem2 version 2.2.1 (Vasimuddin et al., 2019), converted the .sam file
170 to a .bam file, and sorted the results with samtools version 1.15 (Danecek et al., 2021). We
171 identified and masked repeat regions with repeatmodeler version 2.0 (Flynn et al., 2020) and
172 repeatmasker version 4.1.1 (Smit et al., 2015). Repetitive regions should be removed from
173 alignments before the estimation of ploidal level, as these regions will have high coverage and
174 will likely not represent the copy number variation found in coding or single-copy regions.
175 Based on the masked genomes, we then created databases of repeat regions that were removed
176 from each sample alignment. We also removed poorly mapped reads and any sites that had a
177 10% chance or more of being mapped to the wrong location (-q 10).

178 To allow multiple filtering approaches to be investigated, we first prepared a text file of
179 the .bam alignment. After preparing text files with our function `prepare_data()`, we manually
180 inspected each data set and specified the minimum filtering settings accordingly. Filtering
181 strategies differed in minimum coverage and maximum coverage quantile, as well as the lower
182 bound (C_L) and upper bound (C_U) for allele frequency truncation. For all filtering strategies,
183 sequencing depth per allele was filtered based on a sequencing error rate of 0.01, where the

184 coverage of each allele must be more than the total coverage times the error rate, but less than
185 the total coverage times one minus the error rate. To avoid enhancement of signal from data
186 duplication, we randomly sample an allele with equal probability at each site. After filtering, the
187 resulting data set includes the total coverage per site and the coverage associated with a
188 randomly sampled allele.

189 We examined four filtering strategies across sample sets, with at least two examined per
190 set. For all sample sets, we examined the minimum filtering approach (D1) and the maximum
191 filtering approach (D4). Because hexaploid samples are expected to have mixtures with means
192 equal to 0.17 and 0.83, we investigated filtering approaches that differed in C_L and C_U , to ensure
193 we did not remove these peaks in our filtering process. The minimum filtering approach (D1)
194 settings differed per sample set, with three groups of settings: yeast and oomycete, *Galax* and
195 *Glycine* spp., and *Larrea*. Respectively, the settings for the minimum filtering approach were
196 minimum coverage equal to 10, 2, and 3, maximum coverage quantile equal to 0.90, 0.90, and 1,
197 C_L equal to 0.11, 0.1, and 0.11, and C_U equal to 0.89, 0.9, and 0.89. The maximum filtering
198 approach (D4) represents nQuire's default settings, where minimum coverage is 10, C_L is 0.15,
199 C_U is 0.85, and there is no maximum coverage cutoff. The maximum filtering approach (D4) was
200 applied with nQuire's create function on all samples except for the *Larrea* sample set, which was
201 prepared with a maximum depth quantile of 0.9 and error correction of 0.01. For *Galax* and
202 *Larrea*, we examined two additional filtering approaches to examine the intermediate between
203 the minimum and maximum filtering approaches. First, we increased the minimum coverage to
204 10, but retained the C_L and C_U in the minimum filtering approach (D2). Second, we increased
205 our allele truncation with C_L as 0.15 and C_U as 0.85, with the minimum coverage retained from

206 the minimum filtering approach (D3). After filtering, the resulting data set includes the total
207 coverage per site and the coverage associated with a randomly sampled allele.

208 **Model performance on simulated data**

209 Overall, we found that no single model correctly assigned ploidal levels to all simulated
210 samples (Figure 3). The amount of random noise in simulated data influenced which model
211 correctly predicted the most simulated samples, with the best model differing for the simplistic
212 and realistic simulated data (Appendix S5). When considering all five potential ploidal levels,
213 the most accurate model for the simplistic simulated samples was the beta distribution with
214 variance free and a uniform mixture. For this model, the first three ploidal levels can be
215 differentiated at about 20x coverage; however, pentaploid and hexaploid samples cannot be
216 differentiated until about 70x coverage. For the realistic simulated samples, when considering all
217 five potential ploidal levels, the most accurate model is the beta-binomial with alpha free. For
218 this model, diploids, triploids, tetraploids, and pentaploids can be differentiated at 30x coverage,
219 but hexaploids cannot be accurately identified until 70x coverage.

220 Decreasing the number of ploidal levels considered may allow the proper assignment of
221 ploidal levels to both simplistic and realistic samples (Figure 3). For example, when considering
222 all ploidal levels with a normal distribution with variance free and uniform mixture, tetraploid
223 realistic samples are identified incorrectly as hexaploids (Appendix S5: Figure S7). However,
224 when a subset of mixtures is considered, tetraploids can be properly assigned as tetraploids for
225 both simulation types (see Appendix S5: Figure S25 and Figure S43). The impact on sequence
226 coverage requirements is minimal (see Appendix S5).

227 In some instances, we found the probability of the correct model choice to increase with
228 the BIC difference between the best and second-best models; however, accuracy and BIC score

229 difference often do not have a linear relationship (Appendix S6). We therefore caution against
230 interpreting the difference in BIC scores between the best and second-best models as a measure
231 of confidence or accuracy.

232 **Model performance on sample sets**

233 As found with our simulated data, a single model was not ideal for all real samples.
234 However, we were able to identify models that assigned ploidial level correctly to all samples or a
235 large subset of samples for all data sets, with the best model for each sample set having at least
236 78% accuracy (Figure 4; Table 2). For those sample sets without pentaploid or hexaploid
237 samples, we considered only diploid, triploid, and tetraploid mixtures, as this reduced assignment
238 error. Our implementation of nQuire, as well as the best model identified with nQuack, had equal
239 or greater accuracy than the original nQuire model (Table 2).

240 We were able to properly assign ploidial levels to all five samples originally investigated
241 by nQuire. For the yeast sample set, all three distributions had multiple model types that were
242 able to properly assign ploidial level to all samples under both filtering approaches; the model
243 type implemented in nQuire, variance free with a uniform mixture, was also able to accurately
244 assign ploidial level to all samples with all three distributions. Notably, the normal distribution
245 with alpha and variance free and a uniform mixture was only suitable when the allele truncation
246 was the least constrained (D1). For the oomycete sample set, only one model was suitable when
247 allele truncation was the least constrained: the normal distribution with alpha free and a uniform
248 mixture. Surprisingly, for the oomycete sample set, the nQuire model type (variance free with a
249 uniform mixture) was unable to properly assign ploidial level to the diploid sample when filtering
250 did not match the filtering approach of nQuire. Additionally, the nQuire filtering approach (D4)
251 allowed the proper assignment of both oomycete samples by at least two models from each

252 distribution. Unlike all other sample sets, the maximum filtering approach (D4) increased the
253 number of sites for both oomycete and yeast sample sets (Appendix S7); this is likely due to an
254 excess of sites with high sequencing depth.

255 For *Glycine* spp., the nQuire filtering approach had low accuracy for all models (< 60 %);
256 however, the minimum filtering approach allowed 16 of 17 samples to be assigned the correct
257 ploidial level based on the beta-binomial distribution and the alpha- and variance-free model with
258 a uniform mixture. We expected the alpha free model to be the best model for *Glycine* spp.
259 samples due to the history of ancient polyploidization in *Glycine* spp. and the likely return to
260 disomic inheritance (Walling et al., 2006), thus the proportions of each different heterozygote
261 should be unequal. As expected, alpha as a free variable was informative for tetraploids;
262 however, without a uniform mixture, diploids were incorrectly identified. Under the best model,
263 the single incorrectly assigned diploid was an individual of *Glycine tomentella* (D5Bb) which is
264 known to have a history of introgression (see Landis and Doyle, 2023). Hybridization can lead to
265 an increased gene copy number; therefore, a more conserved filtering approach to only retain
266 single-copy loci may be necessary to improve accuracy.

267 The best model for *Glycine* spp. also had high accuracy for *Galax* samples under the
268 minimum filtering approach with 185 of 190 samples with properly assigned ploidial levels with
269 only two tetraploids and three triploids misidentified. The tetraploid samples that were
270 incorrectly identified had weak support; the absolute difference between the BIC score of the
271 best model relative to the second-best model was less than 10, and these values were less than
272 the BIC score difference of all accurate estimates. Although we caution against the interpretation
273 of BIC score difference as a measure of accuracy generally, evaluating this method on samples
274 with known ploidial level identified this potential usage for a set of unknown samples. When

275 sample sequence data are more similar to the modeled data-generating process, these criteria may
276 be informative. Here, we targeted single-copy loci with capture-based sequencing, thus avoiding
277 variance among loci that would skew these models. However, BIC score differences were not
278 informative for the incorrectly assigned triploid samples. Two of these three triploid samples
279 were incorrectly identified by all models; both samples have a high abundance of sites with an
280 allele frequency of approximately 0.5, suggesting unequal gene loss and retention across targeted
281 sites. When low coverage sites remained (D1 & D3), the distribution with the best model
282 remained the beta-binomial with 184 of 190 samples correctly predicted under the variance-free
283 with uniform mixture model. When low-coverage sites were removed (D2 & D4), the best model
284 shifted to the normal distribution with alpha free and a uniform mixture. The highest accuracy
285 was found under the D4 filtering approach with the normal distribution with alpha free and a
286 uniform mixture; this model accurately assigned ploidy to 186 of the 190 individuals, only
287 failing to identify a single tetraploid and three triploids.

288 For the *Larrea* dataset, we were able to identify all triploids, tetraploids, pentaploids, and
289 hexaploids under at least one model; however, the best model and filtering approach for each
290 ploidal level differed. Based on the 18 different models and 4 different filtering approaches
291 investigated for all cytotypes or only a subset of ploidal levels ($2x$, $4x$, and $6x$), we identified 22
292 and 39 instances, respectively, where all hexaploids were assigned the correct ploidal level. For
293 tetraploid samples, all individuals were correctly identified in 2 instances for all cytotypes and 2
294 instances for only a subset of ploidal levels. Similar to the triploids in the *Galax* sample set, there
295 were multiple diploid samples that our implemented models failed to identify correctly. These
296 diploid samples were found to occur in mixed ploidal sites or at the edge of the species range,
297 suggesting that ongoing mixed-ploidy introgression or divergence from the reference may skew

298 the models' ability to accurately assign ploidial levels due to increased gene copy number or
299 mapping error, respectively. When considering all five potential ploidial levels, the best model
300 was the beta distribution with alpha free and a uniform mixture, with 189 of 270 samples
301 correctly assigned ploidial level under the D2 filtering approach; this prediction misidentified all
302 hexaploids and pentaploids, as well as three tetraploids and four diploids. When we reduce the
303 mixture of ploidial levels considered to only include diploids, tetraploids, and hexaploids, the best
304 model shifts to the beta distribution with variance free under the maximum filtering approach
305 with 210 samples correctly identified; the misidentified samples include all triploids and
306 pentaploids, six diploids, 20 tetraploids, and 29 hexaploids. The original nQuire model was
307 unable to estimate the correct ploidial level for only 6 diploids and 1 tetraploid from the diploid,
308 triploid, and tetraploid *Larrea* samples; comparatively, our implementation of nQuire incorrectly
309 assigned ploidial level to an increased number of tetraploid samples due to the inclusion of a
310 hexaploid mixture model, which was identified as more likely for these samples. Although
311 reducing the ploidial levels considered can increase the number of correctly assigned samples, we
312 do not advise ignoring the presence of triploid, hexaploid, or pentaploid cytotypes in a system to
313 improve model accuracy. Based on the 18 different models and 4 different filtering approaches
314 investigated, we identified 22 and 39 instances where all hexaploids were identified correctly,
315 when all cytotypes or only a subset of cytotypes were included. Overall, our approach increased
316 the *Larrea* sample set accuracy compared to nQuire by 8% (Table 2).

317

318 CONCLUSION

319 Here we provided expanded tools and implementations to improve site-based
320 heterozygosity inferences of ploidial level. nQuack provides data preparation guidance and tools

321 to decrease noise in input data. These tools include a maximum sequence coverage quantile filter
322 and sequence error-based filter to remove biallelic sites that are likely not representative of copy
323 number variance in the nuclear genome. We also consider only the frequency of allele A or B at
324 each site, instead of both, as done in nQuire, as this would inflate the observation by enhancing
325 the signal or noise found in the data. Our model builds upon, and improves, the nQuire
326 framework by extending it to higher ploidial levels (pentaploid and hexaploid), correcting the
327 augmented likelihood calculation, implementing more suitable probability distributions, and
328 allowing additional ‘fixed’ models. We also decrease model selection errors by relying on BIC
329 rather than likelihood ratio tests (Taper et al., 2021).

330 Through the intensive testing of our proposed methods, we found that many variables
331 influence model accuracy. Based on our simulated data, we observed that each model
332 implementation and model type can be influenced by the number of sites, sequencing coverage,
333 and amount of variance or noise in a dataset. In real data sets, this noise can be introduced
334 through sequencing error or general sequence mapping error. In addition, although we attempted
335 to retain only single-copy loci by removing repetitive regions, additional filtering may increase
336 accuracy to ensure estimates are not conflated by variation among loci at non-single-copy sites.
337 By examining a large amount of real data, we determined that the most accurate model for each
338 data set differed, suggesting that both filtering strategies and model selection must be explored
339 on a set of known samples before applying these models to any sample with an unknown ploidial
340 level to achieve accurate ploidial-level assignment.

341 We explored nQuack’s performance on an extensive set of simulated data and multiple
342 real-world datasets. These analyses allowed us to benchmark model performance and identify
343 data features that affect nQuack’s predictive power. However, the biological datasets we explored

344 cannot represent the full diversity of polyploid systems, and additional tuning is required for real
345 datasets. For example, these models would not be suitable in an allotetraploid with strict disomic
346 inheritance as no AAAB or ABBB loci would occur; therefore, the most likely model could be
347 identified as a diploid, though BIC score parameter corrections would allow the most probable
348 model to be hexaploid or tetraploid. Additional biological systems will likely introduce more
349 complexities and may work best under different filtering conditions. To identify which factors
350 dictate which strategy is the most accurate, multiple mixed-ploidy systems with high-quality
351 reference genomes, well-classified polyploidization events (e.g., mode of formation, timing of
352 polyploidy events, chromosomal segregation patterns, etc.), and well-characterized reproductive
353 history should be explored in future model iterations. Regarding summary statistics, non-
354 parametric bootstrapping after model selection would allow for assessing the strength of the
355 evidence in favor of every model and the robustness of model selection results. We provide
356 functions to perform this non-parametric bootstrap sampling, however, completing a full non-
357 parametric bootstrap for all of our real datasets was neither practical nor feasible due to
358 computational limitations. Because all mathematical models are misspecifications of the true
359 data-generating process (Dennis et al., 2019), errors are probable when selecting the model
360 closest to the truth. Therefore, by resampling the data we can assess the reliability of the model
361 choice. In addition, if analytical-based inferences continue to be pursued, a sliding window
362 approach will likely improve ploidy inferences.

363 Our results open many interesting avenues for future research. Site-based heterozygosity
364 models like the ones used here are in essence phenomenological statistical models, which focus
365 on reproducing patterns rather than generating patterns based on a fundamental biological
366 process. Although statistical models embodying fundamental biological processes are common

367 in many areas of biology (for instance, in phylogenetics), in this particular case it is extremely
368 difficult to capture the complexities of nature in an analytical-based inference, and future model
369 exploration utilizing data-based inference to classify ploidal levels is warranted. Alternatively,
370 demographic models like the ones we proposed elsewhere (Gaynor et al., 2023) may provide the
371 ecological and evolutionary framework necessary to design process-based predictions for mixed
372 ploidy. These models, however, require rigorous coupling with evolutionary and genomic theory.

373 Overall, this analysis reveals that it is critical to thoroughly examine proposed methods
374 before inferring biological meaning. nQuack, as well as nQuire, should not be used to infer the
375 ploidal level in a system for which very little is known, as these models are often positively
376 misleading. We also suggest caution when relying on any site-based heterozygosity to predict
377 ploidal level of a sample even when a known dataset is analyzed before applying the method to a
378 sample of unknown ploidy due to the potential impact of biological processes (e.g.,
379 hybridization, divergence, etc.,) on model inference. Despite the caveats to this method, it can be
380 easily implemented to leverage sequence data for ploidal estimation.

381

382 **AUTHOR CONTRIBUTIONS**

383 Original conceptualization by M.L.G, D.E.S, J.M.P, and P.S.S. Methodology designed by M.L.G
384 and J.M.P. Software and formal analysis was written and conducted by M.L.G. Data were
385 generated by M.L.G, J.B.L, J.J.D, T.K.O, and R.G.L. Original draft and visualization by M.L.G.
386 All authors reviewed and contributed to the final manuscript.

387

388 **ACKNOWLEDGMENTS**

389 This research was supported by the NSF Graduate Research Fellowship (DGE-1842473) to
390 M.L.G., an NSF Small Grant (DEB-1556371) to R.G.L, an NSF Plant Genome Fellowship (IOS-
391 1711807) to J.B.L., and a USDA NIFA Hatch award (7002754) to J.J.D. We thank William
392 Weaver, Eric Goolsby, and Matthew Gitzendanner for assistance with C++. We thank Alyssa
393 Philips, Trevor Faske, and Matthew G. Johnson for their feedback and discussion.

394

395 **DATA AVAILABILITY STATEMENT**

396 The R package nQuack is available <https://github.com/mgaynor1/nQuack> and
397 <https://mlgaynor.com/nQuack/>. A full implementation tutorial
398 (<https://mlgaynor.com/nQuack/articles/BasicExample.html>), as well as detailed tutorials on data
399 preparation (<https://mlgaynor.com/nQuack/articles/DataPreparation.html>) and model inference
400 (<https://mlgaynor.com/nQuack/articles/ModelOptions.html>), are available with the package
401 documentation. For three sample sets, reference genomes and population genetics data are
402 available via open repositories (see Appendix S3 and S4 for accessions). Sequence data for
403 *Galax urceolata* and *Larrea tridentata* will be published in open repositories with future
404 publications. An example data set, as well as the output of each step of our method, is available
405 on our github (<https://github.com/mgaynor1/nQuack/tree/main/data>).

406 REFERENCES

- 407 Bayona-Vásquez, N. J., T. C. Glenn, T. J. Kieran, T. W. Pierson, S. L. Hoffberg, P. A. Scott, K.
408 E. Bentley, et al. 2019. Adapterama III: Quadruple-indexed, double/triple-enzyme
409 RADseq libraries (2RAD/3RAD). *PeerJ* 7: e7724.
- 410 Beaulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar, and C. A. Knight. 2008. Genome size is a
411 strong predictor of cell size and stomatal density in angiosperms. *The New Phytologist*
412 179: 975–986.
- 413 Becher, H., J. Sampson, and A. D. Twyford. 2022. Measuring the invisible: The sequences
414 causal of genome size differences in Eyebrights (*Euphrasia*) revealed by k-mers.
415 *Frontiers in Plant Science* 13: 818410.
- 416 Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, et al.
417 2021. Twelve years of SAMtools and BCFtools. *GigaScience* 10.
- 418 Dennis, B., J. M. Ponciano, M. L. Taper, and S. R. Lele. 2019. Errors in statistical inference
419 under model misspecification: evidence, hypothesis testing, and AIC. *Frontiers in*
420 *Ecology and Evolution* 7.
- 421 Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E.
422 Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high
423 diversity species. *Plos One* 6: e19379.
- 424 Flynn, J. M., R. Hubley, C. Goubert, J. Rosen, A. G. Clark, C. Feschotte, and A. F. Smit. 2020.
425 RepeatModeler2 for automated genomic discovery of transposable element families.
426 *Proceedings of the National Academy of Sciences of the United States of America* 117:
427 9451–9457.

- 428 Folk, R. A., J. L. M. Charboneau, M. Belitz, T. Singh, H. R. Kates, D. E. Soltis, P. S. Soltis, et
429 al. 2023. Anatomy of a mega-radiation: Biogeography and niche evolution in *Astragalus*.
430 *BioRxiv*.
- 431 Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma, and E. Firoozabady.
432 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. *Science* 220:
433 1049–1051.
- 434 Gaynor, M. L., N. Kortessis, D. E. Soltis, P. S. Soltis, and J. M. Ponciano. 2023. Dynamics of
435 mixed-ploidy populations under demographic and environmental stochasticities. *BioRxiv*.
- 436 Hoffberg, S. L., T. J. Kieran, J. M. Catchen, A. Devault, B. C. Faircloth, R. Mauricio, and T. C.
437 Glenn. 2016. RADcap: sequence capture of dual-digest RADseq libraries with
438 identifiable duplicates and reduced missing data. *Molecular Ecology Resources* 16:
439 1264–1278.
- 440 Jantzen, J. R., P. J. F. Guimarães, L. C. Pederneiras, A. L. F. Oliveira, D. E. Soltis, and P. S.
441 Soltis. 2022. Phylogenomic analysis of *Tibouchina* s.s. (Melastomataceae) highlights the
442 evolutionary complexity of Neotropical savannas. *Botanical Journal of the Linnean
443 Society*.
- 444 Jerde, C. L., K. Kraskura, E. J. Eliason, S. R. Csik, A. C. Stier, and M. L. Taper. 2019. Strong
445 evidence for an intraspecific metabolic scaling coefficient near 0.89 in fish. *Frontiers in
446 Physiology* 10: 1166.
- 447 Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, L. P.
448 Tomsho, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. *Nature* 473:
449 97–100.

- 450 Keeler, K. H., B. Kwankin, P. W. Barnes, and D. W. Galbraith. 1987. Polyploid polymorphism
451 in *Andropogon gerardii*. *Genome* 29: 374–379.
- 452 Landis, J. B., and J. J. Doyle. 2023. Genomic relationships of *Glycine remota*, a recently
453 discovered perennial relative of Soybean, within *Glycine*. *Systematic Botany* 48: 78–87.
- 454 Landis, J. B., D. E. Soltis, Z. Li, H. E. Marx, M. S. Barker, D. C. Tank, and P. S. Soltis. 2018.
455 Impact of whole-genome duplication events on diversification rates in angiosperms.
456 *American Journal of Botany* 105: 348–363.
- 457 Lloyd, A., and K. Bomblies. 2016. Meiosis in autopolyploid and allopolyploid *Arabidopsis*.
458 *Current Opinion in Plant Biology* 30: 116–122.
- 459 Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of
460 angiosperms. *Science* 264: 421–424.
- 461 Nelder, J. A., and R. Mead. 1965. A simplex method for function minimization. *The Computer
462 Journal* 7: 308–313.
- 463 One Thousand Plant Transcriptomes Initiative. 2019. One thousand plant transcriptomes and
464 the phylogenomics of green plants. *Nature* 574: 679–685.
- 465 Pfenninger, M., P. Schönenbeck, and T. Schell. 2022. ModEst: Accurate estimation of genome
466 size from next generation sequencing data. *Molecular Ecology Resources* 22: 1454–1464.
- 467 Ranallo-Benavidez, T. R., K. S. Jaron, and M. C. Schatz. 2020. GenomeScope 2.0 and
468 Smudgeplot for reference-free profiling of polyploid genomes. *Nature Communications*
469 11: 1432.
- 470 Sanders, H. 2021. Polyploidy and pollen grain size: Is there a correlation? Master thesis.
471 University of Nebraska at Kearney.

- 472 Sliwinska, E., J. Loureiro, I. J. Leitch, P. Šmarda, J. Bainard, P. Bureš, Z. Chumová, et al. 2021.
- 473 Application-based guidelines for best practices in plant flow cytometry. *Cytometry. Part*
474 *A: the Journal of the International Society for Analytical Cytology.*
- 475 Smit, A. F. A., R. Hubley, and P. Green. 2015. RepeatMasker.
476 Website: <http://www.repeatmasker.org>. Accessed.
- 477 Soltis, P. S., D. B. Marchant, Y. Van de Peer, and D. E. Soltis. 2015. Polyploidy and genome
478 evolution in plants. *Current Opinion in Genetics & Development* 35: 119–125.
- 479 Sun, M., E. Pang, W.-N. Bai, D.-Y. Zhang, and K. Lin. 2023. ploidyfrost: Reference-free
480 estimation of ploidy level from whole genome sequencing data based on de Bruijn
481 graphs. *Molecular Ecology Resources* 23: 499–510.
- 482 Takeuchi, F., and N. Kato. 2023. Ploidy inference from single-cell data: application to human
483 and mouse cell atlases. *BioRxiv*.
- 484 Taper, M. L., S. R. Lele, J. M. Ponciano, B. Dennis, and C. L. Jerde. 2021. Assessing the global
485 and local uncertainty of scientific evidence in the presence of model misspecification.
486 *Frontiers in Ecology and Evolution* 9.
- 487 Vasimuddin, Md., S. Misra, H. Li, and S. Aluru. 2019. Efficient Architecture-Aware
488 Acceleration of BWA-MEM for Multicore Systems. 2019 IEEE International Parallel and
489 Distributed Processing Symposium (IPDPS), 314–324. IEEE.
- 490 Viruel, J., M. Conejero, O. Hidalgo, L. Pokorny, R. F. Powell, F. Forest, M. B. Kantar, et al.
491 2019. A target capture-based method to estimate ploidy from herbarium specimens.
492 *Frontiers in Plant Science* 10: 937.
- 493 Vurture, G. W., F. J. Sedlazeck, M. Nattestad, C. J. Underwood, H. Fang, J. Gurtowski, and M.

- 494 C. Schatz. 2017. GenomeScope: fast reference-free genome profiling from short reads.
- 495 *Bioinformatics* 33: 2202–2204.
- 496 Walling, J. G., R. Shoemaker, N. Young, J. Mudge, and S. Jackson. 2006. Chromosome-level
- 497 homeology in paleopolyploid soybean (*Glycine max*) revealed through integration of
- 498 genetic and chromosome maps. *Genetics* 172: 1893–1900.
- 499 Weiβ, C. L., M. Pais, L. M. Cano, S. Kamoun, and H. A. Burbano. 2018. nQuire: A statistical
- 500 framework for ploidy estimation using next generation sequencing. *BMC Bioinformatics*
- 501 19: 122.

TABLES

Table 1. An overview of all included sample sets including the species, total number of samples, ploidal levels included, and sequencing approach. Additional information, including available accessions, can be found in Appendix S3 and Appendix S4.

Sample set	Species	Total	Ploidal levels	Sequencing approach
Yeast	<i>Saccharomyces cerevisiae</i>	3	2x, 3x, 4x	Whole-genome resequencing
Oomycete	<i>Phytophthora infestans</i>	2	2x, 3x	Whole-genome resequencing
Glycine spp.	<i>Glycine albicans</i> , <i>G. arenaria</i> , <i>G. falcata</i> , <i>G. hirticaulis</i> , <i>G. tomentella</i> , <i>G. pescadrensis</i> , <i>G. stenophita</i> , and <i>G. tabacina</i>	17	2x, 4x	Genotype-by-sequencing
Galax	<i>Galax urceolata</i>	190	2x, 3x, 4x	Target Enrichment
Larrea	<i>Larrea tridentata</i>	270	2x, 3x, 4x, 5x, 6x	RadCap (Hoffberg

				et al., 2016; Bayona-Vásquez et al., 2019)
--	--	--	--	--

Table 2. Accuracy of nQuire compared to nQuack's implementation of nQuire (normal distribution with variance free and a uniform mixture with the maximum filtering approach, D4), and the best model by nQuack. Percent of total samples accurately assigned in parentheses. nQuire was run on alignments before our recommended preprocessing steps.

Sample set	Total	nQuire	nQuack's nQuire	nQuack's best model
Yeast	3	3 (100%)	3 (100%)	3 (100%)
Oomycete	2	2 (100%)	2 (100%)	2 (100%)
<i>Glycine</i> spp.	17	9 (53%)	9 (53%)	16 (94%)
<i>Galax</i>	190	172 (91%)	179 (94%)	186 (97%)
<i>Larrea</i>	270	189 (70%)	205 (76%)	210 (78%)

FIGURE LEGENDS

Figure 1. Expected allele frequencies at biallelic sites for diploid, triploid, tetraploid, pentaploid, and hexaploid.

Figure 2. The basic components of a mixture model include mean (μ), variance (σ), and proportion (or alpha, α). The expected distributions for an autotetraploid, as defined by Lloyd and Bomblies 2016, can be seen here.

Figure 3. Variance in simulated data leads to a higher rate of incorrect ploidal level assignment. A larger percentage of samples will be properly assigned ploidal level when the number of mixtures examined is reduced. Some models are unsuitable for assigning specific ploidal levels, for example, diploids are not identified under the normal distribution when alpha is free.

Figure 4. A large proportion of samples can be properly assigned ploidal level when only considering a subset of mixtures ($2x$, $3x$, and $4x$ for yeast, oomycete, *Glycine*, and *Galax*; $2x$, $4x$, and $6x$ for *Larrea*). All samples were properly identified by at least one model for both yeast and oomycete sample sets. For *Glycine* and *Galax*, the best model identified 16 out of 17 samples and 186 out of 190 samples respectively. For *Larrea*, the best model was unable to identify 60 samples, for a total of 210 out of 270 samples correctly identified.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Detailed implementation of expected maximization algorithm and the models available in our method.

Appendix S2. Distribution of coverage for the realistic simulation approach (Figure S1).

Appendix S3. Genome statistics including species identity, number of contigs, total length in basepairs, contig minimum length, contig average length, contig maximum length, N50 (Mb), percent of GC content, BUSCO complete percentage, BUSCO duplicate percentage, BUSCO reference, and any accession information available.

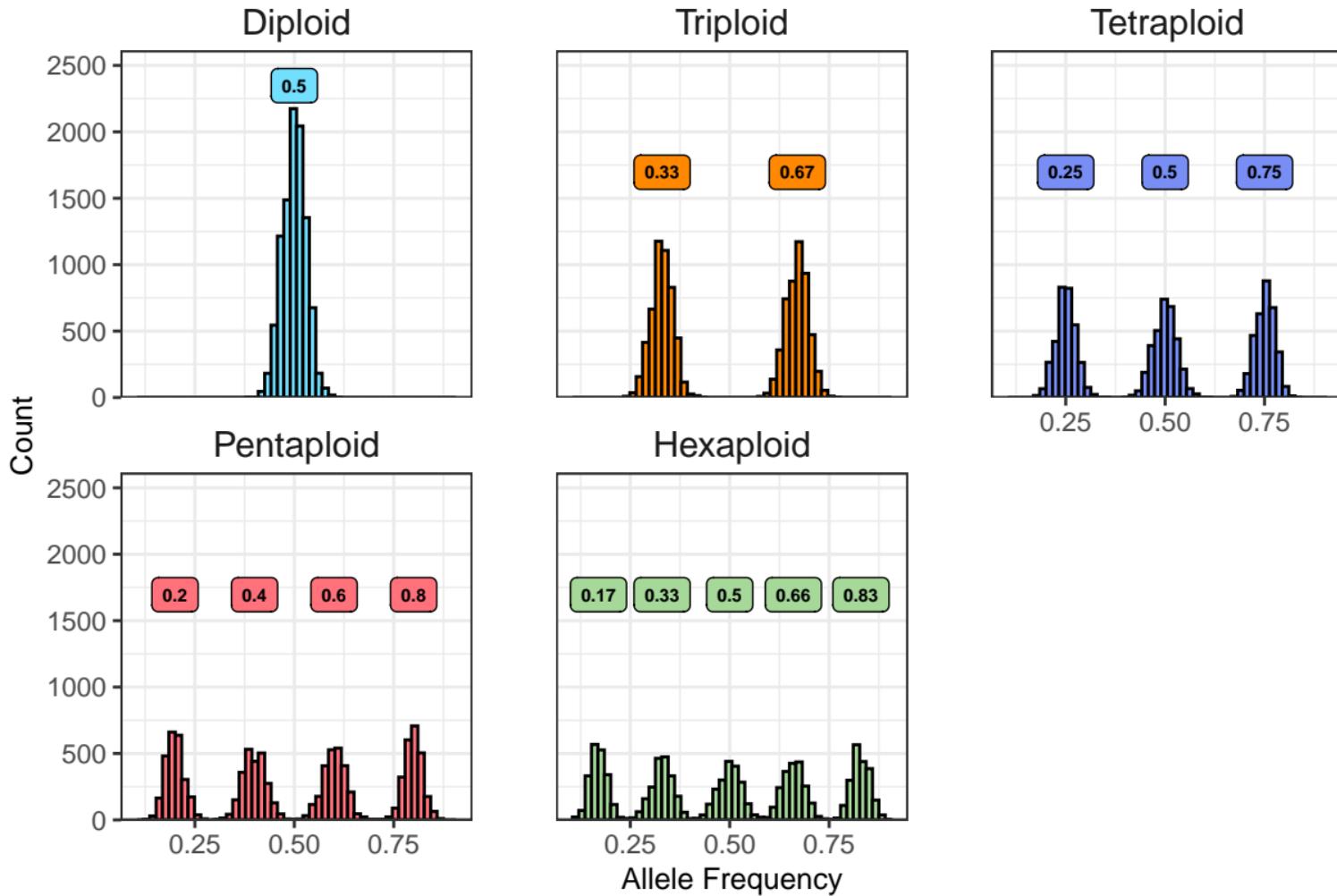
Appendix S4. Extended information on sample sets including the number of samples of each ploidal level, the sequencer used, and any accession information available.

Appendix S5. Model comparisons for simulated data sets when considering all ploidal levels (Figure S2 - S19) or only a subset of ploidal levels: (1) only diploid, triploids, and tetraploids (Figure S20 - S38), or (2) only diploid, tetraploids, and hexaploids (Figure S39 - S57). BIC score difference between the best and second best models for simulated samples across different numbers of sites for eleven different coverage amounts (5, 10, 20, 30, ...). The color of each point represents the best model. The shape of each point represents the approach used to simulate that sample. A larger BIC difference between the best and second-best models indicates model confidence. These plots can be used to guide users' interpretation of these models and determine if these models will apply to their system.

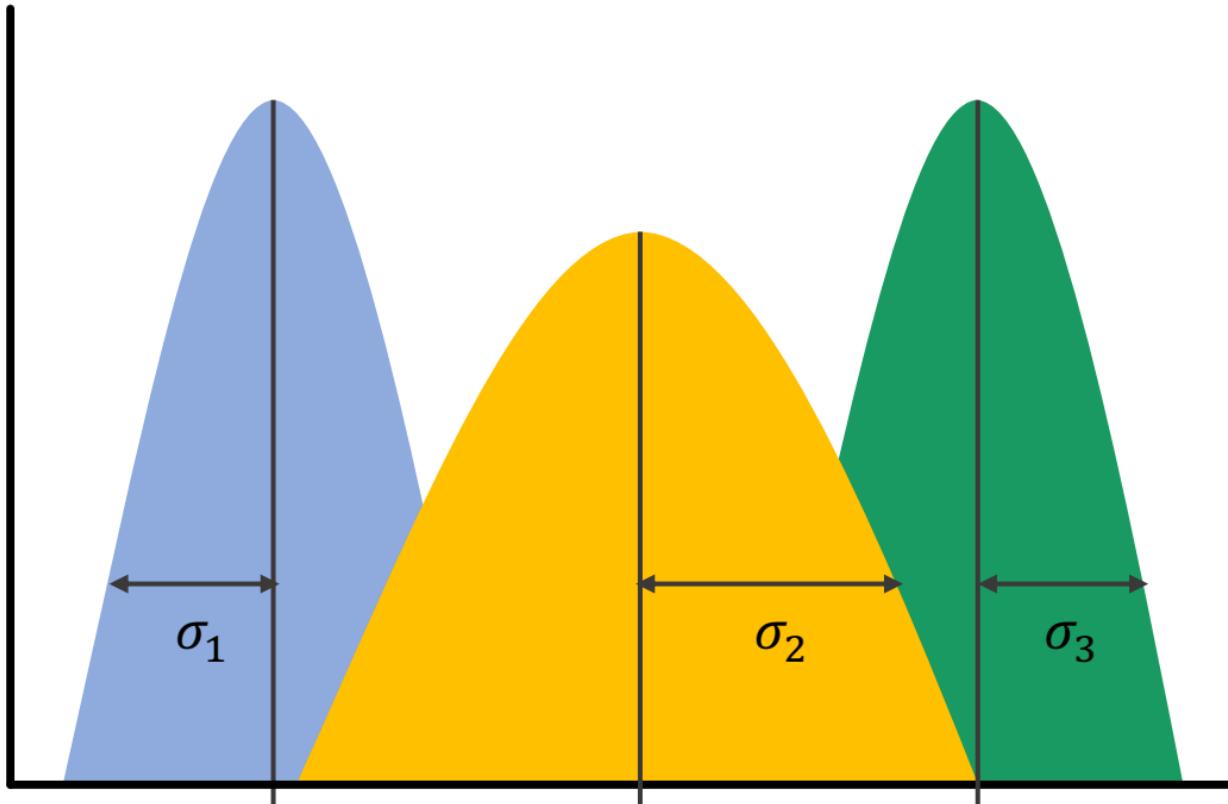
Appendix S6. Probability of the correct model choice given the BIC difference between the best and second best model for all simulated diploid, triploid, tetraploid, pentaploid, and hexaploid samples. The probability of success was predicted based on a logistic regression where accuracy

is a function of BIC difference. We expect the BIC difference between the best and second best model to increase with the probability of success when the BIC difference is indicative of the model's accuracy. (Figure S58 - S60)

Appendix S7. Number of sites and mean sequence coverage included for all filtering approaches for each sample set. (Figure S61)



Count



μ_1

μ_2

μ_3

Allele Frequency

α_1	0.33
α_2	0.33
α_3	0.33

