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ABSTRACT:

e Premise: Traditional methods of ploidal level estimation are tedious; leveraging
sequence data for cytotype estimation is an ideal alternative. Multiple statistical
approaches to leverage DNA sequence data for ploidy prediction based on site-based
heterozygosity have been developed. However, these approaches may require high-
coverage sequence data, use improper probability distributions, or have additional
statistical shortcomings that limit inference abilities. We introduce nQuack, an open-
source R package, that addresses the main shortcomings of current methods.

e Methods and Results: nQuack performs model selection for improved ploidy
predictions. Here, we implement expected maximization algorithms with normal, beta,
and beta-binomial distributions. Using extensive computer simulations that account for
variability in sequencing depth, as well as real data sets, we demonstrate the utility and
limitations of nQuack.

e Conclusion: Inferring ploidal level based on site-based heterozygosity alone is

discouraged due to the low accuracy of pattern-based inference.

KEYWORDS: Copy Number Variation, Expected Maximization, Ploidy, Polyploidy, Ploidal

Inference
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INTRODUCTION

Whole-genome duplication (WGD), or polyploidy, is ubiquitous across the plant tree of
life, with all extant angiosperms having evidence of at least one ancient WGD (Jiao et al., 2011;
Soltis et al., 2015; Landis et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019).
Identifying ploidal diversity is a crucial first step to understanding the impact of WGD on
patterns of biodiversity. Direct estimation is achieved through chromosome counting at either
mitosis or meiosis. However, indirect estimation (e.g., flow cytometry, stomatal cell
measurements, pollen size) can be used for broad surveys of select taxa when complemented
with known chromosome numbers and/or ploidal levels (Masterson, 1994; Beaulieu et al., 2008;
Sanders, 2021; Sliwinska et al., 2021). The application of flow cytometry to determine ploidal
level in naturally occurring populations (Galbraith et al., 1983; Keeler et al., 1987) has been
fundamental to understanding evolution and ecology of mixed-ploidy populations. Despite the
utility of laboratory-based approaches and the extension of flow cytometry to dried samples
(Galbraith et al., 1983; Keeler et al., 1987), the process remains specialized and may involve the
use of laboratory equipment that is difficult to access. Therefore, using DNA sequence data for
ploidal-level prediction affords a great opportunity to streamline estimation while revolutionizing
our understanding of chromosome evolution.

To date, multiple statistical approaches to leverage DNA sequence data for the prediction
of ploidy have been developed based on (1) k-mer and (2) site-based heterozygosity. Both of
these general methods for ploidal-level prediction require statistical tests to assign ploidal level
to a sample; the statistical approach varies among available software.

K-mer-based ploidal-level prediction relies on a k-mer profile, which classifies the

frequency of each distinct k-mer found across the dataset. K-mers are strings of length k, often
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21 bases (Vurture et al., 2017), that are composed of a specific sequence of nucleotides. Popular
methods for k-mer-based ploidal-level prediction are tetmer (Becher et al., 2022) and
smudgeplot, which plots minor allele frequency by total coverage to predict copy number
variants (Ranallo-Benavidez et al., 2020). These methods have been recently expanded to single-
cell ATAC-seq data (Takeuchi and Kato, 2023). However, a limitation of these methods is that at
least 15-25x sequence coverage per homolog is required.

Site-based heterozygosity relies on biallelic single nucleotide polymorphisms (SNPs)
within an individual and the expected number of copies of each base at that SNP. For example,
in a diploid individual, at a biallelic site with alleles A and B, about 50% of all nucleotides
sequenced are expected to represent allele A. Comparatively, in a triploid, at a site with alleles A
and B, 33% of the nucleotides are expected to be allele A and 67% allele B, or vice versa (Figure
1), are expected. The most commonly used site-based heterozygosity software is nQuire (Weil3 et
al., 2018), but additional software exists for de novo sequences (Sun et al., 2023). As for k-mer-
based estimation, sequence coverage per site of at least 20-25x is recommended for the use of
nQuire (Weil} et al., 2018).

In addition, the performance and limitations of nQuire are poorly understood in terms of
accuracy. Combining nQuire’s model inference with additional data, such as genome size
estimates, and with goodness-of-fit tests has been suggested (Viruel et al., 2019). Notably,
nQuire’s accuracy and limitations were assessed using only genome resequencing data for only
five samples, representing two taxonomic groups (Weil} et al., 2018). Numerous studies have
since identified inconsistencies between nQuire’s estimates and indirect or direct ploidal

estimates (Jantzen et al., 2022; Folk et al., 2023; Landis and Doyle, 2023).
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Moreover, to concerns regarding accuracy, guidelines for data preparation are limited,
since it is unknown how nQuire predictions are influenced by the number of sites, sequencing
coverage, and amount of variance or noise in a dataset. In real data sets, this noise can be
introduced through sequence error or general mapping error, as well as through the inclusion of
non-single-copy loci.

Here we introduce nQuack, an R package that (1) provides expanded tools and
implementations to improve site-based heterozygosity inferences of ploidal level, and (2)
rigorously evaluates the accuracy of this method and an existing method, nQuire. Specifically,
nQuack implements expected maximization algorithms with normal, beta, and beta-binomial
distributions to identify the ploidal level (ranging from diploid to hexaploid) of samples based on
DNA sequence data, building upon the framework proposed by nQuire. We designed three new
implementations of the expected maximization algorithm which allow additional distributions to
be tested. Although we implement the normal distribution, as used in nQuire, this distribution
may be ill-suited for allele frequencies as they range from 0 to 1 and the normal distribution
ranges from negative infinity to infinity. Our second implementation uses a beta distribution to
match the constrained range of allele frequencies. Because sequence data provide allele counts,
frequencies represent transformed data, which may lack original data attributes and misrepresent
sampling variances and one or more sources of heterogeneity. Therefore, our final
implementation includes the beta-binomial distribution, which allows raw allele counts to be
leveraged.

We rigorously tested our new implementations to identify limitations to these new
methods and provide guidance for users. We examine nQuire’s five samples in addition to 477

samples representing three additional taxonomic groups and three additional sequence data types
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(genotype-by-sequencing, target enrichment, and RadCap). To provide recommendations
regarding coverage and the number of sites needed for each implementation and model type, we
also test our model on 355 simulated samples, representing two simulation approaches that vary

in the amount of variance introduced.

METHODS AND RESULTS
Likelihood calculations and model selection

The basis of our models is the expected allele frequency at variable biallelic sites for
each ploidal level including diploid (0.5), triploid (0.33, 0.67), tetraploid (0.25, 0.5, 0.75),
pentaploid (0.2, 0.4, 0.6, 0.8), and hexaploid (0.17, 0.33, 0.5, 0.67, 0.83), as described above
(Figure 1; Appendix S1). To use the expected allele frequencies to determine the most likely
ploidal level given a set of allele frequencies or allele counts, we developed three
implementations of expected maximization algorithms with the normal, beta, and beta-binomial
distributions, each with and without a uniform distribution to capture uniform noise components.
The normal distribution implemented here differs from that of nQuire in our augmented-
likelihood calculation (Appendix S1; see Supporting Information with this article), however, all
model comparisons were investigated with both the nQuire-style implementation and our
implementation of the normal distribution (Appendix S1). We found our implementation to have
lower confidence in incorrect models compared to nQuire’s implementation, and therefore we
focus only on our implementation of the normal distribution here.

The details of our implementations, though summarized here, can be found in Appendix
S1. Given the expected frequencies, the likelihood for each ploidal level based on a set of

observed allele frequencies (or allele counts) is defined as the sum of the product of the mixture
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92  proportion (alpha) and the relative likelihood of the observations, or probability density function,
93  based on the expected frequency (mean) and variance of that mixture and the given distribution
94  (Figure 2). To maximize the likelihood for a set of mixtures, values of alpha, variance, and mean
95  can be modified through the expected maximization algorithm and optimized with the Nelder-
96  Mead simplex optimization algorithm (Nelder and Mead, 1965). Furthermore, to allow model
97  selection via information criteria, where divergence among models can be estimated by
98 calculating the log-likelihood ratio, we allow ‘free’ and ‘fixed’ models, where all ‘fixed’ models
99 are nested in a ‘free’ model. In our free model, all parameter values (alpha, variance, and mean)
100 are estimated for a mixture of all potential ploidal levels. Although we have an expected value
101  for the mean of each mixture, the expected values of alpha, as well as the variance, are not well-
102  defined. We know that the proportions of each type of heterozygote may differ for an
103  allopolyploid compared to an autopolyploid (see Lloyd and Bomblies, 2016), so we were
104  interested in exploring models where alpha is free. Therefore, we tested three ‘fixed’” models: (1)
105  where only alpha is free, (2) where only variance is free, and (3) where both alpha and variance
106 are free. Therefore, for each implementation, we provide 32 model types, including three fixed
107  models, at each of the five ploidal levels examined here and one ‘free’ model, all of which can be
108  examined with and without a uniform distribution.
109 To evaluate each model, we examined the log-likelihood ratio and the Bayesian
110  Information Criteria, or BIC score. The BIC score is the log-likelihood of a model penalized by
111 both sample size and the number of parameters included, which leads to less error in model
112  selection (Taper et al., 2021). We examined both the log-likelihood ratio and BIC score for all
113  models and determined that BIC identified the correct ploidal level of more samples than the log-

114 likelihood ratio; thus, we focused on BIC scores in all model comparisons. In theory, the BIC
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115  difference between the best and second-best model can be leveraged as an information criterion
116  to assess confidence in model selection (Jerde et al., 2019; Taper et al., 2021).
117  Model evaluation
118 To evaluate our models and determine guidelines for implementing these models, we
119  examined 513,792 models based on both simulated and real samples. Simulated data
120  representing all five ploidal levels varied in sequence coverage and number of sites, as well as
121 the amount of random noise. Real samples include 482 samples of known ploidy (Table 1),
122  inferred via indirect and direct estimates, and represent five taxonomic groups and four types of
123  sequence data.
124  Simulated data
125 We simulated samples based on two approaches that represent two sampling scenarios: a
126 “simplistic” one and a “realistic” scenario where the sampling is done at various levels of DNA
127  sequence coverage (3-120x). Simplistic simulated samples are simple, with little to no variance
128  introduced during the simulation process. The simplistic approach simulates heterozygous
129  biallelic sites based on a binomial distribution where coverage among sites is equal and all
130  expected frequencies have an equal probability of being sampled. For each ploidal level, we
131 simulated 11 samples that differed in coverage per site (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or
132 100). For the 55 simulated samples, models were evaluated at six different numbers of sites, or
133 the total number of SNPs (1250, 2500, 5000, 10000, 20000, 30000).
134 For our realistic simulations, we simulated samples where coverage across sites was
135  variable and allele frequencies had higher variance than the simplistic simulations. The variance
136  introduced in these simulations is meant to resemble noise introduced by sequencing errors and

137  data processing errors (e.g., mapping errors). We simulated 60 different coverage amounts for
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138 each ploidal level; these simulations varied in the minimum and maximum coverage, as well as
139  the expected number of samples within an interval, or lambda. Based on the minimum and
140  maximum coverage, as well as the expected number of events (lambda), the total coverage for
141  each site is sampled from a truncated Poisson distribution, as coverage across a genome
142  resembles a Poisson distribution with multiple peaks (Pfenninger et al., 2022). For each of our 60
143  simulations, we set the minimum coverage as i, maximum coverage as (i +1)*3, and lambda as
144  half of the sum of the minimum and maximum coverage (Appendix S2: Figure S1). The resulting
145  mean coverage simulated by this method ranged from 3 to 120x. Given a randomly selected
146  proportion (i.e., mean and associated variance), the copies of allele A were then defined with a
147  binomial sample with the probability defined by the beta distribution (i.e., a beta-binomial) and
148  the copies of allele B are equal to the remainder. We then followed the data processing steps
149  applied to real data. First, the simulated data were filtered to remove any sites where only one
150  allele was sampled by chance. Next, we filtered the sites based on the total coverage and
151 sequencing coverage of each allele. This function can also filter sites based on truncated allele
152  frequencies. Finally, we randomly sampled an allele with equal probability at each site. The
153  resulting data set includes the total coverage per site and the coverage associated with a
154  randomly sampled allele. For the 300 simulated samples, models were evaluated at six different
155  numbers of sites, or the total number of SNPs (1250, 2500, 5000, 10000, 20000, 25000).
156  Organismal data
157 We applied our model to real datasets available for samples of Saccharomyces cerevisiae,
158  Phytophthora infestans, Glycine spp., Larrea tridentata, and Galax urceolata; for simplicity, we
159  refer to these as yeast, oomycete, Glycine spp., Larrea, and Galax, respectively. Both the yeast

160  and oomycete sample sets were included in nQuire (Weil} et al., 2018); thus, we chose to
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161  investigate these samples with nQuack. The type of DNA sequence data varied across these
162  samples, including whole-genome resequencing, genotype-by-sequencing (Elshire et al., 2011),
163  target enrichment, and RadCap data (Hoffberg et al., 2016; Bayona-Vasquez et al., 2019).
164  RadCap (Hoftberg et al., 2016; Bayona-Vasquez et al., 2019) combines reduced-representation
165  3RAD library preparation (Hoftberg et al., 2016; Bayona-Vasquez et al., 2019) with probe-based
166  target capture. These sample sets also vary in the number of samples, diversity in ploidal level,
167  taxonomic diversity, and quality of the reference genome (Table 1, Appendix S3, Appendix S4).
168 We aligned reads from each sample to the associated reference genome for that species
169  (Appendix S3) with bwa-mem?2 version 2.2.1 (Vasimuddin et al., 2019), converted the .sam file
170  to a .bam file, and sorted the results with samtools version 1.15 (Danecek et al., 2021). We
171  identified and masked repeat regions with repeatmodeler version 2.0 (Flynn et al., 2020) and
172  repeatmasker version 4.1.1 (Smit et al., 2015). Repetitive regions should be removed from
173  alignments before the estimation of ploidal level, as these regions will have high coverage and
174  will likely not represent the copy number variation found in coding or single-copy regions.
175  Based on the masked genomes, we then created databases of repeat regions that were removed
176  from each sample alignment. We also removed poorly mapped reads and any sites that had a
177  10% chance or more of being mapped to the wrong location (-q 10).
178 To allow multiple filtering approaches to be investigated, we first prepared a text file of
179  the .bam alignment. After preparing text files with our function prepare data(), we manually
180  inspected each data set and specified the minimum filtering settings accordingly. Filtering
181  strategies differed in minimum coverage and maximum coverage quantile, as well as the lower
182  bound (Cr) and upper bound (Cu) for allele frequency truncation. For all filtering strategies,

183  sequencing depth per allele was filtered based on a sequencing error rate of 0.01, where the


https://sciwheel.com/work/citation?ids=204118&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10324633,5819190&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10324633,5819190&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10324633,5819190&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9359333&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10500701&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8742917&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15970394&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.12.579894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.12.579894; this version posted February 12, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

available under aCC-BY-NC-ND 4.0 International license.

Gaynor et al. - nQuack: Ploidal level prediction
coverage of each allele must be more than the total coverage times the error rate, but less than
the total coverage times one minus the error rate. To avoid enhancement of signal from data
duplication, we randomly sample an allele with equal probability at each site. After filtering, the
resulting data set includes the total coverage per site and the coverage associated with a
randomly sampled allele.

We examined four filtering strategies across sample sets, with at least two examined per
set. For all sample sets, we examined the minimum filtering approach (D1) and the maximum
filtering approach (D4). Because hexaploid samples are expected to have mixtures with means
equal to 0.17 and 0.83, we investigated filtering approaches that differed in Cr. and Cu, to ensure
we did not remove these peaks in our filtering process. The minimum filtering approach (D1)
settings differed per sample set, with three groups of settings: yeast and oomycete, Galax and
Glycine spp., and Larrea. Respectively, the settings for the minimum filtering approach were
minimum coverage equal to 10, 2, and 3, maximum coverage quantile equal to 0.90, 0.90, and 1,
Crequalto 0.11, 0.1, and 0.11, and Cy equal to 0.89, 0.9, and 0.89. The maximum filtering
approach (D4) represents nQuire’s default settings, where minimum coverage is 10, Cyr is 0.15,
Cu is 0.85, and there is no maximum coverage cutoff. The maximum filtering approach (D4) was
applied with nQuire’s create function on all samples except for the Larrea sample set, which was
prepared with a maximum depth quantile of 0.9 and error correction of 0.01. For Galax and
Larrea, we examined two additional filtering approaches to examine the intermediate between
the minimum and maximum filtering approaches. First, we increased the minimum coverage to
10, but retained the Cr and Cy in the minimum filtering approach (D2). Second, we increased

our allele truncation with Cr as 0.15 and Cy as 0.85, with the minimum coverage retained from
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206  the minimum filtering approach (D3). After filtering, the resulting data set includes the total
207  coverage per site and the coverage associated with a randomly sampled allele.
208 Model performance on simulated data
209 Overall, we found that no single model correctly assigned ploidal levels to all simulated
210  samples (Figure 3). The amount of random noise in simulated data influenced which model
211 correctly predicted the most simulated samples, with the best model differing for the simplistic
212  and realistic simulated data (Appendix S5). When considering all five potential ploidal levels,
213  the most accurate model for the simplistic simulated samples was the beta distribution with
214  variance free and a uniform mixture. For this model, the first three ploidal levels can be
215  differentiated at about 20x coverage; however, pentaploid and hexaploid samples cannot be
216  differentiated until about 70x coverage. For the realistic simulated samples, when considering all
217  five potential ploidal levels, the most accurate model is the beta-binomial with alpha free. For
218  this model, diploids, triploids, tetraploids, and pentaploids can be differentiated at 30x coverage,
219  but hexaploids cannot be accurately identified until 70x coverage.
220 Decreasing the number of ploidal levels considered may allow the proper assignment of
221  ploidal levels to both simplistic and realistic samples (Figure 3). For example, when considering
222 all ploidal levels with a normal distribution with variance free and uniform mixture, tetraploid
223  realistic samples are identified incorrectly as hexaploids (Appendix S5: Figure S7). However,
224  when a subset of mixtures is considered, tetraploids can be properly assigned as tetraploids for
225  both simulation types (see Appendix S5: Figure S25 and Figure S43). The impact on sequence
226  coverage requirements is minimal (see Appendix S5).
227 In some instances, we found the probability of the correct model choice to increase with

228  the BIC difference between the best and second-best models; however, accuracy and BIC score
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229  difference often do not have a linear relationship (Appendix S6). We therefore caution against
230 interpreting the difference in BIC scores between the best and second-best models as a measure
231  of confidence or accuracy.
232  Model performance on sample sets
233 As found with our simulated data, a single model was not ideal for all real samples.
234  However, we were able to identify models that assigned ploidal level correctly to all samples or a
235  large subset of samples for all data sets, with the best model for each sample set having at least
236  78% accuracy (Figure 4; Table 2). For those sample sets without pentaploid or hexaploid
237  samples, we considered only diploid, triploid, and tetraploid mixtures, as this reduced assignment
238  error. Our implementation of nQuire, as well as the best model identified with nQuack, had equal
239  or greater accuracy than the original nQuire model (Table 2).
240 We were able to properly assign ploidal levels to all five samples originally investigated
241 by nQuire. For the yeast sample set, all three distributions had multiple model types that were
242  able to properly assign ploidal level to all samples under both filtering approaches; the model
243  type implemented in nQuire, variance free with a uniform mixture, was also able to accurately
244  assign ploidal level to all samples with all three distributions. Notably, the normal distribution
245  with alpha and variance free and a uniform mixture was only suitable when the allele truncation
246  was the least constrained (D1). For the oomycete sample set, only one model was suitable when
247  allele truncation was the least constrained: the normal distribution with alpha free and a uniform
248  mixture. Surprisingly, for the oomycete sample set, the nQuire model type (variance free with a
249  uniform mixture) was unable to properly assign ploidal level to the diploid sample when filtering
250  did not match the filtering approach of nQuire. Additionally, the nQuire filtering approach (D4)

251  allowed the proper assignment of both oomycete samples by at least two models from each
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252  distribution. Unlike all other sample sets, the maximum filtering approach (D4) increased the
253  number of sites for both oomycete and yeast sample sets (Appendix S7); this is likely due to an
254  excess of sites with high sequencing depth.
255 For Glycine spp., the nQuire filtering approach had low accuracy for all models (< 60 %);
256  however, the minimum filtering approach allowed 16 of 17 samples to be assigned the correct
257  ploidal level based on the beta-binomial distribution and the alpha- and variance-free model with
258  auniform mixture. We expected the alpha free model to be the best model for Glycine spp.
259  samples due to the history of ancient polyploidization in Glycine spp. and the likely return to
260  disomic inheritance (Walling et al., 2006), thus the proportions of each different heterozygote
261  should be unequal. As expected, alpha as a free variable was informative for tetraploids;
262  however, without a uniform mixture, diploids were incorrectly identified. Under the best model,
263  the single incorrectly assigned diploid was an individual of Glycine tomentella (D5Bb) which is
264  known to have a history of introgression (see Landis and Doyle, 2023). Hybridization can lead to
265 an increased gene copy number; therefore, a more conserved filtering approach to only retain
266  single-copy loci may be necessary to improve accuracy.
267 The best model for Glycine spp. also had high accuracy for Galax samples under the
268 minimum filtering approach with 185 of 190 samples with properly assigned ploidal levels with
269  only two tetraploids and three triploids misidentified. The tetraploid samples that were
270  incorrectly identified had weak support; the absolute difference between the BIC score of the
271  best model relative to the second-best model was less than 10, and these values were less than
272  the BIC score difference of all accurate estimates. Although we caution against the interpretation
273  of BIC score difference as a measure of accuracy generally, evaluating this method on samples

274  with known ploidal level identified this potential usage for a set of unknown samples. When
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275  sample sequence data are more similar to the modeled data-generating process, these criteria may
276  be informative. Here, we targeted single-copy loci with capture-based sequencing, thus avoiding
277  variance among loci that would skew these models. However, BIC score differences were not
278  informative for the incorrectly assigned triploid samples. Two of these three triploid samples
279  were incorrectly identified by all models; both samples have a high abundance of sites with an
280 allele frequency of approximately 0.5, suggesting unequal gene loss and retention across targeted
281  sites. When low coverage sites remained (D1 & D3), the distribution with the best model
282  remained the beta-binomial with 184 of 190 samples correctly predicted under the variance-free
283  with uniform mixture model. When low-coverage sites were removed (D2 & D4), the best model
284  shifted to the normal distribution with alpha free and a uniform mixture. The highest accuracy
285  was found under the D4 filtering approach with the normal distribution with alpha free and a
286  uniform mixture; this model accurately assigned ploidy to 186 of the 190 individuals, only
287  failing to identify a single tetraploid and three triploids.
288 For the Larrea dataset, we were able to identify all triploids, tetraploids, pentaploids, and
289  hexaploids under at least one model; however, the best model and filtering approach for each
290 ploidal level differed. Based on the 18 different models and 4 different filtering approaches
291  investigated for all cytotypes or only a subset of ploidal levels (2x, 4x, and 6x), we identified 22
292  and 39 instances, respectively, where all hexaploids were assigned the correct ploidal level. For
293  tetraploid samples, all individuals were correctly identified in 2 instances for all cytotypes and 2
294  instances for only a subset of ploidal levels. Similar to the triploids in the Galax sample set, there
295  were multiple diploid samples that our implemented models failed to identify correctly. These
296  diploid samples were found to occur in mixed ploidal sites or at the edge of the species range,

297  suggesting that ongoing mixed-ploidy introgression or divergence from the reference may skew
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298 the models’ ability to accurately assign ploidal levels due to increased gene copy number or
299  mapping error, respectively. When considering all five potential ploidal levels, the best model
300  was the beta distribution with alpha free and a uniform mixture, with 189 of 270 samples
301  correctly assigned ploidal level under the D2 filtering approach; this prediction misidentified all
302  hexaploids and pentaploids, as well as three tetraploids and four diploids. When we reduce the
303  mixture of ploidal levels considered to only include diploids, tetraploids, and hexaploids, the best
304  model shifts to the beta distribution with variance free under the maximum filtering approach
305  with 210 samples correctly identified; the misidentified samples include all triploids and
306  pentaploids, six diploids, 20 tetraploids, and 29 hexaploids. The original nQuire model was
307  unable to estimate the correct ploidal level for only 6 diploids and 1 tetraploid from the diploid,
308 triploid, and tetraploid Larrea samples; comparatively, our implementation of nQuire incorrectly
309 assigned ploidal level to an increased number of tetraploid samples due to the inclusion of a
310  hexaploid mixture model, which was identified as more likely for these samples. Alhough
311 reducing the ploidal levels considered can increase the number of correctly assigned samples, we
312  do not advise ignoring the presence of triploid, hexaploid, or pentaploid cytotypes in a system to
313  improve model accuracy. Based on the 18 different models and 4 different filtering approaches
314  investigated, we identified 22 and 39 instances where all hexaploids were identified correctly,
315  when all cytotypes or only a subset of cytotypes were included. Overall, our approach increased
316  the Larrea sample set accuracy compared to nQuire by 8% (Table 2).
317
318 CONCLUSION
319 Here we provided expanded tools and implementations to improve site-based

320  heterozygosity inferences of ploidal level. nQuack provides data preparation guidance and tools
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321  to decrease noise in input data. These tools include a maximum sequence coverage quantile filter
322  and sequence error-based filter to remove biallelic sites that are likely not representative of copy
323  number variance in the nuclear genome. We also consider only the frequency of allele A or B at
324  each site, instead of both, as done in nQuire, as this would inflate the observation by enhancing
325  the signal or noise found in the data. Our model builds upon, and improves, the nQuire
326  framework by extending it to higher ploidal levels (pentaploid and hexaploid), correcting the
327  augmented likelihood calculation, implementing more suitable probability distributions, and
328  allowing additional ‘fixed” models. We also decrease model selection errors by relying on BIC
329  rather than likelihood ratio tests (Taper et al., 2021).
330 Through the intensive testing of our proposed methods, we found that many variables
331  influence model accuracy. Based on our simulated data, we observed that each model
332  implementation and model type can be influenced by the number of sites, sequencing coverage,
333 and amount of variance or noise in a dataset. In real data sets, this noise can be introduced
334  through sequencing error or general sequence mapping error. In addition, although we attempted
335 to retain only single-copy loci by removing repetitive regions, additional filtering may increase
336  accuracy to ensure estimates are not conflated by variation among loci at non-single-copy sites.
337 By examining a large amount of real data, we determined that the most accurate model for each
338  data set differed, suggesting that both filtering strategies and model selection must be explored
339  on a set of known samples before applying these models to any sample with an unknown ploidal
340 level to achieve accurate ploidal-level assignment.
341 We explored nQuack’s performance on an extensive set of simulated data and multiple
342  real-world datasets. These analyses allowed us to benchmark model performance and identify

343  data features that affect nQuack's predictive power. However, the biological datasets we explored
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344  cannot represent the full diversity of polyploid systems, and additional tuning is required for real
345  datasets. For example, these models would not be suitable in an allotetraploid with strict disomic
346  inheritance as no AAAB or ABBB loci would occur; therefore, the most likely model could be
347  identified as a diploid, though BIC score parameter corrections would allow the most probable
348  model to be hexaploid or tetraploid. Additional biological systems will likely introduce more
349  complexities and may work best under different filtering conditions. To identify which factors
350 dictate which strategy is the most accurate, multiple mixed-ploidy systems with high-quality
351  reference genomes, well-classified polyploidization events (e.g., mode of formation, timing of
352  polyploidy events, chromosomal segregation patterns, etc.), and well-characterized reproductive
353  history should be explored in future model iterations. Regarding summary statistics, non-
354  parametric bootstrapping after model selection would allow for assessing the strength of the
355  evidence in favor of every model and the robustness of model selection results. We provide
356  functions to perform this non-parametric bootstrap sampling, however, completing a full non-
357  parametric bootstrap for all of our real datasets was neither practical nor feasible due to
358  computational limitations. Because all mathematical models are misspecifications of the true
359  data-generating process (Dennis et al., 2019), errors are probable when selecting the model
360 closest to the truth. Therefore, by resampling the data we can assess the reliability of the model
361  choice. In addition, if analytical-based inferences continue to be pursued, a sliding window
362  approach will likely improve ploidy inferences.
363 Our results open many interesting avenues for future research. Site-based heterozygosity
364  models like the ones used here are in essence phenomenological statistical models, which focus
365  on reproducing patterns rather than generating patterns based on a fundamental biological

366  process. Although statistical models embodying fundamental biological processes are common
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367  in many areas of biology (for instance, in phylogenetics), in this particular case it is extremely
368  difficult to capture the complexities of nature in an analytical-based inference, and future model
369  exploration utilizing data-based inference to classify ploidal levels is warranted. Alternatively,
370  demographic models like the ones we proposed elsewhere (Gaynor et al., 2023) may provide the
371  ecological and evolutionary framework necessary to design process-based predictions for mixed
372  ploidy. These models, however, require rigorous coupling with evolutionary and genomic theory.
373 Overall, this analysis reveals that it is critical to thoroughly examine proposed methods
374  before inferring biological meaning. nQuack, as well as nQuire, should not be used to infer the
375 ploidal level in a system for which very little is known, as these models are often positively
376  misleading. We also suggest caution when relying on any site-based heterozygosity to predict
377  ploidal level of a sample even when a known dataset is analyzed before applying the method to a
378  sample of unknown ploidy due to the potential impact of biological processes (e.g.,
379  hybridization, divergence, etc.,) on model inference. Despite the caveats to this method, it can be
380 easily implemented to leverage sequence data for ploidal estimation.
381
382 AUTHOR CONTRIBUTIONS
383  Original conceptualization by M.L.G, D.E.S, J.M.P, and P.S.S. Methodology designed by M.L.G
384  and J.M.P. Software and formal analysis was written and conducted by M.L.G. Data were
385  generated by M.L.G, J.B.L, J.J.D, T.K.O, and R.G.L. Original draft and visualization by M.L.G.
386  All authors reviewed and contributed to the final manuscript.

387


https://sciwheel.com/work/citation?ids=15923376&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.12.579894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.12.579894; this version posted February 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gaynor et al. - nQuack: Ploidal level prediction

388 ACKNOWLEDGMENTS

389  This research was supported by the NSF Graduate Research Fellowship (DGE-1842473) to

390 M.L.G., an NSF Small Grant (DEB-1556371) to R.G.L, an NSF Plant Genome Fellowship (I0S-
391  1711807) to J.B.L., and a USDA NIFA Hatch award (7002754) to J.J.D. We thank William

392  Weaver, Eric Goolsby, and Matthew Gitzendanner for assistance with C++. We thank Alyssa
393  Philips, Trevor Faske, and Matthew G. Johnson for their feedback and discussion.

394

395 DATA AVAILABILITY STATEMENT

396  The R package nQuack is available https://github.com/mgaynorl/nQuack and

397  https://mlgaynor.com/nQuack/. A full implementation tutorial

398  (https://mlgaynor.com/nQuack/articles/BasicExample.html), as well as detailed tutorials on data

399  preparation (https://mlgaynor.com/nQuack/articles/DataPreparation.html) and model inference

400  (https://mlgaynor.com/nQuack/articles/ModelOptions.html ), are available with the package

401  documentation. For three sample sets, reference genomes and population genetics data are

402  available via open repositories (see Appendix S3 and S4 for accessions). Sequence data for
403  Galax urceolata and Larrea tridentata will be published in open repositories with future

404  publications. An example data set, as well as the output of each step of our method, is available

405  on our github (https://github.com/mgaynorl/nQuack/tree/main/data).
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TABLES
Table 1. An overview of all included sample sets including the species, total number of samples,
ploidal levels included, and sequencing approach. Additional information, including available

accessions, can be found in Appendix S3 and Appendix S4.

Sequencing
Sample set Species Total Ploidal levels approach
Saccharomyces Whole-genome
Yeast cerevisiae 3|2x, 3x, 4x resequencing
Phytophthora Whole-genome
Oomycete infestans 2|2x, 3x resequencing
Glycine albicans,
G. arenaria, G.
falcata, G.
hirticaulis, G.
tomentella, G.
pescadrensis, G.
stenophita, and G. Genotype-by-
Glycine spp. tabacina 17|2x, 4x sequencing
Target
Galax Galax urceolata 190|2x, 3x, 4x Enrichment
Larrea Larrea tridentata 270|2x, 3x, 4x, 5x, 6x |RadCap (Hoftberg
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etal., 2016;
Bayona-Vasquez

et al., 2019)

Table 2. Accuracy of nQuire compared to nQuack’s implementation of nQuire (normal
distribution with variance free and a uniform mixture with the maximum filtering approach, D4),
and the best model by nQuack. Percent of total samples accurately assigned in parentheses.

nQuire was run on alignments before our recommended preprocessing steps.

nQuack’s nQuack’s best
Sample set Total nQuire nQuire model
Yeast 3 3 (100%) 3 (100%) 3 (100%)
Oomycete 2 2 (100%) 2 (100%) 2 (100%)
Glycine spp. 17 9 (53%) 9 (53%) 16 (94%)
Galax 190 172 (91%) 179 (94%) 186 (97%)
Larrea 270 189 (70%) 205 (76%) 210 (78%)

FIGURE LEGENDS
Figure 1. Expected allele frequencies at biallelic sites for diploid, triploid, tetraploid, pentaploid,

and hexaploid.
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Figure 2. The basic components of a mixture model include mean (p), variance (o), and
proportion (or alpha, @). The expected distributions for an autotetraploid, as defined by Lloyd

and Bomblies 2016, can be seen here.

Figure 3. Variance in simulated data leads to a higher rate of incorrect ploidal level assignment.
A larger percentage of samples will be properly assigned ploidal level when the number of
mixtures examined is reduced. Some models are unsuitable for assigning specific ploidal levels,

for example, diploids are not identified under the normal distribution when alpha is free.

Figure 4. A large proportion of samples can be properly assigned ploidal level when only
considering a subset of mixtures (2x, 3x, and 4x for yeast, oomycete, Glycine, and Galax; 2x, 4x,
and 6x for Larrea). All samples were properly identified by at least one model for both yeast and
oomycete sample sets. For Glycine and Galax, the best model identified 16 out of 17 samples
and 186 out of 190 samples respectively. For Larrea, the best model was unable to identify 60

samples, for a total of 210 out of 270 samples correctly identified.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the Supporting Information section at

the end of the article.

Appendix S1. Detailed implementation of expected maximization algorithm and the models

available in our method.
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Appendix S2. Distribution of coverage for the realistic simulation approach (Figure S1).

Appendix S3. Genome statistics including species identity, number of contigs, total length in
basepairs, contig minimum length, contig average length, contig maximum length, N50 (Mb),
percent of GC content, BUSCO complete percentage, BUSCO duplicate percentage, BUSCO

reference, and any accession information available.

Appendix S4. Extended information on sample sets including the number of samples of each

ploidal level, the sequencer used, and any accession information available.

Appendix S5. Model comparisons for simulated data sets when considering all ploidal levels
(Figure S2 - S19) or only a subset of ploidal levels: (1) only diploid, triploids, and tetraploids
(Figure S20 - S38), or (2) only diploid, tetraploids, and hexaploids (Figure S39 - S57). BIC score
difference between the best and second best models for simulated samples across different
numbers of sites for eleven different coverage amounts (5, 10, 20, 30, ...). The color of each
point represents the best model. The shape of each point represents the approach used to simulate
that sample. A larger BIC difference between the best and second-best models indicates model
confidence. These plots can be used to guide users' interpretation of these models and determine

if these models will apply to their system.

Appendix S6. Probability of the correct model choice given the BIC difference between the best
and second best model for all simulated diploid, triploid, tetraploid, pentaploid, and hexaploid

samples. The probability of success was predicted based on a logistic regression where accuracy
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is a function of BIC difference. We expect the BIC difference between the best and second best
model to increase with the probability of success when the BIC difference is indicative of the

model's accuracy. (Figure S58 - S60)

Appendix S7. Number of sites and mean sequence coverage included for all filtering approaches

for each sample set. (Figure S61)
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