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ABSTRACT: 

● Premise: Traditional methods of ploidal level estimation are tedious; leveraging 

sequence data for cytotype estimation is an ideal alternative. Multiple statistical 

approaches to leverage DNA sequence data for ploidy prediction based on site-based 

heterozygosity have been developed. However, these approaches may require high-

coverage sequence data, use improper probability distributions, or have additional 

statistical shortcomings that limit inference abilities. We introduce nQuack, an open-

source R package, that addresses the main shortcomings of current methods. 

● Methods and Results: nQuack performs model selection for improved ploidy 

predictions. Here, we implement expected maximization algorithms with normal, beta, 

and beta-binomial distributions. Using extensive computer simulations that account for 

variability in sequencing depth, as well as real data sets, we demonstrate the utility and 

limitations of nQuack.  

● Conclusion: Inferring ploidal level based on site-based heterozygosity alone is 

discouraged due to the low accuracy of pattern-based inference. 

 

KEYWORDS: Copy Number Variation, Expected Maximization, Ploidy, Polyploidy, Ploidal 

Inference 
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INTRODUCTION 1 

Whole-genome duplication (WGD), or polyploidy, is ubiquitous across the plant tree of 2 

life, with all extant angiosperms having evidence of at least one ancient WGD (Jiao et al., 2011; 3 

Soltis et al., 2015; Landis et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019). 4 

Identifying ploidal diversity is a crucial first step to understanding the impact of WGD on 5 

patterns of biodiversity. Direct estimation is achieved through chromosome counting at either 6 

mitosis or meiosis. However, indirect estimation (e.g., flow cytometry, stomatal cell 7 

measurements, pollen size) can be used for broad surveys of select taxa when complemented 8 

with known chromosome numbers and/or ploidal levels (Masterson, 1994; Beaulieu et al., 2008; 9 

Sanders, 2021; Sliwinska et al., 2021). The application of flow cytometry to determine ploidal 10 

level in naturally occurring populations (Galbraith et al., 1983; Keeler et al., 1987) has been 11 

fundamental to understanding evolution and ecology of mixed-ploidy populations. Despite the 12 

utility of laboratory-based approaches and the extension of flow cytometry to dried samples 13 

(Galbraith et al., 1983; Keeler et al., 1987), the process remains specialized and may involve the 14 

use of laboratory equipment that is difficult to access. Therefore, using DNA sequence data for 15 

ploidal-level prediction affords a great opportunity to streamline estimation while revolutionizing 16 

our understanding of chromosome evolution.   17 

To date, multiple statistical approaches to leverage DNA sequence data for the prediction 18 

of ploidy have been developed based on (1) k-mer and (2) site-based heterozygosity. Both of 19 

these general methods for ploidal-level prediction require statistical tests to assign ploidal level 20 

to a sample; the statistical approach varies among available software. 21 

K-mer-based ploidal-level prediction relies on a k-mer profile, which classifies the 22 

frequency of each distinct k-mer found across the dataset. K-mers are strings of length k, often 23 
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21 bases (Vurture et al., 2017), that are composed of a specific sequence of nucleotides. Popular 24 

methods for k-mer-based ploidal-level prediction are tetmer (Becher et al., 2022) and 25 

smudgeplot, which plots minor allele frequency by total coverage to predict copy number 26 

variants (Ranallo-Benavidez et al., 2020). These methods have been recently expanded to single-27 

cell ATAC-seq data (Takeuchi and Kato, 2023). However, a limitation of these methods is that at 28 

least 15-25x sequence coverage per homolog is required.  29 

Site-based heterozygosity relies on biallelic single nucleotide polymorphisms (SNPs) 30 

within an individual and the expected number of copies of each base at that SNP. For example, 31 

in a diploid individual, at a biallelic site with alleles A and B, about 50% of all nucleotides 32 

sequenced are expected to represent allele A. Comparatively, in a triploid, at a site with alleles A 33 

and B, 33% of the nucleotides are expected to be allele A and 67% allele B, or vice versa (Figure 34 

1), are expected. The most commonly used site-based heterozygosity software is nQuire (Weiß et 35 

al., 2018), but additional software exists for de novo sequences (Sun et al., 2023). As for k-mer-36 

based estimation, sequence coverage per site of at least 20-25x is recommended for the use of 37 

nQuire (Weiß et al., 2018). 38 

 In addition, the performance and limitations of nQuire are poorly understood in terms of 39 

accuracy. Combining nQuire’s model inference with additional data, such as genome size 40 

estimates, and with goodness-of-fit tests has been suggested (Viruel et al., 2019). Notably, 41 

nQuire’s accuracy and limitations were assessed using only genome resequencing data for only 42 

five samples, representing two taxonomic groups (Weiß et al., 2018). Numerous studies have 43 

since identified inconsistencies between nQuire’s estimates and indirect or direct ploidal 44 

estimates (Jantzen et al., 2022; Folk et al., 2023; Landis and Doyle, 2023).  45 
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Moreover, to concerns regarding accuracy, guidelines for data preparation are limited, 46 

since it is unknown how nQuire predictions are influenced by the number of sites, sequencing 47 

coverage, and amount of variance or noise in a dataset. In real data sets, this noise can be 48 

introduced through sequence error or general mapping error, as well as through the inclusion of 49 

non-single-copy loci.  50 

Here we introduce nQuack, an R package that  (1) provides expanded tools and 51 

implementations to improve site-based heterozygosity inferences of ploidal level, and (2) 52 

rigorously evaluates the accuracy of this method and an existing method, nQuire. Specifically, 53 

nQuack implements expected maximization algorithms with normal, beta, and beta-binomial 54 

distributions to identify the ploidal level (ranging from diploid to hexaploid) of samples based on 55 

DNA sequence data, building upon the framework proposed by nQuire. We designed three new 56 

implementations of the expected maximization algorithm which allow additional distributions to 57 

be tested. Although we implement the normal distribution, as used in nQuire, this distribution 58 

may be ill-suited for allele frequencies as they range from 0 to 1 and the normal distribution 59 

ranges from negative infinity to infinity. Our second implementation uses a beta distribution to 60 

match the constrained range of allele frequencies. Because sequence data provide allele counts, 61 

frequencies represent transformed data, which may lack original data attributes and misrepresent 62 

sampling variances and one or more sources of heterogeneity. Therefore, our final 63 

implementation includes the beta-binomial distribution, which allows raw allele counts to be 64 

leveraged.   65 

We rigorously tested our new implementations to identify limitations to these new 66 

methods and provide guidance for users. We examine nQuire’s five samples in addition to 477 67 

samples representing three additional taxonomic groups and three additional sequence data types 68 
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(genotype-by-sequencing, target enrichment, and RadCap). To provide recommendations 69 

regarding coverage and the number of sites needed for each implementation and model type, we 70 

also test our model on 355 simulated samples, representing two simulation approaches that vary 71 

in the amount of variance introduced.   72 

 73 

METHODS AND RESULTS 74 

Likelihood calculations and model selection 75 

 The basis of our models is the expected allele frequency at variable biallelic sites for 76 

each ploidal level including diploid (0.5), triploid (0.33, 0.67), tetraploid (0.25, 0.5, 0.75), 77 

pentaploid (0.2, 0.4, 0.6, 0.8), and hexaploid (0.17, 0.33, 0.5, 0.67, 0.83), as described above 78 

(Figure 1; Appendix S1). To use the expected allele frequencies to determine the most likely 79 

ploidal level given a set of allele frequencies or allele counts, we developed three 80 

implementations of expected maximization algorithms with the normal, beta, and beta-binomial 81 

distributions, each with and without a uniform distribution to capture uniform noise components. 82 

The normal distribution implemented here differs from that of nQuire in our augmented-83 

likelihood calculation (Appendix S1; see Supporting Information with this article), however, all 84 

model comparisons were investigated with both the nQuire-style implementation and our 85 

implementation of the normal distribution (Appendix S1). We found our implementation to have 86 

lower confidence in incorrect models compared to nQuire’s implementation, and therefore we 87 

focus only on our implementation of the normal distribution here. 88 

The details of our implementations, though summarized here, can be found in Appendix 89 

S1. Given the expected frequencies, the likelihood for each ploidal level based on a set of 90 

observed allele frequencies (or allele counts) is defined as the sum of the product of the mixture 91 
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proportion (alpha) and the relative likelihood of the observations, or probability density function, 92 

based on the expected frequency (mean) and variance of that mixture and the given distribution 93 

(Figure 2). To maximize the likelihood for a set of mixtures, values of alpha, variance, and mean 94 

can be modified through the expected maximization algorithm and optimized with the Nelder-95 

Mead simplex optimization algorithm (Nelder and Mead, 1965). Furthermore, to allow model 96 

selection via information criteria, where divergence among models can be estimated by 97 

calculating the log-likelihood ratio, we allow ‘free’ and ‘fixed’ models, where all ‘fixed’ models 98 

are nested in a ‘free’ model. In our free model, all parameter values (alpha, variance, and mean) 99 

are estimated for a mixture of all potential ploidal levels. Although we have an expected value 100 

for the mean of each mixture, the expected values of alpha, as well as the variance, are not well-101 

defined. We know that the proportions of each type of heterozygote may differ for an 102 

allopolyploid compared to an autopolyploid (see Lloyd and Bomblies, 2016), so we were 103 

interested in exploring models where alpha is free. Therefore, we tested three ‘fixed’ models: (1) 104 

where only alpha is free, (2) where only variance is free, and (3) where both alpha and variance 105 

are free. Therefore, for each implementation, we provide 32 model types, including three fixed 106 

models, at each of the five ploidal levels examined here and one ‘free’ model, all of which can be 107 

examined with and without a uniform distribution.  108 

To evaluate each model, we examined the log-likelihood ratio and the Bayesian 109 

Information Criteria, or BIC score. The BIC score is the log-likelihood of a model penalized by 110 

both sample size and the number of parameters included, which leads to less error in model 111 

selection (Taper et al., 2021). We examined both the log-likelihood ratio and BIC score for all 112 

models and determined that BIC identified the correct ploidal level of more samples than the log-113 

likelihood ratio; thus, we focused on BIC scores in all model comparisons. In theory, the BIC 114 
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difference between the best and second-best model can be leveraged as an information criterion 115 

to assess confidence in model selection (Jerde et al., 2019; Taper et al., 2021). 116 

Model evaluation  117 

To evaluate our models and determine guidelines for implementing these models, we 118 

examined 513,792 models based on both simulated and real samples. Simulated data 119 

representing all five ploidal levels varied in sequence coverage and number of sites, as well as 120 

the amount of random noise. Real samples include 482 samples of known ploidy (Table 1), 121 

inferred via indirect and direct estimates, and represent five taxonomic groups and four types of 122 

sequence data.  123 

Simulated data 124 

We simulated samples based on two approaches that represent two sampling scenarios: a 125 

“simplistic” one and a “realistic” scenario where the sampling is done at various levels of DNA 126 

sequence coverage (3-120x). Simplistic simulated samples are simple, with little to no variance 127 

introduced during the simulation process. The simplistic approach simulates heterozygous 128 

biallelic sites based on a binomial distribution where coverage among sites is equal and all 129 

expected frequencies have an equal probability of being sampled. For each ploidal level, we 130 

simulated 11 samples that differed in coverage per site (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 131 

100). For the 55 simulated samples, models were evaluated at six different numbers of sites, or 132 

the total number of SNPs (1250, 2500, 5000, 10000, 20000, 30000).  133 

For our realistic simulations, we simulated samples where coverage across sites was 134 

variable and allele frequencies had higher variance than the simplistic simulations. The variance 135 

introduced in these simulations is meant to resemble noise introduced by sequencing errors and 136 

data processing errors (e.g., mapping errors). We simulated 60 different coverage amounts for 137 
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each ploidal level; these simulations varied in the minimum and maximum coverage, as well as 138 

the expected number of samples within an interval, or lambda. Based on the minimum and 139 

maximum coverage, as well as the expected number of events (lambda), the total coverage for 140 

each site is sampled from a truncated Poisson distribution, as coverage across a genome 141 

resembles a Poisson distribution with multiple peaks (Pfenninger et al., 2022). For each of our 60 142 

simulations, we set the minimum coverage as i, maximum coverage as (i +1)*3, and lambda as 143 

half of the sum of the minimum and maximum coverage (Appendix S2: Figure S1). The resulting 144 

mean coverage simulated by this method ranged from 3 to 120x. Given a randomly selected 145 

proportion (i.e., mean and associated variance), the copies of allele A were then defined with a 146 

binomial sample with the probability defined by the beta distribution (i.e., a beta-binomial) and 147 

the copies of allele B are equal to the remainder. We then followed the data processing steps 148 

applied to real data. First, the simulated data were filtered to remove any sites where only one 149 

allele was sampled by chance. Next, we filtered the sites based on the total coverage and 150 

sequencing coverage of each allele. This function can also filter sites based on truncated allele 151 

frequencies. Finally, we randomly sampled an allele with equal probability at each site. The 152 

resulting data set includes the total coverage per site and the coverage associated with a 153 

randomly sampled allele. For the 300 simulated samples, models were evaluated at six different 154 

numbers of sites, or the total number of SNPs (1250, 2500, 5000, 10000, 20000, 25000).  155 

Organismal data 156 

We applied our model to real datasets available for samples of Saccharomyces cerevisiae, 157 

Phytophthora infestans, Glycine spp., Larrea tridentata, and Galax urceolata; for simplicity, we 158 

refer to these as yeast, oomycete, Glycine spp., Larrea, and Galax, respectively. Both the yeast 159 

and oomycete sample sets were included in nQuire (Weiß et al., 2018); thus, we chose to 160 
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investigate these samples with nQuack. The type of DNA sequence data varied across these 161 

samples, including whole-genome resequencing, genotype-by-sequencing (Elshire et al., 2011), 162 

target enrichment, and RadCap data (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019). 163 

RadCap (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019) combines reduced-representation 164 

3RAD library preparation (Hoffberg et al., 2016; Bayona-Vásquez et al., 2019) with probe-based 165 

target capture. These sample sets also vary in the number of samples, diversity in ploidal level, 166 

taxonomic diversity, and quality of the reference genome (Table 1, Appendix S3, Appendix S4).  167 

We aligned reads from each sample to the associated reference genome for that species 168 

(Appendix S3) with bwa-mem2 version 2.2.1 (Vasimuddin et al., 2019), converted the .sam file 169 

to a .bam file, and sorted the results with samtools version 1.15 (Danecek et al., 2021). We 170 

identified and masked repeat regions with repeatmodeler version 2.0 (Flynn et al., 2020) and 171 

repeatmasker version 4.1.1 (Smit et al., 2015). Repetitive regions should be removed from 172 

alignments before the estimation of ploidal level, as these regions will have high coverage and 173 

will likely not represent the copy number variation found in coding or single-copy regions. 174 

Based on the masked genomes, we then created databases of repeat regions that were removed 175 

from each sample alignment. We also removed poorly mapped reads and any sites that had a 176 

10% chance or more of being mapped to the wrong location (-q 10).  177 

To allow multiple filtering approaches to be investigated, we first prepared a text file of 178 

the .bam alignment. After preparing text files with our function prepare_data(), we manually 179 

inspected each data set and specified the minimum filtering settings accordingly. Filtering 180 

strategies differed in minimum coverage and maximum coverage quantile, as well as the lower 181 

bound (CL) and upper bound (CU) for allele frequency truncation. For all filtering strategies, 182 

sequencing depth per allele was filtered based on a sequencing error rate of 0.01, where the 183 
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coverage of each allele must be more than the total coverage times the error rate, but less than 184 

the total coverage times one minus the error rate. To avoid enhancement of signal from data 185 

duplication, we randomly sample an allele with equal probability at each site. After filtering, the 186 

resulting data set includes the total coverage per site and the coverage associated with a 187 

randomly sampled allele.  188 

We examined four filtering strategies across sample sets, with at least two examined per 189 

set. For all sample sets, we examined the minimum filtering approach (D1) and the maximum 190 

filtering approach (D4). Because hexaploid samples are expected to have mixtures with means 191 

equal to 0.17 and 0.83, we investigated filtering approaches that differed in CL and CU, to ensure 192 

we did not remove these peaks in our filtering process. The minimum filtering approach (D1) 193 

settings differed per sample set, with three groups of settings: yeast and oomycete, Galax and 194 

Glycine spp., and Larrea. Respectively, the settings for the minimum filtering approach were 195 

minimum coverage equal to 10, 2, and 3, maximum coverage quantile equal to 0.90, 0.90, and 1, 196 

CL equal to 0.11, 0.1, and 0.11, and CU equal to 0.89, 0.9, and 0.89. The maximum filtering 197 

approach (D4) represents nQuire’s default settings, where minimum coverage is 10, CL is 0.15, 198 

CU is 0.85, and there is no maximum coverage cutoff. The maximum filtering approach (D4) was 199 

applied with nQuire’s create function on all samples except for the Larrea sample set, which was 200 

prepared with a maximum depth quantile of 0.9 and error correction of 0.01. For Galax and 201 

Larrea, we examined two additional filtering approaches to examine the intermediate between 202 

the minimum and maximum filtering approaches. First, we increased the minimum coverage to 203 

10, but retained the CL and CU in the minimum filtering approach (D2). Second, we increased 204 

our allele truncation with CL as 0.15 and CU as 0.85, with the minimum coverage retained from 205 
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the minimum filtering approach (D3). After filtering, the resulting data set includes the total 206 

coverage per site and the coverage associated with a randomly sampled allele.  207 

Model performance on simulated data 208 

Overall, we found that no single model correctly assigned ploidal levels to all simulated 209 

samples (Figure 3). The amount of random noise in simulated data influenced which model 210 

correctly predicted the most simulated samples, with the best model differing for the simplistic 211 

and realistic simulated data (Appendix S5). When considering all five potential ploidal levels, 212 

the most accurate model for the simplistic simulated samples was the beta distribution with 213 

variance free and a uniform mixture. For this model, the first three ploidal levels can be 214 

differentiated at about 20x coverage; however, pentaploid and hexaploid samples cannot be 215 

differentiated until about 70x coverage. For the realistic simulated samples, when considering all 216 

five potential ploidal levels, the most accurate model is the beta-binomial with alpha free. For 217 

this model, diploids, triploids, tetraploids, and pentaploids can be differentiated at 30x coverage, 218 

but hexaploids cannot be accurately identified until 70x coverage.   219 

Decreasing the number of ploidal levels considered may allow the proper assignment of 220 

ploidal levels to both simplistic and realistic samples (Figure 3). For example, when considering 221 

all ploidal levels with a normal distribution with variance free and uniform mixture, tetraploid 222 

realistic samples are identified incorrectly as hexaploids (Appendix S5: Figure S7). However, 223 

when a subset of mixtures is considered, tetraploids can be properly assigned as tetraploids for 224 

both simulation types (see Appendix S5: Figure S25 and Figure S43). The impact on sequence 225 

coverage requirements is minimal (see Appendix S5). 226 

In some instances, we found the probability of the correct model choice to increase with 227 

the BIC difference between the best and second-best models; however, accuracy and BIC score 228 
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difference often do not have a linear relationship (Appendix S6). We therefore caution against 229 

interpreting the difference in BIC scores between the best and second-best models as a measure 230 

of confidence or accuracy.  231 

Model performance on sample sets 232 

 As found with our simulated data, a single model was not ideal for all real samples. 233 

However, we were able to identify models that assigned ploidal level correctly to all samples or a 234 

large subset of samples for all data sets, with the best model for each sample set having at least 235 

78% accuracy (Figure 4; Table 2). For those sample sets without pentaploid or hexaploid 236 

samples, we considered only diploid, triploid, and tetraploid mixtures, as this reduced assignment 237 

error. Our implementation of nQuire, as well as the best model identified with nQuack, had equal 238 

or greater accuracy than the original nQuire model (Table 2).  239 

We were able to properly assign ploidal levels to all five samples originally investigated 240 

by nQuire. For the yeast sample set, all three distributions had multiple model types that were 241 

able to properly assign ploidal level to all samples under both filtering approaches; the model 242 

type implemented in nQuire, variance free with a uniform mixture, was also able to accurately 243 

assign ploidal level to all samples with all three distributions. Notably, the normal distribution 244 

with alpha and variance free and a uniform mixture was only suitable when the allele truncation 245 

was the least constrained (D1). For the oomycete sample set, only one model was suitable when 246 

allele truncation was the least constrained: the normal distribution with alpha free and a uniform 247 

mixture. Surprisingly, for the oomycete sample set, the nQuire model type (variance free with a 248 

uniform mixture) was unable to properly assign ploidal level to the diploid sample when filtering 249 

did not match the filtering approach of nQuire. Additionally, the nQuire filtering approach (D4) 250 

allowed the proper assignment of both oomycete samples by at least two models from each 251 
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distribution. Unlike all other sample sets, the maximum filtering approach (D4) increased the 252 

number of sites for both oomycete and yeast sample sets (Appendix S7); this is likely due to an 253 

excess of sites with high sequencing depth.   254 

For Glycine spp., the nQuire filtering approach had low accuracy for all models (< 60 %); 255 

however, the minimum filtering approach allowed 16 of 17 samples to be assigned the correct 256 

ploidal level based on the beta-binomial distribution and the alpha- and variance-free model with 257 

a uniform mixture. We expected the alpha free model to be the best model for Glycine spp. 258 

samples due to the history of ancient polyploidization in Glycine spp. and the likely return to 259 

disomic inheritance (Walling et al., 2006), thus the proportions of each different heterozygote  260 

should be unequal. As expected, alpha as a free variable was informative for tetraploids; 261 

however, without a uniform mixture, diploids were incorrectly identified. Under the best model, 262 

the single incorrectly assigned diploid was an individual of Glycine tomentella (D5Bb) which is 263 

known to have a history of introgression (see Landis and Doyle, 2023). Hybridization can lead to 264 

an increased gene copy number; therefore, a more conserved filtering approach to only retain 265 

single-copy loci may be necessary to improve accuracy.  266 

The best model for Glycine spp. also had high accuracy for Galax samples under the 267 

minimum filtering approach with 185 of 190 samples with properly assigned ploidal levels with 268 

only two tetraploids and three triploids misidentified. The tetraploid samples that were 269 

incorrectly identified had weak support; the absolute difference between the BIC score of the 270 

best model relative to the second-best model was less than 10, and these values were less than 271 

the BIC score difference of all accurate estimates. Although we caution against the interpretation 272 

of BIC score difference as a measure of accuracy generally, evaluating this method on samples 273 

with known ploidal level identified this potential usage for a set of unknown samples. When 274 
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sample sequence data are more similar to the modeled data-generating process, these criteria may 275 

be informative. Here, we targeted single-copy loci with capture-based sequencing, thus avoiding 276 

variance among loci that would skew these models. However, BIC score differences were not 277 

informative for the incorrectly assigned triploid samples. Two of these three triploid samples 278 

were incorrectly identified by all models; both samples have a high abundance of sites with an 279 

allele frequency of approximately 0.5, suggesting unequal gene loss and retention across targeted 280 

sites. When low coverage sites remained (D1 & D3), the distribution with the best model 281 

remained the beta-binomial with 184 of 190 samples correctly predicted under the variance-free 282 

with uniform mixture model. When low-coverage sites were removed (D2 & D4), the best model 283 

shifted to the normal distribution with alpha free and a uniform mixture. The highest accuracy 284 

was found under the D4 filtering approach with the normal distribution with alpha free and a 285 

uniform mixture; this model accurately assigned ploidy to 186 of the 190 individuals, only 286 

failing to identify a single tetraploid and three triploids.  287 

For the Larrea dataset, we were able to identify all triploids, tetraploids, pentaploids, and 288 

hexaploids under at least one model; however, the best model and filtering approach for each 289 

ploidal level differed. Based on the 18 different models and 4 different filtering approaches 290 

investigated for all cytotypes or only a subset of ploidal levels (2x, 4x, and 6x), we identified 22 291 

and 39 instances, respectively, where all hexaploids were assigned the correct ploidal level. For 292 

tetraploid samples, all individuals were correctly identified in 2 instances for all cytotypes and 2 293 

instances for only a subset of ploidal levels. Similar to the triploids in the Galax sample set, there 294 

were multiple diploid samples that our implemented models failed to identify correctly. These 295 

diploid samples were found to occur in mixed ploidal sites or at the edge of the species range, 296 

suggesting that ongoing mixed-ploidy introgression or divergence from the reference may skew 297 
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the models’ ability to accurately assign ploidal levels due to increased gene copy number or 298 

mapping error, respectively. When considering all five potential ploidal levels, the best model 299 

was the beta distribution with alpha free and a uniform mixture, with 189 of 270 samples 300 

correctly assigned ploidal level under the D2 filtering approach; this prediction misidentified all 301 

hexaploids and pentaploids, as well as three tetraploids and four diploids. When we reduce the 302 

mixture of ploidal levels considered to only include diploids, tetraploids, and hexaploids, the best 303 

model shifts to the beta distribution with variance free under the maximum filtering approach 304 

with 210 samples correctly identified; the misidentified samples include all triploids and 305 

pentaploids, six diploids, 20 tetraploids, and 29 hexaploids. The original nQuire model was 306 

unable to estimate the correct ploidal level for only 6 diploids and 1 tetraploid from the diploid, 307 

triploid, and tetraploid Larrea samples; comparatively, our implementation of nQuire incorrectly 308 

assigned ploidal level to an increased number of tetraploid samples due to the inclusion of a 309 

hexaploid mixture model, which was identified as more likely for these samples. Alhough 310 

reducing the ploidal levels considered can increase the number of correctly assigned samples, we 311 

do not advise ignoring the presence of triploid, hexaploid, or pentaploid cytotypes in a system to 312 

improve model accuracy. Based on the 18 different models and 4 different filtering approaches 313 

investigated, we identified 22 and 39 instances where all hexaploids were identified correctly, 314 

when all cytotypes or only a subset of cytotypes were included.  Overall, our approach increased 315 

the Larrea sample set accuracy compared to nQuire by 8% (Table 2).  316 

 317 

CONCLUSION 318 

Here we provided expanded tools and implementations to improve site-based 319 

heterozygosity inferences of ploidal level. nQuack provides data preparation guidance and tools 320 
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to decrease noise in input data. These tools include a maximum sequence coverage quantile filter 321 

and sequence error-based filter to remove biallelic sites that are likely not representative of copy 322 

number variance in the nuclear genome. We also consider only the frequency of allele A or B at 323 

each site, instead of both, as done in nQuire, as this would inflate the observation by enhancing 324 

the signal or noise found in the data. Our model builds upon, and improves, the nQuire 325 

framework by extending it to higher ploidal levels (pentaploid and hexaploid), correcting the 326 

augmented likelihood calculation, implementing more suitable probability distributions, and 327 

allowing additional ‘fixed’ models. We also decrease model selection errors by relying on BIC 328 

rather than likelihood ratio tests (Taper et al., 2021).  329 

Through the intensive testing of our proposed methods, we found that many variables 330 

influence model accuracy. Based on our simulated data, we observed that each model 331 

implementation and model type can be influenced by the number of sites, sequencing coverage, 332 

and amount of variance or noise in a dataset. In real data sets, this noise can be introduced 333 

through sequencing error or general sequence mapping error. In addition, although we attempted 334 

to retain only single-copy loci by removing repetitive regions, additional filtering may increase 335 

accuracy to ensure estimates are not conflated by variation among loci at non-single-copy sites. 336 

By examining a large amount of real data, we determined that the most accurate model for each 337 

data set differed, suggesting that both filtering strategies and model selection must be explored 338 

on a set of known samples before applying these models to any sample with an unknown ploidal 339 

level to achieve accurate ploidal-level assignment.   340 

We explored nQuack’s performance on an extensive set of simulated data and multiple 341 

real-world datasets. These analyses allowed us to benchmark model performance and identify 342 

data features that affect nQuack's predictive power. However, the biological datasets we explored 343 
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cannot represent the full diversity of polyploid systems, and additional tuning is required for real 344 

datasets. For example, these models would not be suitable in an allotetraploid with strict disomic 345 

inheritance as no AAAB or ABBB  loci would occur; therefore, the most likely model could be 346 

identified as a diploid, though BIC score parameter corrections would allow the most probable 347 

model to be hexaploid or tetraploid. Additional biological systems will likely introduce more 348 

complexities and may work best under different filtering conditions. To identify which factors 349 

dictate which strategy is the most accurate, multiple mixed-ploidy systems with high-quality 350 

reference genomes, well-classified polyploidization events (e.g., mode of formation, timing of 351 

polyploidy events, chromosomal segregation patterns, etc.), and well-characterized reproductive 352 

history should be explored in future model iterations. Regarding summary statistics, non-353 

parametric bootstrapping after model selection would allow for assessing the strength of the 354 

evidence in favor of every model and the robustness of model selection results. We provide 355 

functions to perform this non-parametric bootstrap sampling, however, completing a full non-356 

parametric bootstrap for all of our real datasets was neither practical nor feasible due to 357 

computational limitations. Because all mathematical models are misspecifications of the true 358 

data-generating process (Dennis et al., 2019), errors are probable when selecting the model 359 

closest to the truth. Therefore, by resampling the data we can assess the reliability of the model 360 

choice. In addition, if analytical-based inferences continue to be pursued, a sliding window 361 

approach will likely improve ploidy inferences.  362 

Our results open many interesting avenues for future research. Site-based heterozygosity 363 

models like the ones used here are in essence phenomenological statistical models, which focus 364 

on reproducing patterns rather than generating patterns based on a fundamental biological 365 

process. Although statistical models embodying fundamental biological processes are common 366 
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in many areas of biology (for instance, in phylogenetics), in this particular case it is extremely 367 

difficult to capture the complexities of nature in an analytical-based inference, and future model 368 

exploration utilizing data-based inference to classify ploidal levels is warranted. Alternatively, 369 

demographic models like the ones we proposed elsewhere (Gaynor et al., 2023) may provide the 370 

ecological and evolutionary framework necessary to design process-based predictions for mixed 371 

ploidy. These models, however, require rigorous coupling with evolutionary and genomic theory.  372 

Overall, this analysis reveals that it is critical to thoroughly examine proposed methods 373 

before inferring biological meaning. nQuack, as well as nQuire, should not be used to infer the 374 

ploidal level in a system for which very little is known, as these models are often positively 375 

misleading. We also suggest caution when relying on any site-based heterozygosity to predict 376 

ploidal level of a sample even when a known dataset is analyzed before applying the method to a 377 

sample of unknown ploidy due to the potential impact of biological processes (e.g., 378 

hybridization, divergence, etc.,) on model inference. Despite the caveats to this method, it can be 379 

easily implemented to leverage sequence data for ploidal estimation.    380 
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DATA AVAILABILITY STATEMENT 395 

The R package nQuack is available https://github.com/mgaynor1/nQuack and 396 

https://mlgaynor.com/nQuack/. A full implementation tutorial 397 

(https://mlgaynor.com/nQuack/articles/BasicExample.html), as well as detailed tutorials on data 398 

preparation (https://mlgaynor.com/nQuack/articles/DataPreparation.html) and model inference 399 

(https://mlgaynor.com/nQuack/articles/ModelOptions.html ), are available with the package 400 

documentation. For three sample sets, reference genomes and population genetics data are 401 

available via open repositories (see Appendix S3 and S4 for accessions). Sequence data for 402 

Galax urceolata and Larrea tridentata will be published in open repositories with future 403 

publications. An example data set, as well as the output of each step of our method, is available 404 

on our github (https://github.com/mgaynor1/nQuack/tree/main/data).  405 
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TABLES 

Table 1. An overview of all included sample sets including the species, total number of samples, 

ploidal levels included, and sequencing approach. Additional information, including available 

accessions, can be found in Appendix S3 and Appendix S4.  

Sample set Species Total Ploidal levels 

Sequencing 

approach 

Yeast 

Saccharomyces 

cerevisiae 3 2x, 3x, 4x 

Whole-genome 

resequencing 

Oomycete  

Phytophthora 

infestans 2 2x, 3x 

Whole-genome 

resequencing 

Glycine spp. 

Glycine albicans, 

G. arenaria, G. 

falcata, G. 

hirticaulis, G. 

tomentella, G. 

pescadrensis, G. 

stenophita, and G. 

tabacina 17 2x, 4x 

Genotype-by- 

sequencing 

Galax Galax urceolata 190 2x, 3x, 4x 

Target 

Enrichment 

Larrea Larrea tridentata 270 2x, 3x, 4x, 5x, 6x  RadCap (Hoffberg 
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et al., 2016; 

Bayona-Vásquez 

et al., 2019) 

 

Table 2. Accuracy of nQuire compared to nQuack’s implementation of nQuire (normal 

distribution with variance free and a uniform mixture with the maximum filtering approach, D4), 

and the best model by nQuack. Percent of total samples accurately assigned in parentheses. 

nQuire was run on alignments before our recommended preprocessing steps.  

Sample set Total nQuire 

nQuack’s 

nQuire 

nQuack’s best 

model 

Yeast 3 3 (100%) 3 (100%) 3 (100%) 

Oomycete  2 2 (100%) 2 (100%) 2 (100%) 

Glycine spp. 17 9 (53%) 9 (53%) 16 (94%) 

Galax 190 172 (91%) 179 (94%) 186 (97%) 

Larrea 270 189 (70%) 205 (76%) 210 (78%) 

 

FIGURE LEGENDS 

Figure 1. Expected allele frequencies at biallelic sites for diploid, triploid, tetraploid, pentaploid, 

and hexaploid. 
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Figure 2. The basic components of a mixture model include mean (μ), variance (𝝈), and 

proportion (or alpha, 𝛼). The expected distributions for an autotetraploid, as defined by Lloyd 

and Bomblies 2016, can be seen here. 

 

Figure 3. Variance in simulated data leads to a higher rate of incorrect ploidal level assignment. 

A larger percentage of samples will be properly assigned ploidal level when the number of 

mixtures examined is reduced. Some models are unsuitable for assigning specific ploidal levels, 

for example, diploids are not identified under the normal distribution when alpha is free.  

 

Figure 4. A large proportion of samples can be properly assigned ploidal level when only 

considering a subset of mixtures (2x, 3x, and 4x for yeast, oomycete, Glycine, and Galax; 2x, 4x, 

and 6x for Larrea). All samples were properly identified by at least one model for both yeast and 

oomycete sample sets. For Glycine and Galax, the best model identified 16 out of 17 samples 

and 186 out of 190 samples respectively. For Larrea, the best model was unable to identify 60 

samples, for a total of 210 out of 270 samples correctly identified.  

 

SUPPORTING INFORMATION 

Additional Supporting Information may be found online in the Supporting Information section at 

the end of the article. 

 

Appendix S1. Detailed implementation of expected maximization algorithm and the models 

available in our method.  
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Appendix S2. Distribution of coverage for the realistic simulation approach (Figure S1).  

 

Appendix S3. Genome statistics including species identity, number of contigs, total length in 

basepairs, contig minimum length, contig average length, contig maximum length, N50 (Mb), 

percent of GC content, BUSCO complete percentage, BUSCO duplicate percentage, BUSCO 

reference, and any accession information available.  

 

Appendix S4. Extended information on sample sets including the number of samples of each 

ploidal level, the sequencer used, and any accession information available.   

 

Appendix S5. Model comparisons for simulated data sets when considering all ploidal levels 

(Figure S2 - S19) or only a subset of ploidal levels: (1) only diploid, triploids, and tetraploids 

(Figure S20 - S38), or (2) only diploid, tetraploids, and hexaploids (Figure S39 - S57). BIC score 

difference between the best and second best models for simulated samples across different 

numbers of sites for eleven different coverage amounts (5, 10, 20, 30, …). The color of each 

point represents the best model. The shape of each point represents the approach used to simulate 

that sample. A larger BIC difference between the best and second-best models indicates model 

confidence. These plots can be used to guide users' interpretation of these models and determine 

if these models will apply to their system.   

 

Appendix S6. Probability of the correct model choice given the BIC difference between the best 

and second best model for all simulated diploid, triploid, tetraploid, pentaploid, and hexaploid 

samples. The probability of success was predicted based on a logistic regression where accuracy 
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is a function of BIC difference. We expect the BIC difference between the best and second best 

model to increase with the probability of success when the BIC difference is indicative of the 

model's accuracy. (Figure S58 - S60) 

 

Appendix S7. Number of sites and mean sequence coverage included for all filtering approaches 

for each sample set.  (Figure S61) 
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