

Functional architecture of intracellular oscillations in hippocampal dendrites

Zhenrui Liao^{1,2,*}, Kevin C. Gonzalez^{1,2,*}, Deborah M. Li^{1,2}, Catalina M. Yang^{1,2,**}, Donald Holder^{1,2,**}, Natalie E. McClain^{1,2,**}, Guofeng Zhang³, Stephen W. Evans³, Mariya Chavarha⁴, Jane Yi^{1,6}, Christopher D. Makinson^{1,6}, Michael Z. Lin^{3,4}, Attila Losonczy^{1,2,5,†} & Adrian Negrean^{1,2,†}

¹*Department of Neuroscience, Columbia University, New York, United States*

²*Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States*

³*Department of Neurobiology, Stanford University, Stanford, United States*

⁴*Department of Bioengineering, Stanford University, Stanford, United States*

⁵*Kavli Institute for Brain Science, Columbia University, New York, United States*

⁶*Department of Neurology, Columbia University, New York, United States*

* These authors contributed equally.

** These authors contributed equally.

† Correspondence should be addressed to:

A.L.: al2856@columbia.edu, A.N.: negreanadrian@gmail.com

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor *in vivo*. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor *in vivo* by combining voltage imaging with simultaneous local field potential recording, *post hoc* morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.

Introduction

Behavior-contingent network oscillations coordinate active neural ensembles in cortical circuits¹⁻⁶.
Cortical neurons primarily interface with behavioral state-dependent population patterns at their dendritic arbor, receiving thousands of afferent inputs along hundreds of microns⁷. Distinct morpho-electrical properties of these small-diameter, highly branched dendrites support dynamic compart-

mentalization for synaptic integration and plasticity, spike initiation and propagation, and intrinsic 6 oscillatory dynamics^{8–12}. How these dendritic processes interact to produce behaviorally-relevant 7 single-cell computations *in vivo* remains a fundamental open question in the field of neuroscience. 8 Due to technical limitations, it has previously not been possible to interrogate dendritic membrane 9 potential dynamics in different behavior states and network oscillations. Cortical dendrites are 10 seldom accessible to direct electrophysiological recordings *in vivo*^{13–15}, and have primarily been 11 studied either *in vitro* or with optical imaging using calcium sensors *in vivo*^{14;16–19;19–24}. Direct 12 electrophysiological recordings are particularly challenging from small-diameter dendrites, even 13 *in vitro*^{25;26}. While informative, calcium imaging lacks the temporal resolution and fidelity to 14 membrane potential dynamics required to answer this question. 15

Genetically encoded voltage indicators (GEVIs) have recently emerged as promising tools for fast 16 optical recording of neural circuit dynamics^{27–30}. To study the relationship between subcellular 17 voltage dynamics and network states *in vivo*, we electroporated ASAP3²⁸ into single pyramidal 18 cells and performed two-photon voltage imaging across the somato-dendritic membrane surface 19 of pyramidal cells in the CA1 area of the hippocampus (CA1PCs), where dendritic processing 20 is critical for spatial navigation and episodic memory^{5;8;17;31–35}. Using concurrent hippocampal 21 local field potential (LFP) recordings, we relate dendritic voltage dynamics to two physiologically 22 antagonistic population patterns: the locomotion-associated theta rhythm (5–10 Hz) and the 23 immobility-associated high-frequency sharp-wave ripple (SWR) oscillation, which respectively 24 typify memory encoding and consolidation-related network states in the hippocampus^{6;36;37}. Our re- 25 sults reveal dynamic compartmentalization of intracellular voltage signals depending on behavioral, 26 network, and cellular states within the dendritic arbor of CA1PCs *in vivo*. 27

Results

28

Two-photon voltage imaging dendritic activity *in vivo*

29

To investigate electrical signaling in dendrites of CA1PCs in behaving mice, we performed *in vivo* 30
single-cell electroporation (SCE) under two-photon microscopy guidance^{38–40} to deliver plasmids 31
for stable expression of ASAP3 (Fig S1), a green-fluorescent GEVI developed and characterized 32
for use *in vivo*²⁸, along with mRuby3⁴¹, a static red-fluorescent morphological filler protein (see 33
Methods). Simultaneous two-photon ASAP3-voltage imaging of CA1PCs and contralateral LFP 34
recordings⁴² were performed in head-fixed mice during volitional running and immobility on a cued 35
treadmill⁴³ (Figs 1a, S2a,b, see Methods). Our SCE procedure allowed for bright labeling of fine 36
dendrites and *post hoc* full reconstruction of cell morphology (Fig 1b). In this work, we introduce 37
phylogenetic dendograms (“phylogenograms”) to render 3D dendritic morphology in two dimensions 38
(Fig 1b, right; also see Methods). ASAP3 fluorescence was sampled at a frame rate of 440 Hz 39
over a period of 30–45 s from 28–64 (median: 43, IQR: 10.75) regions of interest (ROIs) along the 40
dendritic arbor (Figs 1c, S2c). Our labeling and recording configuration allowed for detection of 41
depolarizing events (DEs, Fig 1c) using a matched-filter approach (Figs S2d,e, S3–S5). 42

To better understand the voltage-to-fluorescence transformation of ASAP3, we modeled sensor 43
dynamics using a 4-state Markov chain based on recordings from ASAP3-expressing voltage- 44
clamped HEK293 cells (Figs 1d, S3, see Methods). We then compared the model-predicted ASAP3 45
response to single action potentials recorded *in vivo* to detected DEs in our dataset, and found 46
close qualitative agreement (Fig 1d, see Methods). The average DE waveform detected using 47
our method was qualitatively similar across dendritic domains Fig 1e and between running and 48

immobile behavior states (Figs S2b, S6). Across behavior states, the soma fired at an average 49 of 0.67 ± 0.14 Hz. Mean DE frequency differed significantly between dendritic regions (basal: 50 0.89 ± 0.03 Hz, trunk: 0.93 ± 0.08 , oblique: 1.1 ± 0.04 , tuft: 1.4 ± 0.08 ; Kruskal-Wallis H -test, 51 $H = 37.8, p = 3 \times 10^{-8}$) but did not vary as a function of distance along the basal-apical axis (Fig 52 S6a). DE frequency decreased across all cellular domains during locomotion compared to rest (Fig 53 1f). These results demonstrate that DEs with fast sodium spike-like kinetics are detectable with 54 voltage imaging across behavioral states and dendritic regions of CA1PCs *in vivo*. Throughout the 55 remainder of this work, DEs refer to fast sodium spike-like events, likely representing both locally 56 generated and backpropagating action potentials in dendrites, detected using a matched-filter based 57 on a template calibrated to simultaneous patch-clamp and voltage imaging in an *in vitro* preparation 58 (Methods). We also observed a smaller proportion of longer duration dendritic events in all dendritic 59 regions (10.4% of all events, 56.2 ± 2.2 ms, mean \pm s.e.m.), likely representing sodium spikes 60 with a slower, NMDA receptor/voltage-gated calcium channel-mediated component^{44,45} using a 61 template constructed from dendritic patch-clamp recordings from CA1 acute slices (Fig S7a)⁴⁶. 62 Our fast voltage imaging approach necessitates sequential scanning of ROIs, which does not allow 63 for disambiguation of backpropagating action potentials from locally generated dendritic spikes or 64 an exhaustive characterization of the diversity of dendritic events. In the remainder of this work, 65 we characterize dendritic signalling in the online (locomotor) and offline (immobile) states using 66 subthreshold membrane voltage and suprathreshold fast DEs. 67

Theta oscillation-related modulation of dendritic membrane potential

68

When an animal is moving, a 5–10 Hz extracellular oscillation (“theta”) emerges in the hippocampus, 69
which is thought to reflect the “online” state of the brain and support memory encoding and 70
decoding³⁷. Layer-dependent organization of theta has been proposed based on extracellular 71
recordings and recordings in anesthetized animals³⁷. Here, we investigated the relationship between 72
extracellular theta and intracellular membrane potential across the entire dendritic tree in the awake, 73
behaving animal. Previous work has found high coherence between interhemispheric hippocampal 74
theta oscillations^{47;48}; in order to avoid electrical artifacts induced by imaging, we imaged membrane 75
potential while simultaneously recording LFP in contralateral CA1 (see Methods). Out of $N = 11$ 76
cells, ASAP3 fluorescence from 83% basal, 100% somatic, 97% trunk, 91% oblique and 93% tuft 77
ROIs was found to be theta-band modulated (example cell in Fig 2a, see Methods). Morphological 78
reconstruction revealed that theta oscillation amplitude and phase changed gradually across the 79
dendritic tree as a function of somatic path distance to the recorded ROI (example cell in Fig 80
2b, top, middle, Fig 2c, additional examples in Fig S8). Regression analysis of imaged ROIs 81
within the same cell showed a significant gradient of theta-band fluorescence oscillation phase 82
relative to the somatic compartment along the basal-tuft axis for 8/11 cells, with 7/8 showing an 83
advancing gradient toward the tuft (Fig 2d, top, middle). The average theta-band fluorescence 84
oscillation amplitude of theta-modulated ROIs was also found to increase from basal toward the 85
tuft domain (Fig 2d, bottom). Pooling ROIs across cells, starting from the distalmost basal and 86
progressing toward distalmost tuft dendritic ROIs, fluorescence oscillation phase advanced along 87
the basal-tuft axis with a slope of $-7.9^\circ/100\mu\text{m}$ while oscillation amplitude increased with a slope 88
of $= 0.7\%z/100\mu\text{m}$ (Fig 2e). 89

Theta phase preference of dendritic events

Somatic spikes occur preferentially at the extracellular theta trough, corresponding to the peak of the intracellular theta oscillation³⁷. We asked if the same was true in dendrites. We found that gradients in theta phase and amplitude were accompanied by a comparable gradient in DE phase preference (example cell in Fig 3a-c, resultant DE phase distributions in Fig 3d), with DE phase advancing toward the tuft with a slope of $-7.8^\circ/100\mu\text{m}$ (Fig 3e). A strong correlation between theta-band membrane-potential oscillation and DE phases was observed (Fig 3f), with the oscillation phase showing a slight advancement compared to DE phase, indicating that at the segment level, DEs occur preferentially close to the peak of the subthreshold oscillation. We expect locally-generated events to be entrained to local theta phase (45° slope of the DE phase vs membrane potential phase relationship) and bAPs to occur preferentially at the peak of somatic theta (0° slope). The true observed slope is shallower than 45° , consistent with a mixture of local events and somatic-phase conveying back-propagating action potentials. Unlike fast DEs, the distribution of slow events appear to be concentrated around 0° in all regions but the tuft (Fig S7b). To assess whether DE properties are modulated by the subthreshold oscillation, we performed a linear-circular regression of DE peak amplitude against DE phase (see Methods). DE amplitude was not strongly modulated by theta phase in any regions other than the tuft ($p < 4 \times 10^{-5}$, Fig S9).

We then asked whether these gradients were explained by absolute distance from the soma or distance along the basal-apical axis. We focused on trunk and oblique segments, decomposing the total somatic path distance into an along-trunk component and an away from the trunk (oblique) component. Multivariate regression against these two components revealed that the observed gradients did not advance significantly along radial obliques dendrites; rather, they could be

explained solely by the distance along the soma-trunk axis (Fig S10). Taken together, these results 112
form the first subcellular characterization of theta oscillations across the CA1PCs dendritic tree in 113
the behaving animal, and reveal strong correlation between the phase of local dendritic events and 114
dendritic membrane theta phase. 115

SWR-related modulation of dendritic membrane potential 116

Hippocampal dynamics during immobility (the “offline” state) differ considerably from online 117
dynamics during locomotion. The theta oscillation disappears when an animal is immobile, while 118
the sharp-wave ripple (SWR) emerges. SWRs are critical for offline memory consolidation, but like 119
theta, have thus far primarily been studied at the somatic compartment. Here, we examine dendritic 120
signalling across the arbor inside and outside of SWRs³⁶. Overall, dendrites fired at 0.50 ± 0.08 Hz 121
inside of SWRs compared to 1.50 ± 0.17 Hz (mean \pm s.e.m.) during immobility outside of SWRs. 122
On average, $17.6 \pm 3\%$ of each cell’s dendrites (mean \pm s.e.m., $N = 8$ cells) were significantly 123
modulated by SWRs; 98.3% of modulated dendrites showed a reduction in DE rate inside SWRs 124
compared to immobility baseline outside of SWRs (example cell in Fig 4a, more cells in Extended 125
Data Fig S11). In a ± 500 ms peri-SWR window, we found a net suppression of dendritic DEs, 126
which begins approximately 200 ms prior to SWR onset, reaching a nadir shortly after the peak of 127
SWR power, and returning to baseline 200 ms after SWR peak (Fig 4b). We dissected this effect by 128
dendritic region, and found that SWRs on average are associated with an acute hyperpolarization of 129
dendritic membrane potential in every region, which reaches a nadir shortly after the SWR LFP 130
power peak (Fig 4c, top). However, individual SWR responses are highly heterogeneous; while the 131
predominant effect is inhibition, a minority of SWRs recruit the recorded dendrite (Fig S12). In 132

each region, fluorescence showed maximal membrane potential hyperpolarization that was delayed 133 from the SWR LFP peak power (baseline=0% – $\Delta F/F$, Fig 4d, e, Tables S4, S5). The timing of 134 this effect was fairly consistent between cells and along the basal-tuft axis (Fig S13). Concomitantly, 135 we found an acute reduction in DE rate in the soma and all regions of the arbor (Fig 4c, bottom, Fig 136 4f, Table S6). Similar to fast DEs, slow events were also suppressed around SWRs (Fig S7c). Given 137 that different subtypes of GABAergic interneurons are differentially recruited to SWRs and target 138 distinct dendritic domains⁴⁹, we asked whether DEs occurring during SWRs differed from those 139 occurring outside SWRs in each region. Unlike somatic action potentials, local dendritic events 140 are not stereotyped or all-or-none, but vary in their amplitude and morphology^{44;50-55} which may 141 be modulated by oscillations^{53;56}. We found that DE amplitudes were significantly decreased (Fig 142 4g) inside SWR epochs for the basal domain (outside: 18.9% – $\Delta F/F$, 95% CI [18.1,19.5], inside: 143 15.7% – $\Delta F/F$, 95% CI [13.9,18.3]; Fig 4h, Table S7), while amplitude was preserved but DE 144 width was significantly narrowed in the oblique domain (outside: 26.0 ms, 95% CI [20.0, 30.1]; 145 inside: 16.1 ms 95% CI [12.6, 21.7]; Fig 4i, Table S8); other regions did not exhibit significant 146 differences in these parameters. In summary, we found that SWRs on average are associated with an 147 inhibitory effect on the dendritic arbor, in membrane potential, DE rate, and DE waveform shape in 148 the basal and oblique domains. This cell-wide inhibition begins preceding the peak of SWR power, 149 peaks shortly after SWR LFP power peak, and recedes about 200 ms after the peak. 150

Spatial tuning in dendrites of non-place cells

In the preceding sections, we studied the basic principles of online and offline dendritic signalling in 151 featureless environments. We next augmented the environment with tactile and visual cues in order 152 153

to study dendritic signalling during an active random foraging task on a feature-rich circular belt^{43;57}. 154
We first focused on CA1PCs which did not exhibit somatic spatial tuning (“non-place” cells). We 155
aimed to test the following hypotheses: (1) dendrites exhibit spatial tuning; (2) dendritic segments on 156
the same branch are likely to be similarly tuned; (3) dendritic representations of single cells span the 157
environment (Fig 5a, individual cell example; see Fig S14 for all recorded cells). In these non-place 158
cells, we identified that approximately 33% of dendritic segments were spatially tuned, defined as a 159
statistically significant spatial nonuniformity of DEs (calculated using the H statistic⁵⁸) compared 160
to a shuffle distribution (Fig 5c, left). We calculated the pairwise tuning curve distances⁵⁹ between 161
these tuned segments, and found apparent cluster structure in this tuning (Fig 5b). Even though these 162
were non-place cells, we asked if some low baseline of somatic spatial selectivity could be driving 163
this structure. Although there was wide variability in spatial firing between soma and dendrites 164
in each dendritic region (Fig 5c, right), we found that dendrites in each region were *less* coherent 165
with the soma than chance, suggesting that the dendritic tuning we observed was not explainable 166
by somatic backpropagation; rather, the dendritic arbor and the soma are compartmentalized to 167
some extent. We then asked on what level this compartmentalization occurs: we found that the 168
tuning curve distances between pairs of recorded locations on the same branch were significantly 169
smaller than tuning curve distances between pairs on different branches, suggesting branch-level 170
compartmentalization (Fig 5d, left). However, we found no relationship of tuning curve distance 171
and physical distance between pairs of segments along the same branch (Fig 5d, right). The tuning 172
of each dendrite that we observe is largely determined by its presynaptic afferents, which are fixed. 173
However their weights may change during learning, which is the hypothesized mechanism by 174
which somas acquire spatial selectivity⁶⁰. We finally asked how expressive the dendritic tuning we 175
observed was. We used a simplified linear dendrite model to assess whether the measured dendritic 176

tuning curves of a cell, taken together, were diverse enough to generate a range of tuning curves 177
at the soma under appropriate weights (Fig 5e; Fig S14). We found that the observed dendritic 178
tuning curves span the space of potential Gaussian place fields much better than the somatic tuning 179
curve alone, the somatic tuning curve with spatially delayed copies, or the same number of linearly 180
independent random tuning curves (Fig 5e, top right), and reasonably broad tuning curves can be 181
reconstructed with very high fidelity. These results illustrate that the dendritic arbors of non-place 182
CA1PCs exhibit both striking internal organization and diversity of tuning, which may enable it to 183
support arbitrary somatic place fields. 184

Spatial tuning in dendrites of induced place cells 185

Finally, we tested the hypothesis suggested by the above model: that the diversity of dendritic 186
tuning in non-place cells enables arbitrary place fields to be implanted at the soma. We carried 187
out single-cell optogenetic place field induction (Fig 6a)^{24;61} and recorded activity from small, 188
randomly selected sets of dendrites. We observed a significant increase in the coherence of dendritic 189
tuning compared to non-induced cells and also found that this coherence corresponded well with 190
the somatic peak (two example cells shown in Fig 6b,c). To quantify this observation, we computed 191
the DE tuning vector⁴³ for each dendrite and compared the diversity among tuning vectors σ_{arbor} 192
(defined as the circular standard deviation in the set of dendrite tuning directions) between induced 193
and non-induced cells. Using this metric, we found that the arbors of induced cells showed 194
significantly lower diversity, suggesting greater coherence in their dendritic representations (Fig 195
6d, top). Rather than binarizing tuned vs untuned, we now use a continuous metric of tuning 196
strength (defined as the normalized magnitude of the resultant vector), and observed that among the 197

non-induced cells, stronger somatic tuning significantly inversely correlated with diversity of tuning 198
in the arbor ($r^2 = 0.74, p = 0.006$), while induced cells exhibited low arbor tuning diversity at all 199
soma tuning strengths (Fig 6d, bottom). Finally, we sought to dissect these differences at the level of 200
single dendrite-soma pairs (Fig 6e). We found that somatic tuning is a poor predictor ($r^2 = -0.63$) 201
of dendritic tuning in general among non-induced cells, but a very good predictor ($r^2 = 0.95$) of 202
tuning among induced cells. We found that the variability of a single dendrite's tuning negatively 203
correlates to the strength of its conjugate soma tuning in both non-induced ($r^2 = 0.22$) and induced 204
($r^2 = 0.44$) cells. Interestingly, we find that place cell induction also serves to similarly organize 205
slow plateau events in induced place cells compared to noninduced place cells (Fig S7d). Together 206
with our previous results, these findings suggest that somatic place field acquisition reorganizes the 207
predominant patterns of electrical activity observed at dendrites. 208

Discussion

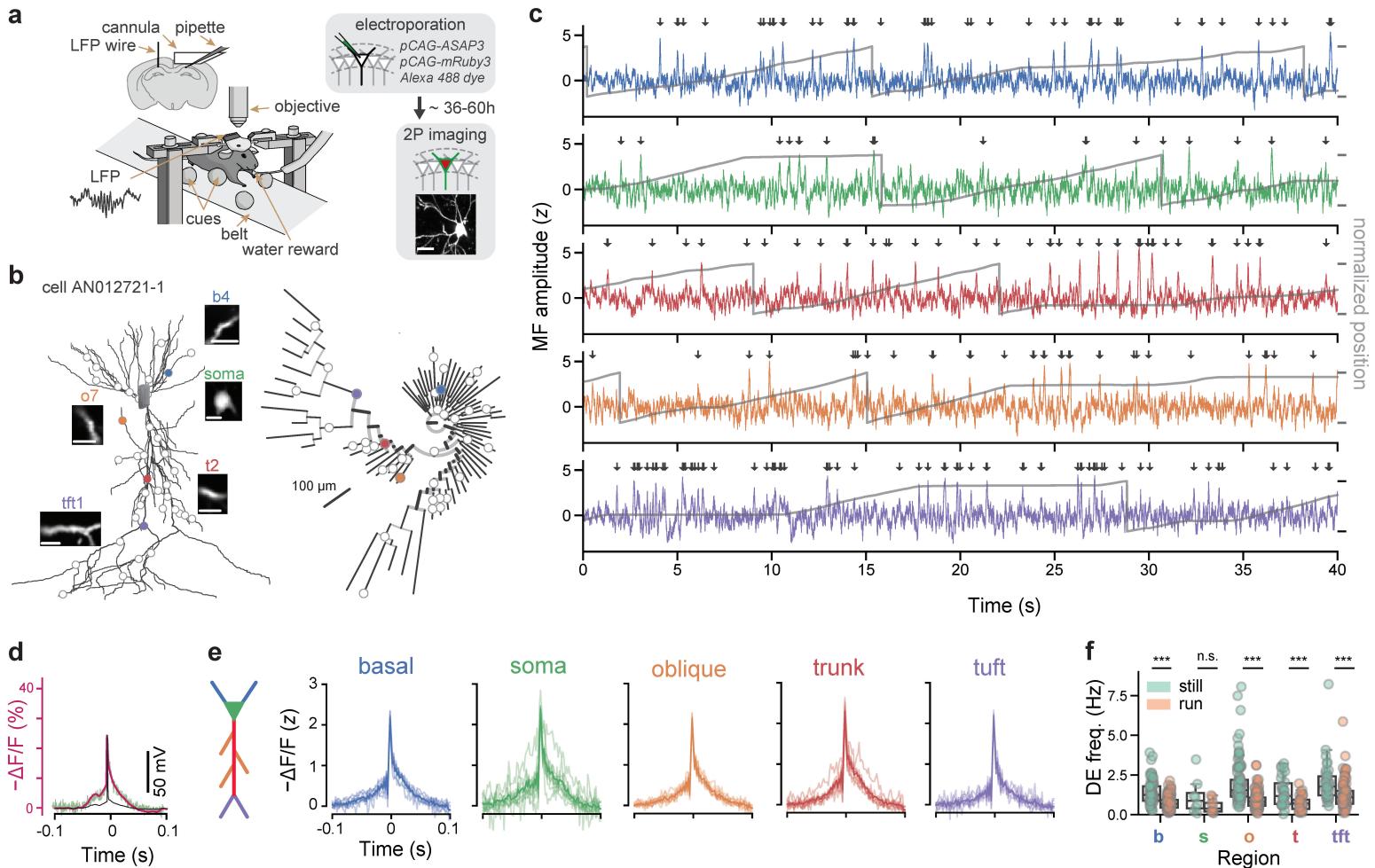
The question of how anatomical structure implements computational function is fundamental to the 210
study of neural circuits. In this work, we optically interrogated subthreshold and suprathreshold 211
electrical activity across multiple behavior states and network oscillations in the first *in vivo*, multi- 212
site characterization of voltage dynamics across the somato-dendritic membrane surface of principal 213
cells in the hippocampus. Our results reveal dynamic compartmentalization of electrical signals in 214
CA1PC dendrites, consistent with behavioral state-dependent differences in synaptic input structure 215
and active dendritic integration^{23;44}. 216

Our work offers new insight into the relationship between intracellular electrical signaling and 217

population patterns across brain states. First, we find that dendrites across subcellular domains 218 undergo prominent network state-dependent activity modulation, in which locomotion is associated 219 with a reduced rate of depolarizing events. While previous calcium imaging and extracellular electro- 220 physiological recordings reported an increase in firing rate of CA1PCs during locomotion^{62;63}, our 221 result is consistent with intracellular recordings showing somatic hyperpolarization and suppressed 222 firing rate in CA1⁶⁴⁻⁶⁶, CA3^{67;68}, and CA2⁶⁸ PCs during locomotion, as well as with recent optical 223 voltage recordings from CA1PCs²⁷. 224

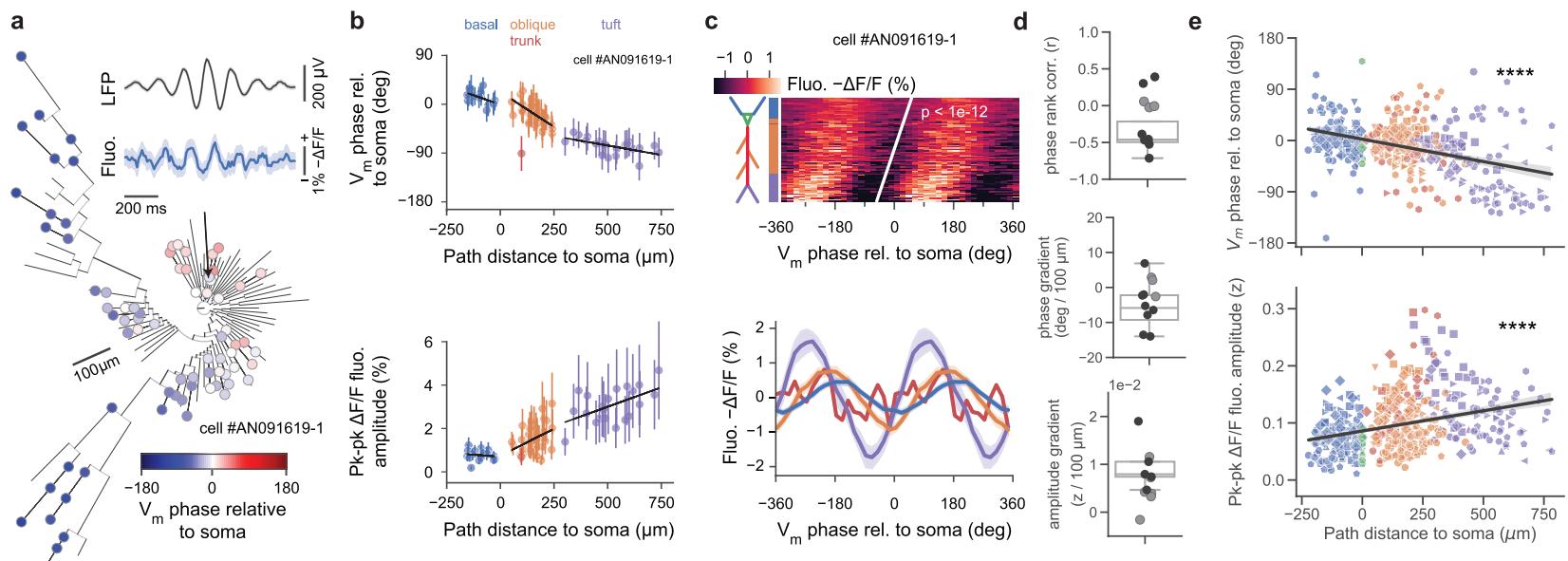
Second, our results answer the long-standing question of whether dendrites of CA1PCs exhibit 225 morphologically structured oscillatory dynamics *in vivo*. The prominent gradient in intracellular 226 theta phase along the basal-tuft axis we find during online locomotion suggests that phase-shifted 227 extracellular theta currents carried by extrinsic inputs to CA1^{37;69;70} map onto dendrites of CA1PCs 228 in their corresponding layer, and serve as a clock to pace suprathreshold dendritic events with a 229 significant degree of autonomy from the soma. Our finding of opposite-sign theta phase shifts for 230 segments in the basal and oblique domains at comparable distances from the soma suggests the 231 sub- and suprathreshold phase shifts observed cannot simply be explained by propagation delays, 232 but may reflect anatomical gradients in the distributions of excitatory and inhibitory inputs. The 233 theta gradient we observe intracellularly along the basal-apical axis is reminiscent of previous 234 extracellular LFP recordings demonstrating that theta oscillations are organized as traveling waves 235 in CA1^{71;72}. The subcellular correlates of theta oscillations we report here provide *in vivo* support 236 for soma-dendrite or oscillatory interference models for the generation of the hippocampal temporal 237 code during spatial navigation^{33;66;73-78}. 238

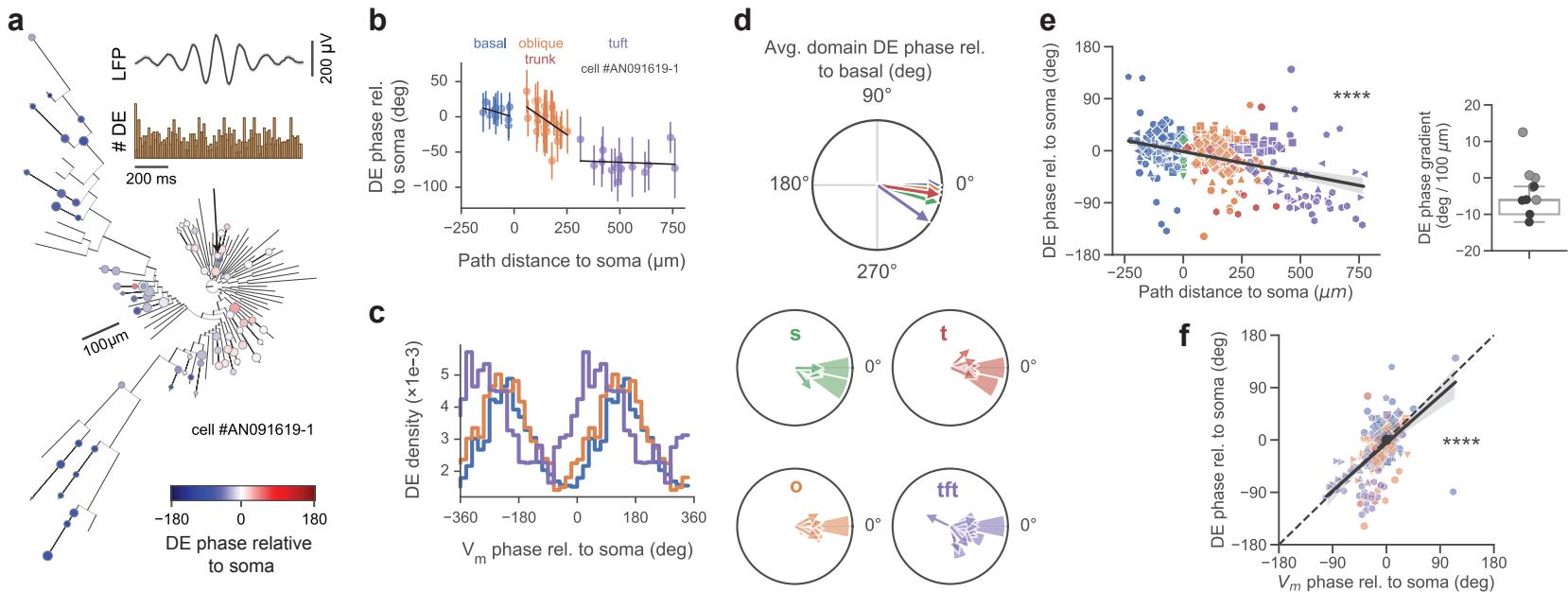
Third, our results identify subthreshold membrane potential hyperpolarization and depolarizing 239


event rate suppression across the somato-dendritic membrane during offline SWRs. This result is in 240
agreement with the prominent hyperpolarization observed around SWRs with somatic intracellular 241
electrophysiological recordings from CA1PCs *in vivo*^{79–82}, (cf. ref. 83). It is important to note, 242
however, that SWRs are associated with a relative but not absolute inhibitory state for dendrites, 243
as DEs still occur, albeit at a lower rate, around SWRs. Sharp-wave ripples are closely associated 244
with hippocampal replay, during which online sequences are recapitulated in the offline state³⁶. 245
Inhibition can thus play a crucial role in organizing SWR-associated replay of online activity 246
patterns while also suppressing the reactivation of irrelevant representations⁸⁴. The predominant 247
dendritic inhibition in SWRs is likely brought about by GABAergic interneurons innervating CA1PC 248
dendrites^{49;85}, further implicating dendritic inhibition in structuring excitatory input integration 249
and plasticity *in vivo*^{35;61;79;86–88}. In particular, parvalbumin-expressing basket and bistratified cells, 250
which are strongly activated during SWRs^{49;85;89} may provide inhibition to perisomatic and proximal 251
dendritic compartments of CA1PCs during SWRs, respectively. 252

Finally, our voltage recordings suggest the presence of distributed feature selectivity of electrical 253
signals in dendritic arbor in un-tuned CA1PCs, where spatially tuned branch-level compartments 254
tiling space exhibit a high degree of within-branch coherence even in the absence of tuned so- 255
matic output. This finding is in line with recent two-photon calcium imaging studies showing 256
functional independence and compartmentalization in CA1PC dendrites^{19;24}. Recent studies also 257
revealed that arbitrary somatic place fields can be induced in non-place cells using spatially local- 258
ized electrical^{34;60} or optogenetic simulation^{24;61;90;91}. Indeed, we find that following optogenetic 259
field induction, dendritic tuning becomes significantly more coherent with somatic tuning in all 260
compartments, likely due to backpropagating axo-somatic action potentials dominating dendritic 261

tuning. Thus, similar to neocortical principal cells^{15;21;22;92}, hippocampal place cells may also 262 integrate distributed input-level tuning into a singular output-level receptive field through synaptic⁶⁰ 263 or intrinsic⁹³ plasticity. 264


There are limitations to our study. The sequential two-photon imaging approach used here does 265 not allow for disambiguation of backpropagating action potentials from locally generated dendritic 266 spikes, or detailed characterization of propagation-dependent changes in event amplitude and 267 shape. Furthermore, our study focuses primarily on single spikes, without resolving high-frequency 268 complex spikes and plateau-burst events, which are more prevalent during place fields of place 269 cells^{34;63}. While ASAP3 improves upon previous indicators in fluorescence-voltage response as 270 well as tolerability *in vivo*, the duration of imaging is limited by bleaching considerations, which 271 constrained our ability to capture functional tuning profiles. Genetically encoded voltage indicators 272 have proliferated, pushing forward optical access to neural membrane potential dynamics^{29;30}. 273 Newer-generation indicators are constantly being reported,^{90;94–98}, with continual improvements 274 to parameters such as signal-to-noise ratio, photostability, cytotoxicity, and speed. Future work 275 may take advantage of these improvements to record across subcellular compartments for longer 276 trials as well as longitudinally across days, which will allow an examination of how dendritic 277 representations evolve over longer timescales. Finally, we record LFP from the contralateral 278 hemisphere, consistent with established practice, to reduce artifacts and circumvent the difficulty of 279 recording ipsilaterally^{42;89;99}. Previous studies^{47;48} have found high coherence in interhemispheric 280 LFP, with highly correlated theta power, only minor (< 20 deg) theta phase variance, as well 281 as highly correlated SWR power and co-occurrence of events between hemispheres, though the 282 coherence between hemispheres is not perfect. 283


In summary, we have illustrated how the dendritic arbor functionally compartmentalizes electrical signaling *in vivo*. We have shown across network and behavior states that local events are coupled to local oscillations. Our results suggest that the functional architecture of neuronal input-output transformation in CA1PCs *in vivo* is best captured as a multi-layer interaction between dendritic subunits exhibiting considerable autonomy, as previously suggested by *in vitro* and modeling studies^{23;44;100–103}. This highlights the insufficiency of point-neuron models in capturing the computational capacity of either single cells or neural circuits *in vivo*. While our recording configuration did not allow for simultaneous recordings from the soma and dendrite, our findings are suggestive of an important compartmentalized component of electrical signaling, in particular during theta-associated memory encoding, which could increase dendritic computational capacity *in vivo*^{8;10;104–108}. Future studies using simultaneous multi-compartmental recordings from place cells will aid in uncovering how dendritic oscillatory and spiking dynamics are utilized to implement the hippocampal time and rate code for navigation and learning^{33;60;73–75;109;110}.

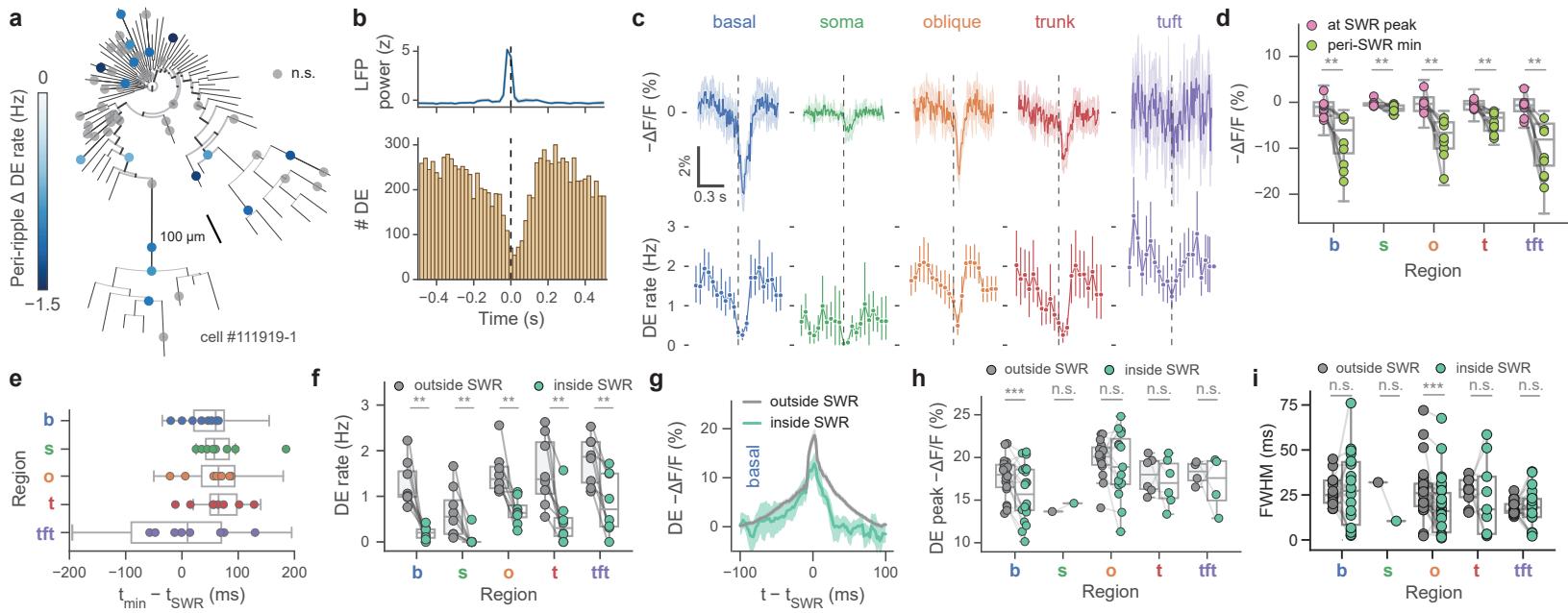
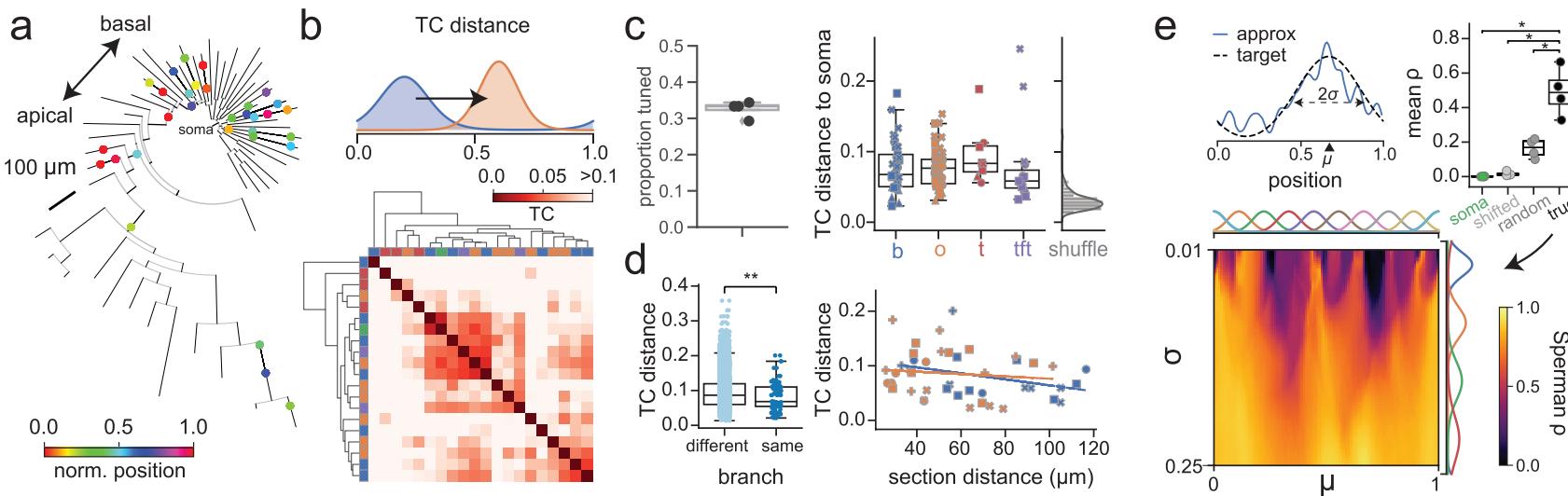
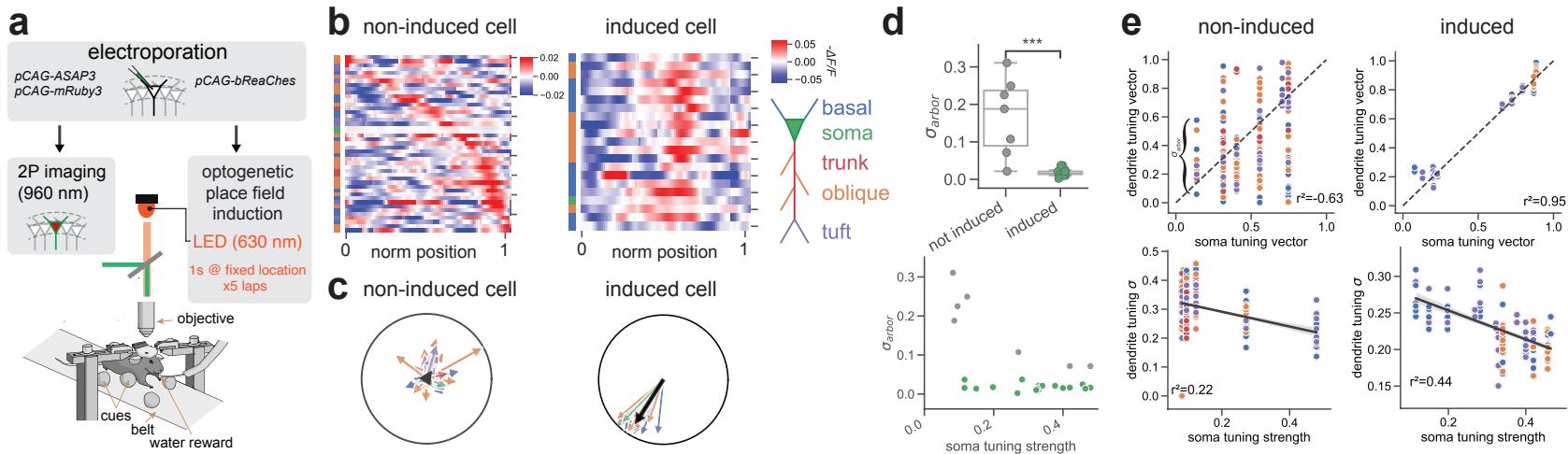


Figure 1. Detection and organization of depolarizing events (DEs) across the dendritic arbor and behavioral states. (caption next page)

Figure 1. Detection and organization of depolarizing events (DEs) across the dendritic arbor and behavioral states. **a.** Experimental setup. Electroporation-imaging cannula-window was implanted above the right dorsal hippocampal area CA1. A tungsten wire LFP electrode was inserted contralaterally, within or in proximity to the CA1 cell body layer. Mice were habituated using water rewards to run on a cued belt treadmill. ASAP3 and mRuby3 plasmids were single-cell electroporated (SCE) in CA1 pyramidal cells under two-photon microscopy guidance. Two-photon fluorescence measurements were obtained after approx. 36 hours post SCE from several tens of dendritic regions of interest (ROIs) across the whole dendritic tree. Scale bar 25 μ m. **b.** Morphological reconstruction and identification of recording locations. Left: two-photon microscopy stacks were acquired *in vivo* following each imaging session and neuronal morphologies were reconstructed (example cell AN012721-1). Inset scans show the extent of dendritic (basal: *b4*, trunk: *t2*, oblique: *o7*, tuft: *tft1*) and somatic imaging regions (scale bars 10 μ m). Right: phylogram representation of the same cell's branching morphology, with radial distance from soma representing path distance to each recording location. Circles indicate imaging locations. **c.** Example optical measurements of sequentially recorded dendritic electrical activity from cell shown in **b.** during bouts of locomotion and rest. Optical signals were sampled at 440 Hz, stabilized against movement artifacts during locomotion epochs, match-filtered (MF) and thresholded for depolarizing event (DE) detection (arrows) (see Methods). Note that ASAP3 fluorescence is plotted as $-\Delta F/F$ to reflect the direction of change in the membrane potential. Grey traces: animal position during the recording. **d.** Electrophysiological calibration: A somatically recorded CA1PC action potential (black) was played through voltage-clamped ASAP3-expressing HEK293 cells at 37 °C and the corresponding ASAP3 fluorescence response (green) was recorded. Magenta: Markov model predicted ASAP3 response. **e.** Average z-scored DE waveforms for isolated events pooled from different dendritic domains with a fluorescence baseline SNR >10 (calibrated against a shot-noise baseline) during locomotion and immobility behavior states (N=13 cells from 9 mice, colored curves). **f.** DE frequency is reduced during locomotion states compared to immobility across all dendritic domains for fluorescence baseline SNR >10 (basal: $p = 10^{-10}$, oblique: $p = 2 \times 10^{-15}$, soma: $p = 0.03$, trunk: $p = 2 \times 10^{-6}$, tuft: $p = 4 \times 10^{-5}$, Wilcoxon paired test; 587 dendrites from 13 cells). Two-way ANOVA for frequency: $p = 3 \times 10^{-11}$, main effect of region; $p = 1 \times 10^{-41}$, main effect of locomotion; $F(4, 770) = 2.24$, $p = 0.06$ region \times locomotion interaction. Box: Q1, Q2, Q3; whiskers: range (excluding outliers). Point represent individual dendrites. $\alpha = 0.01$ indicates significance for *post hoc* tests at the per-region level using Bonferroni's correction.





21

Figure 4. Sharp-wave ripple-associated modulation of dendritic electrical signaling **a.** Example phylogram of a reconstructed cell (cell #111919-1) with significantly SWR-modulated recording locations colored by DE rate change inside minus outside of ripple epoch (grey: $p > 0.05$, two-tailed Poisson rate test). Significantly modulated recording locations show a suppression of DE rate during SWRs. **b.** Top: Mean z-scored LFP power in ripple band. Bottom: Peri-SWR spike time histogram (all regions, $N = 8$ cells). **c.** SWR-associated changes in fluorescence show hyperpolarization of membrane potential (top) and reduction in DE rate across the soma and dendritic arbor (bottom); average of ($N = 8$ cells) with 95% CI. Note trough of membrane potential hyperpolarization is visibly delayed with respect to SWR LFP peak power (dashed vertical lines) in most cellular compartments. Due to high background levels of internal membrane-bound ASAP3 in the somatic compartment, absolute fluorescence changes recorded from the soma are smaller compared to dendrites. **d.** SWR-associated hyperpolarization from **c.** (top). Mean amplitudes ($-\Delta F/F$) at peak of ripple power (pink), vs minimum in expanded SWR window (ripple peak ± 100 ms; light green). Two-way ANOVA for membrane potential: $p = 5 \times 10^{-5}$, main effect of region; $p = 2 \times 10^{-13}$, main effect of SWR modulation; $F(4, 69) = 5.55$, $p = 6 \times 10^{-4}$ interaction of SWR \times region. Maximal voltage hyperpolarization lags ripple power ($p = 0.008$ for all regions, Wilcoxon paired test). **e.** Mean time of maximal membrane potential hyperpolarization of **d.** with regard to SWR LFP peak power. **f.** SWR-associated DE rate suppression from **c.** (bottom). ($p = 0.008$ in all, Wilcoxon paired test). Two-way ANOVA for DE rate: $p = 9 \times 10^{-6}$, main effect of region; $p = 7 \times 10^{-12}$, main effect of SWR modulation; $F(4, 69) = 0.72$, $p = 0.58$ interaction of SWR \times region. **g.** Average DE waveforms are significantly decreased in the basal domain inside SWRs (green) compared to outside SWRs (grey). Waveforms with 95% CI were filtered with a 5-point moving average. **h.** DE peak amplitudes are slightly decreased in the basal domain inside SWRs ($p = 0.006$) but not significantly modulated in soma or apical domains (oblique: $p = 0.42$, soma: $p = 1.0$, trunk: $p = 0.44$, tuft: $p = 0.63$, all Wilcoxon paired test). Two-way ANOVA for DE amplitude: $p = 1 \times 10^{-23}$, main effect of region; $p = 0.0007$, main effect of SWR modulation; $F(4, 69) = 3.34$, $p = 0.01$ interaction of SWR \times region. **i.** Full-width at half-max (FWHM) of regional average DE waveforms (as in **g.**) shows significantly narrower peaks in the oblique domain ($p < 0.0004$, Wilcoxon paired test). Other regions were not significantly modulated ($p = 1.0$ for basal, soma, tuft, $p = 0.57$ for trunk). Two-way ANOVA for DE FWHM: $p = 0.02$, main effect of region; $p = 0.058$, main effect of SWR modulation; $F(4, 158) = 1.25$, $p = 0.29$ interaction of SWR \times region. Unless otherwise specified, all box-and-whisker plots show segment-level Q1, Q2, Q3, and range excluding outliers; points represent individual cells; using Bonferroni correction $\alpha = 0.01$ for *post hoc* tests performed on the per-region level, $\alpha = 0.05$ for all other tests.

Figure 5. Spatial tuning in non-place pyramidal cell dendrites. **a.** Example phylogram of reconstructed cell (AN061420-1), with recording locations colored by tuning curve centroid. **b.** Example tuning curve distance (TCD, i.e. Wasserstein distance) matrix. Many segments exhibit high distance from soma. Top: Schematic of TCD calculation. TCD is normalized such that $d = 1$ corresponds to point masses on opposite sides of the belt. **c.** Left: Proportion of tuned dendrites by cell, where tuning is defined as having a p-value below the 5th percentile of a random shuffle. Right: Cotuning of tuned dendrites with their respective soma. Black: $N = 89$ tuned dendrites from 4 cells; grey: TC distance 95th percentile from shuffle performed on each dendrite. Basal: $p = 2 \times 10^{-5}$, oblique: $p = 8 \times 10^{-9}$, trunk: $p = 0.008$, tuft: $p = 0.02$, Mann-Whitney U test. **d.** Dendrites operate as compartments on the single-branch level. Left: Pairs of segments recorded on the same branch are significantly more co-tuned than pairs on different branches ($p = 0.0009$, Mann-Whitney U test). **e.** Arbitrary somatic tuning curves can be realized as sparse nonnegative combinations of tuned dendrites in non-place cells. Top left: Example tuning curve and approximation as weighted sum of dendrites. Top right: Mean realizability (Spearman's ρ) of tuning curves in (bottom) using somatic tuning curve alone, somatic tuning curve with local shifts, and random tuning curves (true vs soma-only: $p=0.018$, true vs soma/shifted: $p=0.007$, true vs random: $p=0.006$, paired t-test). Bottom: Realizability of theoretical Gaussian tuning curves parameterized by location and width as nonnegative least-squares fit from tuned dendrites.

Figure 6. Spatial tuning in pyramidal cells dendrites following place field induction. **a.** Experimental setup. ASAP3, mRuby3 and bReaChes plasmids were single-cell electroporated in CA1 pyramidal cells. Place fields were optogenetically induced with 1s-long LED photostimulation of bReaChes at randomly chosen, fixed location on the treadmill belt for five consecutive laps. **b.** Example tuning maps of dendrites from a non-induced (non-place) and an induced (place) cell, sorted by tuning curve maximum. **c.** Mean normalized DE tuning vectors from an example non-induced (non-place) and an induced ('place') cell. Each arrow represents a single dendrite. **d.** Tuning diversity across the dendritic arbor (σ_{arbor}) in induced (N=15) and non-induced (N=7) cells. Top: The dendritic arbor of induced cells exhibit significantly less tuning diversity σ_{arbor} , defined as the circular standard deviation of tuning peaks in the arbor, compared to the dendrites of induced cells (Mann-Whitney U-test, $p = 8 \times 10^{-5}$). Bottom: Relationship between arbor tuning diversity and strength of somatic tuning. The arbors of induced cells exhibit low diversity at all somatic tuning strengths, while a significant inverse relationship exists between tuning diversity and soma tuning strength in non-induced cells ($r^2 = 0.74, p = 0.006$). **e.** Relationship between tuning parameters (tuning peak, tuning strength) at the level of individual soma-dendrite pairs in non-induced (N=7) and induced (N=15) cells. Top row: Dendrite peak locations are tightly coupled to their corresponding soma peak location ($r^2 = 0.95$ for the line $y = x$, black dashed line; $N = 123$ dendrites from 15 non-induced cells) in induced cells but much less coherent ($r^2 = -0.63, N = 217$ dendrites from 7 cells) in non-induced cells. Bottom row: More strongly tuned somas tend to have dendrites with more spatially coherent firing in both non-induced ($r^2 = -0.22$) and induced ($r^2 = 0.44$) cells, with a higher magnitude correlation for induced compared to non-induced cells.

Acknowledgments

297

We thank Dr. Jeffrey Magee for providing *in vivo* intracellular electrophysiological recordings, 298

and Dr. Stephen S. Siegelbaum for providing *in vitro* intracellular electrophysiological recordings. 299

We thank Drs. Liam Paninski, Kaspar Podgorski, Jeffrey Magee, and Steven Siegelbaum for 300

their invaluable comments on the manuscript. Z.L. is supported by NIH grants F31NS120783 301

and T32GM007367. M.Z.L. is supported by NIH grants U01NS103464 and RF1MH114105; 302

Post-9/11 GI Bill, and NIH grant 5T32MH020016 (S.W.E.). A.L. is supported by NIH grants 303

1R01MH124047, 1R01MH124867; 1U19NS104590, 1U01NS115530, and 1R01NS121106, and 304

the Kavli Foundation. 305

Author Contributions

306

A.L., A.N. conceived the study and wrote the manuscript; Z.L. analyzed data, wrote the manuscript; 307

A.N. analyzed data, designed and constructed custom two-photon laser-scanning microscope with 308

help from D.H.; A.N. developed and applied single-cell electroporation; A.N. performed surgeries 309

together with D.M.L.; A.N. performed experiments, preprocessed and validated data, developed 310

ASAP3 Markov model based on data contributed by G.Z. and M.Z.L; K.C.G. performed surgeries, 311

performed experiments and preprocessed data; C.M.Y. reconstructed neuronal morphologies and 312

contributed with illustrations; D.M.L., N.E.M. performed image analysis, segmentation, morpho- 313

logical registration, behavior training together with A.N.; M.C., S.W.E., J.Y., C.M., and M.Z.L. 314

provided ASAP3 GEVI and advice. 315

Declaration of Interests

316

The authors declare no competing interests.

317

Lead Contact and Materials Availability

318

Further information and requests for resources and reagents should be directed to the corresponding 319
authors. All unique resources generated in this study are available from the Lead Contact with a 320
completed Materials Transfer Agreement. 321

Methods

322

Mice All experiments were conducted in accordance with National Institute of Health guidelines 323
and with the approval of the Columbia University Institutional Animal Care and Use Committee. 324
C57Bl/6J non-transgenic mice were used for all experiments. Mice were kept in the vivarium on a 325
reversed 12-h light–dark cycle and were housed with 3–5 mice per cage (temperature, 22–23 °C; 326
humidity, 40%). 327

Cannula implants Imaging and single-cell electroporation cannulas, having a trapezoidal shape 328
when viewed from the side (height 1.9 mm, top length 6.6 mm, base length 3.1 mm, width 3.0 mm), 329
were 3D printed using 316L stainless steel (InterPRO Additive Manufacturing Group, US). Glass 330
windows of 3.0 mm diameter and 0.13–0.16 mm thickness containing a rectangular opening of 0.2 331
mm by 0.35 mm offset 0.3 mm from the window center were laser cut (Potomac Photonics, US) and 332
attached to the metal cannulas using a UV-curable adhesive (Norland optical adhesive 81, Thorlabs, 333
US). Finally, a 0.02 mm thick silicone membrane covering the rectangular opening was glued to the 334
glass bottom using a thin layer of UV-curable silicone adhesive (5091 Nuva-SIL, Loctite, US). This 335
allowed glass microelectrodes to easily pierce through the membrane, repeatedly, while the brain 336
remained insulated from the environment. Cannulas were sterilized prior to implantation. 337

Surgery Male and female C57BL/6J mice of 2–2.5 months of age were anesthetized with isoflu- 338
rane and placed in a heated stereotactic mount where anesthesia was maintained during the surgical 339
procedure. Eyes were lubricated (Puralube ophthalmic ointment, Dechra, US) and the scalp was 340
thoroughly disinfected by three alternating wipes between 70% ethanol and povidone iodine so- 341
lution. Meloxicam and bupivacaine were administered subcutaneously to minimize discomfort. 342
The scalp was removed and the exposed skull was cleaned with 70% ethanol and dried with an air 343
duster jet. The skin surrounding the surgery site was reattached to the skull using a tissue adhesive 344
(Vetbond, 3M, US), while the skull surface was treated with a UV-curable adhesive (Optibond, Kerr, 345
US) to improve dental cement adhesion. 346

For measurement of local field potential (LFP), a reference screw with a soldered lead was inserted to 347
make contact with the contralateral-to-imaging cerebellar lobe, while a ground screw was similarly 348
inserted in the ipsilateral-to-imaging cerebellar lobe. The insertion sites were dried and both screws 349
were subsequently secured with dental cement. A small craniotomy matching the shape of the 350
implantation cannula was made to center the imaging window at -2.3 mm AP, 1.6 mm ML. After 351
removing the bone and dura, cortical aspiration was performed while irrigating the site with ice-cold 352
cortex buffer to carefully expose medio-lateral axonal (ML) fibers overlying the hippocampus. 353
These fibers could be visually separated into thicker and thinner types, the latter lying right above 354
the anterior-posterior (AP) fibers. Thicker ML fibers were removed without disturbing AP fibers 355
and the cannula was inserted and pushed down 1.6 mm, flush with the exposed tissue. The surgical 356
site was dried and the cannula was initially glued to the bone using a tissue adhesive (Vetbond, 357
3M, US). Hippocampal LFP was measured by inserting a 0.004" outer \varnothing PFA-coated tungsten 358
wire (#795500, A-M Systems, US) 1.1 mm deep from dura at same coordinates as the center of the 359

imaging window in the contralateral-to-imaging hemisphere. In a subset of implants, the recording 360
location of the tungsten wire was determined to be within the pyramidal layer from the shape of 361
spontaneous ripples occurring at rest in the awake mouse. The cannula and LFP wire were fixed 362
firmly with dental cement, which covered the skull and a headbar used for head-fixation during 363
electroporation and imaging was attached. Ground, reference and LFP signal leads were attached to 364
a connector strip socket (851-43-050-10-001000, Mill-Max manufacturing Corp., US) similarly 365
fixed with dental cement. Finally, saline and buprenorphine were administered subcutaneously to 366
minimize post-operative discomfort and the well-being of mice was monitored every 12 hours for 367
three days. Mice were left to recover for 7 days prior to the start of treadmill habituation and the 368
implant was left to stabilize for 3 weeks before electroporation and imaging. 369

Single-cell electroporation Endotoxin-free plasmids were purified using silica columns (Nu- 370
cleoBond Xtra Midi EF, Macherey-Nagel/Takara Bio, US). Plasmids expressing red fluorescent 371
protein mRuby3⁴¹ at 25–100 ng/µL under CAG promoter in combination with ASAP3²⁸ voltage 372
sensor at 30–100 ng/µL under either CAG, EF1a or hSyn1 promoters, were electroporated in single 373
dorsal hippocampal CA1-area pyramidal neurons under two-photon microscopy guidance using 374
mice of <4 months of age at the time of electroporation. 375

Long-taper pipettes were pulled from borosilicate glass (G200-3, Warner Instruments, MA, 2.0 376
mm OD, 1.16 mm ID) using a horizontal puller (DMZ puller, Zeitz Instrumente Vertriebs GmbH, 377
Germany) to yield a series resistance of 4–6 MΩ when dipped in 0.1 M PBS and filled with the 378
following plasmid carrier saline solution (in mM): 155 K-gluconate, 10 KCl, 10 HEPES, 4 KOH, 379
0.166 Alexa488-hydrazide, having pH 7.3 at 25 degrees Celsius. 380

For the electroporation procedure, mice were placed in a heated, head-bar fixation equipped 381
Zeiss stereo-microscope, and were anesthetized for \approx 45 min by subcutaneous injection of a 382
Ketamine-Xylazine mixture. The dental-cement head-cap implant, cannula, imaging window and 383
the silicone-membrane covered opening were thoroughly cleaned with sterile 0.1 M PBS and 384
debris was removed from the opening surface using the sharp tip of an injection needle (without 385
piercing the membrane). A custom-designed electroporator relay unit was used to flexibly switch 386
between a patch-clamp amplifier (BVC-700A, Dagan Corporation, MN, US) head-stage used to 387
monitor pipette resistance and a digitally-gated stimulus isolator (ISO-Flex, A.M.P.I, Israel) used 388
to deliver electroporating voltage pulses. Both the patch-clamp amplifier and the stimulus isolator 389
were controlled by a digitizer (Digidata 1550B, Molecular Devices, CA, US). Pipettes containing 390
plasmid and saline solution mix were mounted on a micromanipulator (PatchStar, Scientifica, UK) 391
and advanced at an angle of 32 degrees through the silicone membrane under two-photon laser 392
scanning microscopy guidance using 920 nm excitation, with 80–120 mBar positive pressure until 393
the membrane was pierced. If pipettes pierced the membrane without becoming clogged, they were 394
advanced several 10's of micrometers into the tissue and the pressure was reduced promptly to 20–30 395
mBar to avoid spilling dye under the imaging window. More frequently, pipettes were clogged on 396
the first piercing attempt and this was usually remedied by retracting the pipette and returning it 397
into the saline-filled bath and applying large positive pressure alone or in combination with large 398
voltage pulses -90 V, 100 Hz, 0.5 ms pulse ON for 1 second. After unclogging, pipettes were pushed 399
back through the silicone membrane along the same piercing tract, and the unclogging procedure 400
was repeated usually less than three times, as needed. After each piercing, the silicone membrane 401
resealed and in this manner could be pierced repeatedly without losing its integrity or sterile 402
insulation within our experimental conditions. After successfully piercing the silicone membrane, 403

404 pipettes were gradually advanced toward the dorsal hippocampal CA1-area pyramidal layer, at about 120–150 μm beneath the imaging window, maintaining 20–30 mBar positive pressure. Upon 405 approaching a cell body and pipette series resistance increasing 1–2 $\text{M}\Omega$, pressure was decreased 406 to 6–8 mBar and a series of -4 to -5V, 100 Hz, 0.5 ms electroporating pulses were delivered for 407 1 second after which the pipette was kept on the cell body for an additional 4–5 seconds before 408 slowly retracting. Successful electroporation was accompanied by dye filling the cell body and 409 dendrites, with 4/5 cells remaining intact 10–15 minutes post SCE. Out of these intact cells, a 410 further \approx 4/5 cells expressed both plasmids 15–24h post SCE, with remaining cells usually being 411 intact and containing residual Alexa 488. Expression of mRuby3 could be seen as early as 15h post 412 SCE, while ASAP3 expression was evident after 24h, when Alexa488 cleared from the cell. On rare 413 occasions only one of the plasmids was expressed. While expression levels could be varied by the 414 choice of promoter, cell filling time, plasmid concentration and expression time, the probabilistic 415 nature of expression introduced variability that was offset by either advancing or delaying the 416 imaging session up to 12h. Per electroporation session, 1–2 cells were prepared in this manner, 417 spaced 100–150 μm apart to allow for unequivocal morphological reconstruction of their dendritic 418 trees. 419

Functional imaging Head-fixed mice were habituated to run freely on a cued treadmill. Cells 420 were imaged within 36–60h post SCE, with plasmid-expressing cells remaining healthy for \approx 72h 421 post SCE as judged by their morphology and presence of depolarizing fluorescence transients. 422 Two-photon laser scanning microscopy was done with a custom built 8 KHz resonant galvanometer- 423 based microscope using: a 4.0 mm $1/\text{e}^2$ \varnothing Gaussian beam aperture 3-galvo scanner unit (RMR 424 Scanner, Vidriotech, US), 50.0 mm FL scan lens (SL502P2, Thorlabs, US) 200.0 mm effective FL 425

tube lens (2x AC508-400-C Thorlabs, US, mounted in a Plössl configuration, custom large aperture 426
fluorescence collection optics (primary dichroic: 45.0 x 65.0 x 3.0 mm T865lpxrxt Chroma, US; 427
secondary dichroic: 52.0 x 72.0 x 3.0 mm FF560-FDi02-t3 Semrock, US; green emission filter: 428
50.8 mm \varnothing FF01-520/70 Semrock, US; red emission filter: 50.8 mm \varnothing FF01-650/150 Semrock, 429
US; GaAsP PMTs for green and red channels, PMT2101 Thorlabs, US) matched to a 0.8 NA, 3 mm 430
W.D., water-immersion Nikon 16x objective, commercial software (ScanImage, Vidriotech, US) and 431
electronics (PXIe-1073 5-slot PXIe chassis, PXIe-7961R FlexRIO FPGA module, 5732 2-channel 432
80 MS/s FlexRIO DAQ, PXIe-6341 X Series DAQ, National Instruments, US). To reduce out-of- 433
focus movement, the point spread function was axially elongated by under-filling the objective to 434
0.4 effective N.A. Two-photon excitation of ASAP3/mRuby3 pair was done at 960 nm (to excite 435
mRuby3 better) using a tunable ultrafast pulsed laser source (Chameleon Ultra II, Coherent, US), 436
modulated by a Pockels cell synced to the resonant scanning system (350-80LA modulator, 320RM 437
driver, Conoptics, US). Transform-limited pulses were obtained at the sample using a custom SF11 438
glass prism-based pulse compressor. 439

Fluorescence scans lasting 45 seconds were acquired at \approx 440 Hz (50–60x optical zoom, 32 440
lines/frame, 32–64 pixels/line) from preselected locations on the cell body and dendritic tree (basal, 441
apical trunk, oblique, tuft) at various laser powers to obtain a more reproducible laser power delivery 442
that is less dependent on the imaging depth, which bleached ASAP3 fluorescence 0.3 to 0.5 of its 443
initial value. Under these conditions no signs of photodamage were observed (e.g. beading/swelling 444
of dendrites), cells remained healthy throughout the recordings and morphology could be recovered. 445

Single-cell optogenetic place field induction Optogenetic place field inductions were performed 446 as previously described^{24;61}. DNA plasmid constructs (pCAGGS-ASAP3b, pCAGGS-mRuby3, 447 pCAGGS-bReaChes) were diluted to 50ng/μL and electroporated into single dorsal hippocampal 448 CA1-area pyramidal neurons. Successfully electroporated cells were imaged 48-72h post elec- 449 troporation. Cells were stimulated for 1 second at a randomly chosen location for five laps with 450 an ultrafast and high-power (30-40mW measured after the objective) collimated LED at 630 nm 451 (Prizmatix, 630 nm). LED stimulation light pulses were delivered using custom-built electronics, 452 which were synchronized with the blanking signal of the imaging beam Pockels cell, allowing 453 pulsed LED stimulation during the flyback periods of the Y-galvanometer between each imaging 454 frame. Following this wide-field optical stimulation protocol, the remainder of the imaging session 455 was used to acquire postinduction somatic and dendritic data. 456

Morphological reconstruction Morphology acquisition was done using 1030 nm two-photon 457 excitation of mRuby3, overfilling the Nikon 16x objective for 0.8 effective NA. Multiple image 458 stacks tiling a cell were acquired at 1.0 μm axial and 0.4 μm transverse pixel resolution under 459 isoflurane anesthesia. Neuronal morphologies were reconstructed from fluorescence stacks using 460 Neurolucida (MBF Bioscience, US). Neurite thickness was set to full width half maximum (FWHM) 461 of a fluorescent segment cross-section. Morphological path-distance measurements e.g. between 462 imaged ROIs and the somatic compartment were done using NEURON's¹¹¹ inbuilt functionality 463 using custom Python scripts. 464

Phylogram rendering We introduce the phylogenetic dendrogram, or “phylogram”, as a system- 465 atic visualization tool for dendritic morphology. This visualization is motivated both aesthetically 466

and algorithmically by the tree of life visualization used in phylogenetics.

467

In brief, a tree data structure is constructed with the soma at the root (“last common ancestor” 468
in phylogenetic terms). Intermediate nodes are added corresponding to branching points, with 469
radial edge lengths proportional to physical distances along the dendrite and thickness optionally 470
proportional to dendritic diameter. Leaf nodes correspond to dendritic tips. Finally, colored points 471
are added on the phylogram corresponding to recorded locations. The tree is then laid out in polar 472
coordinates. 473

The phylogram provides a schematic, programmatically generated way of visualizing dendritic 474
morphology in 2D. Unlike a 2D projection view, the phylogram avoids ambiguities from self- 475
intersections and faithfully represents distances. In addition to representing dendritic topology, 476
distances can be measured directly as the radial distance from the soma to a recording location; 477
angular distance is simply used to separate distinct branches. 478

Code for phylogram rendering was written using the BioPython, Matplotlib, and PlotLy packages. 479

Fluorescence signal processing and event detection Frame scans were in-plane motion corrected 480
and fluorescence from segmented regions of interest (ROIs) was extracted using a modified version 481
of SIMA package¹¹². Rather than using an arbitrary scaled fluorescence signal, the modification 482
allowed for converting fluorescence signals to a Poisson shot-noise equivalent number of detected 483
photons. Since the speed of resonant galvanometers is not uniform, to maintain a faithful geometric 484
representation of the sample, pixels across the scanfield are sampled unevenly in terms of the number 485
of digitizer samples that are summed together. With the number of digitizer samples per pixel across 486

the scanfield provided by ScanImage, an average fluorescence signal per digitizer sample (every 487
12.5 ns) per ROI patch was calculated. This value was converted to photon counts using previously 488
calibrated shot-noise equivalent counts that were measured in Alexa-488 fluorescent-dye containing 489
solution at varying laser powers and fluorescence signal levels. Since mRuby3 red-fluorescent 490
protein has a small but not negligible bleedthrough in the green channel, this contribution to the 491
green channel signal was linearly unmixed and subtracted based on a previously calibrated mRuby3 492
only labelled cell under same imaging conditions. To correct for bleaching, instead of fitting 493
multi-exponential curves to ASAP3 and mRuby3 fluorescence traces, we opted for a more robust 494
approach. Fluorescence traces were corrected by fitting and normalizing to a natural cubic spline 495
curve having 10 knots that were geometrically spaced over 45s of recording (knots closer to each 496
other at the start of the recording). 497

The modifications applied to SIMA also allowed for a frame-by-frame extraction of X- and Y-axis 498
pixel displacement, which together with a low-pass filtered version of mRuby3 control signal 499
(natural cubic spline with 20 ms knot intervals), were used to perform a 4th order polynomial feature 500
multivariate regression (Scikit learn Python package¹¹³) and subtraction of ASAP3 movement- 501
induced artifacts. If movement artifacts were too large, here defined as a decrease in mRuby3 502
fluorescence to less than 50% of its bleaching normalized baseline with a z-score more negative 503
than -3, ASAP3 and mRuby3 fluorescence signals were blanked and excluded from analysis. 504

Depolarizing events (DEs) were detected using a thresholded match-filtered approach that was 505
applied to the motion stabilized and high-pass filtered ASAP3 signal (butterworth, 4th order 506
zero-phase, 0.2 Hz cutoff). The matched-filter template was constructed by averaging 440 Hz 507
downsampled ASAP3 fluorescence responses obtained from the 4-state Markov model (see Methods: 508

ASAP3 Markov model) in response to *in vivo* whole-cell soma recorded single action potential 509
waveforms in mouse hippocampal CA1-area pyramidal neurons. DE match-filtered signal threshold 510
for each recording was chosen by generating a Poisson shot-noise equivalent fluorescence signal and 511
calculating a level that yielded a false positive rate in simulation of 0.01 Hz. To avoid subthreshold 512
changes in the membrane potential being registered as DEs, for the match-filtered signal, a minimum 513
5% fluorescence-change threshold corresponding to sodium current inflection point of APs was 514
set for dendritic recordings, while for somatic recordings, due to larger fluorescence background, 515
this was adjusted for each cell and ranged 1%–5%. To improve DE estimation, the thresholded 516
match-filtered signal was subjected to a peak detection algorithm that pruned DE events within 517
a 40 ms window to keep a single largest event. This parameter was chosen as the shortest value 518
balancing the competing objectives of temporal resolution (shorter windows better) and reliability 519
(longer windows better), and cross-validated across different sizes, with good agreement apart from 520
very short (sub-10 sample) window sizes (Fig S5). DEs were considered to be isolated if 45 ms 521
before or after the event there were no other events. 522

ASAP3 response characterization A comprehensive characterization of the biophysical and 523
electrophysiological properties of ASAP3 *in vitro* and *in vivo* is reported in²⁸. We use HEK293 cells 524
for calibration of the voltage-fluorescence response: given a ground-truth voltage waveform, we 525
sought to measure the corresponding fluorescence signal and use it to both construct a fluorescence 526
template for AP-like events as well as to calibrate a voltage-fluorescence response model. ASAP3 527
construct was cloned in pcDNA3.1/Puro-CAG plasmid backbone and used to transfect HEK293 528
cells with Lipofectamine 3000 (ThermoFisher, US) using 400 ng DNA, 0.8 μ L P3000 reagent 529
and 0.8 μ L Lipofectamine. Cells were patch-clamped at 22–23 °C and at 37 °C after 24h from 530

transfection using a Multiclamp 700B amplifier (Molecular Devices, US) and either voltage stepped 531
for 1s starting from a holding potential of -70 mV to voltages between -200 and +120 mV and back 532
or voltage-clamped using *in vivo* somatic measured mouse hippocampal CA1-area pyramidal neuron 533
action-potential burst waveforms. Simultaneous with voltage stepping, ASAP3 fluorescence was 534
excited using UHP-Mic-LED-460 LED (Prizmatix, US) through a 484/15-nm excitation filter and 535
cells were imaged using a fast iXon 860 EMCCD camera (Oxford Instruments, US) at a frame rate 536
of 2.5 KHz. Steady state ASAP3 fluorescence responses were described well by sigmoidal functions 537
(Table S1), while dynamic step responses could be fit well to single and double exponential kinetics 538
(Table S2). 539

The use of voltage clamp with a ground-truth AP waveform reduces dependence on the electro- 540
physiological properties of the cell used for calibration; the fluorescence response in culture will be 541
comparable to the fluorescence response *in vivo* assuming only that the dynamics of the sensor are 542
comparable and that the sensor is expressed similarly in both preparations. 543

ASAP3 Markov model A minimal 4-state linear chain Markov gating model formalism was used 544
that was similar to previous descriptions of ion-channel gating¹¹⁴, except that in the case of ASAP3, 545
instead of modelling current conduction, the ensemble fluorescence brightness was modelled. To 546
describe voltage-dependent transition rates between any two states, a linear thermodynamic model 547
was used: 548

$$r(V) = r_0 e^{-(a+bV)/(RT)} \quad (1)$$

where r_0 , a and b are transition-dependent constants, V is the membrane potential, R is the universal gas constant and T is temperature. The 4-state linear-chain voltage-dependent Markov model transition matrix was then: 549 550 551

$$Q(V) = \begin{pmatrix} -\alpha_{12}(V) & \alpha_{12}(V) & 0 & 0 \\ \beta_{21}(V) & -\alpha_{23}(V) - \beta_{21}(V) & \alpha_{23}(V) & 0 \\ 0 & \beta_{32}(V) & -\alpha_{34}(V) - \beta_{32}(V) & \alpha_{34}(V) \\ 0 & 0 & \beta_{43}(V) & -\beta_{43}(V) \end{pmatrix} \quad (2)$$

where $\alpha_{ij}(V)$ and $\beta_{ij}(V)$ are voltage-dependent transition rates from state i to j and back respectively. The temporal evolution of the state probability vector $\bar{\pi}$ is given by: 552 553

$$\frac{d\bar{\pi}}{dt} = \bar{\pi}Q(V) \quad (3)$$

which can be numerically calculated at each time-step Δt : 554

$$\bar{\pi}(t + \Delta t) = e^{\bar{\pi}(t)Q(V)} \quad (4)$$

To obtain the steady state probability vector $\bar{\pi}_\infty$, the following equations were solved algebraically: 555

$$\bar{\pi}Q(V) = 0, \sum_i \pi_i = 1 \quad (5)$$

Time-dependent ensemble fluorescence for state brightness vector $\bar{\lambda}$ was calculated as:

556

$$F(t) = \bar{\pi}(t) \cdot \bar{\lambda} \quad (6)$$

The 4-state linear-chain Markov model parameters were fit to the steady state and voltage step 557 responses of ASAP3 in voltage-clamped HEK293 cells at 22–23 °C and 37 °C (Tables S1, S2) using 558 boundary constrained limited-memory BFGS algorithm (L-BFGS-B) implemented by the Python 559 SciPy optimization package. 560

Simulation of domain-specific average DE waveforms To obtain average domain-specific DE 561 waveforms as shown in (Fig 1e), in response to somatically recorded APs *in vivo*, single APs were 562 isolated from adult mouse dorsal hippocampal CA1PCs whole-cell current-clamp recordings that 563 were kindly provided by Dr. Jeffrey C. Magee (Baylor CM, TX) from ref. 60 (baseline=-58.2±0.6 564 mV, amplitude=93.1±1.0 mV, FWHM=1.2±0.0 ms, mean±SEM). AP waveforms sampled at 565 20 KHz were converted to fluorescence responses using the above ASAP3 Markov model and 566 downsampled to 440 Hz to match the imaging frame rate. Poisson shot-noise limited fluorescence 567 waveforms corresponding to single isolated APs were generated by randomly picking DE fluores- 568 cence baseline photon counts from the distribution of measured DE baselines corresponding to 569 each domain and applying a minimum 100 cts/sample threshold. Matched-filter event detection and 570 averaging was done similar to the measured fluorescence waveforms. 571

Local field potential (LFP) measurement and preprocessing Hippocampal LFP was measured 572 by inserting a shielded 18-pin electrode adapter board for headstages (C3418, Intan Technologies, 573

US) in the surgically-fixed connector strip carrying LFP signal, ground and reference. To this 574 adapter board, an RHD2132 16-channel amplifier with ground and reference pins disconnected 575 from each other (C3334, Intan Technologies) was attached. LFP measurement was done using an 576 RHD2000 interface board (C3100, Intan Technologies, US) that simultaneously recorded laser- 577 scanning frame trigger and treadmill synchronization signals at a sampling rate of 10 KHz. LFP 578 and treadmill position signals were resampled offline to about 440 Hz (and in a few cases 220 Hz) 579 in sync with the acquired frames. 580

Behavioral state classification Behavior of mice was defined by their locomotion activity on a 581 treadmill with tactile cues. The 2-m long cue-rich fabric belt was constructed by stitching together 582 3 fabrics and then adhering local tactile cues (e.g., velcro, glue gun spikes, silver glitter masking 583 tape, green pom poms). If movement velocity dropped below a threshold of 2 mm/s for at least 1 584 second, mice were considered at rest. Walking/running epochs were defined to have a sustained 585 velocity above 10 mm/s for at least 1 second. 586

DE rate estimation DE rate is estimated by counting the total number of events in a behavior 587 state (running or nonrunning) and dividing by the duration in that state. For the purposes of rate 588 estimation, all scans from a single segment are concatenated and only epochs of at least 1 second in 589 duration are included. 590

Analysis of theta-band dendritic fluorescence oscillations Theta-band LFP phase was deter- 591 mined by first applying a zero-phase 20th total order 5–10 Hz Butterworth filter, assigning a phase 592 of 0 deg to oscillation troughs and interpolating the phase between adjacent troughs using a linear 593 function. Fluorescence recordings were split according to the animal's behavior state to be either 594

still or walking/running. To avoid bias from soma-modulated back-propagating action potentials, 595
fluorescence samples from matched-filter detected depolarizing events were excluded within a 20 596
ms window centered on each event. 597

This process allows us to assign a theta phase to each recording sample during locomotion based on 598
the theta-band LFP oscillation. The amplitude A and phase ϕ of the membrane potential oscillation 599
relative to the extracellular oscillation were estimated using the discrete Fourier transform (DFT) 600
estimator of sinusoidal parameters under additive white Gaussian noise (AWGN)^{115;116} 601

$$\begin{aligned}\hat{A} \exp\{j\hat{\phi}\} &= \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp\{-j\omega_0 n\} \\ &= \frac{1}{N} \text{DTFT}(x)\end{aligned}\tag{7}$$

The variance of the amplitude and phase estimates derived in this way are well-characterized 602

$$\text{Var}[\hat{A}] = \frac{2\sigma^2}{N}\tag{8}$$

$$\text{Var}[\hat{\phi}] = \frac{1}{N \frac{A^2}{2\sigma^2}}\tag{9}$$

where σ^2 is the noise variance, estimated empirically as the residual variance. 604

Segments whose amplitude estimate was significantly greater than 0 (i.e., $\hat{A} > 1.645\sqrt{\text{Var}[\hat{A}]}$) 605
were considered to be significantly phase modulated in V_m . The advantage of this estimator is its 606
ability to detect modulation at any constant phase offset. If a significant modulation is detected, the 607
phase offset (relative to the contralateral theta) is read off from the estimator. As variability in the 608
placement of the contralateral LFP electrode could also introduce a constant phase offset, we report 609

all phases relative to the estimated phase at the somatic/proximal basal compartment. 610

DE phase preference was calculated by first assigning each DE a unit modulus complex number 611
 $\exp\{j\phi\}$, where ϕ is the phase of extracellular theta LFP oscillation at which the event occurred. 612
The mean of these complex numbers was computed for each recording location: the argument 613
corresponds to the estimate of the DE preferred phase, while the modulus (elsewhere called mean 614
resultant length, MRL) corresponds to the degree of preference. We note that this method is 615
equivalent to the DFT method if samples are observed at uniform intervals. Segments for which 616
 $p < 0.05$ under a Rayleigh test of DE phases were considered significantly phase-modulated in 617
DEs. 618

Detection of hippocampal ripples Ripple detection was done by: 1) applying a zero-phase 619
4th total order (2nd order forward and backward) 80–220 Hz Butterworth band-pass filter to 620
LFP measured during behaviorally still periods, 2) squaring the filtered signal to calculate the 621
instantaneous power and smoothing it using a zero-phase 4th total order 25 Hz cutoff low-pass 622
Butterworth filter, 3) scoring the instantaneous power using Tukey’s inter-quartile range (IQR) and 623
thresholding ripple epochs at an IQR level above 10, 4) expanding ripple epochs in both directions 624
until the IQR score decreased below 2, 5) ignoring ripple events shorter than 15 ms and joining 625
ripple events that are less than 15 ms apart. 626

Phase gradient estimation Small variations in electrode placement could introduce random 627
offsets to the extracellular theta phase; to mitigate this, we report all phases relative to the somatic 628
phase, inferred by performing linear regression of the phases of significantly phase-modulated 629
basal dendrites vs path distance for each cell; if the resulting regression is significant, we use the 630

estimated intercept, otherwise, we take the mean phase. The relative phase determined in this way is 631
defined as 0 and all subsequent phase estimates are reported relative to this inferred somatic phase. 632
We show that the phase estimated this way agrees well with the true somatic phase for cells for 633
which both were recorded. 634

We assessed the presence of a phase gradient in the membrane potential oscillation along the basal- 635
tuft axis both parametrically and nonparametrically. Throughout, we use a signed soma path distance 636
convention, i.e. basal ROIs distance is negative. To estimate the phase gradient parametrically, 637
we performed least-squares linear regression of relative phase of significantly phase-modulated 638
dendritic segments vs path distance to soma. To estimate the same gradient nonparametrically, 639
we binned a complete theta cycle into 20 phase bins and performed rank-regression, regressing 640
the rank of each segment's soma path distance vs the phase bin corresponding to that segment's 641
minimum membrane potential. Pearson correlation coefficients and p-values were calculated in 642
both instances. 643

Recording locations in the oblique and trunk domains have two quasi-orthogonal contributions to 644
their soma path distance: the distance from the soma at which obliques branch off the trunk axis 645
(axial distance) and the distance of the recording location to this origination point on the trunk 646
(radial distance). To interrogate the relative contributions of these components to the phase gradient, 647
the phase variable was regressed simultaneously against these two distances using the *statsmodels* 648
Python package `regression.linear_model.OLS` function, employing an ordinary least squares method. 649
Phase gradients within said dendritic domains were deemed to be present if the p-value associated 650
with the regression was below 0.05. 651

Basal-oblique and basal-tuft dendritic domains phase span was measured as the phase difference 652
between basal and oblique or basal and tuft dendritic domains by using either the mean phase of 653
all recording locations within the domain, if the phase-distance regression was not significant, or 654
the phase associated with the furthest recording location from the soma according to the regression 655
model, if the regression model was significant. 656

Phase modulation of DE amplitude. In order to ask the question of whether DE amplitude was 657
modulated by phase in the theta cycle, we performed linear-circular fits to the empirical histograms 658
of amplitudes and phases (as phase is a circular variable). This translates to solving the least-squares 659
problem: 660

$$\arg \min_{\alpha, \beta, \phi} \sum_{i \in E} \left\| A(\theta_i) - \hat{A}(\theta_i; \alpha, \beta, \phi) \right\|_2^2 \quad (10)$$

where E represents the set of events, $A(\theta_i)$ is the empirical amplitude of event i occurring at phase 661
 θ_i , and $\hat{A}(\theta; \alpha, \beta, \phi) = \alpha \sin(\theta + \phi) + \beta$ for amplitude α , phase ϕ and intercept β . Fitting and 662
significance assessment were performed using the `statsmodels` package in Python. 663

Peri-ripple depolarizing event rate Significantly rate-modulated segments (Fig 4a, S11a), were 664
defined as segments which differed significantly in Poisson rate inside and outside SWRs. The 665
following standardized Poisson rate-difference statistic of¹¹⁷ 666

$$z = \frac{\sqrt{\hat{\lambda}_{out}} - \sqrt{\hat{\lambda}_{in}}}{\frac{1}{2} \sqrt{\frac{1}{N_{out}} + \frac{1}{N_{in}}}} \quad (11)$$

was computed, where 667

$$\hat{\lambda}_i := \frac{k_i}{N_i}, i \in (\text{in, out})$$

i.e., the total number of events observed in a condition k_i divided by the total number of samples 668
from that condition N_i . Significance was determined by a two-sided z -test at a significance level of 669
 $\alpha = 0.05$. For subsequent analyses, all segments were used without pre-filtering for segment-level 670
significance. 671

Peri-ripple depolarizing event waveforms and amplitudes Depolarizing event waveforms 672
inside and outside the LFP ripple epoch were calculated as an average of a 5-point moving average 673
 $-\Delta F/F$ in a ± 100 ms window aligned to the DE event time, as determined by the previously 674
described matched filtering approach. Event amplitudes were taken as the $-\Delta F/F$ value at the DE 675
event time. 676

Peri-ripple membrane potential analysis As LFP ripple events are brief, the membrane potential 677
trough may actually be reached outside the ripple itself. The peri-ripple V_m trough was identified 678
on a per-segment level as the minimum membrane potential value in the average segment $-\Delta F/F$ 679
waveform computed in an expanded window of the LFP SWR power peak ± 200 ms. 680

Spatial tuning analysis Spatial tuning analyses were performed on detected depolarizing events. 681
Tuning curves were calculated by binning the track into 100 place bins and computing the average 682
DE rate in locomotion epochs within each bin. 683

Dendritic spatial tuning may be single- or multi-peaked, driven by multiple distinct spatially-tuned 684
inputs converging onto the same stretch of dendrite. We called a segment “spatially tuned” if its 685
DE rate tuning curve differed significantly from shuffle. We took the H statistic of nonuniformity 686
described in⁵⁸ as our base tuning metric, and discarded segments which were not significantly 687

nonuniformly tuned to $p < 0.05$ under this metric. A null distribution on this statistic was 688
constructed by randomly permuting DE times within locomotion epochs 10,000 times for each 689
segment and calculating the H statistic on each permutation, and the 95th percentile of this 690
distribution was chosen as the critical value for determining significance. 691

Circular Wasserstein distance Distance between tuning curves (TCD) was computed using the 692
circular Wasserstein distance, defined as in eq. 10 of ref. 59: 693

$$d := \inf_{\alpha \in \mathbb{R}} \int_{t \in [0,1)} |F - G - \alpha| \quad (12)$$

where F and G are the respective cumulative density functions (normalized to unit norm), and 694
 $t \in [0, 1)$ corresponds to normalized position around the circle. 695

The circular Wasserstein distance (also known as earthmover’s distance or Monge-Kantorovich 696
distance) measures the total “cost” associated with transforming one distribution into another in 697
terms of transporting probability mass. For single-peaked distributions, this corresponds to the usual 698
intuition of moving the “mass” of one peak to another: the further apart the peaks, the higher the 699
cost. Unlike peak-based metrics, the Wasserstein distance is robust to multipeaked distributions. 700

Construction of somatic tuning curve from dendritic tuning curves The place-cell somatic 701
tuning curve is classically modeled as a Gaussian distribution on the circle, parameterized by 702
an angular mean and variance. The tuning curves of spatially-tuned dendrites were taken as the 703
basis set, and we asked whether any somatic tuning curve could be approximated up to scale 704
as a nonnegative linear combination of these basis variables. We generated circular Gaussian 705

tuning curves for a range of μ and σ parameters and computed the mean reconstruction quality as 706
the average Spearman's ρ between the NNLS reconstruction and the idealized tuning curve. We 707
compared several alternative hypotheses: the soma tuning curve only, spatially shifted copies of 708
the soma tuning curve, and the same number of linearly independent random tuning curves as 709
significant dendrites. 710

Tuning resultant vector analysis We used tuning resultant vector analysis following⁴³ to quantify 711
how dendritic event tuning changed with place field induction. Briefly, every DE during locomotion 712
was assigned a complex number corresponding to the position in which it occurred, and the resultant 713
vector was computed as the complex mean of all of these vectors, normalized in magnitude from 714
[0,1]. The argument (direction) of this resultant corresponds to the direction of tuning, while the 715
magnitude corresponds to a continuous measure of the strength of tuning. Tuning variability was 716
defined within a dendrite as the circular standard deviation of the events that occurred within that 717
dendrite. Tuning diversity was defined across the arbor as the circular standard deviation of the 718
resultant tuning *vectors* observed at all dendrites across the arbor. 719

Data and Software Availability

*Source data are provided for each Main and Extended Data Figures. The data analyzed for this 721
study are available at XXX. The codes used for this study are available at XXX. (*upon publication). 722

1. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. *Science* **304**, 1926–9 724
(2004). 725
2. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. 726
Nat Rev Neurosci **2**, 539–50 (2001). 727
3. Fries, P. Rhythms for cognition: Communication through coherence. *Neuron* **88**, 220–35 728
(2015). 729
4. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? *Neuron* **24**, 730
49–65, 111–25 (1999). 731
5. Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal- 732
entorhinal system. *Nat Neurosci* **16**, 130–8 (2013). 733
6. Colgin, L. L. Rhythms of the hippocampal network. *Nat Rev Neurosci* **17**, 239–49 (2016). 734
7. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. *Nat Rev 735
Neurosci* **9**, 206–21 (2008). 736
8. Schmidt-Hieber, C. & Nolan, M. F. Synaptic integrative mechanisms for spatial cognition. 737
Nat Neurosci **20**, 1483–1492 (2017). 738
9. Gonzalez, K. C., Losonczy, A. & Negrean, A. Dendritic excitability and synaptic plasticity in 739
vitro and in vivo. *Neuroscience* (2022). 740

10. London, M. & Häusser, M. Dendritic computation. *Annual Review of Neuroscience* **28**, 741
503–532 (2005). 742
11. Stuart, G. J. & Spruston, N. Dendritic integration: 60 years of progress. *Nat Neurosci* **18**, 743
1713–21 (2015). 744
12. Larkum, M. E., Wu, J., Duverdin, S. A. & Gidon, A. The guide to dendritic spikes of the 745
mammalian cortex in vitro and in vivo. *Neuroscience* **489**, 15–33 (2022). 746
13. Moore, J. J. *et al.* Dynamics of cortical dendritic membrane potential and spikes in freely 747
behaving rats. *Science* **355** (2017). 748
14. Xu, N. L. *et al.* Nonlinear dendritic integration of sensory and motor input during an active 749
sensing task. *Nature* **492**, 247–51 (2012). 750
15. Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. Dendritic spikes enhance stimulus 751
selectivity in cortical neurons in vivo. *Nature* **503**, 115–20 (2013). 752
16. Grienberger, C., Chen, X. & Konnerth, A. Nmda receptor-dependent multidendrite ca(2+) 753
spikes required for hippocampal burst firing in vivo. *Neuron* **81**, 1274–81 (2014). 754
17. Sheffield, M. E. & Dombeck, D. A. Calcium transient prevalence across the dendritic arbour 755
predicts place field properties. *Nature* (2014). 756
18. Sheffield, M. E. J., Adoff, M. D. & Dombeck, D. A. Increased prevalence of calcium transients 757
across the dendritic arbor during place field formation. *Neuron* **96**, 490–504 e5 (2017). 758

19. Rolotti, S. V., Blockus, H., Sparks, F. T., Priestley, J. B. & Losonczy, A. Reorganization of ca1 759
dendritic dynamics by hippocampal sharp-wave ripples during learning. *Neuron* **110**, 977–991 760
(2022). 761

20. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites 762
modulate perception. *Science* **354**, 1587–1590 (2016). 763

21. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to 764
cortical neurons in vivo. *Nature* **464**, 1307–1312 (2010). 765

22. Wilson, D. E., Scholl, B. & Fitzpatrick, D. Differential tuning of excitation and inhibition 766
shapes direction selectivity in ferret visual cortex. *Nature* **560**, 97–101 (2018). 767

23. Gasparini, S. & Magee, J. C. State-dependent dendritic computation in hippocampal ca1 768
pyramidal neurons. *Journal of Neuroscience* **26**, 2088–2100 (2006). 769

24. O’Hare, J. K. *et al.* Compartment-specific tuning of dendritic feature selectivity by intracellular 770
ca(2+) release. *Science* **375**, eabm1670 (2022). 771

25. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft 772
dendrites of layer 5 pyramidal neurons: a new unifying principle. *Science* **325**, 756–60 (2009). 773

26. Nevian, T., Larkum, M. E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 774
pyramidal neurons: a direct patch-clamp recording study. *Nat Neurosci* **10**, 206–14 (2007). 775

27. Adam, Y. *et al.* Voltage imaging and optogenetics reveal behaviour-dependent changes in 776
hippocampal dynamics. *Nature* **569**, 413–417 (2019). 777

28. Villette, V. *et al.* Ultrafast two-photon imaging of a high-gain voltage indicator in awake 778
behaving mice. *Cell* **179**, 1590–1608 e23 (2019). 779

29. Knopfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology 780
development to practical tool. *Nat Rev Neurosci* **20**, 719–727 (2019). 781

30. Kim, T. H. & Schnitzer, M. J. Fluorescence imaging of large-scale neural ensemble dynamics. 782
Cell **185**, 9–41 (2022). 783

31. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. preliminary evidence from 784
unit activity in the freely-moving rat. *Brain Research* **34**, 171–175 (1971). 785

32. O’Keefe, J. & Nadel, L. The hippocampus as a cognitive map. *Clarendon, Oxford, UK.* 786
(1978). 787

33. Harris, K. D. *et al.* Spike train dynamics predicts theta-related phase precession in hippocampal 788
pyramidal cells. *Nature* **417**, 738–41 (2002). 789

34. Bittner, K. C. *et al.* Conjunctive input processing drives feature selectivity in hippocampal ca1 790
neurons. *Nature neuroscience* **18**, 1133–1142 (2015). 791

35. Lovett-Barron, M. *et al.* Dendritic inhibition in the hippocampus supports fear learning. 792
Science **343**, 857–863 (2014). 793

36. Buzsaki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 794
planning. *Hippocampus* **25**, 1073–188 (2015). 795

37. Buzsaki, G. Theta oscillations in the hippocampus. *Neuron* **33**, 325–40 (2002). 796

38. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. 797
Science **248**, 73–76 (1990). 798

39. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp 799
recordings and single-cell electroporation of unlabeled neurons in vivo. *Nature methods* **5**, 800
61–67 (2008). 801

40. Geiller, T. *et al.* Local circuit amplification of spatial selectivity in the hippocampus. *Nature* 802
601, 105–109 (2022). 803

41. Bajar, B. T. *et al.* Improving brightness and photostability of green and red fluorescent proteins 804
for live cell imaging and FRET reporting. *Scientific reports* **6**, 1–12 (2016). 805

42. Grosmark, A. D., Sparks, F. T., Davis, M. J. & Losonczy, A. Reactivation predicts the 806
consolidation of unbiased long-term cognitive maps. *Nature Neuroscience* **24**, 1574–1585 807
(2021). 808

43. Danielson, N. B. *et al.* Sublayer-specific coding dynamics during spatial navigation and 809
learning in hippocampal area ca1. *Neuron* **91**, 652–65 (2016). 810

44. Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal 811
ca1 pyramidal neurons. *Neuron* **50**, 291–307 (2006). 812

45. Takahashi, H. & Magee, J. C. Pathway interactions and synaptic plasticity in the dendritic tuft 813
regions of ca1 pyramidal neurons. *Neuron* **62**, 102–111 (2009). 814

46. Bock, T., Negrean, A. & Siegelbaum, S. A. Somatic depolarization enhances hippocampal 815
ca1 dendritic spike propagation and distal input-driven synaptic plasticity. *J Neurosci* **42**, 816
3406–3425 (2022). 817

47. Buzsaki, G. *et al.* Hippocampal network patterns of activity in the mouse. *Neuroscience* **116**, 818
201–11 (2003). 819

48. Liu, X. *et al.* E-cannula reveals anatomical diversity in sharp-wave ripples as a driver for the 820
recruitment of distinct hippocampal assemblies. *Cell Reports* **41** (2022). 821

49. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of 822
hippocampal circuit operations. *Science* **321**, 53–57 (2008). 823

50. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential 824
invasion and calcium influx into hippocampal CA1 dendrites. *Science* **268**, 297–300 (1995). 825

51. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K⁺ channel regulation of signal 826
propagation in dendrites of hippocampal pyramidal neurons. *Nature* **387**, 869–875 (1997). 827

52. Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action 828
potentials in hippocampal ca1 pyramidal neurons. *Neuron* **21**, 1189–1200 (1998). 829

53. Magee, J. C. & Johnston, D. Plasticity of dendritic function. *Current opinion in neurobiology* 830
15, 334–342 (2005). 831

54. Remy, S., Csicsvari, J. & Beck, H. Activity-dependent control of neuronal output by local and 832
global dendritic spike attenuation. *Neuron* **61**, 906–916 (2009). 833

55. Gasparini, S., Migliore, M. & Magee, J. C. On the initiation and propagation of dendritic 834
spikes in ca1 pyramidal neurons. *Journal of Neuroscience* **24**, 11046–11056 (2004). 835

56. Kamondi, A., Acsády, L. & Buzsáki, G. Dendritic spikes are enhanced by cooperative network 836
activity in the intact hippocampus. *Journal of Neuroscience* **18**, 3919–3928 (1998). 837

57. Zaremba, J. D. *et al.* Impaired hippocampal place cell dynamics in a mouse model of the 838
22q11.2 deletion. *Nat Neurosci* **20**, 1612–1623 (2017). 839

58. De Jager, O., Raubenheimer, B. & Swanepoel, J. A powerful test for weak periodic signals 840
with unknown light curve shape in sparse data. *Astronomy and Astrophysics* **221**, 180–190 841
(1989). 842

59. Rabin, J., Delon, J. & Gousseau, Y. Transportation distances on the circle. *Journal of* 843
Mathematical Imaging and Vision **41**, 147–167 (2011). 844

60. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time 845
scale synaptic plasticity underlies ca1 place fields. *Science* **357**, 1033–36 (2017). 846

61. Rolotti, S. V. *et al.* Local feedback inhibition tightly controls rapid formation of hippocampal 847
place fields. *Neuron* **110**, 783–794 (2022). 848

62. Fuhrmann, F. *et al.* Locomotion, theta oscillations, and the speed-correlated firing of hip- 849
pocampal neurons are controlled by a medial septal glutamatergic circuit. *Neuron* **86**, 1253–64 850
(2015). 851

63. Mizuseki, K., Royer, S., Diba, K. & Buzsaki, G. Activity dynamics and behavioral correlates 852
of ca3 and ca1 hippocampal pyramidal neurons. *Hippocampus* **22**, 1659–80 (2012). 853

64. Buzsaki, G., Penttonen, M., Nadasdy, Z. & Bragin, A. Pattern and inhibition-dependent 854
invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. *Proc Natl 855
Acad Sci U S A* **93**, 9921–5 (1996). 856

65. Ylinen, A. *et al.* Intracellular correlates of hippocampal theta rhythm in identified pyramidal 857
cells, granule cells, and basket cells. *Hippocampus* **5**, 78–90 (1995). 858

66. Kamondi, A., Acsady, L., Wang, X. J. & Buzsaki, G. Theta oscillations in somata and 859
dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of 860
action potentials. *Hippocampus* **8**, 244–61 (1998). 861

67. Malezieux, M., Kees, A. L. & Mulle, C. Theta oscillations coincide with sustained hyperpo- 862
larization in ca3 pyramidal cells, underlying decreased firing. *Cell Rep* **32**, 107868 (2020). 863

68. Kay, K. *et al.* A hippocampal network for spatial coding during immobility and sleep. *Nature* 864
531, 185–90 (2016). 865

69. Zutshi, I., Valero, M., Fernandez-Ruiz, A. & Buzsaki, G. Extrinsic control and intrinsic 866
computation in the hippocampal ca1 circuit. *Neuron* (2021). 867

70. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsaki, G. Theta oscillations provide temporal 868
windows for local circuit computation in the entorhinal-hippocampal loop. *Neuron* **64**, 267–80 869
(2009). 870

71. Lubenov, E. V. & Siapas, A. G. Decoupling through synchrony in neuronal circuits with 871 propagation delays. *Neuron* **58**, 118–31 (2008). 872

72. Patel, J., Fujisawa, S., Berenyi, A., Royer, S. & Buzsaki, G. Traveling theta waves along the 873 entire septotemporal axis of the hippocampus. *Neuron* **75**, 410–7 (2012). 874

73. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the eeg 875 theta rhythm. *Hippocampus* **3**, 317–30 (1993). 876

74. Losonczy, A., Zemelman, B. V., Vaziri, A. & Magee, J. C. Network mechanisms of theta 877 related neuronal activity in hippocampal ca1 pyramidal neurons. *Nat Neurosci* **13**, 967–72 878 (2010). 879

75. Burgess, N. & O’Keefe, J. Models of place and grid cell firing and theta rhythmicity. *Curr 880 Opin Neurobiol* **21**, 734–44 (2011). 881

76. Lengyel, M., Szatmary, Z. & Erdi, P. Dynamically detuned oscillations account for the coupled 882 rate and temporal code of place cell firing. *Hippocampus* **13**, 700–14 (2003). 883

77. Huxter, J., Burgess, N. & O’Keefe, J. Independent rate and temporal coding in hippocampal 884 pyramidal cells. *Nature* **425**, 828–32 (2003). 885

78. Navas-Olive, A. *et al.* Multimodal determinants of phase-locked dynamics across deep- 886 superficial hippocampal sublayers during theta oscillations. *Nature communications* **11**, 1–14 887 (2020). 888

79. Gan, J., Weng, S. M., Pernia-Andrade, A. J., Csicsvari, J. & Jonas, P. Phase-locked inhibition, 889

but not excitation, underlies hippocampal ripple oscillations in awake mice *in vivo*. *Neuron* 890
93, 308–314 (2017). 891

80. Hulse, B. K., Moreaux, L. C., Lubenov, E. V. & Siapas, A. G. Membrane potential dynamics 892
of ca1 pyramidal neurons during hippocampal ripples in awake mice. *Neuron* **89**, 800–13 893
(2016). 894

81. Valero, M. *et al.* Determinants of different deep and superficial ca1 pyramidal cell dynamics 895
during sharp-wave ripples. *Nat Neurosci* **18**, 1281–90 (2015). 896

82. Noguchi, A., Huszar, R., Morikawa, S., Buzsaki, G. & Ikegaya, Y. Inhibition allocates spikes 897
during hippocampal ripples. *Nat Commun* **13**, 1280 (2022). 898

83. Maier, N. *et al.* Coherent phasic excitation during hippocampal ripples. *Neuron* **72**, 137–52 899
(2011). 900

84. Terada, S. *et al.* Adaptive stimulus selection for consolidation in the hippocampus. *Nature* 901
601, 240–244 (2022). 902

85. Klausberger, T. Gabaergic interneurons targeting dendrites of pyramidal cells in the ca1 area 903
of the hippocampus. *European Journal of Neuroscience* **30**, 947–957 (2009). 904

86. McKenzie, S. Inhibition shapes the organization of hippocampal representations. *Hippocam- 905
pus* **28**, 659–671 (2018). 906

87. Stark, E. *et al.* Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. 907
Neuron **83**, 467–80 (2014). 908

88. Palmer, L., Murayama, M. & Larkum, M. Inhibitory regulation of dendritic activity in vivo. 909
Front Neural Circuits **6**, 26 (2012). 910

89. Geiller, T. *et al.* Large-scale 3d two-photon imaging of molecularly identified ca1 interneuron 911
dynamics in behaving mice. *Neuron* **108**, 968–83 e9 (2020). 912

90. Fan, L. Z. *et al.* All-optical physiology resolves a synaptic basis for behavioral timescale 913
plasticity. *Cell* **186**, 543–559 e19 (2023). 914

91. Geiller, T. *et al.* Local circuit amplification of spatial selectivity in the hippocampus. *Nature* 915
601, 105–109 (2022). 916

92. Ranganathan, G. N. *et al.* Active dendritic integration and mixed neocortical network repre- 917
sentations during an adaptive sensing behavior. *Nat Neurosci* **21**, 1583–1590 (2018). 918

93. Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input 919
feature storage in neurons. *Nature* **452**, 436–441 (2008). 920

94. Evans, S. W. *et al.* A positively tuned voltage indicator reveals electrical correlates of calcium 921
activity in the brain. *bioRxiv* 2021.10.21.465345 (2021). 922

95. Platisa, J. *et al.* High-speed low-light in vivo two-photon voltage imaging of large neuronal 923
populations. *Nat Methods* (2023). 924

96. Liu, Z. *et al.* Sustained deep-tissue voltage recording using a fast indicator evolved for 925
two-photon microscopy. *Cell* **185**, 3408–3425 e29 (2022). 926

97. Abdelfattah, A. S. *et al.* Bright and photostable chemogenetic indicators for extended in vivo 927 voltage imaging. *Science* **365**, 699–704 (2019). 928

98. Piatkevich, K. D. *et al.* Population imaging of neural activity in awake behaving mice. *Nature* 929 930 **574**, 413–417 (2019). 930

99. Malvache, A., Reichinnek, S., Villette, V., Haimerl, C. & Cossart, R. Awake hippocampal 931 reactivations project onto orthogonal neuronal assemblies. *Science* **353**, 1280–3 (2016). 932

100. Ujfaluassy, B. B., Makara, J. K., Lengyel, M. & Branco, T. Global and multiplexed dendritic 933 computations under in vivo-like conditions. *Neuron* **100**, 579–592 e5 (2018). 934

101. Beniaguev, D., Segev, I. & London, M. Single cortical neurons as deep artificial neural 935 networks. *Neuron* **109**, 2727–2739 e3 (2021). 936

102. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. *Neuron* 937 938 **37**, 989–99 (2003). 938

103. Branco, T., Clark, B. A. & Häusser, M. Dendritic discrimination of temporal input sequences 939 in cortical neurons. *Science* **329**, 1671–5 (2010). 940

104. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. *Annu Rev Neurosci* 941 942 **43**, 95–117 (2020). 942

105. Sheffield, M. E. & Dombeck, D. A. Dendritic mechanisms of hippocampal place field 943 formation. *Curr Opin Neurobiol* **54**, 1–11 (2019). 944

106. Bicknell, B. A. & Häusser, M. A synaptic learning rule for exploiting nonlinear dendritic 945
computation. *Neuron* **109**, 4001–4017 e10 (2021). 946

107. Kaifosh, P. & Losonczy, A. Mnemonic functions for nonlinear dendritic integration in 947
hippocampal pyramidal circuits. *Neuron* **90**, 622–34 (2016). 948

108. Urbanczik, R. & Senn, W. Learning by the dendritic prediction of somatic spiking. *Neuron* 949
81, 521–8 (2014). 950

109. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of 951
hippocampal place cells during virtual navigation. *Nature* **461**, 941–6 (2009). 952

110. Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of experience and oscillations in transforming 953
a rate code into a temporal code. *Nature* **417**, 741–6 (2002). 954

111. Carnevale, N. T. & Hines, M. L. *The NEURON book* (Cambridge University Press, 2006). 955

112. Kaifosh, P., Zaremba, J. D., Danielson, N. B. & Losonczy, A. SIMA: Python software for 956
analysis of dynamic fluorescence imaging data. *Frontiers in neuroinformatics* **8**, 80 (2014). 957

113. Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *Journal of Machine Learning* 958
Research **12**, 2825–2830 (2011). 959

114. Destexhe, A. & Huguenard, J. R. Nonlinear thermodynamic models of voltage-dependent 960
currents. *Journal of Computational Neuroscience* **9**, 259–270 (2000). 961

115. Kay, S. M. *Fundamentals of statistical signal processing: estimation theory* (Prentice-Hall, 962

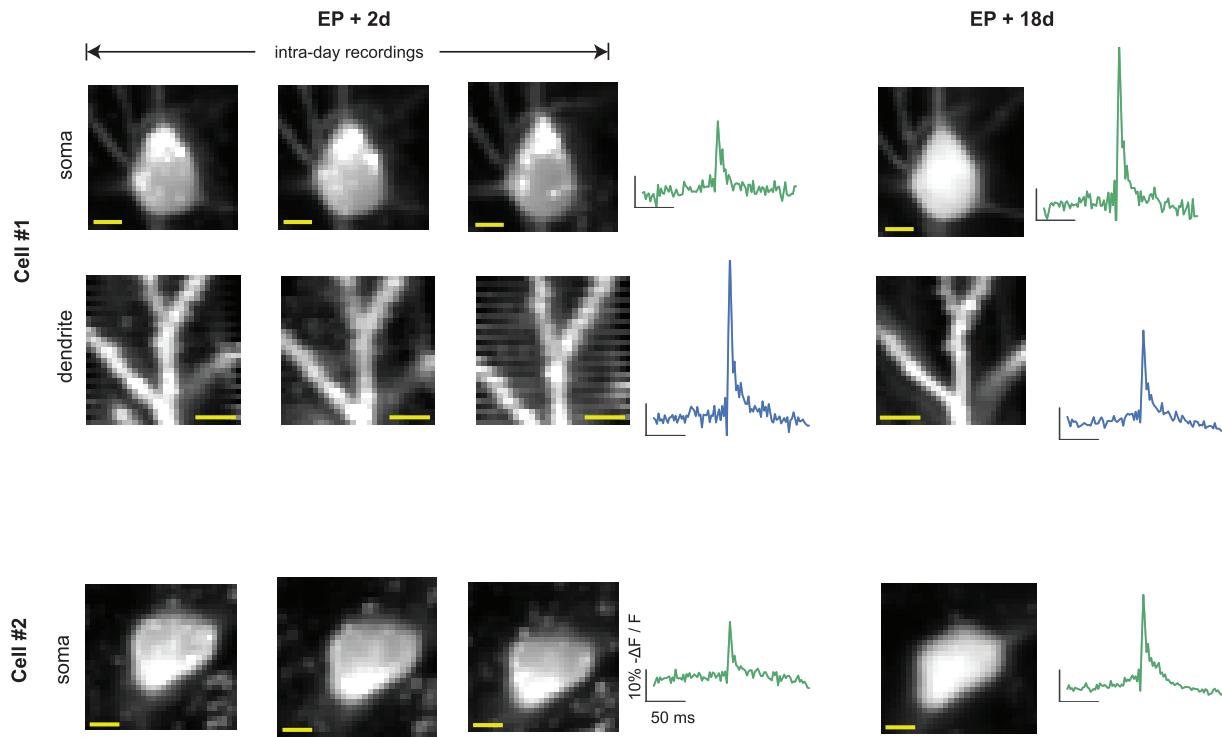
Inc., 1993).

963

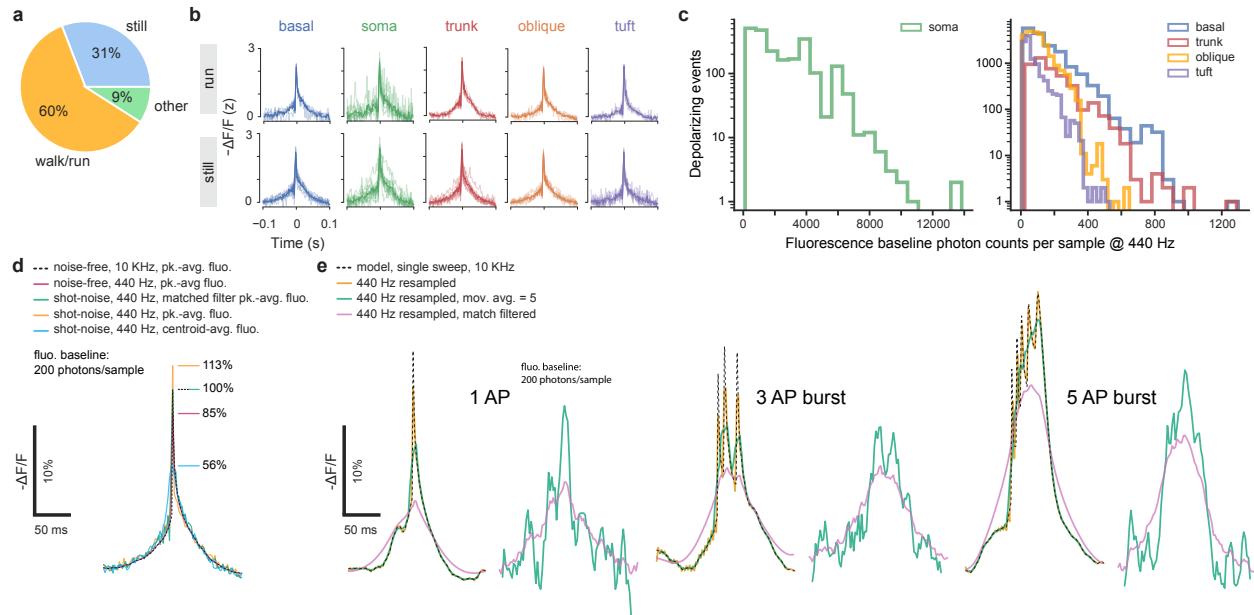
116. Lepage, K. Q., Kramer, M. A. & Eden, U. T. Some sampling properties of common phase 964

estimators. *Neural computation* **25**, 901–921 (2013).

965


117. Mathews, P. *Sample size calculations: Practical methods for engineers and scientists* (Math- 966

ews Malnar and Bailey, 2010).


967

Supplementary information

968

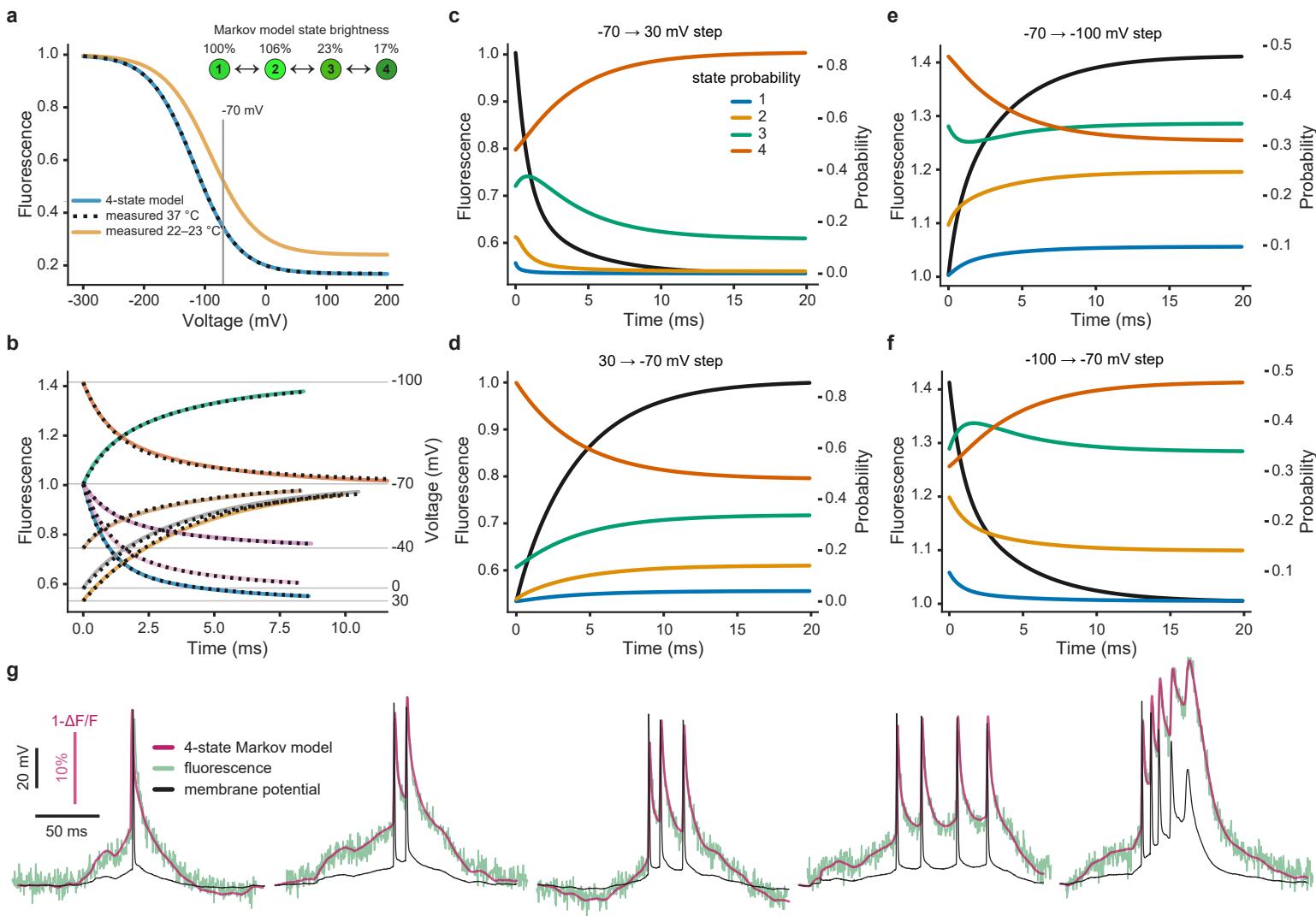


Figure S1. Cell health over time. Two example cells shown. We return to the same cell and same dendrites 2 days post-EP and 18 days post-EP and in recordings taken at multiple timepoints find the cell membrane intact with absence of noticeable apoptotic blebbing (scale bars $5\mu\text{m}$). The mean detected DE at each ROI over all sessions is shown in the early and late recordings: waveform morphology remains stable although amplitude may change due to changes in sensor expression.

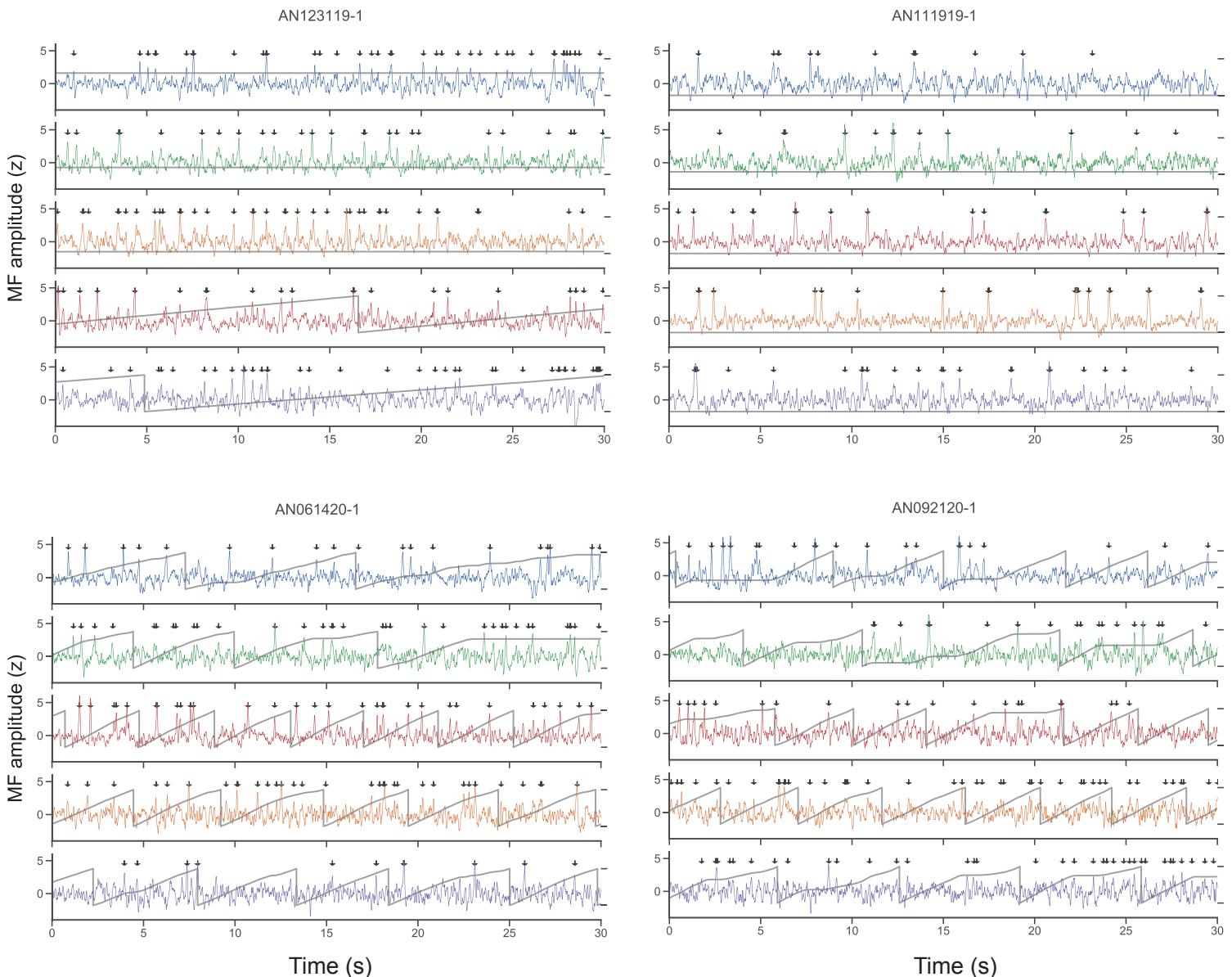
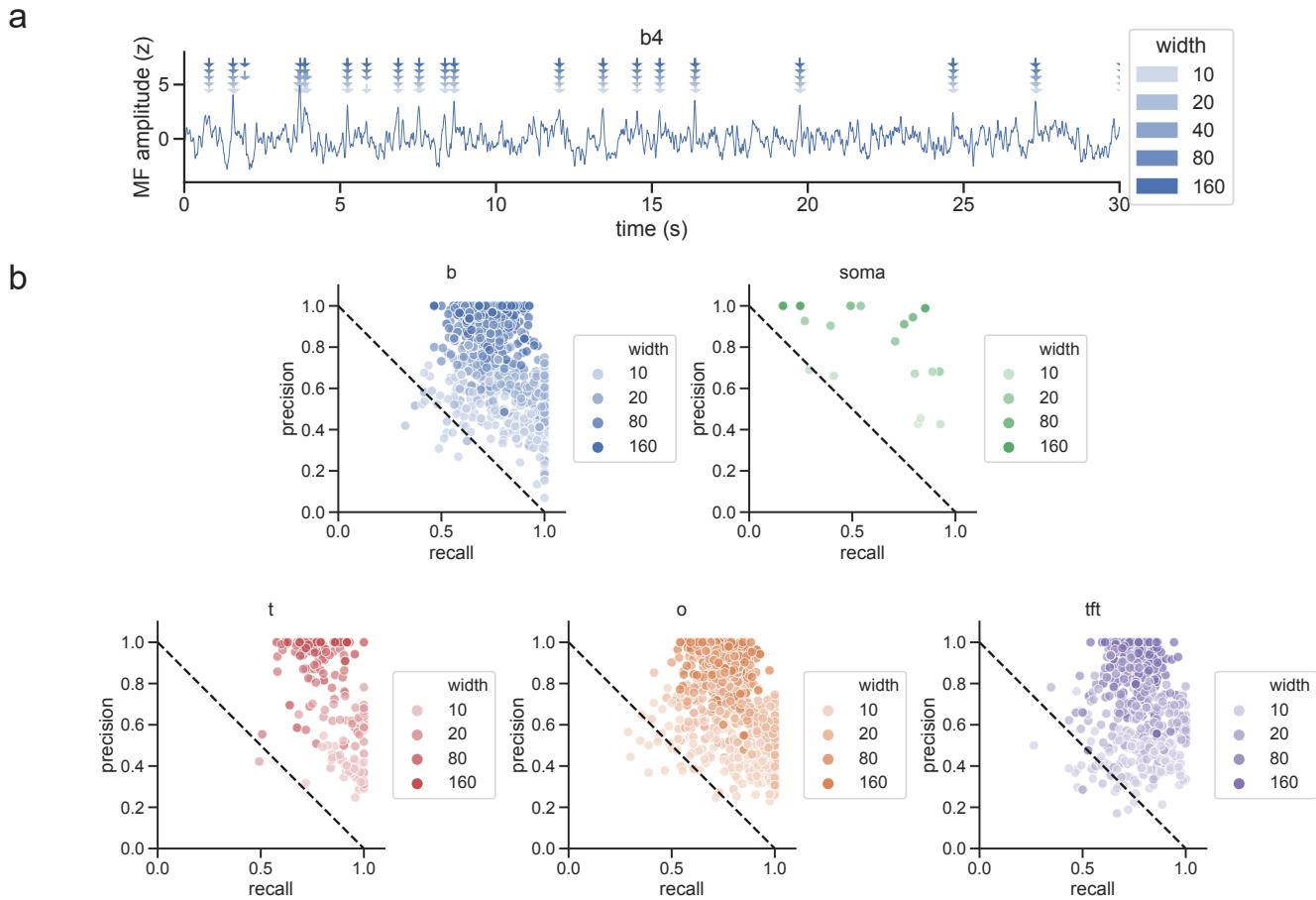


Figure S2. Extended data associated with Fig 1. **a.** Percent of recording time classified as locomotion, stillness, and other (transition between stillness and locomotion). **b.** Average DE waveforms (z-score) during running and stillness per dendritic region for DEs at a fluorescence baseline SNR >10 . **c.** Photon counts for fluorescence baseline at time of depolarizing events (DEs) in soma (left) and dendritic domains (right) at a sampling rate of 440 Hz. **d.** Effect of downsampling to 440 Hz and choosing different methods of aligning ASAP3 Markov-model fluorescence response peaks to multiple in vivo somatically-recorded single action potentials from a mouse dorsal CA1-area hippocampal pyramidal neuron under Poisson shot-noise (200 cts/sample). Downsampling alone to 440 Hz (purple) reduced the noise-free peak-averaged response to 85% of its original value sampled at 10 KHz (black dashed). Aligning shot-noise limited waveforms by the fluorescence peaks artificially biases the peak of the average waveform (orange) to 133% of its downsampled value, while aligning waveforms using the matched-filtered signal peaks (green), the bias reduced to 118% of its downsampled value. Aligning by the centroid (cyan) of shot-noise limited waveforms severely reduced the measured peak to 66% of its downsampled value. **e.** Effect of applying a 5-point moving average filter or a matched filter to a shot-noise limited (200 cts/sample) 440 Hz recorded ASAP3 Markov-model fluorescence response to one, three and five action-potential burst waveforms. For the matched filter template, the fluorescence response to a single somatically-recorded action potential was used. Note that from the matched-filter signal it is not possible to distinguish the number or timing of action-potentials in a burst.


63

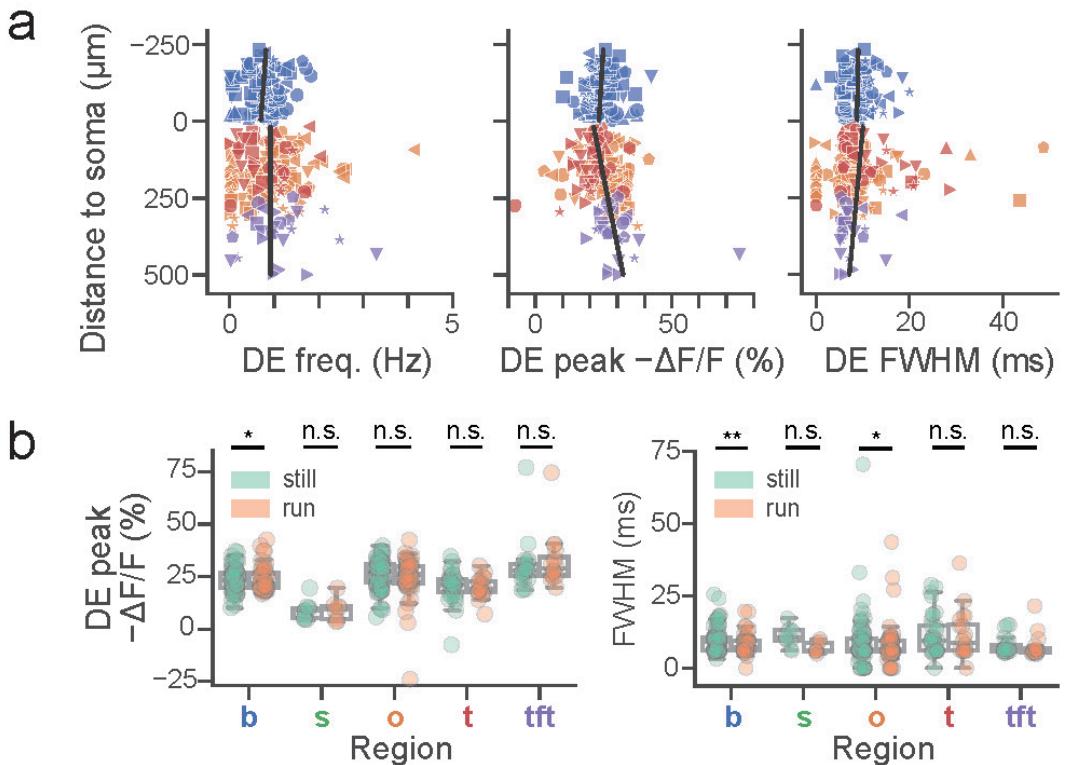

Figure S3. ASAP3 Markov model. **a.** Comparison of measured steady state fluorescence response at 22–23 °C (orange) and 37 °C (black dashed) and Markov model response (light blue) in voltage-clamped HEK293 cells. Note that steady state responses are temperature sensitive. Inset top: 4-state Markov chain with relative state brightness. **b.** Comparison of measured fluorescence response (black dashed) to step changes in holding potential in HEK293 cells at 37 °C and 4-state Markov model response (continuous curves). **c–f.** Dynamic distribution of Markov model state probabilities as a function of voltage step in HEK293 cells at 37 °C. **g.** Markov model response (purple) to in-vivo measured action-potential burst waveforms (black) from a mouse dorsal hippocampal CA1-area pyramidal cell and measured fluorescence response (green) in a voltage-clamped HEK293 cell at 37 °C.

Figure S4. Further examples of raw signals from four distinct cells and compartments. As in Fig 1, signals, sampled at 440 Hz, were stabilized against movement artifacts, match-filtered (MF) and thresholded for depolarizing event (DE) detection (arrows) at a false positive rate of at most 0.01 Hz, plotted as $-\Delta F/F$ to reflect the conventional direction of change in the membrane potential. Grey traces: animal position during the recording.

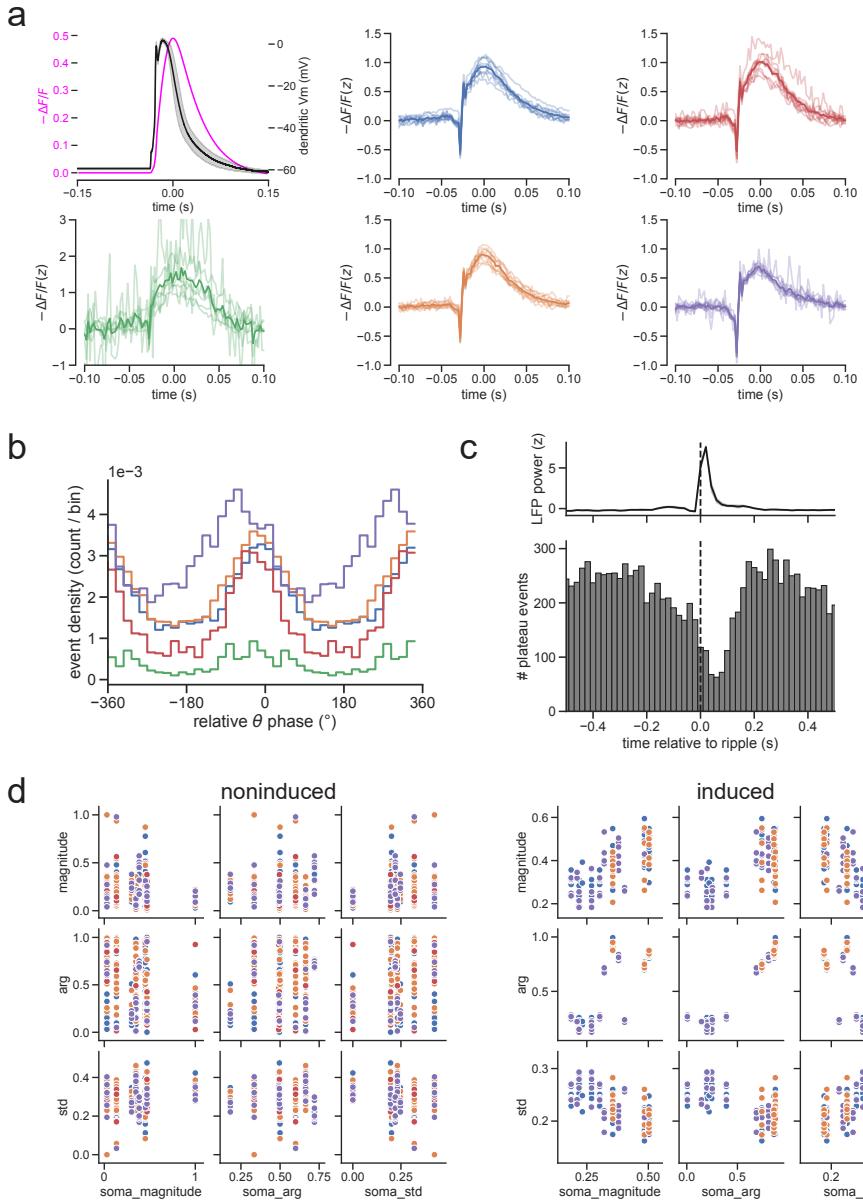
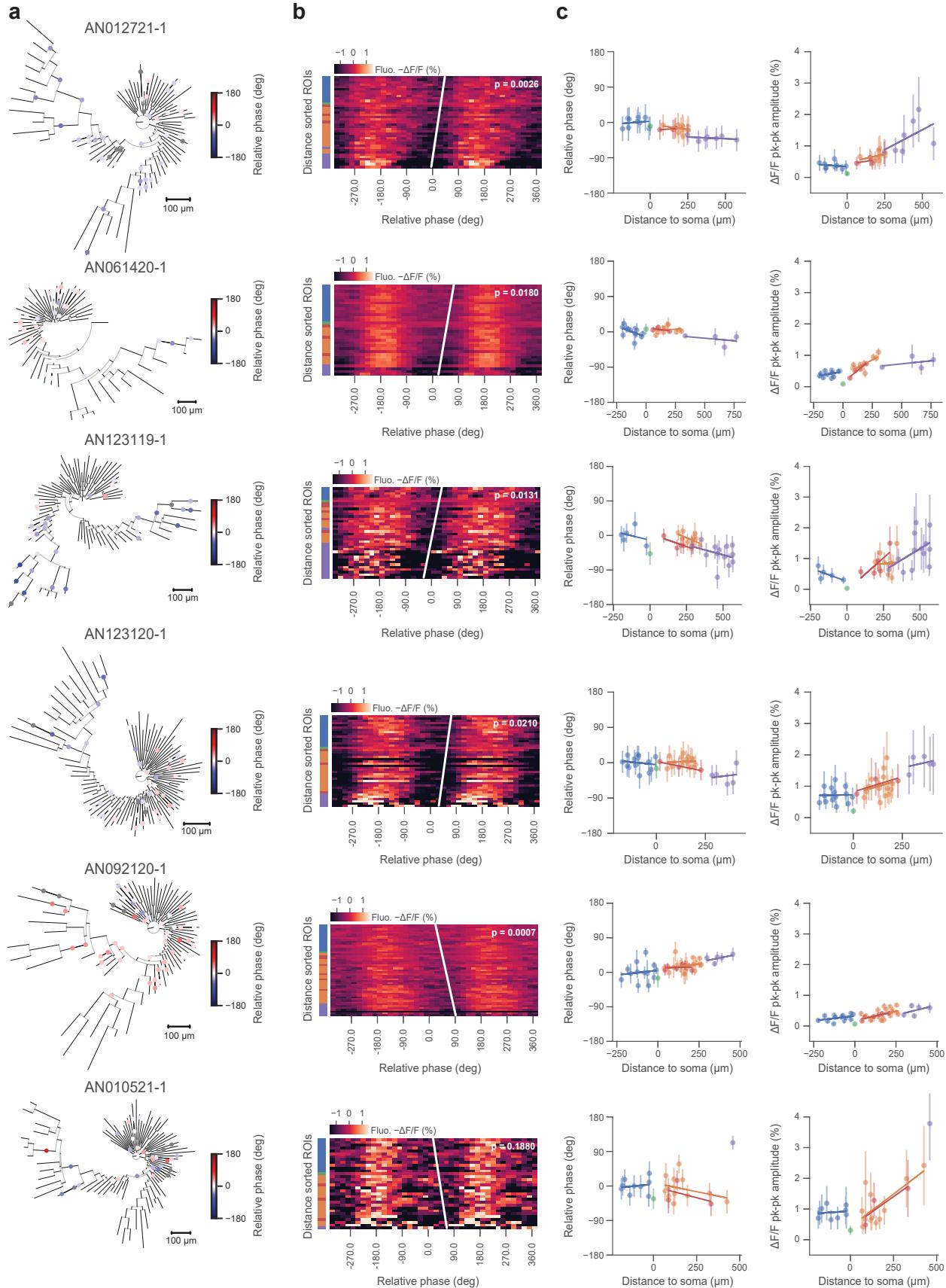


Figure S5. Detected events are robust to choice of event detection window. a. Example trace from a basal dendrite with events detected using different windows (arrows; 10 ms, 20 ms, 40 ms (default), 80 ms, 160 ms). While some variability is seen, there is agreement across all window sizes on the vast majority of events, particularly high-amplitude events. **b.** Precision-recall scatterplot by region for different choices of window size, calculated relative to the default window size (40 ms). Each point represents all events from a single dendrite. Precision is defined as # events on which the default and test window agree / total # events detected using the test window size. Recall is defined as # events on which the default and test window agree / total # events detected using the default window size. In all regions, points are concentrated in the top right in each plot indicating good agreement in detected events between different window sizes.



66

Figure S6. Basic characterization of DE parameters by domain and distance to soma. **a.** DE frequency (basal: slope= 5×10^{-4} Hz/ μm , $p = 0.43$, $r = 0.08$; apical: slope= 5×10^{-6} Hz/ μm , $p = 0.99$, $r = 7 \times 10^{-4}$), amplitude (basal: slope= 7×10^{-3} % $\Delta F/F/\mu\text{m}$, $p = 0.43$, $r = 0.08$; apical: slope= $0.02\ %\Delta F/F/\mu\text{m}$, $p = 2 \times 10^{-4}$, $r = 0.29$) and FWHM (basal: slope= 1×10^{-3} ms/ μm , $p = 0.79$, $r = 0.03$; apical: slope= -6×10^{-3} ms/ μm , $p = 0.25$, $r = -0.09$) dependence on path-distance from soma across dendritic domains (same color coding) for fluorescence baseline SNR >10 ($N = 10$ cells). **b.** Left: DE amplitude is not significantly modulated between locomotion and stillness for soma ($p = 0.55$), trunk ($p = 0.06$, $N = 1 - 12$ ROIs per cell), oblique ($p = 0.43$, $N = 6 - 40$ ROIs per cell), and tuft ($p = 0.71$, $N = 1 - 11$ ROIs per cell) regions for fluorescence baseline SNR >10 , $N = 10$ cells. A small but statistically significant locomotion-associated increase in amplitude was observed in the basal domain ($p = 0.01$; $N = 5 - 30$ ROIs per cell, all Wilcoxon paired test). Two-way ANOVA for amplitude: $p = 6 \times 10^{-25}$, main effect of region; $p = 0.92$, main effect of locomotion; $F(4, 401) = 0.63$, $p = 0.64$ region \times locomotion interaction. Right: DE full-width at half-maximum (FWHM) is slightly shortened during locomotion in the basal ($p = 1.5 \times 10^{-3}$) and oblique ($p = 1.2 \times 10^{-2}$) domains. FWHM is not significantly modulated in the other domains (soma: $p = 0.11$, trunk: $p = 0.33$, tuft: $p = 0.24$; all Wilcoxon paired test). Two-way ANOVA for FWHM: $p = 0.01$, main effect of region; $p = 0.23$, main effect of locomotion; $F(4, 401) = 0.39$, $p = 0.82$ region \times locomotion interaction.

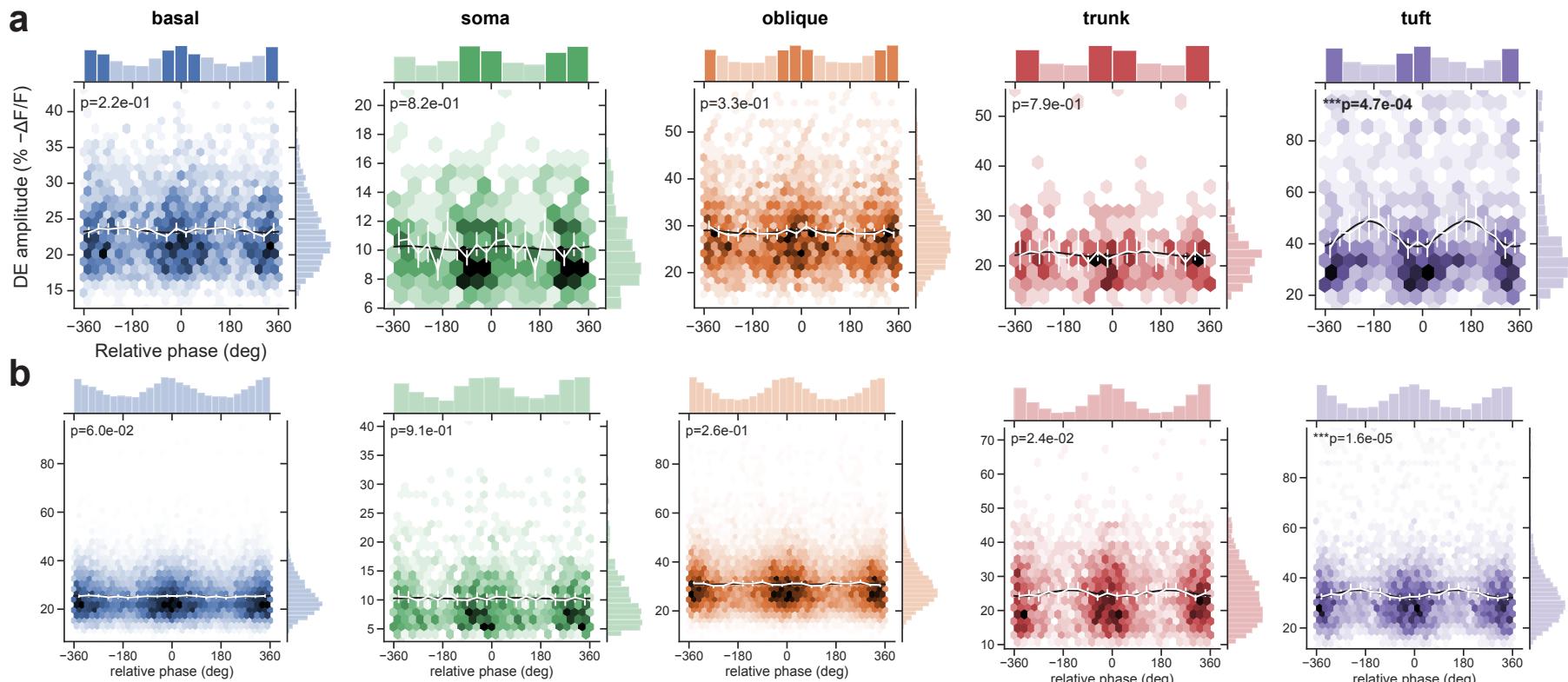


Figure S7. Basic properties of “slow” dendritic events calibrated to patch data. Slow events exhibit a qualitatively different waveform from fast (AP-like) events, with similarities and differences in other properties. **a.** Matched-filter based slow event detection from $N=9$ cells. Top left: Electrophysiologically recorded slow dendritic event waveform from ⁴⁶ (black line; stimulation artifact removed), and model-predicted fluorescence waveform (magenta line). Colored panels: Mean slow event waveform detected in each region. Light traces: mean event from 1 cell and region. Dark trace: mean event across cells. **b.** Histogram of slow event phases by region. We note that, unlike fast events which exhibit marked phase advancement across regions (Fig 2), the distribution of slow events appears to be concentrated around 0° in all regions but the tuft. **c.** Peri-ripple slow event histogram. Dashed line: peak of LFP ripple power as in Fig 4b. Similar to fast DEs (Fig 4), slow events are suppressed around SWRs with the onset of suppression preceding the rise in ripple power, the nadir coming slightly after the ripple power peak, and a rapid return to baseline. **d.** Soma vs dendrite tuning vector relationships pre- and post place field induction. Magnitude refers to the strength of event tuning. “Arg” refers to the tuning center of mass around the circle (normalized such that 1 refers to 2π). “Std” refers to standard deviation. In the pre/non-induced dataset, there is no relationship between somatic and dendritic parameters, while after induction, consistent with our DE findings, dendrites’ tuning centers shift towards their somatic tuning center; strength of somatic tuning correlates to strength of dendritic tuning and inversely to variability in dendritic tuning. Each point: 1 dendrite.

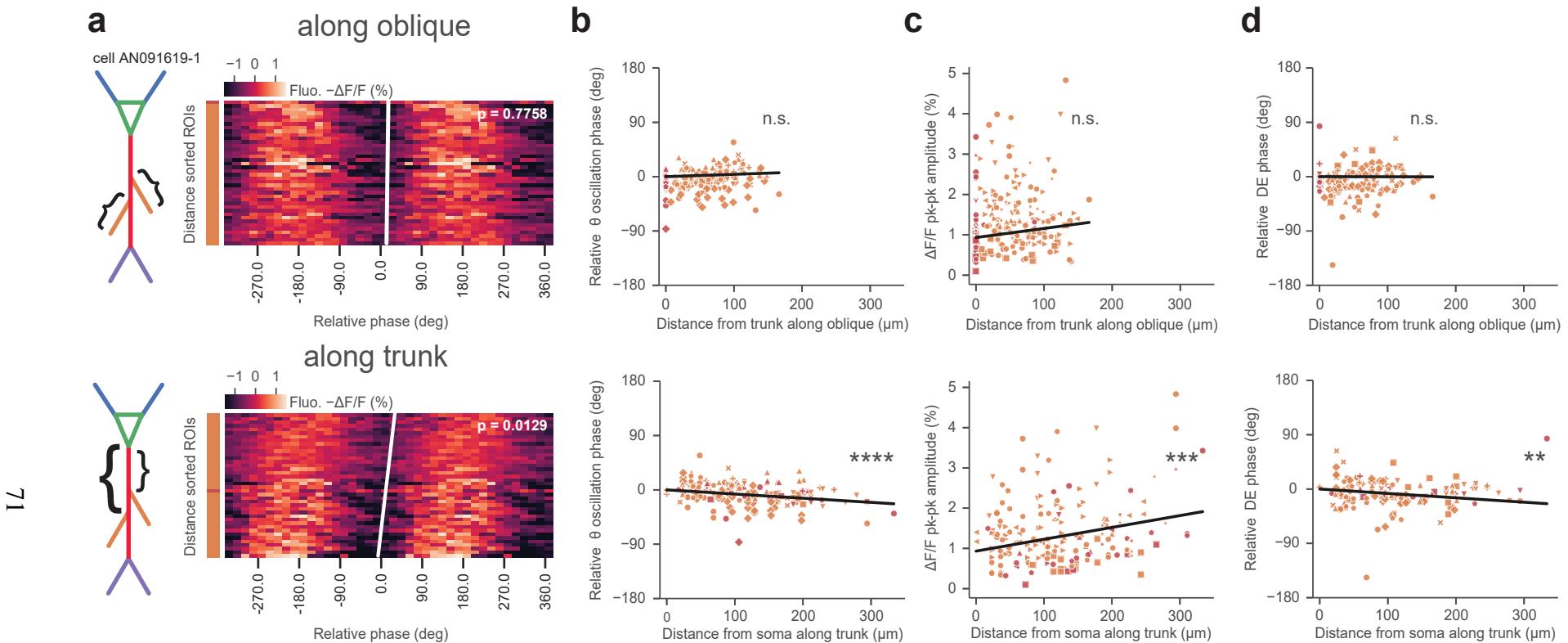
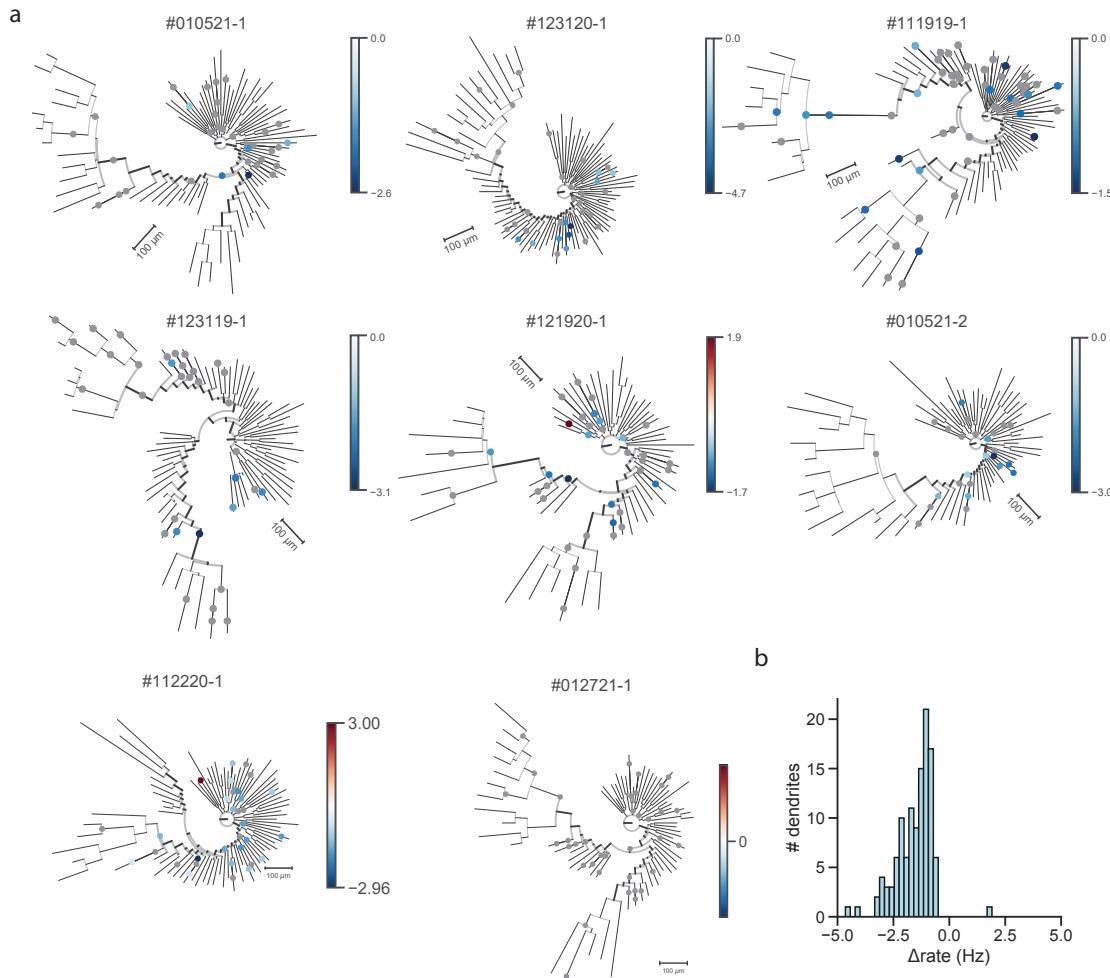
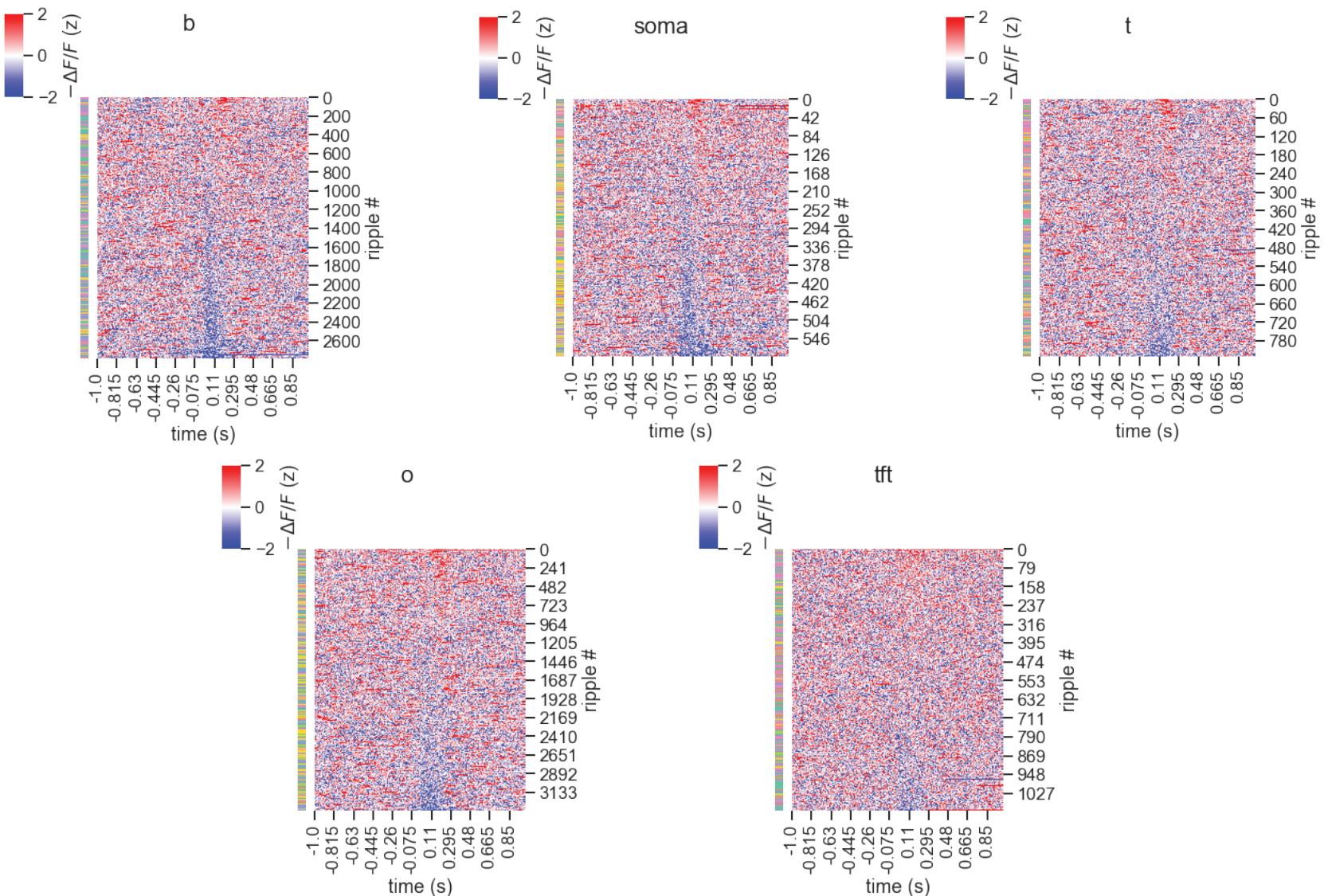
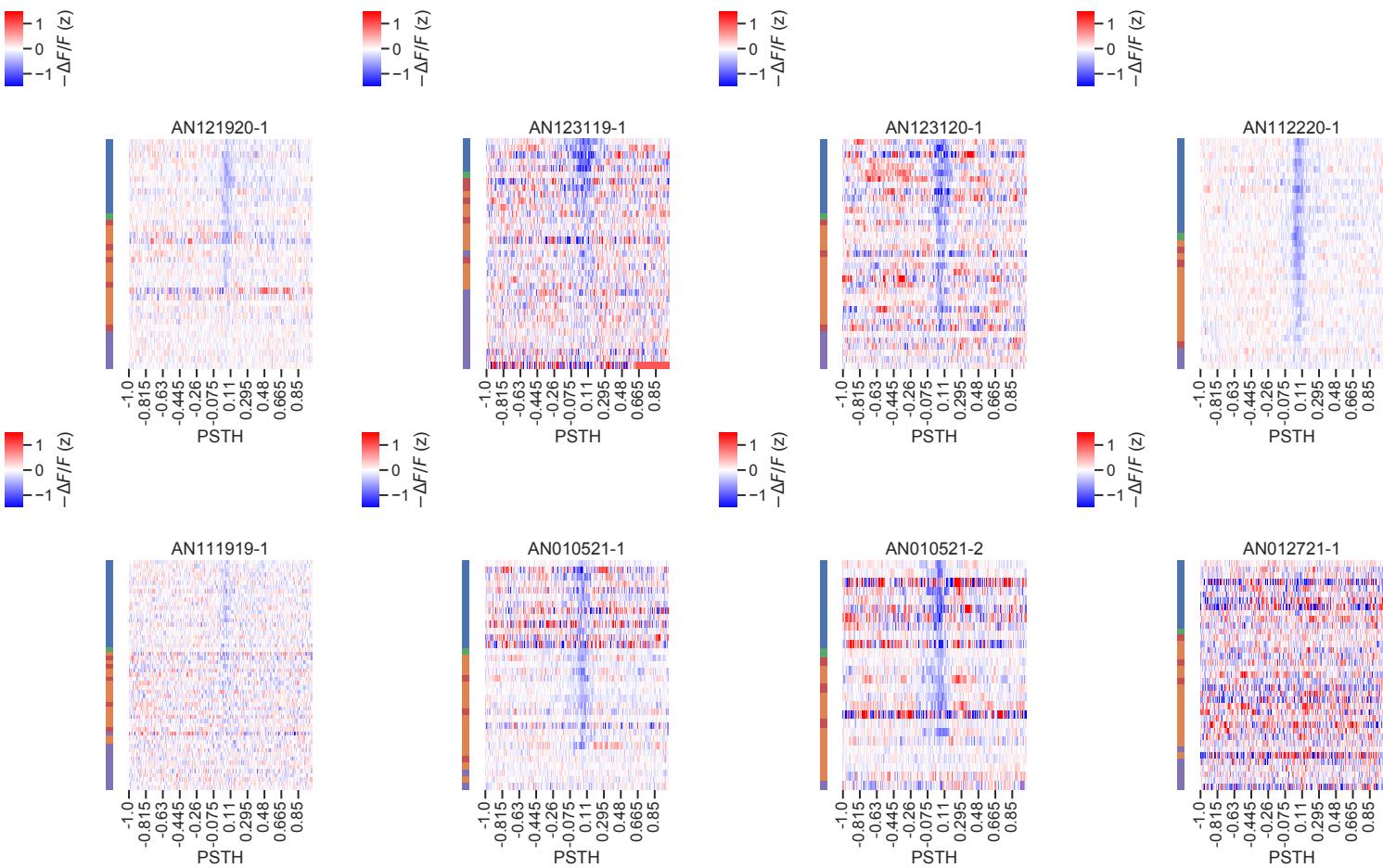

Figure S8. Extended data associated with Fig 2. Additional example cells. (caption next page)

Figure S8. Extended data associated with Fig 2. Additional example cells. **a.** Morphological reconstructions with theta-oscillation modulated fluorescence ROIs colored by relative phase to somatic compartment. Nonsignificantly phase modulated ROIs in grey. **b.** Membrane potential oscillation gradients for cells shown in **a.**, with rank regression line and p value shown. **c.** Per-region phase relative to somatic compartment, amplitude estimates and associated trendline fits for cells shown in **a.**



70


Figure S9. Extended data associated with Fig 2. Theta-phase modulation of DE amplitude across somatic and dendritic regions. 2D histograms of the distribution of DEs in theta phase and amplitude space. Each hexagon corresponds to a single phase/amplitude bin, while color intensity corresponds to the relative density of events within that bin. **a.** DEs from example cell AN092120-1 shown in Fig S8 and **b.** for all cells. Linear-circular fits (black lines; see Methods: Phase modulation of DE amplitude) are shown along with significance level and mean amplitude of DEs per phase bin (white lines) with 95% CI whiskers. Across cells, 2/11 cells showed DE amplitude modulation of at least one region ($\alpha = 0.01$ using the Bonferroni correction).


Figure S10. Extended data associated with Fig 2. Theta-band membrane potential oscillation phase, amplitude and DE phase gradients occur along trunk rather than along oblique dendrites. Phase measured relative to the actual or inferred somatic compartment phase. **a.** Theta-band phase-binned $-\Delta F/F$ fluorescence heatmaps of distance-sorted trunk and oblique dendritic ROIs for example cell of Figure 2 along with rank-regression lines, sorted by distance along oblique w.r.t. trunk stem location (top) or along trunk w.r.t. somatic compartment (bottom). Phase advances significantly ($p = 0.0129$) along trunk but not along oblique dendrites ($p = 0.7758$). Multivariate linear regression of theta-band relative fluorescence oscillation phase, $-\Delta F/F$ pk-pk oscillation amplitude and DE phase **(b.** oscillation phase: adjusted $r^2 = 0.18, p < 1.3 \times 10^{-7}$, **c.** oscillation amplitude: adjusted $r^2 = 0.07, p = 0.002$ and **d.** DE phase: adjusted $r^2 = 0.07, p = 0.002$) has a nonsignificant projection against distance along oblique (top row, **b.** oscillation phase: $p = 0.12$, **c.** oscillation amplitude: $p = 0.12$, **d.** DE phase: $p = 0.973$) but significant along trunk (bottom row, **b.** oscillation phase: $p < 1.2 \times 10^{-7}$, **c.** oscillation amplitude: $p = 0.0005$, **d.** DE phase: $p = 0.004$) dendrites for ROIs pooled from all cells.

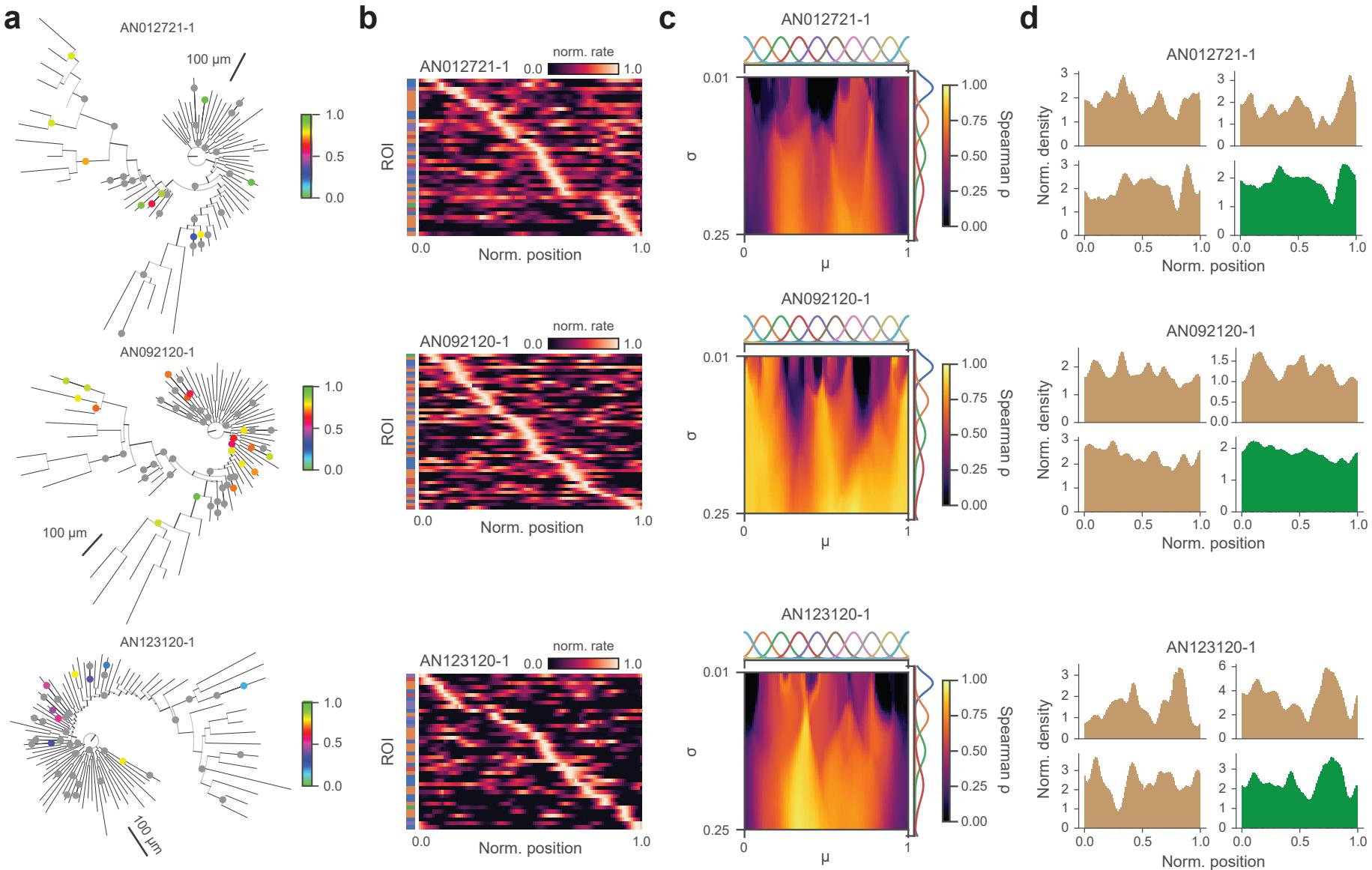

Figure S11. Rate modulation of individual dendrites by SWRs. a. Phylogenograms of all cells analyzed in Fig 4, with recording locations colored by change in DE rate inside minus outside of SWRs. Grey: Nonsignificantly ripple modulated locations under Poisson rate test. This test is generally conservative given the sparsity of events. 17.7% of dendrites exhibit significant rate modulation around ripples, with the majority suppressing their firing in response to SWRs. **b.** Summary histogram of rate modulation ($r_{inside} - r_{outside}$) at significantly modulated dendrites

Figure S12. Heatmaps of all ripples shown in Fig 4. Heatmap of z-scored fluorescence around SWRs across all cells and segments by region, sorted by mean activity from 0-250 ms. Row color: cell ID. Inhibition predominates in the peri-ripple zone, but a small proportion of ripples recruit the recorded dendrite.

Figure S13. Dendritic hyperpolarization is centered around ripple peak irrespective of soma distance. Similar to our theta analysis of Figure 2, we ask the question of whether anatomical gradients emerge in the dendrite SWR response. Unlike our theta findings, it appears SWR-associated hyperpolarization is centered symmetrically about the ripple peak in all compartments. Mean heatmap of z-scored fluorescence in a ± 1 s window around SWRs (aligned to peak) by cell and segment, sorted by signed soma distance. Row color: recorded region. Inhibition predominates in the peri-ripple zone in most cells and segments. Cell AN012721-1 did not exhibit strong ripple modulation.

Figure S14. Extended data associated with Fig 5. We provide further examples of cells from our dataset exhibiting distributed dendritic spatial tuning. Similar to the example we show in the main figure, these cells feature diverse tuning across the dendritic arbor and high expressivity for constructing somatic tuning curves. **a.** Additional example cells, with recording locations colored by tuning centroid. Grey: Nonsignificantly peaked tuning curves under Rayleigh test. **b.** Segment tuning curves associated with cells in **a.**, sorted by tuning curve peak. **c.** Reconstruction fidelity matrix of Fig 5e for example cells shown. **d.** Tuning histograms of primary basal subtrees (brown), with overall basal tuning histogram (green).

Table S1. ASAP3 steady state fluorescence response in HEK293 cells as a function of membrane potential (in mV). Sigmoidal fit coefficients for $F(v) = a + (b - a)/\{1 + \exp[(c - v)/d]\}$.

Temp (°C)	a	b	c	d
22–23	1.93	0.4643	-90.48	38.51
37	2.912	0.4916	-117.5	36.1

Table S2. ASAP3 dynamic step double exponential fit response in HEK293 cells at 37 °C for voltage steps $V_1 \rightarrow V_2$.

V_1 (mV)	V_2 (mV)	τ_{fast} (ms)	τ_{slow} (ms)	% τ_{fast}
-70	30	0.81	4.32	69
30	-70	3.25	5	58
-70	-100	0.91	4.24	34
-100	-70	1.09	5.84	63
-70	-40	1.02	4.4	50
-40	-70	0.69	4.19	29
-70	0	0.94	4.13	60
0	-70	1.8	5.29	32

region	run	DE frequency (Hz)		
		upper	lower	median
basal	0.0		1.40	1.06
	1.0		0.74	0.63
oblique	0.0		1.66	1.34
	1.0		0.87	0.71
soma	0.0		1.55	0.22
	1.0		0.74	0.13
trunk	0.0		1.65	0.86
	1.0		0.82	0.49
tuft	0.0		2.11	1.49
	1.0		1.20	0.98

Table S3. Data associated with Fig 1f. Median DE frequencies and 95% bootstrapped confidence intervals inside and outside running epochs (all values reported in Hz, $N = 11$ cells)

region	ripple	median	lower	upper
basal	outside	18.9	18.1	19.5
	inside	15.7	13.9	18.3
oblique	outside	20.7	19.9	21.2
	inside	18.9	16.8	21.6
soma	outside	6.7	3.9	8.6
	inside	14.6	n/a	n/a
trunk	outside	16.7	15.4	17.5
	inside	17.0	14.2	19.7
tuft	outside	18.8	16.5	19.5
	inside	17.6	12.9	19.6

Table S4. Data associated with Fig 4d. Median DE peaks and 95% bootstrapped confidence intervals inside and outside SWR epochs (all values reported in % – $\Delta F/F$)

region	median	lower	upper
basal	40.60	0.0	57.21
oblique	65.27	5.91	77.44
soma	57.50	35.00	87.50
trunk	60.42	15.00	87.83
tuft	6.67	-47.50	71.67

Table S5. Data associated with Fig 4e. Median delay and 95% bootstrapped confidence intervals between LFP SWR power peak vs membrane potential trough (all values reported in ms)

region	ripple	median	lower	upper
basal	inside	0.20	0.05	0.28
	outside	1.04	0.89	1.61
oblique	inside	0.64	0.40	0.88
	outside	1.38	1.14	1.68
soma	inside	0.0	n/a	n/a
	outside	0.55	0.17	1.01
trunk	inside	0.30	0.0	0.58
	outside	1.37	0.82	2.27
tuft	inside	0.72	0.24	1.50
	outside	1.87	1.18	2.19

Table S6. Data associated with Fig 4f. Median DE frequencies and 95% bootstrapped confidence intervals inside and outside SWR epochs (all values reported in Hz)

region	timepoint	median	lower	upper
basal	LFP peak	-1.2	-3.3	-0.5
	fluor trough	-9.5	-15.1	-3.6
oblique	LFP peak	-0.08	-1.6	0.03
	fluor trough	-8.2	-13.3	-4.6
soma	LFP peak	-0.4	-0.8	-0.2
	fluor trough	-1.4	-2.0	-0.7
trunk	LFP peak	-0.4	-1.3	0.1
	fluor trough	-4.8	-7.3	-2.5
tuft	LFP peak	-0.5	-3.6	-0.1
	fluor trough	-12.4	-16.3	-6.2

Table S7. Data associated with Fig 4h. Median membrane potential and 95% bootstrapped confidence intervals at LFP SWR power peak vs membrane potential trough (all values reported in % – $\Delta F/F$)

region	condition	upper	lower	median
basal	nonripple	31.92	20.73	25.00
	ripple	42.04	10.17	27.31
oblique	nonripple	30.06	19.98	25.98
	ripple	21.67	12.62	16.06
trunk	nonripple	33.25	16.38	28.00
	ripple	35.18	3.04	17.03
tuft	nonripple	19.61	15.12	16.14
	ripple	21.08	12.75	18.00

Table S8. Data associated with Fig 4i. Median DE FWHM and 95% bootstrapped confidence intervals inside and outside SWR epochs (all values reported in ms)