

1 **Streptavidin-drug conjugates streamline**
2 **optimization of antibody-based conditioning for**
3 **hematopoietic stem cell transplantation**

4 Aditya R. Yelamali¹, Ezhilarasi Chendamarai¹, Julie K. Ritchey¹, Michael P.
5 Rettig¹, John F. DiPersio¹, and Stephen P. Persaud^{2*}

6
7 ¹Division of Oncology, Department of Medicine, Washington University School of Medicine, St.
8 Louis, MO, 63110 USA

9 ²Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology,
10 Washington University School of Medicine, St. Louis, MO, 63110 USA

11
12 *For correspondence, contact: Stephen Persaud, Washington University School of Medicine, 660
13 S. Euclid Ave, MSC 8007-0057-06, St. Louis MO, 63110. Email: persaud@wustl.edu

14 **Keywords:** Antibody-drug conjugate, streptavidin, HSCT, leukemia

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 **ABSTRACT**

30 Hematopoietic stem cell transplantation (HSCT) conditioning using antibody-drug
31 conjugates (ADC) is a promising alternative to conventional chemotherapy- and irradiation-
32 based conditioning regimens. The drug payload bound to an ADC is a key contributor to its
33 efficacy and potential toxicities; however, a comparison of HSCT conditioning ADCs produced
34 with different toxic payloads has not been performed. Indeed, ADC optimization studies in
35 general are hampered by the inability to produce and screen multiple combinations of antibody
36 and drug payload in a rapid, cost-effective manner. Herein, we used Click chemistry to
37 covalently conjugate four different small molecule payloads to streptavidin; these streptavidin-
38 drug conjugates can then be joined to any biotinylated antibody to produce stable, indirectly
39 conjugated ADCs. Evaluating CD45-targeted ADCs produced with this system, we found the
40 pyrrolobenzodiazepine (PBD) dimer SGD-1882 was the most effective payload for targeting
41 mouse and human hematopoietic stem cells (HSCs) and acute myeloid leukemia cells. In murine
42 syngeneic HSCT studies, a single dose of CD45-PBD enabled near-complete conversion to
43 donor hematopoiesis. Finally, human CD45-PBD provided significant antitumor benefit in a
44 patient-derived xenograft model of acute myeloid leukemia. As our streptavidin-drug conjugates
45 were generated in-house with readily accessible equipment, reagents, and routine molecular
46 biology techniques, we anticipate this flexible platform will facilitate the evaluation and
47 optimization of ADCs for myriad targeting applications.

48

49

50

51

52 **INTRODUCTION**

53 Hematopoietic stem cell transplantation (HSCT) is a lifesaving therapy which provides
54 the best chance to durably treat a variety of hematologic diseases, both malignant and non-
55 malignant. In preparation for HSCT, patients undergo treatment, or “conditioning,” with
56 chemotherapy and/or irradiation to ablate their hematopoietic stem cell (HSC) compartment to
57 enable engraftment of the incoming donor-derived HSCs¹. For hematologic malignancies, the
58 conditioning regimen also serves to deplete malignant cells that were not killed by the patient’s
59 prior therapies, with more severely myeloablative regimens providing greater antitumor benefit
60 and protection against relapse². However, due in part to the cytotoxicity of conventional
61 conditioning regimens, the benefits of HSCT must be weighed against the risks of treatment-
62 related adverse events, which may be severe enough to prevent older or infirmed patients from
63 accessing the curative potential of transplantation³. Furthermore, they may impede the safe
64 application of HSCT for non-malignant blood diseases such as sickle cell anemia⁴.

65 There has been great interest in leveraging the exquisite specificity of adaptive immune
66 recognition to selectively target and deplete the HSC niche in preparation for HSCT, with the
67 goal of mitigating toxicities from chemotherapy- and irradiation-based conditioning regimens⁵.
68 While some studies have explored the use of cellular immunotherapies for HSC niche clearance⁶,
69 most have focused on conditioning approaches using antibodies and antibody-drug conjugates
70 (ADC). By targeting receptors such as the phosphatase CD45 or the tyrosine kinase c-Kit
71 (CD117), ADC-based regimens have been used in preclinical models to enable HSCT within
72 (syngeneic)⁷⁻⁹ and across (allogeneic)¹⁰⁻¹³ histocompatibility barriers with fewer toxicities.

73 The efficacy of an ADC depends on several factors, but a critical component is the
74 ability of the conjugate to be internalized by target cells so that it can deliver a toxic drug

75 payload able to induce cell death¹⁴. Consequently, the choice of payload and the chemistry
76 tethering it to the antibody are of paramount importance to ADC biology. For preclinical
77 modeling in the mouse, we and others have utilized the ribosome inactivating protein saporin as
78 a toxic ADC payload^{7,8,12,14-16}. Saporin is commercially available in a streptavidin (SAv)-
79 conjugated format, enabling rapid, reliable production of ADCs from any biotinylated antibody¹⁷.
80 However, our HSCT studies with saporin-based CD45- and cKit-ADCs showed that these
81 conjugates behaved as nonmyeloablative conditioning agents which failed to control tumor
82 burden in the murine A20 lymphoma model¹². Although nonmyeloablative ADCs are of clear
83 interest for nonmalignant diseases, in which antitumor benefit provided by the conditioning
84 regimen is not necessary, myeloablative conditioning is preferable for acute leukemias as these
85 intensive regimens provide crucial protection against relapse³.

86 We hypothesized that alternative toxic payloads to saporin would yield ADCs endowed
87 with improved myeloablative capacity and antitumor efficacy. To that end, we developed CD45-
88 and cKit-ADCs using pyrrolobenzodiazepine (PBD) dimers as the toxic payload, which in our
89 preliminary studies enabled full conversion to donor hematopoiesis and provided durable
90 protection against an aggressive primary murine acute myeloid leukemia (AML) model¹⁸. PBD
91 has been successfully utilized in the CD19-targeted ADC loncastuximab tesirine, which is FDA-
92 approved to treat diffuse large B cell lymphoma¹⁹. Despite this success, toxicities from the
93 highly potent PBD payload remain a potential concern for clinical use, as evidenced by the
94 adverse events leading to discontinuation of the Phase III clinical trial investigating the CD33-
95 targeted ADC vadastuximab talirine as frontline treatment for AML²⁰.

96 Saporin and PBD are just two of many potential ADC payloads, most of which have not
97 been evaluated in ADCs designed for HSCT conditioning. Investigation of alternative payloads

98 may yield ADCs that more optimally balance efficacy with toxicities. Moreover, screening of
99 novel CD45- or cKit-specific antibodies, or antibodies targeting novel receptors, may reveal
100 clones with superior efficacy as HSCT conditioning ADCs regardless of the linked payload.
101 However, direct chemical conjugation of candidate antibodies and drug payloads can become
102 time-consuming, laborious, and expensive, particularly when screening of many antibody-
103 payload combinations is desirable²¹. A system capable of rapidly connecting antibodies to several
104 different drug payloads would greatly facilitate and expedite identification of optimal ADCs for
105 preclinical and translational research. Such a system ideally would also enable cost-effective
106 scale-up of *in vitro* validated ADC candidates for *in vivo* testing in preclinical mouse or non-
107 human primate models.

108 To address these unmet needs, we used copper-free, strain-promoted azide-alkyne
109 cycloaddition (“Click” chemistry) to construct a novel panel of SAv-drug conjugates²². Utilizing
110 a panel of Click-conjugable payloads, we generated ADCs indirectly conjugated to different
111 payloads simply by brief incubation of SAv-drug conjugates with a biotinylated antibody (Figure
112 1A). Importantly, this platform makes use of readily available reagents and supplies and does not
113 require complex instrumentation for production or purification, making in-house ADC
114 production accessible to any laboratory equipped for routine molecular biology. Herein, we
115 describe the development of this system and its application to identify the most effective
116 payloads for murine and human CD45-ADCs suitable for use as HSCT conditioning and
117 antileukemia agents.

118

119

120

121 **RESULTS**

122 ***In vitro* evaluation of CD45.2-ADCs produced from SAv-drug conjugates**

123 We selected four drug payloads for initial development and testing of the SAv-drug
124 conjugate platform: the microtubule inhibitor monomethyl auristatin E (MMAE)²³, the DNA
125 alkylating agent Duocarmycin SA (DUO)²⁴, the alkylator and nemorubicin metabolite PNU-
126 159682 (PNU)²⁵, and the PBD dimer SGD-1882 (PBD)²⁶. Each of these payloads contains
127 cathepsin-cleavable linkers to facilitate intracellular payload release and dibenzylcyclooctyne
128 (DBCO) moieties to undergo the cycloaddition reaction with azide-conjugated protein
129 (Supplemental Figure 1). Commercially prepared SAv-azide was used for these studies to
130 provide a source of conjugation-ready protein with a known number of azide groups per SAv
131 tetramer. Mass spectrometry confirmed successful conjugation of drug payload to SAv, with
132 drug-SAv ratios ranging from 0.55 to 2.5 (Supplemental Figure 2).

133 We first performed cytotoxicity testing of ADCs made with our SAv-drug conjugates
134 linked to anti-CD45.2 clone 104, which has proven to be a highly effective antibody for ADC-
135 based conditioning in mice^{8,12}. As targets for our *in vitro* assays, we used the YAC-1 cell line,
136 whole bone marrow cells from B6 mice (as a source of HSCs), and AML1 primary murine
137 leukemia cells (*Dnmt3a*^{+/R878H}/FLT3-ITD⁺; provided by Dr. Timothy Ley)²⁷. CD45.2-ADCs
138 conjugated to the DUO, PNU, and PBD payloads were cytotoxic against all target cell types
139 (Figure 1B-D); CD45.2-MMAE was ineffective against all tested target cell types, suggesting
140 MMAE would not be an effective payload for HSCT conditioning in mice. Although CD45-
141 DUO was highly effective against AML1 cells, it showed only modest potency against HSCs,
142 suggesting it too may be suboptimal for HSCT conditioning. CD45.2-PNU and CD45.2-PBD
143 were the most potent at depleting B6 HSCs, with CD45.2-PBD having a wider therapeutic

144 window when compared to our two negative control conditions (nonbiotinylated antibody plus
145 free SAv-drug conjugate or CD45.1-PBD). Thus, *in vitro* screening of CD45-ADCs made
146 possible by our SAv-drug conjugate platform vetted the PNU and PBD payloads as potentially
147 effective for depleting HSCs in preparation for transplant.

148 In the process of these initial cytotoxicity experiments, we conducted a series of quality
149 control studies to evaluate the robustness of the SAv-drug conjugate system, focusing on SAv-
150 PBD as this conjugate yielded the most effective CD45.2-targeted ADCs in our studies. First,
151 since the purpose of indirect conjugation via the SAv-drug conjugate system is to provide a fast
152 yet effective alternative to direct antibody-payload conjugation, we evaluated whether the
153 cytotoxicity of CD45.2 PBD produced with SAv-PBD was comparable to CD45.2-PBD
154 produced via direct conjugation methods. Indeed, when compared to directly conjugated ADCs
155 made using either a Click chemistry-based method or using the more standard maleimide-thiol
156 coupling chemistry, indirectly conjugated CD45.2-PBD made with SAv-PBD showed
157 comparable levels of cytotoxicity against YAC-1 cells, B6 HSCs, and AML1 cells (Supplemental
158 Figure 3). Next, we compared the activity of CD45.2-PBD conjugates made using four separate
159 batches of SAv-PBD, finding minimal lot-to-lot variability in yields, specific activity, or
160 nonspecific toxicity (Supplemental Figure 4A-B). Finally, since we routinely aliquot and store
161 SAv-drug conjugate stocks at -20°C, we subjected an aliquot of SAv-PBD to repeated freezing
162 and thawing, finding no discernible loss in activity with at least three freeze-thaw cycles
163 (Supplemental Figure 4C).

164 ***In vivo* testing of CD45.2-ADCs as conditioning agents for murine HSCT**

165 To identify the most effective candidates as conditioning agents for HSCT, we tested the
166 ability of our CD45.2-ADCs to deplete HSCs *in vivo* and evaluated their impact on complete

167 blood counts (CBC) and major peripheral leukocyte subsets. ADC doses of 60 µg were chosen
168 for these studies as this is the molar equivalent of the 75 µg dose of the indirectly conjugated
169 CD45.2-saporin ADCs we used previously¹². Acute exposure to the ADCs was generally well
170 tolerated, but reduced spleen cellularity and significant weight loss were observed with both
171 CD45.2- and CD45.1-PNU, indicating nonspecific toxicity (Figure 2A and 2B). As expected
172 from our *in vitro* cytotoxicity studies, CD45.2-PNU and CD45.2-PBD effectively depleted
173 mouse phenotypic HSCs (CD150⁺CD48⁻LSK) as well as hematopoietic stem and progenitor cells
174 (HSPCs) in the bone marrow, and markedly reduced colony forming activity (Figure 2C,
175 Supplemental Figure 5). Marrow ablation by the CD45.2-ADCs was largely due to specific
176 toxicity, as CD45.1-PNU and CD45.1-PBD conjugates did not deplete HSCs or HSPCs and only
177 partially reduced colony formation. By contrast, CD45.2-DUO, CD45.2-MMAE, and their
178 respective CD45.1 control conjugates did not markedly affect cell populations in bone marrow,
179 spleen, or peripheral blood. Given these results, CD45-PBD and CD45-PNU proceeded to testing
180 as conditioning agents for HSCT.

181 We employed a syngeneic HSCT model (B6-GFP→B6) to test the ability of CD45.2-
182 PBD and CD45.2-PNU to make marrow space for transplantation (Figure 3A). CD45.2-PBD
183 conditioning was the more effective of the two ADCs, enabling near complete conversion to
184 donor hematopoiesis among myeloid and B cells and high-level mixed chimerism among T cells
185 (Figure 3B). In contrast, despite depleting phenotypic HSCs (CD48⁻CD150⁺ LSK) as well as
186 CD45.2-PBD (Figure 2C), CD45.2-PNU enabled overall donor chimerism of ~50%. For both
187 ADCs, post-HSCT CBCs were stable and remained within the reference range for the duration of
188 the experiments (Figure 3C), and the levels of engraftment observed in peripheral blood were
189 consistent with those seen among leukocyte subsets in spleen and HSPC subsets in bone marrow

190 (Supplemental Figure 6). Notably, the degree of engraftment enabled by the isotype-matched
191 CD45.1-PBD was considerably lower than the moderately high nonspecific engraftment (up to
192 40% donor chimerism) we and others have observed previously in mice treated with isotype
193 control antibodies directly conjugated to PBD^{13,18}. Taken together, our results show PBD to be
194 our most effective payload for CD45.2-ADC-based HSCT conditioning in the mouse, being both
195 well-tolerated and showing specific ablation of HSCs with minimal depletion of mature
196 hematopoietic cells in the periphery.

197 **Evaluation of human CD45-ADCs for targeting HSCs and leukemia cells**

198 Following validation of an ADC targeting strategy in fully murine models, conducting
199 similar studies using human cells and humanized mouse models is an important next step.
200 However, many antibodies to mouse antigens do not cross-react with their human counterparts,
201 and it is possible that the optimal payload for depleting the target cell of interest may differ
202 between mouse and human. Thus, pivoting from mouse to human experiments generally requires
203 that a successful targeting strategy designed in mice be re-optimized for human cells. The SAv-
204 drug conjugate system is well-suited to bridging this gap between murine and human studies,
205 enabling the facile production and evaluation of human ADCs against a candidate target antigen.

206 To demonstrate this, we generated CD45-ADCs for cytotoxicity experiments by linking
207 SAv-drug conjugates to biotinylated anti-human CD45 antibodies. We began our studies using
208 anti-CD45 clone BC8, which is the antibody used in the radioimmunoconjugate ¹³¹I-apamistimab
209 currently in Phase III clinical trials for the treatment of AML²⁸. CD45-ADCs made with all four
210 payloads yielded similar, picomolar-range IC50 values when targeting Jurkat cells with CD45-
211 ADCs (Figure 4A). Screening of CD45-PBD conjugates made with a panel of different anti-
212 CD45 antibodies demonstrated similar efficacy between clones against Jurkat cells

213 (Supplemental Figure 7). We therefore decided to focus subsequent human cytotoxicity studies
214 on CD45-ADCs using the BC8 antibody, given that this clone has been utilized clinically, can be
215 obtained commercially, and has an available amino acid sequence to enable production of
216 recombinant antibody as needed²⁹. In studies assessing the cytotoxicity of CD45-ADC against
217 human HSCs, CD45-PBD was the only ADC tested that showed specific inhibition of colony
218 formation that surpassed the negative controls (Figure 4B).

219 We sought next to examine CD45-ADC cytotoxicity against primary human AML
220 specimens, but the difficulty of culturing primary AML cells *in vitro* is a barrier to this kind of
221 screening³⁰. However, we identified a human AML specimen in our departmental biobank that
222 had been successfully passaged and expanded in NSG-SGM3 (NSGS)³¹ mice and which
223 tolerated short-term culture and cytotoxicity testing in complete human methylcellulose medium.
224 Using this approach, we found CD45-ADCs made with all four payloads showed cytotoxicity
225 against human AML, but CD45-PBD showed the highest potency (Figure 4C). Unexpectedly,
226 ADCs with all payloads made with a mouse IgG1 isotype control showed comparable
227 cytotoxicity as the CD45-ADC towards the human AML cells. This degree of toxicity was not
228 observed with human AML cells incubated with nonbiotinylated antibody plus free SAv-drug
229 conjugate, indicating a specific issue with the payload in an antibody-bound form. A possible
230 explanation for this antibody-dependent toxicity is binding and internalization mediated by Fc
231 receptors; notably, CD32 (Fc γ RII) is highly expressed on our human AML cells, which has
232 moderate binding affinity for mouse IgG1³². A role for recognition of and toxicity by mouse
233 IgG1-PBD specifically is suggested by our preliminary observation that two additional PBD-
234 conjugated mouse IgG1 isotype control antibodies were similarly cytotoxic as CD45-PBD, but a
235 mouse IgG2b isotype antibody, to which human Fc γ RII does not bind³², showed less toxicity.

236 Finally, we tested the ability of CD45-PBD to protect against patient-derived leukemia
237 *in vivo* using humanized mouse models (Figure 5A), using the same human AML cells as were
238 used in our *in vitro* assays (Figure 4C). Since human CD45 antibody clone BC8 does not cross-
239 react with mouse CD45 and does not deplete mouse HSCs when PBD-conjugated, it can be
240 administered to mice without needing to provide stem cell support. CD45-PBD was highly
241 protective in our human AML xenograft model, delaying or preventing leukemia cell expansion
242 over the course of the experiment (Figure 5B-C). While the CD45-PBD treated mice that
243 eventually succumbed to leukemia had clear involvement of peripheral blood, bone marrow, and
244 spleen, surviving mice had no detectable human AML cells in those organs (Figure 5D).
245 Importantly, while the mouse IgG1-PBD conjugate induced significant cytotoxicity against
246 human AML *in vitro*, the same ADC provided minimal survival benefit *in vivo* compared to
247 untreated mice. Thus, our studies demonstrate that CD45-PBD provides specific antileukemia
248 benefit against patient-derived AML *in vivo*.

249 **DISCUSSION**

250 A total of thirteen ADCs are approved globally for clinical use against solid and
251 hematopoietic cancers, with dozens more currently under evaluation in clinical trials³³. However,
252 many candidate ADCs that showed promising results in preclinical studies did not successfully
253 translate to humans due to inadequate antitumor efficacy and/or unacceptable toxicities. Given
254 that ADCs use payloads that are far too toxic for standalone administration, it is anticipated that
255 even low-level systemic exposure to these compounds would be sufficient to cause adverse
256 effects³⁴. Achieving clinical benefit with acceptable toxicities therefore requires careful
257 optimization of the many variables that impact ADC function against a given target cell type,
258 including the antibody, its target antigen, the drug payload, the drug-antibody ratio, the drug

259 conjugation and linker chemistry, and the *in vivo* pharmacokinetic/pharmacodynamic behavior of
260 the conjugate³⁵. Methods that facilitate preclinical ADC optimization, encompassing both *in vitro*
261 and *in vivo* modeling, are essential to clinical translation of successful ADC candidates.

262 In this study, we developed a simple, robust method for conjugating multiple different
263 small molecule ADC payloads to SAv, enabling rapid in-house ADC production starting from a
264 biotinylated antibody or other ligand of interest. The SAv-drug conjugates yielded by this
265 process were of sufficient quantity and quality for both *in vitro* and *in vivo* studies; starting from
266 2 mg SAv-azide, average yields of ~1.2 mg conjugated protein were typical which is enough to
267 treat approximately 70 mice with 60 µg ADC (assuming a 1:1 molar ratio of biotinylated
268 antibody to SAv-drug conjugate). We believe this system will greatly streamline development of
269 ADCs for immunotherapeutic purposes, with wide-ranging applications including optimization
270 of existing ADCs, discovery of novel payloads and target antigens, and high-throughput
271 screening of antibody libraries. Furthermore, SAv may also conjugated to novel non-cytotoxic
272 payloads, enabling rapid testing of antibody conjugates with agents such as antibiotics³⁶,
273 oligonucleotides³⁷, immunomodulators³⁸, CRISPR ribonucleoproteins³⁹, or proteolysis targeting
274 chimeras (PROTACs)⁴⁰ for therapeutic effect.

275 Strategies utilizing biotin-SAv coupling for ADC screening and production have been
276 described previously but have limitations which we sought to address via development of our
277 SAv-drug conjugate platform. Commercially available SAv-saporin conjugates, for example,
278 were instrumental to our demonstration that high level donor engraftment could be achieved
279 across immunological barriers without chemotherapy or irradiation-based conditioning¹⁷.
280 However, we did not observe significant antitumor benefit of CD45-saporin as a single agent in
281 murine lymphoma or AML models^{12,18}. Furthermore, the immunogenicity of saporin and its

282 association with adverse events like vascular leak syndrome would limit the clinical utility of
283 saporin, particularly in situations where repeat ADC dosing are necessary^{41,42}. The need to
284 evaluate multiple payloads other than saporin then cost-effectively scale up the top candidates for
285 *in vivo* experiments were the main issues for which in-house development of our own SAv-drug
286 conjugates provided a practical solution. A similar strategy using SAv-conjugated antibody with
287 biotinylated payload was recently shown to yield ADCs capable of potent *in vitro* and *in vivo*
288 efficacy⁴³. A limitation of that system, however, is that relatively few payloads are commercially
289 available in biotinylated format compared to the conjugation-ready payloads available using
290 amine, thiol, or Click chemistry. Moreover, a major advantage of coupling the payload to SAv
291 rather than biotin is the ability to readily use the wide array of antibodies and recombinant
292 proteins which are either already available in biotinylated format or can be rapidly biotinylated in
293 under one hour with standard conjugation kits.

294 In our experiments, the PBD dimer SGD-1882 was the most effective payload when
295 used to target HSCs and leukemia cells with mouse and human CD45-ADCs, despite the SAv-
296 PBD conjugate having the lowest drug-SAv conjugation ratio. In contrast to previous work with
297 directly conjugated ADCs^{12,13}, minimal HSC depletion and donor engraftment were observed in
298 recipients conditioned with isotype control antibody conjugated to SAv-PBD, suggesting less
299 nonspecific toxicity. The extremely high potency of PBD dimers, coupled with their known
300 myelotoxicity, activity against both dividing and quiescent cells⁴⁴, and capacity for bystander
301 toxicity, may have enabled potent cytotoxicity towards HSCs and AML cells even at low drug
302 conjugation ratios. This, in turn, would allow sufficiently low systemic exposure to PBD to
303 mitigate off-target toxicities. The nonspecific toxicity profile of our SAv-PBD conjugates may

304 also have benefitted from the post-conjugation incubation with azide agarose, which we included
305 to maximize removal of free DBCO-coupled PBD from the final product.

306 We are currently pursuing several technical optimizations that will address limitations of
307 the current platform and improve its utility in the future. First, although cathepsin-cleavable Val-
308 Ala or Val-Cit linkers are stable in human plasma, they are susceptible to cleavage in mouse
309 plasma via by carboxylesterase 1C (CES1c)⁴⁵, leading to toxicities secondary to premature
310 payload release. This could impact whether a candidate ADC advances to further preclinical or
311 human studies or is excluded from further consideration due to unacceptable toxicities in mouse
312 models. This issue has been circumvented either using mice deficient in CES1c⁴⁶, or by
313 incorporating ADC linkers containing an acidic residue N-terminal to the valine residue which
314 are resistant to CES1c but remain sensitive to cleavage by cathepsins⁴⁷. An alternative approach
315 is the use of non-cleavable linkers⁴⁸, which would improve ADC payload stability in plasma but
316 also hamper specific payload release by requiring target cells to first degrade the antibody
317 intracellularly. However, this may be permissible for a payload like PBD whose extremely high
318 potency could offset the lower cytotoxicity resulting from less efficient intracellular payload
319 release; this would be particularly advantageous if this also minimizes accessibility of free
320 payload to healthy cells. Indeed, proof of principle for non-cleavable PBD-based ADCs was
321 provided by a study showing efficacy of HER2- and CD22-ADCs *in vitro* and *in vivo* in murine
322 breast cancer and lymphoma models, respectively⁴⁹.

323 A second modification we are pursuing is the use of monomeric SAv molecules for
324 payload conjugation. As we routinely conjugate biotinylated antibody to SAv-drug conjugates at
325 a 1:1 molar ratio, the additional unoccupied biotin binding sites of wild-type tetrameric SAv may
326 not be needed and in fact may promote aggregation by crosslinking biotinylated antibodies via

327 their multiple biotin groups. Normally, the high affinity of wild-type SAv for biotin depends on
328 its tetrameric quaternary structure, with residues from adjacent subunits strongly influencing
329 biotin binding⁵⁰. However, tetrameric SAv with only one intact, wild-type affinity biotin binding
330 site has been described⁵¹, and monomeric SAv engineered to retain a near-normal k_{off} on biotin
331 binding is commercially available. Beyond minimizing protein aggregation, a particular
332 advantage of monomeric SAv is its smaller size relative to drug payloads; this may enable
333 determination of drug-SAv conjugation ratios via SDS-PAGE rather than mass spectrometry, as
334 was possible for SAv-saporin due to the larger size of saporin (30 kDa) relative to streptavidin
335 (53 kDa).

336 Finally, an unexplored application of our SAv-drug conjugate system is the generation of
337 dual-payload ADCs. Tumor cell heterogeneity provides an opportunity for the emergence or
338 expansion of treatment-resistant clones, setting the stage for relapsed disease which generally
339 carries a dismal prognosis⁵². Synergistic combinations of ADC payloads with different
340 mechanisms of action can improve antitumor efficacy and reduce the chance for escape variants
341 to develop. Our existing SAv-drug conjugate system could be adapted for use in dual payload
342 ADCs by direct maleimide-thiol conjugation of one payload to a biotinylated antibody, followed
343 by indirect conjugation of the second payload using a SAv-drug conjugate. Alternatively, since
344 SAv natively lacks cysteine residues, recombinant SAv engineered with an N-terminal cysteine
345 and functionalized with azide groups could enable installation of dual payloads on SAv via
346 maleimide-thiol and Click chemistry, respectively. Clear demonstration of benefit for a dual-
347 payload system, however, requires careful consideration of controls, including comparisons with
348 single-payload ADCs (administered alone and together) with normalization of drug-antibody
349 ratios between treatment regimens⁵³. The modularity of the SAv-drug conjugate system could

350 facilitate demonstrations of additive or synergistic effects of a dual-payload ADC versus its
351 single payload counterparts.

352 In summary, improvements in the safety and efficacy of ADCs over the past two decades
353 has led to considerable enthusiasm in their potential as cancer therapeutics. Striking the optimal
354 balance between efficacy and toxicity remains a critical goal in improving the successful
355 translation of ADCs to the clinic. Our study offers tools we believe will enable any laboratory,
356 particularly those embarking on research involving ADC-based targeting, to develop their own
357 novel strategies that will contribute to this ongoing effort.

358 **ACKNOWLEDGMENTS**

359 This study was funded by NIH/NCI grant R35CA210084 (JFD, including a Research
360 Supplement to Promote Diversity to SPP), NIH/NCI Leukemia SPORE grant (P50CA171963;
361 JFD), NIH/NCI Leukemia SPORE Career Enhancement and Developmental Research Awards
362 (P50CA171063; SPP), an ASTCT New Investigator Award (SPP), an ASH Scholar Award (SPP),
363 awards from Gabrielle's Angel Foundation for Cancer Research (SPP), and an NCI Research
364 Specialist Award (5R50CA211466; M.P.R). Mass spectrometry analyses were performed by the
365 Mass Spectrometry Technology Access Center at the McDonnell Genome Institute
366 (MTAC@MGI) at Washington University School of Medicine, supported by the Diabetes
367 Research Center/NIH grant P30DK020579, Institute of Clinical and Translational
368 Sciences/NCATS CTSA award UL1TR002345, and Siteman Cancer Center/NCI CCSG grant
369 P30CA091842.

370 **AUTHOR CONTRIBUTIONS**

371 S.P.P. conceived the research and led the project under the mentorship of J.F.D. A.R.Y., J.K.R.,
372 and S.P.P. performed all experiments. E. C. and M.P.R. developed and optimized the human

373 AML xenograft model used in this study. A.R.Y. and S.P.P. wrote the manuscript. All authors
374 read and approved the manuscript prior to submission.

375 **DISCLOSURE OF CONFLICTS OF INTEREST**

376 J.F.D discloses the following conflicts of interest:

377 **Equity Stock/Ownership** - Magenta Therapeutics, WUGEN
378 **Consulting Fees** - Incyte, RiverVest Venture Partners
379 **Board or Advisory Committee Membership** - Cellworks Group, RiverVest Venture Partners,
380 Magenta
381 **Research Funding** - Amphivena Therapeutics, NeoImmune Tech, Macrogenics,
382 Incyte, BioLineRx, WUGEN
383 **Speaking Fees** - Incyte
384 **Patents** - WUGEN

385
386 A.R.Y., E.C., J.K.R., M.P.R., and S.P.P. have no conflicts of interest to disclose.

387

388 **MATERIALS AND METHODS**

389 **Mice**

390 All animal experiments were done in accordance with a research protocol approved by the
391 Washington University Institutional Animal Care and Use Committee. The following mouse
392 strains were used in this study, either purchased from Jackson Laboratories or bred in-house:
393 C57BL6/J (stock no. 000664), C57BL/6-Tg(UBC-GFP)30Scha/J (B6-GFP; stock no. 004353);
394 NSG-SGM3 (NSGS; stock no. 013062). All mice were maintained in a specific pathogen-free
395 barrier facility on a 12-hour light/dark cycle with water and standard chow (LabDiet 5053; Lab
396 Supply) provided *ad libitum*. Age- and sex-matched mice 6-12 weeks old were used for all
397 experiments with random assignment of individuals to treatment groups. For retroorbital
398 injections, mice were anesthetized using an isoflurane vaporizer (3% isoflurane in O₂ delivered
399 at 1 L/min) and injected with 27 or 29 Ga insulin syringes. For experiments requiring irradiation,
400 a Mark I Model 30 irradiator (¹³⁷Cs source, J.L. Shepherd and Associates,) was used; any mice
401 receiving lethal irradiation and all irradiated NSGS mice were maintained on enrofloxacin in the

402 drinking water beginning 2 days before and ending 2 weeks after irradiation. ADC-conditioned
403 mice did not receive antibiotic prophylaxis.

404 **Mouse and human cell and tissue preparation**

405 Murine spleens were processed into single-cell suspensions by gently homogenizing
406 tissues with a syringe plunger through a 70-micron filter. Bone marrow was harvested from
407 femurs and tibias by centrifugation (10,000 x g for 15 seconds) using a nested tube method as
408 previously described⁵⁴. Mouse peripheral blood was collected via submandibular bleed using
409 Goldenrod 5 mm animal lancets (MEDIPoint) into K₂EDTA microtainer tubes (BD). For all
410 specimen types, erythrocyte lysis was done using ammonium chloride-potassium bicarbonate
411 (ACK) lysis, and cell washing and storage was done using PBS + 0.5% BSA + 2 mM EDTA
412 (Running buffer).

413 Deidentified human umbilical cord blood specimens were obtained from the Cleveland
414 Cord Blood Center. Cord blood units were maintained at room temperature with mild agitation
415 until processing, which occurred within 48 hours of collection. Cord blood mononuclear cells
416 were isolated by Ficoll centrifugation and cryopreserved in 90% FBS/10% DMSO for later use.
417 For CD34⁺ purification, the EasySep Human Cord Blood CD34 Positive Selection Kit II
418 (STEMCELL Technologies) was used; following the manufacturer's protocol, CD34⁺ purities
419 >90% were routinely obtained.

420 The murine *Dnmt3a*^{R878H/+}/FLT3-ITD⁺ primary AML cells (AML1 cells; GFP⁺) were a
421 kind gift from Dr. Timothy Ley and were generated as described²⁷. Splenocytes harvested from
422 AML1 leukemia-bearing mice (>95% leukemia cells based on GFP expression) were
423 cryopreserved without further purification. For patient-derived xenograft leukemia modeling,
424 deidentified primary AML specimens were obtained from a biobank maintained by the

425 Washington University Division of Oncology and expanded via passage into NSGS mice.

426 Leukemia cell stocks were prepared by cryopreservation of splenocytes harvested from

427 leukemia-bearing mice, which were routinely >90% hCD45⁺hCD33⁺.

428 **Complete blood counts (CBC)**

429 A Hemavet 950 hematology analyzer (Drew Scientific) was used to obtain total white

430 blood cell (WBC) and WBC differential counts, hematocrit, and platelet counts from K₂EDTA-

431 anticoagulated whole blood. Reference ranges were as follows: WBC 1.8-10.7 x 10³ cells/µL,

432 Hct 35.1-45.4%, PLT 592-2972 x 10³ cells/µL. CBC data from a cohort of age- and sex-matched

433 B6 recipients (n = 12) was used for the pre-HSCT timepoint (t = 0 months).

434 **Cell culture and *in vitro* assays**

435 The YAC-1 and Jurkat cell lines were obtained from ATCC, confirmed to be

436 *Mycoplasma* negative, and maintained in R10 medium (RPMI 1640 (Corning) plus 10% FBS

437 (R&D Systems), 1X GlutaMAX (Gibco), 1X penicillin/streptomycin (Gibco), and 55 µM 2-ME

438 (Gibco)). *In vitro* ADC cytotoxicity against these cell lines was assessed using a 72-hour XTT

439 viability assay per the manufacturer's recommendations (Cell Signaling Technology) and as

440 described¹².

441 For colony forming unit (CFU) assays to measure ADC cytotoxicity against HSCs,

442 whole bone marrow cells from B6 mice or human cord blood mononuclear cells were first

443 prepared in I2 medium (IMDM (Gibco) plus 2% FBS and penicillin/streptomycin) at 2 x 10⁶

444 cells/mL, then diluted 1:10 into Eppendorf tubes containing concentration series of ADC. Next,

445 300 µL of each 1:10 dilution mix (containing cells and ADC) was added to 3mL aliquots of

446 complete mouse or human methylcellulose media (R&D Systems; HSC007 and HSC005,

447 respectively) and vortexed thoroughly. Finally, 1.1 mL of this methylcellulose suspension was

448 plated in duplicate 30 mm plates and incubated at 37°C for 8-10 days for mouse HSCs) or 10-12
449 days for human HSCs.

450 For ADC cytotoxicity studies against AML cells, murine AML1 cells or human AML
451 cells were prepared in I2 medium at 2×10^6 (mouse) or 5×10^6 cells/mL (human) and diluted
452 1:10 into Eppendorf tubes containing concentration series of ADC. Next, 50 μ L of each dilution
453 mix was added to triplicate wells in 24-well plates, then overlaid with 500 μ L of complete mouse
454 or human methylcellulose media and incubated at 37°C for 4 days (mouse) or 3 days (human).

455 **Production and mass spectrometric analysis of streptavidin-drug conjugates**

456 For production of streptavidin-drug conjugates, streptavidin-azide (SAv-azide; 2-4 azide
457 groups per tetramer, Protein Mods) at 2-5 mg/mL stock concentration in PBS was prepared for
458 payload conjugation by first adding DMSO to 20% final concentration as cosolvent.

459 Dibenzocyclooctyne (DBCO)-linked ADC toxins (Supplemental Figure 1) were obtained from
460 Levena Biopharma and included the following compounds: DBCO-PEG4-Val-Cit-PAB-
461 monomethyl auristatin E (MMAE; SET0301), DBCO-PEG4-Val-Cit-PAB-Duocarmycin SA
462 (DUO; SET0304), DBCO-PEG4-Val-Cit-PAB-DMAE-PNU159682 (SET0313), and DBCO-
463 PEG4-Val-Ala-pyrrolobenzodiazepine (PBD, specific payload molecule SGD-1882; SET0306).
464 All payloads contained cleavable valine-citrulline or valine-alanine linkers to enable endosomal
465 cathepsin-mediated payload release after ADC internalization. Payloads were prepared for
466 conjugation by first dissolving them in DMSO at 10 mM (200 nmol payload in 20 μ L DMSO).

467 Streptavidin-azide and DBCO-linked payloads were conjugated via a copper-free azide-
468 alkyne cycloaddition (“Click” reaction; Figure 1A). Briefly, 2 mg SAv-azide (37.7 nmol) in 20%
469 DMSO in PBS was mixed with 200 nmol payload at 10 mM in DMSO and incubated 6 hours at
470 20°C with gentle mixing. After removal of any precipitate by centrifugation (15000 x g, 3

471 minutes), the supernatant was desalted using Zeba 7 kDa spin columns (ThermoFisher) to
472 remove free payload. As an additional cleanup step, SAv-drug conjugation reactions were next
473 incubated for 1 hour with 100 μ L azide agarose slurry with gentle mixing (50 μ L packed resin;
474 Click Chemistry Tools/Vector Laboratories), after which the resin was removed using Spin-X
475 columns (Corning). Reaction mixtures were concentrated down to between 0.5-1 mL volume
476 using Amicon 4 mL 10 kDa concentrators (Millipore) then dialyzed using Slide-a-Lyzer MINI 10
477 kDa dialysis devices (ThermoFisher) per the manufacturer's recommendations. After dialysis,
478 SAv-drug conjugate concentrations were quantified by BCA assay, resuspended at 1 mg/mL in
479 PBS, sterile filtered with an 0.22 um PES membrane, and stored at -20°C. An Exploris 480
480 Orbitrap instrument (Thermo Scientific) was used to obtain mass spectra for SAv-drug
481 conjugates, with UniDec peak deconvolution used to determine the drug-SAv conjugation ratio.

482 **Production of directly conjugated CD45.2 antibody-drug conjugates**

483 To produce CD45.2-ADCs with drug payloads directly conjugated via Click chemistry,
484 antibodies were first reacted with NHS-azide (ThermoFisher) per the manufacturer's
485 instructions. Successful attachment of azide groups to antibodies was confirmed by a test
486 conjugation with DBCO-AZDye (Click Chemistry Tools/Vector Laboratories) followed by
487 detection of fluor-conjugated antibodies using UltraComp eBeads (ThermoFisher). Azide-
488 conjugated CD45.2 antibody (4.5 mg each) was then reacted 6 hours with DBCO-linked PBD
489 and purified with the same protocol used for producing SAv-PBD (desalting, azide-agarose
490 incubation, concentration, dialysis, and filter sterilization). To produce CD45.2-ADCs with drug
491 payloads directly conjugated with maleimide-thiol chemistry, 5 mg antibody was reduced with
492 Bond-Breaker TCEP solution (ThermoFisher) for 1 hour at 37°C then desalted with Zeba 7 kDa
493 spin columns to remove TCEP. Reduced antibodies were then reacted 6 hours with MA-PEG4-

494 Val-Ala-PBD (maleimide-linked PBD using SGD-1882 payload; Levena Biopharma SET0212)
495 then purified with the same protocol for SAv-PBD except without an azide-agarose incubation.

496 **Conjugation of biotinylated antibodies to streptavidin-drug conjugates**

497 Streptavidin-drug conjugates were mixed in a 1:1 molar ratio with biotinylated
498 antibodies and incubated for 15 minutes at 20°C to produce the indirectly conjugated ADCs used
499 in this study. For conversions between mass and molar concentrations, an approximate molecular
500 weight of 210 kDa was used (150 kDa for IgG plus 60 kDa for SAv-drug conjugates). ADCs
501 were prepared using biotinylated anti-mouse CD45.2 (clone 104; BioLegend), anti-human CD45
502 (clones T29/33 and BC8 from Leinco Technologies; clones 2D1 and HI30 from BioLegend).
503 Biotinylated isotype control antibodies (BioLegend) were used to produce control ADCs,
504 including anti-mouse CD45.1 (clone A20; control for anti-mouse CD45.2), mouse IgG2b (clone
505 MG2b-57; control for anti-human CD45 clone T29/33), and mouse IgG1 (clone MOPC-21;
506 control for anti-human CD45 antibody clones HI30, BC8, and 2D1).

507 After the 15 minute conjugation reaction, ADCs were diluted to the desired
508 concentration in culture medium for *in vitro* assays, or endotoxin-free PBS for *in vivo*
509 administration. All antibodies formulated with sodium azide were exchanged into PBS with Zeba
510 7 kDa spin columns prior to ADC production. For some *in vitro* experiments, cells were treated
511 with nonbiotinylated antibody plus free SAv-drug conjugate to demonstrate that interaction of
512 antibody with payload was required for cytotoxicity.

513 ***In vivo* murine HSC depletion and syngeneic HSCT model**

514 For terminal HSC depletion studies, B6 mice were infused with 60 µg ADC via retroorbital
515 injection, then sacrificed 7 days later to assess CBCs, HSC and immune cell depletion from
516 spleen and bone marrow. Body weights were recorded immediately before ADC infusion and

517 upon sacrifice. For syngeneic HSCT experiments, B6 recipient mice were treated with 60 μ g
518 ADC then infused 6 days later with 10×10^6 B6-GFP whole bone marrow cells. A 6-day interval
519 between ADC treatment and HSCT was chosen (compared to the 7-day interval in terminal HSC
520 depletion studies) to reduce peritransplant morbidity from cytopenias that developed in mice
521 conditioned with the CD45.2-PNU and CD45.2-PBD conjugates (Figure 2D).

522 **Human patient derived xenograft model**

523 To assess the antileukemia function of ADCs, 3×10^6 patient-derived leukemia cells (expanded
524 via passage in NSGS mice and cryopreserved) were infused into sublethally irradiated (250 cGy)
525 NSGS mice. Seven days later, recipients received 60 μ g CD45- or isotype control ADC and were
526 followed longitudinally for survival, CBCs, and leukemia burden in peripheral blood.

527 **Data analysis and statistics**

528 All statistical analyses were performed using GraphPad Prism version 10. Normality testing was
529 done with the Shapiro-Wilk test. IC50 values for *in vitro* cytotoxicity studies (XTT viability
530 assays, colony forming assays, AML cell culture in methylcellulose) were obtained by curve
531 fitting the data via nonlinear regression with a three-parameter inhibition model. For comparison
532 of CBC values with the lower reference limit, a one-sample Student's *t* test was used. For
533 pairwise comparisons of multiple groups against a single control group, a one-way ANOVA with
534 Dunnett's multiple comparisons test (normally distributed data) or a Kruskal-Wallis test with
535 Dunn's multiple comparisons test (non-normally distributed data) was used. For pairwise
536 comparisons across three or more groups, a one-way ANOVA with Tukey's multiple
537 comparisons test (normally distributed data) or the Kruskal-Wallis test with Dunn's multiple
538 comparisons test (non-normally distributed data) was used. Longitudinal donor chimerism
539 analysis was analyzed using a mixed effects model for repeated measures. Survival was analyzed

540 using a Mantel-Cox log rank test. The criterion for statistical significance for all experiments was
541 $p < 0.05$.

542 **REFERENCES**

543

- 544 1. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell
545 transplantation: one size does not fit all. *Blood*. 2014;124(3):344-353.
- 546 2. Bacigalupo A, Ballen K, Rizzo D, et al. Defining the intensity of conditioning regimens:
547 working definitions. *Biol Blood Marrow Transplant*. 2009;15(12):1628-1633.
- 548 3. Scott BL, Pasquini MC, Logan BR, et al. Myeloablative Versus Reduced-Intensity
549 Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic
550 Syndromes. *J Clin Oncol*. 2017;35(11):1154-1161.
- 551 4. Bhalla N, Bhargav A, Yadav SK, Singh AK. Allogeneic hematopoietic stem cell
552 transplantation to cure sickle cell disease: A review. *Front Med (Lausanne)*.
553 2023;10:1036939.
- 554 5. Griffin JM, Healy FM, Dahal LN, Floisand Y, Woolley JF. Worked to the bone: antibody-
555 based conditioning as the future of transplant biology. *J Hematol Oncol*. 2022;15(1):65.
- 556 6. Arai Y, Choi U, Corsino CI, et al. Myeloid Conditioning with c-kit-Targeted CAR-T Cells
557 Enables Donor Stem Cell Engraftment. *Mol Ther*. 2018;26(5):1181-1197.
- 558 7. Czechowicz A, Palchaudhuri R, Scheck A, et al. Selective hematopoietic stem cell
559 ablation using CD117-antibody-drug-conjugates enables safe and effective
560 transplantation with immunity preservation. *Nat Commun*. 2019;10(1):617.
- 561 8. Palchaudhuri R, Saez B, Hoggatt J, et al. Non-genotoxic conditioning for hematopoietic
562 stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.
563 *Nat Biotechnol*. 2016;34(7):738-745.
- 564 9. Uchida N, Stasula U, Demirci S, et al. Fertility-preserving myeloablative conditioning
565 using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model. *Nat
566 Commun*. 2023;14(1):6291.
- 567 10. George BM, Kao KS, Kwon HS, et al. Antibody Conditioning Enables MHC-
568 Mismatched Hematopoietic Stem Cell Transplants and Organ Graft Tolerance. *Cell Stem
569 Cell*. 2019;25(2):185-192 e183.
- 570 11. Li Z, Czechowicz A, Scheck A, Rossi DJ, Murphy PM. Hematopoietic chimerism and
571 donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-
572 conjugate conditioning in MHC-mismatched allogeneic transplantation. *Nat Commun*.
573 2019;10(1):616.
- 574 12. Persaud SP, Ritchey JK, Kim S, et al. Antibody-drug conjugates plus Janus kinase
575 inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. *J
576 Clin Invest*. 2021;131(24).
- 577 13. Saha A, Hyzy S, Lamothe T, et al. A CD45-targeted antibody-drug conjugate successfully
578 conditions for allogeneic hematopoietic stem cell transplantation in mice. *Blood*.
579 2022;139(11):1743-1759.
- 580 14. Mahalingaiah PK, Ciurlionis R, Durbin KR, et al. Potential mechanisms of target-
581 independent uptake and toxicity of antibody-drug conjugates. *Pharmacol Ther*.
582 2019;200:110-125.

583 15. Gao C, Schroeder JA, Xue F, et al. Nongenotoxic antibody-drug conjugate conditioning
584 enables safe and effective platelet gene therapy of hemophilia A mice. *Blood Adv.*
585 2019;3(18):2700-2711.

586 16. Castiello MC, Bosticardo M, Sacchetti N, et al. Efficacy and safety of anti-CD45-saporin
587 as conditioning agent for RAG deficiency. *J Allergy Clin Immunol.* 2020.

588 17. Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin:
589 Converting Biotinylated Materials into Targeted Toxins. *Toxins (Basel).* 2023;15(3).

590 18. Persaud SP, Yelamali AR, Ritchey JK, DiPersio JF. Fully Myeloablative Antibody-Drug
591 Conjugates Condition for Hematopoietic Stem Cell Transplantation and Provide Durable
592 Antileukemia Benefit. *Blood.* 2022;140(Supplement 1).

593 19. Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory
594 diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2
595 trial. *Lancet Oncol.* 2021;22(6):790-800.

596 20. Stein EM, Walter RB, Erba HP, et al. A phase 1 trial of vadastuximab talirine as
597 monotherapy in patients with CD33-positive acute myeloid leukemia. *Blood.*
598 2018;131(4):387-396.

599 21. Lam I, Pilla Reddy V, Ball K, Arends RH, Mac Gabhann F. Development of and insights
600 from systems pharmacology models of antibody-drug conjugates. *CPT Pharmacometrics
601 Syst Pharmacol.* 2022;11(8):967-990.

602 22. Peplow M. Click chemistry targets antibody-drug conjugates for the clinic. *Nat
603 Biotechnol.* 2019;37(8):835-837.

604 23. Chang HP, Cheung YK, Shah DK. Whole-Body Pharmacokinetics and Physiologically
605 Based Pharmacokinetic Model for Monomethyl Auristatin E (MMAE). *J Clin Med.*
606 2021;10(6).

607 24. Felber JG, Thorn-Seshold O. 40 Years of Duocarmycins: A Graphical Structure/Function
608 Review of Their Chemical Evolution, from SAR to Prodrugs and ADCs. *JACS Au.*
609 2022;2(12):2636-2644.

610 25. Mazzini S, Scaglioni L, Mondelli R, Caruso M, Sirtori FR. The interaction of
611 nemorubicin metabolite PNU-159682 with DNA fragments d(CGTACG)(2),
612 d(CGATCG)(2) and d(CGCGCG)(2) shows a strong but reversible binding to G:C base
613 pairs. *Bioorg Med Chem.* 2012;20(24):6979-6988.

614 26. Hartley JA, Flynn MJ, Bingham JP, et al. Pre-clinical pharmacology and mechanism of
615 action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of
616 antibody-drug conjugate (ADC) payload tesirine. *Sci Rep.* 2018;8(1):10479.

617 27. Di Martino O, Niu H, Hadwiger G, et al. Endogenous and combination retinoids are
618 active in myelomonocytic leukemias. *Haematologica.* 2021;106(4):1008-1021.

619 28. Tomlinson BK, Reddy V, Berger MS, Spross J, Lichtenstein R, Gyurkocza B. Rapid
620 reduction of peripheral blasts in older patients with refractory acute myeloid leukemia
621 (AML) using reinduction with single agent anti-CD45 targeted iodine (131I)
622 apamistamab [Iomab-B] radioimmunotherapy in the phase III SIERRA trial. *Journal of
623 Clinical Oncology.* 2019;37(15_suppl):7048-7048.

624 29. Lin Y, Pagel JM, Axworthy D, Pantelias A, Hedin N, Press OW. A genetically engineered
625 anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted
626 radioimmunotherapy of hematologic malignancies. *Cancer Res.* 2006;66(7):3884-3892.

627 30. Cucchi DGJ, Groen RWJ, Janssen J, Cloos J. Ex vivo cultures and drug testing of
628 primary acute myeloid leukemia samples: Current techniques and implications for
629 experimental design and outcome. *Drug Resist Updat.* 2020;53:100730.

630 31. Wunderlich M, Chou FS, Sexton C, et al. Improved multilineage human hematopoietic
631 reconstitution and function in NSGS mice. *PLoS One.* 2018;13(12):e0209034.

632 32. Temming AR, Bentlage AEH, de Taeye SW, et al. Cross-reactivity of mouse IgG
633 subclasses to human Fc gamma receptors: Antibody deglycosylation only eliminates
634 IgG2b binding. *Mol Immunol.* 2020;127:79-86.

635 33. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates
636 come of age in oncology. *Nat Rev Drug Discov.* 2023;22(8):641-661.

637 34. Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting TROP-2 and
638 incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. *MAbs.*
639 2019;11(6):987-995.

640 35. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for
641 targeted cancer therapy. *Signal Transduct Target Ther.* 2022;7(1):93.

642 36. Cavaco M, Castanho M, Neves V. The Use of Antibody-Antibiotic Conjugates to Fight
643 Bacterial Infections. *Front Microbiol.* 2022;13:835677.

644 37. Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A
645 Twist to Antibody-Drug Conjugates. *J Clin Med.* 2021;10(4).

646 38. He L, Wang L, Wang Z, et al. Immune Modulating Antibody-Drug Conjugate (IM-ADC)
647 for Cancer Immunotherapy. *J Med Chem.* 2021;64(21):15716-15726.

648 39. Ubiparipovic S, Christ D, Rouet R. Antibody-mediated delivery of CRISPR-Cas9
649 ribonucleoproteins in human cells. *Protein Eng Des Sel.* 2022;35.

650 40. Maneiro MA, Forte N, Shchepinova MM, et al. Antibody-PROTAC Conjugates Enable
651 HER2-Dependent Targeted Protein Degradation of BRD4. *ACS Chem Biol.*
652 2020;15(6):1306-1312.

653 41. Pasqualucci L, Flenghi L, Terenzi A, et al. Immunotoxin therapy of hematological
654 malignancies. *Haematologica.* 1995;80(6):546-556.

655 42. Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A. Saporin-S6: a useful tool
656 in cancer therapy. *Toxins (Basel).* 2013;5(10):1698-1722.

657 43. Hoffmann RM, Mele S, Cheung A, et al. Rapid conjugation of antibodies to toxins to
658 select candidates for the development of anticancer Antibody-Drug Conjugates (ADCs).
659 *Sci Rep.* 2020;10(1):8869.

660 44. Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in
661 antibody-drug conjugate development. *Pharmacol Ther.* 2022;229:107917.

662 45. Balamkundu S, Liu CF. Lysosomal-Cleavable Peptide Linkers in Antibody-Drug
663 Conjugates. *Biomedicines.* 2023;11(11).

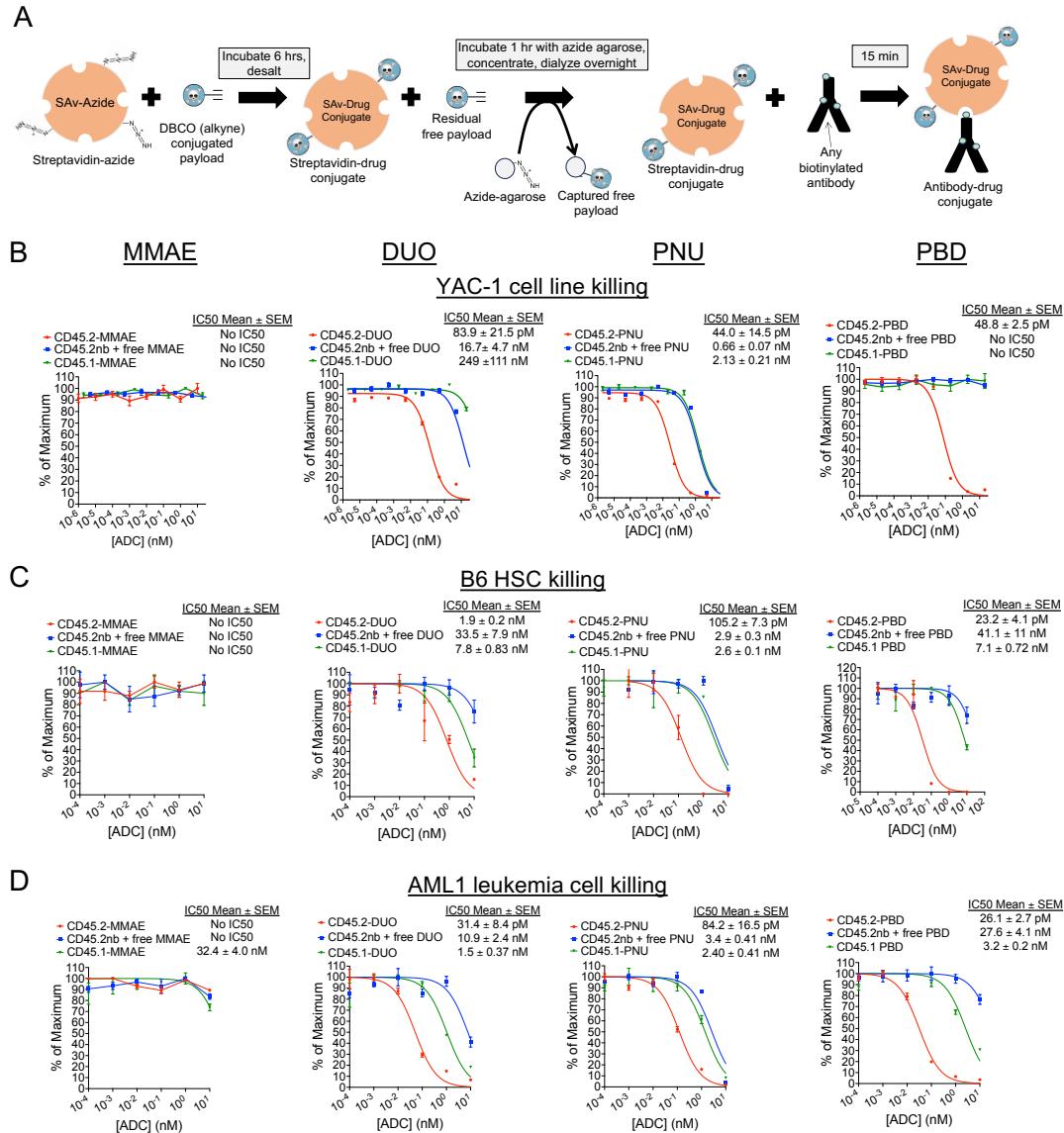
664 46. Ubink R, Dirksen EHC, Rouwette M, et al. Unraveling the Interaction between
665 Carboxylesterase 1c and the Antibody-Drug Conjugate SYD985: Improved Translational
666 PK/PD by Using Ces1c Knockout Mice. *Mol Cancer Ther.* 2018;17(11):2389-2398.

667 47. Anami Y, Yamazaki CM, Xiong W, et al. Glutamic acid-valine-citrulline linkers ensure
668 stability and efficacy of antibody-drug conjugates in mice. *Nat Commun.* 2018;9(1):2512.

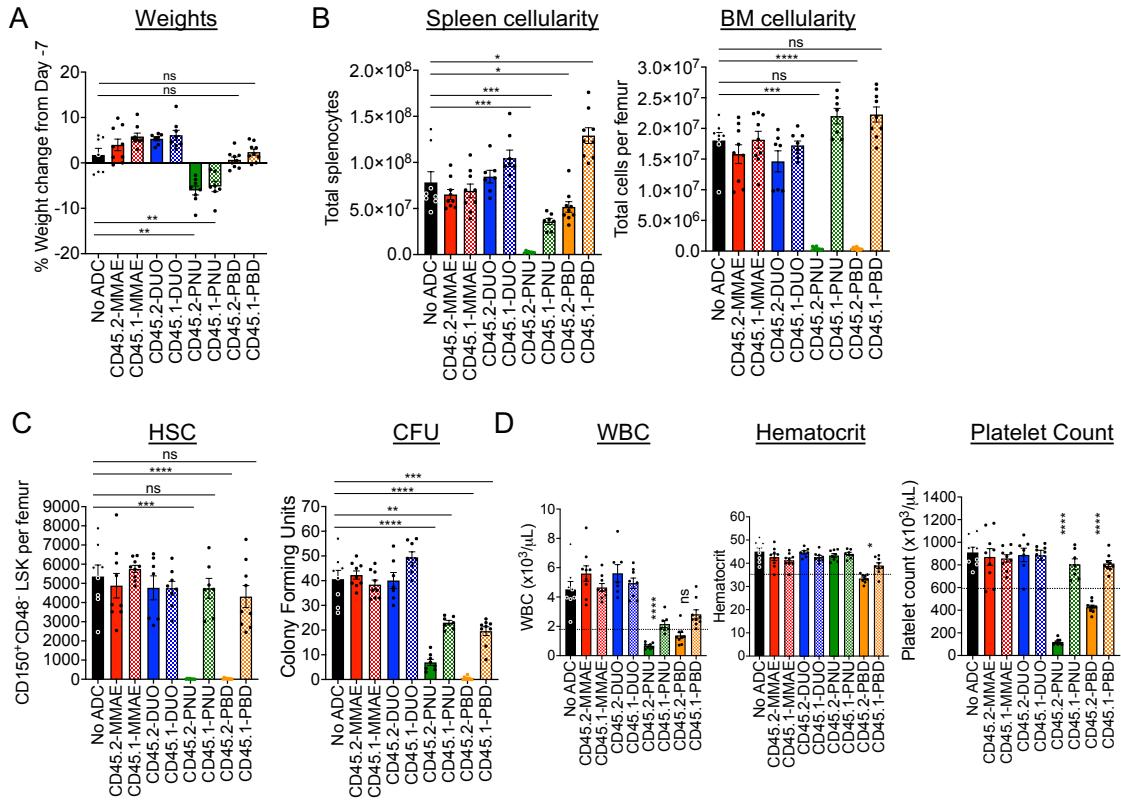
669 48. Su Z, Xiao D, Xie F, et al. Antibody-drug conjugates: Recent advances in linker
670 chemistry. *Acta Pharm Sin B.* 2021;11(12):3889-3907.

671 49. Gregson SJ, Masterson LA, Wei B, et al. Pyrrolobenzodiazepine Dimer Antibody-Drug
672 Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. *J Med Chem.*
673 2017;60(23):9490-9507.

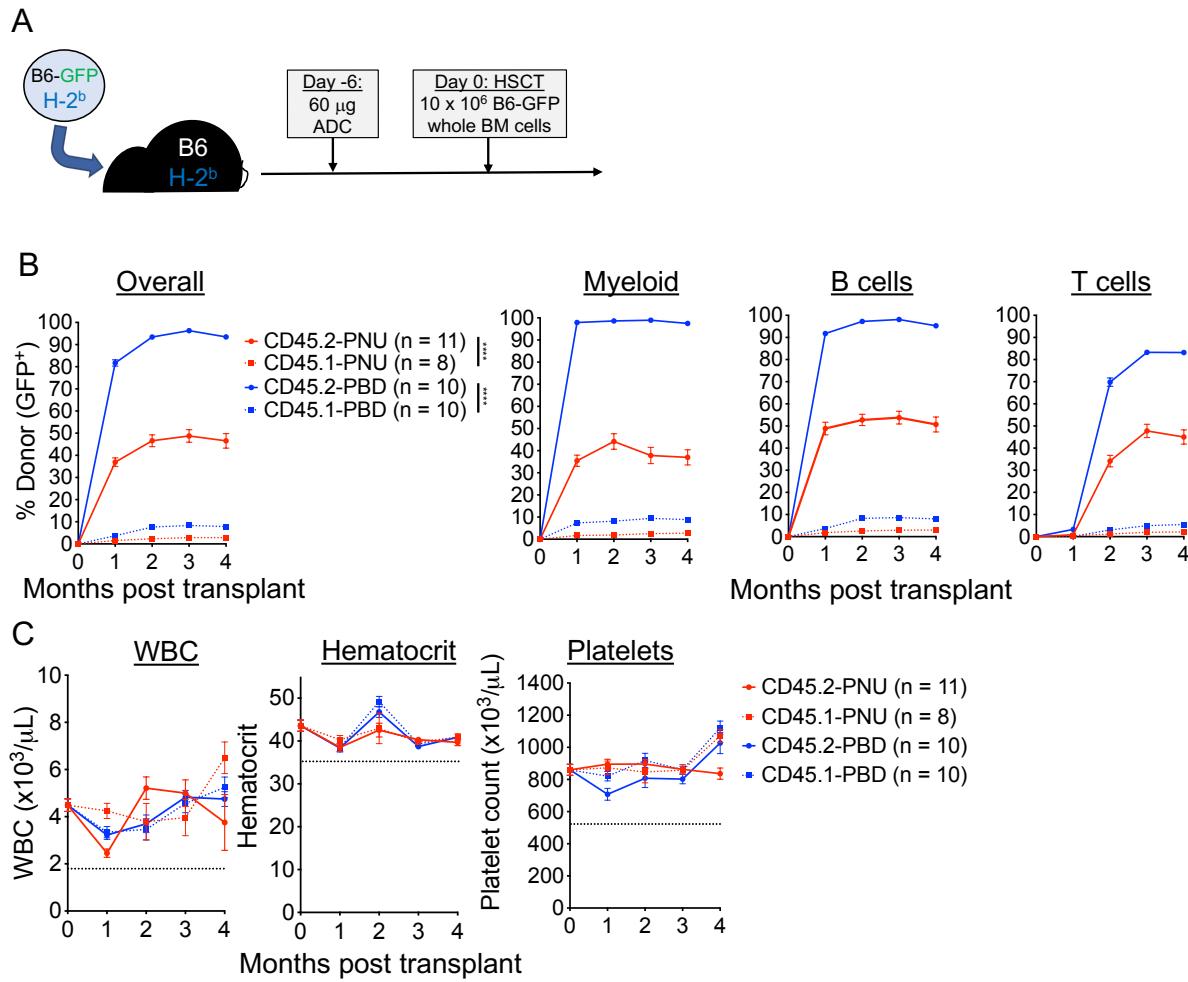
674 50. Sano T, Cantor CR. Intersubunit contacts made by tryptophan 120 with biotin are
675 essential for both strong biotin binding and biotin-induced tighter subunit association of
676 streptavidin. *Proc Natl Acad Sci U S A.* 1995;92(8):3180-3184.

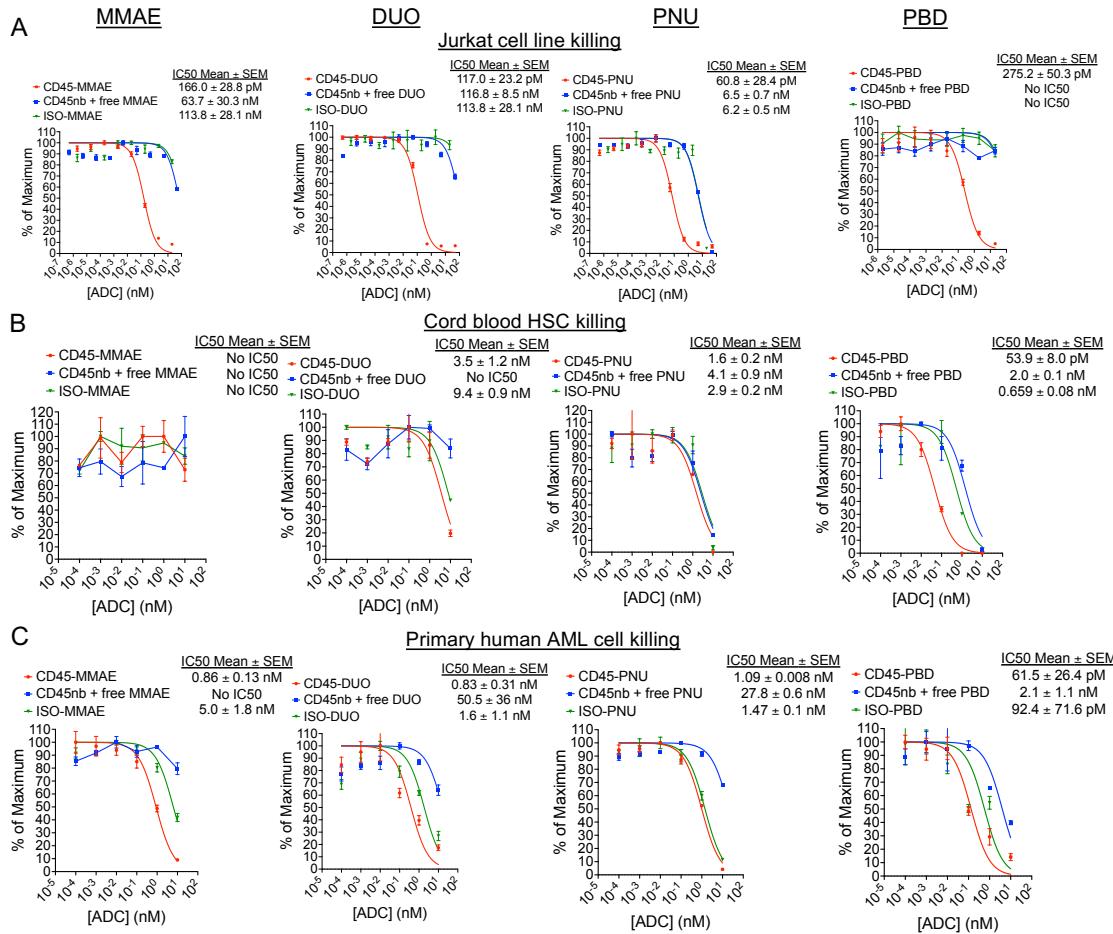

677 51. Howarth M, Chinnappen DJ, Gerrow K, et al. A monovalent streptavidin with a single
678 femtomolar biotin binding site. *Nat Methods.* 2006;3(4):267-273.

679 52. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. *Nat*
680 *Rev Clin Oncol.* 2018;15(2):81-94.


681 53. Yamazaki CM, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual
682 payloads for combating breast tumor heterogeneity and drug resistance. *Nat Commun.*
683 2021;12(1):3528.

684 54. Amend SR, Valkenburg KC, Pienta KJ. Murine Hind Limb Long Bone Dissection and
685 Bone Marrow Isolation. *J Vis Exp.* 2016(110).


686


Figure 1. Streptavidin-drug conjugates with DUO, PNU, and PBD payloads yield CD45.2-ADCs that are cytotoxic against murine cell lines, primary HSCs, and AML cells. (A) Schema for production of streptavidin-drug conjugates. **(B-D)** Cytotoxicity assays of anti-CD45.2-ADC (biotinylated antibody plus streptavidin-drug conjugate), nonbiotinylated (nb) anti-CD45.2 plus free streptavidin-drug conjugate, or CD45.1-ADC (biotinylated isotype control antibody plus streptavidin-drug conjugate) against YAC-1 cells (B), HSCs from B6 mice (C), and AML1 primary leukemia cells (*Dnmt3a*^{R878H/+}, *FLT3-ITD*⁺) (D). Data points represent mean ± SEM of duplicate CFU plates (panel C) or triplicate wells (panels B and D) taken from one representative of at least three independent experiments.

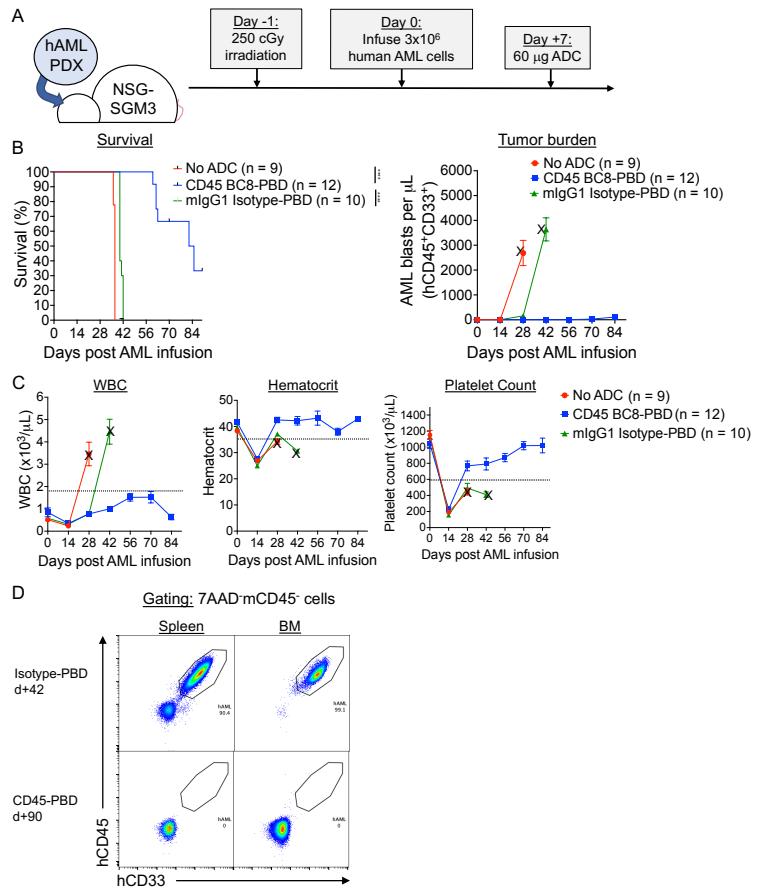

Figure 2. CD45.2-PNU and CD45.2-PBD deplete B6 HSCs *in vivo*, with greater nonspecific toxicities for the PNU payload. B6 mice were either untreated (No ADC) or treated with 60 μg ADC produced by combining the indicated biotinylated antibodies with SAv-drug conjugates. Mice were then sacrificed 7 days later (Day 0) and analyzed. **(A)** Weight change on Day 0 compared to immediately before ADC treatment on Day -7. **(B)** Total cellularity of spleen and bone marrow. **(C)** Counts of CD48⁻CD150⁺ Lin⁻Sca1⁺c-Kit⁺ cells in bone marrow (SLAM-LSK population; HSC), and total CFU from bone marrow of ADC-treated mice assessed after an 8-day incubation in complete mouse methylcellulose. **(D)** Complete blood counts; dotted lines indicate the lower end of the reference range for each cell count. For all panels, each data point represents a single mouse, and bars represent mean \pm SEM from mice accumulated over three independent experiments. Statistics: One-way ANOVA with Dunnett's multiple comparisons test (normally distributed datasets) or Kruskal-Wallis test with Dunn's multiple comparisons test (non-normally distributed datasets); ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.

Figure 3. CD45.2-PBD enables syngeneic HSCT with near complete conversion to donor chimerism. (A) Schema for syngeneic HSCT of GFP-labeled B6 whole bone marrow into B6 mice, using CD45.2-ADCs made with SAv-drug conjugates for conditioning. **(B and C)** Longitudinal peripheral blood donor chimerism overall and by lineage (B) and CBCs (C) in recipients conditioned with CD45.2-PNU, CD45.2-PBD, or their respective CD45.1-bound (isotype control) conjugates. Data points indicate mean \pm SEM from mice accumulated over two independent experiments. Statistics: Mixed effects model for repeated measures (Panel B); *** = $p < 0.0001$.

Figure 4. Human CD45-PBD effectively targets and kills human HSC and AML cells *in vitro*. (A-C) Cytotoxicity assays of CD45-ADC produced from anti-CD45 clone BC8 (biotinylated antibody plus streptavidin-drug conjugate), nonbiotinylated (nb) BC8 antibody plus free streptavidin-drug conjugate, or mouse IgG1-ADC (biotinylated isotype control antibody plus streptavidin-drug conjugate) against Jurkat cells (A), cord blood derived mononuclear cells (B), and patient-derived leukemia cells (C). Data points represent mean \pm SEM of duplicate CFU plates (panel B) or triplicate wells (panels A and C) taken from one representative of at least two independent experiments.

Figure 5. Human CD45-PBD produced from SAv-drug conjugates and anti-CD45 clone BC8 prolongs survival in AML patient-derived xenograft model. (A) Schema for patient-derived xenograft (PDX) AML model in NSGS mice and treatment with CD45-PBD. **(B-C)** Survival and absolute blast count (human CD45 $^+$ CD33 $^+$ cells) in peripheral blood **(B)** and CBCs **(C)**. Death or euthanasia of all individuals in a treatment group is indicated by “X.” **(D)** Flow cytometry of spleen and BM demonstrating the absence of leukemia cells in surviving CD45-PBD at d+90 versus Isotype-PBD treated mice that succumbed to leukemia at d+42. Plots in panel **(D)** are gated on 7AAD $^+$ mCD45 $^+$ cells. Numerical data are presented as mean \pm SEM of mice accumulated over three independent experiments. Statistics: Mantel-Cox log rank test (panel A); *** = $p < 0.0001$