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Abstract

Machine learning (ML) is revolutionizing our ability to model the fitness landscape of protein se-
quences, which is critical to answering fundamental life science questions and addressing important
protein engineering applications, such as quantifying the pathogenicity of disease variants, forecasting
viral evolution in a pandemic, and engineering new antibodies. Recently, the protein language model
(pLM) has emerged as an effective ML tool in deciphering the intrinsic semantics of protein sequences and
become the foundation of state-of-the-art ML solutions for many problems in protein biology. However,
significant challenges remain in leveraging pLMs for protein fitness prediction, in part due to the disparity
between the scarce number of sequences functionally characterized by high-throughput assays and the
massive data samples required for training large pLMs. To bridge this gap, we introduce Contrastive Fit-
ness Learning (ConFit), a pLM-based ML method for learning the protein fitness landscape with limited
experimental fitness measurements as training data. We propose a novel contrastive learning strategy
to fine-tune the pre-trained pLM, tailoring it to achieve protein-specific fitness prediction while avoiding
overfitting, even when using a small number (low-N) of functionally assayed mutant sequences for super-
vised fine-tuning. Evaluated across over 30 benchmark datasets of protein fitness, ConFit consistently
provided accurate fitness predictions and outperformed several competitive baseline methods. Further
analysis revealed that ConFit’s capability of low-N learning enabled sample-efficient active learning for
identifying high-fitness protein variants. Collectively, our work represents a novel strategy to harness the
potential of pLMs to elucidate the protein sequence-function relationship. The source code of ConFit is
available at https://github.com/luo-group/ConFit.
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1 Introduction

Evolution has shaped natural proteins to perform vital functions in life science and address pressing applica-
tions ranging from developing targeted therapeutics1 to engineering herbicide-resistant crops2 and sustain-
able biocatalysis3. The function capabilities of naturally occurring proteins are further expanded through
a biotechnology technique known as protein engineering, which enhances a natural protein’s original func-
tion (e.g., improving an enzyme’s catalytic activity4) or repurposes it to a different but related function
(e.g., repurposing an antibody to target a new virus5), often by introducing “beneficial” mutations into the
protein’s amino acid sequence. A protein’s function is encoded by its amino acid sequence, and the sequence-
fitness landscape maps out the relationships between a protein sequence and function. The goal of protein
engineering is to search this landscape for high-fitness sequences. Here. ‘fitness’ broadly refers to protein
properties such as ligand-binding affinity, stability, or catalytic activity. Despite the success in practice6;7,
using protein engineering to design or discover new novel proteins with desired functions is still challenging
because i) the laboratory experiments are time- and resource-intensive and ii) the sequence search space is
astronomically large (scaling exponentially with protein length).

Machine learning (ML) has emerged as an effective approach to infer the sequence-fitness relationship.
Used as surrogate models, ML methods, including both supervised and unsupervised models, predict the
properties of proteins more rapidly and less expensively than wet-lab experiments, reducing the overall ex-
perimental burden in protein engineering. Unsupervised generative ML models have been developed to learn
the intrinsic semantics in naturally occurring protein sequences. Although not labeled with measurements
for the property of interest, those sequences are subjected to evolutionary pressure and implicitly encode
sequence constraints that are prerequisites for protein fitness. To capture those constraints, unsupervised
approaches often fit a probability density model (e.g., hidden Markov models8, Potts models9–19, latent vari-
able models20–22, and protein language models23–29) on natural sequences – either homologous sequences of
the target protein or massive natural protein sequences from databases such as UniProt30 – to estimate the
occurrence probability p(x) of a particular sequence x as a proxy of its fitness9.

Supervised models are particularly useful for explicitly learning the sequence-fitness relationship when
paired data of variant sequences and experimental fitness are richly available, often outperforming unsuper-
vised models31–34. Yet, their effectiveness is constrained by the scarcity of fitness data. Screening variant
fitness can be lab-intensive and require developing tailored assays for a specific function, with typical ex-
periments yielding only 100-103 labeled variants. However, modern ML models such as neural networks are
notoriously data-hungry and often require >105 training samples. While high-throughput assays can screen
fitness at scale, they may compromise fidelity for throughput35, and not all proteins have high-throughput
assays. This gap has spurred the development of ML models that can make accurate fitness predictions even
with small-size (‘low N ’) training data. A common strategy is to leverage unsupervised models to capture
general sequence patterns across natural proteins, which hold implications for functions, and then adapt
those models using low-N fitness data to make supervised, protein-specific fitness prediction36–38.

Protein language models (pLMs), in particular, are effective unsupervised models used in existing low-N
fitness prediction methods36–38 for learning sequence semantics that are likely to occur in natural proteins.
Interestingly, even without fitness-labeled data, pLMs have shown accurate strong performance in predicting
the effects of amino acid substitutions in protein sequences, correlating well with experimentally measured
fitness data39–43. Given their promising predictive capacity, we reason that with even a small number of
fitness data, pLMs could be fine-tuned into more accurate supervised models. However, directly fine-tuning
a pLM (typically with ∼109 parameters) on sparse low-N data (∼102 samples) will likely lead to overfitting,
abruptly distorting its learned sequence patterns during pre-training – a phenomenon known as catastrophic
forgetting in ML44. Despite its prevalence in ML-guided protein engineering, only a few studies attempted
to tackle it, often compromising prediction accuracy to avoid overfitting31;36.

Here, we introduce ConFit (Contrastive Fitness Learning), an ML algorithm that effectively reprograms
a pre-trained pLM to high-accuracy, sample-efficient fitness prediction model under low-N settings. Our
method represents a new paradigm of pLM fine-tuning, which preserves the evolutionary patterns the pLM
has learned during pre-training while effectively incorporating small-size fitness data to enable specific and
accurate fitness predictions without overfitting. Recognizing that in ML-guided protein engineering (MLPE),
ranking variants by their fitness is more crucial than predicting exact fitness values for individual variants, we
shift from traditional regression36;37 to a contrastive learning approach. Our method calibrates the pLM to
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predict the relative fitness order between pairwise variants rather than their absolute fitness values. This not
only expands the effective training set quadratically but also circumvents catastrophic forgetting effectively.
Benchmarking on over 30 mutagenesis datasets of protein fitness, we showed that ConFit can accurately
predict protein fitness even with only N=48 fitness-labeled sequences as training data, outperforming other
unsupervised and supervised models. The outstanding low-N prediction capability of our method also
enabled a sample-efficient active learning loop for identifying function-enhanced variants. We expect ConFit
to be a practically useful tool for guiding and accelerating protein engineering, especially for applications
where experimental fitness screening is costly.

2 Protein Language Models for Fitness Prediction: Revisited

The advent of ChatGPT and subsequent LLMs45–48 has not only revolutionized natural language processing
but has also had a transformative impact on computational biology through the development of protein
language models (pLMs)23–29. pLMs adopt LLM strategies, applying self-supervised learning to predict
masked amino acids in protein sequences given other residues as context, uncovering patterns indicative
of natural protein grammar. Many state-of-the-art ML algorithms for protein biology now rely on pLMs,
from the prediction of protein structure28 to protein properties like solubility49, stability24, and binding
affinity43, with particular effectiveness in protein fitness prediction27;34;43. The success of pLMs hinges on
their extensive model size and the massive training data, allowing for learning general patterns across natural
proteins that transfer well to other problems where labeled data are limited.

Formally, we denote the amino acid (AA) sequence of a protein by x = (x1, . . . , xL) ∈ XL, where xi

is the i-th AA, L the sequence length, and X the alphabet of possible AAs (e.g., the 20 standard AAs).
Masked pLMs27;28 aims to learn the conditional probability p(xi|x−i) of an AA appearing at a given position,
conditioned on the sequence excluding that position, where x−i = (x1, . . . , xi−1, xi+1, . . . , xL) (Fig 1a). While
our focus is on masked pLMs in this work, we acknowledge alternative models like autoregressive pLMs29;50,
which estimate p(xi|x<i), taking into account all preceding AAs x<i = (x1, . . . , xi−1).

The natural protein sequences observed today are the culmination of evolutionary selection for fitness and
function. Trained on massive natural protein sequence database such as UniProt30, pLMs implicitly capture
the sequence patterns that are important for fitness. Specifically, the conditional probability p(xi|x−i)
estimated by pLMs gives a probability distribution over X for a given site i, indicating the site’s ‘evolutionary
preference’ for an AA xi ∈ X . A higher p(xi|x−i) intimates an AA xi that is evolutionarily advantageous,
presumably contributing positively to fitness, while a lower value suggests potentially deleterious mutations.
Following this rationale, recent studies directly used the PLM-predicted likelihood for zero-shot predictions
of AA mutation effects. Even without any supervision from paired sequence-fitness data, pLM’s predictions
correlate strongly with laboratory-measured protein fitness (e.g., deep mutagenesis scans)39–41. PLMs have
thus been harnessed for important biomedical applications, including recommendation mutations to enhance
antibody binding43 or predicting the pathogenicity of human missense variants51.

Given that the pLMs have strong zero-shot fitness prediction performance despite having no prior expo-
sure to fitness data, one may reason that augmenting such models with even a modest number of functionally
characterized variants as training data (Fig 1b) could significantly improve their fitness prediction accuracy.
The intuitive strategy might be to fine-tune the pLM with available fitness data (Fig 1c), following common
practice in ML52. However, the unique challenge in protein engineering is that current quantitative assays to
measure fitness are not scalable to high throughput, yielding only tens to hundreds of fitness measurements.
This paucity of data, juxtaposed against the millions or even billions of parameters in pLMs, collectively
presents a challenge where directly fine-tuning pLMs on such sparse data easily leads to catastrophic forget-
ting, distorting the pLM’s pre-trained protein sequence features and causing the model to overfit the sparse
fitness data.

To mitigate catastrophic forgetting in low-N fitness prediction, some studies have adopted a compromised
approach: freezing the pLM parameters while introducing a new trainable regression layer—typically a ridge
or LASSO model—on top of pLM-generated sequence representations36;37 (Fig 1d). This hybrid model,
with significantly fewer trainable parameters, is less prone to overfitting and has been shown to accurately
predict fitness even using only N = 24 or 48 variants as training data36;37. However, these approaches
mitigated catastrophic forgetting at the expense of limited prediction accuracy: freezing the pLM’s layers
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forfeits its capacity to capture complex epistatic interactions53;54 inherent in protein sequences—a task linear
models find challenging. To date, how to fully harness the pre-learned knowledge in pLMs for low-N fitness
prediction, without catastrophic forgetting and overfitting, remains an unresolved challenge.

3 Methods

We present ConFit, a pLM-based ML method for low-N protein fitness prediction. Our algorithm is moti-
vated by a key observation of a mismatch exists between the pre-training and fine-tuning learning objectives,
which leads to catastrophic forgetting during the latter. We propose a principled way to achieve robust low-
N pLM fine-tuning for protein fitness prediction. Different from existing methods that either fully fine-tune
the pLM (“full fine-tuning”), suffering from severe overfitting in low-N scenarios, or only re-fit the pLM’s
top layer while keeping the rest untouched (“top-layer fine-tuning”), resulting in compromised accuracy, our
method provides both high accuracy and high sample efficiency for low-N protein engineering36.

Figure 1: Overview of ConFit. (a) A protein language model (pLM) predicts the probability of amino acid at
position given other unmasked positions. (b) Example of protein fitness data in which the variants of a wildtype
(WT) sequence are experimentally characterized with fitness values. (c-d) Conventional approaches for fine-tuning
pre-trained pLMs for protein fitness prediction, including “full fine-tuning” which updates all parameters in the pLM,
and “top-layer fine-tuning” which trains the top-layer on the fitness data while fixing other pre-trained parameters.
(e) Our approach, ConFit, calibrates pre-trained pLM for low-N fitness prediction through contrastive learning.

3.1 Motivation and Rationale of ConFit

The motivation behind ConFit lies in the realization that catastrophic forgetting occurs when a pLM is
fine-tuned for a task divergent from its initial training. Originally, pLMs maximized the likelihood of natural
protein sequences sampled from the training data, i.e., maxEx

∏
i p(xi|x−i). However, during fine-tuning for

fitness prediction, the objective shifts to minimizing the difference between observed and predicted fitness
values, measured by mean squared error (MSE): min

∑
k ∥y(k) − ŷ(k)∥2, where y(k) ∈ R and ŷ(k) ∈ R are the

assayed and predicted fitness for variant k, respectively. This shift not only demands a change of output
space, from the probability distribution space over X to the space of all real values R, but also compels the
model to reconfigure its learned parameters, often at the cost of erasing its pre-trained features, especially
when the volume of fine-tuning data is limited.

Based on this observation, our key idea to address catastrophic forgetting is to align the fine-tuning
objective with the pre-training objective. We hypothesize that the pre-trained pLM, already adept at
assessing the evolutionary plausibility of sequence mutations, only needs minor adjustments in its output
probability distributions to characterize a protein-specific fitness landscape. Therefore, rather than retraining
the pLM on a different task (MSE minimization), we maintain the likelihood maximization paradigm and
only subtly adjust the pLM’s parameters such that the output probability distribution p(xi|x−i) more closely
correlate with the given low-N fitness data, thereby enhancing the pLM’s prediction accuracy without losing
its pre-trained evolutionary patterns.

To gain more intuitions about our method, let us consider a special example of single-mutation variants
(Fig 1e). For the i-th residue of a wildtype sequence x, a pLM predicts a 20-dimensional probability
distribution p(xi|x−i). Previous studies41;43;51;55 found that when the wildtype AA xi mutated to another
AA x′

i ∈ X , the predicted probability p(x′
i|x−i) (or its normalized version to the wildtype probability) is
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a reasonable proxy of the mutated sequence’s fitness yx′
i
. Now, if we are given the fitness scores of some

mutations at site i as labeled data, we could refine the original distribution p(xi|x−i) to become more
consistent with the fitness values. For two substitutions x′

i and x′′
i on the same position where yx′

i
> yx′′

i
,

we want the calibrated distribution p′ to preserve the same fitness ordering in the probability space, i.e.,
p′(x′

i|x−i) > p′(x′′
i |x−i). This calibration steers the pre-trained pLM to be more consistent with the fitness

data while still respecting its pre-learned evolutionary patterns.

3.2 Contrastive Fitness Learning

We now introduce our novel fine-tuning algorithm, dubbed contrastive fine-tuning, to train a pLM-based
model for the low-N learning of the protein fitness landscape. Formally, in our protein fitness prediction
problem, we are given i) a pre-trained pLM fθ0 parameterized by θ0, which predicts the probability p0(xi|x−i),
and ii) a small (low-N) set of functionally characterized variants {x(k), y(k)}Nk=1 of a particular protein, where
xk’s are the variant sequences and yk’s are the experimentally measured fitness values. Our goal is to calibrate
the pre-trained pLM fθ0 , through fine-tuning on the low-N fitness data, into an enhanced model fθ for low-N
fitness prediction. In this work, we selected ESM-1v40 as the pre-trained pLM fθ0 for its effective zero-shot
prediction performance in fitness prediction40;43, but other pLMs26–28 can also be used. The neural network
architecture of fθ mirrored that of fθ0 , with the parameters θ initialized using the pre-trained weights θ0.

From pLM to fitness prediction. Distinct from conventional pLM fine-tuning approaches (e.g., full
or top-layer fine-tuning, Figs 1c-d), ConFit maintains the pre-training objective (i.e., predicting probability
pθ(xi|x−i)) in fine-tuning, rather than fine-tuning the pLM to directly predict the fitness values ŷ using a
regression objective. As discussed in Sec. 3.1, this approach circumvents the drastic parameter changes to
accommodate the new learning task and output space.

In lieu of directly estimating fitness values, ConFit extracts fitness proxy from the conditional proba-
bility pθ(xi|x−i) predicted by pLM fθ. This is informed by prior research40;43;51, which demonstrates the
effectiveness of using such probabilities in predicting AA mutation effects. We quantify the impact of a
given mutation by comparing its pLM portability with the reference probability of the wild type. Specif-
ically, let xMT and xWT denote the mutant and wild-type sequences, respectively, and M the mutated
sites. The effect of a substitution xWT

i → xMT
i is quantified by the log probability ratio at this site:

log pθ(x
MT
i |x−M )− log pθ(x

WT
i |x−M ). Consequently, we aggregate the mutational effects to approximate the

evolutionary plausibility of the mutant sequence:

ŷθ(x
MT) =

∑
i∈M

log pθ(x
MT
i |x−M )− log pθ(x

WT
i |x−M ), (1)

Previous work20;37;41;43 found that this score is an informative proxy of the fitness of mutant xMT.
Contrastive fine-tuning. To fine-tune fθ for fitness prediction, instead of re-learning a model to

minimize the MSE between predicted and true fitness values, we propose to calibrate the pLM probability
distribution pθ(xi|x−M ), adhering to the original pre-training objective of likelihood maximization. Our
calibration strategy is inspired by contrastive learning, an ML strategy that compares multiple outputs of a
model and encourages them to be ordered according to some criteria. In our case, we aim for a calibrated
model where the likelihood-derived evolutionary scores align with the experimental fitness values: given
two samples (x+, y+) and (x−, y−) with y+>y−, we want to have ŷθ(x

+)>ŷθ(x
−). This objective can be

described by a loss function defined based on a classic probability model known as Bradley–Terry (BT)
model56, which we term the BT loss:

Lcal =
∑

y(i)>y(j)

log
[
1 + exp

(
−[ŷθ(x

(i))− ŷθ(x
(j)]

)]
(2)

This loss function encourages the model to rank predicted fitness scores in the correct order relative to the
ground truth. Although ConFit is not directly trained to predict the precise magnitude of fitness values,
its prediction of fitness rankings is particularly valuable in the context of protein engineering, where ML
models are often employed to efficiently rank a set of candidate variants in silico, thereby prioritizing the
most promising variants for further experimental screening. Moreover, employing pairs from the N samples
to compute the BT loss increases the effective training size from O(N) to O(N2), further alleviating the data
scarcity. Several other (scaled) ranking losses 57 can be explored in future work in place of Lcal. A similar
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BT loss was also used in recent studies for protein sequence design58 and fitness epistasis learning59.
Regularization. To better avoid catastrophic forgetting, we further introduce another Kullback–Leibler

(KL) divergence-based regularization loss to prevent the calibrated distribution pθ deviating too far away
from the pre-trained distribution pθ0 :

Lreg =
∑
i

pθ(x
MT
i |xMT

−i ) log
pθ(x

MT
i |x−i)

pθ0(x
MT
i |xMT

−i )
(3)

Our final loss function is a linear combination of the calibration loss and the KL regularizer: L = Lcal+λLreg,
where λ is a coefficient that balances the two losses.

Remarks: Our fine-tuning algorithm is partially inspired by a key technique known as Reinforcement
Learning with Human Feedback (RLHF)60 that enables ChatGPT to generate high-quality texts. In Chat-
GPT, human feedback about generation quality (e.g., text A is better than text B) is used to fine-tune GPT
to align with human preferences. Similarly, in ConFit, we use experimental fitness data (e.g., mutation A
leads to higher fitness than mutation B) to fine-tune a pLM into a low-N fitness prediction model.

3.3 Efficient Fine-Tuning with Low-Rank Reparameterization

The pre-trained pLM used in ConFit (ESM-1v) has 650 million parameters, and updating all parame-
ters during our contrastive fine-tuning can be computationally expensive. We thus employed Low-Rank
Adaptation (LoRA)61, a parameter-efficient fine-tuning (PEFT) method to reduce the number of updated
parameters. LoRA factorizes the weight updates to each neural network layer in ESM1v, denoted as a
matrix ∆W ∈ Rd×d′

, into two low-rank matrices ∆W = UV where U ∈ Rd×r, V ∈ Rr×d′
, and the rank

r≪min(d, d′), thereby reducing the number of trainable parameters from O(d × d′) to O((d + d′) × r). In
our experiment, we applied LoRA to ESM-1v with rank r = 8, reducing the effective number of parame-
ters to 1.35 million, a 99.79% reduction compared to the 650 million parameters in the full ESM-1v model
(Supplementary Information).

In addition to its advantages of computational efficiency, the reduction in trainable parameters holds
significant implications for ConFit’s adaptation to make protein-specific fitness predictions, especially in
low-data scenarios. Recent studies in ML suggested that updates to language model weights often exhibit a
low ‘intrinsic rank’61 and PEFT methods enable superior performance in few-shot learning tasks compared to
conventional full-parameter fine-tuning methods61–65. While the vast capacity of the 650 million parameters
enables ESM-1v to capture complex patterns in protein fitness landscapes, it could be over-parameterized
when dealing with limited fitness data. Fine-tuning the entire model in such cases risks catastrophic forget-
ting. We thus leveraged LoRA to exploit the low-rank structure of pLM parameters and achieve efficient
adaptation to new proteins using low-N data.

3.4 Enhancing Fitness Prediction with MSA Context Retrieval

While the pre-trained pLM used in ConFit captured global evolutionary patterns across natural protein
sequences, when predicting fitness for a protein of interest, we further retrived its evolutionary-related
sequences (homology) to reinforce the local evolutionary contexts specific to this protein.

Specifically, starting with the wildtype sequence of the protein, we searched in the UniProt protein
sequence database for its homology and built a multiple sequence alignment (MSA). Next, we fit DeepSe-
quence20, a variational autoencoder (VAE)-based density model, on the MSA to estimate sequence likelihood
pMSA(x). Different from the pLM sequence likelihood estimated from all natural sequences, the MSA-based
sequence likelihood pMSA here was only fit on the target protein’s MSA sequences, thus capturing the local
evolutionary contexts specific to this protein. Similarly, DeepSequence used the log-odd ratio to predict the
fitness of a variant: ŷMSA(x

MT) = log pMSA(x
MT)− log pMSA(x

WT), which have been shown as competitive
unsupervised fitness predictor20;22. A recent study leveraging both pLM and retrieval of MSA sequences
achieved state-of-the-art performance on zero-shot protein fitness prediction42.

In ConFit, we refined the pLM-based fitness prediction ŷθ(x) by fusing it with the MSA-based prediction
ŷMSA(x): ŷ(x) = αŷθ(x) + (1 − α)ŷMSA(x), where α is a weighting factor. We empirically determined
the value as α = 0.8 by inner-loop cross-validation. Note that ConFit integrates multi-scale evolutionary
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contexts to predict protein fitness, including the global scale (natural protein sequences), intermediate scale
(MSA sequences), and the most specific scale (protein-specific fitness data).

3.5 Implementation Details

ESM Ensemble. The ESM-1v study40 released five sets of pre-trained model weights, all based on the
same model architecture but initialized with different random seeds. Following their approach, we average
the outputs of the five models to derive the fitness prediction ŷθ (Eq. 1) (Supplementary Information).

Training details and hyperparameter tuning. We trained ConFit on 4 NVIDIA A40 GPUs using
the Adam optimizer and a cosine annealing scheduler, which reduced the learning rate from an initial rate
to a minimal value. To mitigate the risk of overfitting, we early-stopped the training if the validation
performance was not improved. We tuned the hyperparameters using an inner-loop validation data split
within the training set, and the choices of hyperparameters were listed in (Supplementary Information).

4 Results

We conducted multiple evaluation experiments to demonstrate ConFit’s low-N prediction ability for protein
fitness and its utility in navigating protein fitness landscapes for protein engineering applications.

4.1 Experimental Settings

Datasets: To benchmark protein fitness prediction, we downloaded 34 fitness datasets across 27 proteins
generated from deep mutational scanning (DMS) or random mutagenesis studies, following the choice of a
prior work38 (Supplementary Information). These datasets were originally curated by the DeepSequence
study20 and supplemented by datasets from other mutagenesis studies66;67. The fitness-labeled variant
sequences range from single or double mutants to more extensively mutated sequences67.

Data split: For each fitness dataset, we withheld 20% of randomly sampled data as test set, with the
remaining 80% data used as the training library. To simulate varying degrees of low-N scenarios, we created
the training set by randomly sampling N =48, 96, 168, or 240 samples for the training library. These
particular sizes were chosen to reflect the common dimensions of laboratory well plates used in experimental
assays. Each training set size was tested across 10 independent trials to ensure reproducibility.

Baseline methods: ConFit was compared to 13 leading sequence-based protein fitness prediction meth-
ods, including supervised and unsupervised models (Supplementary Information). For supervised methods,
we included ‘augmented models’ (Augmented VAE and Augmented EVmutation) proposed by Hsu et al.37

which combine amino acid sequences and evolutionary density scores as input features, and are recognized for
their state-of-the-art supervised fitness prediction performances37;38. The comparison also included eUniRep,
a model specifically tailored for low-N applications36. We further included 10 top-ranked unsupervised mod-
els from the ProteinGym benchmark for zero-shot fitness prediction42, covering a wide range of modeling
techniques, including language models (ESM-1b27, ESM-1v40, UniRep25, WaveNet50, MSA Transformer68),
Potts models (e.g., EVmutation9), latent variable models (e.g., EVE22, DeepSequence20), and hybrid models
(e.g., Tranception42, TranceptEVE69. Given our focus on sequence-based predictions, recent fitness models
requiring structural data inputs32;38 were not included in our comparison.

4.2 Accurate Prediction of Protein Fitness

In our first experiment, we evaluated the accuracy of the fitness prediction of ConFit. We restricted the
training set size to include only N = 240 variants randomly sampled from the training library. In contrast to
prior studies34 where methods were trained on copious amounts of training samples (e.g., 80% of data), here
we limited the training data to a mere N = 240 variants randomly sampled from the training library (14%
data on average per datasets), which simulated a more realistic data-scarce scenario in protein engineering.

We first compared ConFit to leading unsupervised methods, including ESM1v, EVE, EVmutation, and
TranceptEVE. These methods fit generative sequence density models on general natural sequences or specific
homologous sequences to estimate the likelihood of a protein sequence and predict the mutation effects by
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Figure 2: Comparisions between ConFit and other methods for protein fitness prediction. (a) Bench-
mark results on using 34 mutagenesis datasets. Supervised methods were shown as dots and unsupervised methods as
triangles. Supervised models were trained on randomly sampled N = 240 samples. Each dot represents the average
Spearman correlation over 10 repetitions. (b) Comparisons between ConFit and conventional fine-tuning strategies.
Bar plots represent the mean±SD spearman correlations over the 34 fitness datasets.

comparing the log-odds ratio between the mutated and wild-type sequences. We found that, despite the
small training set size, ConFit effectively harnessed information from the N = 240 samples and improved
the fitness prediction accuracy without overfitting (Fig 2a). On average, ConFit achieved a mean Spearman
correlation of 0.66 across all datasets, outperforming the unsupervised methods with clear margins on 29/34
datasets. In particular, compared to ESM1v – the non-finetuned counterpart of its base model – ConFit
substantially improved the prediction accuracy (median difference of Spearman correlation ∆ρ = 0.23;
Fig 2b), suggesting the effectiveness of our contrastive fine-tuning algorithm. ConFit also significantly
outperformed TranceptEVE (median ∆ρ = 0.19; Fig S1), the best predictor as evaluated by the ProteinGym
fitness prediction benchmark 42, and six additional unsupervised methods (Fig. S2).

We then compared ConFit to three supervised methods, including Augmented VAE, Augmented EV-
mutation, and eUniRep 36. Existing studies demonstrated these methods are effective low-N fitness pre-
dictors36;37. We observed that ConFit was still in a leading position when compared to these supervised
baselines, achieving the maximal Spearman scores on 29/34 datasets (Fig 2a). Even on the remaining 5/34
datasets where ConFit was not the top performer, its Spearman scores were very comparable to the top meth-
ods, Augmented VAE or Augmented EVmutation (mean ∆ρ = −0.01; Fig S1). Moreover, ConFit achieved
a 38% increase in Spearman scores compared to eUniRep, a pLM using the top-layer fine-tuning strategy,
and a substantial 400% improvement compared to the full fine-tuning strategy (Fig. 2b). This gap affirmed
our discussions in Sec. 2: full pLM fine-tuning tends to overfit, and while top-layer fine-tuning mitigates this
risk, it can sacrifice predictive precision as it may not fully capture the complex features in protein fitness
landscapes. In contrast, ConFit better characterized the fitness landscape with our contrastive fine-tuning
strategy, which takes full advantage of pLMs by fine-tuning the entire model while preventing overfitting.

Overall, the improvements over state-of-the-art methods in this evaluation demonstrated the effectiveness
of ConFit in adapting pre-trained pLMs for protein fitness prediction.

4.3 Low-N Learning of Fitness Landscape

Having evaluated the fitness prediction performance of ConFit across 34 DMS datasets in comparison to
existing methods, we proceed to specifically assess the low-N learning capability of ConFit. We systematically
varied the size of the training set by randomly sampling N = 48, 96, 168, 240 variants from the non-test data.

We first observed that, as expected, ConFit’s prediction accuracy increased with increasing labeled train-
ing data (Fig. 3a). Notably, using only N = 48 training samples, ConFit predicted protein fitness at a
Spearman correlation of 0.56, only 15% lower than its performance at N = 240, suggesting ConFit can
effectively adapt a general pLM to accurately characterize a protein-specific fitness landscape even using
an extreme low-N fitness dataset. The results also suggested that the MSA context retrieval consistently
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Figure 3: Evaluations on low-N learning of protein fitness. (a) Prediction performance of methods trained on
N =48, 96, 168, or 240 samples. Solid lines and error bands indicate the mean±SD of Spearman correlations achieved
by supervised methods. Performances of unsupervised methods are shown in dashed lines. (b) The frequency of each
method ranked as the best across 34 datasets for training set sizes 48 and 240. (c) Detailed comparison between
ConFit and Augmented VAE. The heatmap shows the improvements in Spearman correlation achieved by ConFit
for each dataset and each training set size N . The dot size indicates the statistical significance. NS: not significant;
*: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001.

enhanced ConFit’s performance across all training data sizes (Fig. 3a).
Compared to baseline methods, ConFit consistently outperformed three supervised methods and ten

unsupervised methods across various training data sizes (Figs. 3a and S3). The performance improve-
ments achieved by ConFit in low-N fitness learning were also substantial: for training data sizes N =
48, 96, 168, 240, ConFit achieved the top-1 Spearman correlation on 21, 24, 26, and 25 out of the 34 DMS
datasets, respectively (Figs. 3b and S4), while second best baseline ranked at the top for only 3/34 datasets.
We further analyzed the prediction performances of ConFit and Augmented VAE, the state-of-the-art su-
pervised method for low-N fitness prediction37. ConFit outperformed Augmented VAE across all training
sizes N on 28/34 DMS datasets and outperformed for at least one N value for 31/34 DMS datasets, and the
majority of the improvements were statistically significant (Fig 3c).

Together, these results demonstrate the superior low-N fitness learning ability of ConFit. ConFit’s
performance gains stem from our novel contrastive fine-tuning algorithm that prevents overfitting without
compromising prediction accuracy. Our approach significantly advances the current paradigm of low-N
protein fitness prediction. The prevailing strategy employed by prior methods to achieve low-N fitness
learning is to use informative pLM embeddings or evolutionary scores derived from unsupervised models as
input, while keeping the predictive model in the simplest form (e.g., linear regression)36;37. The rationale
behind this strategy is that models with fewer parameters are less prone to overfitting on low-N data.
Although not overfitting, this strategy compromises prediction accuracy due to the limited effectiveness of
the predictive models. ConFit, however, completely changed this paradigm through the contrastive fine-
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tuning of pLMs – the pLM in ConFit is trainable, rather than being fixed as in previous methods36;37, and
carefully tailored through the contrastive fine-tuning algorithm to better modeling the complex sequence-
fitness relationships, boosting the prediction accuracy without overfitting.

4.4 Extrapolation from Single to Higher-order Mutants

A critical metric for evaluating protein fitness prediction methods is their generalizability from lower-order
mutants to higher-order mutants, which is vital for guiding protein engineering to discover novel higher-
order mutants based on the fitness data of lower-order mutants. Among the 34 fitness datasets, we selected
three—pertaining to avGFP, GB1, and PABP proteins—that included high-order mutants and conducted an
evaluation where the model trained on single-mutation data is used to predict fitness for high-order mutants
(Fig 4a). To further challenge the evaluated methods, we simulated the low-N scenarios with limited training
data size N = 48, 96, 168, 240. We found that ConFit exhibited an outstanding extrapolation performance,
with substantially improved or competitive performance as compared to other supervised baselines (Fig 4b).
With increasingN , ConFit also increased in prediction accuracy and the performance gap over other methods.

Figure 4: Extrapolation performance of fitness prediction on multi-mutation variants. (a) Each method
was trained using the fitness data of single mutants data and then tested on higher-order mutants. (b) Comparisons
between ConFit and three supervised baseline methods on three proteins (GB1, GFP, and PABP). Randomly sampled
N =48, 96, 168, or 240 single mutants were used as training samples.

The strong extrapolation performance of ConFit is particularly useful for comprehensively characterizing
the protein fitness landscapes. Current DMS studies often only sample point-mutation variants or variants
within a local sequence space, mainly due to the extensive experimental efforts associated with the generation
and analysis of higher-order variants. ConFit thus offers an effective solution to extrapolate from low-order
mutants to identify higher-order functional mutants in protein engineering.

4.5 Navigating Fitness Landscape with Active Learning

Given the outstanding low-N learning capability and extrapolation performance of ConFit, we next demon-
strated its utility in protein engineering using an active learning experiment, in which the goal is to strategi-
cally select training variants such that better fitness prediction performance can be achieved with less data.
Active learning simulates the “prediction–acquisition–screening–retraining” loop in ML-guided protein en-
gineering applications: scientists iterate between ML prediction and experimental screening for multiple
rounds; in each round, the ML model proposes promising variants for screening, and the screened fitness
data are then utilized to retrain the ML model, which in turn informs the subsequent cycle of predictions.

We evaluate ConFit’s efficiency for landscape exploration on three proteins (GB1, PTEN, and UBE4B)
with various definitions of fitness (binding, stability, and Ubiquitin ligase activity, respectively). We again
set aside 20% of the data in each dataset as test data, reserving the remaining 80% as a training library from
which we can draw samples. We initiated the active learning loop by training ConFit on N = 48 randomly
sampled variants. In each subsequent round, ConFit predicted the fitness for all test variants and prioritized
48 variants from them, which were then added to the training set with their ground-truth fitness values for
retraining ConFit. The prioritization was based on a scoring function called upper confidence bound (UCB),
defined as s(x) = ŷ(x) + βσ(ŷ(x)), where ŷ(x) is ConFit’s fitness prediction for sequence x, and σ(ŷ(x))
quantifies the prediction uncertainty using the standard deviation of outputs from the five ESM-1v models
within ConFit. The coefficient β balances the tradeoff between high predicted fitness (exploitation) and high
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uncertainty (exploration). We set β = 1 in our experiments. For comparisons, we included a greedy scoring
function that ranks variants based on the predicted fitness and a random scoring function that randomly
samples variants from the training library.
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Figure 5: ConFit efficiently characterizes fitness landscapes with active learning. In silico active learning
experiments were simulated on three protein fitness landscapes. In each iteration, variants prioritized by ConFit and
a certain data acquisition function (Upper Confidence Bound, Greedy, or Random) were labeled with ground-truth
fitness and used to augment the training set for model re-training.

Test results showed an increasing trend in ConFit’s performance through five iterations of active learning
on all three proteins (Fig 5). Interestingly, the random scoring function did not yield an increasing trend
in performance, especially on GB1 and UBE4B. This indicated that the quality of the training set matters
more than its quantity for improving the model’s prediction accuracy. Since the protein sequence space
contains a large fraction of non-functional sequences, the random strategy easily sampled non-functional
sequences, which are less informative for model training. Additionally, the greedy sampling strategy was
consistently outperformed by UCB, suggesting that only exploiting high-fitness regions in the sequence space
may restrict the model’s generalizability to unexplored regions. In contrast, using UCB, ConFit prioritized
not only variants likely to deliver high fitness but also those that can best address the model’s uncertainty
for improving prediction accuracy.

The results also demonstrated the advantages of iterative data acquisition and model refinement. For ex-
ample, on the UBE4B protein, ConFit was progressively refined through active learning using an cumulative
number of 240 variants (48 per round × 5 rounds) and culminated in a Spearman correlation of 0.609 (Fig 5,
UBE4B). However, when trained on the same amount of samples in a single training session, ConFit only
achieved a Spearman correlation of 0.497 (Fig 5, UBE4B). This suggested that the accurate low-N fitness
predictions of ConFit enable a feedback mechanism between ML models and experiments, which leads to
more efficient navigation of protein fitness landscapes given the same experiment budget.

5 Discussion

We presented ConFit, an ML method for low-N protein fitness prediction through contrastive fine-tuning
of pLMs. Many state-of-the-art ML solutions for protein science problems now rely on pLMs since pLMs
capture the implicit evolutionary, structural, and biophysical constraints in protein sequences, thanks to
their large model sizes and training data sizes. However, it is challenging to adapt the general pre-trained
pLMs to problem-specific predictive models for protein biology tasks because large pLMs typically tend to
overfit on small-size task-specific training data. Observing that ML fitness prediction models are often used
in protein engineering to rank variants for prioritizing promising ones for screening, we proposed a contrastive
fine-tuning algorithm to reprogram a pre-trained pLM for predicting the relative order of variant fitness.
This strategy makes the pLM’s pre-training and fine-tuning objectives consistent, avoiding the catastrophic
forgetting issues frequently observed in naive fine-tuning approaches. Extensive evaluations suggested that
ConFit outperformed over ten existing ML methods for protein fitness prediction and excelled especially in
small-data scenarios. We expect ConFit to serve as an efficient ML algorithm for low-N protein engineering.
Moreover, our contrastive fine-tuning algorithm represents a new paradigm for fine-tuning pLM better than
conventional approaches (full or top-layer fine-tuning) and can be extended to other problems in protein
informatics.
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cardo Zecchina, José N Onuchic, Terence Hwa, and Martin Weigt. Direct-coupling analysis of residue
coevolution captures native contacts across many protein families. Proceedings of the National Academy
of Sciences, 108(49):E1293–E1301, 2011.

[14] Sergey Ovchinnikov, Lisa Kinch, Hahnbeom Park, Yuxing Liao, Jimin Pei, David E Kim, Hetunandan
Kamisetty, Nick V Grishin, and David Baker. Large-scale determination of previously unsolved protein
structures using evolutionary information. elife, 4:e09248, 2015.

[15] Stefan Seemayer, Markus Gruber, and Johannes Söding. Ccmpred—fast and precise prediction of protein
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