

1 **Phages reconstitute NAD⁺ to counter bacterial immunity**

2 Ilya Osterman^{1,*}, Hadar Samra¹, Francois Rousset¹, Elena Loseva¹, Maxim Itkin²,
3 Sergey Malitsky², Erez Yirmiya¹, Adi Millman¹, & Rotem Sorek^{1,*}

4

5 ¹Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001,
6 Israel

7 ²Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel

8 *correspondence: ilya.osterman@weizmann.ac.il, rotem.sorek@weizmann.ac.il

9

10

11 **Abstract**

12 Bacteria defend against phage infection via a variety of antiphage defense systems. Many
13 defense systems were recently shown to deplete cellular nicotinamide adenine
14 dinucleotide (NAD⁺) in response to infection, by breaking NAD⁺ to ADP-ribose (ADPR)
15 and nicotinamide. It was demonstrated that NAD⁺ depletion during infection deprives the
16 phage from this essential molecule and impedes phage replication. Here we show that a
17 substantial fraction of phages possess enzymatic pathways allowing reconstitution of
18 NAD⁺ from its degradation products in infected cells. We describe NAD⁺ reconstitution
19 pathway 1 (NARP1), a two-step pathway in which one enzyme phosphorylates ADPR to
20 generate ADPR-pyrophosphate (ADPR-PP), and the second enzyme conjugates ADPR-
21 PP and nicotinamide to generate NAD⁺. Phages encoding the NARP1 pathway can
22 overcome a diverse set of defense systems, including Thoeris, DSR1, DSR2, SIR2-HerA,
23 and SEFIR, all of which deplete NAD⁺ as part of their defensive mechanism. Phylogenetic
24 analyses show that NARP1 is primarily encoded on phage genomes, suggesting a phage-
25 specific function in countering bacterial defenses. A second pathway, NARP2, allows
26 phages to overcome bacterial defenses by building NAD⁺ via metabolites different than
27 ADPR-PP. Our findings report a unique immune evasion strategy where viruses rebuild
28 molecules depleted by defense systems, thus overcoming host immunity.

29 **Introduction**

30 Nicotinamide adenine dinucleotide (NAD⁺/NADH) is a central metabolite essential for
31 numerous core metabolic processes across all domains of life. In most bacteria NAD⁺ is
32 an essential cofactor for redox reactions¹, and in the absence of NAD⁺ pathways such as
33 oxidative phosphorylation², amino acids biosynthesis³, and fatty acids biosynthesis³, are
34 arrested. NAD⁺ was also shown to be necessary for post-translational protein
35 modifications⁴ and for DNA ligation processes⁵.

36 Recent data show that NAD⁺ metabolism is central for bacterial defense against phages⁶⁻⁹.
37 Specifically, numerous bacterial defense systems were shown to deplete cellular NAD⁺
38 once they detect phage infection, thus depleting the cell of energy and impeding phage
39 propagation. Such defense systems include prokaryotic argonautes (pAgo)^{6,9}, type I
40 Thoeris⁷, AVAST¹⁰, CBASS¹¹, DSR1⁶, DSR2⁶, SIR2-HerA⁶, SEFIR⁸, and additional
41 defense systems encoding protein domains associated with NAD⁺ depletion¹². A recent
42 analysis of the abundance of defense systems in microbial genomes show that at least
43 7% of all sequenced bacterial genomes carry defense systems that cause NAD⁺ depletion
44 in response to phage infection⁸.

45 Once NAD⁺-depleting defense systems detect phage infection, they break down NAD⁺ to
46 ADP-ribose (ADPR) and nicotinamide⁶. As there is no known cellular pathway that can
47 directly re-build NAD⁺ from these molecules, breaking of NAD⁺ into ADPR and
48 nicotinamide is an efficient way to deplete NAD⁺ from infected cells. Depletion of NAD⁺
49 during infection was shown to halt phage propagation and, in some cases, cause
50 premature cell lysis^{6,7}, possibly by activating the lysis machinery of the phage prior to the
51 completion of the phage cycle^{6,13}.

52 Here we show that at least 5% of sequenced phage genomes encode NAD⁺ reconstitution
53 pathways that allow them to rebuild NAD⁺ directly from ADPR and nicotinamide. We
54 discover NAD⁺ reconstitution pathway 1 (NARP1), a phage-encoded pathway involving
55 two enzymatic reactions that were not described before. We also show that NARP2, an
56 alternative NAD⁺ reconstitution pathway utilizing classical NAD⁺-salvage enzymatic
57 reactions, is used by phages to rebuild NAD⁺ during infection. NAD⁺ reconstitution
58 pathways allow phages to overcome multiple NAD⁺-depleting defense systems
59 irrespective of the mechanism of phage detection and signal transfer in these systems.

60

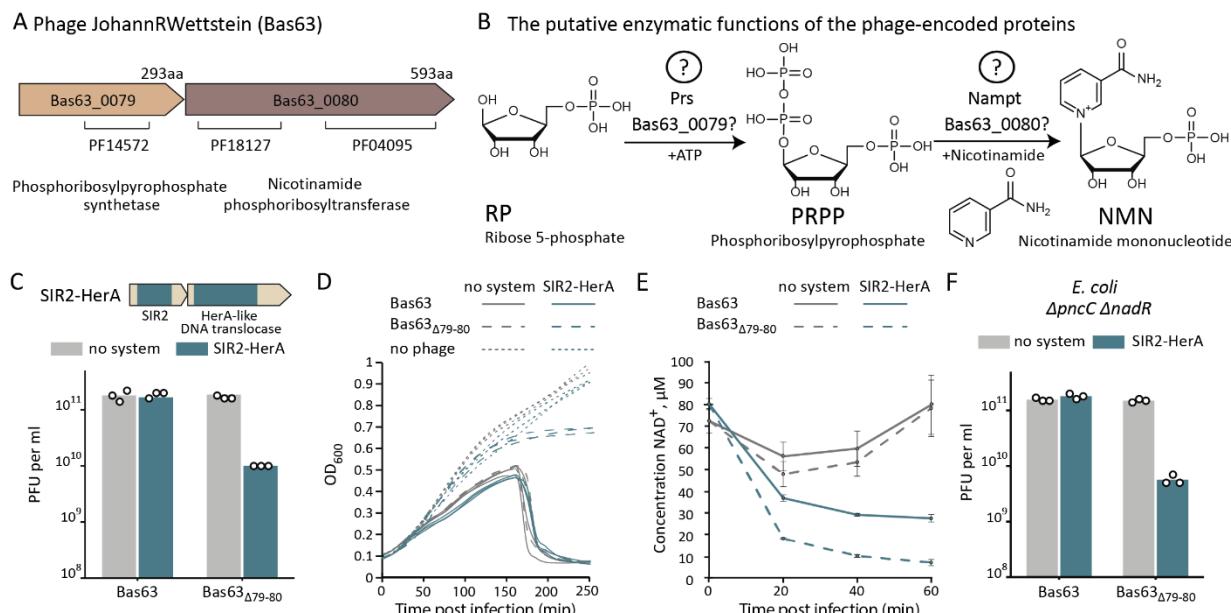
61

62

63 **Results**

64 **A two-gene operon protects phages from NAD⁺-depleting bacterial defenses**

65 While examining the genomes of phages from the BASEL collection¹⁴ we noticed a two-
66 gene operon that recurred in four phages in this set (Figure 1A). This operon caught our
67 attention because the pfam annotations of its two genes suggested involvement in
68 synthesis of biochemical intermediates in the NAD⁺ biosynthesis pathway. The first gene
69 in this operon was annotated as belonging to the **phosphoribosylpyrophosphate**
70 **synthetase** family, Prs (pfam accession PF14572), and the second gene was annotated
71 as **nicotinamide phosphoribosyltransferase**, Nampt (pfam accessions PF18127 and
72 PF04095) (Figure 1A). In bacteria, Prs enzymes produce **phosphoribosylpyrophosphate**
73 (PRPP), a biochemical intermediate in the biosynthesis pathway of purine and pyrimidine
74 nucleotides, as well as NAD⁺. Nampt enzymes utilize PRPP as a substrate and react it
75 with nicotinamide to generate **nicotinamide mononucleotide** (NMN), a molecular moiety
76 that can be used as a precursor for NAD⁺ biosynthesis via NAD⁺ salvage pathways
77 (Figure 1B, 1C). It was previously shown that genes annotated as nicotinamide
78 phosphoribosyltransferases are abundant in phage genomes¹⁵.


79 We hypothesized that phages utilize this two-gene operon to overcome the effects of
80 NAD⁺-depleting defense systems. To test this hypothesis, we deleted the two-gene
81 operon from the BASEL phage Bas63 (JohannRWettstein¹⁴). The wild type Bas63 was
82 able to infect *E. coli* cells encoding the defense system SIR2-HerA (also called Nezha¹⁶),
83 which is known to deplete NAD⁺ following phage recognition^{6,16} (Figure 1C). In contrast,
84 a Bas63 strain in which the two-gene operon was deleted formed ~20-fold less plaques
85 on agar plates, suggesting that SIR2-HerA defends against the modified phage and that
86 the phage two-gene operon can counter this defense (Figure 1C). These results were
87 confirmed by infecting cells in liquid culture, where a culture of bacteria encoding the
88 SIR2-HerA defense system collapsed when infected with the WT phage, but was able to
89 grow when infected by the phage in which the two genes were deleted (Figure 1D).

90 To test if the two-gene operon allows the phage to overcome the NAD⁺ depletion effects
91 of SIR2-HerA, we recorded cellular NAD⁺ levels during infection. NAD⁺ was severely
92 depleted in cells expressing SIR2-HerA that were infected by the mutated phage,
93 confirming the activity of SIR2-HerA against this phage (Figure 1E). When infected with
94 the wild type Bas63 that encodes the two-gene operon, the observed NAD⁺ depletion was
95 less severe, showing that this phage can partially overcome NAD⁺ depletion by SIR2-
96 HerA (Figure 1E).

97 Considering the pfam domain annotations of the two phage genes, we expected these
98 genes to produce NMN as their end product (Figure 1B). There are two NAD⁺ salvage
99 pathways in *E. coli* that can use NMN to synthesize NAD⁺, either via the enzyme PncC¹⁷
100 or via the enzyme NadR¹⁸. We therefore hypothesized that deletion of *pncC* and *nadR*
101 from the *E. coli* genome would render phage Bas63 sensitive to SIR2-HerA defense
102 despite encoding the two anti-defense genes. However, surprisingly, wild type Bas63 was
103 still able to overcome NAD⁺ depletion-based defense in a $\Delta pncC\Delta nadR$ *E. coli* strain that
104 encoded SIR2-HerA (Figure 1F). These results suggested that the mechanism employed
105 by Bas63 to counter SIR2-HerA defense does not require the NAD⁺ salvage pathway
106 naturally encoded by *E. coli*. These data also implied that the pfam annotations of the two
107 phage genes might be incorrect, and that these proteins synthesize a molecule other than
108 NMN.

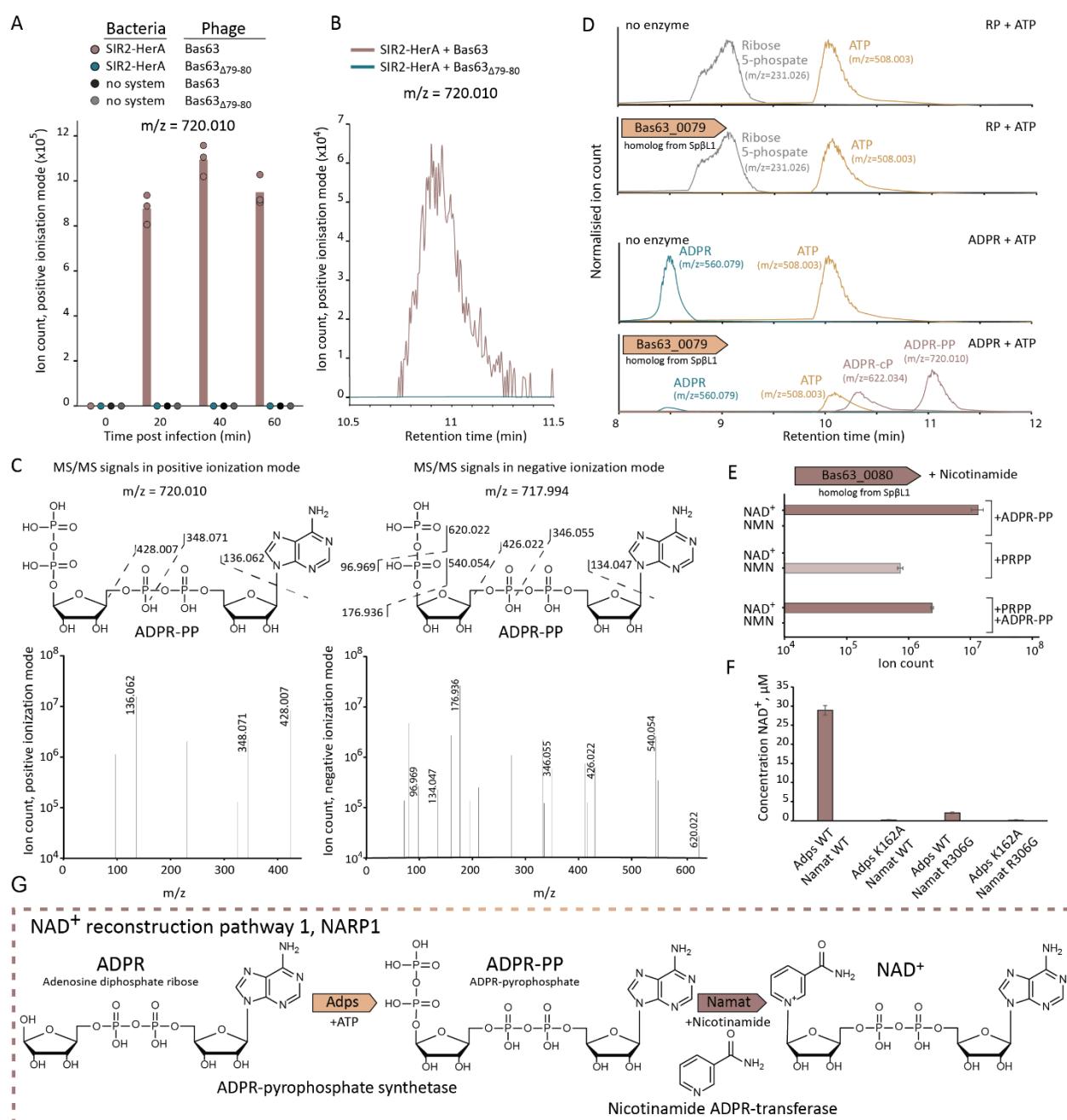
109

110

111

112 **Figure 1. A phage-encoded operon that counteracts bacterial NAD⁺ depletion defense.** **A.** Domain organization of
 113 genes 79-80 from phage JohannRWettstein (Bas63). Pfam annotations are indicated. **B.** The putative enzymatic
 114 functions of the phage-encoded proteins according to their predicted protein domains. Later in the paper we show
 115 that these predicted reactions are not the actual reactions performed by the phage enzymes. **C.** Operon 79-80 allows
 116 phage Bas63 to overcome SIR2-HerA defense. Data represent plaque-forming units per millilitre (PFU per ml) of wild
 117 type Bas63 and Bas63 in which the two-gene operon was deleted, infecting cells that express the SIR2-HerA defense
 118 system or control cells with an empty vector (no system). Bar graph represents average of three independent
 119 replicates, with individual data points overlaid. **D.** Liquid culture growth of *E. coli* cells expressing the SIR2-HerA
 120 operon or control strain without defense genes (no system). Cells were infected by phages Bas63 and Bas63_{Δ79-80} at
 121 MOI=0.01. Data from three replicates are presented as individual curves. OD₆₀₀, optical density at 600 nm. **E.** NAD⁺
 122 concentration in the lysate of cells expressing SIR2-HerA or control cells with an empty vector instead (no system),
 123 infected with phages Bas63 and Bas63_{Δ79-80} at MOI=10. Cells were collected before infection (0 min) and 20, 40 or
 124 60 minutes after infection. NAD⁺ concentration in cell lysates was measured by the NAD/NADH-Glo biochemical
 125 assay. The experiment was performed in three replicates, error bars represent standard deviation. **F.** Same
 126 experiment as in panel D, but made on an *E. coli* strain with deletions of the two genes *pncC* and *nadR*.

127 A new two-step biochemical pathway produces NAD⁺ from ADPR and nicotinamide


128 To gain further insights into the mechanism by which the two phage genes increase NAD⁺
 129 levels during infection, we used untargeted mass spectrometry (MS) to analyze small
 130 metabolites in cells infected with the wild type Bas63, and compared these metabolites
 131 to those found in cells infected by the mutant phage in which the two genes were deleted.
 132 These analyses revealed the presence of two unique molecules with m/z values of
 133 720.010 and 622.034, respectively (in positive ionization mode). These molecules were
 134 exclusively observed when the cells were infected with the wild type Bas63 in the
 135 presence of the SIR2-HerA defense system, but not in cells infected by the mutant Bas63
 136 phage (Figure 2A, B and Figure S1A, B). The molecules were also not observed in control
 137 cells lacking the system that were infected by wild type Bas63, suggesting that these
 138 unique molecules are only formed in the presence of the defense system, and only when
 139 the phage encodes the two anti-defense genes (Figure 2A, B and Figure S1A, B).
 140 Tandem mass spectrometry analysis (MS/MS) of the 720.010 molecule revealed
 141 fragments conforming with a pyrophosphorylated form of ADPR (ADPR pyrophosphate,
 142 or ADPR-PP), a molecule that, to our knowledge, was not described previously in
 143 biological systems (Figures 2C, S1C). MS/MS analysis of the second mass suggested it
 144 to be a likely product of ADPR-PP spontaneous hydrolysis, ADPR-cyclic-phosphate
 145 (ADPR-cP) (Figure S1D).

146 The possible appearance of ADPR-PP in SIR2-HerA-expressing cells infected by Bas63
147 led us to hypothesize that the phage gene annotated as *prs* (the first gene in the two-
148 gene phage operon, Figure 1A) does not encode a phosphoribosylpyrophosphate
149 synthetase enzyme, but rather an enzyme that pyro-phosphorylates ADPR. Under this
150 hypothesis, instead of adding two phosphates to ribose-5-phosphate to generate PRPP,
151 the phage enzyme would catalyze the addition of two phosphates to ribose moiety of
152 ADPR to generate ADPR-PP. PRPP is known to be easily spontaneously hydrolyzed to
153 form 5-phosphorylribose 1,2-cyclic phosphate (PRcP)¹⁹. Likely, the ADPR-PP analog
154 could also undergo similar spontaneous hydrolysis, leading to the formation of ADPR-
155 cyclic-phosphate and possibly explaining the appearance of the ion with the 622.034 m/z
156 value (Figure S1A and B).

157 To further examine the enzymatic activity of the putative ADPR-PP-generating phage
158 enzyme, we attempted to express and purify it for *in vitro* analyses. As the protein from
159 Bas63 did not purify well, we instead used a homologous operon from phage Sp β L1²⁰
160 from which we were able to obtain a purified protein. Incubation of the purified protein
161 with PRPP and ATP did not yield any measurable product, further supporting that this
162 enzyme is not Prs (Figure 2D). However, incubation of the protein with ADPR and ATP
163 resulted in the formation of the same two molecules detected in our analysis of cellular
164 metabolites during infection *in vivo* (Figure 2D).

165 To establish the identity of the enzyme products, we treated the products of the enzymatic
166 reaction with NudC, an enzyme of the NUDIX family that cleaves internal nucleoside-
167 linked phosphate-phosphate bonds. As expected from the structure of ADPR-PP,
168 incubation of the molecule suspected as ADPR-PP with NudC resulted in the formation
169 of PRPP, and similarly, NudC treatment of the molecule suspected as ADPR-cP yielded
170 PRcP as a product (Figure S2A). Treatment with apyrase, an enzyme which degrades
171 terminal diphosphates into monophosphates, resulted in the formation of ADPR
172 monophosphate (ADPR-P) from ADPR-PP (Figure S2B). Combined together, these
173 results strongly suggest that the purified phage enzyme catalyzes the addition of
174 pyrophosphate to ADPR in an ATP-dependent manner. To our knowledge,
175 pyrophosphorylation of ADPR is an enzymatic reaction never previously described. We
176 named the phage enzyme **ADPR-PP synthetase** (Adps).

177 Based on its sequence annotation, the second protein in the phage operon was expected
178 to transfer a nicotinamide molecule to PRPP, replacing the high-energy pyrophosphate
179 moiety with nicotinamide to generate NMN (Figure 1B). Given that the first enzymatic
180 reaction in this pathway generates ADPR-PP rather than PRPP, we hypothesized that
181 the second enzyme would use ADPR-PP as a substrate, and conjugate the nicotinamide
182 instead of the pyrophosphate to directly generate NAD⁺. To test this hypothesis, we
183 expressed and purified this second enzyme from the operon of phage Sp β L1, and
184 incubated the purified protein with ADPR-PP and nicotinamide. This resulted in the
185 formation of NAD⁺, confirming our hypothesis (Figure 2E). To our knowledge, this
186 reaction, too, was not previously described in other biological systems. We named the
187 second phage enzyme **Nicotinamide ADPR-transferase** (Namat).

188

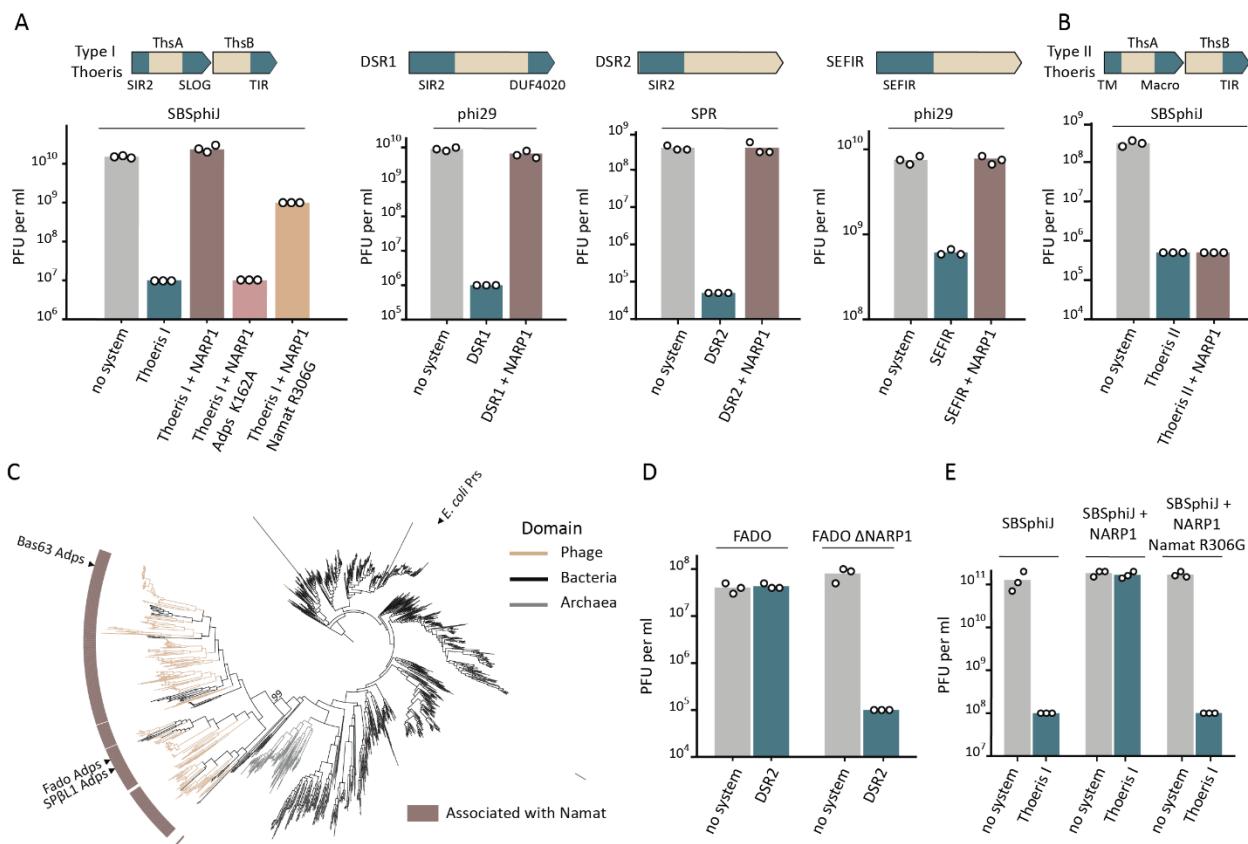
189 **Figure 2. A two-enzyme pathway reconstitutes NAD⁺ from ADPR and nicotinamide.** **A.** A unique molecule with an
190 m/z value of 720.010 appears in SIR2-HerA-expressing cells infected by Bas63. Cells were infected at MOI=10.
191 Presented are LC-MS ion counts data, bars represent the mean area under the curve (AUC) of three experiments,
192 with individual data points overlaid. **B.** Extracted mass chromatograms of ions with an m/z value of 720.010 (positive
193 ionization mode) and retention time of 11.0 min, from a lysate of SIR2-HerA cells 20 minutes post infection by phage
194 Bas63 or Bas63_{Δ79-80}. Chromatograms of the same molecule in negative ionization mode are presented in Figure S1C.
195 **C.** MS/MS fragmentation spectra of the molecule with the m/z value of 720.010, in positive and negative ionization
196 modes. The hypothesized structure of the molecule and the corresponding MS/MS fragments are presented. **D.** A
197 homolog of Bas63_0079 was purified from phage SpβL1 and incubated either with ribose-5-phosphate or with ADPR
198 in the presence of ATP. Shown are LC-MS analyses of the enzymatic reactions. Peak intensities of each compound
199 were normalized to the signal of the corresponding standard sample (Methods). Representative chromatograms of
200 three replicates are presented. **E.** A homolog of Bas63_0080 was purified from phage SpβL1, and incubated either
201 with ADPR-PP, PRPP or a mixture of ADPR-PP and PRPP, in the presence of nicotinamide. Shown are data for the
202 molecules NAD⁺ and NMN measured via LC-MS. Bars represent the mean area under the curve (AUC) of three
203 experiments, error bars represent standard deviation. **F.** WT Adps and WT Namat, as well as active site mutated
204 versions, were incubated with nicotinamide, ADPR and ATP. NAD⁺ concentration was determined using the
205 NAD/NADH-Glo assay. Bar graphs represent average of three replicates, error bars represent standard deviation. **G.**
206 Schematic of the NARP1 NAD⁺ reconstitution pathway.

207

208 When incubated with PRPP and nicotinamide, the phage Namat enzyme was capable of
209 producing NMN; but when exposed to a mixture of PRPP and ADPR-PP together with
210 nicotinamide, only NAD⁺ was detected as a product, suggesting a preference for this
211 enzyme to use ADPR-PP as a substrate (Figure 2E). Incubating a mixture of Adps and
212 Namat with ADPR, nicotinamide and ATP resulted in the production of NAD⁺ *in vitro*
213 (Figure 2F). The two-enzyme mixture was not able to efficiently produce NAD⁺ if the
214 predicted active site of Adps was impaired by substituting K162 to alanine, or if the
215 predicted active site of Namat was modified by a R306G substitution, further confirming
216 that both enzymatic activities are essential for NAD⁺ reconstitution (Figure 2F). Together,
217 our results reveal a phage-encoded novel two-step enzymatic pathway that can
218 reconstitute NAD⁺ from ADPR and nicotinamide in an ATP-dependent manner (Figure
219 2G). We name this pathway NAD⁺ reconstitution pathway 1 (NARP1).

220 **Phage-mediated NAD⁺ reconstitution overcomes multiple defense systems**

221 NAD⁺-depleting defense systems that rely on SIR2, TIR or SEFIR domains all break NAD⁺
222 into ADPR and nicotinamide to achieve NAD⁺ depletion⁶⁻⁸. Therefore, a pathway that can
223 use these same products to re-build NAD⁺ would be an efficient solution for the phage to
224 counter NAD⁺ depletion by any of these defense systems. To test this hypothesis, we
225 examined the effect of the NARP1 pathway on four additional defense systems: Type I
226 Thoeris, DSR1, DSR2, and SEFIR. Type I Thoeris is a two-gene system that contains an
227 effector with a SIR2 domain, which was shown to deplete NAD⁺ in response to phage
228 infection⁷. DSR1 and DSR2 are large defensive proteins, each of which activates an N-
229 terminal SIR2 domain to deplete NAD⁺ when a phage is detected by the C-terminal
230 domain of the protein⁶; and SEFIR is a single-protein defense system that depletes NAD⁺
231 via its N-terminal SEFIR domain⁸. Co-expression of the NARP1 pathway in *Bacillus*
232 *subtilis* with any of these systems abolished the system's ability to defend against *Bacillus*
233 phages, confirming the generality of NARP1 in countering multiple defense systems
234 (Figure 3A). Point mutation in the active sites of either of the two proteins in the NARP1
235 pathway impaired its ability to efficiently counter defense (Figure 3A).


236 As a control for these experiments, we used type II Thoeris, a defense system that
237 functions similar to type I Thoeris, but in which the SIR2 domain is replaced by two
238 transmembrane helices that are thought to induce membrane permeability when the
239 system detects phage infection, causing premature cell death independent of NAD⁺²¹.
240 Expression of NARP1 with type II Thoeris did not abolish defense, further supporting that
241 NARP1 can counter only bacterial defenses that rely on NAD⁺ depletion (Figure 3B).

242

243 **The NAD⁺ reconstitution pathway is phage-specific**

244 Given the homology between the phage enzyme Adps and the bacterial Prs enzyme, we
245 sought to study the evolutionary relationship between the two enzymes and their
246 taxonomic distribution across the phylogenetic tree. For this, we searched a database of
247 ~4,000 finished bacterial and archaeal genomes⁸ and a database of ~20,000 complete
248 phage genomes²² for homologs of Prs and Adps. A phylogenetic analysis of the detected
249 homologs revealed that Adps proteins localize to a well-supported clade that is separated
250 from the majority of prokaryotic Prs homologs, and that appears almost exclusively in
251 phage genomes (Figure 3C). In a minority of cases, sequences in the Adps clade were
252 present in bacterial genomes, and in some, but not all of these cases, Adps was within
253 prophages or other mobile genetic elements integrated in the bacterial genome (see
254 Discussion; Table S1).

255 We next examined the genomic neighborhood of genes encoding Prs and Adps
256 homologs. For the vast majority of proteins in the Adps clade (97%) we detected a
257 homolog of Namat in the immediate vicinity of the *adps* gene, confirming the functional
258 association between Adps and Namat within the NARP1 pathway (Figure 3C). In contrast,
259 bacterial *prs* genes were only very rarely present next to a gene encoding a Namat
260 homolog. Altogether, our analyses suggest that Adps proteins form a subfamily within the
261 phosphoribosylpyrophosphate synthetase family of proteins, and that such Adps proteins
262 evolved to utilize ADPR as a substrate instead of ribose-5-phosphate as part of the
263 NARP1 pathway.

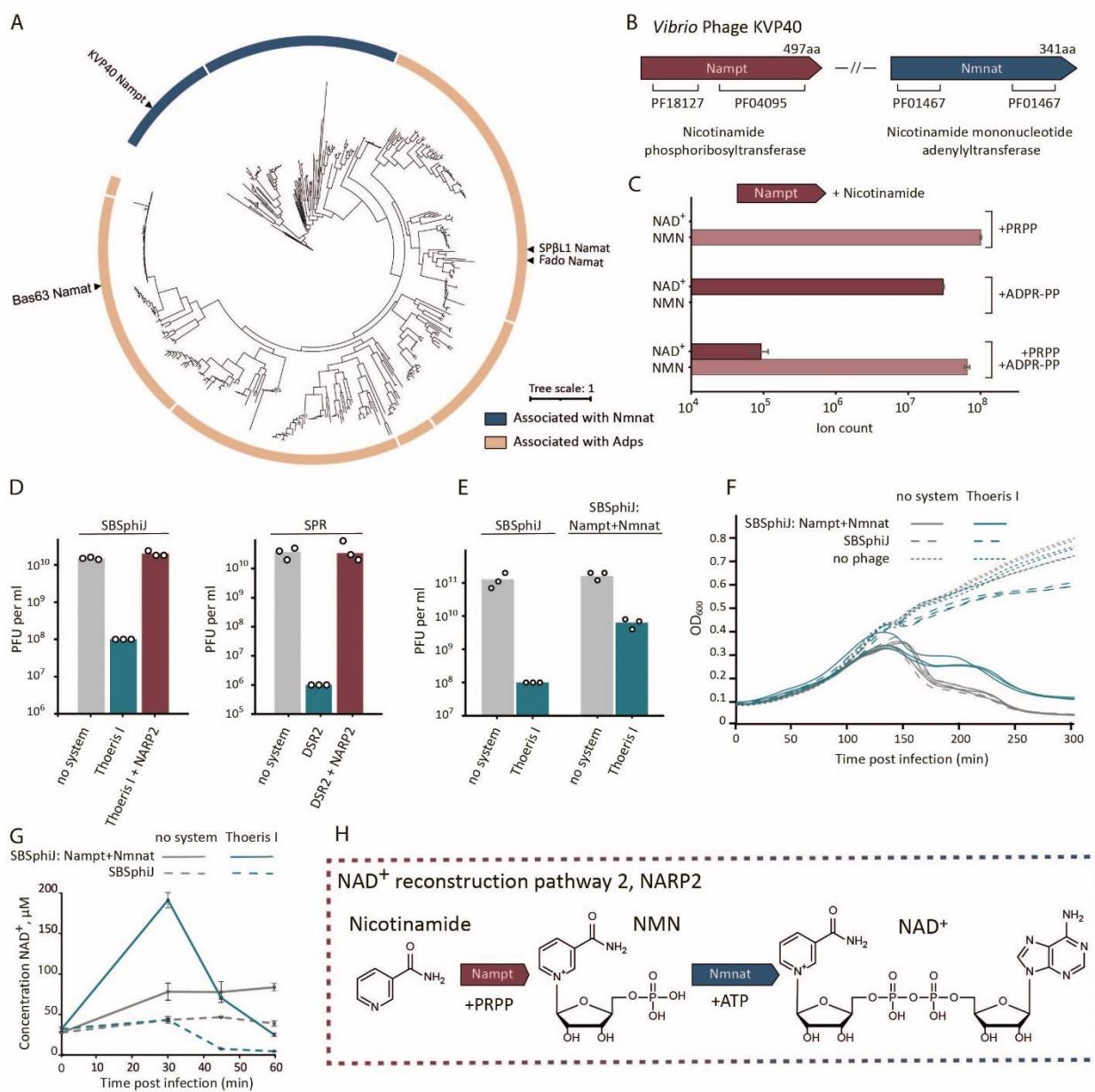
Figure 3. NARP1 is a phage-specific pathway that overcomes multiple NAD⁺ depletion defense systems. A. Anti-defense effect of NARP1 co-expressed in *B. subtilis* together with diverse NAD⁺-depleting defense systems. Data represent PFU per ml of *Bacillus* phages infecting control cells (no system), cells expressing the respective defense systems and cells co-expressing the defense system and NARP1. For Type I Thoeris, results for co-expression of mutated versions of NARP1 are also presented. **B.** NARP1 does not overcome the anti-phage defense conferred by type II Thoeris, a defense system that does not deplete NAD⁺ as part of its mechanism. Data presented are as in panel A. **C.** Phylogenetic analysis of the Adps/Prs protein family in phages, bacteria and archaea. Genes were marked as associated with Namat if a Namat homolog was detected in the genomic vicinity (up to 10 genes away from the Prs/Adps-encoding gene). Prokaryotic and viral protein sequences were clustered separately based on identical length and >90% identity and a representative sequence of each cluster was used to build the tree (see Methods). Ultrafast bootstrap value²³ is shown for the Adps clade. **D.** Deletion of the NARP1 operon sensitizes the FADO phage to the DSR2 defense system. Data represent PFU per ml of FADO and FADO_{ΔNARP1} phages infecting control cells (no system) and cells expressing the DSR2 defense system. **E.** Knock-in of NARP1 into phage SBSphij results in a phage that overcomes the type I Thoeris defense system. Data represent PFU per ml of WT SBSphij, SBSphij with NARP1 knock-in, and SBSphij knocked in for NARP1 with an active site mutation in Namat. Phages were used to infect control cells (no system) and cells expressing the type I Thoeris defense system. In panels A, B, D and E, bar graphs represent average of three independent replicates, with individual data points overlaid. In each panel, the phages that were used are indicated above the respective bar graphs.

283 We detected the NARP1 pathway encoding Adps and Namat in 859 sequenced phage
284 genomes, representing 4.3% of the phages in the set we analyzed (Table S1). To assess
285 the generality of our findings we asked whether additional homologs of this NAD⁺

286 reconstitution pathway also endow phages with the ability to evade NAD⁺ depletion-
287 mediated defense. For this, we examined NARP1 from phage Fado, a lytic phage that we
288 previously isolated⁸, and generated a mutant of Fado where the two genes encoding
289 NARP1 were deleted. The mutant phage could not replicate in cells expressing the
290 defense system DSR2, while the wild type Fado phage overcame defense (Figure 3D).
291 To further test whether NARP1 can protect phages from the effects of NAD⁺ depletion
292 independently of other phage factors, we engineered NARP1 from SpβL1 into phage
293 SBSphiJ, a phage that is naturally sensitive to the type I Thoeris defense system. We
294 found that the engineered phage can now overcome the type I Thoeris system (Figure
295 3E), whereas a phage engineered with mutated NARP1 could not overcome Thoeris
296 defense. Our data confirm the broad function of the viral NARP1 pathway in counteracting
297 NAD⁺ depletion-based bacterial defenses.

298

299 **A second pathway in phages overcomes NAD⁺-depleting defense systems**


300 We next searched for homologs of the NARP1 Namat proteins in the set of ~20,000 phage
301 genomes. While the majority (~79%) of Namat proteins were found in phages that also
302 encode Adps, we observed that ~20% of homologs were encoded in phages that lack
303 any homolog of Adps. A phylogenetic analysis showed that these homologs organize into
304 a clade distinct from the clade encoding the NARP1-associated Namat proteins,
305 suggesting that this clade encodes proteins that have sequence homology to NARP1
306 Namat enzymes but may have a different enzymatic function (Figure 4A; Table S2).

307 One of the proteins in the new clade is encoded in *Vibrio* phage KVP40 (Figure 4A, 4B).
308 This protein was previously shown to have a nicotinamide phosphoribosyltransferase
309 activity (Nampt), capable of producing NMN from PRPP and nicotinamide²⁴. To test
310 whether this protein is also capable of producing NAD⁺ from ADPR-PP, we purified the
311 protein and incubated it with either PRPP, ADPR-PP, or both PRPP and ADPR-PP, all in
312 the presence of nicotinamide and ATP. Our data reproduced the previous observation
313 that the protein has nicotinamide phosphoribosyltransferase enzymatic activity²⁴.
314 Although we could observe the production of NAD⁺ from ADPR-PP, a reaction in which
315 both ADPR-PP and PRPP were supplied as substrates to the purified protein showed that
316 this enzyme prefers PRPP as a substrate (Figure 4C).

317 It was previously shown that a second gene in *Vibrio* phage KVP40 encodes a
318 nicotinamide mononucleotide adenylyltransferase (Nmnat), capable of generating NAD⁺
319 by conjugating AMP to NMN²⁴ (Figure 4A). Moreover, it was shown that the *Vibrio* phage
320 KVP40 Nmnat, together with the nicotinamide phosphoribosyltransferase from the same
321 phage, can generate NAD⁺ from ribose-5-phosphate, nicotinamide and ATP²⁴. Given that
322 these two proteins represent an NAD⁺ reconstitution pathway that functions via enzymatic
323 reactions different than those encoded by the NARP1 pathway, we hypothesized that the
324 KVP40 pathway, too, can save phages from the effects of NAD⁺-depleting defense
325 systems.

326 To test this hypothesis we co-expressed these two genes in cells expressing either a type
327 I Thoeris or DSR2, and infected these cells by phages known to be blocked by the
328 respective defense systems. Our data show that the two genes from KVP40 completely
329 abolished the activity of both Thoeris and DSR2 (Figure 4D). We next integrated these
330 two genes from phage KVP40 into the genome of phage SBSphiJ, which is naturally
331 blocked by type I Thoeris, and found that the engineered phage was able to overcome
332 Thoeris defense (Figure 4E, 4F).

333 To further examine whether the two genes supply the phage with NAD⁺ despite the
 334 activity of the defense system, we measured NAD⁺ levels during infection, and detected
 335 a significant increase in NAD⁺ levels in cells infected by the SBSphiJ phage engineered
 336 to express the two genes from KVP40 (Figure 4G). The increase of NAD⁺ levels was also
 337 observed in SBSphiJ-infected *B. subtilis* cells that did not encode the defense system,
 338 suggesting that this pathway generates NAD⁺ regardless of the activity of NAD⁺-depleting
 339 defense systems (Figure 4G), corroborating previous reports on the *Vibrio* KVP40 phage
 340 that naturally encodes these genes²⁴.

341 **Figure 4. NARP2 is a second NAD⁺ reconstitution pathway allowing phages to overcome bacterial defense. A.**
 342 Phylogenetic analysis of the Namat/Nampt protein family in phage genomes. Outer ring indicates whether the phage
 343 genome encoding the respective gene also encodes nicotinamide mononucleotide adenyllyltransferase (Nmnat,
 344 blue) or whether the gene is associated with Adps (beige color) as defined in Figure 3C. Protein sequences were
 345 clustered based on identical length and >90% identity and a representative sequence of each cluster was used to
 346 build the tree (see Methods). **B.** Domain annotations of the NAD⁺ salvage proteins from *Vibrio* phage KVP40. **C.**
 347 Nampt from *Vibrio* phage KVP40 was purified and incubated *in vitro* with either PRPP, ADPR-PP, or a mixture of
 348 ADPR-PP and PRPP, in all cases in the presence of nicotinamide. The products NAD⁺ and NMN were measured by LC-
 349 MS. Data represent the mean area under the curve (AUC) of three experiments, error bars represent standard
 350 deviation. **D.** NARP2, when co-expressed with NAD⁺-depleting defense systems, inhibits anti-phage defense. Data
 351 represent PFU per ml of phages infecting control cells (no system), cells expressing the indicated defense systems
 352

353 and cells co-expressing the defense system and NARP2. **E.** Knock-in of NARP2 into phage SBSphiJ results in a phage
354 that partially overcomes type I Thoeris defense. Data represent PFU per ml of phages SBSphiJ and SBSphiJ+NARP2
355 infecting control cells (no system) and cells expressing type I Thoeris. For panels D and E, bar graphs represent
356 average of three independent replicates with individual data points overlaid. Phages used for the infection assays
357 are indicated above the graph. **F.** Liquid culture growth of *B. subtilis* cells expressing the type I Thoeris defense
358 system, or control cells without defense genes (no system). Cells were infected by phages SBSphiJ and SBSphiJ with
359 the NARP2 pathway knocked in. Infection was performed at MOI=0.1. Data from three replicates are presented as
360 individual curves. **G.** NAD⁺ concentration in lysates extracted from cells expressing type I Thoeris or control strain
361 (no system). Cells were infected either with phage SBSphiJ or with SBSphiJ knocked in with the NARP2 pathway, at
362 MOI=10. Cells were collected before infection (0 min) and 30, 45 or 60 minutes after infection. NAD⁺ concentration
363 was determined using the NAD/NADH-Glo assay. The experiment was performed in three replicates, error bars
364 represent standard deviation. **H.** Schematic of the enzymatic reactions of NARP2²⁴.

365 Our data show that almost all phages (94%) in which we detected a homolog of the
366 KVP40 Nampt enzyme also encode a homolog of Nmnat, providing further support that
367 these two proteins are functionally linked and form an NAD⁺-reconstitution pathway
368 (Figure 4H; Table S2). Our data suggest that the function of this pathway is to counter
369 the activity of NAD⁺-depleting defense systems. We name this pathway NAD⁺
370 reconstitution pathway 2 (NARP2), and find that NARP2 is encoded in ~1.1% of
371 sequenced phage genomes (Table S2). We were not able to find any phage that encodes
372 both NARP1 and NARP2 (Table S2).

373

374 **Discussion**

375 Phages are known to encode multiple proteins to counter bacterial defenses^{20,25,26}. In
376 most cases, each anti-defense phage protein inhibits only a narrow range of defense
377 systems. Most anti-CRISPR proteins, for example, bind and inhibit only a specific subtype
378 of CRISPR-Cas²⁷, and Apyc1, a phage protein that degrades immune signaling
379 molecules, only inhibits the Pycsar system²⁸. The phage anti-defense strategy we
380 describe in the current study is unique because it counters the consequences of the
381 immune action rather than components of the defense system itself. Thus, it allows
382 phages to evade a wide variety of systems that deplete NAD⁺, including SIR2-HerA⁶,
383 DSR1⁶, DSR2⁶, and type I Thoeris⁷, and is likely to also overcome variants of CBASS¹¹,
384 Pycsar¹², AVAST¹⁰, and pAgo^{6,9} that have effectors that deplete NAD⁺.

385 While both NARP1 and NARP2 rebuild NAD⁺ as their final products, they differ in their
386 substrates. NARP1 uses ADPR and nicotinamide, the direct products of NAD⁺ cleavage
387 by immune effector domains such as TIR, SIR2 and SEFIR⁶⁻⁸, and necessitates only ATP
388 in addition to the cleavage products for the production of NAD⁺. This pathway will
389 therefore not come into action unless the phage infects a cell that contains an NAD⁺-
390 depleting system, and unless the system actively depletes NAD⁺ in attempt to protect
391 against the infecting phage. As ADPR is normally not present in substantial quantities in
392 uninfected *B. subtilis* cells⁶, this pathway likely inflicts minimal metabolic costs to the
393 phage when infecting cells that do not encode an NAD⁺-depleting defense system.
394 Indeed, we did not observe production of excessive NAD⁺ when NARP1-containing
395 phages infected cells that lack a defense system (Figure 1E). In contrast, phages
396 encoding NARP2 caused cells to produce excessive NAD⁺ during infection even when
397 the cells did not contain an NAD⁺-depleting defense system, because NARP2 uses PRPP
398 as its starting substrate (Figure 4G). Thus, NARP2 may inflict a more severe metabolic
399 cost to the phage, especially as it consumes PRPP, which is essential for nucleotide
400 synthesis²⁹. The possibly higher metabolic cost inflicted by NARP2 may explain why it is
401 rarer in phage genomes as compared to NARP1.

402 Since at least 7% of all bacteria whose genomes were sequenced encode an NAD⁺-
403 depleting defense system⁸, it is not surprising that NARP1 and NARP2 together are
404 present in 5.4% of sequenced phages. A recent analysis of phage genomes shows that
405 in addition to NARP1 and NARP2, phages can encode other genes whose annotations
406 suggest involvement in NAD⁺ salvage¹⁵. For example, some phages encode homologs of
407 NadR, an enzyme known to produce NAD⁺ from nicotinamide riboside and ATP¹⁵. Phage
408 NadR -encoding genes are usually present in the same operon as a gene annotated as
409 encoding PnuC, a transporter specific for nicotinamide riboside, and it is conceivable that
410 this operon would form yet another pathway allowing phages to produce NAD⁺ via
411 available metabolites (Figure S3). Thus, the actual fraction of phages encoding an NAD⁺
412 reconstitution pathway may be even larger than the >5% we recorded.

413 While NARP1 is preferentially encoded in phages, some bacterial genomes seem to
414 encode it not in the context of a prophage or a mobile genetic element (Table S1). ADPR
415 was shown, in a minority of bacteria, to be present at detectable concentrations³⁰ and it
416 was demonstrated that this metabolite may be involved in regulation of transcription in
417 some bacteria³¹. It is therefore possible that some bacteria have adopted NARP1 for
418 housekeeping or regulatory functions not related to the phage-bacteria conflict; future
419 studies will be necessary to determine the role of NARP1 in this context.

420 In recent years, multiple bacterial immune systems were shown to degrade essential
421 metabolites as a measure of anti-phage defense, representing a general strategy of
422 depriving the phage from an essential metabolite and limiting its propagation. In addition
423 to NAD⁺ depletion, metabolite-depleting defense systems include dCTP deaminases³²
424 and dGTPases³² that degrade deoxynucleotides, and ATP nucleosidases that deplete
425 ATP in infected cells¹³. It is possible that, similar to NAD⁺ reconstitution pathways, phages
426 may also encode pathways that rebuild deoxynucleotides or ATP from the degradation
427 products generated by the respective defense system. As depletion of deoxynucleotides
428 and ATP was also shown to be utilized by animal cells as an antiviral measure^{13,33}, future
429 studies may reveal that viruses infecting animals may also use metabolite reconstitution
430 as a counter-defense strategy.

431

432 **Materials and Methods**

433 Strains and growth conditions

434 *E. coli* K-12 BW25113, DH5a and BL21 (DE3) were grown in MMB media (lysogeny broth
435 (LB) supplemented with 0.1 mM MnCl₂ and 5 mM MgCl₂) at 37°C with 200 rpm shaking
436 or on solid 1.5% LB agar plates. Ampicillin 100 µg/ml, chloramphenicol 30 µg/ml or
437 kanamycin 50 µg/ml were added when necessary for plasmid maintenance. *E. coli* DH5a
438 (NEB) was used for cloning, BL21 (DE3) for protein purification and BW25113 for
439 experiments with phages. *B. subtilis* strain BEST7003 (obtained from Mitsuhiro Itaya of
440 Keio University, Japan) was grown in MMB at 25°C or 30°C, spectinomycin 100 µg/mL
441 and/or chloramphenicol 5 µg/ml were added when needed. All chemicals were obtained
442 from Sigma Aldrich unless stated otherwise. All phages used in the study were amplified
443 from a single plaque at 37°C (except for FADO, which was amplified at 25°C) in *B. subtilis*
444 BEST7003 culture in MMB until the culture collapsed. A list of all plasmids, strains and
445 phages used in this study can be found in Supplementary Table S3.

446 Plasmid construction and transformation

447 DNA amplification for cloning was made by KAPA HiFi HotStart ReadyMix (Roche)
448 according to manufacturer instruction. All primers were obtained from Sigma Aldrich.
449 Supplementary Table S4 lists all primers used in this study.

450 For site-directed mutagenesis, the whole plasmid was amplified by back-to-back primers
451 containing mutations at the primer 5'-end. PCR product was then directly used for
452 circularization with KLD enzyme mix (NEB) according to manufacturer instructions, and
453 used for transformation. For cloning of large fragments, PCR products with 20-nucleotides
454 overlaps were generated and treated with FastDigest DpnI (ThermoFisher) restriction
455 enzyme for 30 min at 37°C. Fragments were then Gibson assembled by NEBuilder HiFi
456 DNA Assembly Master Mix (NEB) according to manufacturer's instructions and used for
457 transformation into DH5a (NEB #C2987H). Single colonies were checked by PCR and
458 plasmids were validated by a plasmid sequencing service (Plasmidsaurus).

459 Verified plasmids were transformed into *E. coli* using the standard TSS protocol³⁴ or to *B.*
460 *subtilis* using MC media as previously described³⁵. The KVP40-NARP2 operon (Table
461 S3) could not be transformed into *E. coli* because of toxicity, and hence the Gibson
462 assembly product was directly transformed into *B. subtilis* using the MC media protocol.
463 Integrations of the NARP1 and NARP2 constructs into *B. subtilis* strains were confirmed
464 by whole-genome sequencing.

465 To design active site mutations of Adps and Namat, we aligned their sequences with
466 previously-studied homologs. Sp β L1 Adps is similar to *B. subtilis* Prs (27% sequence
467 identity), in which Lys197 was previously demonstrated biochemically and structurally to
468 be essential for the enzymatic activity^{36,37}. Therefore, Lys162 of Adps from Sp β L1,
469 corresponding to Lys197 of *B. subtilis* Prs was mutated to alanine by site-directed
470 mutagenesis. Sp β L1 Namat shares 33% sequence identity with the *Homo sapiens* Nampt
471 protein, the active site of which was studied biochemically and structurally³⁶. A Arg306 to
472 Gly mutation was designed in the Sp β L1 Namat based on the homologous residue
473 Arg311 shown to be important for the activity of the human Nampt³⁶. Primers for site-
474 directed mutagenesis of the both genes are in the Supplementary Table 4.

475

476 Deletion of NARP1 operons from Bas63 and FADO phages

477 The NARP1 operon from Bas63 was deleted using Cas13a as previously described³⁸. A
478 gRNA complementary to the beginning of the coding region of gene 79 was cloned to the
479 plasmid pBA559 treated with Bsal. *E. coli* DH5a was transformed with this plasmid and
480 then infected by Bas63 in two consecutive rounds with MOI~1 in 5 ml of MMB media.
481 Then, 100 μ l of lysate was spread on a plate with the same strain (DH5a without plasmid
482 was used as a control). Several plaques were collected and screened by PCR. Deletion
483 of the genomic region starting from codon 28 of gene 79 and ending in coding 302 of
484 gene 80 was confirmed by whole genome sequencing of the phage genome.

485 To delete the NARP1 region from FADO phage, lysogenic bacteria were first prepared by
486 infecting *B. subtilis* strain BEST7003 cells with the FADO phage (MOI 0.1). When cells
487 started to grow again after lysis, the culture was spread onto an MMB-agar plate.
488 Individual clones were selected and checked for lysogeny by incubation with Mitomycin
489 C (0.5 μ g/ml) followed by phage titer counting in the supernatant. Lysogenic bacteria were
490 transformed with a non-replicating in *B. subtilis* plasmid (pJmp3) encoding a
491 spectinomycin resistance gene flanked by 1 kb regions identical to the DNA flanking
492 NARP1 in the FADO genome. Following homologous recombination, spectinomycin-
493 resistant lysogens were selected on a plate with spectinomycin and checked by PCR.
494 The modified FADO prophage was induced using Mitomycin C (0.5 μ g/ml). Whole-
495 genome sequencing was performed to verify the sequence of the modified phage.

496 Knock-in of intact and mutated NARP1 and NARP2 operons into SBSphiJ

497 Insertion of DNA into the SBSphiJ genome by means of homology recombination was
498 demonstrated previously to be achievable via homologous recombination³⁹. Here we
499 used the same region in the SBSphiJ genome previously used to knock-in the gene
500 *tad1*³⁹, and the same flanking regions, to integrate the NARP1 and NARP2 operons into
501 the SBSphiJ genome. Plasmids with intact and mutated NARP1 and Gibson assembly
502 product for NARP2, flanked by 1 kb regions identical to the DNA flanking *Tad1* in the
503 SBSphiJ genome, were transformed to *B. subtilis* BEST7003 and these strains were
504 infected by SBSphiJ with MOI 0.1 for generating recombined phages. A gRNA
505 complementary to unmodified SBSphiJ was cloned into the previously published plasmid
506 pGad2-Cas13a²⁰ to generate pCas13a-gRNA-SBSphiJ. *B. subtilis* BEST7003,
507 transformed with this plasmid was used for selection against unmodified SBSphiJ phages
508 in order to retain only phages where homology recombination took place. The selection
509 was made on an agar plate in the presence of 0.2% xylose and several plaques were
510 tested by PCR for the presence of intact and mutated NARP1 and NARP2. Whole-
511 genome sequencing was performed to verify the sequence of the modified phage.

512 Generation of $\Delta pncC\Delta nadR$ *E. coli* strain by P1 transduction

513 BW25113 $\Delta pncC$ strain from the Keio collection⁴⁰ was transformed with the pCP20
514 plasmid to eliminate the resistance cassette⁴⁰. Kanamycin sensitive clones were selected
515 and checked by PCR. BW25113 $\Delta nadR$ from the Keio collection was infected with P1
516 and used as a donor for transduction, which was made according to the standard
517 protocol⁴¹. Double-knockouts were selected on kanamycin and checked by PCR, positive
518 clones were grown twice on LB media with 5 mM sodium citrate to eliminate the residual
519 phage. Sequence of the $\Delta pncC\Delta nadR$ *E. coli* was validated by a genome sequencing
520 service (Plasmidsaurus).

521 Plaque assays

522 Phage titer was determined as described previously⁴². 300 μ l of the overnight bacterial
523 cultures were mixed with 30 ml of melted MMB 0.5% agar, poured on 10 cm square plates
524 and left to dry for 1 h at room temperature. IPTG was added to a concentration of 1 mM
525 to induce NARP1 and NARP2 from the *B. subtilis* genome. Tenfold dilutions of phages
526 were prepared in MMB and 10 μ l of each dilution was dropped onto the plates. Plates
527 were incubated overnight at 25°C (DSR1, DSR2, SEFIR, type II Thoeris), 30°C (type I
528 Thoeris) and 37°C (SIR2-HerA). Plaque-forming units were counted the next day.

529 Liquid infection assays

530 Overnight bacterial cultures were diluted in MMB and grown until reaching an optical
531 density at 600nm (OD_{600}) of 0.3. Then, 180 μ l of cultures were transferred to a 96-well
532 plate and infected with 20 μ l of phages at various MOIs. Culture growth was followed by
533 OD_{600} measurements every 10 min on a Tecan Infinite 200 plate reader. Cells expressing
534 the SIR2-HerA system were grown at 37°C, while those expressing the type I Thoeris
535 system were grown at 30°C.

536 Proteins purification

537 Plasmids were transformed into BL21 (DE3) cells, and cells were grown in MMB media
538 at 37°C until mid-log phase (OD_{600} ~0.5), then IPTG was added to a concentration of 0.5
539 mM and cells were further grown for 3 additional hours, centrifuged and flash-frozen. His-
540 tagged proteins were purified by NEBExpress® Ni-NTA Magnetic Beads (NEB) according
541 to the manufacturer's protocol. Proteins were transferred to 20 mM Tris (pH 8), 200 mM
542 NaCl, 5 mM DTT and 5% (v/v) glycerol by five cycles of filtration through 10 kDa Amicon
543 filters (Merck Millipore), and finally concentrated to 0.5 mg/ml.

544 Enzymatic activity of purified proteins

545 Reactions were performed in 50 mM Tris (pH 7.5), 12 mM MgCl₂, BSA 0.02% (w/v), D-
546 Ribose 5-phosphate (Sigma 83875), 5-Phospho-D-ribose 1-diphosphate (Sigma P8296),
547 adenosine 5'-diphosphoribose (Sigma A0752) and nicotinamide were added to 1 mM
548 when indicated. ATP was added in excess to a concentration of 5 mM in all reactions,
549 except for the one presented in Figure 2D, where ATP concentrations were 1 mM
550 (equimolar). Adps was added at 0.5 μ M, Namat and Nampt in all reactions were at 0.2
551 μ M. Reactions were incubated for 60 min at 30°C and then stopped by adding methanol
552 50% and diluting 10 times 50% methanol/50% 0.1 M Na-phosphate buffer, pH 8.0.
553 Products and substrate molecules were analyzed by LC-MS or with NAD/NADH-Glo kit
554 (Promega).

555 Cell lysates preparation

556 *E. coli* BW25113 cells carrying a plasmid with the SIR2-HerA system or an empty plasmid
557 were grown at 37 °C, 200 rpm until reaching an OD₆₀₀ of 0.3 in 250 ml of MMB. Cells were
558 then infected with Bas63 and Bas63_{Δ79-80} with MOI=10. Samples were collected before
559 infection and 20, 40 and 60 minutes after infection. At each time point, 50 ml of cells were
560 centrifuged for 10 minutes at 25°C, 4000 g for 10 min to pellet the cells and 600 μ l of 50%
561 methanol/50% 0.1 M Na-phosphate buffer, pH 8.0 were immediately added to stop further
562 NAD⁺ degradation. Resuspended cells were frozen in liquid nitrogen and stored at -80°C.
563 To extract metabolites, resuspended cells were transferred to FastPrep Lysing Matrix B
564 in a 2 ml tube (MP Biomedicals, no. 116911100) and lysis was achieved as described
565 previously³⁹. Lysates were analyzed by LC-MS or with the NAD/NADH-Glo kit (Promega).
566 *B. subtilis* strain BEST7003 expressing type I Thoeris or control strain without defense
567 system were grown at 30 °C, 200 rpm until reaching an OD₆₀₀ of 0.3 in 250 ml of MMB
568 and then infected with SBSphiJ and SBSphiJ+NARP2 with MOI=10. Samples were
569 collected before infection and 30, 45 and 60 minutes after infection. Next processing was
570 done exactly like for *E. coli* samples described above.

571 Enzymatic assay for NAD⁺ measurements

572 The NAD/NADH-Glo (Promega) kit was used for NAD⁺ level measurement. The lysate or
573 *in vitro* reactions were diluted 1:100 in 0.1 M Na-phosphate buffer, pH 8.0. Reactions
574 were performed in a volume of 10 μ l (5 μ l of sample + 5 μ l of reaction mix) according to
575 manufacturer's protocol and luciferase signal was detected using the Tecan Infinite 200
576 PRO plate reader every 2 minutes for 30 cycles. NAD⁺ concentrations were calculated
577 from the calibration curve using a set of standard NAD⁺ samples with known
578 concentrations.

579 Enzymatic treatment of ADPR-PP and ADPR-cP with Apyrase and NudC

580 For Apyrase treatment, 20 μ l of reaction mixture of ADPR, ATP and Adps (Figure 2D)
581 was mixed with 15 μ l of water, 4 μ l of 10x Apyrase buffer (NEB) and 1 μ l of Apyrase
582 (M0398S, NEB), then incubated for 30 min at 30°C. Products were analyzed by LC-MS.

583 For NudC treatment, 20 μ l of reaction mixture of ADPR, ATP and Adps (Figure 2D) was
584 mixed with 13 μ l of water, 4 μ l of 10x r3.1 buffer (NEB), 2 μ l of 100 μ M DTT and 1 μ l of
585 NudC (M0607S, NEB), then incubated for 30 min at 37°C. Products were analyzed by
586 LC-MS.

587 Metabolites analysis via LC-MS

588 Metabolic profiling of the polar metabolites was performed as described previously⁴³ with
589 minor modifications as described below. Briefly, analysis was performed using Acquity I

590 class UPLC System combined with mass spectrometer Q Exactive Plus Orbitrap™
591 (Thermo Fisher Scientific), which was operated in both positive and negative ionization
592 modes. The LC separation was done using the SeQuant Zic-pHilic (150 mm × 2.1 mm)
593 with the SeQuant guard column (20 mm × 2.1 mm) (Merck). The Mobile phase B was
594 acetonitrile and Mobile phase A was 20 mM ammonium carbonate with 0.1% ammonia
595 hydroxide in DDW: acetonitrile (80:20, v/v). The flow rate was kept at 200 µl/min, and the
596 gradient was as follows: 0-2 min 75% of B, 14 min 25% of B, 18 min 25% of B, 19 min
597 75% of B, for 4 min, 23 min 75% of B.

598 For the detection of NAD⁺ and NMN by LC-MS, analysis was performed by two separate
599 injections in positive and negative ionization modes from m/z 75 to 1000 at a mass
600 resolution of 70,000. Peak areas were extracted using MZmine 2 with an accepted
601 deviation of 5 ppm. In figure 2D signals of all substrates were normalized to the signals
602 of the standard samples with the same concentration as used in the reaction. Signals for
603 ADPR-PP and ADPR-cP were calculated from the decrease of used ADPR, because
604 reactions were carried out with an excess ATP. All molecules used as standards were
605 obtained from Sigma: ADPR (A0752), PRPP (P8296), D-Ribose 5-phosphate (83875),
606 ATP (A1852), Nicotinamide (72340) NMN (N3501) and NAD⁺ (N8285).

607 For detection of ADPR-PP and ADPR-cP, MS/MS spectra collection was performed using
608 the same instrument at a resolution of 17,500. Fragmentation was done through a higher-
609 energy collisional dissociation cell using a normalized collision energy 30. Fragments
610 were extracted using MZmine 2.

611

612 Phylogenetic analyses of Adps and Namat

613 Homologs of Prs/Adps, Namat and Nmnat were searched in 3,895 finished prokaryotic
614 genomes (including 3,781 bacterial and 114 archaeal genomes)⁸ downloaded in October
615 2017, as well as in 20,185 phage genomes from the INPHARED database downloaded
616 on May 1st 2023²². For the Prs/Adps analysis, the *E. coli* Prs protein, phage Bas63 Adps
617 and phage SpβL1 Adps were used as queries the Namat analysis, the Namat protein
618 sequences from phages Bas63, SpβL1 and the Nampt from KVP40 were used. Nmnat
619 was searched using the sequence from phage KVP40 as a query. All proteins were
620 searched using the 'search' function of MMseqs2 (release 12-113e3)⁴¹ using 2 iterations
621 (parameter --num-iterations 2). Hits with an e-value lower than 10⁻⁵ were selected.
622 Sequences from phage and prokaryotic genomes were separately filtered for redundancy
623 by clustering sequences with identical length and at least 90% identity using the clust-
624 hash option of MMseqs2⁴⁴. Sequences shorter than 200 residues were discarded, and
625 the remaining sequences were aligned using Clustal-Omega (v 1.2.4)⁴⁵. Phylogenetic
626 trees were built using IQtree (v. 1.6.5)⁴⁶ with parameters -m LG -nt AUTO. Human Prps1
627 and Nampt were used as an outgroup for the Prs/Adps and Namat trees, respectively.
628 Node support was computed using 1000 iterations of the ultrafast bootstrap function in
629 IQtree (option -bb 1000)²³. All trees were visualized with iTOL⁴⁷. For the Prs/Adps tree,
630 leaves were annotated based on the presence of a Namat homolog within ten genes
631 upstream or downstream of Prs/Adps. For the Namat tree, each sequence was annotated
632 based on the presence of a Prs/Adps or Nmnat homolog in the same phage genome.

633

634 **Acknowledgements**

635 We thank members of the Sorek laboratory for comments on earlier versions of this
636 manuscript. R.S. was supported, in part, by the European Research Council (grant no.
637 ERC-AdG GA 101018520), Israel Science Foundation (MAPATS Grant 2720/22), the

638 Deutsche Forschungsgemeinschaft (SPP 2330, Grant 464312965), a research grant from
639 the Estate of Marjorie Plesset, the Ernest and Bonnie Beutler Research Program of
640 Excellence in Genomic Medicine, Dr. Barry Sherman Institute for Medicinal Chemistry,
641 Miel de Botton, the Andre Deloro Prize, and the Knell Family Center for Microbiology. I.
642 O. was supported by Ministry of Absorption - New Immigrant program. E.Y. is supported
643 by the Clore Scholars Program, and, in part, by the Israeli Council for Higher Education
644 (CHE) via the Weizmann Data Science Research Center.

645

646 **Competing interests**

647 R.S. is a scientific cofounder and advisor of BiomX and Ecophage. The other authors
648 declare no competing interests.

649

650

651

652 **Supplementary materials**

653

654 Supplementary Figures

655

656 **Supplementary Figure 1.** Mass spectrometry analysis of metabolites detected in lysates from infected cells

657 **Supplementary Figure 2.** Enzymatic treatment of NARP1 products

658 **Supplementary Figure 3.** BASEL-collection phages encoding NAD⁺ reconstitution pathways.

659

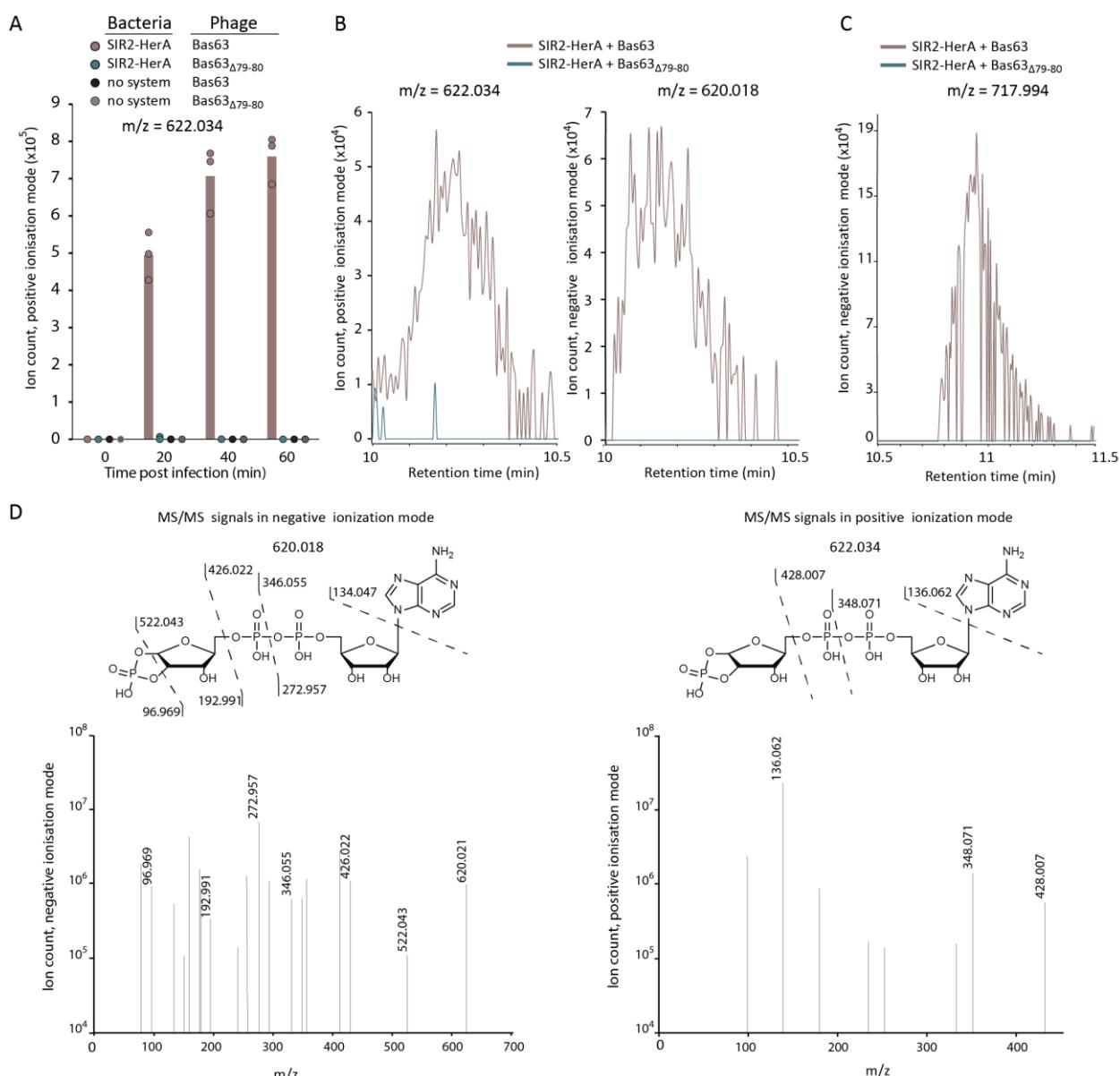
660 Supplementary Tables

661

662 **Supplementary Table 1.** Adps homologs

663 **Supplementary Table 2.** Namat homologs

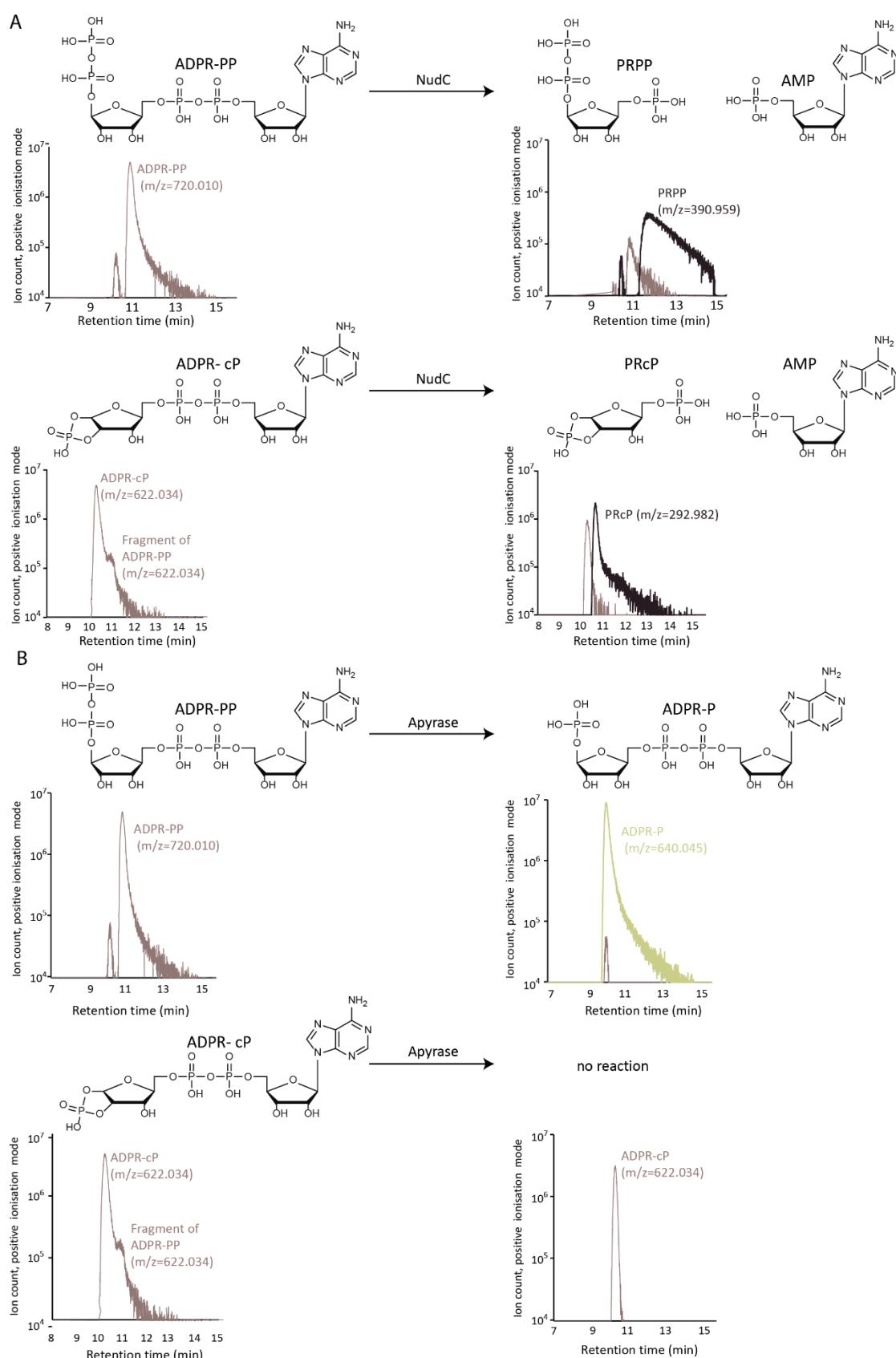
664 **Supplementary Table 3.** Strains, plasmids and phages used in this study


665 **Supplementary Table 4.** Primers used in this study

666

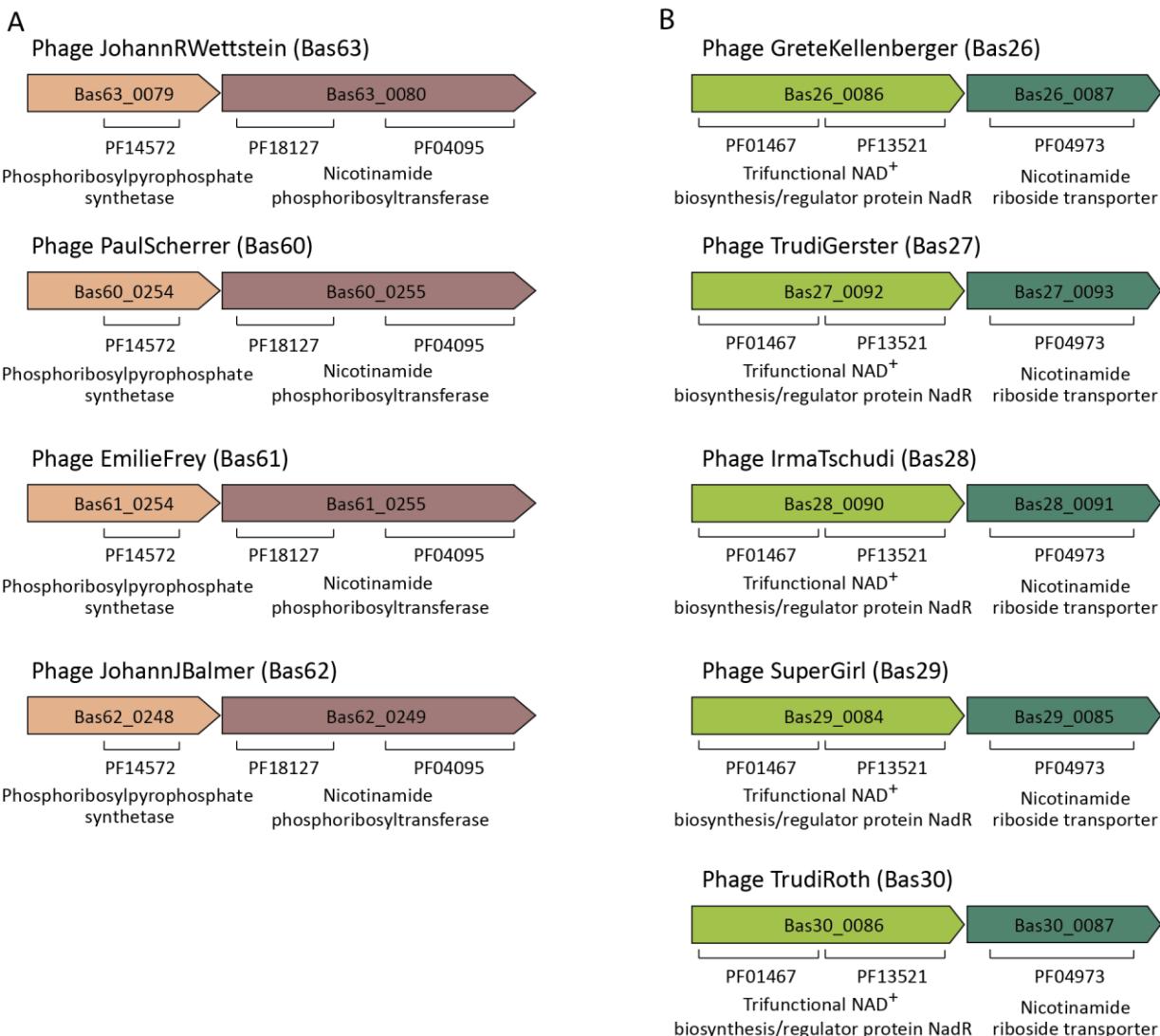
667

668


669

670

671 **Supplementary Figure 1. Mass spectrometry analysis of metabolites detected in lysates from infected cells. A.** A unique molecule with an m/z value of 622.034 appears in SIR2-HerA cells infected by Bas63. Cells were infected at MOI=10. Bars represent the mean area under the curve (AUC) of three experiments, with individual data points overlaid. **B.** Extracted mass chromatograms of ions with an m/z value of 622.034 (positive ionization mode) and 620.021 (negative ionization mode) and retention time of 10.2 min. **C.** MS data in negative ionization mode for the same molecule presented in Figure 2B. **D.** MS/MS fragmentation spectra of the molecule with the m/z value 620.021 (negative ionization mode) and 622.034 (positive ionization mode). The hypothesized structure of the molecule and MS/MS fragments are presented.


679

680

681 **Supplementary Figure 2. Enzymatic treatment of NARP1 products.** A. Schematic of the reactions and mass-
682 chromatograms of ADPR-PP and ADPR-cP following incubation with the enzyme NudC. Representative
683 chromatograms of three replicates are presented. B. Schematic of the reactions and mass-chromatograms of ADPR-
684 PP and ADPR-cP following incubation with the enzyme Apyrase. The peak with m/z 622.034 and retention time 11.0
685 is hypothesized to correspond to fragmentation of ADPR-PP by ionization in mass spectrometer. Representative
686 chromatograms of three replicates are presented.

687

688

689 **Supplementary Figure 3. BASEL-collection phages encoding NAD reconstitution pathways.** A. BASEL-collection
690 phages that encode the NARP1 pathway. B. BASEL-collection phages that encode a two-gene operon predicted to
691 comprise NadR and a transporter for nicotinamide riboside. This operon is hypothesized to comprise a phage NAD⁺
692 reconstitution pathway that was not examined in the current study.

693

694

695 **References**

696

- 697 1. Chen, Y. et al. From bacteria to biomedicine: Developing therapies exploiting NAD(+) metabolism.
698 *Bioorg Chem* **142**, 106974 (2024).
- 699 2. Erhardt, H. et al. Organization of the *Escherichia coli* aerobic enzyme complexes of oxidative
700 phosphorylation in dynamic domains within the cytoplasmic membrane. *Microbiologyopen* **3**,
701 316-26 (2014).
- 702 3. Rodionova, I.A. et al. Metabolic and bactericidal effects of targeted suppression of NadD and NadE
703 enzymes in mycobacteria. *mBio* **5**(2014).
- 704 4. Mikolcevic, P., Hlousek-Kasun, A., Ahel, I. & Mikoc, A. ADP-ribosylation systems in bacteria and
705 viruses. *Comput Struct Biotechnol J* **19**, 2366-2383 (2021).
- 706 5. Wilkinson, A., Day, J. & Bowater, R. Bacterial DNA ligases. *Mol Microbiol* **40**, 1241-8 (2001).
- 707 6. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD(+)
708 depletion. *Nat Microbiol* **7**, 1849-1856 (2022).
- 709 7. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. *Nature*
710 **600**, 116-120 (2021).
- 711 8. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. *Cell*
712 *Host Microbe* **30**, 1556-1569 e5 (2022).
- 713 9. Zaremba, M. et al. Short prokaryotic Argonautes provide defence against incoming mobile genetic
714 elements through NAD(+) depletion. *Nat Microbiol* **7**, 1857-1869 (2022).
- 715 10. Gao, L.A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral
716 proteins. *Science* **377**, eabm4096 (2022).
- 717 11. Morehouse, B.R. et al. STING cyclic dinucleotide sensing originated in bacteria. *Nature* **586**, 429-
718 433 (2020).
- 719 12. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. *Cell* **184**, 5728-
720 5739 e16 (2021).
- 721 13. Rousset, F. et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection.
722 *Cell* **186**, 3619-3631 e13 (2023).
- 723 14. Maffei, E. et al. Systematic exploration of *Escherichia coli* phage-host interactions with the BASEL
724 phage collection. *PLoS Biol* **19**, e3001424 (2021).
- 725 15. Iyer, L.M., Burroughs, A.M., Anantharaman, V. & Aravind, L. Apprehending the NAD(+) ADPr-
726 Dependent Systems in the Virus World. *Viruses* **14**(2022).
- 727 16. Tang, D. et al. Multiple enzymatic activities of a Sir2-HerA system cooperate for anti-phage
728 defense. *Mol Cell* **83**, 4600-4613 e6 (2023).
- 729 17. Galeazzi, L. et al. Identification of nicotinamide mononucleotide deamidase of the bacterial
730 pyridine nucleotide cycle reveals a novel broadly conserved amidohydrolase family. *J Biol Chem*
731 **286**, 40365-75 (2011).
- 732 18. Raffaelli, N. et al. The *Escherichia coli* NadR regulator is endowed with nicotinamide
733 mononucleotide adenylyltransferase activity. *J Bacteriol* **181**, 5509-11 (1999).
- 734 19. Khorana, H.G., Fernandes, J.F. & Kornberg, A. Pyrophosphorylation of ribose 5-phosphate in the
735 enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate. *J Biol Chem* **230**, 941-8 (1958).
- 736 20. Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. *Nature*
737 **625**, 352-359 (2024).
- 738 21. Sabonis, D. et al. TIR domains produce histidine-ADPR conjugates as immune signaling molecules
739 in bacteria. *bioRxiv*, 2024.01.03.573942 (2024).
- 740 22. Cook, R. et al. INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases
741 in the Current Collection of Cultured Phage Genomes. *Phage (New Rochelle)* **2**, 214-223 (2021).
- 742 23. Minh, B.Q., Nguyen, M.A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap.
743 *Mol Biol Evol* **30**, 1188-95 (2013).
- 744 24. Lee, J.Y., Li, Z. & Miller, E.S. *Vibrio* Phage KVP40 Encodes a Functional NAD(+) Salvage Pathway. *J*
745 *Bacteriol* **199**(2017).
- 746 25. Gao, Z. & Feng, Y. Bacteriophage strategies for overcoming host antiviral immunity. *Front*
747 *Microbiol* **14**, 1211793 (2023).

748 26. Mayo-Munoz, D., Pinilla-Redondo, R., Camara-Wilpert, S., Birkholz, N. & Fineran, P.C. Inhibitors of
749 bacterial immune systems: discovery, mechanisms and applications. *Nat Rev Genet* (2024).

750 27. Zhang, F., Song, G. & Tian, Y. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. *Animal*
751 *Model Exp Med* **2**, 69-75 (2019).

752 28. Hobbs, S.J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. *Nature*
753 **605**, 522-526 (2022).

754 29. Hove-Jensen, B. et al. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization,
755 and Metabolic Significance. *Microbiol Mol Biol Rev* **81**(2017).

756 30. Huang, N. et al. Structure and function of an ADP-ribose-dependent transcriptional regulator of
757 NAD metabolism. *Structure* **17**, 939-51 (2009).

758 31. Rodionov, D.A. et al. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of
759 Nudix-related regulators. *Nucleic Acids Res* **36**, 2047-59 (2008).

760 32. Tal, N. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. *Nat*
761 *Microbiol* **7**, 1200-1209 (2022).

762 33. Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate
763 triphosphohydrolase. *Nature* **480**, 379-82 (2011).

764 34. Chung, C.T., Niemela, S.L. & Miller, R.H. One-step preparation of competent *Escherichia coli*:
765 transformation and storage of bacterial cells in the same solution. *Proc Natl Acad Sci U S A* **86**,
766 2172-5 (1989).

767 35. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome.
768 *Science* **359**(2018).

769 36. Hove-Jensen, B., Bentsen, A.K. & Harlow, K.W. Catalytic residues Lys197 and Arg199 of *Bacillus*
770 *subtilis* phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible
771 catalytic loop. *FEBS J* **272**, 3631-9 (2005).

772 37. Eriksen, T.A., Kadziola, A., Bentsen, A.K., Harlow, K.W. & Larsen, S. Structural basis for the function
773 of *Bacillus subtilis* phosphoribosyl-pyrophosphate synthetase. *Nat Struct Biol* **7**, 303-8 (2000).

774 38. Adler, B.A. et al. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. *Nat*
775 *Microbiol* **7**, 1967-1979 (2022).

776 39. Leavitt, A. et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. *Nature* **611**,
777 326-331 (2022).

778 40. Baba, T. et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the
779 Keio collection. *Mol Syst Biol* **2**, 2006 0008 (2006).

780 41. Thomason, L.C., Costantino, N. & Court, D.L. *E. coli* genome manipulation by P1 transduction. *Curr*
781 *Protoc Mol Biol Chapter* **1**, 1 17 1-1 17 8 (2007).

782 42. Mazzocco, A., Waddell, T.E., Lingohr, E. & Johnson, R.P. Enumeration of bacteriophages using the
783 small drop plaque assay system. *Methods Mol Biol* **501**, 81-5 (2009).

784 43. Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione
785 metabolism. *Nat Commun* **6**, 6001 (2015).

786 44. Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the
787 analysis of massive data sets. *Nat Biotechnol* **35**, 1026-1028 (2017).

788 45. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments
789 using Clustal Omega. *Mol Syst Biol* **7**, 539 (2011).

790 46. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. IQ-TREE: a fast and effective stochastic
791 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268-74 (2015).

792 47. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
793 *Nucleic Acids Res* **47**, W256-W259 (2019).