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Summary

Sarbecoviruses exhibit varying abilities in using angiotensin-converting enzyme 2 (ACE2)
receptor’=3. However, a comprehensive understanding of their multi-species ACE2 adaptiveness and
the underlying mechanism remains elusive, particularly for many sarbecoviruses with various receptor
binding motif (RBM) insertions/deletions (indels)***. Here, we analyzed RBM sequences from 268
sarbecoviruses categorized into four RBM indel types. We extensively examined the capability of 14
representative sarbecoviruses and their derivatives in using ACE2 orthologues from 51 bats and five
non-bat mammals. We revealed that most sarbecoviruses with longer RBMs (type-I), present broad
ACE2 tropism, whereas viruses with single deletions in Region 1 (type-Il1) or Region 2 (type-III)
generally exhibit narrow ACE2 tropism, typically favoring their hosts” ACE2. Sarbecoviruses with
double region deletions (type-1V) exhibit a complete loss of ACE2 usage. Subsequent investigations
unveiled that both loop deletions and critical RBM residues significantly impact multi-species ACE2
tropism in different ways. Additionally, fine mapping based on type-1V sarbecoviruses elucidated the
role of several clade-specific residues, both within and outside the RBM, in restricting ACE2 usage.
Lastly, we hypothesized the evolution of sarbecovirus RBM indels and illustrated how loop length,
disulfide, and adaptive mutations shape their multi-species ACE2 adaptiveness. This study provides

profound insights into the mechanisms governing ACE2 usage and spillover risks of sarbecoviruses.

Keywords: ACEZ2, sarbecoviruses, indel, ACE2 adaptiveness, receptor binding motif
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Introduction

The Severe Acute Respiratory Syndrome (SARS) outbreak and COVID-19 pandemic
significantly raised awareness of the zoonotic risks posed by sarbecoviruses'?3, The Sarbecovirus
subgenus, also known as lineage B B-coronaviruses, encompasses hundreds of SARS-related viruses
exhibiting varying RBM sequences'*1416 Most sarbecoviruses naturally infect rhinolophus bats, the
primary natural reservoir for these viruses®'’*°, Additionally, sarbecoviruses sharing high receptor
binding domain (RBD) similarity to SARS-CoV-2 have been identified in pangolins, such as GX-P2V
and GD/1/2019°%°. Sarbecoviruses exhibit extensive genetic diversity in RBM, likely arising from
frequent recombination and the high selective pressure associated with inter-species host jumping in
bats and pangolins, underscoring the risks of the emergence and outbreak of new human
sarbecovirus?:=2°. However, many sarbecoviruses are known only as viral sequences and their ability
to jJump species and spill over to humans remains unclear.

Although ACE2 has been documented as a receptor for selected groups of setracovirus (e.g.,
NL63) and merbecoviruses (e.g., NeoCoV)?®2 it remains primarily recognized as the receptor for
sarbecoviruses:®?4, Notably, not all sarbecoviruses have been confirmed to use ACE2 as their receptor,
especially clade 2 sarbecoviruses, which are proposed to utilize a yet unidentified receptor’=S,
Nevertheless, ACE2 usage has been demonstrated in most representative sarbecoviruses other than
clade 2 sarbecoviruses'. Structural analysis of ACE2 in complex with RBD from various
sarbecoviruses reveals a similar interaction mode, albeit with variations in specific residues involved
in recognition. The bridge-shaped RBM spanning amino acid (aa) 439-508, formed by an extended
loop connecting two P strands of the RBD core subdomain and with disulfide-bridging, interacts with
ACE?2 through two distinct patches?®2°, The interface on ACE2 mainly comprises the amino-terminal
(N-terminal) al-helix, along with limited interactions with the a2 helix and a loop connecting the 3
and p4 strands?®,

Given the pivotal role of receptor recognition in governing host tropism, assessing multi-species
ACE?2 usage for sarbecoviruses with distinct RBM features is crucial for understanding their zoonotic
potential. Previous studies have provided substantial insight into distinct receptor preferences among
bats and other mammals for SARS-CoV-1, SARS-CoV-2, GX-P2V, RaTG13, NeoCoV, and
others?22427:30-33 \/arying entry-supporting abilities have also been observed in ACE2 orthologues

from the same bat species but with different polymorphisms, particularly in residues involved in
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sarbecovirus binding?333:34,

Sarbecoviruses are commonly classified into several clades based on the RBD phylogeny and
ACE?2 usage*%, Despite sharing a similar RBD core subdomain, sarbecoviruses exhibit significant
variation in RBMs, particularly the presence of various indels in Region 1 (aa443-450) or Region 2
(aa470-491) relative to SARS-CoV-23%®, Clade 1 includes ACE2-using sarbecoviruses consisting of
subclades 1a and 1b based on RBD phylogenetic relationshipst. Most clade 1a (SARS-CoV-1 lineage)
and 1b (SARS-CoV-2 lineage) sarbecoviruses have the longest RBM and do not carry RBM deletions®.
Several sarbecoviruses with Region 1 or 2 single RBM deletions that are discovered phylogenetically
related to clade 1b viruses, such as RshSTT182, RshSTT200%°, Rc-0319 and Rc-kw8?*, that recently
found in Cambodia and Japan, respectively. Clade 1c, including RmYNO5, RaTG15, and RsYNO4,
previously defined as clade 4 sarbecoviruses in some studies, were recently reported and belong to a
subgroup of Asia sarbecoviruses carrying single Region 1 deletions®®!, We designated these
sarbecoviruses 1c subclade considering their RBD phylogeny, geographical distribution, and ACE2
usage compared with 1la and 1b. Clade 2 sarbecoviruses are phylogenetically close to clade 1 and
characterized by the presence of two deletions (indels) within the RBM!-3171936-38 (Clade 3
sarbecoviruses, such as BM48-31, Khosta-1/2, BtKY72, and PRD-0038, discovered in Africa and
Europe are considered closer to the sarbecovirus ancestors and all carry single deletions (indels) in the
first RBM region (corresponding to aa443-450 of SARS-CoV-2)18353%41  Several clade 3
sarbecoviruses have demonstrated ACE2 usage, suggesting it as an ancestral trait of
sarbecoviruses*4243  Although proposed to have evolved from ACE2-using ancestors through the
subsequent loss of ACE2 recognition'®, whether all clade 2 sarbecoviruses have lost ACE2 usage
across all ACE2 orthologues remain open.

Our understanding of the key determinants affecting sarbecoviruses ACE2 adaptiveness and the
factors restricting multi-species ACE2 usage remains incomplete. With an increasing number of
sarbecoviruses identified with various single RBM indels, addressing the impact of these indels on
multi-species ACE2 tropism becomes crucial. Moreover, sarbecoviruses with similar RBM deletion
patterns exhibit marked differences in ACE2 tropism, emphasizing the role of critical RBD residues
impacting multi-species ACE2 recognition beyond loop deletions?22336:44,

In this study, we analyzed the spike sequences of 268 sarbecoviruses to delineate the overall

indel features and categorized them into four RBM indel types. Employing an ACE2 library consisting
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of 56 orthologues, we extensively evaluated cellular RBD binding and pseudovirus entry of 14
representative sarbecoviruses and various derivatives, encompassing RBM loop chimera and
mutations. Our data led to a more comprehensive understanding of the multi-species ACE2

adaptiveness across sarbecoviruses, as well as the coevolution of RBM indels and ACE2 adaptiveness.

Results
Four RBM indel types for sarbecoviruses

We retrieved 2318 Non-human B-coronavirus spike sequences from the NCBI and GISAID
databases, with 876 distinguished as sarbecovirus based on phylogenetic analysis. After reducing
redundancy by excluding identical sequences and those highly similar to SARS-CoV-1 and SARS-
CoV-2 (>99% identity), we obtained 268 sarbecovirus spike sequences for subsequent investigation,
consisting of 17 pangolin sarbecoviruses and 248 bat sarbecovirus, as well as 3 representative human
sarbecoviruses (Fig. 1a and Supplementary data S1). Phylogenetic analysis based on RBD protein
sequences revealed five sub-clades, with clade 2 accounting for the largest number (Fig. 1b, Extended
Data Fig.1). Multi-sequence alignment and Sequence Logo analysis highlighted three highly variable
regions in RBMs, with Regions 1 and 2, but not Region 3, being the hot spots of loop indels (Fig. 1c,
Supplementary data S2).

RBM sequences of 23 representative sarbecoviruses spanning different clades were displayed to
cover the sarbecoviruses with diversified RBM features (Fig. 1d). Amino acid identity analyses
revealed that these sarbecoviruses share at least 65% spike identity and 57.84% RBD identity, whereas
RBM identity can be as low as 21.54%, suggesting greater genetic variation in RBM (Extended Data
Fig. 2a-c). To better investigate the impact of RBM indels on multi-species ACE2 adaptiveness, we
categorized sarbecoviruses into four RBM indel types in addition to the clade-based classification.
Specifically, RBM type-I describes most clade 1a and 1b sarbecoviruses with no RBM deletions (or
with Regionl 4aa insertions) and are considered as prototypes, RBM type-Il and type-I1I are viruses
with single RBM deletions in Region 1 or Region 2, respectively, while RBM type-1V viruses
correspond to clade 2 viruses with dual RBM deletions (Fig. 1d).

Analyses of RBM deletions among the 268 sequences revealed 1 to 5 amino acid (aa) deletions
in Region 1, and 1-, 9-, 13-, 14-aa deletions in Region 2 (Fig. 1e). For better classification, only

deletions of 2aa or longer were applied for RBM typing. Interestingly, the 5aa deletion in Region 1 is
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strictly linked to 13/14aa deletions in clade 2 sarbecoviruses. This classification resulted in different
sarbecovirus subgroups compared to those based on RBD clades (Fig. 1f-g). For example, all clade 1a
sarbecoviruses (SARS-CoV-1 lineage) are RBM type-I, while the more complicated clade 1b (SARS-
CoV-2 lineage) encompasses viruses belonging to RBM type-I, 1, or 1ll. The clade 3 and clade 1c
sarbecoviruses are all grouped to RBM type-Il (Fig. 1g). The length of Region 1 and 2 deletions in
each RBM type is demonstrated with type-specific features (Fig. 1h).

From a structural perspective, the spatially proximate Region 1 and Region 3 loops form
interaction patch 2, while the majority of residues in Region 2 loop contribute to interaction patch 1
(Fig. 1i). Interestingly, cysteine residues are rare in RBM, with only one highly conserved disulfide
bridge for stabilizing loop in Region 2, which is absent in RBM type Il and 1V sarbecoviruses (Fig.
1d, 1)*. Superimposition of the solved or AlphaFold2-predicted RBDs with that of SARS-CoV-2
highlighted notable differences in the extended loops carrying specific deletions (Fig. 1j). Given that
the two deletions are situated in critical RBM extensions for ACE2 interaction, their presence is
considered to impact multi-species ACE2 adaptiveness.

Given the unavailability of the authentic sarbecovirus strains, we employed a dual reporter-based
vesicular stomatitis virus (VSV) pseudotyping system carrying sarbecovirus spikes to assess receptor
functionality of various ACE2 orthologues (Fig. 1k, Extended Data Fig. 3a-c)3. The spike proteins
from these sarbecoviruses were successfully incorporated into the VSV pseudotypes at comparable
levels (Fig. 11). In addition, a well-established RBD-hFc-based assay was also employed to assess the
live cell virus-receptor binding (Extended Data Fig. 3d-f). The two different functional assays provide
cross-validation and, to an extent, exclude the potential impact of other spike components on viral

entry, such as NTD and S2.

Multi-species ACE2 usage profile

To illustrate a comprehensive ACE2 usage spectrum of each sarbecovirus, we examined 56 ACE2
orthologues from 51 bats and 5 representative non-bat mammals. The bat species represent a broad
genetic diversity spanning 11 bat families with global distribution, including eight rhinolophus bats
geographically across Europe, Africa, and Asia (Fig 2a, and Extended Data Fig. 4)®. Sequence analysis
of these ACE2 orthologues exhibited great diversity in residues potentially involved in sarbecovirus

interactions (Extended Data Fig.5a-b). HEK293T cells stably expressing ACE2 orthologues were
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established and maintained with verified expression®® (Extended Data Fig. 6). RBD binding and
pseudovirus entry assays were conducted to evaluate the multi-species ACE2 usage of 14
sarbecoviruses with distinct RBM features (Fig. 2a-b).

These two assays displayed generally consistent ACE2 usage patterns, with a few exceptions.
Except for the type-1V RBM sarbecoviruses, the other ten sarbecoviruses displayed ACE2 usage with
different tropisms. Type-1 RBM viruses, like SARS-CoV-1, SARS-CoV-2, and GX-P2V, efficiently
use most orthologues, including human ACE2 (hACEZ2) (Fig.2a). Comparatively, RBM type-I1 or type-
I11 sarbecoviruses generally showed narrower ACE2 tropism, and most are unable to use hACE2. The
geographical distributions of rhinolophus bat species with ACE2 supporting the entry of indicated
sarbecoviruses are analyzed (Extended Data Fig. 7a). Although PRD-0038 has been proposed as a
sarbecovirus with broad ACE2 usage®?, this virus and three other clade 3 sarbecoviruses display a
moderate breadth in our study (Extended Data Fig. 7b). The RBD binding of the five sarbecoviruses
with their optimal ACE2 orthologues, most are from their hosts, was further demonstrated through
flow cytometry and Bio-layer interferometry (BLI) (Fig. 2c-d).

Notably, two close-related RBM type-1 sarbecoviruses, GX-P2V and RaTG13, displayed
contrasting ranges of ACE2 tropism (Fig.2a, b). Pseudovirus entry and RBD binding data based on
swap mutants between the four residues on positions 493, 498, 501, and 505 (SARS-CoV-2 numbering)
highlighted the critical role of position 501 residues in determining the breadth of ACE2 tropism (Fig.
2e-h, Extended Data Fig. 8a)133447 Residue usage analysis of the six ACE2 positions (38, 41, 42,
353, 354, and 355) that are spatially close to position 501 (SARS-CoV-2 numbering) underscore an
overall negatively charged surface among the 56 orthologues, thereby disfavoring D501 due to
electrostatic repulsion (Fig. 2i). This hypothesis is further confirmed by similar phenotype of SARS-
CoV-1, SARS-CoV-2, and RshSTT200 carrying D/T mutations at the same position (Extended Data
Fig. 8b-c and Extended Data Fig. 9a-d). Since N501Y became dominant during SARS-CoV-2
spreading in humans, we also compared the multi-species ACE2 usage spectra of SARS-CoV-1 and
SARS-CoV-2 carrying N or Y at position 501sars-cov-2*8. The result showed the Y mutation in this
position resulted in reduced ACE2 tropism of SARS-CoV-1 but an expanded tropism in SARS-CoV-2
(Extended Data Fig. 9a-d). Structural analysis shows Y487sars-cov-1 may result in steric hindrance with
local Y41lhace2 and K353hacez, whereas the Y501sars-cov-2 instead forms a m-m stacking interaction

with Y41nacez, highlighting a virus-specific influence (Extended Data Fig. 9e-f)*,
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The different PSV entry efficiencies of SARS-CoV-2, SARS-CoV-2-N501Y, and SARS-CoV-2-
Omicron BA.1 in using different ACE2 orthologues indicated the presence of other residues affecting
the ACE2 tropism of Omicron BA.1 other than the 501 residues, which is further confirmed by the
authentic SARS-CoV-2 infection assays (Fig. 2j and Extended Data Fig. 10a). Fine mapping of the
mutations in BA.1 underscores the critical contribution of residues 493 in impacting multi-species
ACE2 tropism (Fig. 2j-k, Extended Data Fig. 10b-f).

Collectively, these data indicated that the overall multi-species ACE2 adaptiveness and species-
specific ACE2 usage are affected by the RBM indel types and critical RBM residue usage, particularly

at positions 501sars-cov-2 and 493sars-cov-2.

The impact of RBM indels on ACE2 recognition

To investigate the impact of loop deletions on multi-species ACE2 adaptiveness, we generated
chimeras with specific loop substitutions in Region 1 and 2. These comprise SARS-CoV-2 with single
deletions in either Region 1 or 2 and other sarbecoviruses carrying partial or entire loop substitutions
with SARS-CoV-2 equivalent sequences (Fig. 3a). The cellular expression and VSV package
efficiency of all spike chimeras were validated by Western blot (Fig. 3b).

SARS-CoV-2 with a Region 1 4aa KVNY deletion (ARegionl*, relative to RshSTT200)
displayed reduced multi-species ACE2 adaptiveness but still retained the capacity to use ACE2 from
many species, including humans (Fig. 3c, d). However, the 9aa partial deletion in Region 2 (ARegion2*,
relative to Rc-0319) completely abolished its ability to use all tested ACE2 orthologues, including
R.cor ACE2. For BM48-31 and Rc-019, region substitution by SARS-CoV-2 counterparts slightly
increases the number of supportive ACE2 orthologues, yet still unable to achieve a broad tropism as
RBM type-l sarbecoviruses. Indeed, multi-species ACE2 tropism can be reduced if unfavorable
residues are presented in the loops with complemented length, as observed in RshSTT200 and Rc-
0319. Thus, entire region 1 substitution rather than just filling-up the gaps (mutants marked with *) is
sometimes necessary for maintaining or expanding multi-species ACE2 tropism, indicating the side
chain of the loop is crucial in addition to the loop length (Fig. 3c, d). Notably, the highly conserved
disulfide bridge is present in Rc-0319-R2 but not in Rc-0319-R2*, and its importance was further
verified by the loss of ability of SARS-CoV-2 and Rc-0319-R2 with a C480S mutation*>>°, However,

introducing a disulfide to Rc-0319-R2* via K480C mutation remains insufficient to restore its ability
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to use ACE2, suggesting the presence of incompatible residues for Region 2 ACE2 interaction (Fig3.
e-h).

Unexpectedly, substituting both regions (R1+R2) in the three RBM type-IV (clade 2)
sarbecoviruses (ZC45, RmYNO02, HKU3) failed to recover any detectable ACE2 usage in both binding
and entry assays (Fig3. c, d). These data indicate the presence of determinants other than loop deletions

that restrict ACE2 usage in RBM type-1V sarbecoviruses®.

Clade-specific residues restricting ACE2 usage

We unexpectedly found that HKU3 and ZC45 remained unable to bind any ACE2 even with the
entire RBM (aa439-508) replaced, indicating the presence of determinants restricting ACE2
recognition outside the RBM region (Extended Data Fig.11a). When comparing RBD sequences from
172 RBM type-IV (clade 2) sarbecoviruses with the other 96 ACEZ2-using sarbecoviruses,
approximately twenty of clade 2 specific residues situated within or outside the RBMs were identified
(Fig. 4a). It has been proposed that two residues (D496 and P502) within the Region 3 of RBM type-
IV sarbecoviruses may restrict potential ACE2 interaction based on structural modeling, while the
impact of this two residues, as well as other RBD residues, to ACE2 recognition remains to be
investigated by cell-based functional assays®..

To identify the determinants restricting ACE2 recognition, we conducted RBM sequence swap
analyses based on SARS-CoV-2 and HKU3, the sarbecoviruses showing the highest RBD protein
identity (63.24%) in our study (Extended Data Fig. 2b). Sequence alignment of SARS-CoV-1, SARS-
CoV-2 and HKU3 RBD displayed 16 HKU3-specific residues upstream of the RBM region (Fig. 4b).
The dissection started from large fragment swaps and then proceeded to fine mapping of single
residues (Fig. 4b, c). In addition to SARS-CoV-2 RBM (HKU3-RBMsarsz2) replacement, further
substituting fragment A (aa385-417) enabled HKU3 to use hACE?2 for efficient entry but remained
deficient in binding hACE2. Further extension by fragment B (aa354-417) and fragment C (aa349-
417) underscore the critical contribution of S349sars-cov-2 for efficient binding (Fig. 4d, ). Fine
mapping of fragment A highlighted the crucial role of six residues in position 388, 394, 399, 401, 404,
405 (SARS-CoV-2 numbering) that restricting hACE2 usage, all of which are clade-2 specific residues
(Fig. 4c-e and Extended Data Fig.11b). The multi-species ACE2 usage spectra of HKU3-RBMsars2

carrying S+NNSVGD, S+VGD mutations were demonstrated with improved ACE2 adaptiveness
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(Fig.4f, g). Similar results were obtained when testing another RBM type-IV sarbecovirus, ZC45
(Extended Data Fig. 12).

The restrictive effect of these clade 2-specific residues was further demonstrated by the loss of
ACE2 usage of SARS-CoV-2 mutants. SARS-CoV-2 carrying the corresponding mutants within or
outside the RBM region (S349N, V401L, V401L+G404S+D405S, G496D+G502P, and
P507A+Y508T) all displayed a significantly reduced efficiency in use hACE2 (Fig. 4h, i). Structural
modeling by AlphaFold2 suggests that HKU3 RBD carrying increasing substitutions of SARS-CoV-2
equivalent sequences resulted in a gradually decreased root mean square deviation (RMSD) when
superimposing with SARS-CoV-2 RBD. The RMSD reduction is apparently due to the RBM
conformational shift, indicating an RBM remodeling toward a structure more compatible with ACE2-
binding (Fig. 4)).

Interestingly, the two clade-2 specific residues crucial for ACE2 binding, S349sars-cov-2 and
V401sars-cov-2, are situated underneath the canonical RBM region. V401L and S349N (SARS-CoV-2
numbering) in HKU3 may interfere with the RBM conformation due to their relatively larger side
chains (Fig. 4k). The resulting conformational shift may lead to the mismatch of critical residues for
ACE?2 interaction, thereby restricting ACE2 usage even with SARS-CoV-2 RBM sequences (Fig. 41).
Thus, itis very unlikely for so far identified clade 2 sarbecoviruses to gain ACE2 usage simply through

RBM indels unless the entire RBD was substituted.

Coevolution of RBM indels and ACE2 adaptiveness

To trace the coevolution of sarbecoviruses RBM indels and ACE2 adaptation, the functional data
based on multi-species ACE2 usage were integrated with analyses based on RBD clades, RBM types,
and residue usages in the two featured regions (Fig. 5a-c and Extended Data Fig.13). The multi-species
ACE2 adaptiveness and hACE2 usage reveal the overall spillover risks of sarbecoviruses from
different clades and RBM indel types (Fig. 5a-b). The close scrutiny of the sequence features unveils
an intriguing indel pattern in Region 1, characterized by one or two centrally located glycine (G), while
the sequence features in Region 2 underscore the presence of a complex indel in this region rather than
a straightforward 9aa or 13/14 deletion in RBM type Ill and IV sarbecoviruses, respectively (Fig. 5¢
and Extended Data Fig.13). Notably, a potential evolutionary trace of Region 1 insertion was identified

by the likely duplication of NY/NF sequences on the right side of the G. These analyses provide
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valuable insights for deciphering the evolutionary trajectories of various sarbecoviruses.

Combining this information, we proposed an evolutionary pathway delineating the emergence of
various RBM types, highlighted by critical events driving the evolution (Figure 5d). While the origin
of the common ancestor of sarbecoviruses remains elusive, Africa/Europe sarbecoviruses (Clade 3)
maintained a relatively ancient state of RBM indel type-11. The Asia sarbecoviruses underwent
extensive evolution and developed into clade 1 and 2 sarbecoviruses with great genetic diversity. These
viruses evolved in three different directions, each exhibiting distinct ACE2 adaptiveness. Clade 1c
sarbecoviruses maintained RBM type-11 with limited genetic diversities based on currently known
sequences. Clade 2 sarbecoviruses underwent R1 (-5aa) and R2 (-13/14aa) indels and lost ACE2 usage,
which is coupled with the emergence of clade 2-specific residues that further restricted ACE2 usage.
On the other hand, clade 1a and 1b viruses underwent Region 1 insertion (or indels with increased
residue numbers), generating the longest (8aa) Region 1 and superior multi-species ACE2 adaptiveness.
Some Clade 1b viruses subsequently underwent further indels in Region 1 (-2-4aa) and Region 2 (-
9aa), which turned into RBM type Il (e.g. RshTT200 and GX-P1E) and type Il (e.g. Rc-0319 and Rc-
kw8), respectively (Figure 5d).

While Region 1 is shorter than Region 2, it displayed more dynamic sequence changes in ACE2
using sarbecoviruses, fine-tuning the species-specific ACE2 adaptiveness. By contrast, no further
RBM indel was observed in the 172 RBM type-1V (clade 2) sarbecoviruses, indicating that Region 1
may no longer be a crucial determinant for the adaptation of their receptor that other than ACE2.
Intriguingly, despite the high variability in Region 1 sequences, only two out of the 268 sequences,
BM48-31 and BB9904, lack a G in this region. In RBM type | sarbecoviruses with 8aa length, most
clade 1b viruses maintained a double G (2G), whereas most 1a viruses kept an SG or TG in the middle
(Figure 5c¢, e).

From a structural aspect, indels in Region 1 resulted in different loop lengths, with a G close to
the turn of the loop. Interestingly, the longer Region 1 loop allows a closer distance and potential H-
bond formation with ACE2, reinforcing ACE2 interactions along with the Region 3 loop, highlighting
the importance of Region 1 length and its residue usage in multi-species ACE2 adaptiveness (Fig.5f).

Our hypothesis is supported by the data showing a dramatic decrease of ACE2 fitness in SARS-
CoV-2 carrying a G447Y mutation (Fig.50 and Extended Data Fig.14). Additionally, we observed a
reduced multi-species ACE2 adaptiveness of the “G-free” 4aa deletion mutant, SARS-CoV-2-AGGNY
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(Region 1: DSKVNY), compared to SARS-CoV-2-AKVNY (Region 1: DSGGNY) (as shown in
Figure 3), the former only recognize R.alc ACE2, similar to the phenotype of BM48-31 which also
lacks G in region 1 (Fig.5g and Extended Data Fig.14). SARS-CoV-2-AGGNY may employ a similar
ACE2 recognition mode as BM48-31, considering the importance of position 31raic ace2 for both
viruses in a swap mutagenesis experiment based on R.alc ACE2 and its closest orthologue, R.fer ACE2

(Extended Data Fig. 15).

Discussion

The long-term and constant evolution of sarbecoviruses in rhinolophus bats drives the emergence
of sarbecovirus clades with diversified RBM sequences. The frequent sequence changes, particularly
indels, within the RBM pose challenges in predicting the potential of sarbecoviruses to cross species
barriers and spill over to humans. To more precisely investigate the influence of indels and other critical
residues on multi-species ACE2 usage, we propose a novel RBM indel-based classification,
categorizing all currently identified sarbecoviruses into four distinct RBM indel types.

Our functional data, combined with extensive sequence analyses, led to a detailed summary of
the ACE2 usage adaptiveness of sarbecoviruses within specific clades and RBM indel types (Extended
Data Fig.16, Graphic Abstract). Despite with narrower ACE2 tropism, all tested sarbecoviruses
carrying single deletions exhibited confirmed ACE2 usage, typically adapting well to ACE2 from their
hosts. Furthermore, we proposed a hypothesis outlining the evolutionary history of sarbecoviruses
exhibiting distinct RBM indel types. Since the number of sarbecovirus sequences from different clades
is constantly increasing, the more intricate evolutionary history of sarbecoviruses remains to be
updated or amended.

The driving force for the emergence of different sarbecovirus Region 1 and Region 2 indels
remains elusive. Virus recombination may play a crucial role, considering that the RBM or even
Region 1 has been predicted as a breaking point for combinations between sarbecoviruses®.
Additionally, although various NTD-indels emerged in SARS-CoV-2 during the pandemic, so far, no
indels have been detected in RBM Region 1 or Region 2, suggesting a different evolution mechanism
of RBM indels formation of various sarbecoviruses in bats compared with that of SARS-CoV-2 in
humans®2,

Our results reveal a coevolution between sarbecovirus indels and multi-species ACE2
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adaptiveness. Remarkably, the fine-tuning of RBM Region 1 through various indels and specific side
chains promotes the emergence of various sarbecoviruses with distinct multi-species ACE2 usage
spectra. This could be attributed to the dispensable nature of Region 1 for interaction with a specific
ACE2 orthologue due to the compensation of the Region 3 loop without indels, while additional
interactions mediated by the extended Region 1 loop in RBM type-I sarbecoviruses might be crucial
for achieving better multi-species ACE2 adaptiveness to facilitate host jumping. Interestingly, a
conserved G within Region 1 suggests that better flexibility or the absence of a large side-chain in this
region may confer some evolutionary advantage. Comparatively, indels in Region 2 are less diversified
than in Region 1 and generally have a more dramatic impact on ACE2 recognition than deletion in
Region 1, or even result in the switch of ACE2 usage to another yet-unknown receptor. Notably, the
deficiency in multi-species ACE2 adaptiveness does not mean a lack of ability to use hACE2, as is
exemplified in Khosta-2 or other Clade 3 sarbecoviruses mutants 142-44,

Filling RBM deletions with SARS-CoV-2 counterparts does not guarantee a broader ACE2 usage
spectrum, sometimes instead resulting in reduced or lost ACE2 usage. This underscores the enhanced
ACE?2 adaptiveness achieved during adaptive evolution, with both length and residues being optimized
in specific indels. Consequently, substituting the entire loop sometimes is necessary for achieving
higher ACE2 compatibility. However, RBM type-1V sarbecoviruses, even after gap-filling or entire
RBM substitution, remained unable to use any ACE2 orthologues, which led to the identification of
clade-specific determinants outside the RBM that restrict ACE2 usage, probably a consequence of
adaptation to another receptor usage. Interestingly, some critical RBD core residues are underneath the
RBM, indirectly restricting ACE2 binding by affecting the RBM conformation. Future structural
analysis could shed light on the molecular details of how these determinants affect receptor recognition.

It should be noted that although ACE?2 fitness serves as the primary barrier for sarbecoviruses to
cross species, ACE2 compatibility alone does not guarantee susceptibility at the animal level. Other
factors, such as host protease, immune response, and viral replication efficiency, also affect host
tropism, which can be verified by authentic viruses and in vivo studies in the future*53,

In conclusion, our RBM indel type classification offers a more precise way to describe
sarbecoviruses when integrated with RBD phylogenetic information. Our functional ACE2 usage data
elucidate the underlying mechanism governing multi-species ACE2 usage and adaptiveness, shaped

by multiple factors such as the presence and features of RBM loop deletions, RBM disulfide bridges,
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critical RBM residues for direct interaction, and ACE2 usage restricting residues within and outside
the RBM. These findings establish a solid scientific foundation for risk assessment and viral

surveillance to mitigate potential future zoonoses caused by these viruses.
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Materials and Methods

Cell culture. HEK293T cells (ATCC, CRL-1586) and their derivatives were maintained in Dulbecco's modified eagle
medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS), 2.0mM L-Glutamine, 110 mg/L sodium
pyruvate, and 4.5 g/L D-glucose. 11-Hybridoma (CRL-2700), secreting a monoclonal antibody targeting VSV
glycoprotein (VSV-G), was maintained in Minimum Essential Medium with Earle’s salts and 2.0 mM L-Glutamine
(MEM; Gibco). All cells were cultured at 37°C in 5% CO- with regular passage every 2-3 days.
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Gene sequences. Sarbecovirus spike sequences are retrieved from NCBI Virus and GISAID databases. The keywords
used for search include "Betacoronavirus,” "Sequence length between 1000-1400" "protein” and "NOT Homo
sapiens” for NCBI and "bat,” "pangolin,” "civet," coronaviruses for GISAID. A comprehensive collection of 2318
Betacoronavirus spike protein sequences was obtained. After extracting 876 sarbecovirus sequences through
phylogenetic analysis using Geneious, the dataset was refined to 268 unique sequences for further analysis by
excluding redundant entries. The ACE2 orthologues sequences were summarized by previous reports®. Several
additional ACE2 orthologues tested in this study include Rhinolophine Malayanus (Provided by Professor Huanbin
Zhao, Wuhan University, China), Rhinolophus shameli (GenBank: MZ851782), Rhinolophus cornutus (GenBank:
BCG67443.1), Rhinolophus sinicus isolate Rs-3357(GenBank: KC881004.1), Rhinolophus affinis (GenBank:
QMQ39227.1), Manis javanica (Pangolin)(GenBank: XP_017505752.1), Mouse (GenBank: NP_001123985),
Camelus (GenBank: XP_006194263), Civet (Protein: Q56NL1), Rhinolophus alcyone (Protein: ALJ94035.1).
Human Aminopeptidase N precursor (APN) (Protein: NP_001141.2) was included as a negative control. The sources
and accession numbers of the receptors and the 268 sarbecovirus were summarized in Supplementary data S1.

Bioinformatic analysis. Amino acid or nucleotide sequences from viruses or ACE2 orthologues were aligned using
Mafft v7.450%. Phylogenetic trees were generated with 1Q-Tree (version 2.0.6) using a Maximum Likelihood model
with 1000 bootstrap replicates. Tree annotations were performed using iTOL (https://itol.embl.de/). Sequence
identities were analyzed by Geneious prism (https://www.geneious.com/) after aligned by Mafft. The residue usage
frequency (Sequence Logo analysis) was generated by the Geneious Prime.

Plasmids. The coding sequences of various coronavirus spikes and their derivatives were human codon optimized
and cloned into the pCAGGS vector with a C-terminal 18-amino acids replaced with an HA tag (YPYDVPDYA) for
improving VSV pseudotyping efficiency and enabling detection®"*8. The plasmids for expressing ACE2 orthologues
are constructed by inserting human codon-optimized ACE2 sequences into a lentiviral transfer vector (pLVX-IRES-
puro) with a C-terminal 3xFLAG-tag (DYKDHD-G-DYKDHD-I-DYKDDDDK) for detection. The plasmids
expressing the recombinant coronaviruses RBD human IgG Fc (RBD-hFc) fusion proteins were constructed by
inserting RBD sequences corresponding to SARS-CoV-2 (aa331-524) containing an N-terminal CD5 secretion signal
peptide (MPMGSLQPLATLYLLGMLVASVL) and a C-terminal hFc-twin-strep tandem tags for purification and
detection.

ACE2 stable expression cell lines. ACE2 stable expression cell lines were established as previously reported*>°,
Briefly, lentivirus carrying the ACE2 genes was generated by co-transfecting pLVX-IRES-puro-ACE2 orthologues,
pMD2G (plasmid no. 12259; Addgene), and psPAX2 (plasmid no. 12260; Addgene) into HEK293T cells. HEK293T
cells were subsequent transduced with the lentiviruses, and the stable cells expressing ACE2 orthologues were
selected in the presence of puromycin (1 pg/ml). The expression levels of ACE2 orthologues were assessed using an
immunofluorescence assay as previously reported®. Briefly, HEK293T cells were fixed with 4% paraformaldehyde
for 10 min at room temperature, permeabilized with 0.2% Triton X-100/PBS for 10 min, and blocked with 1% BSA
for 30 min at 37 °C. Subsequently, the cells were incubated with M2 antibody (anti-FLAG-tag, catalogue no. F1804A-
SMG; Sigma) at 4 °C for 1 hour. After three washes with PBS, the cells were treated with 2 pg/ml Alexa Fluor 594-
conjugated goat anti-rabbit 1gG (catalogue no. A11032; Thermo Fisher Scientific). Nucleus were stained blue with
Hoechst 33342 (1:5,000 dilution in PBS). Images were captured with a fluorescence microscope (M152-N; Mshot).
Relative fluorescence unit of Alexa Fluor 596 and Hoechst 33342 was quantified by Thermo Varioskan LUX. The
expression of most ACE2 orthologues were also verified by Western Blot analysis in our previous reports=.
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Recombinant protein expression and purification. Recombinant RBD-hFc fusion proteins or ACE2 ectodomains
(amino acid sequences 18-740 correspond to Human ACE2) fused with FLAG-strep-tag proteins were generated
through transient transfection of HEK293T cells using Lipofectamine 2000. The transfected cells were cultured in
SMM 293-TIS Expression Medium (Serum-free, without L-Glutamine) (Sino Biological). The supernatant,
containing the recombinant proteins, was collected at 2, 4, and 6 days post-transfection, and the expression was
confirmed through Western Blot analysis using the Goat Anti-Human I1gG-Fc secondary Antibody (HRP)
(SinoBiological Inc, SSA002) for RBD or the M2 antibody for ACE2. Protein purification was performed using
Protein A/G Plus Agarose (Thermo Fisher Scientific) for RBD and Strep-Tactin®XT 4Flow® high capacity resin
(IBA) for ACE2 ectodomains. The protein concentration was quantified using the BCA protein determination kit
(EpiZyme) and SDS-PAGE with Coomassie blue staining was employed for analysis.

Live cell RBD binding assay. HEK293T cells stably expressing ACE2 were seeded in poly-D-lysine-treated 96-well
plates. After 12 hours, with cells were incubated with RBD-hFc protein (4 pg/ml) in growth medium for 0.5 hours at
4 °C. Subsequently cells were washed with DMEM twice, and then treated with Alexa Fluor 488-conjugated goat
anti-human 1gG (catalogue no. A11013; Thermo Fisher Scientific) at a concentration of 2 pg/ml in DMEM with 2%
FBS for 30 minutes (min) at 4 °C. Hoechst 33342 (1:5,000 dilution in PBS) was utilized for nuclear staining.
Following fixation with methanol, images were captured by fluorescence microscopy (MI52-N; Mshot), and the
fluorescence intensity was analyzed using Thermo Varioskan LUX Alexa

Flow cytometry. HEK293T cells stably expressing ACE2 orthologues (R.aff, R.sha, R.alc, R.mal, and R.cor) were
cultured in 6-well plates for 12 hours. Cells were detached by 5mM EDTA and washed twice by PBS, and then
incubated with indicated proteins (RaTG13 RBD, RshSTT200 RBD, BM48-31 WT RBD, BM48-31 A480Y RBD,
RmYNO5 RBD, Rc-0319 RBD with hFc tag) at a concentration of 20 pug/ml for 30 min at 4°C. Following three PBS
washes, cells were stained with 488-conjugated goat anti-human 1gG (1:1000, Alexa Fluor) for 30 min. Subsequently,
flow cytometry analysis was performed using a CytoFLEX analyzer, collecting 10,000 events per sample. In a
separate assay demonstrating the sensitivity of live cell binding assay, HEK293T cells expressing hACE2 were plated
12 hours before incubation with two-fold serial diluted SARS-CoV-2 RBD-hFc (from 20 pg/ml) for 30 min. After
three PBS washes, cells were stained with 488-conjugated goat anti-human IgG (1:1000, Alexa Fluor) and subjected
to Flow cytometry analysis. For the pseudoviruses entry assays, GFP expressing VSV pseudotypes was 10-fold serial
diluted from 1x108 TCIDso/ml. After 12 hours post infection incubation, cells were washed with PBS and trypsinized
for analysis. FlowJo V10 software was employed for data analysis.

Biolayer interferometry. The Octet RED96 system (ForteBio, Menlo Park, CA) was employed to determine the
apparent affinity (Kd, app, due to the potential dimerization or ACE2) between the RBD and ACE2. The buffer for
analysis was phosphate buffer saline with 0.05% Tween20 (PBST). The RBD (10 pg/ml) was captured on ProA
biosensors, followed by binding of ACE2 ectodomains at 2-fold serial dilutions ranging from 500 nM for 120s,
followed by dissociated in the PBST for additional 300s. Kinetics was modeled in a 1:1 using ForteBio Octet analysis
software v12.2.0.20 (ForteBio, Menlo Park, CA). Mean KD values were derived by averaging all binding curves that
conformed to the theoretical fit with an R? value> 0.95.

Pseudovirus production and entry assays. Pseudovirus incorporating coronaviruses spike proteins were produced
using a vesicular stomatitis virus (VSV)-based system with slight modifications to a well-established protocol®”6%61,
In general, HEK293T cells were transfected with plasmids expressing S proteins through Lipofectamine 2000
(Biosharp, China). After 24 hours, the transfected cells were infected with VSV-dG-EGFP-FLuc (1x10® TCID50/ml)
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diluted in DMEM followed a two-hour incubation on a shaker at 37 °C, the cells were replenished with DMEM
containing anti-VSV-G monoclonal antibody (11, 1 ug/ml). After 24 hours, the pseudovirus-containing supernatant
was harvested, clarified at 12,000 revolutions per minute (rpm) for 5 min at 4 °C, and shored at -80 °C. For the viral
entry assay, the HEK293T cell lines expressing various ACE?2 orthologues were inoculated with pseudotyped viruses
in DMEM with 10% FBS. In general, 3x10* trypsinized cells were incubated with pseudovirus (1.5x10° TCID50/100
uL) in a 96-well plate to allow cell attachment and pseudovirus entry. At 16-20 hpi, images of the infected cells were
captured by a fluorescence microscope (MI52-N; Mshot). Intracellular luciferase activity was determined using a
Bright-Glo Luciferase Assay Kit (Promega Corporation, E2620) and measured with a Thermo Varioskan LUX,
SpectraMax iD3 Multi-well Luminometer (Molecular Devices) or a GloMax 20/20 Luminometer (Promega
Corporation).

Authentic virus infection. The SARS-CoV-2 WT strain (IVCAS 6.7512) was provided by the National Virus
Resource, Wuhan Institute of Virology, Chinese Academy of Sciences. The BA.1 strain (YJ20220223) was provided
by Hubei Provincial Center for Disease Control and Prevention. SARS-CoV-2 authentic viruses related experiments
were conducted in ABSL-3 facility at Wuhan University with the approval from the Biosafety Committee of ABSL-
3 lab. HEK293T cells expressing ACE2 orthologues were seeded in poly-lysine-treated 96-well plates (1.25x10°
cells/well). After a 12 hours incubation period, SARS-CoV-2 strains (WT and Omicron BA.1) were introduced to
different stable cells and incubated for 1-2 hours. Following a medium change to DMEM with 2% FBS, cells were
cultured for 24 hours, fixed with methanol, and treated with anti-SARS-CoV-2 Nucleocapsid (N) antibody (catalogue
no. 40143-MMO05; Sino Biological) at 1:1000 for one hour at 37 °C. After PBS wash, cells were treated with
secondary antibody (Alexa Fluor 594) and Hoechst 33342 (1:10,000 dilution in PBS) for nuclei staining. Images
were captured using a fluorescence microscope (MI52-N, Mshot, China).

Structural analysis. Protein structures and complex were predicted by predicted by AlphaFold2 and HDOCK®52-84,
Briefly, AlphaFold2, implemented in ColabFold, was utilized with default settings for predicting the protein
structures of various sarbecovirus RBDs and ACE2 orthologues. The top ranked model was used for all subsequent
analyses. The docking of the ACE2 ectodomain in complex with RBD was accomplished using HDOCK (v.1.1).
Structural representations and analyses were carried out within ChimeraX. The hydrogen bonds and clashes between
the displayed amino acids were analyzed using the H-bonds and clashes command. RMSD values for structural
superimpositions were calculated using the matchmaker command. The reported RMSD values specifically pertain
to RBM Co atoms. The following cryo-EM complex structures in the PDB database were also used for structural
analysis in this study: human ACE2/SARS-CoV-2-RBD (Protein Data Bank 6M0J), human ACE2/SARS-CoV-1-
RBD (3SClI), human ACE2/RaTG13-RBD (7DRV), human ACE2/GX-P2V-RBD (7DDP), human ACE2/SARS-
CoV-2 alpha variant-RBD (7EKF), human ACE2/RshSTT200-RBD (7XBH), Rhinolophus alcyone ACE2/PRD-
0038-RBD (8UOQT), and RsYNO04 RBD/antibody S43 (8J5J).

Western Blot. To examine the intracellular sarbecoviruses spike protein expression levels, HEK293T cells were
transfected with plasmids encoding the viral spike proteins fused with a C-terminal HA-tag. After 24 hours, cells
were washed with PBS, lysed on ice for 10 min in 2% TritonX-100/PBS containing 1mM PMSF (Beyotime, ST506).
The cell lysates were clarified by centrifugation at 12,000 rpm for 5 mins at 4 °C. The supernatants were mixed with
1:5 (v/v) 5x SDS-loading buffer and incubated at 95 °C for 5 min. For evaluating the spike protein levels in
pseudovirus (PSV) particles in the cultured medium, PSV was concentrated with a 30% sucrose cushion (30% sucrose,
15 mM Tris—HCI, 100 mM NacCl, 0.5 mM EDTA) at 20,000xg for 1.5 hours at 4 °C. The concentrated PSV was then
resuspended in 1xSDS loading buffer and incubated at 95 °C for 30 min. Following SDS-PAGE and PVVDF membrane
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transfer, the blots were blocked with 10% milk in PBS containing 0.1% TBST (20 mM Tris-HCI pH 8.0, 150 mM
NaCl) supplemented with 0.05% Tween-20 at room temperature for 1 hour. Primary antibodies targeting HA (MBL,
MBL-M180-3), B-tubulin (Immunoway, Y M3030), or VSV-M (Kerafast, EB0O011) were applied at a 1:10,000 dilution
in TBST with 1% milk. After three washes with TBST, blots were incubated with the secondary antibody Peroxidase
AffiniPure Goat Anti-Mouse 1gG (H+L) (Jackson Immuno Research, 115-035-003). Blots were further washed three
times before chemiluminescence detection (SQ201, Yamei Biotech) using the ChemiDoc MP Imaging System (Bio-
Rad).

Geographical distribution of bat species. The global distribution data of bat species were obtained from the IUCN
Red List of Threatened Species 2020, the base layer of the map (version 5.1.1) was sourced from Natural Earth,
available at (https://www.naturalearthdata.com/downloads/110mcultural-vectors/). GeoScene Pro 21 was utilized to
visualize and analyze the bat distribution data.

Statistical analysis and data presentation. Most experiments were conducted 2-4 times with three biological repeats.
Representative results were shown. Heat maps were generated based on RLU or RFU values, with background
(control cells expressing APN) signals subtracted. Data are presented as means % standard deviation(SD) as
indicated in the figure legends. All statistical analyses were conducted using Prism 7 software (GraphPad). Two-
tailed unpaired (Student’s) t-test was performed if only two conditions were compared. One-way ANOVA analysis,
followed by Dunnett’s test, was employed for multiple comparisons. The association between the entry/binding
efficiency and the presence of RBM disulfide was assessed using the chi-squared test. P < 0.05 was considered
significant. *P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001.
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Fig.1| Phylogenetic and structural analysis of sarbecovirus categorized into four indel types.

a, Flow diagram illustrating the retrieval of 265 non-redundant spike sequences from non-human sarbecovirus, and
three additional human sarbecoviruses. b, The RBD clade information of the 268 sarbecoviruses. ¢, RBM sequence
logo illustrating the three high variable regions (numbering based on SARS-CoV-2). d, Phylogenetic tree based on
RBD amino acids for the 268 sarbecoviruses (details in Extended Data Fig. 1) and multi-sequence alignment of 23
representative sarbecoviruses with four RBM indel types. e, Summary of the deleted residue numbers in Regionl and
Region2 compared with SARS-CoV-2 sequence. The numbers of each deletion length are indicated in the parentheses.
f, The sequence numbers of the four RBM indel types. g, Distribution of RBD clades in different indel types. h,
Analysis of the reduced length of Regionl and Region2 indels in each RBM indel types. i, Structural display of the
two interaction patches in the SARS-CoV-2 RBD/hACE2 complex (6M0J). Residues involved in receptor recognition
are indicated in the close-up views of the two interaction patches. Region 1,2 and 3 in RBD (Region 1 and 3 comprise
Patch 2, while Region 2 consists of Patch 1. j, Structure superimposing of SARS-CoV-2 RBD (6M0J) with RBDs
from representative viruses belonging to each indel types. k, Schematic illustration of the VSV-based pseudovirus
entry assay. |, Western Blot detecting the level of spike protein of 14 selected sarbecoviruses in lysate or supernatant,
with VSV-M and B-tubulin serving as loading controls.
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Fig.2| Multi-species ACE2 tropism of 14 representative sarbecoviruses and the contribution of critical RBM
residues.

a, b, Multi-species ACE2 usage spectra of sarbecoviruses of different indel types. PSV entry (a) and RBD binding
(b) of 14 sarbecoviruses based on HEK293T cells stably expressing the 56 ACE2 orthologues from bats and selected
mammals c, d, RBD binding efficiencies of selected sarbecoviruses favoring their hosts> ACE2(or the optimal ACE2)
analyzed by Flow cytometry (c) or Biolayer interferometry (BLI) (d). e, f, Structural demonstration (PDB IDs: 7DRV,
7DDP) (e) and spike protein packaging efficiencies (f) of RaTG13 and GX-P2V swap mutants. g, h, Heat map
displaying PSV entry efficiencies of RaTG13 and GX-P2V swap mutants in HEK293T cells expressing the indicated
ACE?2 orthologues. PSV entry > 5% is considered as an effective entry and the number of ACE2 support entry is
showed in parentheses (SARS-CoV-2 numbering). i, Negative charged surface of the consensus ACE2 (based on 56
ACE?2 orthologues) spatially proximate to residue 501 of RaTG13 and GX-P2V. The structure of consensus ACE2 is
predicted by AlphaFold2, and the interaction is predicted by HDOCK. j, PSV entry efficiencies of SARS-CoV-2
WT, N501Y, and Omicron BA.1 in HEK293T stably expressing the 56 ACE2s orthologues. Red triangle:
increased efficiencies to support Omicron; Blue triangle: reduced efficiency to support Omicron. k, PSV entry
efficiencies of SARS-CoV-2 mutants in HEK293T stably expressing the indicated ACE2 orthologues. RLU: Relative
Luminescence Units; RFU: Relative Fluorescence Units. The amino acid usage of the residues consisting of the
surface are indicated. Data representative of 2-3 independent experiments for a, b, g, h, j, and k (n=3 biological
replicates). Mean + SD for k.
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Fig3| The impact of Region1 and Regon2 deletions on multi-species ACE2 tropism of different Sarbecoviruses.
a, lllustration displaying the Regionl and Region 2 substitutions in sarbecoviruses of different indel types. Light pink:
insertion corresponding to SARS-CoV-2 counterparts; gray: deletions corresponding to type Il and type Il
sarbecoviruses. b, Western blot detecting the spike protein packaging efficiency in PSV particles. ¢, d, PSV entry
(c) and RBD binding(d) efficiency of sarbecoviruses and their region substitution mutants in HEK293T stably
expressing the 56 ACE2 orthologues. e-h, Disulfide bonds in Region2 is critical for multi-species ACE2 usage for
sarbecoviruses. Cartoon illustration displaying the Region2 disulfide-related mutants based on SARS-CoV-2, Rc-
0319 and their region 2 substitution mutants (e). Spike protein package efficiency (f), RBD binding efficiency (g),
and PSV entry efficiency (h) of SARS-CoV-2 and Rc-0319 mutants in HEK293T stably expressing the 57 ACE2
orthologues. Dots represent different ACE2 orthologues. Dashed lines: background cut-off of RBD binding and PSV
entry assays. Data are presented in ¢ and d for n=2-3 biologically independent cells. Chi-squared test was used for
statistical analysis of significance for g and h. *:P<0.05, ****:P<0.0001. RLU: Relative Luminescence units; RFU:
Relative Fluorescence Units.
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Fig.4| Fine mapping of Clade-2 specific residues outside the RBM restricting ACE2 recognition.

a, RBD residue usage (SARS-CoV-2 numbering) of sarbecoviruses grouped by ACE2 usage. Red: Clade 2-specific
residues. Orange: limited Clade 2 specificity. b, RBD sequences alignment of SARS-CoV-2, SARS-CoV-1 and
HKU3. Red: HKU3-specific; Orange: shared by HKU3 and SARS-CoV-1 only. The three fragments (Frag.) for
subsequent mapping are indicated. c-g, Fine mapping of residues restricting ACE2 usage outside the RBM. Mapping
strategy for narrowing down the determinants critical for ACE2 recognition (c). Orange and green circles: capability
of using hACE2 for entry (>1% of SARS-CoV-2 entry) and binding (RFU>0.2), respectively. Gray: unable to use
hACE2. Underlines: two critical residues dictating RBD binding. PSV entry (d) and RBD binding (¢) of the HKU3
mutants carrying SARS-CoV-2 corresponding sequences in HEK293T-hACE2. Yellow highlighted the mutants
critical for analyzing ACE2-restricting determinants. PSV entry (f) and RBD binding (g) of HKU3 mutants with
restored ACE2 binding affinity. h-i, PSV entry (h) and RBD binding (i) of SARS-CoV-2 mutants carrying Clade 2-
specific restricting residues in HEK293T-hACE2. j-I: Mechanisms of ACE2 restriction by clade-specific residues
outside the RBM. RBD superimposition (j) of SARS-CoV-2 (PDB:6M0J) with HKU3 and HKU3-derived mutants
predicted by Alphafold2. Red: SARS-CoV-2 equivalent sequences. RMSD: root mean square deviation based on
RBM (69 Ca atoms). Close-up view (k) of V401L and S349N on HKU3 S+Frag.A+RBM mutations that form steric
hindrance with RBM that potentially inducing the RBM conformational shift. The loss of ACE2 interactions in HKU3
carrying SARS-CoV-2 RBM compared with HKU3 S+Frag.A+RBM mutant (I). Blue dashed line: Clashes; Yellow
dashed line: H-Bond. One-way ANOVA analysis, followed by Dunnett’s test for d and h, mean = SD. Scale bar, 200
um. Data representative of 2 or 3 independent experiments for d, e, h and i (n=3 biological replicates).
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Fig.5| The proposed coevolution of sarbecovirus RBM indels and their impact on multi-species ACE2
adaptiveness.

a, The phylogenetic tree based on RBD protein sequences using maximum likelihood analysis (details in Extended
Data Fig. 1). The red lines mark the sarbecoviruses tested in this study. b, Summary of the number of supportive
ACE2 orthologues (data based on Fig.2a and j with RLU>2x10°% and hACE2 compatibility of the indicated
sarbecoviruses. Coloring is based on RBD clades. ¢, Regionl sequence logo (SARS-CoV-2 numbering) of
sarbecoviruses grouped by different indel types in each clade. The highly conserved D442, F/Y451 for defining the
boundary of Region 1 and the featured glycine (G) are highlighted in red. d, The proposed evolutionary of
sarbecoviruses RBD clades and RBM indel types. e, Details of Region 1 sequence changes along with the formation
of different clades during the evolution of sarbecoviruses in bats, pangolins, and humans. The Region 1 numbers in
each group are indicated in blue. The emergence of the highly conserved glycine (1G) and the double G (2G) in most
cladelb sarbecoviruses are highlighted in red. f, The RBD-ACE2 complex structures or models of sarbecoviruses
with distinct Region 1 sequences. Region 1 is highlighted with distinct colors without transparency, the featured G is
marked in red (upper). ACE2 and Region 3 is displayed in light blue and gray with transparency, respectively. Yellow
dotted lines: H-bond or salt bridge. Dotted lines indicate the events with low confidence for d and e. g, PSV entry of
SARS-CoV-2 R1 mutants in HEK293T expressing the indicated ACE2 orthologues.
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Extended Data Fig. 1| Phylogenetic tree based on 268 sarbecoviruses RBD amino acid sequences. The cladogram is
generated by ig-tree through maximum likelihood analysis. Viruses selected in subsequent experiments are highlighted
in red.
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20 zC45 7543 7265 7567 80.20 78.90 80.06 80.22 79.68 85.77 74.80 70.64 69.51 70.74 70.66 7524 - 7197 7454 7527
21 RmYNO2 7184 69.95 7160 7220 7115 7227 7251 7228 7258 74.46  69.60 6951 70.26 69.87 7458 7680 - 7162 7284
22 HKU3 7803 77.11 7862 7573 7451 7604 76.04 7534 7577 8348 7429 7299 7454 74.39 7412 8255 77.70 - | 87.34
23 Rp3 7851 77.74 7949 7502 73.80 7518 7549 7471 7538 8260 7444 7292 7478 74.70 7379 8189 77.44 95891 -

60%
100% % AA identity 60%

b RBD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 100%
1 SARS-CoV-1 . 7116 8117 7302 7165 7302 7337 7204 7268 7098 66.15 6855 67.52 6803 6375 6375 6340 7133 6857 6252 6235 64.77 62.69
2 Ra22DB163 7720 . 7185 69.24 6753 7045 6839 67.74 7096 7031 67.70 66.84 70.62 70.96 6339 6339 63.04 6287 6354 61.98 6059 6233 6250
3 RsSHCO14 8083 79.38 . 7285 7217 7285 7079 7186 7268 7185 67.35 63.76 66.67 67.60 6529 6529 6529 69.43 70.64 60.62 6166 64.77 6131
4 SARS2-Cov-2 7182 7432 7582 . 8522 79.42 8677 7801 6359 6274 6838 6872 6478 6478 6478 67.53 6821 61.34 60.83 6237 61.00
5 Omicron BA1 7011 73.12 75.68 . 8368 77.53 8436 7680 6239 6154 67.01 67.35 64.09 6409 64.09 6650 67.53 | 60.48 60.14 6151 60.31
6 BANAL-20-52 7348 7650 78.02 9005 . [8540 79.08 8814 7818 64.79 6239 67.86 6855 6443 6443 64.61 67.53 67.87 6289 61.68 6392 62.20
7 RaTG13 7403 7268 7528 89.18 8586 9021 . 7942 8162 7835 6444 6342 6803 6872 66.15 66.15 6650 67.87 68.73 61.86 60.48 6272 62.03
8 GX-P2V 7351 7325 7475 8611 8L70 8817 87.65 . 7857 7358 6449 66.37 67.56 67.74 64.99 64.99 6516 69.12 66.71 61.90 6173 6138
9 GD/1/2019 7405 77.01 7850 |96:84 90.16 |99.47 89.47 87.92 . 7680 658l 64.10 67.18 67.18 64.43 64.43 6461 6942 67.87 63.06 62.54
10 RshSTT200 7010 7292 7202 8232 7935 8398 8122 7848 83.78 .  64.86 6457 66.84 6839 6504 6504 6504 65.11 6597 61.20
11 BMW48-31 7113 7436 7385 67.74 6614 68.82 66.67 66.15 69.47 69.47 . 6870 7621 74.66 63.35 6335 63.00 |60.14 60.28 60.18
12 Khosta-2 7092 7180 68.88 66.67 6398 67.76 66.12 6560 6845 67.36 7500 . 7237 7219 6522 6522 6574 | 60.17 59.97
13 PRD-0038 7409 7887 7526 7243 7021 7351 7135 7192 7407 7120 8196 78.65 - 64.14 6414 64.48 6120 6254
14 BtKY72 7358 7887 7474 7189 69.68 7297 7081 70.84 7355 70.68 8l44 78.65 . 6500 6500 60.68 6186
15 RmYNO5 68.72 70.26 69.23 7189 69.68 7297 7135 7138 7355 7254 69.39 64.80 69.90 69.39 60.31 60.10
16 RsYNO4 68.72 70.26 69.23 7189 69.68 7297 7135 7138 7355 7254 69.39 64.80 69.90 69.39 60.31 60.10
17 RaTG15 68.72 69.95 69.07 7143 6919 7253 70.88 7090 73.12 7245 6891 6429 69.43 6891 . 6083 60.28
18 Rc-0319 7127 6889 7278 7024 69.01 7202 7262 7146 7267 7081 | 64.64 66.67 66.11 6868 6868 6865 . 8198
19 Rc-kw8 69.61 69.44 7167 7024 67.84 72.02 70.24 7205 72.67 7135 6409 6359 6833 67.78 7017 70.17 7011 8351 .

20 zC45 62.37 62.89 62.37 6237 6359 63.59 7981 7898 8L71
21 RmYNO2 62.90 64.80 65.99 . 7614 79.24
22 HKU3 62.89 64.95 65.08 65.08 8901 . 8617
23 Rp3 62.37 6237 6237 62.70 6270 62.70 6273 6349 64.43 65.61 64.55 90.66 9536
50%
100% % AA identity 60%

C RBM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 100%
1 SARS-CoV-1 . 57.97 6280 60.95 5952 6095 62.38 6143 6143 5701 5169 6048 5524 5476 4857 4857 47.14 52.66 | 43.00 | 40.10 4271 40.10
2 Ra22DB163 5362 . 6280 6048 57.62 59.05 56.67 5524 57.14 5833 5539 57.97 5885 58.37 4831 4831 47.83 4300 46.08 39.58 4219 40.63
3 RsSHCO14 5217 6232 . 6238 6238 6333 5857 6095 6238 6039 5507 49.05 52.86 53.81 5238 5238 5191 5024 4831 4323 3958
4 SARS2-Cov-2 5000 5571 5571 . 72.38 7476 | 87.62| 65.71 5048 5143 5571 56.67 4952 4952 49.05 47.62 48.10 4154 4051
5 Omicron-BA1l 4857 57.14 5857 7095 7143 8333 6381 4857 49.05 5429 5524 49.05 49.05 4857 46.67 47.62 40,00 39.49
6 BANAL-20-52  50.00 57.14 55.71 . 7191 7381 89.05 6333 5048 5191 5286 53.81 4810 4810 47.62 4619 4571 4359 42.56
7 RaTG13 5286 50.00 50.00 | 75.71 7429 7571 . 7191 7048 60.00 47.62 5238 5476 5524 50.95 5095 5143 4857 47.62 4205 42.56
8 GX-P2v 50.00 50.00 50.00 7429 6857 7571 7571 . 7333 5952 47.14 5476 5095 5238 50.00 50.00 5048 4952 48.10 4308 42.56
9 GD/1/2019 50.00 57.14 55.71 7571 7571 . 6429 4952 5333 5333 5476 47.14 47.14 47.14 4810 4154
10 RshSTT200 4203 5294 4638 6286 5857 6143 5571 5429 6143 . 5077 5657 55.39 58.33 5101 5101 4115
11 BM48-31 4783 5294 4928 3857 37.14 3857 3571 3429 3857 4265 . 5556 67.65 6520 4899 48.99
12 Khosta-2 50.00 55.07 42.86 4571 4143 4571 4429 4429 4571 4493 5606 . 6226 6471 5253 5253
13 PRD-0038 50.00 63.77 5143 5143 4857 5143 4857 47.14 5143 4928 6324 6471 . 5343 5343
14 BtKY72 50.00 6522 5286 5143 50.00 5143 4857 47.14 5143 4928 6324 64.71 . 5196 5196 I
15 RmYNO5 4000 4058 37.14 4366 39.44 4366 40.85 42.86
16 RsYNO4 4000 4058 37.14 4366 39.44 4366 40.85
17 RaTG15 4000 4058 37.14 4366 39.44 4366 40.85 .

18 Rc-0319 4203 39.13 4493 3857 3857 3857 4286 y 3143 30, .
19 Rc-kw8 36.23 41.18 4058 4143 3857 4143 37.14 37.68 .78 3978
20 ZC45 29.69 2969 30.77 29.23 30.77 29.23 3231 . 7320 7244
21 RmYN02 2923 2769 2923 27.69 3231 3167 8824 . 6667 7124
22 HKU3 2969 31.25 31.25 3385 3231 3385 3385 3231 3443 8269 7692 . 7436
23 Rp3 2969 2060 20.69 3231 30.77 3231 3231 3539 3539 30.00 3167 8431 80.39 84.62
30%
100% % AA identity 25%

Extended Data Fig. 2| Protein and nucleotide identity matrices based on Spike (a), RBD (b) and RBM (c)

sequences from 23 representative sarbecoviruses. The Nucleotide (NT) and amino-acid (AA) sequences are aligned by

MAFFT, and the identities are analyzed by Geneious.
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Extended Data Fig. 3| Characterization of quantitative RBD binding and PSV entry assays. a-c¢, Comparison of PSV
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cellular RBD-hFc binding assay. e, f, Comparison of binding efficiencies based on flow cytometry (e) and quantitative
immunofluorescence (f) assays. Scale bar, 200 um.
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Extended Data Fig. 4| The geographical distribution of 11 bat families encompassing the 51 bat species in this
study. Data are retrieved from The IUCN Red List website (https://www.iucnredlist.org/) and the distribution are
generated by the GeoScene Pro software.
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Extended Data Fig. 5| Phylogenetic and sequence analysis of the 56 ACE2 orthologues. a, The phylogenetic tree

generated by ig-tree with maximum likelihood analysis. The multi-sequence alignment and sequence logo are analyzed

by MAFFT and Geneious, respectively. Asterisks: critical residues for SARS-CoV-2 interaction (PDB: 6MO0J). b,
Bubble chart demonstrating the amino-acid usage of the viral binding sequences of 56 ACE2 orthologues. Residues

critical for SARS-CoV-2 interaction are highlighted in red.
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Extended Data Fig. 6] Inmunofluorescence demonstrating a comparable expression of 56 ACE2 orthologues in
HEK?293T cells. The representative images demonstrating the expression of ACE2 orthologues stably expressed in
HEK293T cells by detecting the C- terminal fused 3xFLAG tags. The cell nuclei are stained with Hoechst 33342 in blue
. Scale bar, 200 um. Human APN (APN) serves as the experimental control.
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Extended Data Fig. 8| Critical RBM residues affecting the multi-species ACE2 usage spectra of sarbecoviruses.
a, Heat map displaying the RBD binding efficiencies of RaTG13 and GX-P2V swap mutants at different RBM
residues (a) in HEK293T expressing the indicated ACE2 orthologues. b, ¢, Heat map displaying RBD binding(b) and
PSV entry(c) efficiencies of RshSTT200 carrying position 501sArs-cov-2 related mutations.
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Extended Data Fig. 9| Residue usages in position 501sArs-cov-2 affecting the multi-species ACE2 usage spectra of
SARS-CoV-1 and SARS-CoV-2. a, Superimposition of the structures illustrating the critical residues for the interaction
between SARS-CoV-1/SARS-CoV-2 and human ACE2. b-d, Heat map displaying the PSV entry efficiencies of SARS-
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the impact of T487Ysars-cov-1 (e) and N501Ysars-cov-2 (f) mutations on ACE2 interaction, respectively. Blue dashed line:

clash. Gray dashed line: n-n stacking interaction.

39


https://doi.org/10.1101/2024.02.11.579781
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.11.579781; this version posted February 11, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

P.ale

WT o

BA.1

P.gig

S.hon perpetuaity. It is Made availablecunder dCC~BY-NG-NE 4.0 Inferaationallizemse.

Mouse

Human

APN

d
b wr RBM | SARS.Cov-2 SARS-COV-2  SARS-CoV-2
SARS-Cov-2 (KA17N+ (SATTN+T478K  (GA96S+Q498R
SARS-CoV-2 Omicron BA1l (BA.1RBM) N440K+G446s) TE4B4A+Q493R) +NSO1Y+Y505H)
Omicron BA.1
p.ale B B
wT P.g P
(BA.1-RBM) 919
S.hon
wr
(BA.1-aa376-476) \ [ Ajam
K417N 7 NAA’OPE\GMGS M.bla
wr
(BA.1-aa447-495) /\\\ [ P.pip
wr SATIN =2 BaganQ493R R.sin
(BA.1-22494-546) [l R.pea =8
G903 58 |05 Mnat 3
c N.hum =8
WT WT WT Mouse =
(BA.1-aa376-476) (BA.1-aa447-495) (BA.1-a3494-546)
Human
N477| | v501 Hs05 Vector = X
S446 N417 93 ) T T 1 T T T 1 r T T 1 ) T T 1 ) T T 1 ) T T 1
K440 A484 Ka7g |RA98 S496 050100 150 0 50100 150 0 50100 150 0 50100 150 0 50100 150 0 50100 150
PSV entry (% of Human)
e f
SARS-CoV-2 SARS-COV-2 SARS-CoV-2 ~_— I _
SARS-CoV-2  Omicron BA.1 -
SATTN+T4T8K E484A Q493R 7 ',- SARS-COV-2 P
P.ale 7 e ,
P.gig - 3 Q493 : ‘
S.hon 1 N
A.jam -
M.bla 7 i ‘ y
P.pip - : e N
R.sin '§
S [ 4 % N
*pea E w SARS-CoV-2 -/\‘\JJ >
M.nat 1 ; .
N.hum 4% ! o -“
Mouse 4%
Human
Vector b493
| e e e R e s e N o e s F e e oy B o e o | — —
0 50100 150 0 50100 150 0 50100 150 0 50100 150 0 50100 150 = = 4

PSV entry (% of Human)

Extended Data Fig. 10| The critical RBM residues responsible for the alteration of multi-species ACE2 usage
spectra of Omicron BA.1. a, The authentic SARS-CoV-2 (WT) and Omicron BA.1(BA.1) infection in HEK293T
stably expressing the ACE2 orthologues showing contrasting entry supporting ability in PSV entry assays (Fig. 2j).
Infection efficiencies were examined by immunofluorescence detecting the intracellular N protein. Red font: increased
efficiency to support BA.1; Blue font: reduced efficiency to support BA.1. Scale bars, 200 um. b, Schematic diagram
illustrating the SARS-CoV-2 mutants with RBM regions swapped between WT and BA.1. ¢, The structural details of the
swapped residues within the interaction interface (6MO0J). d, e, The PSV entry efficiencies of the indicated SARS-CoV-2
mutants carrying region substitutions (d) or point mutations (e) in HEK293T expressing the indicated ACE2 orthologues.
f, Structure modeling of SARS-CoV-2 WT or BA.1 RBD in complex with P.ale or N.hum ACE2. The distinct
interactions mediated by residue in position 493SARS-CoV-2 were indicated in each model. Red dashed line: H-Bond.
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Extended Data Fig. 12| F

recognition. a, Schematic illustration of the mapping strategy to narrow down the critical determinants on ZC45 for
ACE2 receptor function. b, ¢, PSV entry (b) and RBD binding (c) of the ZC45 mutants in HEK293T cells stably

expressing hACE2. One-way ANOVA analysis, followed by Dunnett’s test for d and h, mean + SD. Mock: medium

control. Scale bar, 100 pm. GFP RLU is marked on the top right corner. d, ¢,PSV entry (d) and RBD binding (e) of

ZC45 mutants with restored ACE2 binding affinity in HEK293T expressing the indicated ACE2 orthologues.

f, Western

blot illustrating the spike protein package efficiencies of ZC45 mutants in PSV particles.
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Extended Data Fig. 13| RBM Region 2 sequence logos and ACE2 usage spectra of sarbecoviruses. a, Summary of
the number of acceptable ACE2 orthologues (data based on Fig.2a and j, RLU>2x10° is considered as positive) and
hACE2 compatibility of the indicated sarbecoviruses. Coloring is based on different RBD clades. b, Region2 Sequence
Logo analysis of sarbecoviruses grouped by different indel types in each clade. The highly conserved D467 and L/1492
(black) (SARS-CoV-2 numbering) for defining the boundary of Region 2 and the featured cystines (red) are highlighted
with black and red, respectively.
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Extended Data Fig. 14| The importance of the conserved RBM Region 1 Glycine (G) on SARS-CoV-2 and ACE2
interaction. a, b, Illustration (a) and structural modeling (b) elucidating the potential impact of SARS-CoV-2 Region 1
mutations on hACE2 interaction (based on 6M0J and AlphaFold2). ¢, The impact of SARS-CoV-2-G447Y mutation and
the correspond mutation in RmYNO5 on RBD binding efficiencies with host ACE2. Scale bar, 100 pm. d, RBD-hFc

binding efficiencies of the indicated SARS-CoV-2 RBM Region 1 mutants in HEK293T expressing the indicated ACE2

orthologues.
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CoV-2 A1(Regionl GGNY deletion). a, Expression of R.alc and R.fer ACE2 swap mutants in HEK293T cells by
detecting the C-terminal fused FLAG tags. b-d, BM48-31(b) and SARS-CoV-2 AGGNY (c¢) RBD-hFc binding
efficiencies and corresponding PSV entry (d) in HEK293T expressing indicated R.alc or R.fer ACE2 swap mutants. e, f,
PSV entry (e) and Flow cytometry (f) demonstrating the reduced R.alc ACE2 usage upon A480YBMm48-31 mutation. *:P<0.
05, **: P<0.01, ***: P<0.001, ****:P<0.0001. The RFU corresponding to each image are indicated on the top right
corner. Scale bar: 200 um. One-way ANOVA analysis, followed by Dunnett’s test, was used for statistical analysis of
significance. Two-tailed unpaired (Student’s) t-test was performed if only two conditions were compared. Bar charts
presented in mean =+ s.d.
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