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ABSTRACT 

The successful treatment of side effects of chemotherapy faces two major limitations: the need to 

avoid interfering with pathways essential for the cancer-destroying effects of the chemotherapy 

drug, and the need to avoid helping tumor progression through cancer promoting cellular 

pathways. To address these questions and identify new pathways and targets that satisfy these 

limitations, we have developed the bioinformatics tool Inter Variability Cross-Correlation 

Analysis (IVCCA). This tool calculates the cross-correlation of differentially expressed genes, 

analyzes their clusters, and compares them across a vast number of known pathways to identify 

the most relevant target(s). To demonstrate the utility of IVCCA, we applied this platform to RNA-

seq data obtained from the hearts of the animal models with oxaliplatin-induced CTX. RNA-seq 

of the heart tissue from oxaliplatin treated mice identified 1744 differentially expressed genes with 

False Discovery Rate (FDR) less than 0.05 and fold change above 1.5 across nine samples. We 

compared the results against traditional gene enrichment analysis methods, revealing that IVCCA 

identified additional pathways potentially involved in CTX beyond those detected by conventional 

approaches. The newly identified pathways such as energy metabolism and several others 

represent promising target for therapeutic intervention against CTX, while preserving the efficacy 

of the chemotherapy treatment and avoiding tumor proliferation. Targeting these pathways is 

expected to mitigate the damaging effects of chemotherapy on cardiac tissues and improve patient 

outcomes by reducing the incidence of heart failure and other cardiovascular complications, 

ultimately enabling patients to complete their full course of chemotherapy with improved quality 

of life and survival rates.   

INTRODUCTION 

Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 

1960s  (1). Heart failure associated with certain cancer drugs, such as the anthracyclines, was soon 

recognized as an important side effect. It has also been observed that not all cancer treatments 

affect the heart in the same way and therefore these agents cannot be viewed as a single class of 

drugs (2). Each class of drugs requires an individual approach. Since then, significant efforts have 

been undertaken to recognize the signs of chemotherapy induced cardiotoxicity (CTX) early on 
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and to identify methods to mitigate CTX without compromising the cancer treatment. Clinical data 

on cardiotoxicities reported during chemotherapy reveal that cardiac damages are associated with 

many pathways that include oxidative stress, mitochondrial dysfunction, apoptosis, inflammation, 

and damage to the myocardium (3,4).  

Chemotherapies for cancer treatment cause devastating adverse side effects, leading to 

significantly increased morbidity and mortality among cancer patients. With a larger number of 

cancer survivors, these side effects have become a critical and escalating concern in oncology, 

leading to significantly increased morbidity and mortality among cancer patients (5,6). Many 

chemotherapies agents induce a range of cardiac complications such as arrhythmias, myocardial 

ischemia, thromboembolic disease, left ventricular dysfunction and heart failure (7-9). The risk of 

cardiotoxicity is influenced by several factors including the type and dose of chemotherapy, 

patient's age, pre-existing cardiovascular disease, other comorbidities, and concurrent 

cardiovascular risk factors. Importantly, this increased risk persists even after the termination of 

chemotherapy, with late-onset CTX being a grave concern. The development of CTX can 

significantly impact the quality of life of survivors and may, in severe cases, become life-

threatening. There is an urgent need for cardiac monitoring during chemotherapy, along with the 

development of strategies to predict prevent and treat this serious side effect (10).  

While some mechanisms for CTX with some drugs (i.e., anthracyclines) have been proposed (11) 

the mechanisms of CTX for many drugs are not yet developed. Oxaliplatin is the first line of 

defense in colorectal cancers and is used against other malignancies, including gastric, pancreatic, 

and advanced hepatocellular carcinomas. Oxaliplatin’s efficacy is limited by its off-target toxicity 

such as peripheral neuropathy, nephrotoxicity, gastrointestinal toxicity, and others (12-17). One of 

the typical, but less studied side effects of oxaliplatin is its adverse effect on the heart. Patients 

treated with oxaliplatin often experience rapid breathing, chest pain, tachycardia, and arrhythmias. 

Although emergency situations in oxaliplatin-treated patients are relatively rare compared to other 

drugs like anthracyclines (18,19) or 5-fluorouacil (20), it is a rising concern given the increasing 

number of patients treated with oxaliplatin alone or in combination with other drugs. A growing 

number of cases related to severe coronary and cardiotoxicity of oxaliplatin alone (21,22) or 

together with 5-fluoruracil or FOLFOX (23-26) have been reported. Understanding the mechanism 

of oxaliplatin-induced CTX to improve prediction and treat is of the paramount importance. 

Identification of promising drug targets for drug discovery relies on the utilization of omics tools, 

with RNA-seq being one of the most commonly used techniques. This method enables the 

identification of differentially expressed genes (DEGs) between experimental groups, such as 

diseased and healthy individuals or treated and untreated animal models. To make sense of the 

large amount of data generated by RNA-seq experiments, bioinformatics tools are applied to 

analyze gene expression patterns, identify enriched gene ontology terms, and perform pathway 

analysis. They provide statistical methods and algorithms to assess the significance of differential 

expression, highlighting genes and pathways that play crucial roles in disease development or 

treatment response. However, there is a lack of efficient tools to discern promising drug targets 

and pathways without being confounded by other pathways that may negatively interact with 

treatment strategies, such as chemotherapy. Establishing a treatment for the side effects of 
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chemotherapy without compromising the efficacy of the cancer treatment itself is akin to 

navigating between mythical Scylla and Charybdis. It requires a precise approach, where one must 

carefully avoid several equally dangerous hazards to reach the desired therapeutic effect. There is 

a clear need for new and improved tools that can better navigate the complexity of gene expression 

data and pathway interactions in the context of drug discovery and development. 

Addressing this challenge in today’s oncology, we have developed the Inter Variability Cross-

Correlation Analysis (IVCCA) method. This method facilitates the ranking of pathways and aids 

in identifying significant pathways and genes, based on the individual expression of each 

differentially expressed gene, as illustrated in Figure 1. This approach enables the determination 

of whether a pathway or gene with potential therapeutic value can be targeted safely, without 

adversely affecting chemotherapy or contributing to cancer growth. To explore this concept, we 

applied IVCCA to identify promising pathways and targets for treatment of oxaliplatin induced 

CTX.  

 

Figure 1 A general outline of the proposed pipeline analysis. Data is processed through a traditional pipeline of 
RNA-seq data preprocessing and differential expression genes (DEGs) extraction using specific filter parameters such 

as False Discovery Rate (FDR) <0.05 and fold change (FC) >1.5. The data are utilized to construct a correlation 

matrix, its correlation heatmap is generated to visualize DEGs' correlation distribution. For further analysis, the 

absolute values of the correlations are ordered. The sorted heatmap aids in the visualization of the top genes. Clustering 

is performed using Dendrogram, Principal Component Analysis (PCA), and t-distributed Stochastic Neighbor 

Embedding (t-SNE) methods, followed by distance thresholding (for the Dendrogram results) or K-means (for the 

PCA and t-SNE results) for finer clustering. Clusters were analyzed via STRING (27) or network analysis to identify 

potential target genes. All pathways, including generated and existing ones from databases like GO and KEGG, are 

quantitatively compared using novel indices and ranked for relevance.     
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METHODS  

RNA sequencing datasets 

RNA-seq data were used from our previously published study (GEO repository GSE233805). 

Genes were considered to be differentially expressed with FDR<0.05 (28), and absolute fold 

change FC >1.5 or FC<-1.5. From 13775 genes identified in the dataset, 1744 DEGs based on 

these criteria were selected. The list of these genes and their expressions for individual mice are 

available in the Supplementary Information section in the Excel format (RNA_seq_DEGs.xlsx). A 

list of 1744 randomly selected genes was constructed from the same parental dataset of 13775 

genes with neither FDR nor FC thresholds applied.  

The list of genes from the selected pathways were downloaded from GO and KEGG. Some of the 

lists were generated by us based on literature data (Pubmed), publicly available websites (i.e., 

ECM pathways from the Matrisome Project (29) or based on our previous analysis (i.e., energy 

metabolic pathway (30)). The lists of these pathway specific genes are available in the 

Supplementary Information section as .txt files. 

Overall design of the Inter-Variability Cross-Correlation Analysis (IVCCA) GUI 

We used the IVCCA graphic user interface in MATLAB to perform correlation analysis.  

Examples of the results of the analysis are presented in Figure S1.  The correlation analyses were 

performed on the gene expression data (.xlsx, .cvs, or .tsv file formats).  We ranked the genes 

based on the magnitudes of the absolute values of the correlation coefficients from all genes in the 

matrix normalized to the number of genes. We then performed clustering analyses using 

Dendrogram (by selecting a distance threshold), Principal Component Analysis (PCA) or t-

distributed Stochastic Neighbor Embedding (t-SNE) analyses (via K-means testing). The optimal 

number of genes used in the clustering analyses was determined via elbow (31) and a silhouette 

(32) methods.  Statistical metrics produced by IVCCA identified the most relevant pathways from 

large pathway databases, such as KEGG and GO, and aided in the identification of hub genes. The 

results of the different clustering and pathway analyses were compared cosine similarity matrix. 

We then used results of the correlation analyses and statistical metrics to perform network analyses 

to determine the connections between genes and identify genes with the highest or lowest 

connections as potential targets.  

Theory 

The theory behind each of the algorithms is provided in the Supplemental Information as well as 

in the MATLAB package that can be downloaded from the GitHub developer platform: 

https://github.com/MikhailBerezin/IVCCA/ .     

Dendrogram and Hierarchical clustering 

For dendrogram and hierarchical clustering we used an Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) algorithm that builds a dendrogram by successively merging clusters 

based on the mean distances between their members (33). The code calculates the pairwise 

Euclidean distances between data points in the correlation matrix using the `pdist` function 

implemented in MATLAB. Hierarchical clustering was then performed on the distance matrix 
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using the ‘average’ linkage method. Genes with greater similarity in the Pearson correlation 

analysis are positioned closer together on the dendrogram. The code prompts the user to enter a 

color threshold. A user determined color threshold was used in to plotting the different clusters 

and a gene list was generated for each cluster. 

Gene-to-Pathways analysis  

The correlation between a specified single gene and a set of genes in a given pathway or a cluster 

was examined. This step in the analysis involved calculating the average absolute value of the 

correlation between the gene of interest and that of each gene in the pathway. The correlations 

were visually presented, where positive correlations are shown in blue and negative correlations 

in red as shown in the example in Figure S2. We also calculated the average of the absolute values 

of these correlation coefficients, providing a summary statistic of the overall correlation of the 

single gene with the genes in a certain pathway.  

Compare Pathways analysis 

We applied a cosine similarity function in IVCCA to calculate the difference between two groups 

of genes. The algorithm found genes that overlapped between a reference pathway and one or 

multiple sets of genes by calculating the cosine similarity for each providing a theoretical score 

between 0 and 1. Several indices were calculated. The Pathway Activated Index, (PAI Eq. 9, 

Supplemental Information) reflects the percentage of the genes found in the set to the total number 

of genes in the pathway. The Pathway Correlation Indices (PCI_A and PCI_B) which represents 

the average cross-correlations of gene expressions within a specific pathway or set of genes 

(PCI_A, Eq. 5, Supplemental Information) and across the entire dataset (PCI_B¸ Eq.5 

Supplemental Information). The difference between the PCI_A and PCI_B is shown in Figure S2. 

Greater similarity between pathways provides values closer to 1.  In practice, within our dataset 

for KEGG and GO pathways we observed values for PCI_A between 0.31 to 1 and for PCI_B from 

0.44 to 0.8. The mathematical description of this process is given in Supplemental Information. 

Correlation-Expression Composite Index (CECI) represents the strength of the pathway and 

numerically equals to the product of PAI and PCI_B. The values of CECI for selected pathway are 

graphically presented as bar graphs in the descending order.  

Z-score (Eq. 11, Supplemental Information) indicates how many standard deviations an element 

is from the mean and is directly proportional to CECI. Z-score determines statistical significance 

of each pathway.  Pathways with the Z_score > Z_score_critical (where Z_score_critical = 1.96, 

see Eq. 17, Supplementary Information) were considered statistically. 

The each analysis report contained the correlation data and gene names from the correlation table, 

presents the total number of genes in each pathway, the number of genes found in the current set, 

and several indices:  Pathway Activated Index, (PAI), Pathway Correlation Index within the 

pathway (PCI_A), Pathway Correlation Index within the entire dataset, (PCI_B), Correlation-

Expression Composite Index (CECI) and Z-score for that combination of gene(s) and pathway.  
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Pathway enrichment analysis using established methods 

The pathway enrichment analysis evaluated whether the DEGs were overrepresented in the 

pathway compared to what would be expected by chance. This analysis was performed using the 

Partek Flow software package (34) using KEGG mouse database  (35) and Fisher’s exact test is 

used to determine the significance of a pathway. Benjamini-Hochberg procedure (28), is applied 

to control the FDR. The Enrichment Score and other values were calculated to quantify the level 

of overrepresentation of DEGs in each pathway. 

PCA toolbox 

The toolbox is designed for visualizing and analyzing PCA results. The function retrieves a 

correlation matrix and gene names and fills missing data points with zeros to ensure the PCA can 

be performed on complete data. The function calculates the cumulative variance and selects the 

first 25 for display on a scree plot. The function generates a 3D scatter plot of the first three 

principal components (PCs) by default. The visualization can be modified by using different PCs 

through the MATLAB code. The toolbox provides an interface for user interaction, including 

clustering, highlighting specific genes, and searching for genes and pathways, perform gene 

clustering and calculate and displays Kullback-Leibler Divergence (KL_Div) between the original 

data distribution and the PCA-resulted distribution as a measure of information loss. The details 

of the calculation are given in the Supplemental information. 

t-SNE toolbox  

Our implemented t-distributed Stochastic Neighbor Embedding (t-SNE) toolbox that performs t-

SNE calculations (36) uses the results from the correlation matrix and presents the genes based on 

their correlation values in 3D using a built-in ‘tsne’ function implemented in MATLAB. 

Interactive elements enable K-means clustering, visualization of brushed points, identification of 

individual genes and pathways, identification of close proximity genes and connecting individual 

genes to the STRING database.  

t-SNE initialization. To make t-SNE analysis reproducible, the calculations were performed with 

the initialization step as suggested by Kobak and Berens (37) modified for 3D. The initialization 

process involved several steps. The data were first processed using PCA and the first three 

principal components (PCs) of the data were extracted. The extracted three components were 

standardized by dividing each by the standard deviation of the first component. This 

standardization ensured that the scale of the features did not disproportionately influence the 

results. The standardized components were then multiplied by 0.0001 which scaled down the initial 

positions of the data points before running t-SNE to ensure that the initial positions were close 

together, which insured the reproducibility of t-SNE. 

Perplexity and other parameters: To optimize the perplexity parameter, we conducted a number 

of runs with varying perplexity from 5 to 200. The 3D t-SNE graphs were inspected visually to 

find the best cluster-like distribution of the data (Figure S3). For each run KL_Div is calculated. 

KL_Div calculates the difference between two joint probability distributions derived from the 

original correlation matrix (Pm) and from the t-SNE data (Qm). The method involves several steps: 

i) joint probability distribution creation, ii) normalization of the joint probability distribution and 
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iii) KL_div calculations. The details of the calculation are given in the Supplemental information. 

KL_div values closer to the zero are considered to be ideal and the graph KL_div vs. Perplexity is 

given in Figure S4. Low KL_div value combined with the sufficient visual groupings of the scatter 

plot provided optimal Perplexity equal to 60. 

Other parameters: we used Learning Rate = 200, that influences how the algorithm learns to map 

high-dimensional data to a lower-dimensional space, and the Number of PCA Components = 25 

(since the 25 components accounted for more than 99% of all variability, see Figure 8).  

Proximity mapping feature: The proximity mapping feature of the tsne toolbox in IVCCA provided 

a list of the set number of the closest genes to a searched gene name. This involved calculating the 

Euclidean distances between the searched gene and all other genes in the t-SNE plot, and then 

identified the nearest genes based on these distances.  

Venn diagram 

Venn diagrams were constructed to visualize the overlap between two datasets and providing the 

list of the overlapped genes. 

Chromosomal distribution and histogram comparison 

Each gene location on a chromosome was extracted using Partek Flow and plotted in MATLAB 

as histograms. The comparison between two distributions was performed using a two-sample 

Kolmogorov-Smirnov test (38) implemented in MATLAB. 

Network analysis 

Network analysis was applied to visualize and rank genes based on their connectivity with other 

genes. The function implemented in the Network Analysis toolbox in IVCCA retrieved gene 

correlation data along with the gene names. A correlation threshold (default =0.75) was used to 

display the connections (edges) between the genes with pairwise correlations above the threshold 

level. The number of the formed connections 'degree' were calculated and made the size of the 

node proportional to the number of formed ‘degrees’. The Network Analysis toolbox constructed 

either a 2D or 3D network graph, where each node represents a gene, and edges connect genes 

with correlations exceeding the threshold. For better visualization, we used both node size and 

edge enhancement formulas Eqs. 18-19 (Supplemental Information). The equations scaled the size 

of each node and edge relative to the maximum degree, ensuring that nodes with more connections 

and higher values of edges are visually larger. 

RESULTS  

Correlation of DEGs rank genes according to their correlation values  

Gene expression data from 9 mice (4 control and 5 oxaliplatin treated mice) was extracted from 

our earlier study (GEO repository GSE233805). Out of the 13775 identified genes in the dataset 

generated by RNA-seq from the hearts of mice treated with oxaliplatin and untreated controls, we 

selected 1744 differentially expressed genes (DEG) that satisfied the criteria: FC >1.5 and FDR 

<0.05, which are commonly used thresholds for determining the significance of differentially 

expressed genes in RNA-seq. Pearson coefficients (q) were calculated pairwise for each pair of 
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genes, with the total number of unique pairwise coefficients for 1744 genes equal to 1,525,131 

(see Theory, Supplementary Information). These pairwise values were plotted using the 

Correlation Heatmap matrix shown in Figure 2A. The values of q fall between -1 to +1, with 

positive values indicating positive correlation between the genes and negative values 

corresponding to the negative correlation. Typically, values of q above 0.75 or below -0.75 suggest 

strong correlation between the pair of genes. Interestingly, among this set of genes, more 

correlation coefficients between the pairs of genes were positive (see insert in Figure 2A showing 

the distribution of the pairwise correlation coefficients between the genes) suggesting that the 

larger number of the DEGs were positively co-regulated. A predominance of positively co-

regulated DEGs might reflect underlying regulatory mechanisms that favor synergistic gene 

activation.  

The strength of correlation between individual genes can be visualized with a correlation heatmap 

where genes are arranged via their average global correlation coefficients (Q) defined as the sum 

of all of the absolute values of correlation coefficients divided by the total number of genes minus 

one to eliminate self-correlation (see Methods). The genes can then be sorted based on their Q 

values in descending order such as shown in Figure 2B-C highlighting the genes with the strongest 

associations. From this analysis, we found that more than 380 genes have values of Q greater than 

0.75 which is typically used as a threshold for strong correlation. Such a large number of closely 

correlated genes might indicate a highly interconnected network of gene interactions collectively 

contributing to the CTX mechanism. This tightly knit network highlights the complexity of the 

condition and treatment, as modulating just one gene could resonate through many pathways, 

affecting them in largely unpredictable manner. It is this reason that we performed further pathway 

analysis to tease apart which genes and how those genes were modulated (below). 

 

Figure 2 Correlation analysis of DEGs with FDR<0.05, FC>1.5 (total 1744 genes). A: The panel shows a 
correlations heatmap of genes in alphabetical order (parula colorscheme). The color reflects positive (yellow) and 

negative (blue) correlation between the genes. The insert shows the bimodal distribution of the gene correlation values 

q showing negative and positive correlations. The strength of correlation is defined by the colorscheme. B: Same map 

but sorted based the sum of absolute correlation values Q. Genes with the highest Q values are located in the top left 

corner. The strength of the correlation signal is shown by the jet colorscheme. C: The list of the top genes with the Q. 

PCI_A=0.68 
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A similar analysis was conducted for a set of randomly selected genes without any FDR or FC 

thresholding (1744 genes, RNA_seq_Random_Genes.xlsx, Supplementary Information). The 

results shown in Figure 3 are drastically different from the set of DEGs thresholded for FC>1.5 

and FDR<0.05 (Figure 2). The q pairwise correlation values for the non-thresholded dataset were 

distributed more symmetrically around the zero with almost equal number of positive and negative 

values (Figure 3A, insert). The average correlation for this group of randomly selected genes was 

PCI_A = 0.37 vs 0.68 for the DEGs, suggesting lack of significant cooperation between randomly 

selected genes (Figure 3B-C).  

 

Figure 3 Correlation analysis of randomly selected genes (total 1664 genes). A: The panel shows a correlations 

heatmap of genes randomly generated genes (parula colorscheme). The color reflects positive (yellow) and negative 

correlation (blue) between the genes. The insert shows the symmetrical distribution of the gene correlation values q 

centered around zero. B: Correlations heatmap (jet colorscheme) sorted based on the sum of absolute correlation 

values Q. Genes with the highest Q values are located in the top left corner. C: The list of the top genes with the 

highest Q values. The average Q value is PCI_A=0.37 

Pathway Correlation Indices (PCI_A and PCI_B) quantifies coordinated activity of genes in 

a pathway. 

The Pathway Correlation Indices (PCI_A and PCI_B) represent the average cross-correlations of 

gene expressions within a specific biological pathway (PCI_A) and across the entire dataset 

(PCI_B). The PCI_A metric uses cross correlation of each gene across a specific pathway and 

shows how cohesive the pathway is and how coordinated the response of the genes in the pathway 

to the stimuli is. The PCI_B metric uses cross correlations of each gene across the entire dataset 

and reflects the position of this pathway in the hierarchy of other pathways. A large change in both 

metrics might suggest a coordinated response or disruption of the pathway. The PCIs range from 

0 to 1, where 1 indicates a 100% correlation between the genes within the pathway or the entire 

dataset and 0 indicating no correlation. PCIs appears to be in general not sensitive to the FC 

threshold (Figure 4). The PCI values appear to be fairly insensitive to the FC threshold (within 

the same FDR threshold), although higher FC threshold strongly and expectedly decreases the 

number of DEGs. Low sensitivity of PCIs to the FC threshold makes this index a robust parameter 

to characterize and compare pathways. 
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Figure 4 Higher FC threshold decreases the number of the identified DEGs but only weakly affects PCI_A and does 

not affect PCI_B. FDR<0.05 for all genes. The 13775 genes from GSE233805 dataset were selected for specific FC 

values (1, 1.5, 2, 3, 4) with the same FDR <0.05 threshold and then the selected genes were used in PCI_A and 

PCI_B calculations.   

Highly correlated DEGs are unrelated to chromosomal proximity.  

Genes with closely correlated values may not only imply a functional relationship but also suggest 

genomic proximity. Genes with high correlation might be situated near each other on a 

chromosome and be under the control of identical regulatory elements (39). Such co-regulated 

genes may have common transcription factors that bind to their promoter regions, thus enforcing 

their expression. To investigate whether the location of genes affect the genes distribution we 

mapped the 1744 DEGs (thresholded by FDR<0.05 and FC>1.5) from the mouse dataset to their 

respective chromosomes (data are in Supplementary Information RNA_seq_DEGs.xlsx). The 

results were compared to a set of randomly selected genes with the FDR <0.05 threshold, but no 

FC applied (RNA_seq_all genes.xlsx) and to 13775 set of identified genes in the dataset with no 

filtering applied (RNA_seq_Random_Genes.xlsx). The chromosomal distribution of DEGs 

mirrored the distribution of the random genes and was similar to the distribution of the entire 

dataset across 13,775 genes (Figure 5). This similarity in distributions was confirmed with a two-

sample Kolmogorov-Smirnov test with the output h = 0 indicating that the test did not find a 

statistically significant difference between the two pairwise distributions [A (filtered genes) vs. B 

(random genes)] and [A (filtered genes) vs C (all genes)] at the 5% significance level. This result 

suggests that the chromosomal location of a gene does not significantly impact its likelihood of 

being differentially expressed by oxaliplatin and implies that a genome-wide response to 

oxaliplatin is not constrained to specific chromosomal regions.  
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Figure 5 Distribution of genes on chromosome pairs. A: 1744 DEGs, FC >1.5, FDR<0.05, B: random 1744 genes 

and C: all genes (13795 genes) identified in the dataset (genes). Location on the chromosomes were assigned using 

Partek Flow software. Histograms were plotted with MATLAB. Pairwise Kolmogorov-Smirnov test showed h = 0 no 
statistically significant differences between the two distributions (A and B) and (A and C) at the 5% significance level.  

Chromosome pair #20 corresponds to X or Y.   

DISCUSSION 

While the bioinformatics tools such as DAVID (40), Enrichr (41), or g:Profiler (42) as well as 

STRING, and COMPBIO are valuable for identifying potential targets, they have several 

limitations. Their effectiveness relies on the quality and coverage of the underlying databases they 

use. While the tools provide access to extensive databases, the completeness and timeliness of the 

data may vary, potentially impacting the accuracy and relevance of the results. These tools over-

rely on known interactions between genes and proteins, which may limit their ability to uncover 

novel or uncharacterized gene targets. They do not capture the full complexity of interactions 

within a pathway or consider unknown genes and newly discovered genes and interactions. They 

are somewhat biased towards well-studied pathways, potentially overlooking important 

interactions or pathways relevant to new clinical conditions or preclinical models. In addition, with 

a few exceptions (43) these tools use average data across groups, ignoring inter-individual 

variability within a group. The latter is critical, since individual variations in gene expression and 

pathway dysregulation among members may hold important insights into potential drug targets 

that are not captured by these tools.  

Addressing the limitation, our comprehensive interactive Inter Variability Cross-Correlation 

Analysis (IVCCA) tool takes into account individual expression of each differentially expressed 

gene. Based on the calculated correlation values between all genes in the dataset we can rank 

known and unknown genes and pathways, group genes into potentially new pathways and compare 

new pathways to existing pathway framework in a high throughput manner as discussed below. 

This approach ultimately enables the determination of whether a pathway or gene with potential 

therapeutic value can be targeted safely, without adversely affecting chemotherapy or cancer 

growth.  

Ranking differentially expressed genes and mapping top-ranking genes to CTX  

A global correlation analysis, coupled with ranking the genes according to their PCI scores, 

identified the top 1% genes (top 20 genes): Pex11a, Twf1, Tagln2, Magi2, Meox1, Slc25a42, Tmc6, 

Tuba1a, Heg1, Tubb5, Kmt5a, Cenpt, Ifitm3, Ldhd, Emp1, H2-Ke6, Tspan2, Extl1, Mospd2, 

Arpc1b) (Figure 2C). These genes have a diverse functional range. Key functions include 
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regulation of vasculature (Heg1, Tagln2), metabolism (Pex11a, Slc25a42, Ldhd), cell structure and 

integrity (Twf1, Tagln2, Tuba1a, Tubb5, Meox1), cell cycle and chromatin organization (Tuba1a, 

Tubb5, Kmt5a, Cenpt), and immune response (Ifitm3). The expression profiles of some genes are 

shown in Figure S5.  

Many of these top-ranking genes are well recognized for their involvement in heart. For example, 

Heg1 (FC=1.89), a key protein in endothelial cell biology, is notable for its role in cardiovascular 

development and function (44). Alteration in the HEG1 protein has been linked to vascular 

abnormalities in zebrafish and mice (44,45). Tagln2, another top-ranking gene, encodes a protein 

that regulates smooth muscle cell function. This gene is significantly overexpressed (FC=2.69) in 

the heart tissue of oxaliplatin treated animals. A similar pattern of overexpression has been also 

seen with another chemotherapy drug doxorubicin (46). Pex11a, which is moderately expressed 

in heart tissue, is a vital protein involved in linking peroxisomal membranes to motor proteins 

necessary for perixosomal replication (47). In mice treated with oxaliplatin, Pex11a is 

downregulated (FC= -1.88), that aligns with the general downregulation of the fatty acid (FA) 

metabolism pathway in the heart as we previously reported (30). Another key gene, Slc25a42, 

encodes a protein responsible for importing coenzyme A (CoA) into the mitochondrial matrix (48). 

This process is crucial for energy metabolism in heart cells, as CoA is essential for various 

metabolic processes, including FA synthesis and oxidation. The downregulation of Slc25a42 (FC= 

-1.79) suggests a reduced CoA level in mitochondria, potentially leading to lactic acidosis and 

myocardial weakness (48,49). Similarly, Ldhd, a gene encoding mitochondrial lactate 

dehydrogenase D involved in D-lactate metabolism (50), is also downregulated (FC= -2.20). Since 

Ldhd is involved in D-lactate processing instead of L-lactate (48), this decrease in expression 

suggests impaired D-lactate processing, leading to harmful D-lactate accumulation in the heart. 

Notably, all three genes — Pex11a, Slc25a42, and Ldhd — show a high degree of correlation, with 

pairwise correlation values exceeding 0.99, suggesting high level of coordination between these 

genes. 

Several top-ranking genes are involved in maintaining the structural integrity of cells and tissues, 

with many of these genes being overexpressed. Their change in expression is often seen in 

damaged heart tissues. For instance, Twf1, (FC=1.68) that encodes an actin monomer-binding 

protein has also been observed in hypertrophic myocytes Meox1, crucial for muscle development, 

also exhibits significant upregulation (FC=3.41). Increases in its expression is often observed in 

mouse models and patients with hypertrophic cardiomyopathy (51) and used as a target for treating 

cardiac fibrosis (52).  

Oxaliplatin primarily works by forming platinum-DNA adducts. These adducts cause DNA cross-

linking, which interferes with DNA replication and transcription, ultimately disrupting the cell 

cycle. It is not surprisingly that several high-ranking correlation genes are part of the cell cycle 

and cell division pathways including senescence, p53, apoptosis, and others. In response to stress, 

cells initiate various protective mechanisms, including the upregulation of certain pathways that 

promote survival, which may involve genes associated with cell division. Cardiomyocytes and 

other heart tissue forming cells are in generally postmitotic. After the early stages of life, the 

mammalian heart has a very limited capacity to generate new cardiomyocytes (53). Instead, the 
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heart myocardium responds to injury by remodeling rather than regeneration through cell division. 

Increases in mitotic activity of endothelia cells in the oxaliplatin treated mice are associated with 

the spindle which are constructed from -tubulin (Tuba1a) and -tubulin (Tubb5) dimers (54). 

Tuba1a produces an alpha-tubulin monomer. Tubb (Tubb5) produces a beta-tubulin monomer. The 

spindle fibers of the mitotic spindle apparatus are formed from - and -tubulin dimers. The 

elevation of Tuba1a and Tubb5 are most likely due to mitotic activity in this case in the endothelia 

since that tissue gets hit by oxaliplatin due to the high turnover and endothelia, unlike 

cardiomyocytes, are capable of replication. 

Another high-ranking gene Cenpt (FC=2.41) is part of the centromere protein family (CENP) that 

are involved in chromosome segregation during cell division. CENP relationship with tubulins is 

well known (55,56), as centromeres, where CENP proteins are located, attach to spindle fibers 

composed of microtubules. Our Gene-to-Pathway analysis show that both types of genes are 

synchronized in their response to oxaliplatin with a high average correlation above 0.8 (Figure 

S6). Another gene that is involved in the regulation of chromatin is Kmt5a (FC=-1.90) that 

regulates lysine-20 methylation in histone H4. Recent results showed a direct link between the 

lysine methylation at this site and the heart failure in mice and humans (57).  

In summary, the top-ranking genes with high average correlation indices point to several diverse 

pathways influenced by oxaliplatin. These pathways evidence both the body responses to CTX 

and the resultant remodeling of heart tissue. This remodeling, involving processes like fibrosis and 

hypertrophy, could contribute to the observed progression of heart failure.  

Ranking pathways based on Pathway Correlation Indices 

Finding the most relevant pathways that can describe biological processes in the heart of the 

oxaliplatin treated mice is one of the key challenges to understand the mechanism of CTX. We 

address this challenge by calculating Pathway Correlation Indices (PCI_A and PCI_B) defined as 

the average of absolute individual pairwise correlations for all genes within the pathway (PCI_A) 

or average of the absolute value of the correlations for genes in the pathway with the genes in the 

entire dataset (PCI_B) (Eq.5, Supplemental Information). Figure S2 illustrates the difference 

between the two metrics. Pathways with the high PCI values exhibit the strongest coordinated gene 

expression response to oxaliplatin pointing to pathways that are especially active under the 

oxaliplatin treatment. We also define PAI that quantifies the extent to which a particular pathway 

is activated and is defined as the ratio of differentially expressed genes found in the set to the total 

number of genes in the pathway. The Z-score accounts for both PCI_B and PAI (Eqs. 14-16, 

Supplemental Information). Our GUI-implemented algorithm enables screening hundreds of 

pathways and calculate their Z-scores within seconds.  

The top IVCCA results of the screening of more than 340 pathways from the KEGG database and 

15 relevant literature-based pathways is shown in Figure 6 with the few significant tabulated in 

Table 2. The top-ranking pathway from the screens was the Metabolic Energy pathway that we 

have defined in (30) with the highest Z-score. This is in line with what we and others have reported 

for chemotherapy drugs in mice and humans (30,58). Metabolic changes from chemotherapies lead 
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to weight loss, fatigue, appetite changes, and may have long-term effects on cardiac function 

depending on the severity of the metabolic changes (59,60).      

Among the prominent pathways identified were the renin-angiotensin system (RAS), apoptosis, 

and the p53 signaling pathway. It was not surprising to see apoptosis and the p53 pathway ranked 

highly, as they are well-known to be involved in cell division processes affected by oxaliplatin. 

However, the identification of RAS as a top-ranking pathway was unexpected but significant. RAS 

is fundamentally important in regulating blood pressure and renal sodium retention and plays a 

critical role on the health and disease of the cardiovascular system. Renin, an enzyme produced by 

the kidneys in response to poor nephron filtration due to low blood perfusion, converts plasma 

angiotensinogen (Agt) into angiotensin I which is further converted by the angiotensin I, 

converting enzyme (Ace) into angiotensin II by the angiotensin II converting enzyme (Ace2).  All 

three genes in this pathway were upregulated, Agt (FC=3.20), Ace (FC=1.71) and Ace2 (FC=3.28) 

(61). Chronic elevated levels of angiotensin II leads to hypertrophy of the heart muscle and fibrosis 

in mice (62). Because of its role in heart injury, the RAS is a target for several heart medications 

where a variety of ACE inhibitors and angiotensin receptor blockers are commonly used to reduce 

the risk of heart damage (63). Given the intrinsic connection between the RAS in linking kidney 

function and heart health, it is not surprising that oxaliplatin is associated with nephropathy, a 

recognized condition in patients undergoing treatment with this drug (64,65).  

It is interesting to compare the top pathways found by IVCCA with the top pathways founds by 

the existing methods. The KEGG enrichment analysis implemented in the Partek Flow software 

analysis identified 22 statistically significant pathways (20 from KEGG and 2 from custom) with 

top-ranking pathways that include vasculature regulation, inflammation, and cancer related 

pathways (Figure S7). Other significant pathways included neuroactive ligand-receptor 

interaction, RAS, and metabolic pathways. Out of these 20 KEGG pathways there were 9 that were 

also identified by IVCCA suggesting that despite the difference in methodology both strategies 

lead to similar results. While the overlapping results speak to the validity of our approach, our new 

tool has the potential to recognize previously unknown pathways. 
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Figure 6 IVVCA ranking of KEGG (344 pathways) and literature-based pathways based on the Z-score. Only 

statistically significant pathways above the Z-score critical are shown. Colors mark pathways related to the same 

group.  

The correlation analysis of the pathways from the GO database were consistent with KEGG and 

gave a similar pathway ranking landscape (Figures S8-S10 show ranking pathways from GO 

biological functions, GO cell components, GO molecular functions databases based on their Z-

scores). From the screening of more than 1700 GO pathways that contain more than 5 genes in 

that particular pathway, IVCCA identified 167 statistically significant GO pathways. Similar to 

KEGG, the top-ranking GO biological functions identified by IVCCA were related to cell division, 

regulation of cardiac activity, and actin filament organization. Others also included blood vessel-

related pathways, regulation of the metabolic processes, and inflammation.  

Finding new pathways and target genes 

Investigating a relatively unexplored physiological condition such as CTX introduces challenges 

in understanding its underlying mechanisms, as the existing established pathways (KEGG, GO 

and others) may not be sufficient to explain the observed physiology. The unique characteristics 

of oxaliplatin induced CTX requires exploring novel pathways that have not been traditionally 

associated with similar physiological processes. We approached this challenge through clustering 

of the DEGs based on their correlation values. We implemented three methods to identify the 

clusters: dendrogram, principal component analysis (PCA) and t-Distributed Stochastic Neighbor 

Embedding (t-SNE). The results contrasting the advantages and disadvantageous of these methods 

are discussed below. 

Dendrogram produces clusters that are either too small or too large  

Within a dendrogram built from correlation data, gene clusters located closely together exhibit 

greater similarity in terms of their correlation patterns compared to clusters positioned farther 

apart. By adjusting the threshold level (i.e., distance), the number of clusters can be defined, and 
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color-coded for better visualization (Figure 7). One of the challenges in this process is to find the 

number of clusters that faithfully represent the data. This task is subjective and usually comes from 

the visual inspection of the dendrogram. More objective techniques to identify the number of 

clusters is to use algorithms such as an elbow (31) and a silhouette (32) to visual those 

relationships. The elbow technique plots the variance as a function of the number of clusters with 

the "elbow" of the curve represents an optimal number for clustering. Silhouette technique plots 

how close each point in one cluster is to the points in the neighboring clusters with a high value 

indicates that the object is well matched to its own cluster and poorly matched to neighboring 

clusters. In the given case with 1744 DEGs dataset, the elbow method did not show the obvious 

‘elbow’ point (Figure 7A), while the silhouette method suggested either 6 or 10-15 clusters to be 

optimal (Figure 7B). Based on this suggestion, the dendrogram was thresholded with the Distance 

= 8.5 resulting in 10 clusters (Figure 7C).  

As seen in Figure 7C, the resulting dendrogram produced clusters ranging from very large (above 

900 genes) to very small (1-2 genes). Ideally, clusters should contain 50 to 200 genes for 

conventional databases such as STRING that covers KEGG, GO and other databases. Large 

clusters (such as Cluster #6 with 961 genes) risk incorporating noise or false positives. Small 

clusters with only few genes (such as clusters #2, 4, 5, 9, 10) fail to show significant enrichment. 

Therefore, only a few clusters gave meaningful results. Cluster #1 (138 genes in the cluster) was 

linked to the pathways primarily related to the regulation of the cell cycle. Cluster #7 showed 

mixed pathways including FA metabolism, angiogenesis, and complement activation. Cluster #8 

also represented a mix of pathways such as regulation of blood vessels and response to hyperoxia 

among others.  

 

Figure 7 Clustering with dendrogram. Elbow (A) and silhouette (B) methods were used find the optimum number 

of clusters. The curves were calculated 5 time and averaged. Elbow method was unable to identity the number of 

clusters. Silhouette method suggests 6 or 10-15 clusters. C: Dendrogram of the genes based on their correlation values. 

The number of unique clusters were defined by the threshold distance =8.5 resulting in 10 identified clusters. Genes 

with higher correlation to each other belong to the same cluster. The clusters sizes are highly different ranging from 1 

to 916 genes per cluster. Genes from the 1744 DEGs filtered for FDR<0.05 and FC>1.5. 

PCA does not produce clusterisable pattern. 

Principal Component Analysis (PCA) of the correlation matrix provides a different approach to 

visualize the overall structure of gene-to-gene relationships and identify clusters. In this process, 
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the principal components (PCs) represent the directions of maximum variance in the data, 

essentially condensing the information into fewer dimensions while retaining the relationships 

between the genes. This typically enables the identification of patterns and clusters among genes. 

The PCA analysis of the correlation matrix with 1744 genes provides 1744 PCs. The graph of the 

cumulative variance vs first 25 PCs is shown in Figure 8A showing that 85% variability lies within 

the first three PCs and 99.9% for the first 25 PCs. The PCA scatter plot of the first three PCs is 

shown in Figure 8B, where each point represents a particular gene, and its location corresponds 

to correlation with all other genes aligns along these PCs.  

 

Figure 8 PCA of the correlation matrix composed of 1744 DEGs. Left: Cumulative variance plot (percent) for the 

first 25 PCs. Right: PCA visualization for the first three PCs in a 3D scatter plot of the 1744 DEGs.  

The PCA plot with the first three PCs in a 3D plot makes the data to appear like a ball without 

much discernible structure. A close to spherical distribution might indicate that there are no strong 

patterns or clusters captured by these components. The scatter plots with higher-level PCs were 

similar with no clear groupings (not shown). The lack of apparent structure makes reasonable 

clustering of the PCA plot difficult and prompted us to search for different clustering technique.  

t-SNE provides a solution to cluster correlation data to identify CTX related clusters. 

To achieve better clustering, we applied t-SNE, a well-known machine learning algorithm 

designed for visualizing high-dimensional data in a lower-dimensional space (36). This non-linear 

technique is particularly suitable at capturing non-linear relationships between genes, which PCA 

might miss since PCA is a linear method. Being a stochastic method t-SNE starts randomly, 

leading to varying results affecting the locations of the genes in the visualization plot. To minimize 

the randomness, we followed a modified Kobak and Berens suggestion (37) by initiating t-SNE 

calculations from the first PCs. Since we used a 3D representation, we started from the first three 

PCs from the PCA calculations. Beginning with PCA as the initialization made t-SNE less 

sensitive to random initializations, leading to more consistent and reproducible results. This 

approach allowed us to optimize perplexity, a crucial tuning parameter that significantly affects 

data point positioning in scatter plots and, consequently, the identification of clusters or pathways. 

We varied perplexity from 5 to 200 by evaluating outcomes visually and quantitatively using the 

Kullback-Leibler Divergence (KL_div) score. Lower KL_div scores indicate better embeddings. 
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Our analysis, including visual observations of 3D scatter plots (shown in Figure S3) and KL_div 

values (Figure S4) determined that the optimal perplexity value was 60. At this level, the data 

points showed clear patterns and significant clustering (Figure 9). 

In the resulting t-SNE 3D scatter plots, closely positioned points indicate strongly correlated data, 

while distant points suggest weaker correlations. For instance, the top-ranking 50 genes with the 

highest average correlation values (Q) form a distinct cluster in the t-SNE plot (Figure 9A), 

contrasting with the multiple widely dispersed clusters formed by the 50 genes with the lowest Q 

values. Notably, clusters corresponding to some known pathways from KEGG, GO, and others are 

discernible on the t-SNE plot (Figure S1C or Figure 9B). Pathways related to the extracellular 

matrix, centromeric regions, and energy metabolism all show distinct localizations (Figure S11), 

suggesting t-SNE's potential in identifying novel pathways based on their placement in the 3D 

scatter plot. 

 

Figure 9 t-SNE results of 1744 DEGs. A: the distribution of 50 genes with the highest and lowest average correlation 

values. B: the distribution of 10 clusters as defined by K-means. Major optimized parameters: perplexity = 60, learning 

rate = 200.  

K-means clustering of the t-SNE scatter plots enables the identification of inherent groupings 

within the data. As with the dendrogram and PCA methods, we generated ten clusters. The 

clustering of the t-SNE data yielded more uniform clusters containing reasonable number of genes 

between 87 to 240 genes (Figure 9B). The genes in each cluster were analyzed whether they 

correspond to known KEGG or GO pathways using STRING database. The results of this analysis 

with the Z-score (Eqs. 16-17, Supplemental Information) for each cluster is shown in Table 1.   
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Table 1 K-means clustering of the t-SNE 3D plot and STRING analysis of the clusters. Column cluster # 

corresponds to the cluster on the t-SNE map. STRING assignment column shows the numbers of significantly enrichment 

clusters by GO, KEGG with brief names of the top pathways (STRING interaction score >0.4).  
  

    Cluster # Number of 

genes in cluster  

# GO 

pathways 

# KEGG 

pathways 

STRING assignment Z-

score 

1 183 192 5 DNA replication, cell cycle related pathways 29.7 

2 133 38 26 Immune response, inflammation, response to 

hypoxia, regulation of heart rate 

29.1 

3 220 22 1 Complement and coagulation cascade, collagen 

metabolism, extracellular matrix 

26.8 

4 121 2 0 Protein phosphorylation 24.4 

5 249 47 0 Actin cytoskeleton, fiber organization  27.7 

6 87 3 1 Infection, complement cascade 21.0 

7 110 1 0 Aging, myosin filament 30.9 

8 169 47 0 Apoptosis, response to hyperoxia 28.1 

9 227 15 0 Muscle cell development, vascular system 26.7 

10 245 105 3 Regulation of muscle contraction 30.7 

 

The Z-score ranking of the clusters indicated their relative representation in the CTX. All clusters 

were statistically significant, exhibiting higher Z-scores primarily because all genes in the clusters 

are DEGs. Some clusters indicated relationship to the known cardiac related pathologies, for 

example clusters #2, and #9 were directly associated with heart-related issues, containing a larger 

number of genes known to correlate with heart conditions.   

Avoiding chemotherapy targeted and cancer pathways with Pathway-to-Pathway 

correlation analysis 

A key objective in managing chemotherapy-induced CTX is to mitigate heart damage without 

interfering with the chemotherapy effectiveness in eradicating cancer and. This challenge brings a 

complex triangle among the treatment of the tumor, minimizing CTX, and the chemotherapy agent. 

To this end, we implemented a Pathway-to-Pathway comparison approach using a cosine similarity 

(CS) score as a metric to quantify the relationship between the reference pathways and the 

pathways of interest. Two pathways were used as references and all other pathways were compared 

against them.  Given that chemotherapy agents are frequently designed to target the cell cycle to 

stop cancer cells from multiplying, we used the KEGG mmu04110 cell cycle pathway as the first 

reference pathway. Since oxaliplatin is a first line chemotherapy agent for the treatment of 

colorectal cancer, we used the colorectal cancer pathway (KEGG mmu05210 colorectal cancer) as 

the second reference.  

Pathways exhibiting an extensive gene overlap or significant gene-to-gene pairwise correlations 

between the pathway and the reference yield higher CS scores, with a maximum of CS = 1 

indicating complete overlap. We envision, that the genes in these pathways should be avoided 

when minimizing the effect of chemotherapy on CTX. Weakly correlated pathways show low CS 

scores. The genes in those low CS pathways might present a significant interest as they are 

expected to be relatively safe to use. The algorithms implemented in IVCCA allows the researcher 

to make the comparison screening of hundreds of pathways quickly against a single reference 

pathway. The results for the selected pathways versus the cell cycle (mmu04110) or versus 
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colorectal cancer (mmu05210) reference pathways from the KEGG, literature-based pathways as 

well from t-SNE clusters are summarized in Table 2.  

The range of the calculated CS scores were from 0.155 (mmu05033 Nicotine addiction) to 0.730 

(mmu03410 Base excision repair). Based on the results we grouped the pathways in three groups 

based on their SC values: above 0.6, between 0.5 and 0.6 and below 0.5. Pathways with SC above 

0.6 have strong overlap with any of the reference pathways and should be avoided, pathways with 

CS between 0.5 and 0.6 are moderately risky, and below 0.5 might be relatively safe to target.  As 

expected, pathways related to the cell cycle such senescence, p53 and DNA repair showed high 

level of CS>0.6 for both references with a significant gene overlap. Similarly, several t-SNE 

defined clusters such as #1, #5, and #10 also show strong correlation with the reference pathways. 

The high degree of similarity with the reference pathways suggests that interventions in the gene(s) 

in these pathways could inadvertently suppress oxaliplatin therapeutic effect as well as potentially 

promote cancer growth. Most heart-specific pathways are close or fall below CS = 0.5 threshold, 

allowing for safe treatment of cardiotoxicity to improve cardiac performance. Only a few 

metabolic pathways are also relatively safe to target. Specifically, the treatment of the nicotinate 

and nicotinamide metabolism might be especially beneficial to the CTX patients without the risk 

of decreasing the efficiency of chemotherapy or promoting cancer growth. Similarly, targeting 

pathways described by t-SNE clusters #3, 4, 6 and 7 seems safe to apply. Future experiments in 

cancer models in animal model systems will examine whether this line of treatment will minimize 

CTX during chemotherapy without aiding the cancer. 

Table 2 Pathway comparison to mmu04110 Cell cycle and mmu05210 Colorectal cancer using cosine similarity. Higher values 

correspond to higher similarity. Color labeling: orange colors represent high score CS>0.6 in any of the reference comparison 

indicating strong interference with any of the two references; blue color indicates moderate interference 0.5<CS<0.6, green color 

indicates low level of interference with CS<0.5. Data are presented in CS value/number of overlapped genes between two selected 
pathways.  

   

Potential therapeutic pathway Cosine Similarity Score 

(CS) to mmu04110 Cell 

cycle pathway 

Cosine Similarity Score (CS) 

to mmu05210 Colorectal 

cancer pathway 

mmu04110 Cell cycle 1.00/125 0.569/5 

mmu05210 Colorectal cancer 0.569/5 1.00/85 

Heart related 

mmu04260_Cardiac muscle contraction 0.479/0 0.535/0 

mmu04261_Adrenergic signaling in cardiomyocytes 0.494/0 0.533/0 

mmu04614_Renin-angiotensin system 0.533/0 0.503/0 

Arrhythmia inherited (66) 0.330/0 0.488/0 

SAN pacemaker (67) 0.388/0 0.488/0 

mmu05414_Dilated cardiomyopathy 0.458/0 0.477/0 

Cardiac hypertrophy_26 genes (68) 0.375/0 0.430/0 

Cardiac myopathy_18_genes (69) 0.345/0 0.418/0 

mmu05414_Dilated cardiomyopathy 0.453/0 0.478/0 

mmu04020_Calcium signaling pathway 0.508/0 0.530/1 

mmu05412_Arrhythmogenic right ventricular cardiomyopathy 0.442/0 0.484/0 

Blood vessel related 

mmu05417_Lipid and atherosclerosis 0.549/1 0.405/0 

mmu04270_Vascular smooth muscle contraction 0.491/0 0.518/0 

mmu04610_Complement and coagulation cascades 0.442/0 0.405/0 

Metabolism related pathways 

mmu00604_Glycosphingolipid biosynthesis - ganglio series 0.650/0 0.709/0 

mmu00061_Fatty acid biosynthesis 0.707/0 0.703/0 

mmu00620_Pyruvate metabolism 0.631/0 0.688/0 
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mmu00010_Glycolysis Gluconeogenesis 0.570/0 0.570/0 

Metabolic Energy (30) 0.501/0 0.538/0 

mmu01212_Fatty acid metabolism 0.516/0 0.515/0 

mmu00062_Fatty acid elongation 0.485/0 0.507/0 

mmu00760_Nicotinate and nicotinamide metabolism 0.459/0 0.471/0 

Inflammatory pathways 

mmu04668_TNF signaling pathway 0.495/0 0.525/2 

mmu04660_T cell receptor signaling pathway 0.488/0 0.550/1 

mmu04217_Necroptosis 0.548/0 0.546/1 

Inflammation (70) 0.473/0 0.521/1 

mmu04670_Leukocyte transendothelial migration 0.537/0 0.541/0 

mmu04062_Chemokine signaling pathway 0.551/0 0.526/0 

Other relevant pathways 

Transcription factors (71) 0.512/3 0.520/3 

mmu04530_Tight junction 0.535/1 0.561/2 

Epigenetic (MGI search) 0.540/3 0.497/2 

mmu04066_HIF-1 signaling pathway 0.496/3 0.544/1 

mmu04211_Longevity regulating pathway 0.500/1 0.522/2 

mmu04540_Gap junction 0.589/1 0.600/1 

mmu04810_Regulation of actin cytoskeleton 0.555/0 0.556/1 

mmu04020_Calcium signaling pathway 0.503/0 0.530/1 

mmu04714_Thermogenesis 0.584/0 0.586/0 

mmu04146_Peroxisome 0.541/0 0.592/0 

mmu04710_Circadian rhythm 0.538/0 0.636/0 

Extracellular matrix (29) 0.446/0 0.410/0 

Cell division and survival 

mmu04218_Cellular senescence 0.623/8 0.588/5 

mmu03410_Base excision repair 0.728/0 0.633/0 

mmu04115_p53 signaling pathway 0.642/8 0.604/7 

mmu03030_DNA replication 0.703/3 0.602/0 

mmu04210_Apoptosis 0.543/2 0.574/8 

t-SNE clusters 

tsne_cluster_1.txt 0.682/12 0.511/2 

tsne_cluster_2.txt 0.508/0 0.574/2 

tsne_cluster_3.txt 0.362/0 0.337/0 

tsne_cluster_4.txt 0.412/1 0.477/1 

tsne_cluster_5.txt 0.656/3 0.649/1 

tsne_cluster_6.txt 0.141/0 0.165/0 

tsne_cluster_7.txt 0.308/1 0.367/1 

tsne_cluster_8.txt 0.451/1 0.547/3 

tsne_cluster_9.txt 0.559/2 0.515/1 

tsne_cluster_10.txt 0.644/5 0.646/2 

Identifying target genes through network analysis 

Following the results of the Pathway-to-Pathway correlation the next step is to identify the suitable 

target genes in these pathways. These genes can be identified visually from the STRING database, 

or through methods implemented in Weighted Gene Co-expression Network Analysis (WGCNA) 

(72). We rationalize that similar information can be extracted using the IVCCA approach using 

network analysis visualization tool.  

In this network-based visualization, genes are represented as points (nodes) and their correlations 

as lines (edges) connecting them (Figure 10A). Highly connected genes (nodes) with a high 

number of interactions (a high degree node) above a certain threshold (Q here defined as 0.75) can 

be considered as hub genes. As an example, we performed the network analysis for the cardiac 

Metabolic Energy Pathway (30).  This pathway currently comprised of 76 genes involved in FA 
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oxidation, glycolysis, amino acid metabolism and NAD synthesis in the hearts of oxaliplatin 

treated mice.  Filtering these genes for FDR<0.05 and FC>1.5, the number of genes is reduced to 

36 DEGs.  

The results from IVCCA shows that Cpt2 has the highest “degree” since it has the largest number 

of interactions with other genes above a correlation threshold of 0.75. This top-ranking gene from 

IVCAA is also the top gene from the SPRING database (Figure 10B). Cpt2  is highly expressed 

in the heart and encodes for the enzyme carnitine palmitoyltransferase 2, which is involved in the 

transportation of long-chain FAs into the mitochondria for energy production (73). In oxaliplatin 

treated mice, Cpt2 is downregulated (FC = -1.71). Mice with Cpt2 loss have developed cardiac 

hypertrophy and systolic dysfunction (74). In patients with severe Cpt2 genetic defects, 

cardiomyopathy is commonly seen, and a diet enriched with medium-chain FAs is used as therapy 

to compensate for the reduced calorie intake from avoiding long-chain FAs (75). A similar strategy 

could be used for treating patients with oxaliplatin induced CTX. However, this idea has to be 

approached with caution. Cpt2 shows a high negative correlation with Trp53 (q = -0.92) that 

encodes tumor protein p53 and other genes in the cell cycle and colorectal cancer pathways 

(Figure S12). Trp53 is a tumor suppressor gene that plays a crucial role in regulating cell cycle, 

DNA repair, and apoptosis. Boosting the Cpt2 expression might significantly alter p53 function 

that could potentially reduce the sensitivity of cancer cells to the effects of chemotherapeutics and 

negatively influence the effectiveness of oxaliplatin. 

  

Figure 10 Network analysis of 36 DEGs from the energy metabolism pathway. A (IVCCA network analysis): 

The thickness of the edges (lines) corresponds to the absolute correlation value between the connected genes. The size 

of the nodes represents the number of connections to other genes with an absolute correlation above the threshold of 

0.75. Among the top genes identified in this analysis are Cpt2 (19 connections), Sfxn3 (18 connections), Bckdha (17 

connections) and Hadha (17 connections). B (STRING network analysis): The top genes are defined by connectivity, 

measured by node degree (number of connections). The threshold interaction score of 0.4 was used to identify 

connected genes. Cpt2 is the second top gene with the highest connectivities.  

In contrast, genes with fewer connections (lower degree node) can also present an interest as 

potential therapeutic targets. These genes can be considered as downstream in the pathway. 

Targeting these genes might lead to fewer interactions with the other pathways and have fewer 

side effects. Their lower connectivity suggests they may have a more specific role and less 
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influence on multiple pathways or processes, reducing the likelihood of disrupting other vital 

functions in the cell. One of these genes is Nmrk2 that encodes enzyme nicotinamide riboside 

kinase 2 (NRK2) that plays a critical role in the biosynthesis of nicotinamide adenine dinucleotide 

(NAD+), which is essential for various metabolic processes in the heart, maintaining cellular 

homeostasis and energy balance. As shown in our previous report Nmrk2 shows a remarkable 

overexpression with the FC= 16.6 and its activation can be considered as a protective mechanism 

to increase the lowered level of NAD+. Nmrk2 has a relatively low and positive correlation with 

Trp53 (q = 0.51) and relatively low correlation with the cell cycle and colorectal cancer pathways 

(Figure S13). For that matter, the entire nicotinate and nicotinamide metabolism pathway (KEGG, 

mmu00760) seem to be relatively safe to target given its low correlation with both the cell cycle 

and colorectal cancer pathway (see Table 2). Future experiments will be designed to test this 

hypothesis in cancer models in animal model systems. 

Predicting the function of unknown genes and their potential in CTX treatment  

Our dataset revealed a significant portion (nearly 9%) of DEGs with unknown functions, 

commonly identified by prefixes such as 'Gm' or suffixes like 'Rik.' These genes often lack defined 

roles as yet and standard names, usually discovered via genomic sequencing and bioinformatic 

analysis. To predict potential functions for these genes, our approach involves two main strategies: 

using Gene_to_Pathways algorithm that analyzes the genes' relationships with specific biological 

pathways and Gene Proximity Analysis. The latter identifies genes located near the unknown genes 

by examining clustering plots. Figure 11A illustrates this method with 10 genes closely located to 

an unknown gene on a t-SNE plot. This approach not only aids in understanding the unknown 

genes functions but also predicts their potential as suitable targets for further research. 

For example, Gm50321, prominently expressed in heart tissue, showed a marked decrease in 

expression (FC=-1.92) in the cardiac tissues of oxaliplatin-treated animals. Analyses utilizing 

Gene_to_Pathways and Gene Proximity techniques indicated an association of Gm50321 with a 

range of metabolic activities, muscle contraction, and mitochondrial functionalities. Notably, this 

gene exhibited a high correlation with cardiovascular pathways, achieving the highest average 

correlation (above 0.8) among all Gmxxx and xxxRik genes identified within our DEGs dataset. 

Network analysis incorporating cardiac function-related genes from the KEGG database and 

pathways identified in the literature (66-69), indicated that Gm50321 has the highest connectivity 

as demonstrated in Figure 11B. This suggests that Gm50321 may be a central gene regulating 

heart activity in oxaliplatin-treated mice.  

While targeting Gm50321 is anticipated to achieve cardiac benefits in CTX, its implications for 

oxaliplatin treatment and cancer management is questionable. This is primarily due to the strong 

negative correlation of Gm50321 with Trp53 (correlation coefficient, q = -0.96). Additionally, this 

gene exhibits substantial correlations with the cell cycle (correlation = 0.784) and colorectal cancer 

pathways (correlation = 0.826), suggesting a potential interference with cancer treatment. On the 

contrary, another gene of unknown function, Gm31520, demonstrates a more promising profile 

Figure S12. This gene maintains significant correlations with cardiac-related pathways, including 

cardiac hypertrophy (correlation = 0.780) and cardiac myopathy (correlation = 0.760 while it 

shows relatively lower correlations with Trp53 (q = 0.596), the cell cycle (correlation = 0.484), 
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and colorectal cancer pathway (correlation = 0.350). Close proximity genes pointed to the tight 

relationship with the genes involved in the assembly of actin filaments (via Pdlim3) and a 

complement pathway involved in inflammation (via C2) (Figure S12). These characteristics 

render Gm31520 a more promising target for mitigating CTX-induced cardiac complications 

without adversely affecting cancer treatment efficacy. 

 

Figure 11 Exploring unknown gene function with close proximity analysis and network using Gm50321 as an 

example. A: Genes identified through proximity mapping in the t-SNE plot highlights a cluster of 10 genes closely 

associated with Gm50321: Cd83, Cnn2, Gm13493, Intu, Ldhd, Kdsr, Pls3, Slc25a42, Trp53, Tspan2, Zfp612 (notice 

the close proximity of Trp53 to Gm50321). B: Network analysis across genes from the heart related pathways (KEGG, 
total number of genes 78 found among the DEGs).  Gm50321 has the highest degree among all other genes. Correlation 

threshold = 0.75. 

Limitations of the global correlation approach  

Performing a global correlation analysis considering the intervariability between the variables 

promises to provide insights on the biological processes and identify new pathways and targets as 

we have demonstrated on oxaliplatin induced CTX. This approach simplifies the analysis by 

condensing multiple gene-gene relationships within a dataset of all DEGs into a few metrics. This 

approach makes it easier to identify potential targets that avoids silencing the pathways that 

chemotherapy uses to destroy cancer cells or activating the pathways that cancer cells use to 

proliferate. 

With many opportunities this approach offers, this approach has a number of weaknesses. The 

correlation does not imply function and the method does not take into account the physiology role 

of a gene in its pathway. A high correlation of the pathway to other pathways does not necessarily 

mean the pathway is more important. It might indicate that the genes in that pathway are more 

synchronized in responding to the stimuli or share a similar expression pattern under the studied 

conditions. The limitation of our approach lies in the heterogeneity within pathways since 

biological pathways often consist of genes with diverse functions and roles. If there are outlier 

genes within a pathway that have strong correlations with other genes outside the pathway, 

averaging can be influenced by these outliers and may not accurately reflect the pathway's intrinsic 

coordination. Another limitation in our method lies in the treating positive and negative 

correlations equally, potentially missing important information. In addition, the genes with very 

high and very low expressions are taking equal, that might lead to the errors. An improvement can 
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address clustering. Enhancing the clustering process in t-SNE can significantly refine data 

visualization and interpretation. Currently, the clustering largely depends on visual analysis 

without prior information about the number of clusters, which is largely subjective. A more robust, 

intuitive, and automated process for identifying and validating clusters in high-dimensional data 

would significantly improve the data analysis. Finally, the proposed method can be used for 

relatively large number of DEGs such as in this example where we have 1744 DEGs. Smaller 

number, for example less than a few hundred, might not provide sufficient data to build a 

comprehensive visualization of connectivity between the genes.  

SUMMARY 

The Inter Variability Cross-Correlation Analysis (IVCCA) platform offers a powerful method for 

analyzing RNA-seq and other high-throughput data, unveiling layers of information not previously 

accessible. This approach was tested on RNA-seq data from the heart tissues of mice treated with 

oxaliplatin. The methodology ranked genes by their correlation to other differentially expressed 

genes, identifying important genes and pathways. Using this method, we have identified genes and 

pathways that are central to oxaliplatin induced CTX and pathways that can be targeted to 

potentially to minimized adverse effects. Notably, this includes metabolic energy pathways, which 

are a safe target for mitigating cardiotoxic side effects due to their minimal interaction with 

oxaliplatin's cancer-targeting pathways. Furthermore, the IVCCA approach has uncovered 

potential inter-organ associations, such as between the kidney and the heart. Future developments 

will include validation of our finding through synthetic biology and genetic engineering and 

targeting specific genes for therapeutic intervention. In addition to developing new drugs, this 

approach might lead to repurposing opportunities by linking existing drug action mechanisms with 

identified gene correlation networks.   
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