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Abstract

Fluorescent biosensors revolutionized biomedical science by enabling the direct measurement of
signaling activities in living cells, yet the current technology is limited in resolution and
dimensionality. Here, we introduce highly sensitive chemigenetic kinase activity biosensors that
combine the genetically encodable self-labeling protein tag HaloTag7 with bright far-red-emitting
synthetic fluorophores. This technology enables five-color biosensor multiplexing, 4D activity
imaging, and functional super-resolution imaging via stimulated emission depletion (STED)
microscopy.

Introduction

Genetically encoded biosensors are powerful tools to investigate the dynamic biochemical
processes underlying physiological functions and pathological derailment?. Despite numerous
advances, biosensor technology continues to lag in three major areas. First, sensitive and bright
signaling biosensors remain limited to the cyan-to-green spectral region?=, drastically restricting
our capability to monitor multiple biochemical and signaling activities simultaneously. Secondly,
there is an urgent need for fluorescent biosensors capable of withstanding the photophysical
demands of tissue-scale 4D activity imaging to track biochemical processes in real time within
physiologically relevant contexts. Finally, new biosensor designs are needed to make functional
super-resolution microscopy®® a practical reality for investigating the compartmentalization of
signaling networks beyond the diffraction limit and mapping nanoscale biochemical activity
architecture®1°,

Results and Discussion

Recognizing that chemigenetic fluorescent biosensors using synthetic fluorophores and self-
labeling protein tags!™'# could offer spectral versatility into the far-red, high photostability, and
high signal-to-background ratios, we strived to develop chemigenetic far-red kinase activity
reporters to address the aforementioned technological gaps. Specifically, we combined a sensing
unit consisting of a protein kinase A (PKA)-specific substrate peptide and phosphoamino acid-
binding (PAAB) forkhead-associated 1 (FHA1) domain?® with a circularly permutated HaloTag
reporting unit (Figure 1a, Supplementary Figure S1)'%'* which we labeled with the fluorogenic
silicon-rhodamine JFgss-chloroalkane (JFs3s-CA)e. Analogous to recent chemigenetic Ca?*
biosensors!?14, we hypothesized that the kinase-activity-induced conformational change caused
by binding of the phosphorylated substrate to FHA1 would influence the open-close equilibrium
between the colorless, non-fluorescent spirolactone and the colored, fluorescent zwitterion, and
thus the fluorescence intensity of JFe3s (Figure 1a-b). We optimized the order of protein domains
and the lengths of the interdomain linkers through four rounds of rational engineering. The best
candidate, HaloTag-based A kinase activity reporter 1.0 (HaloAKAR1.0-JFe3s5), showed good
dynamic range (AF/Fo = 129.8%, Supplementary Table S1-2) in living HelLa cells upon maximal PKA
stimulation with the adenylate cyclase activator forskolin (Fsk) and the phosphodiesterase
inhibitor 3-isobutyl-1-methylxanthine (IBMX). However, the biosensor was rather dim in its basal
state (JFe3s/EGFP = 0.27). We therefore set out to improve the biosensor’s dynamic range and
basal brightness simultaneously.
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Fig. 1: Design and characterization of HaloAKARs. a, Schematic of chemigenetic HaloAKAR biosensor
based on cpHaloTag labeled with JFs3s-CA and a phosphorylation-dependent switch that influences JFess
fluorescence intensity. b, Open-close equilibrium of JFs35-CA, R = chloroalkane (CA). ¢, Domain structure
of the three selected HaloAKARs, including linker sequences. PKA sub: PKA substrate. d, Average time
courses of Hela cells expressing HaloAKAR2.0, HaloAKAR2.1, or HaloAKAR2.2 labeled with JFe3s-CA and
stimulated with 50 uM Fsk/100 uM IBMX and 20 uM H89 (n = 7, 10, and 13 cells for 2.0, 2.1, and 2.2,
respectively). e, Maximum Fsk/IBMX-stimulated response (AF/Fo) for HaloAKAR-JFe3s biosensors. f,
Representative pseudo-color widefield images of Hela cells expressing HaloAKARs labeled with JFe3s-CA
before and after Fsk/IBMX stimulation. Scale bars, 20 um. g-h, Basal (g) and activated brightness (h) of
HaloAKAR-JFe3s biosensors. In h, the brightness of HaloTag7-JFess is given for comparison. i, Domain
structure of B-actin-targeted HaloAKAR2.2. j, Representative image of Hela cells expressing HaloAKAR2.2-
B-actin after Fsk/IBMX stimulation. Scale bar, 20 um. k, Average time course of Hela cells expressing
HaloAKAR2.2-B-actin labeled with JFe35-CA upon Fsk/IBMX stimulation (n = 4 cells). I, Domain structure of
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HaloTag-based PKA, PKC and ERK biosensors (HaloAKAR, HaloCKAR, and HaloEKAR). m-n, Average time
courses of HeLa and HEK293T cells expressing HaloCKAR2.2 (m) and HaloEKAR2.2 (n) labeled with JFs3s-CA
stimulated with phorbol 12-myristate 13-acetate (PMA, 100 ng mL?) or epidermal growth factor (EGF,
100 ng mL?), respectively (n = 9 and 35 cells). Time courses are representatives of three replicates, and
dashed lines indicate addition of drug. Solid lines indicate mean responses; shaded areas correspond to
95% confidence interval. For average measurements, individual data points are shown from three
independent repeats along with mean and 95% confidence intervals. Numbers of cells (n) can be found in
Supplementary Table S5.

Using a Sort-Seq'’*® approach, we screened >15,000 biosensor variants and identified three new
HaloAKAR variants (Figure 1c-h, Supplementary Figure S2, Supplementary Table S3-5).
HaloAKAR2.0-JFe3s had high basal brightness and good dynamic range (AF/Fo = 104.4%, JFe35/EGFP
= 1.32), although still dimmer than HaloTag7-JFe3s. HaloAKAR2.1-JFe3s showed good basal
brightness and high dynamic range (AF/Fo = 634%, JFe3s/EGFP = 0.67), and HaloAKAR2.2-JFe3s
exhibited low basal brightness but extremely high dynamic range (AF/Fo = 1250%, JFe35/EGFP =
0.27). All HaloAKARs showed a reversible response upon treatment with the PKA inhibitor H89
and showed no intensity change when the phospho-acceptor Thr on the substrate peptide was
mutated to Ala, nor upon stimulation of related ACG kinases (Supplementary Figure S3),
indicating that their responses were specific to phosphorylation by PKA.

Purified HaloAKARs rapidly reacted with fluorophore substrate in vitro, albeit at a slower rate than
HaloTag7 (Supplementary Figure S4a-d, Supplementary Table S6). Changes in HaloAKARs-JFe3s
fluorescence emission (AF/Fo = 45, 291, and 746% for 2.0, 2.1, and 2.2, respectively) mostly stem
from changes in extinction coefficient € (Ae/go = 42, 165, and 328%), whereas quantum yield ¢
has no (HaloAKAR2.0: Ad/do = 2%) or small influence (HaloAKAR2.1 and 2.2: Ad/¢do = 48 and
98%). Additionally, we found that the fluorescence lifetime of HaloAKARs-JFe3s changed only
marginally upon PKA activity (Supplementary Figure S4e-g, Supplementary Table S7). Our data
strengthen the model whereby biosensor fluorescence intensity increases are based on a shift in
the open-close equilibrium, leading to a larger fraction of fluorophore in the absorbing state and
hence an increase in apparent €. This is further supported by the responses of HaloAKARs labeled
with fluorophores whose equilibria are shifted more towards the zwitterionic form compared to
JF63s (JFe39, JFXea6 and JFsss), Which showed smaller changes upon Fsk/IBMX stimulation than
fluorophores with comparable equilibria (JFsss, Supplementary Figure S5). The use of JFsss
additionally expands the utility of this platform, giving access to high-performance red biosensors.

HaloAKAR2.2-JFs35 shows the highest dynamic range reported to date for any kinase biosensor,
surpassing ExRai-AKAR2 (480/405 excitation ratio AR/Ro = 1,095%)?, which is in the green spectral
region, and drastically outperforming the few available NIR Forster resonance energy transfer
(FRET) biosensors (< 40%)*>. This allowed for sensitive measurements of PKA activity at low doses
of Fsk (Supplementary Figure S6). Benefiting from their high dynamic ranges, HaloAKARs also
enable sensitive PKA activity measurements at different subcellular locations, including the
plasma membrane, clathrin-coated pits, the actin or microtubule network, or the outer
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mitochondrial membrane (Figure 1li-k, Supplementary Figure S7). Further, this chemigenetic
biosensor design can be expanded to other kinases by switching the PKA-specific peptide for
peptides specific to other kinases, such as protein kinase C (PKC) or protein kinase B (Akt, Figure
1l-m). By further replacing the FHA1 domain with a WW domain, we generated biosensors for
extracellular signal-regulated kinase (ERK). Replacing the PAAB domain had a larger impact on the
dynamic range than switching out the substrate. Nevertheless, HaloEKARs showed dynamic
ranges as high as 60% (HaloEKAR2.2, Figure 1n, Supplementary Figure S8). Taken together,
HaloTag-based KARs represent an ideal platform to generate sensitive and specific far-red- and
red-emitting biosensors for diverse kinases with promising photophysical properties for advanced
bioimaging applications.

These far-red chemigenetic biosensors are ideally suited for multiplexed activity sensing with
fluorescent protein-based biosensors in other spectral regions. We first performed three-color
imaging using HaloAKAR2.2-JFe3s, the red Ca?* biosensor RCaMP1d®®, and the green cAMP
biosensor GFlamp-1?° in MIN6 B-cells. Stimulation with the K* channel blocker
tetraethylammonium chloride led to in-phase oscillations of Ca?* and PKA activity and inverse
oscillations for cAMP (Figure 2a, Supplementary Figure S9), providing single-cell capture of the
previously identified oscillatory circuit?! with unprecedented clarity. Further combination with
sapphire and blue biosensors allowed for four- and five-color imaging (Supplementary Figures
S10-11). For instance, combining HaloAKAR2.1-JFs3s with the red cAMP biosensor pinkFlamindo,
the yellow cGMP biosensor cGull??, the sapphire PKC biosensor sapphireCKAR3, and the blue Ca?*
biosensor BGeco?? allowed us to follow the concentration and activities of all five analytes upon
pharmacological stimulation (Figure 2b). This record-high five-color biosensor multiplexing in the
same living cell not only underscores the strengths of this technology, but also sets a new
benchmark for future advancements in functional live-cell microscopy.

Motivated by the far-red spectral characteristics of HaloAKARs-JFs35 and their favorable bleaching
kinetics compared with the chemigenetic Ca?* biosensor HaloCaMP1a-JFe3s (Supplementary
Figure S4h-j, Supplementary Table S8), we tested their application for 4D activity imaging in more
physiologically relevant 3D tissues. First, we imaged 4-d-old HEK293T spheroids (diameter
~60 um) stably expressing HaloAKAR2.1-NES and EGFP-CAAX via spinning disc confocal and lattice
light-sheet microscopy (Figure 2c-d, Supplementary Figures S12-13). PKA responses were visible
upon Fsk/IBMX treatment in both modalities, clearly demonstrating the ability of HaloAKAR2.1-
JFe3s to enable 4D activity imaging. Nonetheless, residual bleaching is still visible and further
optimization is required. Secondly, two-photon (2P) microscopy allowed imaging of HaloAKAR2.1-
JFe3s and EGFP using a single laser line (1031 nm), reducing the excitation light needed
(Supplementary Figure S14). Moreover, HaloAKAR2.1 could be labeled with JFsgs-CA and excited
at 1031 nm, leading to a stronger signal, as expected from this fluorophore’s 2P excitation
spectrum?®. Hence, both red and far-red HaloAKARs allow imaging via 2P microscopy. Lastly, we
expressed HaloAKAR2.1 in isolated pancreatic islets via AAV infection. Upon glucose stimulation,
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Figure 2: Application of HaloAKARs in multiplexed biosensor imaging, 4D activity imaging and super-
resolution microscopy. a Three-color multiplexing of cAMP (G-Flamp1, green), Ca?* (RCaMP, blue) and PKA
activity (HaloAKAR2.2, black) in single MIN6 cells stimulated with 20 mM tetraethylammonium chloride
(TEA). b, Five-color multiplexing of Ca?* (B-GECO1, blue), PKC activity (sapphireCKAR (SCKAR), cyan), cGMP
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(cGull, yellow), cAMP (pinkFlamindo, red), and PKA activity (HaloAKAR2.1, dark-red) in Hela cells
stimulated with 50 uM Fsk/100 uM IBMX (Fsk/IBMX), 100 ng mL™! PMA, 0.4 uM atrial natriuretic peptide
(ANP), and 1 uM ionomycin (lono). Solid lines indicate mean response; shaded areas correspond to SD (n
= 2 cells). c-d, Imaging of 4-d-old HEK293T spheroids stably expressing cytosolic HaloAKAR2.1
(HaloAKAR2.1-NES, magenta) and plasma membrane anchored EGFP (EGFP-CAAX, green) labeled with
JFe35-CA via lattice light-sheet microscopy (c) and 2P microscopy (d). Representative 3D renderings (c) and
overlay images of one z-plane (d) before and after Fsk/IBMX stimulation are shown. Scale bars, 20 um. e-
g, Confocal imaging of isolated pancreatic islets expressing HaloAKAR2.1-T2A-EGFP upon stimulation with
25 mM glucose. Overview (e) and zoomed in images (f) are shown, along with single-cell traces (g)
highlighting the three cells in f. h-i, Representative confocal and STED images of Hela cells expressing
HaloAKAR2.1-clathrin-light-chain (CLC) labeled with JFe3s-CA before and after Fsk/IBMX stimulation.
Overview (h) and zoom (i) images are shown. Lines used to quantify the diameter of clathrin-coated pits
are indicated in the confocal images (h, white), as well as the line through three neighboring pits (i, blue).
Scale bars, 5 um (h) and 1 um (i). j, Diameter of clathrin-coated pits. Quantifications are given for
HaloAKAR2.1-CLC before and after Fsk/IBMX stimulation, as well as HaloTag7-CLC, for both confocal (C)
and STED (S) images. Individual data points are shown along with mean and 95% confidence interval.
HaloAKAR2.1, n = 50 pits from 5 cells from 5 replicates; HaloTag7, n = 40 pits from 4 cells from 4 replicates.
k-1, Representative normalized line profiles (solid) through a clathrin-coated pit for diameter quantification
(k) or three neighboring pits (l) resolved in STED. Confocal (black) and STED (red) curves are shown, as well
as fitted curves (dotted) in k. m, Pitwise activity analysis showing the mean F/F, for pits present after
stimulation. Representative images shown under three conditions: untreated (left), 50 uM Fsk (middle),
and 50 pM Fsk/100 uM (right). Scale bars, 2.5 um. n, Zoom of outline region in (m) showing pitwise ratio
(top), as well as confocal (middle) and STED (bottom) images after Fsk stimulation. Scale bars, 500 nm.
0, Representative normalized line profile through the three clathrin-coated pits, revealing that they are
resolved in STED but not in confocal microscopy. p, Density plots of mean AF/Fo per clathrin-coated pit.
The overall mean is given as a dashed line (no treatment: 900 pits from 5 cells from 5 replicates; Fsk: 934
pits from 7 cells from 7 replicates; Fsk/IBMX: 1377 pits from 9 cells from 9 replicates).

confocal microscopy showed asynchronous PKA activity fluctuations in individual B-cells (Figure
2e-g, Supplementary Figure S15 and Supplementary Video S1). While islet Ca?* imaging has been
performed for many years?*, the PKA activity imaging in pancreatic islets demonstrated here
opens the door for direct interrogation of critical signaling changes in response to important G-
protein-coupled receptor ligands, such as glucagon-like peptide 1 receptor agonists?>?6, These
results demonstrate the power of far-red HaloAKARs for 4D activity imaging in physiologically
relevant systems.

The high brightness and photostability of synthetic fluorophores make them ideally suited for
live-cell super-resolution microscopy?”?8. To test HaloAKAR performance, we used STED
microscopy to image PKA activity in Hela cells expressing clathrin-targeted HaloAKAR2.1 (Figure
2h-l). Analysis of the average diameter of clathrin-coated pits in confocal and STED images
revealed a clear resolution improvement both before (FWHMc = 34244 nm; FWHMs = 241+6 nm)
and after Fsk/IBMX treatment (FWHMc = 362+4 nm; FWHMs = 26617 nm), which was comparable
to HaloTag7-labeled clathrin-coated pits (FHWMc¢ = 370%4 nm; FHWMs = 23717 nm,
Supplementary Figure S16). Pit-wise analysis of AF/Fo revealed higher mean activity following
treatment with Fsk/IBMX (1.9+0.6) versus Fsk alone (1.1+0.6). The broad activity distributions
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seen with both treatments indicate heterogeneous activity levels on the single-pit level. Most
importantly, the enhanced spatial resolution of STED microscopy allowed us to measure PKA
activity at individual pits that were not resolvable under confocal microscopy, allowing better
capture of signaling heterogeneity (Figure 2m-p, Supplementary Figure S17). HaloAKAR therefore
paves the way for future studies of compartmentalized PKA activity at the nanoscale.

In summary, HaloAKARs are a series of chemigenetic PKA activity biosensors with red or far-red
spectral properties and exceptionally high dynamic ranges. HaloAKARs expanded biosensor
multiplexing, enabled 4D activity imaging, and realized STED-based super-resolution activity
imaging. We expect this technology will lead the way in illuminating signaling activity dynamics
across scales.
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Data Availability

Plasmids encoding pcDNA3.1-HaloAKAR2.0-T2A-EGFP, pcDNA3.1-HaloAKAR2.1-T2A-EGFP,
pcDNA3.1-HaloAKAR2.2-T2A-EGFP, pcDNA3.1-HaloAKAR2.1-NES-T2A-EGFP-CAAX, pcDNA3.1-
HaloAKAR2.1-CLC, pcDNA3.1-HaloCKAR2.2-T2A-EGFP, pcDNA3.1-HaloAktKAR2.2-T2A-EGFP,
pcDNA3.1-HaloEKAR2.2-T2A-EGFP will be deposited on Addgene. The stable cell line generated
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is available upon request. Source data are provided with this paper. Further data supporting the
findings of this study are available upon reasonable request.

Code Availability

Custom MATLAB scripts for clathrin-coated pit analysis will be available at
https://github.com/jinzhanglab-ucsd. Custom Imagel macros, R code, and Python code used to
analyze imaging data, as well as bash and R scripts used to analyze sequencing data, are available
upon reasonable request.
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