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Abstract

Every step in common microbiome profiling protocols has variable efficiency for each microbe. For
example, different DNA extraction kits may have different efficiency for Gram-positive and -negative
bacteria. These variable efficiencies, combined with technical variation, create strong processing biases,
which impede the identification of signals that are reproducible across studies and the development of
generalizable and biologically interpretable prediction models. “Batch-correction” methods have been
used to alleviate these issues computationally with some success. However, many make strong
parametric assumptions which do not necessarily apply to microbiome data or processing biases, or
require the use of an outcome variable, which risks overfitting. Lastly and importantly, existing
transformations used to correct microbiome data are largely non-interpretable, and could, for example,
introduce values to features that were initially mostly zeros. Altogether, processing bias currently
compromises our ability to glean robust and generalizable biological insights from microbiome data.
Here, we present DEBIAS-M (Domain adaptation with phenotype Estimation and Batch Integration
Across Studies of the Microbiome), an interpretable framework for inference and correction of
processing bias, which facilitates domain adaptation in microbiome studies. DEBIAS-M learns bias-
correction factors for each microbe in each batch that simultaneously minimize batch effects and
maximize cross-study associations with phenotypes. Using benchmarks of HIV and colorectal cancer
classification from gut microbiome data, and cervical neoplasia prediction from cervical microbiome
data, we demonstrate that DEBIAS-M outperforms batch-correction methods commonly used in the
tield. Notably, we show that the inferred bias-correction factors are stable, interpretable, and strongly
associated with specific experimental protocols. Overall, we show that DEBIAS-M allows for better
modeling of microbiome data and identification of interpretable signals that are reproducible across
studies.
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Introduction

A hallmark of a robust scientific analysis is that its conclusions generalize beyond a specific processing
protocol, study, or population. Such generalization offers strong evidence that the findings are not the
result of the particularities of one experiment, reduces the impact of confounding variables, and, in
general, lowers the risk for spurious findings. For prediction models, external validation in an
independent study is imperative for a robust assessment of the generalizability of the model to new
populations'2. The ability to train generalizable models across datasets also offers an opportunity for
increased sample size and power in settings where data from many smaller studies is already available,
such as studies of the vaginal microbiome in preterm birth3, or the gut microbiome in colorectal

cancer®10,

In the modern era of sequencing-based culture-independent microbiome profiling, challenges in
generalizability stem not only from biological variability, such as differences between populations,
study design, and medical or cultural practices, but also from substantial variability between
microbiome profiling protocols, facilities, and bioinformatic analysis pipelines. Such variability has
been noted early and repeatedly!!-'?, and substantially affects the replicability and interpretability of
microbiome data's. Large-scale comparative efforts conducted across different laboratories concluded
that variation between protocols could even surpass biological variation'>?. While this has prompted
calls for standardization of protocols across the field, others doubt the utility of this strategy?!, and, in
practice, wide adoption of uniform and standardized protocols has not taken place.

In a landmark study, McLaren, Willis & Callahan provided and validated a mathematical theory and
foundation for consideration of variability in microbiome studies?. Under their framework, technical
variability manifests as taxon-specific multiplicative bias that stems from differential efficiencies at
different steps of the experimental and analytic pipeline, including DNA extraction, PCR, sequencing,
and bioinformatics analyses. While DNA extraction was highlighted as a significant source of bias'*?,
McLaren et al. demonstrate that each step has different efficiencies for each taxon, together acting to
distort the measured microbial abundances. As each taxon and every study have their own unique
biases, statistically significant interactions (e.g., with a phenotype) measured in one study might not
replicate in a second one (Fig. 1a). Even if individual studies separately show similar signals, biases can
also produce different signals on their aggregation due to distribution shifts (known as Simpson’s
paradox). Importantly, McLaren et al. show that even if identical taxon-specific biases apply across
samples, their effect on each sample depends on its microbial composition, and is therefore not
eliminated even with rigorous standardization of experimental factors?>. Hence, there is a pressing need
for methods that can retrospectively infer and correct processing biases introduced during microbiome
profiling.

Many approaches relevant to this challenge have been developed under the general term of batch-
correction methodologies, some specifically developed for microbiome data2® and others adopted
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from other fields*-32. While these methods show some benefit in correcting batch effects, many of them
make strong parametric assumptions that do not necessarily apply to microbiome data, which are
sparse and zero-inflated. Other methods are suitable only for association testing, rather than data
correction and predictive modeling. Furthermore, some methods require the use of an outcome
variable, which risks overfitting the data and limits the ability to test for external generalization. Lastly
and importantly, the changes these methods make to the data are largely non-interpretable, as recently
highlighted with respect to the application of voom-SNM?3033 to microbial reads identified in tumor

sequencing data, in which values were introduced to features that were initially very sparse34,

In this work, we present “Domain adaptation with phenotype Estimation and Batch Integration Across
Studies of the Microbiome” (DEBIAS-M). DEBIAS-M is a method for inference and correction of
processing bias in microbiome data within a phenotype prediction framework, designed to operate in
the context of multiple processing batches or studies (collectively termed “batches”). DEBIAS-M infers
taxon- and batch-specific processing biases by finding batch-wise patterns, which, when corrected for,
both reduce differences between studies and improve the overall association with phenotypes of
interest. It does so while accounting for the compositional nature of microbiome data, which enables
the method to integrate effectively within standard microbiome analysis frameworks. We demonstrate
that DEBIAS-M outperforms batch-correction methods using diverse benchmarks of HIV, colorectal
cancer, and cervical neoplasia predictions across gut and vaginal microbiome studies, including the use
of both metagenomics and 16S sequencing. We further show that the bias-correction factors learned by
DEBIAS-M are interpretable and strongly associated with experimental protocols. Finally, we
demonstrate that incorporating DEBIAS-M into common machine learning pipelines improves
prediction accuracy, and demonstrate generalizable cross-study prediction of cervical neoplasia using
vaginal microbiome data. Overall, DEBIAS-M offers the capability to leverage more datasets for
explainable, stronger, and more replicable microbiome analyses by minimizing the impact of

processing bias.

Results

Description of DEBIAS-M

DEBIAS-M is a method for in silico detection and correction of processing bias. It takes as input a
representation (e.g., read count or relative abundances of taxa) of microbiome samples from multiple
processing protocols, studies or batches (hereafter collectively termed “batches”), and learns one
multiplicative coefficient?? for each taxon in every batch, which corrects for the experimental bias of
that batch (Fig. 1a). Every sample is then renormalized before a downstream prediction model —
identical across all batches — learns an association to a phenotype of interest (Fig. 1b; Methods). The
bias and prediction parameters are optimized to maximize the prediction likelihood while minimizing
the domain shifts between batches. Samples for which the phenotype is unavailable or hidden, such as

those with missing data or samples in a test set, are not included in the calculation of the prediction
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loss, and they are only considered when minimizing cross-batch differences (Fig. 1b). DEBIAS-M is

available as a python package from https://github.com/korem-lab/DEBIAS-M, with a complete
description available in the Methods section.
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Figure 1 | Processing-bias correction with DEBIAS-M. a, An illustration of our assumptions underlying
the data-generating process: The “real” relative abundances of a given sample are distorted by batch-
specific per-taxa multiplicative biases, which can both obfuscate the true signals or generate artifactual
ones, particularly in cross-batch analyses. b, DEBIAS-M iteratively learns per-species multiplicative
biases for each batch which minimize the distances between the batches and maximize linear associations
to a phenotype of interest. Samples without available phenotype (missing or hidden) are used only when
calculating the batch-wise differences.
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DEBIAS-M outperforms batch-correction methods in diverse benchmarks.

We first aimed to evaluate the bias-correction capabilities of DEBIAS-M and compare them to popular
batch-correction approaches. While many batch-correction methods are available and have been used
in microbiome analyses, we chose to focus on three methods that are either popular or recently
developed: ComBat?, voom-SNM333, and ConQuR?, in addition to using the raw data with no batch
correction. To this end, we set up three cross-study prediction benchmarks in which we applied each
batch-correction method followed by a classifier of a relevant outcome (Methods). For each prediction
task, we used a leave-one-study-out approach, where a model was trained on all studies except one,
and evaluated on the hidden study. The underlying assumption of this benchmark is that improved
batch correction should result in improved classification accuracy on held-out studies. To focus this
benchmark on batch correction rather than elaborate machine-learning pipelines, we used linear
models. No outcome labels from the hidden study were provided during batch correction or model
titting.

First, we analyzed a benchmark used in previous batch-correction studies?, in which gut 165 rRNA
gene amplicon sequencing data collected from 17 case-control studies with publicly available data was
used to classify HIV diagnosis® (N of 13-233 subjects per study, for a total of 1,032 subjects; Methods,
Table S1). We found that DEBIAS-M outperformed raw data and data corrected by ComBat, ConQuR
and Voom-SNM (median [IQR] auROCs of 0.7 [0.61-0.75] vs. 0.5 [0.45-0.53], 0.53 [0.49-0.58], 0.54 [0.49-
0.57], and 0.53 [0.51-0.63], respectively; Fisher’s multiple comparison of DeLong tests p<0.01 for all

pairwise comparisons with alternative methods; Fig. 2a).

We then performed a similar cross-study evaluation of predictions using publicly available data from
metagenomic sequencing data of gut microbiome samples in studies evaluating colorectal cancer®1036-41,
In this analysis, we once again saw that DEBIAS-M results outperformed alternative methods, with raw
data, ComBat, ConQuR and voom-SNM yielding median [IQR] auROCs of 0.58 [0.57-0.65], 0.62 [0.59-
0.66], 0.66 [0.59-0.71], and 0.56 [0.52-0.62], compared to 0.76 [0.69-0.78] for DEBIAS-M (p<0.01 for all;
Fig. 2b).
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Figure 2 | DEBIAS-M outperforms batch-correction methods in cross-study prediction benchmarks.
a-c, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs, each
evaluating the generalization performance of logistic regression models to a held-out study, predicting;
HIV from gut microbiome data (a; N=13-233 samples per study; Methods); colorectal cancer from gut
microbiome data (b; N=53-128 samples per study); and cervical intraepithelial neoplasia from cervical
microbiome data (c; N=29-82 samples per study) . d, ROC plot of logistic regression models predicting
cervical carcinoma in a held-out study using cervical microbiome data (N=293 for 4 studies in the training
set and N=29 samples in the held-out study). * denotes p<0.01 for DEBIAS-M vs marked method, via
Fisher’s multiple comparison of DeLong tests.

Next, we performed a similar benchmark using the cervical microbiome to predict cervical neoplasia, a
challenging scenario with potential translational implications. We therefore compiled and uniformly

analyzed data from 5 independent studies that recruited patients with and without cervical
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intraepithelial neoplasia and cervical cancer®-¢ (N of 29-82 subjects per study, for a total of 322
subjects; Methods, Table S2). First, we used these datasets to do a cross-study evaluation of
classification of cervical intraepithelial neoplasia, a precancerous state conveying high risk for cervical
cancer. While the linear models trained on raw data and data corrected by ComBat, ConQuR, and
voom-SNM yielded median [IQR] auROCs of 0.50 [0.42-0.51], 0.52 [0.49-0.53], 0.56 [0.48-0.6], and 0.49
[0.47-0.49], respectively, DEBIAS-M had cross-study auROCs of 0.65 [0.55-0.65] (DeLong p<0.01 for all
pairwise comparisons with DEBIAS-M, except with ConQuR, p=0.048; Fig. 2c). We then devised models
for classifying the presence of cervical carcinoma, for which phenotypes were available only for two
studies*>#. Using the smaller of the two studies as a test set, we found that DEBIAS-M was
substantially more accurate than all other methods (auROC=0.85 vs. 0.34-0.68, p=0.02, 0.07, 2.3x10* and
0.25 for ComBat, ConQuR, Voom-SNM, and the raw data, respectively; Fig. 2d). Overall, DEBIAS-M
demonstrates robust performance improvement compared with batch-correction methods,
demonstrated across three different benchmarks totaling 2,240 samples from 32 studies, including both

vaginal and gut microbiome, 16S and metagenomic sequencing.

DEBIAS-M is robust for training and testing strategy and for operating in log space

Multiple strategies have been used in previous studies?*?¢334748 with respect to using features (i.e.,
microbiome data) and outcomes (i.e., phenotypes) during batch correction, which impacts the
evaluation of machine learning models (Fig. S1). We have used a common approach, in which
microbiome and covariates data are available for all samples (from both the training and test sets)
during batch correction, but the phenotype labels are only available for samples from the training set
(Fig. S1c), ensuring that there is no “information leakage” from the test set. We note, however, that in
some previous studies batch-correction methods have incorporated phenotype labels from all samples
during batch-correction (including the test set), thus allowing for information leakage (Fig. S1b), and
that doing so in our benchmarks drastically inflates predictive performance (Fig. S2). Additionally, as
some concerns have been raised regarding the use of features and covariates from the test set during
data processing®, we also implemented a variation of DEBIAS-M that performs batch correction and
model training using only the training set, and adapts the inferred correction factors on the test set only
once the rest of the model parameters are frozen (Methods; Fig. S1d). DEBIAS-M performs
equivalently both when observing test-set features and covariates (Fig. S1c) and when these remain
“hidden” (Fig. S1d; Fig. §3), demonstrating that it is robust to training and evaluation strategy.

While many batch-correction methods operate in count or relative abundance space, and so does
DEBIAS-M, the use of compositional transformations, such as the centered log-ratio transformation
(clr), is often recommended. We therefore performed benchmarks in which DEBIAS-M performed log-
additive correction (Methods), and was compared with data provided by batch-correction methods
after clr transformation. DEBIAS-M outperformed batch-correction methods in all three datasets also in
this benchmark, demonstrating its robustness to operating in log space (DeLong p<0.01 for all but one
pairwise comparisons of ConQuR with DEBIAS-M; Fig. S4). We note that the additive property of
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biases in log-space is likely one reason explaining why prediction models based on microbiome data
might be often more effective in this space, as multiplicative biases will have a weaker effect on

observed associations in log space.

DEBIAS-M is robust to dataset characteristics

To evaluate the performance of DEBIAS-M against a known ground truth, we created synthetic
simulations of multiple microbiome datasets under different processing biases. We used data-driven
simulations using an established microbiome data generator® that we trained on real microbiome
data®. We then used the bias framework proposed by McLaren et al.? to distort the ground-truth
relative abundances with multiplicative species-specific bias terms. We generated synthetic phenotype
labels with varying association strength with the ground-truth (“pre-biased”) microbial abundances
(Methods). After providing DEBIAS-M with the biased samples and the phenotypes, we compared the
Jensen-Shannon divergence between the ground-truth pre-biased abundances and the output from

DEBIAS-M; the same comparison was also done for the uncorrected abundances.

Analyzing the effect of different factors on the performance of DEBIAS-M, we found that it showed
similar performance with variable sequencing depths (1,000-100,000 reads per sample, Fig. 3a) and
strength of association with phenotype (weak to strong associations; Methods; Fig. 3b). However, we
have noted an improvement in performance with larger batch size (24-96 samples per batch),
particularly when batch size was larger than 24 samples (Fig. 3c). We have also found a slight
improvement when more batches were available, particularly with more than two batches (Fig. 3d).
Finally, while a smaller feature space has led to a better performance of DEBIAS-M (median Jensen-
Shannon divergence from ground truth of 0.04 and 0.08 for 100 and 1,000 features, respectively), the
improvement compared to uncorrected abundances was consistent (Fig. 3e). Importantly, and despite
the small variations in results across certain parameters, bias correction with DEBIAS-M produced
microbial abundances that were more similar to the underlying ground truth than those not corrected
by DEBIAS-M across all ranges of simulated parameters (Fig. 3, one-sided Wilcoxon signed-rank
p<0.001 for all comparisons). Overall, these simulation results demonstrate that DEBIAS-M’s

performance is robust, suggesting that it could be used on datasets with a wide range of characteristics.
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Figure 3 | DEBIAS-M is robust across dataset characteristics. Box and swarm plots (line, median; box,
IQR; whiskers, nearest point to 1.5*IQR), showing results for in silico simulations built under our
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generative model. DEBIAS-M consistently brings the relative abundance of samples closer to the known
ground truths under varying sequencing depth (a), strength of association with phenotype (b), batch size
(c), number of batches (d), and number of microbiome features (e). N=25 experiments per box. In all
cases, DEBIAS-M improves the representation of the simulated microbiomes. p, Wilcoxon signed-rank

test.

DEBIAS-M learns interpretable bias-correction factors

The interpretability of batch-correction methods came into the spotlight recently®*34 Understanding
what drives the changes such methods make to the data informs a better interpretation of the analysis
as a whole. We therefore next wished to evaluate whether the batch correction performed by DEBIAS-
M is interpretable, and whether the correction factors learned for each study could be assigned
biological meaning. First, we evaluated whether the correction factors inferred for each batch are stable,
which would be expected if they are mostly driven by experimental conditions that are consistent for
every batch. Analyzing the same HIV dataset, we applied DEBIAS-M to samples and labels from all
studies except a randomly selected half of one held-out study. We then repeated the same procedure
for the complementary half of the held-out study, and compared the bias-correction factors learned by
DEBIAS-M for each half. We found that these correction factors were highly consistent across halves of
different studies (Pearson R=0.59, p<0.001, Fig. 4a), demonstrating that DEBIAS-M learns consistent
bias-correction factors and supporting our hypothesis that these are grounded in processing biases.

Next, we sought to find which experimental processing properties are associated with the bias-
correction factors inferred by DEBIAS-M. We therefore curated technical parameters for every study in
the HIV dataset (Table S1) and analyzed them with respect to the bias-correction factors inferred by
DEBIAS-M (used in Fig. 2a). We found that DNA extraction kit was the most important factor driving
the biases learned by DEBIAS-M, accounting for 43% of variance (Adonis®® PERMANOVA p=0.002; Fig.
4b,c), in line with results from a previous analysis of a different dataset??. We further found strong
associations between the learned bias-correction factors and both 16S region and sample type (fecal,
rectal swab, etc.), explaining an additional 27 and 14% of the variance in bias-correction factors,
respectively (p=0.021 and p=0.039, respectively; Fig. 4b,c). While the type of extraction kit used was
most strongly associated with the learned bias-correction factors, we found that the detection (i.e.,
presence or absence) of certain bacteria from different studies is instead associated with the choice of

16S region (Fig. S5a-c), as previously described>>->4,
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Figure 4 | DEBIAS-M infers biases that are stable, interpretable, and consistent with experimental
processes. a, Scatterplot of bias-correction factors inferred by DEBIAS-M separately for two halves of the
same held-out study, evaluated across all studies from the HIV benchmark. Inferred biases are consistent
for the same batch (Pearson R=0.59; p<0.001). b, Adonis PERMANOVA explained variance and p-values
for the association of different experimental factors (Table S1) with the bias-correction factors inferred
by DEBIAS-M for each HIV study. Extraction kit type has the strongest effect on bias. ¢, PCA plot of the
bias-correction factors inferred by DEBIAS-M. Color represents the extraction kit type and shape the 16S
rRNA region used. d, Box and swarm plots (line, median; box, IQR; whiskers, nearest point to 1.5*IQR)
showing the bias-correction factors inferred by DEBIAS-M (y-axis) for taxa from the HIV benchmark,
stratified by sequencing kit and Gram status. p, Mann-Whitney U test.
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Finally, we investigated whether there are taxon-specific factors that are associated with the inferred
processing bias. Comparing the microbe-specific bias-correction factors of Gram-positive and negative
bacteria, we found a significant difference between the biases in samples processed with QIAamp kits
(Mann-Whitney U p=0.002, 0.076, 0.489 for QlAamp, MagINA, and MoBio, respectively; Fig. 4d). Such
variability between microbiome experimental protocols was previously demonstrated to be associated
with Gram status in highly standardized settings!®. We further noted higher variance in bias-correction
factors for studies that used robotic rather than manual experimental processes (Mann-Whitney U
p=0.03; Fig. S5d). DEBIAS-M’s ability to detect microbe- and experimental-specific factors, in a kit-
specific fashion and across highly variable studies with a large number of additional processing
confounders, demonstrates the sensitivity of our approach. We note that other taxon-specific attributes,
such as 16S copy number, had a substantially weaker association with bias-correction factors (Pearson
R =-0.10, p=0.024; Fig. S5e). Altogether, our results demonstrate the interpretability of the bias-
correction factors inferred by DEBIAS-M and indicate that they potentially reflect genuine biological
factors driving differences between processing protocols.

Multi-task learning with DEBIAS-M improves metabolite predictions

Because the bias-correction factors inferred by DEBIAS-M are associated with experimental design, a
single set of correction factors should generalize for prediction of multiple phenotype labels. To test
this hypothesis, we next evaluated DEBIAS-M in a multi-task setting, in which a single set of bias-
correction factors is learned per study alongside multiple models that predict different phenotypes
(Fig. 5a; Methods). We therefore designed a benchmark in which the same vaginal microbiome data is
used to predict the levels of multiple metabolites measured from paired samples collected
simultaneously®®. This is a challenging task, as many metabolites are likely to be affected by factors
such as the host or environmental exposures®>*. Therefore, we benchmarked the accuracy of models
using bias-corrected microbial features to classify whether each of 509 different metabolites had
relatively high abundances, evaluating the generalization of these models from one microbiome
processing batch to another (Methods). First, we used similar benchmarks as above to compare the
single-task version of DEBIAS-M to batch-correction methods. Predictions made using DEBIAS-M were
significantly more accurate, with a median [IQR] cross-batch auROC of 0.67 [0.6-0.75] across 509
metabolites, compared to 0.57 [0.5-0.64], 0.57 [0.51-0.64], and 0.55 [0.49-0.62] for ComBat, ConQuR, and
no correction, respectively (one-sided Wilcoxon p<0.001 for all comparisons; Fig. 5b).
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Figure 5 | Multi-task learning with DEBIAS-M improves metabolite predictions. a, Description of the
multi-task version of DEBIAS-M, which learns a single set of bias-correction factors per study while
jointly considering multiple prediction tasks. b, Violin plot of auROCs from logistic regression models
predicting high abundance of 509 metabolites separately, evaluated for cross-batch generalization. ¢, Box
and swarm plots (box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of similar cross-batch
auROCs for 120 metabolites selected by MelonnPan. The multitask version of DEBIAS-M outperformed
both its single-task version (p=0.02) and MelonnPan (p=5.6x10%). p, one-sided Wilcoxon signed-rank test.

Next, we implemented a multi-task version of DEBIAS-M (Methods), and compared it both to the
single-task version and to MelonnPan¥, a method for predicting metabolite level from microbiome
data. We retrained MelonnPan with default parameters and without any batch correction, and
evaluated all three methods on 120 metabolites selected by MelonnPan (Methods). The multi-task
version of DEBIAS-M outperformed both the single-task DEBIAS-M and MelonnPan, with a median
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[IQR] auROC of 0.76 [0.67-0.81], compared to a median [IQR] auROC of 0.74 [0.65-0.81] and 0.67 [0.55-
0.75], respectively (Wilcoxon p=0.02 and p=5.6x10"", respectively; Fig. 5¢). This improvement in
predictive performance suggests once again that the bias-correction factors learned by DEBIAS-M are

not task-specific, and illustrates the potential of transfer learning in microbiome models in general.

Preprocessing with DEBIAS-M improves prediction generalizability across cancer studies

Having favorably compared DEBIAS-M to other batch-correction methods, we sought to evaluate its
utility in practical scientific investigations, which would often employ more expressive machine-
learning algorithms. To this end, we reran our cross-cohort analysis associating the cervix microbiome
with cervical neoplasia (Fig. 2¢c,d), except that this time we employed DEBIAS-M as a preprocessing
step, whose output was then used to train a random forest model with hyperparameter tuning
(Methods). For prediction of cervical carcinoma, the random forest model did not improve on results
from the linear model (auROCs of 0.63 and 0.68 with and without random forest, respectively;, Delong
p=0.4; auPRs of 0.45 and 0.63; Fig. 6a,b). Preprocessing with DEBIAS-M improved the predictive
performance of both, but again with no significant advantage for using random forest models (auROC
of 0.84 and 0.85 for DEBIAS-M preprocessing with and without random forest models, p=0.47; auPR of
0.68 and 0.71; Fig. 6a,b). The same was observed for prediction of cervical intraepithelial neoplasia.
While a random forest model offered some improvement over a linear model (median [IQR] auROC of
0.52 [0.48-0.52] and 0.50 [0.42-0.51];, Wilcoxon p=0.16), using DEBIAS-M improved on both (0.65 [0.56-
0.66] and 0.65 [0.55-0.65] with and without random forest, respectively; p=5.6x10° for comparing
random forest models with and without DEBIAS-M,; Fig. 6¢c). We note that DEBIAS-M increases the
measured a diversity of cervical microbiome samples (Wilcoxon p<10-%, Fig. 6d), although it
maintained the same presence and absence of all taxa (Fig. 6e). These results demonstrate that bias
removal may have a stronger effect on model generalization in a cross-study prediction setting than the

selection of a particular machine learning algorithm.

We next examined a challenging scenario, and replicated a cross-study analysis of predicting
immunotherapy response (12-month progression-free survival) from the gut microbiome of patients
with melanoma, in which the original authors concluded that there is limited generalizability of
microbiome-based prediction across cohorts®. Analyzing data from six cohorts®*- from the United
Kingdom, the Netherlands, and the United States, we observed a small but consistent improvement in
all cohorts analyzed when adding DEBIAS-M as a preprocessing step to the analysis pipeline
implemented in the original study, and a strong improvement in the cohort of Peters et al.®* (Fig. S6).
As in the cervical neoplasia analysis, use of random forest models did not improve on linear models
(Fig. $6). Overall, these results demonstrate the utility of DEBIAS-M in realistic applications of cross-

study machine learning models.
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Figure 6 | DEBIAS-M improves cross-study prediction of melanoma immunotherapy response. ROC
plots (a) and precision-recall plots (b) of cross-cohort predictions of cervical carcinoma for linear and
random forest models trained on cervical microbiome data, evaluating DEBIAS-M as a pre-processing
step. ¢, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs,
each evaluating the generalization performance of linear and random forest models predicting cervical
intraepithelial neoplasia from cervical microbiome data to a held-out study. DEBIAS-M is used as a pre-
processing step (N=29-82 samples per study). d, Shannon diversities of both the raw relative abundance
of cervical microbiome samples and of the same samples after processing with DEBIAS-M. DEBIAS-M
increases the diversity of these samples (Wilcoxon p<10%). e, Count of species presence for the same
samples. By design, DEBIAS-M does not increase the number of observed samples.
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Discussion

Sequencing-based measurements of microbial communities have demonstrated substantial variability
between profiling approaches, labs, and even batches of the same study, making it challenging to
replicate results across studies. To address these issues, we developed DEBIAS-M, a method for
correction of microbiome processing bias. DEBIAS-M offers three notable benefits: First, it is based on a
specific theoretical framework that stipulates taxon- and protocol-specific multiplicative biases??, and,
as a result, infers bias-correction factors that are interpretable, robust, and consistent. Second, its design
facilitates the development of generalizable machine-learning models, as it is able to operate without
using the outcome labels of a test dataset. Third, in extensive benchmarks across more than 30 different
studies, we compared DEBIAS-M to commonly used batch-correction methods and demonstrated that
it consistently improved the ability of microbiome-based prediction models to predict phenotypes on
held-out studies in a diverse range of clinical settings, including colorectal cancer, cervical neoplasia,
and HIV, and using both metagenomics and 16S rRNA amplicon sequencing data. DEBIAS-M is
available as an open-source package at https://github.com/korem-lab/DEBIAS-M.

The multiplicative processing bias framework introduced by McLaren et al.2 implies that even the
same set of samples processed differently (e.g., using different extraction kits) might yield different
microbial abundances and different associations with phenotypes (c.f. Fig. 2 in ref. 22 and Fig. 1a). This
is even more likely when samples originate in different studies, with additional technical (e.g., storage
time) and non-technical (diet, genetics) factors being considered, underlining the challenge of bias and
batch effects in microbiome studies. In our results, these challenging differences combined with
compositional confounders manifest in models that perform worse than chance when evaluated across

studies, seen as auROCs<0.5 (e.g., Figs. 2,6).

DEBIAS-M makes two important operational assumptions. The first is that samples from different
batches should generally be similar. This assumption is inherent to many batch-correction methods,
and of course would not hold in some scenarios, such as joint analysis of microbiome data from
different body sites. The second assumption is that there exists some association between the ground-
truth (unbiased) microbiome data and the phenotype used by DEBIAS-M, which is weakened by
processing bias, and therefore can be improved via bias correction. We thus expect DEBIAS-M to work
better with informative phenotypes. The combination of the two assumptions ensures that DEBIAS-M
does not overfit to either the cross-batch similarity or the available phenotype labels. We note,
however, that the second assumption limits DEBIAS-M’s utility to certain large-scale efforts aimed at
estimating measurement variability'>¢!, which typically include a small number of samples and lack an

informative phenotype.

While previously developed batch-correction methods such as ComBat?, voom-SNM33!, and
ConQuR? may reduce batch effects, they are not grounded in a framework that relates them to specific
bias-generating processes. They might therefore produce transformations that are hard to interpret,
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such as introducing values to very sparse features®, and in many cases their output should likely be
interpreted as a global transformation over the data rather than an attempt to quantify the abundances
of specific microbes. Additionally, such methods can potentially capture and remove signals that are
unrelated to processing bias, a risk that becomes more substantial when outcome labels of the test set
are provided to the method. In contrast, we demonstrate that bias-correction factors inferred by
DEBIAS-M are linked to biological properties of the experimental processing pipeline, and are
therefore interpretable. We posit that this is due to the restrictions imposed on the correction
performed by DEBIAS-M, limiting it to per-taxa multiplicative bias. While there likely are processes
driving differences between batches that are not captured by multiplicative per-taxon biases, our
results suggest that more flexible batch correction using contemporary methodology does not lead to
improvement over the more restrictive approach of DEBIAS-M. Nevertheless, there might be specific

scenarios in which a combination of approaches may be useful.

Another major difference between DEBIAS-M and currently existing methods is its suitability for
developing and validating models on unseen data. Several microbiome batch-correction methods
require outcome variables for all data, even for held-out test sets, leading to overfitting, “leakage” of
information into the training data of the model and invalidating tests for generalization*”. Other
methods are able to perform batch correction without the use of outcome data, but with the
consideration of features (microbial abundance data) from the entire dataset. While, contrary to
others?, we do not believe this necessarily constitutes information leakage, it does limit the translation
of these models. Conversely, DEBIAS-M can handle missing data, and offers substantial flexibility with
respect to available microbial and outcomes data. We demonstrate that it performs similarly both when
the microbial data for held-out test sets is made available and when it is kept unseen.

Importantly, our results do not attempt to identify experimental procedures that are “better” than the
rest. Furthermore, observing a collection of datasets spanning different experimental protocols would
help ensure that DEBIAS-M does not converge towards a microbiome representation overly biased by,
for example, one particular extraction kit. However, our results showing lower variance in bias
correction factors for manual processing suggest a benefit for this approach, which should be balanced
with consideration of cost and practicality. We do note that our simulation results indicate that
DEBIAS-M operates better with more samples per batch, with samples that represent a similar
ecosystem (e.g., vaginal microbiome), and with informative phenotypes. These could serve as
consideration for design of future studies, in addition to obtaining orthogonal measurements (i.e.,

qPCR, dilution series), which may be used to estimate bias directly?>%.

As consideration of multiplicative bias shows promise for microbiome data analysis, future work could
investigate ways with which to assign a bias-correction factor to each processing step, as opposed to an
entire study as was done here. This could facilitate the incorporation of bacterial metadata, such as
Gram status, into the learning framework. In addition, positive controls and dilution series can also be

incorporated by future studies as means to evaluate specific biases®. It is also possible that DEBIAS-M
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could be combined with probabilistic microbiome processing models, such as SCRuB*, with the
intention of using as much information as possible during each of these processing components. Lastly,
there are other measurements outside of the microbiome field that are susceptible to processing biases
(technical or non-technical), such as transcriptomics or metabolomics, and there may be an opportunity
to modify DEBIAS-M for such scenarios.
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Methods

The DEBIAS-M generative model: processing bias

Consider a matrix X € R™*"™ representing the number of reads (or relative abundances) originating in
one of m taxa for each of n samples; a vector A € Z*", where each A; € {1,..., B} denotes the batch
sample i originates from, with B total batches; and a phenotype vector ¥ € {0, 1}" that describes some
information of interest that is expected to be associated withX.

The reads observed in each sample X; are the result of some experimental process (e.g., DNA
extraction, 165 rRNA gene amplification, and sequencing). This process attempts to measure the
underlying “true” composition of m taxa in that sample, which we denote I'i € R™. I'; represents
relative abundances, such that all I'ij 2 0 and Zj Lij =1 Asshown by McLaren et al.?2, for each batch
b€ {1,..., B} and taxon J there exists a specific multiplicative bias term that can increase or decrease the
likelihood of L'ij to be observed in the downstream Xi. These biases can be due to interbacterial
differences in DNA yield, gene copies, PCR primers, extraction protocols, and so on. Since the biases
inflicted by each experimental processing stage are all assumed to be multiplicative, they can be
aggregated into a single bias factor per microbe within every batch?2. To capture this phenomenon, we
propose one weighting parameter Waij > Ofor each taxon-batch pair, where each Wasj represents the
multiplicative bias that protocol b had on taxon J. Thus, we draw each observed sample X: from a

Wa, i ) Ci = iXij

X; ~ Multi 1al(C;, —~—=
¢ ultinomial(Cs, 2 Wa, L/ where 7=t represents the total number of

multinomial mixture

reads observed in sample X:.
Thus, given parameters W € RB>*™ and Lij, the probability of an observed dataset X is:

Tij
& Wa,il'i
P(ziWa,, Th) = () TT7%, [ZZ’L_IAMJ/AZQO]

Ty
P(X|W,A,T) =[], (g) T2, [%}

The DEBIAS-M generative model: phenotypic associations

Next, we assume that there exists an association between the underlying I" and the phenotype Y. While
DEBIAS-M could model this association in various way, here we chose to use logistic regression, with a
single set of linear weights L € R, such that Y |I'; L ~ Bernoulli(Y, §(LI')), where 6 is the sigmoid
function. We assume that in the absence of processing bias, the association between I" and Y" is protocol-
and batch-independent, and therefore the weights I should be identical across all batches. Given this,
the probability of observing a set of labels Y given I and L is:

P(y|L,Ty) = | (6(LT:)" - (1 - 6(L1y) ™"
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n

P(Y|L,T) = ]] l(e(LFi))Yi (1- 9(LFZ-))1_YZ1

i=1

By combining the two components together, we can link the observed read counts X to the phenotype
Y through the processing biases W and linear weights L:

n _ v /C m Wi T Tij
PX,YIW,AT\L) = O(LT;)) " (1-0(LT,))! Y( ) Aij ij
(X, Y] ) 1:[1 (O(LL)) " (1=0(LTy)) ., H ST Ve

Cross-batch similarity

We next make an additional assumption, that batches of the same sample types in similar contexts
should be similar, as is standard for established batch effect correction methods??42633, This would
generally apply to microbiome data collected from the same type of environment (e.g. human gut from
studies sharing the same patient exclusion criteria). We express this assumption by comparing the L2
distance between the pairwise average of the I inferred for each batch. Thus, we introduce

p € RPX™ = (T, A) the average of each batch:

= Aviacs L
bj —
2 vila=b 1

We assume there exists an underlying probability in which batch means /b1 and /b2 are equivalent.

Then, assuming that each # follows a multivariate Gaussian distribution which we set with a
covariance matrix of > = al, where I is the identity matrix and a is a scaling hyperparameter, such
that all #5 ~ N (i, al), We offer a simplification to directly optimize the pairwise L2 penalty in
logspace, which would amount to the following expression if we consider each pairwise batch averages

as a variable/mean-parameter combinatiorr

Pr(yfa,T) = HHH

7=1b1=1bo=1
We use this approach to produce an L2 penalty, but note that a similar approach could be used to

1(/’Lb17.j — Hby,j )2}

exp[—2 a

produce an L1 penalty.
Adding this cross-batch similarity term into the generative model yields:

n

P(X,Y|W.A T La)=]] ((H(LF N (1 —a(Lry)) (f) 11 [%] ) :

[T (s

1 g
exp {7 5(#171?.7 Mlm)?])
7=1b1=1ba=1

a

Modeling
Given observations for X, Y, and their corresponding batches 4, we aim to infer the parameters W and
L of the generative framework. We learn these parameters through stochastic gradient descent, after
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initializing W to 1. For our model, we use an inverse of W, W/, such that, for any X
, ..
P _ W, Xij
1y T m /
20:1 WAz OX’iO
Whereas W is the processing bias, W' could be interpreted as a “bias-correction factor”. For simplicity,
we maintain the notation of W below. We then use this inferred T" in P(X, YW, AT, L), which we

assess in log-space:

n

log P(X,Y[W,A,T,L,\) =) | Yilog (6(LL}))+(1-Y;) log (1-6(LL;))

= m B B )
—)\Z Z Z (;ubl,j - :ubg,j)

Where we absorb the a hyperparameter into the hyperparameter \.

Using this expression for log P(X, YW, A T L) we iteratively backpropagate all the way

through the L'ij estimate to identify which W, L parameters maximize the log-likelihood. Importantly,
we note that while we include a modeling term that accounts for a cross-entropy loss associated with a
phenotype of interest Y, this framework can also account for observed samples in the I and # terms for
which the phenotype of interest is not yet known. Therefore, this approach allows us to correct for
batch effects while maintaining proper train/validation/test splits, making use of batches in which
either partial labels or no labels are available. While we omitted traditional regularization methods like
lasso and ridge penalties from the above equations, we note that they could be applied to both the L
and the log of the W weights.

Implementation of DEBIAS-M

DEBIAS-M is implemented in pytorch-lightning®, using the adam® optimizer with a learning rate of
0.005 and otherwise default parameters, run with at least 25 epochs. Before the DEBIAS-M
optimization, the linear weights L are initialized using the unregularized scikit-learn®”
LogisticRegression model trained using the uncorrected data. The log:(W) are stored as free
parameters, thus ensuring that all the Ware non-negative. The I' are renormalized to relative
abundance during the DEBIAS-M forward step. During training, sample batches are selected during
the predictive modeling component, while all samples are incorporated into the cross-batch difference
measurements. While the hyperparameter A can be tuned via cross-validation, we found that DEBIAS-

M performs well when it is weighted as a function of the number of features and possible pairwise

Y and set A = 10* by default. We

batch comparisons. We therefore define A = A(m,B) = mBG-D/2

empirically found that 10* is an effective scaling value; this expression was used as our 1" weight for all

analyses.
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Unless noted otherwise, we allow samples from both the training and test set to be used in the cross-
batch similarity terms, while only samples from the training set are used in the cross-entropy loss and
predictive weights. This implementation most closely mirrors that of standard batch-correction models,
in which the input data (i.e., microbiome data) from all batches are observed. In our "adaptation’
benchmark (Fig. S1d, S3), however, the L and W weights are optimized only for the training set,
without observing the test set. After those weights are frozen, the W weights for the test set are
adapted to optimize its similarity to the training set, while the predictive model layer (i.e., the L
weights) do not change during this process. Those predictive parameters are then applied to the test set
exactly as they were learned when only observing the training set. This setting is more conservative,
and keeps a full separation between the input data of the train and test sets.

All implementations and per-model training of DEBIAS-M used in this work required less than one

minute of runtime on a standard laptop.

Microbiome data acquisition and processing
All datasets used in this work were publicly available at the time of analysis. We obtained the HIV
data® from Synapse (https://www.synapse.org/#!Synapse:syn18406854), using the

‘taxonomic_assignments/insight.merged_otus.txt" file with data processed using Resphera Insight®.
We obtained the cervical neoplasia data from the repository available for each study (Table S2), and
processed it with DADA2%. We used any indication of cervical intraepithelial neoplasia as phenotype
in analysis. All studies in this dataset were used for training subsets, but only studies that had subjects
with both phenotype labels were included in evaluation. The colorectal cancer data was obtained from
the R curatedMetagenomicData package®, which provides species-level relative abundance data
processed by MetaPhlAn3. Bacterial metadata was obtained from https://gold-ws.jgi.doe.gov/.

Benchmarking of batch-correction methods

For all benchmarks, we ran batch-correction methods on the raw read counts after adding 1 to all
values. We ran: (1) ComBat using the “‘ComBat_seq” function; (2) ConQuR using the ‘ConQuR’ function;
and (3) voom-SNM using code made available by Poore et al. (file ‘Plasma-Voom-SNM-Normalize-
Age-and-Sex.R")*. As ConQuR and Voom-SNM require a covariate variable and do not withhold that
variable from the test set, we used gender for the HIV and colorectal cancer studies and age > median
for the cervical neoplasia datasets. The outputs of Voom-SNM, ConQuR, and Combat, along with
unmodified (raw) relative abundances, were assessed using logistic regression (scikit-learn”’) with no
penalty. For DEBIAS-M, the correction and prediction are implemented simultaneously through a
similarly unregularized linear layer, without considering any metadata except for the outcome label of
the training data. Of note, such separation between training and testing data is not available for other
batch-correction methods.
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We implemented a cross-study validation pipeline, in which we trained a model on data from all but
one study, and evaluated the predictive performance of the model on the held-out study, such that in
the boxplots in Figs. 2a-c, 6c, S2, S3¢c, S4a-c, S6 each “dot” represents that held-out study. To compare
the performance of multiple classifiers on the same prediction benchmark (e.g. HIV classification
following DEBIAS-M and an alternative method) we used Fisher’s multiple comparison to combine

DeLong tests performed on each pairwise comparison of performance on the same held-out study.

For the prediction benchmarks in Fig. 6, we ran the same general predictive pipeline for cervical
carcinoma and cervical intraepithelial neoplasia, but rather than using a logistic regression model, we
used a random forest model. For this model, we tuned the max depth and max features
hyperparameters using cross-validation on 3 folds (nested within training data). For the prediction
benchmark in Fig. S6, we considered both the same random forest tuning pipeline, and an L1 logistic
regression model of the relative abundance data in logspace with a pseudocount of 10+, as in the
original analysis®®. In both cases, we also tuned the hyperparameters of DEBIAS-M (with nested cross-
validation): the learning rate, L2 regularization strength, and A’ (using 10, 104, and 105).

DEBIAS-M in logspace
As it is common and effective to analyze microbiome datasets in log-space, we also provide a version of
DEBIAS-M tailored to this feature space. As bias terms are multiplicative in count and relative

abundance space, they are additive in logspace. We therefore refer to this version of DEBIAS-M as 'log-
additive DEBIAS-M' (used in Figs. S2b, S4).

In clr-transformed space, the unbiased L'ij term can be represented with the following expression,
which includes normalization that mimics the same renormalization process in relative abundance
space:

a5 X7
ST Wh, o Kol

Fij =

We note that different logarithmic transformations would likely require different normalization terms.

A

Following this log-additive adjustment, the rest of the DEBIAS-M optimization applies to Lij,
However, we modify the A’ hyperparameter to 103, to account for the larger range of values in the clr-
transformed data. In benchmarks involving log-additive DEBIAS-M, we used similar
LogisticRegression models, but transformed the count matrices produced by ConQuR and ComBat
using the centered-log-ratio (clr) transform. We omitted Voom-SNM from this analysis because its

output is not in count space.
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Simulation of synthetic processing biases

To evaluate the robustness of the DEBIAS-M model across different scenarios, we used data-driven
simulations to measure the bias-correction against a known ground truth. To this end, we used
SparseDOSSA2% to generate simulated data, which we trained on the vaginal microbiome data
provided in Dataset S2 of DiGiulio et al.>® using default parameters. With this trained model, we
generated 25 synthetic datasets of 1,000 features and 384 samples, from which we created simulations
of batch effects. We varied: 1) the number of batches, using 2, 3, or 4 batches; 2) the numbers of samples
per batch, using 24, 48, 72, or 96 samples; and 3) the number of features, using 100 or 1000 features.

To simulate phenotype labels, we randomly generated linear weights for each feature, drawn i.i.d from
a Gaussian distribution of mean 0 and standard deviation of 2. Multiplying these simulated linear
weights by each sample yielded a score for each sample, which is by construction perfectly associated
with the simulated microbiome. We then modulated the strength of this association by adding noise
drawn i.i.d from a Gaussian distribution with a mean of zero and standard deviation of 0.1, 1, or 10.
These were used to generate the final phenotype label — with “strong”, “moderate”, and “weak”
associations, respectively — which were binarized using the median as a threshold. The final labels
corresponded to average permanova R? with the simulated microbiome data data of 0.086 (median
p<107), 0.041 (median p<10), and 0.007 (median p=0.23) for “strong”, “moderate”, and “weak”,

respectively.

To simulate bias, we drew log: bias factors for each study-feature combination from i.i.d Gaussian
distributions of mean 0 and standard deviation of 2. The exponents of these factors were then
multiplied by each sample from the corresponding study, before being proportionally renormalized to
simulate sequencing depths of 10%, 10%, or 10°. For every experiment, all biased samples and labels were
provided to DEBIAS-M, and the output samples were then compared against the known simulated
ground-truth via jensen-shannon divergence (JSD). The same comparison was also made for the
uncorrected samples. The median JSD for each experiment was then recorded, for a total of 25 points
per box in Fig. 3. For all plots, the default settings used for parameters other than the one being
investigated in that particular panel were 4 studies, 96 samples per study, 1000 features, low phenotype
noise, and read depth of 10°.

Inference of DEBIAS-M bias-correction factors

To investigate the bias-correction factors inferred by DEBIAS-M, we utilized the collection of HIV
datasets, which included studies with a wide range of experimental designs. We began by
implementing DEBIAS-M using our standard train-test split, but running it twice per validation batch,
with each iteration observing a randomly selected half of the batch. The resulting inferred bias
correction factors for OTUs that were present in both semi-batches were compared in aggregate across
all studies (Fig. 4a). Next, we evaluated a DEBIAS-M model that included the samples and labels of all

batches. The resulting bias-correction factors were analyzed via adonis® and principal component
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analysis. While in the analysis in Fig. 4 bias-correction factors for non-detected taxa were kept at 1, in
Fig. S5 we instead imputed them to the largest observed bias-correction factor, implying an
assumption that maximal bias against the taxa caused it to go undetected. We also evaluated the
detection (presence/absence) of each taxa in the HIV studies directly, and evaluated these differences
via adonis and agglomerative clustering algorithm, using the Manhattan distance metric and the
complete linkage method (using the R stats” package). Gram status and 16S copy number were
obtained from the GOLD database”.

Analysis of multi-task DEBIAS-M

The benchmark for prediction of metabolite abundance used the metabolite data and metadata from
Table S1 in Kindschuh et al.?, and the microbiome data from Supplementary Data 2 in Elovitz et al.%,
which was processed in two batches. For each of the 509 metabolites with multiple unique observations
in both microbiome batches, we evaluated a prediction task in which we aimed to predict if the level of
a metabolite in a particular sample was greater than the median of that metabolite across the entire

dataset. We used the larger batch as training data and the smaller one as a test set.

We ran the linear baselines for the raw, Combat, and ConQuR datasets as before. Additionally, we ran
a multitask version of the DEBIAS-M model, in which a collection of multiple L parameters, one for
each metabolite, were simultaneously learned alongside a single set of W weights (Fig. 5a). As an
additional benchmark, we applied MelonnPan® to the same prediction task, in which we trained it on
the larger batch and made predictions on the smaller batch. We then assessed MelonnPan’s predictions
against the same classification framework to obtain auROCs for all of the 120 metabolites for which
MelonnPan provided predictions, and compared the output of multitask for the same set of metabolites
(Fig. 5¢).

Code availability

DEBIAS-M is available from https://github.com/korem-lab/DEBIAS-M. Code used to generate all
analyses and plots can be found at https://github.com/korem-lab/v1-DEBIAS-M-Analysis/.

Data availability

All datasets analyzed in this study are publicly available. The HIV dataset is available from Synapse

(https://www.synapse.org/#!Synapse:syn18406854). The colorectal cancer and melanoma

immunotherapy datasets are available through the R curatedMetagenomicData package®. The cervical
neoplasia dataset was compiled from data provided with each publication, with information detailed in
Table S2.
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Supplementary figures
a Overview of information used during batch corrections
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Figure S1 | Overview of information used in various microbiome batch-correction prediction
benchmarks. a, Description of information that is typically incorporated in microbiome batch correction,
which is 1) the samples themselves; 2) the labels to be predicted in downstream modeling; and 3) other
covariates. b, An approach that has been used in some previous benchmarks, in which the labels of the
test set are used during batch correction itself. This risks “information leakage”, and is used in this work
only in Fig. S2. ¢, The primary batch-correction evaluation strategy used in this work for DEBIAS-M, in
which the samples and covariates from all studies are used during batch correction, but only the labels
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from the training set are used during batch correction or model training. d, The batch-correction strategy
used in our ‘adaptation” benchmark in Fig. $3, in which no information from the test set is used during
batch correction or model training. Once all bias-correction factors and predictive model weights are
learned and fixed for the training set, bias correction is performed separately for the test set by adjusting
its bias-correction factors to optimize cross-batch similarity.

Using test labels during batch correction improves colorectal cancer prediction

a Relative abundance b Center log ratio
1 1 g
0.80 : + 0.80 j
o Q
e ﬁ T S ;
. 0.60
s 090 S O : :
’ <
0.40 0.40
0.20 0.20
Raw Combat ConQuR Voom DEBIAS-M Raw _ Combat ConQuR DEBIAS-M
(no correction) -SNM (no correction)

Figure S2 | Using test set labels during batch correction can drastically increase measured predictive
performance in downstream benchmarks. a-b, The same cross-study colorectal cancer prediction
benchmark as in Fig. 2d, but Combat, ConQuR, and Voom-SNM were provided all colorectal cancer
labels, including for the test set, during batch correction (Fig. S1a). The prediction accuracy (auROC) of
certain methods inflated drastically beyond the results observed in the primary benchmark (Fig. 2d),
highlighting potential issues with assessing a batch-correction method by measuring the ability of a
downstream machine learning model to predict information used during batch correction. This trend is
consistent in both relative abundance space (a) and center log ratio (b). Voom-SNM is not run for (b) as

its output is neither in non-negative relative abundance nor in count space.
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DEBIAS-M can successfully adapt to previously unobserved batches

a Trained DEBIAS-M model learns biases b Trained DEBIAS-M model predictions
for a previously unobserved batch improve and converge during adaptation
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Figure S3 | A fitted DEBIAS-M model effectively adapts to previously unobserved samples. a, The
progression of cross-batch similarity loss as a fitted DEBIAS-M model adapts to samples from a
previously unobserved study, by solely minimizing the cross-batch similarity loss. b, the predictive
performance of the fitted DEBIAS-M model throughout the adaptation iterations. Although not directly
used during the adaptation itself, the auROC of thee model’s prediction on the held out test increases as
the cross-batch similarity increases.c, Box and swarm plots (Box, IQR; line, median; whiskers, nearest
point to 1.5*IQR) comparing the performance of DEBIAS-M (fitted and evaluated using the strategy in
Fig. S1b) with “Adaptation DEBIAS-M” (fitted and evaluated using the strategy in Fig. S1c) on the same
benchmarks used in Fig. 2. Adaptation DEBIAS-M demonstrated equivalent predictive performance on
held-out studies. p - one-sided Wilcoxon signed-rank test.
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Figure S4 | Log-additive DEBIAS-M outperforms batch-correction methods in cross-study prediction
benchmarks in centered-log-ratio space. Same as Fig. 2, but comparing log-additive DEBIAS-M to batch-
correction methods on clr-transformed data. Voom-SNM is not included in this benchmark as its output

is not in non-negative relative abundance or count space.
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Agglomerative clustering of ASV presence in HIV studies

a recovers the 16S variable region used in each study
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Figure S5 | DEBIAS-M inference yields biological insights into sequencing bias. Analyses of a fitted
DEBIAS-M model on the collection of HIV studies used in Fig. 2a, 4, with bias-correction factors for
species not found in a certain study imputed to the largest observed factor across all datasets. a, Heatmap
illustrating the presence (blue) and absence (orange) of each OTU across each of the HIV studies
analyzed, displayed using agglomerative clustering (Methods). The OTU detection patterns of the
different studies cluster according to the 16S region amplified. b, Adonis PERMANOVA explained
variance and p values for the effect of different experimental factors (Table S1) on the detection
(presence/absence) of each OTU across each HIV study. ¢, PCA plot of the bias-correction factors inferred
by DEBIAS-M, same as Fig. 4c, but with bias-correction factors for OTUs not found in a certain study
imputed to the largest observed factor across all datasets. Color represents extraction kit type and shape
the 16S rRNA region used. d, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to
1.5*IQR) showing the standard deviation of bias-correction factors, comparing studies with manual and
robotic processing. p, Mann-Whitney U test. e, Scatterplot showing the bias-correction factors inferred
by DEBIAS-M plotted versus the 16S copy number of the same species.

Benchmark of immunotherapy
response prediction
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Figure S6 | DEBIAS-M improves cross-study prediction of melanoma immunotherapy response. Box
and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs, each evaluating
the generalization performance models using gut microbiome data to predict immunotherapy response
in melanoma patients (defined as 12-month progression-free survival®®73). Each auROC is calculated on
a held-out study. ‘Log10 Linear” denotes the pipeline used by Lee et al.*, with DEBIAS-M used as a pre-
processing step, Preprocessing with DEBIAS-M shows a consistent albeit small improvement across all
studies, with a particularly strong effect for one study.
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Supplementary tables

Supplementary Table 1 | Experimental metadata collated for HIV dataset.
Supplementary Table 2 | Study information for cervical neoplasia dataset.
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