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Abstract 

Every step in common microbiome profiling protocols has variable efficiency for each microbe. For 
example, different DNA extraction kits may have different efficiency for Gram-positive and -negative 
bacteria. These variable efficiencies, combined with technical variation, create strong processing biases, 
which impede the identification of signals that are reproducible across studies and the development of 
generalizable and biologically interpretable prediction models. “Batch-correction” methods have been 
used to alleviate these issues computationally with some success. However, many make strong 
parametric assumptions which do not necessarily apply to microbiome data or processing biases, or 
require the use of an outcome variable, which risks overfitting. Lastly and importantly, existing 
transformations used to correct microbiome data are largely non-interpretable, and could, for example, 
introduce values to features that were initially mostly zeros. Altogether, processing bias currently 
compromises our ability to glean robust and generalizable biological insights from microbiome data. 
Here, we present DEBIAS-M (Domain adaptation with phenotype Estimation and Batch Integration 
Across Studies of the Microbiome), an interpretable framework for inference and correction of 
processing bias, which facilitates domain adaptation in microbiome studies. DEBIAS-M learns bias-
correction factors for each microbe in each batch that simultaneously minimize batch effects and 
maximize cross-study associations with phenotypes. Using benchmarks of HIV and colorectal cancer 
classification from gut microbiome data, and cervical neoplasia prediction from cervical microbiome 
data, we demonstrate that DEBIAS-M outperforms batch-correction methods commonly used in the 
field. Notably, we show that the inferred bias-correction factors are stable, interpretable, and strongly 
associated with specific experimental protocols. Overall, we show that DEBIAS-M allows for better 
modeling of microbiome data and identification of interpretable signals that are reproducible across 
studies.  
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Introduction 

A hallmark of a robust scientific analysis is that its conclusions generalize beyond a specific processing 
protocol, study, or population. Such generalization offers strong evidence that the findings are not the 
result of the particularities of one experiment, reduces the impact of confounding variables, and, in 
general, lowers the risk for spurious findings. For prediction models, external validation in an 
independent study is imperative for a robust assessment of the generalizability of the model to new 
populations1,2. The ability to train generalizable models across datasets also offers an opportunity for 
increased sample size and power in settings where data from many smaller studies is already available, 
such as studies of the vaginal microbiome in preterm birth3–8, or the gut microbiome in colorectal 
cancer9,10. 
 
In the modern era of sequencing-based culture-independent microbiome profiling, challenges in 
generalizability stem not only from biological variability, such as differences between populations, 
study design, and medical or cultural practices, but also from substantial variability between 
microbiome profiling protocols, facilities, and bioinformatic analysis pipelines. Such variability has 
been noted early and repeatedly11–17, and substantially affects the replicability and interpretability of 
microbiome data18. Large-scale comparative efforts conducted across different laboratories concluded 
that variation between protocols could even surpass biological variation19,20. While this has prompted 
calls for standardization of protocols across the field, others doubt the utility of this strategy21, and, in 
practice, wide adoption of uniform and standardized protocols has not taken place.  
 
In a landmark study, McLaren, Willis & Callahan provided and validated a mathematical theory and 
foundation for consideration of variability in microbiome studies22. Under their framework, technical 
variability manifests as taxon-specific multiplicative bias that stems from differential efficiencies at 
different steps of the experimental and analytic pipeline, including DNA extraction, PCR, sequencing, 
and bioinformatics analyses. While DNA extraction was highlighted as a significant source of bias19,22, 
McLaren et al. demonstrate that each step has different efficiencies for each taxon, together acting to 
distort the measured microbial abundances. As each taxon and every study have their own unique 
biases, statistically significant interactions (e.g., with a phenotype) measured in one study might not 
replicate in a second one (Fig. 1a). Even if individual studies separately show similar signals, biases can 
also produce different signals on their aggregation due to distribution shifts (known as Simpson’s 
paradox). Importantly, McLaren et al. show that even if identical taxon-specific biases apply across 
samples, their effect on each sample depends on its microbial composition, and is therefore not 
eliminated even with rigorous standardization of experimental factors22. Hence, there is a pressing need 
for methods that can retrospectively infer and correct processing biases introduced during microbiome 
profiling. 
 
Many approaches relevant to this challenge have been developed under the general term of batch-
correction methodologies, some specifically developed for microbiome data23–28 and others adopted 
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from other fields29–32. While these methods show some benefit in correcting batch effects, many of them 
make strong parametric assumptions that do not necessarily apply to microbiome data, which are 
sparse and zero-inflated. Other methods are suitable only for association testing, rather than data 
correction and predictive modeling. Furthermore, some methods require the use of an outcome 
variable, which risks overfitting the data and limits the ability to test for external generalization. Lastly 
and importantly, the changes these methods make to the data are largely non-interpretable, as recently 
highlighted with respect to the application of voom-SNM30,31,33 to microbial reads identified in tumor 
sequencing data, in which values were introduced to features that were initially very sparse33,34. 
 
In this work, we present “Domain adaptation with phenotype Estimation and Batch Integration Across 
Studies of the Microbiome” (DEBIAS-M). DEBIAS-M is a method for inference and correction of 
processing bias in microbiome data within a phenotype prediction framework, designed to operate in 
the context of multiple processing batches or studies (collectively termed “batches”). DEBIAS-M infers 
taxon- and batch-specific processing biases by finding batch-wise patterns, which, when corrected for, 
both reduce differences between studies and improve the overall association with phenotypes of 
interest. It does so while accounting for the compositional nature of microbiome data, which enables 
the method to integrate effectively within standard microbiome analysis frameworks. We demonstrate 
that DEBIAS-M outperforms batch-correction methods using diverse benchmarks of HIV, colorectal 
cancer, and cervical neoplasia predictions across gut and vaginal microbiome studies, including the use 
of both metagenomics and 16S sequencing. We further show that the bias-correction factors learned by 
DEBIAS-M are interpretable and strongly associated with experimental protocols. Finally, we 
demonstrate that incorporating DEBIAS-M into common machine learning pipelines improves 
prediction accuracy, and demonstrate generalizable cross-study prediction of cervical neoplasia using 
vaginal microbiome data. Overall, DEBIAS-M offers the capability to leverage more datasets for 
explainable, stronger, and more replicable microbiome analyses by minimizing the impact of 
processing bias. 
 
 
Results 

Description of DEBIAS-M 
DEBIAS-M is a method for in silico detection and correction of processing bias. It takes as input a 
representation (e.g., read count or relative abundances of taxa) of microbiome samples from multiple 
processing protocols, studies or batches (hereafter collectively termed “batches”), and learns one 
multiplicative coefficient22 for each taxon in every batch, which corrects for the experimental bias of 
that batch (Fig. 1a). Every sample is then renormalized before a downstream prediction model – 
identical across all batches – learns an association to a phenotype of interest (Fig. 1b; Methods). The 
bias and prediction parameters are optimized to maximize the prediction likelihood while minimizing 
the domain shifts between batches. Samples for which the phenotype is unavailable or hidden, such as 
those with missing data or samples in a test set, are not included in the calculation of the prediction 
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loss, and they are only considered when minimizing cross-batch differences (Fig. 1b). DEBIAS-M is 
available as a python package from https://github.com/korem-lab/DEBIAS-M, with a complete 
description available in the Methods section. 
 

 
Figure 1 | Processing-bias correction with DEBIAS-M. a, An illustration of our assumptions underlying 
the data-generating process: The “real” relative abundances of a given sample are distorted by batch-
specific per-taxa multiplicative biases, which can both obfuscate the true signals or generate artifactual 
ones, particularly in cross-batch analyses. b, DEBIAS-M iteratively learns per-species multiplicative 
biases for each batch which minimize the distances between the batches and maximize linear associations 
to a phenotype of interest. Samples without available phenotype (missing or hidden) are used only when 
calculating the batch-wise differences.  
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DEBIAS-M outperforms batch-correction methods in diverse benchmarks.  
We first aimed to evaluate the bias-correction capabilities of DEBIAS-M and compare them to popular 
batch-correction approaches. While many batch-correction methods are available and have been used 
in microbiome analyses, we chose to focus on three methods that are either popular or recently 
developed: ComBat29, voom-SNM30,31,33, and ConQuR23, in addition to using the raw data with no batch 
correction. To this end, we set up three cross-study prediction benchmarks in which we applied each 
batch-correction method followed by a classifier of a relevant outcome (Methods). For each prediction 
task, we used a leave-one-study-out approach, where a model was trained on all studies except one, 
and evaluated on the hidden study. The underlying assumption of this benchmark is that improved 
batch correction should result in improved classification accuracy on held-out studies. To focus this 
benchmark on batch correction rather than elaborate machine-learning pipelines, we used linear 
models. No outcome labels from the hidden study were provided during batch correction or model 
fitting. 
 
First, we analyzed a benchmark used in previous batch-correction studies23, in which gut 16S rRNA 
gene amplicon sequencing data collected from 17 case-control studies with publicly available data was 
used to classify HIV diagnosis35 (N of 13-233 subjects per study, for a total of 1,032 subjects; Methods, 
Table S1). We found that DEBIAS-M outperformed raw data and data corrected by ComBat, ConQuR 
and Voom-SNM (median [IQR] auROCs of 0.7 [0.61-0.75] vs. 0.5 [0.45-0.53], 0.53 [0.49-0.58], 0.54 [0.49-
0.57], and 0.53 [0.51-0.63], respectively; Fisher’s multiple comparison of DeLong tests p<0.01 for all 
pairwise comparisons with alternative methods; Fig. 2a).  
 
We then performed a similar cross-study evaluation of predictions using publicly available data from 
metagenomic sequencing data of gut microbiome samples in studies evaluating colorectal cancer9,10,36–41. 
In this analysis, we once again saw that DEBIAS-M results outperformed alternative methods, with raw 
data, ComBat, ConQuR and voom-SNM yielding median [IQR] auROCs of 0.58 [0.57-0.65], 0.62 [0.59-
0.66], 0.66 [0.59-0.71], and 0.56 [0.52-0.62], compared to 0.76 [0.69-0.78] for DEBIAS-M (p<0.01 for all; 
Fig. 2b).  
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Figure 2 | DEBIAS-M outperforms batch-correction methods in cross-study prediction benchmarks. 
a-c, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs, each 
evaluating the generalization performance of logistic regression models to a held-out study, predicting: 
HIV from gut microbiome data (a; N=13-233 samples per study; Methods); colorectal cancer from gut 
microbiome data (b; N=53-128 samples per study); and cervical intraepithelial neoplasia from cervical 
microbiome data (c; N=29-82 samples per study) . d, ROC plot of logistic regression models predicting 
cervical carcinoma in a held-out study using cervical microbiome data (N=293 for 4 studies in the training 
set and N=29 samples in the held-out study). * denotes p<0.01 for DEBIAS-M vs marked method, via 
Fisher’s multiple comparison of DeLong tests.  
 
 
Next, we performed a similar benchmark using the cervical microbiome to predict cervical neoplasia, a 
challenging scenario with potential translational implications. We therefore compiled and uniformly 
analyzed data from 5 independent studies that recruited patients with and without cervical 
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intraepithelial neoplasia and cervical cancer42–46 (N of 29-82 subjects per study, for a total of 322 
subjects; Methods, Table S2). First, we used these datasets to do a cross-study evaluation of 
classification of cervical intraepithelial neoplasia, a precancerous state conveying high risk for cervical 
cancer. While the linear models trained on raw data and data corrected by ComBat, ConQuR, and 
voom-SNM yielded median [IQR] auROCs of 0.50 [0.42-0.51], 0.52 [0.49-0.53], 0.56 [0.48-0.6], and 0.49 
[0.47-0.49], respectively, DEBIAS-M had cross-study auROCs of 0.65 [0.55-0.65] (DeLong p<0.01 for all 
pairwise comparisons with DEBIAS-M, except with ConQuR, p=0.048; Fig. 2c). We then devised models 
for classifying the presence of cervical carcinoma, for which phenotypes were available only for two 
studies42,45. Using the smaller of the two studies as a test set, we found that DEBIAS-M was 
substantially more accurate than all other methods (auROC=0.85 vs. 0.34-0.68, p=0.02, 0.07, 2.3x10-4 and 
0.25 for ComBat, ConQuR, Voom-SNM, and the raw data, respectively; Fig. 2d). Overall, DEBIAS-M 
demonstrates robust performance improvement compared with batch-correction methods, 
demonstrated across three different benchmarks totaling 2,240 samples from 32 studies, including both 
vaginal and gut microbiome, 16S and metagenomic sequencing. 
 
 
DEBIAS-M is robust for training and testing strategy and for operating in log space 
Multiple strategies have been used in previous studies23,26,33,47,48 with respect to using features (i.e., 
microbiome data) and outcomes (i.e., phenotypes) during batch correction, which impacts the 
evaluation of machine learning models (Fig. S1). We have used a common approach, in which 
microbiome and covariates data are available for all samples (from both the training and test sets) 
during batch correction, but the phenotype labels are only available for samples from the training set 
(Fig. S1c), ensuring that there is no “information leakage” from the test set47. We note, however, that in 
some previous studies batch-correction methods have incorporated phenotype labels from all samples 
during batch-correction (including the test set), thus allowing for information leakage (Fig. S1b), and 
that doing so in our benchmarks drastically inflates predictive performance (Fig. S2). Additionally, as 
some concerns have been raised regarding the use of features and covariates from the test set during 
data processing47, we also implemented a variation of DEBIAS-M that performs batch correction and 
model training using only the training set, and adapts the inferred correction factors on the test set only 
once the rest of the model parameters are frozen (Methods; Fig. S1d). DEBIAS-M performs 
equivalently both when observing test-set features and covariates (Fig. S1c) and when these remain 
“hidden” (Fig. S1d; Fig. S3), demonstrating that it is robust to training and evaluation strategy. 
 
While many batch-correction methods operate in count or relative abundance space, and so does 
DEBIAS-M, the use of compositional transformations, such as the centered log-ratio transformation 
(clr), is often recommended. We therefore performed benchmarks in which DEBIAS-M performed log-
additive correction (Methods), and was compared with data provided by batch-correction methods 
after clr transformation. DEBIAS-M outperformed batch-correction methods in all three datasets also in 
this benchmark, demonstrating its robustness to operating in log space (DeLong p<0.01 for all but one 
pairwise comparisons of ConQuR with DEBIAS-M; Fig. S4). We note that the additive property of 
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biases in log-space is likely one reason explaining why prediction models based on microbiome data 
might be often more effective in this space, as multiplicative biases will have a weaker effect on 
observed associations in log space. 
 
 
DEBIAS-M is robust to dataset characteristics 
To evaluate the performance of DEBIAS-M against a known ground truth, we created synthetic 
simulations of multiple microbiome datasets under different processing biases. We used data-driven 
simulations using an established microbiome data generator49 that we trained on real microbiome 
data50. We then used the bias framework proposed by McLaren et al.22 to distort the ground-truth 
relative abundances with multiplicative species-specific bias terms. We generated synthetic phenotype 
labels with varying association strength with the ground-truth (“pre-biased”) microbial abundances 
(Methods). After providing DEBIAS-M with the biased samples and the phenotypes, we compared the 
Jensen-Shannon divergence between the ground-truth pre-biased abundances and the output from 
DEBIAS-M; the same comparison was also done for the uncorrected abundances.  

Analyzing the effect of different factors on the performance of DEBIAS-M, we found that it showed 
similar performance with variable sequencing depths (1,000-100,000 reads per sample, Fig. 3a) and 
strength of association with phenotype (weak to strong associations; Methods; Fig. 3b). However, we 
have noted an improvement in performance with larger batch size (24-96 samples per batch), 
particularly when batch size was larger than 24 samples (Fig. 3c). We have also found a slight 
improvement when more batches were available, particularly with more than two batches (Fig. 3d). 
Finally, while a smaller feature space has led to a better performance of DEBIAS-M (median Jensen-
Shannon divergence from ground truth of 0.04 and 0.08 for 100 and 1,000 features, respectively), the 
improvement compared to uncorrected abundances was consistent (Fig. 3e). Importantly, and despite 
the small variations in results across certain parameters, bias correction with DEBIAS-M produced 
microbial abundances that were more similar to the underlying ground truth than those not corrected 
by DEBIAS-M across all ranges of simulated parameters (Fig. 3, one-sided Wilcoxon signed-rank 
p<0.001 for all comparisons). Overall, these simulation results demonstrate that DEBIAS-M’s 
performance is robust, suggesting that it could be used on datasets with a wide range of characteristics. 
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Figure 3 | DEBIAS-M is robust across dataset characteristics. Box and swarm plots (line, median; box, 
IQR; whiskers, nearest point to 1.5*IQR), showing results for in silico simulations built under our 
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generative model. DEBIAS-M consistently brings the relative abundance of samples closer to the known 
ground truths under varying sequencing depth (a), strength of association with phenotype (b), batch size 
(c), number of batches (d), and number of microbiome features (e). N=25 experiments per box. In all 
cases, DEBIAS-M improves the representation of the simulated microbiomes. p, Wilcoxon signed-rank 
test. 
 
 
DEBIAS-M learns interpretable bias-correction factors 
The interpretability of batch-correction methods came into the spotlight recently33,34. Understanding 
what drives the changes such methods make to the data informs a better interpretation of the analysis 
as a whole. We therefore next wished to evaluate whether the batch correction performed by DEBIAS-
M is interpretable, and whether the correction factors learned for each study could be assigned 
biological meaning. First, we evaluated whether the correction factors inferred for each batch are stable, 
which would be expected if they are mostly driven by experimental conditions that are consistent for 
every batch. Analyzing the same HIV dataset, we applied DEBIAS-M to samples and labels from all 
studies except a randomly selected half of one held-out study. We then repeated the same procedure 
for the complementary half of the held-out study, and compared the bias-correction factors learned by 
DEBIAS-M for each half. We found that these correction factors were highly consistent across halves of 
different studies (Pearson R=0.59, p<0.001, Fig. 4a), demonstrating that DEBIAS-M learns consistent 
bias-correction factors and supporting our hypothesis that these are grounded in processing biases. 
 
Next, we sought to find which experimental processing properties are associated with the bias-
correction factors inferred by DEBIAS-M. We therefore curated technical parameters for every study in 
the HIV dataset (Table S1) and analyzed them with respect to the bias-correction factors inferred by 
DEBIAS-M (used in Fig. 2a). We found that DNA extraction kit was the most important factor driving 
the biases learned by DEBIAS-M, accounting for 43% of variance (Adonis51 PERMANOVA p=0.002; Fig. 
4b,c), in line with results from a previous analysis of a different dataset22. We further found strong 
associations between the learned bias-correction factors and both 16S region and sample type (fecal, 
rectal swab, etc.), explaining an additional 27 and 14% of the variance in bias-correction factors, 
respectively (p=0.021 and p=0.039, respectively; Fig. 4b,c). While the type of extraction kit used was 
most strongly associated with the learned bias-correction factors, we found that the detection (i.e., 
presence or absence) of certain bacteria from different studies is instead associated with the choice of 
16S region (Fig. S5a-c), as previously described52–54. 
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Figure 4 | DEBIAS-M infers biases that are stable, interpretable, and consistent with experimental 
processes. a, Scatterplot of bias-correction factors inferred by DEBIAS-M separately for two halves of the 
same held-out study, evaluated across all studies from the HIV benchmark. Inferred biases are consistent 
for the same batch (Pearson R=0.59; p<0.001). b, Adonis PERMANOVA explained variance and p-values 
for the association of different experimental factors (Table S1) with the bias-correction factors inferred 
by DEBIAS-M for each HIV study. Extraction kit type has the strongest effect on bias. c, PCA plot of the 
bias-correction factors inferred by DEBIAS-M. Color represents the extraction kit type and shape the 16S 
rRNA region used. d, Box and swarm plots (line, median; box, IQR; whiskers, nearest point to 1.5*IQR) 
showing the bias-correction factors inferred by DEBIAS-M (y-axis) for taxa from the HIV benchmark, 
stratified by sequencing kit and Gram status. p, Mann-Whitney U test. 
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Finally, we investigated whether there are taxon-specific factors that are associated with the inferred 
processing bias. Comparing the microbe-specific bias-correction factors of Gram-positive and negative 
bacteria, we found a significant difference between the biases in samples processed with QIAamp kits 
(Mann-Whitney U p=0.002, 0.076, 0.489 for QIAamp, MagNA, and MoBio, respectively; Fig. 4d). Such 
variability between microbiome experimental protocols was previously demonstrated to be associated 
with Gram status in highly standardized settings19. We further noted higher variance in bias-correction 
factors for studies that used robotic rather than manual experimental processes (Mann-Whitney U 
p=0.03; Fig. S5d). DEBIAS-M’s ability to detect microbe- and experimental-specific factors, in a kit-
specific fashion and across highly variable studies with a large number of additional processing 
confounders, demonstrates the sensitivity of our approach. We note that other taxon-specific attributes, 
such as 16S copy number, had a substantially weaker association with bias-correction factors (Pearson 
R = -0.10, p=0.024; Fig. S5e). Altogether, our results demonstrate the interpretability of the bias-
correction factors inferred by DEBIAS-M and indicate that they potentially reflect genuine biological 
factors driving differences between processing protocols. 
 
 
Multi-task learning with DEBIAS-M improves metabolite predictions 
Because the bias-correction factors inferred by DEBIAS-M are associated with experimental design, a 
single set of correction factors should generalize for prediction of multiple phenotype labels. To test 
this hypothesis, we next evaluated DEBIAS-M in a multi-task setting, in which a single set of bias-
correction factors is learned per study alongside multiple models that predict different phenotypes 
(Fig. 5a; Methods). We therefore designed a benchmark in which the same vaginal microbiome data is 
used to predict the levels of multiple metabolites measured from paired samples collected 
simultaneously3,55. This is a challenging task, as many metabolites are likely to be affected by factors 
such as the host or environmental exposures3,56. Therefore, we benchmarked the accuracy of models 
using bias-corrected microbial features to classify whether each of 509 different metabolites had 
relatively high abundances, evaluating the generalization of these models from one microbiome 
processing batch to another (Methods). First, we used similar benchmarks as above to compare the 
single-task version of DEBIAS-M to batch-correction methods. Predictions made using DEBIAS-M were 
significantly more accurate, with a median [IQR] cross-batch auROC of 0.67 [0.6-0.75] across 509 
metabolites, compared to 0.57 [0.5-0.64], 0.57 [0.51-0.64], and 0.55 [0.49-0.62] for ComBat, ConQuR, and 
no correction, respectively (one-sided Wilcoxon p<0.001 for all comparisons; Fig. 5b).  
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Figure 5 | Multi-task learning with DEBIAS-M improves metabolite predictions. a, Description of the 
multi-task version of DEBIAS-M, which learns a single set of bias-correction factors per study while 
jointly considering multiple prediction tasks. b, Violin plot of auROCs from logistic regression models 
predicting high abundance of 509 metabolites separately, evaluated for cross-batch generalization. c, Box 
and swarm plots (box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of similar cross-batch 
auROCs for 120 metabolites selected by MelonnPan. The multitask version of DEBIAS-M outperformed 
both its single-task version (p=0.02) and MelonnPan (p=5.6×10-14). p, one-sided Wilcoxon signed-rank test. 
 
 
Next, we implemented a multi-task version of DEBIAS-M (Methods), and compared it both to the 
single-task version and to MelonnPan57, a method for predicting metabolite level from microbiome 
data. We retrained MelonnPan with default parameters and without any batch correction, and 
evaluated all three methods on 120 metabolites selected by MelonnPan (Methods). The multi-task 
version of DEBIAS-M outperformed both the single-task DEBIAS-M and MelonnPan, with a median 
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[IQR] auROC of 0.76 [0.67-0.81], compared to a median [IQR] auROC of 0.74 [0.65-0.81] and 0.67 [0.55-
0.75], respectively (Wilcoxon p=0.02 and p=5.6x10=14, respectively; Fig. 5c). This improvement in 
predictive performance suggests once again that the bias-correction factors learned by DEBIAS-M are 
not task-specific, and illustrates the potential of transfer learning in microbiome models in general. 
 
 
Preprocessing with DEBIAS-M improves prediction generalizability across cancer studies 
Having favorably compared DEBIAS-M to other batch-correction methods, we sought to evaluate its 
utility in practical scientific investigations, which would often employ more expressive machine-
learning algorithms. To this end, we reran our cross-cohort analysis associating the cervix microbiome 
with cervical neoplasia (Fig. 2c,d), except that this time we employed DEBIAS-M as a preprocessing 
step, whose output was then used to train a random forest model with hyperparameter tuning 
(Methods). For prediction of cervical carcinoma, the random forest model did not improve on results 
from the linear model (auROCs of 0.63 and 0.68 with and without random forest, respectively;, Delong 
p=0.4; auPRs of 0.45 and 0.63; Fig. 6a,b). Preprocessing with DEBIAS-M improved the predictive 
performance of both, but again with no significant advantage for using random forest models (auROC 
of 0.84 and 0.85 for DEBIAS-M preprocessing with and without random forest models, p=0.47; auPR of 
0.68 and 0.71; Fig. 6a,b). The same was observed for prediction of cervical intraepithelial neoplasia. 
While a random forest model offered some improvement over a linear model (median [IQR] auROC of 
0.52 [0.48-0.52] and 0.50 [0.42-0.51];, Wilcoxon p=0.16), using DEBIAS-M improved on both (0.65 [0.56-
0.66] and 0.65 [0.55-0.65] with and without random forest, respectively; p=5.6x10-5 for comparing 
random forest models with and without DEBIAS-M; Fig. 6c). We note that DEBIAS-M increases the 
measured α diversity of cervical microbiome samples (Wilcoxon p<10-20, Fig. 6d), although it 
maintained the same presence and absence of all taxa (Fig. 6e). These results demonstrate that bias 
removal may have a stronger effect on model generalization in a cross-study prediction setting than the 
selection of a particular machine learning algorithm. 
 
We next examined a challenging scenario, and replicated a cross-study analysis of predicting 
immunotherapy response (12-month progression-free survival) from the gut microbiome of patients 
with melanoma, in which the original authors concluded that there is limited generalizability of 
microbiome-based prediction across cohorts58. Analyzing data from six cohorts58–60 from the United 
Kingdom, the Netherlands, and the United States, we observed a small but consistent improvement in 
all cohorts analyzed when adding DEBIAS-M as a preprocessing step to the analysis pipeline 
implemented in the original study, and a strong improvement in the cohort of Peters et al.60 (Fig. S6). 
As in the cervical neoplasia analysis, use of random forest models did not improve on linear models 
(Fig. S6). Overall, these results demonstrate the utility of DEBIAS-M in realistic applications of cross-
study machine learning models. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579716doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579716
http://creativecommons.org/licenses/by-nd/4.0/


 
 
Figure 6 | DEBIAS-M improves cross-study prediction of melanoma immunotherapy response. ROC 
plots (a) and precision-recall plots (b) of cross-cohort predictions of cervical carcinoma for linear and 
random forest models trained on cervical microbiome data, evaluating DEBIAS-M as a pre-processing 
step. c, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs, 
each evaluating the generalization performance of linear and random forest models predicting cervical 
intraepithelial neoplasia from cervical microbiome data to a held-out study. DEBIAS-M is used as a pre-
processing step (N=29-82 samples per study). d, Shannon diversities of both the raw relative abundance 
of cervical microbiome samples and of the same samples after processing with DEBIAS-M. DEBIAS-M 
increases the diversity of these samples (Wilcoxon p<10-20). e, Count of species presence for the same 
samples. By design, DEBIAS-M does not increase the number of observed samples. 
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Discussion 

Sequencing-based measurements of microbial communities have demonstrated substantial variability 
between profiling approaches, labs, and even batches of the same study, making it challenging to 
replicate results across studies. To address these issues, we developed DEBIAS-M, a method for 
correction of microbiome processing bias. DEBIAS-M offers three notable benefits: First, it is based on a 
specific theoretical framework that stipulates taxon- and protocol-specific multiplicative biases22, and, 
as a result, infers bias-correction factors that are interpretable, robust, and consistent. Second, its design 
facilitates the development of generalizable machine-learning models, as it is able to operate without 
using the outcome labels of a test dataset. Third, in extensive benchmarks across more than 30 different 
studies, we compared DEBIAS-M to commonly used batch-correction methods and demonstrated that 
it consistently improved the ability of microbiome-based prediction models to predict phenotypes on 
held-out studies in a diverse range of clinical settings, including colorectal cancer, cervical neoplasia, 
and HIV, and using both metagenomics and 16S rRNA amplicon sequencing data. DEBIAS-M is 
available as an open-source package at https://github.com/korem-lab/DEBIAS-M. 
 
The multiplicative processing bias framework introduced by McLaren et al.22 implies that even the 
same set of samples processed differently (e.g., using different extraction kits) might yield different 
microbial abundances and different associations with phenotypes (c.f. Fig. 2 in ref. 22 and Fig. 1a). This 
is even more likely when samples originate in different studies, with additional technical (e.g., storage 
time) and non-technical (diet, genetics) factors being considered, underlining the challenge of bias and 
batch effects in microbiome studies. In our results, these challenging differences combined with 
compositional confounders manifest in models that perform worse than chance when evaluated across 
studies, seen as auROCs<0.5 (e.g., Figs. 2,6).  
 
DEBIAS-M makes two important operational assumptions. The first is that samples from different 
batches should generally be similar. This assumption is inherent to many batch-correction methods, 
and of course would not hold in some scenarios, such as joint analysis of microbiome data from 
different body sites. The second assumption is that there exists some association between the ground-
truth (unbiased) microbiome data and the phenotype used by DEBIAS-M, which is weakened by 
processing bias, and therefore can be improved via bias correction. We thus expect DEBIAS-M to work 
better with informative phenotypes. The combination of the two assumptions ensures that DEBIAS-M 
does not overfit to either the cross-batch similarity or the available phenotype labels. We note, 
however, that the second assumption limits DEBIAS-M’s utility to certain large-scale efforts aimed at 
estimating measurement variability19,61, which typically include a small number of samples and lack an 
informative phenotype. 
 
While previously developed batch-correction methods such as ComBat29, voom-SNM30,31, and 
ConQuR23 may reduce batch effects, they are not grounded in a framework that relates them to specific 
bias-generating processes. They might therefore produce transformations that are hard to interpret, 
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such as introducing values to very sparse features34,62, and in many cases their output should likely be 
interpreted as a global transformation over the data rather than an attempt to quantify the abundances 
of specific microbes. Additionally, such methods can potentially capture and remove signals that are 
unrelated to processing bias, a risk that becomes more substantial when outcome labels of the test set 
are provided to the method. In contrast, we demonstrate that bias-correction factors inferred by 
DEBIAS-M are linked to biological properties of the experimental processing pipeline, and are 
therefore interpretable. We posit that this is due to the restrictions imposed on the correction 
performed by DEBIAS-M, limiting it to per-taxa multiplicative bias. While there likely are processes 
driving differences between batches that are not captured by multiplicative per-taxon biases, our 
results suggest that more flexible batch correction using contemporary methodology does not lead to 
improvement over the more restrictive approach of DEBIAS-M. Nevertheless, there might be specific 
scenarios in which a combination of approaches may be useful. 
 
Another major difference between DEBIAS-M and currently existing methods is its suitability for 
developing and validating models on unseen data. Several microbiome batch-correction methods 
require outcome variables for all data, even for held-out test sets, leading to overfitting, “leakage” of 
information into the training data of the model and invalidating tests for generalization47. Other 
methods are able to perform batch correction without the use of outcome data, but with the 
consideration of features (microbial abundance data) from the entire dataset. While, contrary to 
others47, we do not believe this necessarily constitutes information leakage, it does limit the translation 
of these models. Conversely, DEBIAS-M can handle missing data, and offers substantial flexibility with 
respect to available microbial and outcomes data. We demonstrate that it performs similarly both when 
the microbial data for held-out test sets is made available and when it is kept unseen.  
 
Importantly, our results do not attempt to identify experimental procedures that are “better” than the 
rest. Furthermore, observing a collection of datasets spanning different experimental protocols would 
help ensure that DEBIAS-M does not converge towards a microbiome representation overly biased by, 
for example, one particular extraction kit. However, our results showing lower variance in bias 
correction factors for manual processing suggest a benefit for this approach, which should be balanced 
with consideration of cost and practicality. We do note that our simulation results indicate that 
DEBIAS-M operates better with more samples per batch, with samples that represent a similar 
ecosystem (e.g., vaginal microbiome), and with informative phenotypes. These could serve as 
consideration for design of future studies, in addition to obtaining orthogonal measurements (i.e., 
qPCR, dilution series), which may be used to estimate bias directly22,63. 
 
As consideration of multiplicative bias shows promise for microbiome data analysis, future work could 
investigate ways with which to assign a bias-correction factor to each processing step, as opposed to an 
entire study as was done here. This could facilitate the incorporation of bacterial metadata, such as 
Gram status, into the learning framework. In addition, positive controls and dilution series can also be 
incorporated by future studies as means to evaluate specific biases63. It is also possible that DEBIAS-M 
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could be combined with probabilistic microbiome processing models, such as SCRuB64, with the 
intention of using as much information as possible during each of these processing components. Lastly, 
there are other measurements outside of the microbiome field that are susceptible to processing biases 
(technical or non-technical), such as transcriptomics or metabolomics, and there may be an opportunity 
to modify DEBIAS-M for such scenarios. 
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Methods 

The DEBIAS-M generative model: processing bias 
Consider a matrix  representing the number of reads (or relative abundances) originating in 
one of  taxa for each of  samples; a vector , where each  denotes the batch 
sample  originates from, with  total batches; and a phenotype vector  that describes some 
information of interest that is expected to be associated with . 

The reads observed in each sample  are the result of some experimental process (e.g., DNA 
extraction, 16S rRNA gene amplification, and sequencing). This process attempts to measure the 
underlying “true” composition of  taxa in that sample, which we denote .  represents 
relative abundances, such that all  and . As shown by McLaren et al.22, for each batch 

 and taxon  there exists a specific multiplicative bias term that can increase or decrease the 
likelihood of  to be observed in the downstream . These biases can be due to interbacterial 
differences in DNA yield, gene copies, PCR primers, extraction protocols, and so on. Since the biases 
inflicted by each experimental processing stage are all assumed to be multiplicative, they can be 
aggregated into a single bias factor per microbe within every batch22. To capture this phenomenon, we 
propose one weighting parameter  for each taxon-batch pair, where each  represents the 
multiplicative bias that protocol  had on taxon . Thus, we draw each observed sample  from a 

multinomial mixture , where  represents the total number of 
reads observed in sample . 

Thus, given parameters  and , the probability of an observed dataset  is:  

 

 

 

The DEBIAS-M generative model: phenotypic associations 
Next, we assume that there exists an association between the underlying  and the phenotype . While 
DEBIAS-M could model this association in various way, here we chose to use logistic regression, with a 
single set of linear weights , such that , where  is the sigmoid 
function. We assume that in the absence of processing bias, the association between  and  is protocol- 
and batch-independent, and therefore the weights  should be identical across all batches. Given this, 
the probability of observing a set of labels  given  and  is: 
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By combining the two components together, we can link the observed read counts  to the phenotype 

 through the processing biases  and linear weights : 

 
 
 
Cross-batch similarity 
We next make an additional assumption, that batches of the same sample types in similar contexts 
should be similar, as is standard for established batch effect correction methods23,24,26,33. This would 
generally apply to microbiome data collected from the same type of environment (e.g. human gut from 
studies sharing the same patient exclusion criteria). We express this assumption by comparing the L2 
distance between the pairwise average of the  inferred for each batch. Thus, we introduce 

, the average of each batch: 

 
We assume there exists an underlying probability in which batch means  and  are equivalent. 
Then, assuming that each  follows a multivariate Gaussian distribution which we set with a 
covariance matrix of , where  is the identity matrix and  is a scaling hyperparameter, such 
that all . We offer a simplification to directly optimize the pairwise L2 penalty in 
logspace, which would amount to the following expression if we consider each pairwise batch averages 
as a variable/mean-parameter combination: 

 
We use this approach to produce an L2 penalty, but note that a similar approach could be used to 
produce an L1 penalty. 
Adding this cross-batch similarity term into the generative model yields:

 
 
Modeling 
Given observations for , , and their corresponding batches , we aim to infer the parameters  and 

 of the generative framework. We learn these parameters through stochastic gradient descent, after 
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initializing  to 1 . For our model, we use an inverse of , , such that, for any :  

 
Whereas  is the processing bias,  could be interpreted as a “bias-correction factor”. For simplicity, 
we maintain the notation of  below. We then use this inferred  in , which we 
assess in log-space: 

 

 
 
Where we absorb the  hyperparameter into the hyperparameter .  
 
Using this expression for , we iteratively backpropagate all the way 

through the  estimate to identify which ,  parameters maximize the log-likelihood. Importantly, 
we note that while we include a modeling term that accounts for a cross-entropy loss associated with a 
phenotype of interest , this framework can also account for observed samples in the  and  terms for 
which the phenotype of interest is not yet known. Therefore, this approach allows us to correct for 
batch effects while maintaining proper train/validation/test splits, making use of batches in which 
either partial labels or no labels are available. While we omitted traditional regularization methods like 
lasso and ridge penalties from the above equations, we note that they could be applied to both the  
and the log of the  weights. 
 
 
Implementation of DEBIAS-M 
DEBIAS-M is implemented in pytorch-lightning65, using the adam66 optimizer with a learning rate of 
0.005 and otherwise default parameters, run with at least 25 epochs. Before the DEBIAS-M 
optimization, the linear weights 𝐿 are initialized using the unregularized scikit-learn67 
LogisticRegression model trained using the uncorrected data. The log2(W) are stored as free 
parameters, thus ensuring that all the are non-negative. The  are renormalized to relative 
abundance during the DEBIAS-M forward step. During training, sample batches are selected during 
the predictive modeling component, while all samples are incorporated into the cross-batch difference 
measurements. While the hyperparameter 𝜆 can be tuned via cross-validation, we found that DEBIAS-
M performs well when it is weighted as a function of the number of features and possible pairwise 

batch comparisons. We therefore define 𝜆 = 	𝜆(𝑚, 𝐵) 	= 	 !"
#⋅%(%'()/+

 and set 𝜆′ = 10, by default. We 

empirically found that 104 is an effective scaling value; this expression was used as our 𝜆′ weight for all 
analyses.  
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Unless noted otherwise, we allow samples from both the training and test set to be used in the cross-
batch similarity terms, while only samples from the training set are used in the cross-entropy loss and 
predictive weights. This implementation most closely mirrors that of standard batch-correction models, 
in which the input data (i.e., microbiome data) from all batches are observed. In our `adaptation` 
benchmark (Fig. S1d, S3), however, the 𝐿 and  weights are optimized only for the training set, 
without observing the test set. After those weights are frozen, the  weights for the test set are 
adapted to optimize its similarity to the training set, while the predictive model layer (i.e., the 𝐿 
weights) do not change during this process. Those predictive parameters are then applied to the test set 
exactly as they were learned when only observing the training set. This setting is more conservative, 
and keeps a full separation between the input data of the train and test sets. 
 
All implementations and per-model training of DEBIAS-M used in this work required less than one 
minute of runtime on a standard laptop. 
 
 
Microbiome data acquisition and processing 
All datasets used in this work were publicly available at the time of analysis. We obtained the HIV 
data35 from Synapse (https://www.synapse.org/#!Synapse:syn18406854), using the 
`taxonomic_assignments/insight.merged_otus.txt` file with data processed using Resphera Insight35. 
We obtained the cervical neoplasia data from the repository available for each study (Table S2), and 
processed it with DADA268. We used any indication of cervical intraepithelial neoplasia as phenotype 
in analysis. All studies in this dataset were used for training subsets, but only studies that had subjects 
with both phenotype labels were included in evaluation. The colorectal cancer data was obtained from 
the R curatedMetagenomicData package69, which provides species-level relative abundance data 
processed by MetaPhlAn3. Bacterial metadata was obtained from https://gold-ws.jgi.doe.gov/. 
 
 
Benchmarking of batch-correction methods 
For all benchmarks, we ran batch-correction methods on the raw read counts after adding 1 to all 
values. We ran: (1) ComBat using the ‘ComBat_seq’ function; (2) ConQuR using the ‘ConQuR’ function; 
and (3) voom-SNM using code made available by Poore et al. (file `Plasma-Voom-SNM-Normalize-
Age-and-Sex.R`)33. As ConQuR and Voom-SNM require a covariate variable and do not withhold that 
variable from the test set, we used gender for the HIV and colorectal cancer studies and age > median 
for the cervical neoplasia datasets. The outputs of Voom-SNM, ConQuR, and Combat, along with 
unmodified (raw) relative abundances, were assessed using logistic regression (scikit-learn70) with no 
penalty. For DEBIAS-M, the correction and prediction are implemented simultaneously through a 
similarly unregularized linear layer, without considering any metadata except for the outcome label of 
the training data. Of note, such separation between training and testing data is not available for other 
batch-correction methods.  
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We implemented a cross-study validation pipeline, in which we trained a model on data from all but 
one study, and evaluated the predictive performance of the model on the held-out study, such that in 
the boxplots in Figs. 2a-c, 6c, S2, S3c, S4a-c, S6 each “dot” represents that held-out study. To compare 
the performance of multiple classifiers on the same prediction benchmark (e.g. HIV classification 
following DEBIAS-M and an alternative method) we used Fisher’s multiple comparison to combine 
DeLong tests performed on each pairwise comparison of performance on the same held-out study. 
 
For the prediction benchmarks in Fig. 6, we ran the same general predictive pipeline for cervical 
carcinoma and cervical intraepithelial neoplasia, but rather than using a logistic regression model, we 
used a random forest model. For this model, we tuned the max depth and max features 
hyperparameters using cross-validation on 3 folds (nested within training data). For the prediction 
benchmark in Fig. S6, we considered both the same random forest tuning pipeline, and an L1 logistic 
regression model of the relative abundance data in logspace with a pseudocount of 10-4, as in the 
original analysis58. In both cases, we also tuned the hyperparameters of DEBIAS-M (with nested cross-
validation): the learning rate, L2 regularization strength, and 𝜆′ (using 103, 104, and 105). 
 
 
DEBIAS-M in logspace 
As it is common and effective to analyze microbiome datasets in log-space, we also provide a version of 
DEBIAS-M tailored to this feature space. As bias terms are multiplicative in count and relative 
abundance space, they are additive in logspace. We therefore refer to this version of DEBIAS-M as 'log-
additive DEBIAS-M' (used in Figs. S2b, S4).  
 

In clr-transformed space, the unbiased  term can be represented with the following expression, 
which includes normalization that mimics the same renormalization process in relative abundance 
space: 

 
 
We note that different logarithmic transformations would likely require different normalization terms. 

Following this log-additive adjustment, the rest of the DEBIAS-M optimization applies to . 
However, we modify the 𝜆’ hyperparameter to 10-, to account for the larger range of values in the clr-
transformed data. In benchmarks involving log-additive DEBIAS-M, we used similar 
LogisticRegression models, but transformed the count matrices produced by ConQuR and ComBat 
using the centered-log-ratio (clr) transform. We omitted Voom-SNM from this analysis because its 
output is not in count space.  
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Simulation of synthetic processing biases 
To evaluate the robustness of the DEBIAS-M model across different scenarios, we used data-driven 
simulations to measure the bias-correction against a known ground truth. To this end, we used 
SparseDOSSA249 to generate simulated data, which we trained on the vaginal microbiome data 
provided in Dataset S2 of DiGiulio et al.50 using default parameters. With this trained model, we 
generated 25 synthetic datasets of 1,000 features and 384 samples, from which we created simulations 
of batch effects. We varied: 1) the number of batches, using 2, 3, or 4 batches; 2) the numbers of samples 
per batch, using 24, 48, 72, or 96 samples; and 3) the number of features, using 100 or 1000 features. 
 
To simulate phenotype labels, we randomly generated linear weights for each feature, drawn i.i.d from 
a Gaussian distribution of mean 0 and standard deviation of 2. Multiplying these simulated linear 
weights by each sample yielded a score for each sample, which is by construction perfectly associated 
with the simulated microbiome. We then modulated the strength of this association by adding noise 
drawn i.i.d from a Gaussian distribution with a mean of zero and standard deviation of 0.1, 1, or 10. 
These were used to generate the final phenotype label – with “strong”, “moderate”, and “weak” 
associations, respectively – which were binarized using the median as a threshold. The final labels 
corresponded to average permanova R2 with the simulated microbiome data data of 0.086 (median 
p<10-5), 0.041 (median p<10-5), and 0.007 (median p=0.23) for “strong”, “moderate”, and “weak”, 
respectively. 
 
To simulate bias, we drew log2 bias factors for each study-feature combination from i.i.d Gaussian 
distributions of mean 0 and standard deviation of 2. The exponents of these factors were then 
multiplied by each sample from the corresponding study, before being proportionally renormalized to 
simulate sequencing depths of 103, 104, or 105. For every experiment, all biased samples and labels were 
provided to DEBIAS-M, and the output samples were then compared against the known simulated 
ground-truth via jensen-shannon divergence (JSD). The same comparison was also made for the 
uncorrected samples. The median JSD for each experiment was then recorded, for a total of 25 points 
per box in Fig. 3. For all plots, the default settings used for parameters other than the one being 
investigated in that particular panel were 4 studies, 96 samples per study, 1000 features, low phenotype 
noise, and read depth of 105.  
 
 
Inference of DEBIAS-M bias-correction factors 
To investigate the bias-correction factors inferred by DEBIAS-M, we utilized the collection of HIV 
datasets, which included studies with a wide range of experimental designs. We began by 
implementing DEBIAS-M using our standard train-test split, but running it twice per validation batch, 
with each iteration observing a randomly selected half of the batch. The resulting inferred bias 
correction factors for OTUs that were present in both semi-batches were compared in aggregate across 
all studies (Fig. 4a). Next, we evaluated a DEBIAS-M model that included the samples and labels of all 
batches. The resulting bias-correction factors were analyzed via adonis51 and principal component 
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analysis. While in the analysis in Fig. 4 bias-correction factors for non-detected taxa were kept at 1, in 
Fig. S5 we instead imputed them to the largest observed bias-correction factor, implying an 
assumption that maximal bias against the taxa caused it to go undetected. We also evaluated the 
detection (presence/absence) of each taxa in the HIV studies directly, and evaluated these differences 
via adonis and agglomerative clustering algorithm, using the Manhattan distance metric and the 
complete linkage method (using the R stats71 package). Gram status and 16S copy number were 
obtained from the GOLD database72.  
 
 
Analysis of multi-task DEBIAS-M 
The benchmark for prediction of metabolite abundance used the metabolite data and metadata from 
Table S1 in Kindschuh et al.3, and the microbiome data from Supplementary Data 2 in Elovitz et al.55, 
which was processed in two batches. For each of the 509 metabolites with multiple unique observations 
in both microbiome batches, we evaluated a prediction task in which we aimed to predict if the level of 
a metabolite in a particular sample was greater than the median of that metabolite across the entire 
dataset. We used the larger batch as training data and the smaller one as a test set.  
 
We ran the linear baselines for the raw, Combat, and ConQuR datasets as before. Additionally, we ran 
a multitask version of the DEBIAS-M model, in which a collection of multiple  parameters, one for 
each metabolite, were simultaneously learned alongside a single set of  weights (Fig. 5a). As an 
additional benchmark, we applied MelonnPan57 to the same prediction task, in which we trained it on 
the larger batch and made predictions on the smaller batch. We then assessed MelonnPan’s predictions 
against the same classification framework to obtain auROCs for all of the 120 metabolites for which 
MelonnPan provided predictions, and compared the output of multitask for the same set of metabolites 
(Fig. 5c). 
 
 
Code availability 

DEBIAS-M is available from https://github.com/korem-lab/DEBIAS-M. Code used to generate all 
analyses and plots can be found at https://github.com/korem-lab/v1-DEBIAS-M-Analysis/.  
 

 
Data availability 

All datasets analyzed in this study are publicly available. The HIV dataset is available from Synapse 
(https://www.synapse.org/#!Synapse:syn18406854). The colorectal cancer and melanoma 
immunotherapy datasets are available through the R curatedMetagenomicData package69. The cervical 
neoplasia dataset was compiled from data provided with each publication, with information detailed in 
Table S2.  
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Supplementary figures 

 
 
Figure S1 | Overview of information used in various microbiome batch-correction prediction 
benchmarks. a, Description of information that is typically incorporated in microbiome batch correction, 
which is 1) the samples themselves; 2) the labels to be predicted in downstream modeling; and 3) other 
covariates. b, An approach that has been used in some previous benchmarks, in which the labels of the 
test set are used during batch correction itself. This risks “information leakage”, and is used in this work 
only in Fig. S2. c, The primary batch-correction evaluation strategy used in this work for DEBIAS-M, in 
which the samples and covariates from all studies are used during batch correction, but only the labels 
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from the training set are used during batch correction or model training. d, The batch-correction strategy 
used in our ‘adaptation’ benchmark in Fig. S3, in which no information from the test set is used during 
batch correction or model training. Once all bias-correction factors and predictive model weights are 
learned and fixed for the training set, bias correction is performed separately for the test set by adjusting 
its bias-correction factors to optimize cross-batch similarity. 
 
 

 
 
Figure S2 | Using test set labels during batch correction can drastically increase measured predictive 
performance in downstream benchmarks. a-b, The same cross-study colorectal cancer prediction 
benchmark as in Fig. 2d, but Combat, ConQuR, and Voom-SNM were provided all colorectal cancer 
labels, including for the test set, during batch correction (Fig. S1a). The prediction accuracy (auROC) of 
certain methods inflated drastically beyond the results observed in the primary benchmark (Fig. 2d), 
highlighting potential issues with assessing a batch-correction method by measuring the ability of a 
downstream machine learning model to predict information used during batch correction. This trend is 
consistent in both relative abundance space (a) and center log ratio (b). Voom-SNM is not run for (b) as 
its output is neither in non-negative relative abundance nor in count space. 
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Figure S3 | A fitted DEBIAS-M model effectively adapts to previously unobserved samples. a, The 
progression of cross-batch similarity loss as a fitted DEBIAS-M model adapts to samples from a 
previously unobserved study, by solely minimizing the cross-batch similarity loss. b, the predictive 
performance of the fitted DEBIAS-M model throughout the adaptation iterations. Although not directly 
used during the adaptation itself, the auROC of thee model’s prediction on the held out test increases as 
the cross-batch similarity increases.c, Box and swarm plots (Box, IQR; line, median; whiskers, nearest 
point to 1.5*IQR) comparing the performance of DEBIAS-M (fitted and evaluated using the strategy in 
Fig. S1b) with “Adaptation DEBIAS-M” (fitted and evaluated using the strategy in Fig. S1c) on the same 
benchmarks used in Fig. 2. Adaptation DEBIAS-M demonstrated equivalent predictive performance on 
held-out studies. p - one-sided Wilcoxon signed-rank test. 
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Figure S4 | Log-additive DEBIAS-M outperforms batch-correction methods in cross-study prediction 
benchmarks in centered-log-ratio space. Same as Fig. 2, but comparing log-additive DEBIAS-M to batch-
correction methods on clr-transformed data. Voom-SNM is not included in this benchmark as its output 
is not in non-negative relative abundance or count space. 
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Figure S5 | DEBIAS-M inference yields biological insights into sequencing bias. Analyses of a fitted 
DEBIAS-M model on the collection of HIV studies used in Fig. 2a, 4, with bias-correction factors for 
species not found in a certain study imputed to the largest observed factor across all datasets. a, Heatmap 
illustrating the presence (blue) and absence (orange) of each OTU across each of the HIV studies 
analyzed, displayed using agglomerative clustering (Methods). The OTU detection patterns of the 
different studies cluster according to the 16S region amplified. b, Adonis PERMANOVA explained 
variance and p values for the effect of different experimental factors (Table S1) on the detection 
(presence/absence) of each OTU across each HIV study. c, PCA plot of the bias-correction factors inferred 
by DEBIAS-M, same as Fig. 4c, but with bias-correction factors for OTUs not found in a certain study 
imputed to the largest observed factor across all datasets. Color represents extraction kit type and shape 
the 16S rRNA region used. d, Box and swarm plots (Box, IQR; line, median; whiskers, nearest point to 
1.5*IQR) showing the standard deviation of bias-correction factors, comparing studies with manual and 
robotic processing. p, Mann-Whitney U test. e, Scatterplot showing the bias-correction factors inferred 
by DEBIAS-M plotted versus the 16S copy number of the same species. 
 

 
 
Figure S6 | DEBIAS-M improves cross-study prediction of melanoma immunotherapy response. Box 
and swarm plots (Box, IQR; line, median; whiskers, nearest point to 1.5*IQR) of auROCs, each evaluating 
the generalization performance models using gut microbiome data to predict immunotherapy response 
in melanoma patients (defined as 12-month progression-free survival58,73). Each auROC is calculated on 
a held-out study. ‘Log10 Linear” denotes the pipeline used by Lee et al.58, with DEBIAS-M used as a pre-
processing step, Preprocessing with DEBIAS-M shows a consistent albeit small improvement across all 
studies, with a particularly strong effect for one study. 
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Supplementary tables 

Supplementary Table 1 | Experimental metadata collated for HIV dataset. 
Supplementary Table 2 | Study information for cervical neoplasia dataset. 
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