

1 **Title: Structural insights into CXCR4 modulation and oligomerization**

2

3 **Authors**

4 Kei Saotome^{1*}, Luke L. McGoldrick^{1*}, Jo-Hao Ho¹, Trudy F. Ramlall¹, Sweta Shah¹, Michael J.

5 Moore¹, Jee Hae Kim¹, Raymond Leidich¹, William C. Olson¹, Matthew C. Franklin^{1*}

6

7 ¹Regeneron Pharmaceuticals, Inc. Tarrytown, NY 10591

8 *Correspondence: kei.saotome@regeneron.com (K.S.); luke.mcgoldrick@regeneron.com

9 (L.L.M); matthew.franklin@regeneron.com (M.C.F)

10

11 **Abstract**

12 Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse
13 cellular processes. CXCR4 also serves as a key target for diseases such as cancer and HIV.

14 Previously reported crystal structures of CXCR4 bound to antagonists revealed the architecture
15 of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly

16 understood, including its activation by CXCL12, as well as its assembly into higher-order
17 oligomers. Here, we use cryoelectron microscopy (cryoEM) to investigate various modes of

18 CXCR4 regulation in the presence and absence of G_i protein. CXCL12 activates CXCR4 by
19 inserting its N-terminus deep into the CXCR4 orthosteric pocket. The binding of FDA-approved

20 antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the
21 transmembrane helix bundle. A potent antibody blocker, REGN7663, binds across the

22 extracellular face of CXCR4 and inserts its CDR-H3 loop into the orthosteric pocket. Trimeric and
23 tetrameric structures of CXCR4 reveal, to our knowledge, previously undescribed modes of

24 GPCR oligomerization. Remarkably, CXCR4 adopts distinct subunit conformations in trimeric and
25 tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine

26 receptor function.

27

28 **Main**

29 Chemokine receptors are a family of Class A G-protein coupled receptors (GPCRs) that
30 mediate cell migration in response to binding of chemokine ligands¹. CXCR4 is a well-studied
31 chemokine receptor that is activated by the chemokine ligand CXCL12 (also called stromal cell-
32 derived factor 1, or SDF-1) and signals primarily through coupling with G_i protein², regulating cell
33 migration in hematopoiesis, neovascularization, angiogenesis and various other physiological
34 processes³. CXCR4 is involved in numerous diseases, including roles as a cancer marker
35 implicated in tumor proliferation⁴ and as a coreceptor for X4-tropic HIV strains⁵. Mutations in
36 CXCR4 that result in enhanced and prolonged signaling result in a rare immune disorder called
37 WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome⁶. The
38 significant roles of CXCR4 in health and disease have made the receptor an intensely investigated
39 drug target⁷. The small molecule CXCR4 antagonist AMD3100 (plerixafor), initially developed as
40 an HIV entry inhibitor⁸, was FDA-approved as a hematopoietic stem cell mobilizer for autologous
41 transplantation in patients with Non-Hodgkin's lymphoma or multiple myeloma^{9,10}. Numerous
42 additional CXCR4-targeting therapeutics have been developed⁷, notably including monoclonal
43 antibodies with improved pharmacokinetic properties and thus potentially greater efficacy
44 compared to small molecules and peptides¹¹⁻¹³.

45 Structural studies of Class A GPCRs have focused on isolated monomeric forms of the
46 receptors bound to various ligands, pharmacological modulators, and transducer proteins¹⁴.
47 However, increasing evidence suggests GPCRs can form dimers and higher order oligomers in
48 the plasma membrane, with implications for signaling and therapeutic action¹⁵. Chemokine
49 receptors are no exception; a multitude of studies have indicated the existence of homo- and
50 hetero- oligomers¹⁶⁻¹⁸, including crystal structures of antagonist-bound CXCR4 consistently
51 revealing homodimeric forms^{19,20}. Interestingly, CXCR4 has also shown a propensity to form
52 higher order oligomers using a mechanism that can be separated from dimerization²¹.

53 Despite its critical roles in health and disease, many mechanistic aspects of CXCR4
54 remain poorly understood, owing to a lack of structural information. These include its activation
55 by CXCL12, binding mode of AMD3100, coupling to G_i protein, inhibitory action of antibodies, and
56 mechanisms of higher order oligomerization. Here, we address these open questions by reporting
57 a series of cryoelectron microscopy (cryoEM) structures of CXCR4 complexes.

58

59 **Results**

60 *Structural basis of CXCL12 and AMD3100 action on CXCR4*

61 To stabilize active state signaling complexes and improve protein yields we made the following
62 modifications to wild type CXCR4: we replaced the N-terminal methionine with an HA
63 (hemagglutinin) signal peptide²², included a previously characterized constitutively active
64 mutation (N119S)²³, and fused monomeric eGFP²⁴ and FLAG tag to the receptor C-terminus
65 (Extended Data Fig. 1a). We refer to this construct as CXCR4_{EM}. We also employed a G_{αi}
66 construct harboring dominant negative mutations²⁵ to facilitate isolation of receptor/G_i complexes
67 in the absence of stabilizing antibody fragments²⁶. Fluorescence detection size exclusion
68 chromatography (FSEC)²⁷ experiments indeed indicated complex formation between CXCR4_{EM}
69 and G_i in the absence of agonist (Extended Data Fig. 1b). We prepared detergent-solubilized
70 CXCR4_{EM}/G_i complexes and first determined cryoEM structures in apo, CXCL12-bound, and
71 AMD3100-bound states at overall resolutions of 2.7, 3.3, and 3.2 Å, respectively (Fig. 1, Extended
72 Data Figs. 2, 3). Each of the structures shows a prototypical arrangement of an active receptor
73 coupled to heterotrimeric G protein, including a hallmark kink of TM6 relative to previously
74 reported crystal structures of antagonist-bound CXCR4^{19,20} (Extended Data Fig. 4a). We therefore
75 refer to the CXCR4 conformation in these structures as active.

76 Our cryoEM reconstruction of CXCR4_{EM}/G_i/CXCL12 revealed clear signal for the
77 chemokine bound at the extracellular side of the receptor (Fig. 1a). Density for the chemokine N-
78 terminus (res. 1-12) was sufficiently resolved to build side chains (Fig. 1b), whereas the remainder

79 of the ligand was less resolved due to flexibility and only permitted main chain tracing (Extended
80 Data Fig. 3i). Consequently, interactions between the chemokine N-terminal region and receptor
81 orthosteric pocket (chemokine recognition site 2) were readily discernible, while interactions
82 between the globular portion of the ligand and the N-terminus of CXCR4²⁸ (chemokine recognition
83 site 1) were unclear. CXCL12 is known to exist in monomeric and dimeric forms that have been
84 shown to yield distinct signaling outcomes upon CXCR4 binding^{29,30}. Weak signal corresponding
85 to a second protomer of the CXCL12 dimer could be observed in our cryoEM reconstruction,
86 consistent with the notion that dimeric forms of CXC ligands act on single receptor subunits^{20,31}
87 (Extended Data Fig 3i).

88 The binding mode of CXCL12 onto CXCR4 is overall similar to those found in published
89 structures of CC and CXC chemokine/chemokine receptor complexes³¹⁻³⁶ (Fig. 2, Extended Data
90 Fig. 4b). However, the CXCL12 binding pose observed in our structure notably differs from that
91 of CXCL12 bound to atypical chemokine receptor 3 (ACKR3, formerly known as CXCR7)³⁷, a
92 promiscuous receptor that has been suggested to function as a chemokine “scavenger” and has
93 approximately 10-fold higher affinity for CXCL12 than CXCR4^{38,39}. The CXCL12 C-terminal α helix
94 is rotated $\sim 70^\circ$ when bound to ACKR3 relative to CXCR4 (Extended Data Fig. 4c).
95 Correspondingly, the 40s loop of CXCL12 is situated proximal to the N-terminal region in CXCR4,
96 while it is nearby ECL3 in ACKR3. In addition to the distinct overall chemokine/receptor docking
97 orientations, the binding geometries of the CXCL12 N-terminus within the orthosteric pockets of
98 each receptor are also unique (Extended Data Fig. 4d).

99 Mutations at the distal N-terminus of CXCL12 can convert the chemokine into an
100 antagonist⁴⁰, highlighting its importance for receptor activation. Our structure shows how the
101 CXCL12 N-terminus protrudes into the orthosteric pocket of CXCR4 and makes extensive
102 contacts with the TM core (Fig. 2a). The distal CXCL12 N-terminus is positioned overall deeper
103 into the pocket than that of the antagonistic viral chemokine vMIP-II²⁰ (Extended Data Fig. 4e),
104 consistent with their respective ligand functions. P2_{CXCL12} penetrates deepest into the orthosteric

105 pocket, contacting the side chain of Y116^{3.32} (Ballesteros-Weinstein numbering⁴¹ in superscript).
106 The side chain of K1_{CXCL12} projects upward from the TM core to the extracellular side of the
107 receptor and is positioned to interact electrostatically with D97^{2.63} and possibly D187^{ECL2}. S4_{CXCL12}
108 makes an apparent hydrogen bond interaction with E288^{7.39}. L5_{CXCL12} packs onto a mainly
109 hydrophobic surface composed of L41^{1.35}, Y45^{1.39}, W94^{2.60}, A98^{2.64}. R8_{CXCL12} appears poised to
110 make a charge-charge interaction with D262^{6.58}, as predicted previously based on charge-swap
111 experiments²⁸. Several of the CXCR4 residues mentioned above (W94^{2.60}, D97^{2.63}, Y116^{3.32},
112 D187^{ECL2}, E288^{7.39}) have been shown to be important for CXCL12/CXCR4 signaling^{28,42,43},
113 underscoring the functional relevance of the interactions observed in our cryoEM structure. We
114 expand on the structural basis of CXCL12 activation of CXCR4 in a following section.

115 We observed unambiguous density for the bilobed AMD3100 molecule in our cryoEM
116 reconstruction of CXCR4_{EM}/G_i/AMD3100 (Fig. 1c). Although it has primarily been described as an
117 antagonist⁴⁴, our observation that AMD3100 binds to the active CXCR4_{EM}/G_i complex without
118 disrupting G protein coupling is consistent with the compound acting as a weak partial agonist on
119 constitutively active mutants of CXCR4. AMD3100 binds the orthosteric pocket using a diagonal
120 orientation and directly blocks CXCL12 docking, although its overall binding mode is shifted
121 toward TM5/6 relative to the CXCL12 N-terminus (Fig. 2b,c). Each of the two positively charged
122 cyclam rings of AMD3100⁴⁵ is stabilized electrostatically by an acidic side chain pointed toward
123 the center of the ring; the cyclam moiety closer to the extracellular side interacts with D262^{6.58}
124 while the cyclam proximal to the transmembrane core interacts with E288^{7.39}. The closely matched
125 spacings between the side chains of D262^{6.58} and E288^{7.39} residues and the cyclam rings therefore
126 appears be the main binding determinant of AMD3100 and other bicyclam analogues. Consistent
127 with our structure, a previous study showed that that D262N and E288A mutants each reduced
128 the affinity of AMD3100 to CXCR4 by more than 50-fold⁴⁵. The central aromatic ring of the
129 phenylenebis(methylene) linker connecting the two cyclam moieties makes hydrophobic contacts
130 with I284^{7.35}, which is positioned directly in between D262^{6.58} and E288^{7.39} in the orthosteric

131 pocket. This interaction may contribute to the increased potency of bicyclams with an aromatic
132 linker rather relative to those with an aliphatic linker⁴⁶. The rigidity imposed by the aromatic linker
133 on the relative positions of the two cyclam moieties may also play a role in stabilizing the binding
134 pose of AMD3100.

135

136 *Antagonism of CXCR4 by REGN7663 mAb*

137 Antibody-based therapeutics against CXCR4 and other GPCRs are a promising alternative to
138 small molecules due to their high specificity to the target, opportunity for Fc-effector functions,
139 and favorable pharmacokinetic properties^{11,13,47,48}. REGN7663 is a fully human anti-CXCR4
140 monoclonal antibody (mAb) generated using VelocImmune mice^{49,50}. We showed using a CRE-
141 Luciferase reporter assay that REGN7663 is a potent blocker (IC₅₀=2.72 nM) of CXCL12-induced
142 signaling in HEK293 cells engineered to overexpress CXCR4 (Fig. 3a). Further, in the absence
143 of CXCL12, REGN7663 decreased the apparent basal activity (EC₅₀=1.71 nM), indicating
144 inverse agonism in the setting of CXCR4 overexpression (Fig. 3b). To understand how
145 REGN7663 binds and inhibits CXCR4, we determined a 3.4 Å resolution cryoEM structure of
146 REGN7663 Fab in complex with CXCR4_{EM}/G_i (Fig. 3c, Extended Data Fig. 5a-d). The structure
147 revealed that REGN7663 binds directly onto the extracellular face of CXCR4, antagonizing the
148 receptor by steric blockade of CXCL12 binding. Most of the REGN7663 epitope resides at the
149 extracellular N-terminal region and ECL2 (Extended Data Fig. 5e,f). The REGN7663 heavy chain
150 dominates the binding interactions, burying significantly more surface area (~1100 Å²) than the
151 light chain (~300 Å²). Although the overall architecture of the complex is similar to the apo,
152 CXCL12-bound, and AMD3100-bound CXCR4_{EM}/G_i structures, REGN7663 binding induces
153 distinct conformations of the N-terminus and ECL2, suggesting their flexibility is important for
154 specific mAb binding (Extended Data Fig. 5g). Heavy chain complementarity-determining regions
155 (CDRs) 1 and 2 of REGN7663 are oriented toward the extracellular ends of TM4 and TM5, while
156 light chain CDRs are oriented extracellular to TM1 and TM2 (Fig. 3d). Remarkably, the CDR-H3

157 loop of REGN7663 wedges between the CXCR4 N-terminus and ECL2, exhibiting a partial
158 insertion into the CXCR4 orthosteric pocket. The side chain of REGN7663 residue R105
159 protrudes deepest into the orthosteric pocket, making an apparent charge-charge interaction with
160 E288^{7,39}(Fig. 3e). The insertion of CDR-H3 loop, though not activating in the case of REGN7663,
161 is reminiscent of how the CDR3 loop of the single domain antagonist antibody JN241 occupies
162 the orthosteric pocket of apelin receptor⁵¹. Taken together with the finding that JN241 was
163 converted into a full agonist through subtle engineering of CDR3⁵¹, our structure of
164 REGN7663/CXCR4 complex illustrates the potential for full antibodies (containing light and heavy
165 chains) functionally modulating GPCRs by inserting CDR loop(s) into the orthosteric pocket.

166

167 *Conformational changes associated with CXCR4 activation and G α_i protein docking*

168 We next sought to assess the conformational changes associated with CXCR4 activation.
169 Available crystal structures of inactive, antagonist-bound CXCR4 contain construct modifications,
170 namely T4 lysozyme (T4L) inserted at ICL3 and a thermostabilizing mutation in TM3, that could
171 confound comparison with our current structures. We therefore determined a 3.1 Å resolution
172 cryoEM structure CXCR4_{EM} in the absence of G α_i protein, utilizing REGN7663 Fab as a fiducial
173 mark (Fig. 4a, Extended Data Fig. 5h-k). Structural alignment of the REGN7663 Fab/CXCR4_{EM}/G α_i
174 structure with the G α_i -free REGN7663 Fab/CXCR4_{EM} structure showed nearly identical
175 conformations at the REGN7663 epitope/paratope regions but distinct conformations at the
176 intracellular half of the receptor, including the characteristic movement of TM6 underlying receptor
177 activation (Fig. 4b, Extended Data Fig. 5l). Additional conformational changes upon activation/G α_i -
178 binding include movement of TM5 toward TM6, subtle displacement of TM2 outward, an inward
179 kink of TM7, and loss of ordered structure in H8. We note that H8 was also unresolved in
180 previously determined antagonist-bound CXCR4 crystal structures^{19,20}, suggesting this is a
181 consistent feature of the inactive receptor.

182 We further compared the conformations of the inactive and CXCL12-bound structures to
183 analyze how CXCL12 binding results in activation (Fig. 4c). Binding of CXCL12 N-terminal coil to
184 the orthosteric pocket requires structural changes to the inactive state pocket. Residues P2 and
185 S4 at the CXCL12 N-terminus push E288^{7.39} outward and toward the cytoplasmic side, while
186 V3_{CXCL12} forces a downward displacement of Y255^{6.51}. The movements of E288^{7.39} and Y255^{6.51}
187 are in turn transmitted to F292^{7.43}, which has been previously implicated in CXCR4 signal
188 transmission⁴³, and conserved toggle switch residue⁵² W252^{6.48}, respectively. Together, these
189 conformational changes trigger further structural rearrangements that ultimately stabilize the
190 active, G_i-bound conformation of CXCR4. Furthermore, a close comparison revealed that due to
191 binding of the CXCL12 N-terminus in the orthosteric pocket, E288^{7.39} side chain reorients, along
192 with a small, ~0.7-1 Å outward movement of the extracellular half of TM7 helix relative to our
193 AMD3100/CXCR4_{EM}/G_i, REGN7663 Fab/CXCR4_{EM}/G_i, and apo CXCR4_{EM}/G_i structures
194 (Extended Data Fig 6a). This slight conformational difference at TM7 induced by CXCL12 may
195 explain why it is full agonist, while the other ligands are not. Similar structural mechanisms of
196 chemokine activation to that described above for CXCL12 have been observed for the
197 CCR2/CCL2 complex³² and CCR5/MIP-1 α complex³⁴.

198 Like other class A GPCRs, coupling of G α_i to CXCR4 is mediated by insertion of the G α_i
199 α_5 helix and C-terminal "wavy hook" into the cytoplasmic-facing core of the receptor TM domain
200 (Fig. 4d). "Wavy hook" residues L353 and F354 bury deepest into CXCR4 and contact R134^{3.50},
201 Q233^{ICL3}, K236^{6.32}, A237^{6.33}, T240^{6.36}, and A307 mainly via van der Waals and hydrophobic
202 interactions. G α_i α_5 helix makes numerous additional contacts with TM2, TM3, ICL2, TM5, ICL3,
203 and TM6. Salt bridge interactions between D341(G α_i)/K234^{6.30} and E28(G α_i)/K149 probably play
204 an important role in stabilizing the docking of G_i protein onto CXCR4. Although the overall G_i
205 binding mode of CXCR4 and other chemokine receptors is shared, the angle at which the G α_i α_5
206 helix docks into the TM bundle differs slightly (Extended Data Fig. 6b). While CXCR4, CXCR1³⁶,

207 and CXCR2³¹ show highly similar α 5 docking angles, the docking angles in CCR1³³, CCR2³², and
208 CCR5³⁴ are similar to each other and shifted relative to CXCR4, owing to distinct intracellular loop
209 conformations and receptor interactions with $G\alpha_i$ (Extended Data Fig. 6c). More specifically, in
210 the CC chemokine receptors, $G\alpha_i$ α 5 helix is shifted toward ICL2 and further from ICL3. Available
211 data therefore indicate that CXC and CC chemokine receptors have slightly different G_i docking
212 geometries.

213

214 *Oligomeric structures of CXCR4*

215 Although GPCRs are generally understood to function as monomeric units, numerous studies
216 have reported that chemokine receptors form dimers and higher order oligomers at the cell
217 surface as expression levels increase⁵³⁻⁵⁶. Homo- and hetero-oligomerization have been
218 proposed to add complexity to chemokine receptor function, perhaps through allosteric
219 communication between interacting subunits^{57,58}. Multiple structures of CXCR4 from different
220 crystal forms showed the same homodimeric architecture^{19,20}, demonstrating that the detergent-
221 solubilized receptor has the propensity to dimerize using specific intersubunit interactions mainly
222 involving TM5 and TM6. Our size exclusion chromatography (SEC) data of CXCR4_{EM} consistently
223 showed multiple peaks with different elution volumes, including peaks corresponding to oligomeric
224 species larger than monomeric CXCR4_{EM} or CXCR4_{EM}/ G_i (Extended Data Fig. 1b, 2a). Wild type
225 CXCR4 fused to GFP showed a similar FSEC profile to CXCR4_{EM}, indicating that the apparent
226 oligomerization was not specific to the constitutively active N119S mutation present in CXCR4_{EM}.

227 We isolated and characterized a presumed oligomeric SEC peak (Extended Data Fig. 2a)
228 of CXCR4_{EM} using cryoEM. Initial cryoEM data yielded clear top/bottom views of trimeric and
229 tetrameric species, but preferred orientation precluded structure determination. After screening
230 various sample preparation conditions, we ultimately employed stage-tilted data collection⁵⁹ to
231 obtain 3.4 Å resolution reconstructions of CXCR4_{EM} homotrimers and homotetramers in complex

232 with REGN7663 Fab (Fig. 5, Extended Data Fig. 7a-j). According to 3D classification, our data
233 contained a roughly 1 to 3 ratio of trimers to tetramer particles (Extended Data Fig. 7k). We did
234 not observe 2D or 3D class averages consistent with dimeric CXCR4, excepting non-physiological
235 antiparallel dimers in our samples prepared in the presence of G_i (Extended Data Fig. 7i). The
236 trimer and tetramer both show CXCR4 subunits arranged symmetrically around a cavity at the
237 central axis, at first glance evoking structural similarity to homomeric ion channels, though CXCR4
238 has no known channel function. In the case of the CXCR4 oligomers, we found evidence for
239 numerous bound lipids at the central axis in the cryoEM maps (Fig. 5 c,f, Extended Data Fig. 8).
240 Due to matching shape features, we tentatively built three phosphatidic acids and three
241 cholesterol molecules in the trimeric map central cavity and four phosphatidic acids and eight
242 cholesterol molecules in the tetrameric cavity (Extended Data Fig. 8d,h). Although the presumed cholesterol
243 molecules could in principle correspond to exogenously added cholesteryl hemisuccinate present
244 in the purification buffers, the EM density we have modeled as phosphatidic acid strongly
245 resembles a phospholipid, and not the LMNG detergent used for purification. This implies that
246 the central cavity lipids were carried over from the cell membrane and remained stably bound
247 through purification, indicating that the oligomeric structures reported here are representative of
248 species present in the CXCR4-expressing cells used in this study and not an artifact of the
249 purification process. The presence of ordered lipids plugging the central axis of CXCR4 oligomers
250 is reminiscent of microbial channelrhodopsin trimers, though the quarternary arrangement of the
251 7-TM protomers differs^{60,61}.

252 The comparable interprotomer interfaces of trimeric and tetrameric CXCR4 are composed
253 of TM5, TM6, and TM7 of one protomer interacting with TM1 and TM7 of its neighboring protomer
254 (Fig. 5c,f). A ~20° rotation in the angle between neighboring subunits underlies the distinct
255 oligomeric states (Fig. 5h). This oligomeric interface does not overlap with the dimeric interface
256 observed in crystal structures of CXCR4^{19,20} (Fig. 5h), speculatively allowing for “super-clustering”
257 of CXCR4 protomers mediated by a combination of trimeric/tetrameric and dimeric interfaces

258 (Extended Data Fig. 9a,b). Structural superposition indicates that steric clash caused by the T4L
259 fusion in the crystallization construct may have precluded the assembly of trimers or tetramers
260 observed in our data (Extended Data Fig. 9c,d), thus suggesting why homodimer formation was
261 favored for the T4L-fused receptor.

262 The trimeric interface is characterized by a buried surface area of $\sim 1150 \text{ \AA}^2$ and is primarily
263 mediated by crisscrossing of TM6 and TM1 of neighboring protomers near the midpoint of the
264 membrane (Fig. 6a). The diagonal orientation of TM6 results in interprotomer contacts with the
265 cytoplasmic half of TM7. TM1 of the neighboring protomer makes additional interprotomer
266 contacts with cytoplasmic end of TM5 and the extracellular tip of TM7. As expected from
267 interactions between transmembrane helices, most of the residues involved are hydrophobic. As
268 noted above, the tetramer interface is similar to the trimer interface (Fig. 6b). However, close
269 inspection revealed a remarkable difference in the tetramer: a sterol-shaped density that we
270 tentatively built as cholesterol present at the cytoplasmic half of the bilayer sandwiched between
271 TM5/TM6 of one protomer and TM1/TM7 of its neighbor (Fig. 6b,c). To make space for sterol
272 binding at the tetrameric interface, the intracellular portion of TM6 splays away from the interface
273 and TM1 of the neighboring protomer rotates relative to their conformations in the trimeric
274 interface (Fig. 6d). The TM1 rotation is concurrent with the rotation of the entire CXCR4 protomer,
275 which in turn allows space for the additional subunit present in the tetrameric assembly (Fig. 5h).
276 Our structures therefore imply that the absence or presence of lipid at the CXCR4 interprotomer
277 interface may drive the assembly of trimers and tetramers, respectively. These findings provide a
278 structural example supporting the idea that cholesterol regulates chemokine receptor
279 oligomerization⁶².

280 A super-resolution microscopy study reported that the simultaneous introduction of 3
281 mutations (K239E/V242A/L246A) within TM6, and located at the oligomerization interface
282 observed in our structures, resulted in reduced higher order oligomerization of CXCR4²¹. We used
283 FSEC to examine the effect of this triple mutant and other mutations at the oligomeric interface

284 on the oligomerization behavior of the detergent-extracted receptor, using CXCR4_{EM} as the
285 background construct (Extended Data Fig. 10a). The K239E/V242A/L246A and
286 K239E/V242W/L246W triple mutants both showed a reduced propensity to form oligomers
287 relative to monomers, determined from the FSEC peak-area ratio of oligomer to monomer for
288 each mutant (Extended Data Fig. 10b). We found that the single mutant V242W showed similarly
289 reduced oligomerization, likely by introducing steric hindrance at the oligomerization interface. On
290 the other hand, L246W increased apparent oligomerization and reduced monomer levels,
291 possibly by augmenting the hydrophobic interactions between subunits. A mutation at a TM1
292 residue (L58W) that faces TM5 of the neighboring subunit also showed reduced
293 oligomer/monomer ratio. Other TM1, TM6, and TM7 mutants showed no significant change in
294 oligomer/monomer ratio (T51W) or did not have clearly interpretable FSEC chromatograms,
295 presumably due to impacts on expression level or stability of the receptor in detergent. Overall,
296 these biochemical data corroborate the oligomeric interface observed in our structural data.

297 We next examined the conformations of the individual protomers within the CXCR4 trimer
298 and tetramer. As noted above, a striking difference is the kink at TM6 associated with sterol
299 binding (Fig. 6e,f). TM6 of the trimeric protomer is kinked outward relative to that of the tetrameric
300 protomer, suggesting a more active-like conformation. Indeed, the structure of the trimeric
301 protomer matches closely with active CXCR4 in complex with REGN7663 Fab and G_i while the
302 tetrameric protomer aligns well with the inactive CXCR4/REGN7663 Fab complex in the absence
303 of G_i (Fig. 6g,h). A noteworthy distinction between the trimeric CXCR4 protomer and active, G_i-
304 bound CXCR4 is the conformation of ICL3, TM7 and H8; in the trimer, ICL3 is pushed away from
305 the cytoplasmic-facing core, C-terminal end of TM7 is tucked inward, effectively blocking G_i
306 binding, and H8 is not visible in the cryoEM map (Fig. 6f,g). Therefore, while trimeric CXCR4 is
307 composed of protomers with an active-like conformation, they are not structurally competent for
308 G_i-coupling and as such cannot be deemed fully active. This structural observation agrees with
309 FSEC data showing that the presence of G_i did not result in a shift of the oligomeric peak

310 (Extended Data Fig. 1b). Overall, these oligomeric structures demonstrate that distinct protomeric
311 conformations underpin the trimeric and tetrameric arrangements of CXCR4. Lipids found at the
312 central axis and at the tetrameric interface appear to be important for oligomeric assembly.

313

314 **Discussion**

315 A longstanding drug target for HIV, cancer, and immune disorders, CXCR4 is one of the most
316 well-studied chemokine receptors, and was the first to be crystallized. However, critical structures
317 of CXCR4 remained missing. We have presented here a thorough investigation of CXCR4
318 structure using cryoEM. Our structure of active CXCR4 bound to CXCL12 shows how the
319 chemokine N-terminus buries deep into the orthosteric pocket to activate the receptor. Mutations
320 at the distal CXCL12 N-terminus⁴⁰ likely diminish its agonistic activity by disrupting the interactions
321 between chemokine and receptor at the TM domain that are required for activation. Due to the
322 flexibility of the complex, we were unable to resolve interactions between the receptor N-terminus
323 and chemokine (chemokine recognition site 1). Therefore, further studies are necessary to
324 visualize this important determinant of CXCL12/CXCR4 affinity.

325 Like CXCL12, the FDA-approved drug AMD3100 uses electrostatic interactions, namely
326 between its two positively charged lactam rings and acidic residues in the CXCR4 TM domain, to
327 stabilize a diagonal binding mode. We have also shown how a potent antibody inhibitor,
328 REGN7663, blocks CXCL12 by binding across the extracellular face of CXCR4 and partially
329 inserting its CDR-H3 loop into the orthosteric pocket. The structures of REGN7663/CXCR4
330 complexes do not provide a clear answer as to why this mAb has apparent inverse agonist activity
331 in the setting of CXCR4 overexpression. Stable binding of REGN7663 to active state CXCR4/G_i,
332 which might be unexpected for an inverse agonist mAb, was possibly enabled by the constitutively
333 active N119S mutation present in our construct that shifts the conformational equilibrium of the
334 receptor. While it is tempting to speculate that inverse agonism is related to interactions between
335 REGN7663 and the CXCR4 TM domains, inverse agonist antibodies raised against the MC4R N-

336 terminus have been reported⁶³, suggesting TM domain interactions are not a prerequisite for
337 GPCR inverse agonist mAbs.

338 Though the functional relevance of chemokine receptor oligomerization *in vivo* awaits
339 confirmation, CXCR4 oligomerization has been reported in various experimental settings,
340 including crystal structures of parallel homodimers¹⁷. In this study, we have observed that
341 detergent-solubilized CXCR4 exists in various oligomeric states, and determined structures of
342 receptor trimers and tetramers. The parallel orientation of the protomers as well as the
343 encapsulation of lipids at the central axis support the notion that these oligomeric species are
344 present at the cell surface of insect cells overexpressing CXCR4 prior to detergent solubilization.
345 Nonetheless, whether these species correspond to cell membrane oligomers observed
346 previously^{16,55} or are representative of *in vivo* CXCR4 requires further investigation. Interestingly,
347 super-resolution microscopy experiments implicated three TM6 residues (K239, V242, L246)
348 located at the oligomerization interface observed in our structures as being important for higher
349 order oligomerization but not dimerization of CXCR4 in Jurkat cells²¹. Furthermore, the
350 oligomerization-defective K239E, V242A, L246A triple mutant showed decreased chemotaxis in
351 response to CXCL12 *in vitro*²¹. These previously reported data provide a link between our
352 oligomeric structures of detergent-solubilized receptor and CXCR4 function in T cells.

353 Finally, we observed that oligomeric state and specifically, the binding of lipid at the
354 oligomeric interface, are correlated with distinct conformations of CXCR4 protomers. While the
355 individual protomers of trimeric CXCR4 exhibited an active-like conformation characterized by
356 outward-kinking of TM6, the positioning of intracellular-facing structural elements (ICL3, TM7, and
357 H8) appear to preclude the docking of G_i. Therefore, additional conformational changes would be
358 required for the oligomeric CXCR4 entities observed here to participate directly in G protein-
359 mediated cellular signaling.

360 Overall, our structures build on previous crystallographic studies^{19,20} to provide a
361 foundation for understanding how peptides, small molecules, chemokines, and antibody bind and

362 affect the function of CXCR4 in diverse ways. Our data also provide a structural perspective on
363 oligomerization as a potential mode of GPCR regulation, adding a layer of complexity to studies
364 that have focused on monomers as the functional units in physiology and disease.

365

366 **Methods**

367 *FSEC-based Construct Screening*

368 Expression constructs (shown in Extended Data Fig. 1a) were codon optimized, synthesized, and
369 cloned into pFastBac1 or pFastbac Dual vectors by Genscript. Second generation baculoviruses
370 (P1) encoding human CXCR4, CXCR4_{EM}, G_{αi}, or G_{β1/Gγ2} (expressed together using pFastBac
371 Dual) were generated in ExpiSf9 cells (ThermoFisher), titered, and adjusted to approximately
372 2.5x10⁸ ipv/ml. The titering assay was performed using flow cytometry to detect envelope protein
373 gp64 displayed on the surface of infected cells. ExpiSf9 cells at ~5x10⁶ cells/ml were infected with
374 either CXCR4 alone (1:11 viral dilution), or with G_{αi} (1:22 viral dilution) and G_{β1/Gγ2} (1:22 viral
375 dilution). Cells were harvested by centrifugation after 72 hr growth (120 rpm shaking, 27°C, 125
376 ml flat-bottom flask, Innova 44 shaker). After freeze-thaw (-80°C), cell pellets, each from 1 ml of
377 culture, were resuspended in 200 µl lysis buffer (25 mM Tris pH 7.5, 50 mM NaCl, 2 mM MgCl₂,
378 cComplete (EDTA-free) protease inhibitor, 5 mM CaCl₂, 50 mU/ml Apyrase) and rotated at 4°C
379 for 1 hr. For the samples to which G_i was added, G_i containing pellets were first suspended in 200
380 µl lysis buffer. 200 µl of G_i slurry was then used to resuspend the receptor containing pellets. After
381 1 hr, 200 µl of solubilization buffer (25 mM Tris pH 7.5, 50 mM NaCl, 2 mM MgCl₂, 5 mM CaCl₂,
382 ~2% LMNG, ~0.2% CHS, cComplete (EDTA-free) protease inhibitor, 50 mU/ml Apyrase) was
383 added and the mixture was rotated at 4°C for an additional 1 hr at 4°C. Insoluble material was
384 removed by centrifugation and each sample was subjected to FSEC (buffer: 25 mM Tris pH 7.5,
385 150 mM NaCl, 2 mM MgCl₂, 0.01% LMNG, 0.001% CHS). A Zenix-C SEC-300 3 µM 300 Å
386 4.6x300mm column (flow rate: 0.35 ml/min) was used for the data shown in Extended Data Fig.
387 1b. For the data shown in Extended Data Fig. 10, a Zenix-C SEC-300 3 µM 300 Å 7.8x300mm

388 column (flow rate: 0.75 ml/min) was used and the baculovirus used was not titered. FSEC data
389 were collected using a Shimadzu LC system using LabSolutions v5.111 software.

390

391 *Expression and Purification of CXCR4 and G_i proteins*

392 ExpiSf9 cells at $\sim 5 \times 10^6$ cells/ml were infected with P1 baculovirus encoding either CXCR4_{EM} or
393 G_{αi} and G_{β1}/G_{γ2} as described above. Cells were harvested by centrifugation (3000 x g, 10 min,
394 4°C) after 72 hr growth (120 rpm shaking, 27°C, 2 L flat-bottom flask, Innova 44 shaker). Cell
395 pellets were washed in ice-cold DPBS with cOmplete (EDTA-free) protease inhibitor and then
396 subjected to freeze-thaw (-80°C) then resuspended in lysis buffer (25 mM Tris pH 7.5, 50 mM
397 NaCl, 2 mM MgCl₂, 1x cOmplete (EDTA-free) protease inhibitor, 5 mM CaCl₂, 50 mU/mL
398 Apyrase). Crude lysates containing CXCR4_{EM} and G_i were then combined and stirred at 4°C. After
399 1 hr, an equal volume (1 ml for every 1 ml of lysis buffer) of solubilization buffer (25 mM Tris pH
400 7.5, 50 mM NaCl, 2 mM MgCl₂, 5 mM CaCl₂, 2% LMNG, 0.2% CHS) was added to the slurry and
401 the mixture was stirred at 4°C for 1 hr. Insoluble material was removed by centrifugation (100,000
402 x g, 4°C, 30 min). Anti-FLAG M2 Affinity Gel (Sigma cat# A2220) was used to capture CXCR4_{EM}-
403 containing species. The protein-loaded resin was washed with SEC buffer (25 mM Tris pH 7.5,
404 150 mM NaCl, 2 mM MgCl₂, 0.01% LMNG, 0.001% CHS) and protein was eluted in SEC buffer
405 containing 0.15 mg/ml 3x FLAG peptide. The eluate was concentrated to approximately 0.5 ml
406 and subjected to SEC. A tandem column was used to improve separation of different CXCR4_{EM}
407 species: a Superose 6 Increase 10/300 GL column was connected upstream of a Superdex 200
408 Increase 10/300 GL column. Fractions containing CXCR4_{EM}/G_i protein complex were selected,
409 pooled, concentrated, and mixed with either Fab', CXCL12, or AMD3100 prior to cryoEM grid
410 making.

411 A comparable procedure was used for the production CXCR4_{EM} to which G_i was not
412 added. In this case, SEC peaks corresponding to oligomeric and monomeric CXCR4_{EM} were
413 separately harvested and were each mixed with Fab' prior to cryoEM grid making.

414

415 *Fab' Production*

416 REGN7663 IgG was diluted to 2 mg/ml in 20 mM HEPES pH 7.4, 150 mM NaCl. IdeS, an IgG-
417 specific protease, was added to cleave off Fc region thereby producing F(ab')₂. 10 µg
418 concentrated IdeS per 1 mg antibody (1:100) was added and the cleavage reaction was carried
419 out at 37°C for 30 min. F(ab')₂ was reduced using approximately 88 mM cysteamine hydrochloride
420 at 37°C for 10 min, in the presence of approximately 18 mM EDTA. Reduced Fab' was dialyzed
421 against 20 mM HEPES pH 7.4, 150 mM NaCl overnight at 4°C. Fab' was further purified by IMAC
422 (negative-pass to remove His-tagged IdeS) and CaptureSelect IgG-Fc (Multispecies) Affinity
423 Matrix (negative-pass to remove Fc fragment.) F(ab') was treated with 20 mM iodoacetamide at
424 room temperature, in the dark, for 30 min to alkylate the reduced hinge cysteines. Fab' was
425 purified further via SEC (HighLoad 16/600 Superdex 75 pg column equilibrated to 25 mM Tris pH
426 7.5, 150 mM NaCl), and concentrated before use.

427

428 *CRE-Luciferase CXCR4 functional assay*

429 HEK293 cell lines were generated to stably express full-length human CXCR4 (hCXCR4; amino
430 acids 1-352 of accession number NP_003458.1) along with a luciferase reporter cAMP response
431 element (CRE, 4X)-luciferase-IRES-GFP. For CXCR4 CRE-Luciferase assay, HEK293/CRE-
432 Luc/hCXCR4 cells were plated in Opti-MEM media (Invitrogen, cat# 31985-070) supplemented
433 with 0.1% FBS (Seradigm, Cat#1500-500) at 37°C with 5% CO₂ for overnight. The cells were then
434 incubated with 5uM of Forskolin (Sigma, cat# F6886) and serially diluted CXCL12 (Tocris, Cat#
435 350-NS) for activation of CXCR4 or pre-incubated with REGN7663 or control antibody for 30
436 minutes before adding 5uM of Forskolin without or with 500pM of SDF for inhibition of CXCR4
437 basal activity or SDF-induced CXCR4 activation. Cells were incubated for 5.5 hours at 37°C with
438 5% CO₂. At the conclusion of the incubations, the luciferase activity was detected using OneGlo
439 (Promega, Cat# E6130) and luminescence was recorded by an EnVision Plate reader using

440 EnVision Manager v1.14 (Perkin Elmer). Results were analyzed using nonlinear regression (4-
441 parameter logistics) with Prism 6 software (GraphPad) to obtain EC₅₀ and IC₅₀ values.

442

443 *CryoEM grid preparation and data collection*

444 CXCR4_{EM} (G_i-bound complex, monomer, or oligomer) were concentrated to ~1 to ~5 mg/mL and
445 left as is (“apo”, G_i-bound complex sample) or mixed with 0.5 mg/mL CXCL12 (Recombinant
446 Human/Rhesus Macaque/Feline CXCL12/SDF-1 alpha, R&D Systems Catalog #: 350-NS-
447 050/CF), or 1 mM AMD3100 (AMD 3100 octahydrochloride, R&D Systems Catalog #: 3299), or
448 ~1 to 1.5 mg/mL REGN7663 Fab and incubated on ice for ~1 hour. Samples were pipetted onto
449 freshly hydrogen/oxygen plasma cleaned UltrAuFoil 0.6/1 300 mesh grids and blotted then plunge
450 frozen into liquid ethane using a Vitrobot Mark IV and stored in liquid nitrogen prior to data
451 collection.

452 Samples were inserted into a Titan Krios G3i (ThermoFisher) microscope equipped with
453 a BioQuantum K3 (Gatan) imaging system or a Glacios microscope equipped with a Falcon 4i
454 camera and Selectris energy filter (ThermoFisher). Data were collected at nominal magnifications
455 of 105 kx (0.85 Å/pixel) or 165 kx (0.696 Å/pixel) and energy filters were inserted with slit widths
456 of 20 ev and 10 ev on the Titan Krios and Glacios microscopes, respectively. Automated data
457 collections were carried using EPU v2.12 with an applied defocus range of -1.0 to -2.2 μM. A 40°
458 stage tilt was applied during collection of the oligomeric CXCR4_{EM}/REGN7663 Fab complex
459 sample to overcome preferred particle orientations. Additional details regarding data collection
460 are shown in Extended Data Table 1.

461

462 *CryoEM image processing*

463 CryoEM data processing for apo CXCR4_{EM}/G_i, CXCR4_{EM}/G_i/AMD3100
464 CXCR4_{EM}/G_i/REGN7663Fab, CXCR4_{EM}/REGN7663 Fab trimer, and CXCR4_{EM}/REGN7663 Fab
465 tetramer was carried out within the cryoSPARC v3.3.2 pipeline⁶⁴. Patch motion correction and

466 Patch CTF estimation were used to align movie frames and estimate CTF parameters,
467 respectively. Particle images were picked using 2D template based picker or TOPAZ v0.2.5⁶⁵ then
468 extracted and subjected to multiple rounds of 2D classification, ab initio reconstruction and
469 heterogeneous refinement to obtain a homogenous subset of particles with well resolved features
470 corresponding to the target complex. Final map calculations were carried out using the Local
471 Refinement job type. C3 and C4 symmetry were applied for refinement of the trimeric and
472 tetrameric reconstructions of CXCR4_{EM}/REGN7663 Fab, respectively. Refinements of oligomeric
473 CXCR4 conducted without applied symmetry yielded similar structures to the symmetric
474 refinements, but at lower resolution.

475 Initial processing steps for the CXCR4_{EM}/G_i/CXCL12 and CXCR4_{EM}/REGN7663 Fab
476 monomeric complexes were carried out in RELION-3⁶⁶. CTF parameters were calculated using
477 gctf⁶⁷ and CTFFIND4⁶⁸. Particles were picked using TOPAZ⁶⁵, then sorted by 2D and 3D
478 classification. Initial 3D refinements of the CXCR4_{EM}/G_i/CXCL12 complex had very weak density
479 for the ligand. To improve signal for the bound ligand, successive rounds of alignment-free
480 focused 3D classification was conducted, applying a mask around CXCL12. Selected particle
481 images were then subjected to Bayesian polishing and then imported into cryoSPARC for final
482 map refinements. For the CXCR4_{EM}/REGN7663 Fab complex, signal from constant region of the
483 Fab was subtracted prior to final local refinement in cryoSPARC. Additional data processing
484 details are listed in Extended Data Table 1.

485

486 *Model building, structure refinement, and visualization*

487 Model building was initiated by docking starting models into the cryoEM maps using the
488 fit in map function in Chimera⁶⁹, followed by rounds of manual adjustment in coot 0.8.9⁷⁰ and real
489 space refinement in Phenix 1.19⁷¹. Published structures of CXCR4 (PDB 4RWS²⁰), G_i
490 heterotrimer (PDB 7T2G), and an internal Fab structure were used as initial models to build the
491 CXCR4_{EM}/G_i/REGN7663 Fab complex. CXCR4_{EM} and G_i from this structure was then used as

492 starting models for the other structures in this study. A crystal structure of CXCL12 (PDB 3HP3⁷²)
493 was used as an initial model for the chemokine. Side chains for CXCL12 residues 13-65
494 (excepting disulfide bonds) were truncated to C_β due to weak density. The REGN7663 Fab
495 constant regions were omitted from the CXCR4_{EM}/REGN7663 Fab (without G_i),
496 CXCR4_{EM}/REGN7663 Fab trimer, and CXCR4_{EM}/REGN7663 Fab tetramer models due to weak
497 density. The eLBOW program⁷³ in Phenix was used to generate ligand coordinates and restraints
498 for AMD3100. Structures were validated using Phenix and MolProbity⁷⁴. Buried surface areas
499 were calculated using PISA⁷⁵. Pymol⁷⁶, Chimera version1.16⁶⁹, and ChimeraX version 1.2.5⁷⁷
500 were used to visualize structural data and generate figures.

501

502 **Data and materials availability**

503 Regeneron materials described in this manuscript may be made available to qualified, academic,
504 noncommercial researchers through a materials transfer agreement upon request at
505 https://regeneron.envisionpharma.com/vt_regeneron/. For questions about how Regeneron
506 shares materials, use the email address preclinical.collaborations@regeneron.com. Atomic
507 coordinates and cryoEM maps have been deposited into the Protein Data Bank (PDB) and
508 Electron Microscopy Data Bank (EMDB) under the respective accession codes 8U4N and 41888
509 (Apo CXCR4_{EM}/G_i), 8U4O and 41889 (CXCR4_{EM}/G_i/CXCL12), 8U4P and 41890
510 (CXCR4_{EM}/G_i/AMD3100), 8U4Q and 41891 (CXCR4_{EM}/G_i/REGN7663Fab), 8U4R and 41892
511 (CXCR4_{EM}/REGN7663 Fab), 8U4S and 41893 (CXCR4_{EM}/REGN7663 Fab Trimer), 8U4T and
512 41894 (CXCR4_{EM}/REGN7663 Fab Tetramer).

513

514

515

516 **References**

517 1 Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. *FEBS J* **285**,
518 2944-2971, doi:10.1111/febs.14466 (2018).

519 2 Busillo, J. M. & Benovic, J. L. Regulation of CXCR4 signaling. *Biochim Biophys Acta* **1768**,
520 952-963, doi:10.1016/j.bbamem.2006.11.002 (2007).

521 3 Britton, C., Poznansky, M. C. & Reeves, P. Polyfunctionality of the CXCR4/CXCL12 axis in
522 health and disease: Implications for therapeutic interventions in cancer and immune-
523 mediated diseases. *FASEB J* **35**, e21260, doi:10.1096/fj.202001273R (2021).

524 4 Guo, F. *et al.* CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal
525 neighbors in oncogenic communication networks. *Oncogene* **35**, 816-826,
526 doi:10.1038/onc.2015.139 (2016).

527 5 Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional
528 cDNA cloning of a seven-transmembrane, G protein-coupled receptor. *Science* **272**, 872-
529 877, doi:10.1126/science.272.5263.872 (1996).

530 6 Heusinkveld, L. E., Majumdar, S., Gao, J. L., McDermott, D. H. & Murphy, P. M. WHIM
531 Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. *J Clin Immunol*
532 **39**, 532-556, doi:10.1007/s10875-019-00665-w (2019).

533 7 Caspar, B. *et al.* CXCR4 as a novel target in immunology: moving away from typical
534 antagonists. *Future Drug Discov* **4**, FDD77, doi:10.4155/fdd-2022-0007 (2022).

535 8 Donzella, G. A. *et al.* AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4
536 co-receptor. *Nat Med* **4**, 72-77, doi:10.1038/nm0198-072 (1998).

537 9 DiPersio, J. F., Uy, G. L., Yasothan, U. & Kirkpatrick, P. Plerixafor. *Nat Rev Drug Discov* **8**,
538 105-106, doi:10.1038/nrd2819 (2009).

539 10 DiPersio, J. F. *et al.* Phase III prospective randomized double-blind placebo-controlled
540 trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus
541 granulocyte colony-stimulating factor for autologous stem-cell mobilization and
542 transplantation for patients with non-Hodgkin's lymphoma. *J Clin Oncol* **27**, 4767-4773,
543 doi:10.1200/JCO.2008.20.7209 (2009).

544 11 Ghobrial, I. M. *et al.* A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody
545 Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in
546 Relapsed Multiple Myeloma. *Clin Cancer Res* **26**, 344-353, doi:10.1158/1078-0432.CCR-
547 19-0647 (2020).

548 12 Kashyap, M. K. *et al.* Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1
549 antibody (PF-06747143) in chronic lymphocytic leukemia. *J Hematol Oncol* **10**, 112,
550 doi:10.1186/s13045-017-0435-x (2017).

551 13 Peng, S. B. *et al.* Inhibition of CXCR4 by LY2624587, a Fully Humanized Anti-CXCR4
552 Antibody Induces Apoptosis of Hematologic Malignancies. *PLoS One* **11**, e0150585,
553 doi:10.1371/journal.pone.0150585 (2016).

554 14 Gusach, A., Garcia-Nafria, J. & Tate, C. G. New insights into GPCR coupling and
555 dimerisation from cryo-EM structures. *Curr Opin Struct Biol* **80**, 102574,
556 doi:10.1016/j.sbi.2023.102574 (2023).

557 15 Milligan, G., Ward, R. J. & Marsango, S. GPCR homo-oligomerization. *Curr Opin Cell Biol*
558 **57**, 40-47, doi:10.1016/j.ceb.2018.10.007 (2019).

559 16 Ward, R. J. *et al.* Chemokine receptor CXCR4 oligomerization is disrupted selectively by
560 the antagonist ligand IT1t. *J Biol Chem* **296**, 100139, doi:10.1074/jbc.RA120.016612
561 (2021).

562 17 Munoz, L. M. *et al.* Receptor oligomerization: a pivotal mechanism for regulating
563 chemokine function. *Pharmacol Ther* **131**, 351-358,
564 doi:10.1016/j.pharmthera.2011.05.002 (2011).

565 18 Sohy, D. *et al.* Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects
566 of "selective" antagonists. *J Biol Chem* **284**, 31270-31279, doi:10.1074/jbc.M109.054809
567 (2009).

568 19 Wu, B. *et al.* Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic
569 peptide antagonists. *Science* **330**, 1066-1071, doi:10.1126/science.1194396 (2010).

570 20 Qin, L. *et al.* Structural biology. Crystal structure of the chemokine receptor CXCR4 in
571 complex with a viral chemokine. *Science* **347**, 1117-1122, doi:10.1126/science.1261064
572 (2015).

573 21 Martinez-Munoz, L. *et al.* Separating Actin-Dependent Chemokine Receptor
574 Nanoclustering from Dimerization Indicates a Role for Clustering in CXCR4 Signaling and
575 Function. *Mol Cell* **71**, 873, doi:10.1016/j.molcel.2018.08.012 (2018).

576 22 Guan, X. M., Kobilka, T. S. & Kobilka, B. K. Enhancement of membrane insertion and
577 function in a type IIIb membrane protein following introduction of a cleavable signal
578 peptide. *J Biol Chem* **267**, 21995-21998 (1992).

579 23 Zhang, W. B. *et al.* A point mutation that confers constitutive activity to CXCR4 reveals
580 that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial
581 agonists. *J Biol Chem* **277**, 24515-24521, doi:10.1074/jbc.M200889200 (2002).

582 24 von Stetten, D., Noirlerc-Savoye, M., Goedhart, J., Gadella, T. W., Jr. & Royant, A.
583 Structure of a fluorescent protein from *Aequorea victoria* bearing the obligate-
584 monomer mutation A206K. *Acta Crystallogr Sect F Struct Biol Cryst Commun* **68**, 878-
585 882, doi:10.1107/S1744309112028667 (2012).

586 25 Liang, Y. L. *et al.* Dominant Negative G Proteins Enhance Formation and Purification of
587 Agonist-GPCR-G Protein Complexes for Structure Determination. *ACS Pharmacol Transl
588 Sci* **1**, 12-20, doi:10.1021/acsptsci.8b00017 (2018).

589 26 Zhang, X. *et al.* Evolving cryo-EM structural approaches for GPCR drug discovery.
590 *Structure* **29**, 963-974 e966, doi:10.1016/j.str.2021.04.008 (2021).

591 27 Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for
592 precrystallization screening of integral membrane proteins. *Structure* **14**, 673-681,
593 doi:10.1016/j.str.2006.01.013 (2006).

594 28 Stephens, B. S., Ngo, T., Kufareva, I. & Handel, T. M. Functional anatomy of the full-
595 length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided
596 mutagenesis. *Sci Signal* **13**, doi:10.1126/scisignal.aay5024 (2020).

597 29 Ray, P. *et al.* Secreted CXCL12 (SDF-1) forms dimers under physiological conditions.
598 *Biochem J* **442**, 433-442, doi:10.1042/BJ20111341 (2012).

599 30 Drury, L. J. *et al.* Monomeric and dimeric CXCL12 inhibit metastasis through distinct
600 CXCR4 interactions and signaling pathways. *Proc Natl Acad Sci U S A* **108**, 17655-17660,
601 doi:10.1073/pnas.1101133108 (2011).

602 31 Liu, K. *et al.* Structural basis of CXC chemokine receptor 2 activation and signalling.
603 *Nature* **585**, 135-140, doi:10.1038/s41586-020-2492-5 (2020).

604 32 Shao, Z. *et al.* Molecular insights into ligand recognition and activation of chemokine
605 receptors CCR2 and CCR3. *Cell Discov* **8**, 44, doi:10.1038/s41421-022-00403-4 (2022).

606 33 Shao, Z. *et al.* Identification and mechanism of G protein-biased ligands for chemokine
607 receptor CCR1. *Nat Chem Biol* **18**, 264-271, doi:10.1038/s41589-021-00918-z (2022).

608 34 Zhang, H. *et al.* Structural basis for chemokine recognition and receptor activation of
609 chemokine receptor CCR5. *Nat Commun* **12**, 4151, doi:10.1038/s41467-021-24438-5
610 (2021).

611 35 Wasilko, D. J. *et al.* Structural basis for chemokine receptor CCR6 activation by the
612 endogenous protein ligand CCL20. *Nat Commun* **11**, 3031, doi:10.1038/s41467-020-
613 16820-6 (2020).

614 36 Ishimoto, N. *et al.* Structural basis of CXC chemokine receptor 1 ligand binding and
615 activation. *Nat Commun* **14**, 4107, doi:10.1038/s41467-023-39799-2 (2023).

616 37 Yen, Y. C. *et al.* Structures of atypical chemokine receptor 3 reveal the basis for its
617 promiscuity and signaling bias. *Sci Adv* **8**, eabn8063, doi:10.1126/sciadv.abn8063 (2022).

618 38 Saaber, F. *et al.* ACKR3 Regulation of Neuronal Migration Requires ACKR3
619 Phosphorylation, but Not beta-Arrestin. *Cell Rep* **26**, 1473-1488 e1479,
620 doi:10.1016/j.celrep.2019.01.049 (2019).

621 39 Gustavsson, M., Dyer, D. P., Zhao, C. & Handel, T. M. Kinetics of CXCL12 binding to
622 atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine
623 binding. *Sci Signal* **12**, doi:10.1126/scisignal.aaw3657 (2019).

624 40 Crump, M. P. *et al.* Solution structure and basis for functional activity of stromal cell-
625 derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1.
626 *EMBO J* **16**, 6996-7007, doi:10.1093/emboj/16.23.6996 (1997).

627 41 Juan, A. B. & Harel, W. in *Receptor Molecular Biology* Vol. 25 (ed C. Sealfon Stuart) 366-
628 428 (Academic Press, 1995).

629 42 Brelot, A., Heveker, N., Montes, M. & Alizon, M. Identification of residues of CXCR4
630 critical for human immunodeficiency virus coreceptor and chemokine receptor
631 activities. *J Biol Chem* **275**, 23736-23744, doi:10.1074/jbc.M000776200 (2000).

632 43 Wescott, M. P. *et al.* Signal transmission through the CXC chemokine receptor 4 (CXCR4)
633 transmembrane helices. *Proc Natl Acad Sci U S A* **113**, 9928-9933,
634 doi:10.1073/pnas.1601278113 (2016).

635 44 Wang, J., Tannous, B. A., Poznansky, M. C. & Chen, H. CXCR4 antagonist AMD3100
636 (plerixafor): From an impurity to a therapeutic agent. *Pharmacol Res* **159**, 105010,
637 doi:10.1016/j.phrs.2020.105010 (2020).

638 45 Rosenkilde, M. M. *et al.* Molecular mechanism of AMD3100 antagonism in the CXCR4
639 receptor: transfer of binding site to the CXCR3 receptor. *J Biol Chem* **279**, 3033-3041,
640 doi:10.1074/jbc.M309546200 (2004).

641 46 Bridger, G. J. *et al.* Synthesis and structure-activity relationships of
642 phenylenebis(methylene)-linked bis-tetraazamacrocycles that inhibit HIV replication.
643 Effects of macrocyclic ring size and substituents on the aromatic linker. *J Med Chem* **38**,
644 366-378, doi:10.1021/jm00002a019 (1995).

645 47 Bobkov, V. *et al.* Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. *Mol Pharmacol* **96**, 753-764, doi:10.1124/mol.119.116954 (2019).

646 48 Hutchings, C. J., Koglin, M., Olson, W. C. & Marshall, F. H. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. *Nat Rev Drug Discov* **16**, 787-810, doi:10.1038/nrd.2017.91 (2017).

647 49 Murphy, A. J. *et al.* Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. *Proc Natl Acad Sci U S A* **111**, 5153-5158, doi:10.1073/pnas.1324022111 (2014).

648 50 Macdonald, L. E. *et al.* Precise and *in situ* genetic humanization of 6 Mb of mouse immunoglobulin genes. *Proc Natl Acad Sci U S A* **111**, 5147-5152, doi:10.1073/pnas.1323896111 (2014).

649 51 Ma, Y. *et al.* Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. *Sci Adv* **6**, eaax7379, doi:10.1126/sciadv.aax7379 (2020).

650 52 Filipek, S. Molecular switches in GPCRs. *Curr Opin Struct Biol* **55**, 114-120, doi:10.1016/j.sbi.2019.03.017 (2019).

651 53 Hernanz-Falcon, P. *et al.* Identification of amino acid residues crucial for chemokine receptor dimerization. *Nat Immunol* **5**, 216-223, doi:10.1038/ni1027 (2004).

652 54 Percherancier, Y. *et al.* Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. *J Biol Chem* **280**, 9895-9903, doi:10.1074/jbc.M411151200 (2005).

653 55 Hamatake, M. *et al.* Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. *Cancer Sci* **100**, 95-102, doi:10.1111/j.1349-7006.2008.00997.x (2009).

654 56 Lao, J. *et al.* Single-Molecule Imaging Demonstrates Ligand Regulation of the Oligomeric Status of CXCR4 in Living Cells. *J Phys Chem B* **121**, 1466-1474, doi:10.1021/acs.jpcb.6b10969 (2017).

655 57 Stephens, B. & Handel, T. M. Chemokine receptor oligomerization and allostery. *Prog Mol Biol Transl Sci* **115**, 375-420, doi:10.1016/B978-0-12-394587-7.00009-9 (2013).

656 58 Martinez-Munoz, L., Villares, R., Rodriguez-Fernandez, J. L., Rodriguez-Frade, J. M. & Mellado, M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. *J Leukoc Biol* **104**, 323-331, doi:10.1002/JLB.2MR1217-503R (2018).

657 59 Tan, Y. Z. *et al.* Addressing preferred specimen orientation in single-particle cryo-EM through tilting. *Nat Methods* **14**, 793-796, doi:10.1038/nmeth.4347 (2017).

658 60 Tucker, K., Sridharan, S., Adesnik, H. & Brohawn, S. G. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs. *Nat Commun* **13**, 4842, doi:10.1038/s41467-022-32441-7 (2022).

659 61 Morizumi, T. *et al.* Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K(+) and Na(+) selectivities. *Nat Commun* **14**, 4365, doi:10.1038/s41467-023-40041-2 (2023).

660 62 Legler, D. F. *et al.* Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. *Mol Pharmacol* **91**, 331-338, doi:10.1124/mol.116.107151 (2017).

687 63 Peter, J. C. *et al.* Antibodies against the melanocortin-4 receptor act as inverse agonists
688 in vitro and in vivo. *Am J Physiol Regul Integr Comp Physiol* **292**, R2151-2158,
689 doi:10.1152/ajpregu.00878.2006 (2007).

690 64 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
691 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
692 doi:10.1038/nmeth.4169 (2017).

693 65 Bepler, T. *et al.* Positive-unlabeled convolutional neural networks for particle picking in
694 cryo-electron micrographs. *Nat Methods* **16**, 1153-1160, doi:10.1038/s41592-019-0575-
695 8 (2019).

696 66 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
697 determination in RELION-3. *eLife* **7**, doi:10.7554/eLife.42166 (2018).

698 67 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12,
699 doi:10.1016/j.jsb.2015.11.003 (2016).

700 68 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
701 electron micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).

702 69 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
703 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

704 70 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.
705 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493
706 (2010).

707 71 Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and crystallography.
708 *Acta Crystallogr D Struct Biol* **74**, 531-544, doi:10.1107/S2059798318006551 (2018).

709 72 Murphy, J. W., Yuan, H., Kong, Y., Xiong, Y. & Lolis, E. J. Heterologous quaternary
710 structure of CXCL12 and its relationship to the CC chemokine family. *Proteins* **78**, 1331-
711 1337, doi:10.1002/prot.22666 (2010).

712 73 Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and
713 Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint
714 generation. *Acta Crystallogr D Biol Crystallogr* **65**, 1074-1080,
715 doi:10.1107/S0907444909029436 (2009).

716 74 Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S. & Richardson, D. C. New tools
717 in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink "waters,"
718 and NGL Viewer to recapture online 3D graphics. *Protein Sci* **29**, 315-329,
719 doi:10.1002/pro.3786 (2020).

720 75 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state.
721 *J Mol Biol* **372**, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).

722 76 Schrodinger, L. The PyMOL Molecular Graphics System.

723 77 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
724 and developers. *Protein Sci* **30**, 70-82, doi:10.1002/pro.3943 (2021).

725

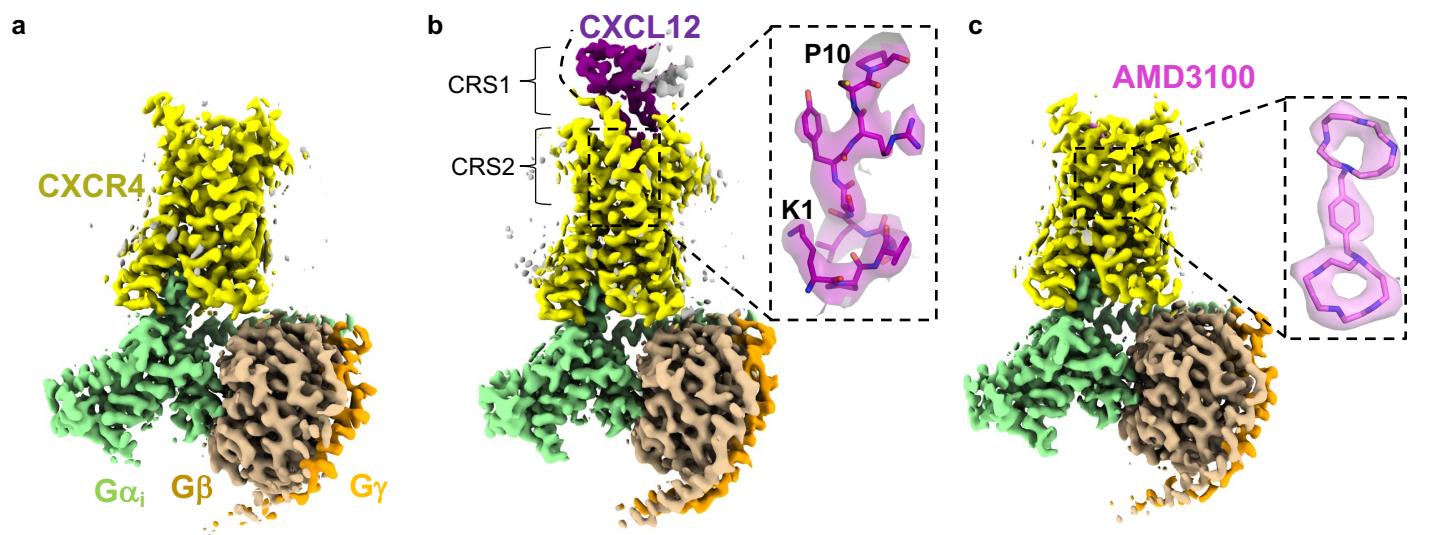
726 **Acknowledgements**

727 We thank various Regeneron scientists including Yi Zhou, Micah Rapp, and Drew Murphy for
728 discussions, Linda Molla and Samira Chandwani for project management, and Regeneron
729 cloud/HPC teams for supporting cryoEM data storage and processing.

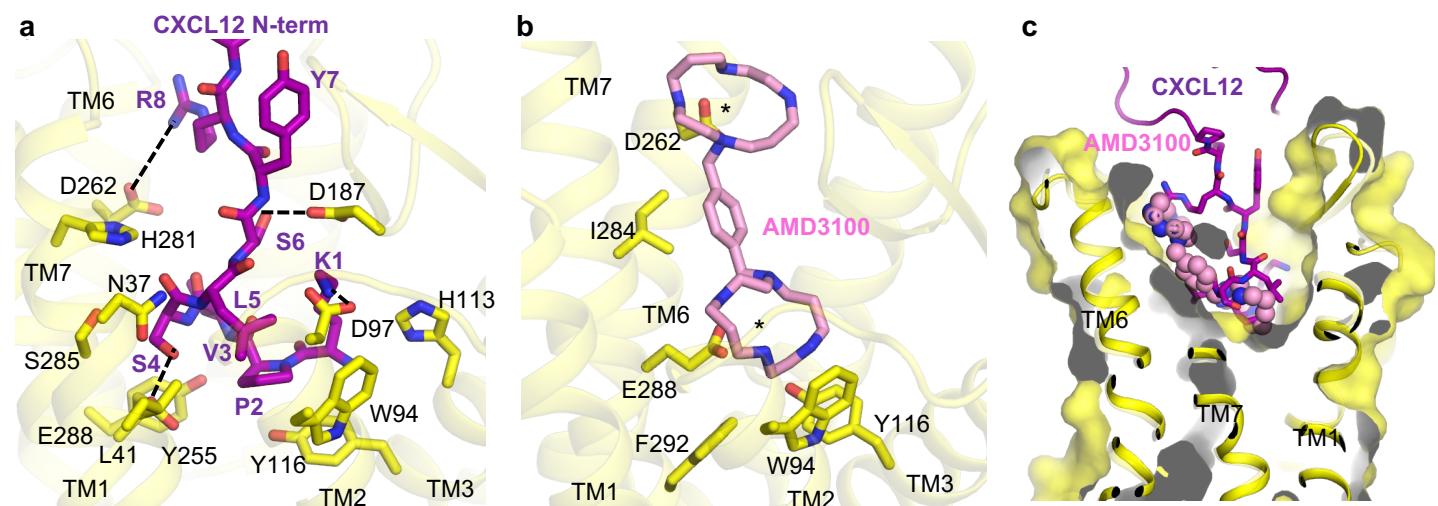
730

731 **Author contributions**

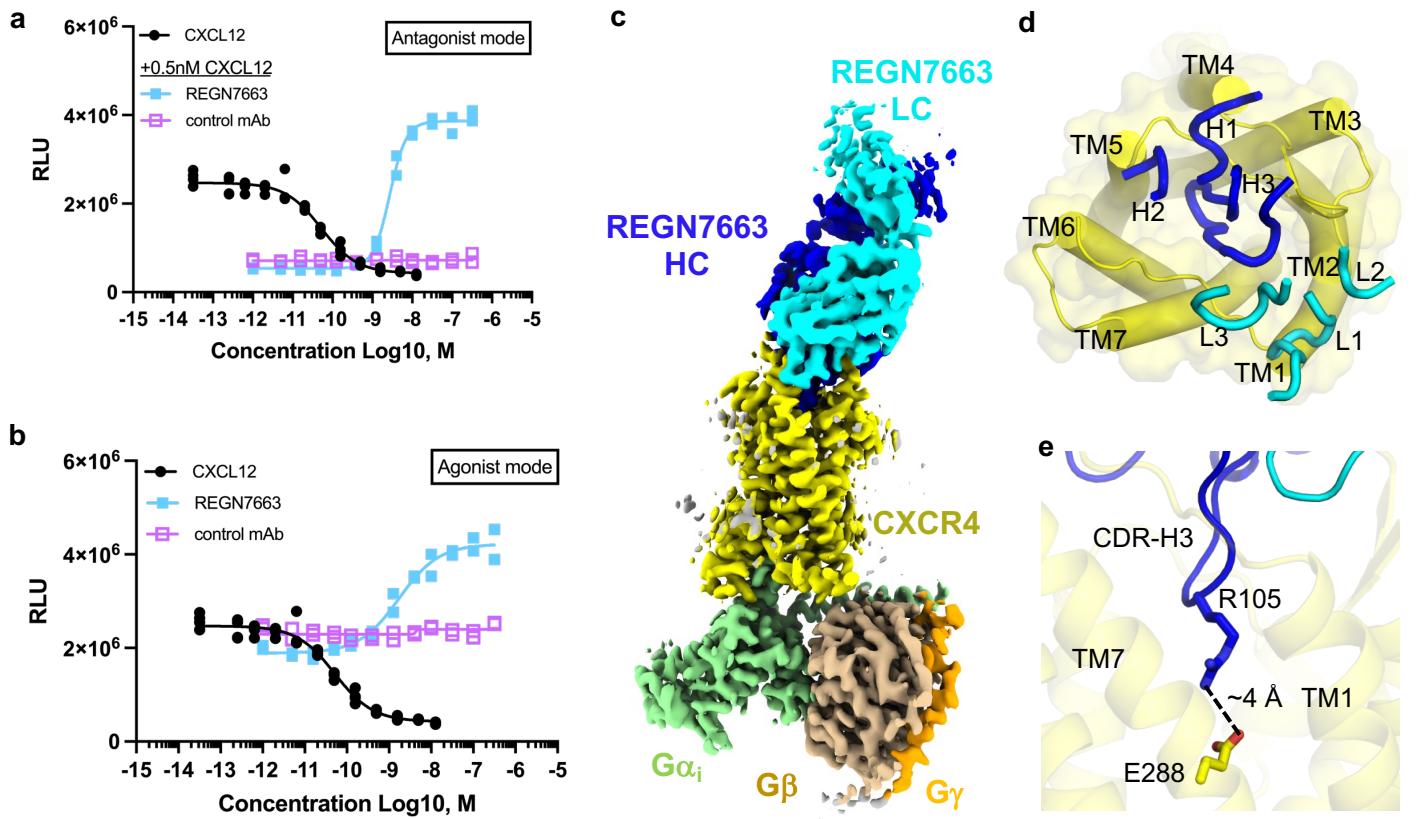
732 K.S., L.L.M., J.H., M.M., J.H.K. and M.C.F. conceptualized the studies. L.L.M. and T.R. expressed
733 and purified proteins for cryoEM. K.S. conducted cryoEM experiments and analyzed structural
734 data, with contributions from M.C.F.. J.H. and S.S. conducted Cre-Luciferase assays. K.S., L.L.M.,
735 J.H., M.M., J.H.K., R.L., W.C.O., and M.C.F. analyzed data and supervised the overall project. K.S.
736 and L.L.M. drafted the manuscript with input from J.H. and M.C.F. The manuscript was finalized
737 by all authors.

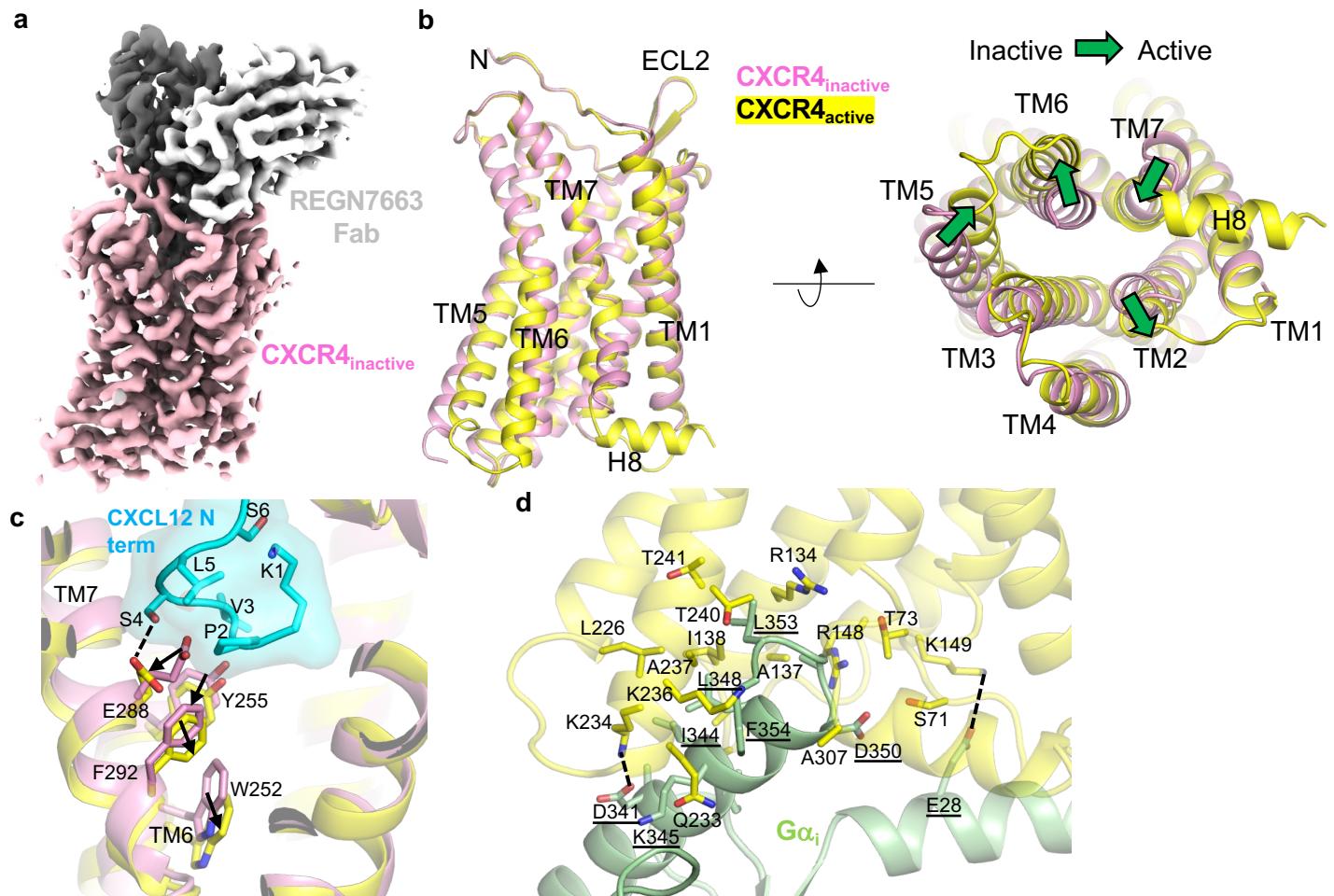

738

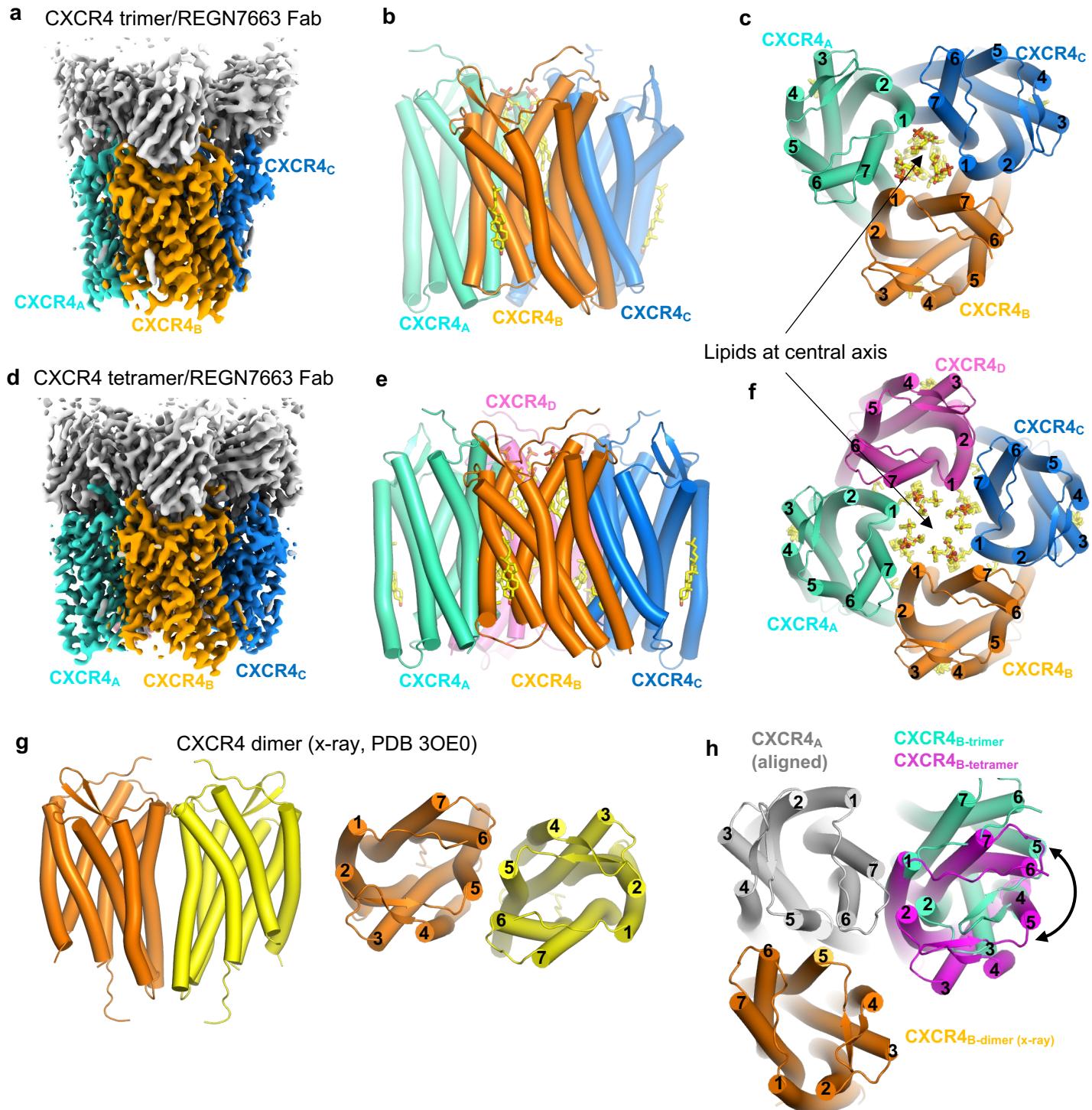
739 **Competing interests**


740 Regeneron authors own options and/or stock of the company. W.C.O. is an officer of
741 Regeneron.

742


743


Figure 1. CryoEM reconstructions of CXCR4/G_i complexes. a, apo CXCR4/G_i complex. b, CXCR4/G_i/CXCL12 complex. Inset shows fit of CXCL12 N-terminal tail (res. 1-10) in cryoEM map, shown as semitransparent surface. Locations of chemokine recognition sites 1 and 2 are labeled. Curved dotted line represents missing density for distal N-terminus of CXCR4, which has been reported to interact with CXCL12. c, CXCR4/G_i/AMD3100 complex. Inset shows fit of AMD3100 compound in cryoEM map.


Figure 2. Interactions between CXCR4 and ligands. **a**, expanded view of interaction between CXCL12 N-terminal tail and CXCR4 orthosteric pocket. Hydrogen-bonding and electrostatic interactions are depicted as dashed lines. **b**, expanded view of AMD3100 binding at CXCR4 orthosteric pocket. Asterisks indicate positions of the two lactam rings, each of which interact with acidic residues. **c**, cutaway surface view of CXCR4 orthosteric pocket. CXCL12 N-term is shown as sticks and AMD3100 is shown as spheres to illustrate their relative binding positions in the orthosteric pocket.

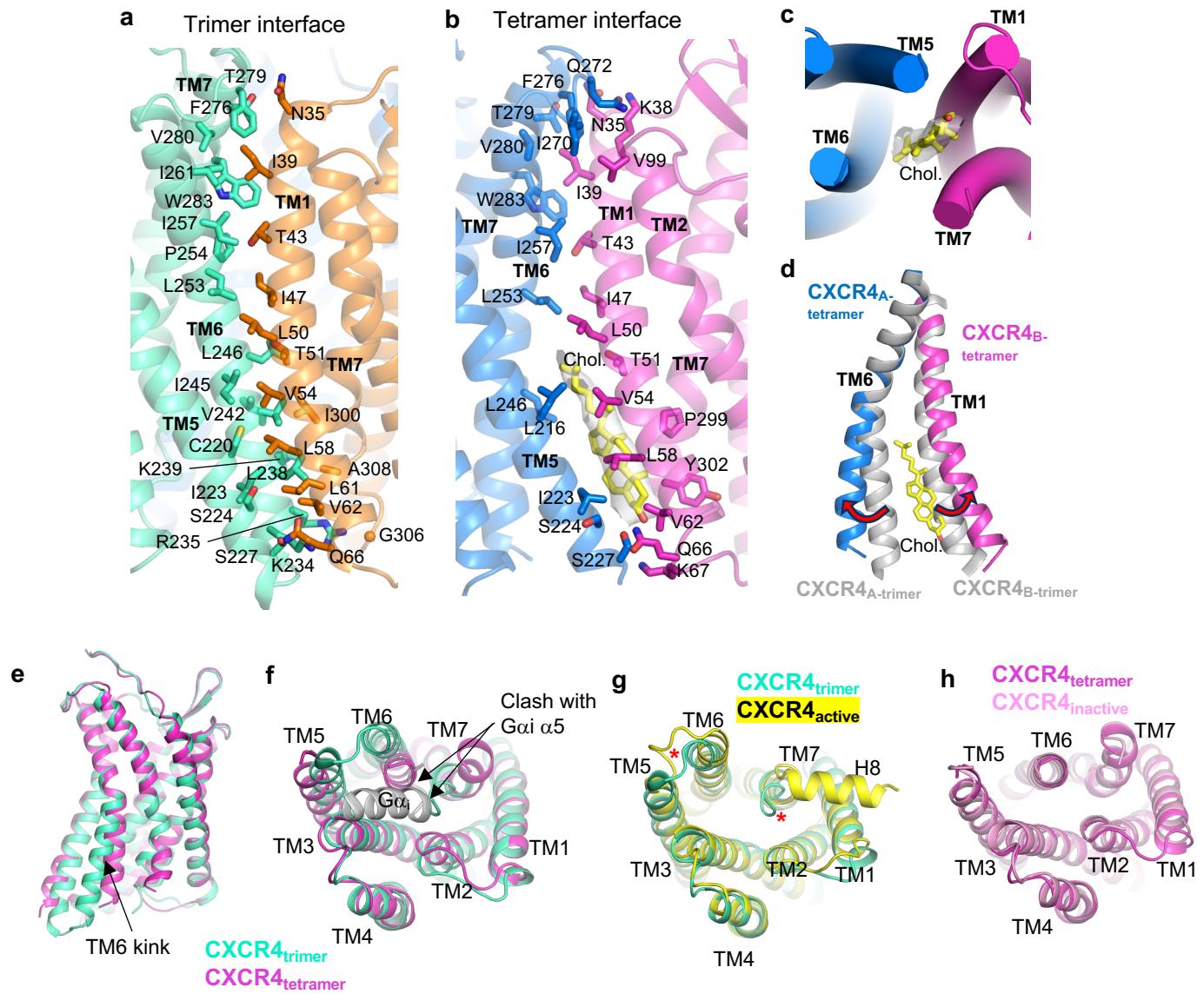

Figure 3. CXCR4 antagonism by REGN7663 mAb. **a**, CRE-Luciferase reporter assay showing CXCL12-dependent decrease in signal and block of CXCL12 activity (at 0.5 nM CXCL12) by REGN7663. **b**, REGN7663 shows concentration-dependent increase in signal relative to baseline in the absence of CXCL12, demonstrating inverse agonism. In (a) and (b), data from two replicate experiments are shown for the REGN7663 and control mAb, and four replicates are shown for CXCL12 (the same data for CXCL12 are shown in (a) and (b) to allow comparison with mAb data). **c**, cryoEM reconstruction of CXCR4_{EM}/G/REGN7663 Fab complex, with each polypeptide chain colored differently. **d**, top-down view of CXCR4 (yellow) with CDR loops of bound REGN7663 shown (blue = heavy chain, cyan = light chain). **e**, electrostatic interaction between CDR-H3 of REGN7663 and CXCR4 orthosteric pocket-facing residue E288.

Figure 4. Inactive CXCR4 structure and structural bases of activation. **a**, cryoEM reconstruction of inactive CXCR4_{EM}/REGN7663 Fab complex (CXCR4=pink, REGN7663 heavy chain=gray, REGN7663 light chain=white). **b**, structural alignment of inactive CXCR4 (pink) and active CXCR4 (yellow, CXCR4_{EM}/G_i/REGN7663 Fab complex was used for alignment). Side view is shown on left and bottom-up view is shown on right. Green block arrows depict conformational transitions from inactive to active CXCR4. **c**, expanded view showing CXCL12 N-term (cyan) binding to active CXCR4 (yellow). Inactive CXCR4 (pink) is shown for comparison and residues important for transmitting chemokine binding into activation are shown as sticks. **d**, expanded view of G α_i (light green) binding to active CXCR4 (yellow). Residues participating in interaction are shown as sticks and labeled (G α_i residue labels underlined). Electrostatic interactions are highlighted with dashed lines.

Figure 5. Oligomeric CXCR4 structures. **a**, cryoEM reconstruction of CXCR4 trimer in complex with REGN7663 Fab. **b,c**, side (b) and top-down (c) views of CXCR4 trimer structure. TM helices are shown as cylinders and bound lipids are shown as sticks. Fab molecules are omitted for clarity. **d**, cryoEM reconstruction of CXCR4 tetramer in complex with REGN7663 Fab. **e, f**, side (e) and top-down (f) views of CXCR4 tetramer structure. **g**, side (left) and top (right) views of previously reported dimeric crystal structure of CXCR4. **h**, Top-down view of a CXCR4 protomer (gray) showing positions of neighboring subunits from dimer (orange), trimer (cyan) and tetramer (magenta).

Figure 6. Oligomeric interfaces and protomer conformations. **a**, interprotomer interface of CXCR4 trimer. Interface residues are shown as sticks and labeled. **b**, interprotomer interface of CXCR4 tetramer. Interface residues and modeled cholesterol shown as sticks. Density corresponding to cholesterol is shown as transparent gray surface. **c**, bottom-up view showing position of cholesterol at the tetramer interface. **d**, structural alignment of TM6 and TM1 at the trimer (gray) and tetramer (blue and magenta, with cholesterol in yellow sticks). **e,f**, side (e) and bottom-up (f) views of protomeric structures of trimeric (cyan) and tetrameric (magenta) CXCR4. Binding of $\text{G}\alpha_i \alpha 5$ helix (gray) is prevented by steric clash. **g**, structural alignment of trimeric CXCR4 protomer (cyan) and active CXCR4 protomer (yellow). Red asterisks highlight the distinct positions of ICL3 and TM7. **h**, structural alignment of tetrameric CXCR4 protomer (magenta) and inactive CXCR4 (pink).

aCXCR4_{EM} (UniProt ref.: P61073)

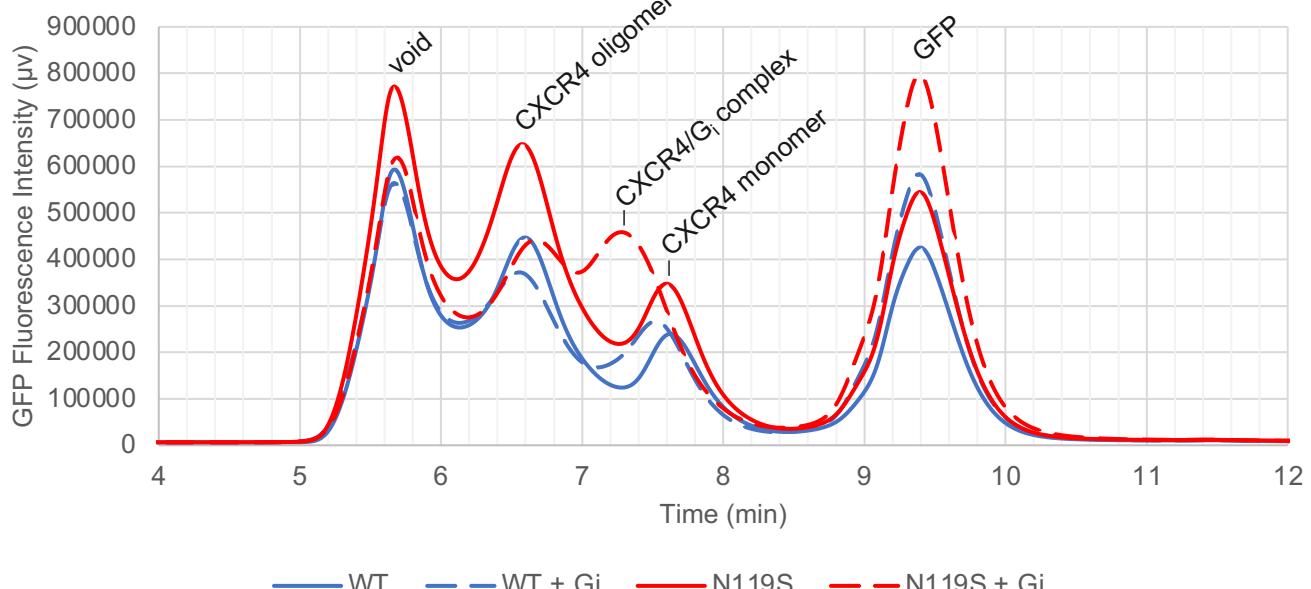
MKTIIALSYIFCLVFAGAPEGISIYTSNDNYTEEMGSGDYDSMKEPCFREENANFNKIFLPTIYSIIFLTGIVGNGLVILVMGYQKKLR
 SMTDKYRLHLSVAADLLFVITLPFWAVDAVANWYFGNFLCKAVHVIYTV~~S~~LYSSVILAFISLDRYLAIVHATNSQRPRKLLAEKVV
 YVGWWIPALLLTIPDFIFANVSEADDRYICDRFYPNDLWVVFQFQHIMVGLLPGIVILSCYCIISKLHSKGHQKRKALKTTVIL
 AFFACWLPPYYIGISIDSFILLEIIKQGCEFENTVHKWISITEALAFFHCCLNPILYAFLGAKFKTSAQHALTSVSRGSSLKILSKGKRG
 GHSSVSTESESSSFHSS~~GRPL~~LEVLFQGPGGGGSVSKGEELFTGVVPIVLELDGVNGHKFSVSGEGEGDATYGKLT~~LF~~ICTT
 GKL~~P~~WPWPTLV~~T~~TYGVQCFSRYPDHMKQHDF~~F~~KSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKED
 GNILGHKLEYNNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSKL~~S~~KDPNEKRDH
 MVLLEFVTAAGITLGMDELYKDYKDDDDK

HA signal peptide – linker – CXCR4 (residues 2-252 + **N119S**) – linker – 3C site – linker – monomeric eGFP (+H231L) – FLAG

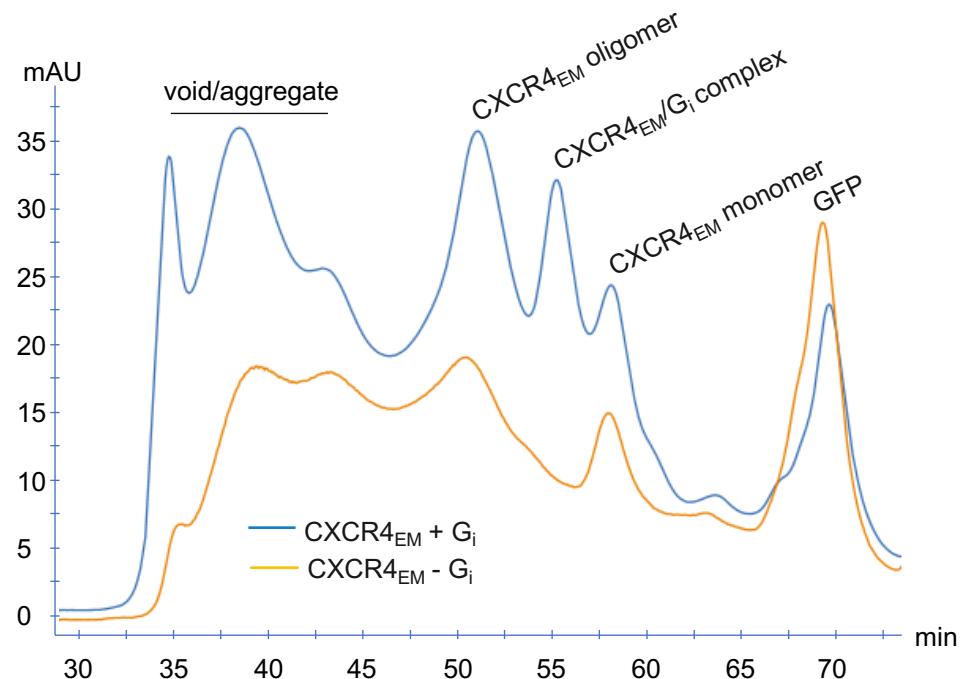
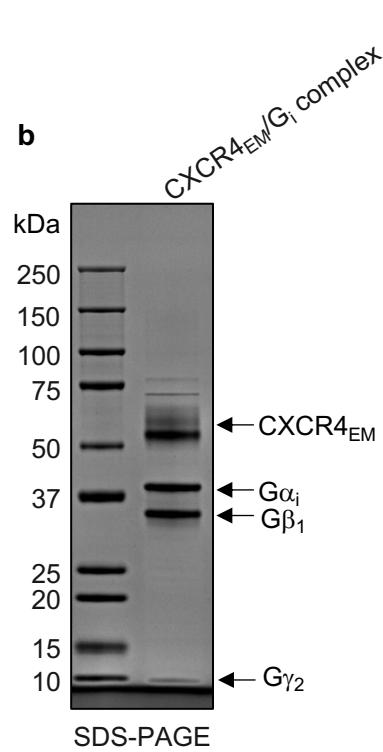
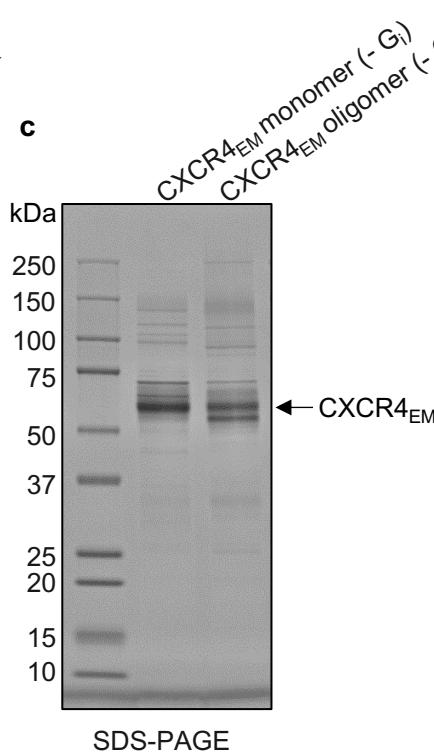
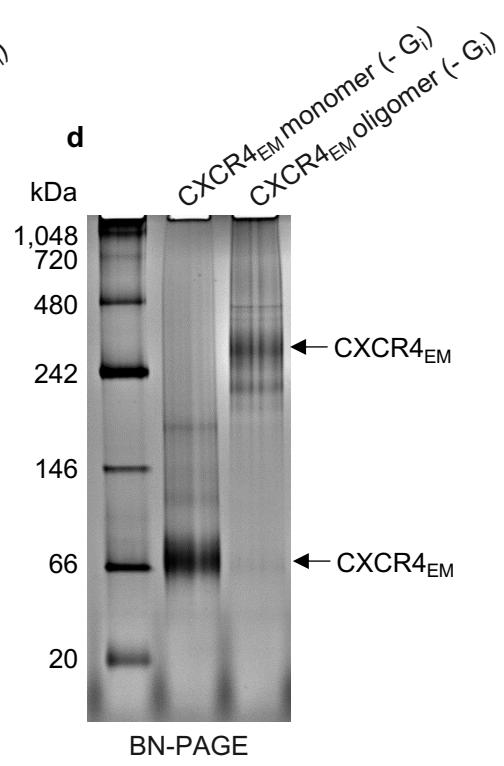
G α _{i1-DM} (UniProt ref.: P63096)

MHHHHHH~~CCGCS~~GCTLSAEDKAAVERS~~K~~MDRNLRE~~DGE~~KAAREV~~K~~LLLLGAGES~~GK~~~~C~~TIVKQMKIIHEAGYSEE~~ECK~~Q~~Y~~K~~A~~
 VVYSNTIQSIIAIRAMGRLKIDFGDSARADDARQLFVLAGAAE~~E~~GFMTAELAGV~~K~~R~~L~~W~~K~~DSGVQACF~~N~~RSREYQLNSAAYYL
 NDLDRIAQP~~N~~YIPTQQDVL~~R~~TRVK~~T~~GIVETHFTFKDLHFKMF~~D~~V~~T~~AQRSERKKWIHC~~F~~EGVT~~A~~IFC~~V~~ALSDYDLV~~A~~EDEEMN
 RMH~~A~~SMKLFD~~S~~ICNNKWF~~T~~DT~~S~~II~~L~~FLNKKDL~~F~~E~~E~~KIKKSP~~L~~TC~~Y~~PEYAGSNTYEEAAAYIQCQF~~E~~DLNKRKD~~T~~KEIYTHFTC~~S~~
 DTKNIVQFVF~~D~~AV~~T~~DV~~I~~I~~K~~NNLKD~~C~~GLF

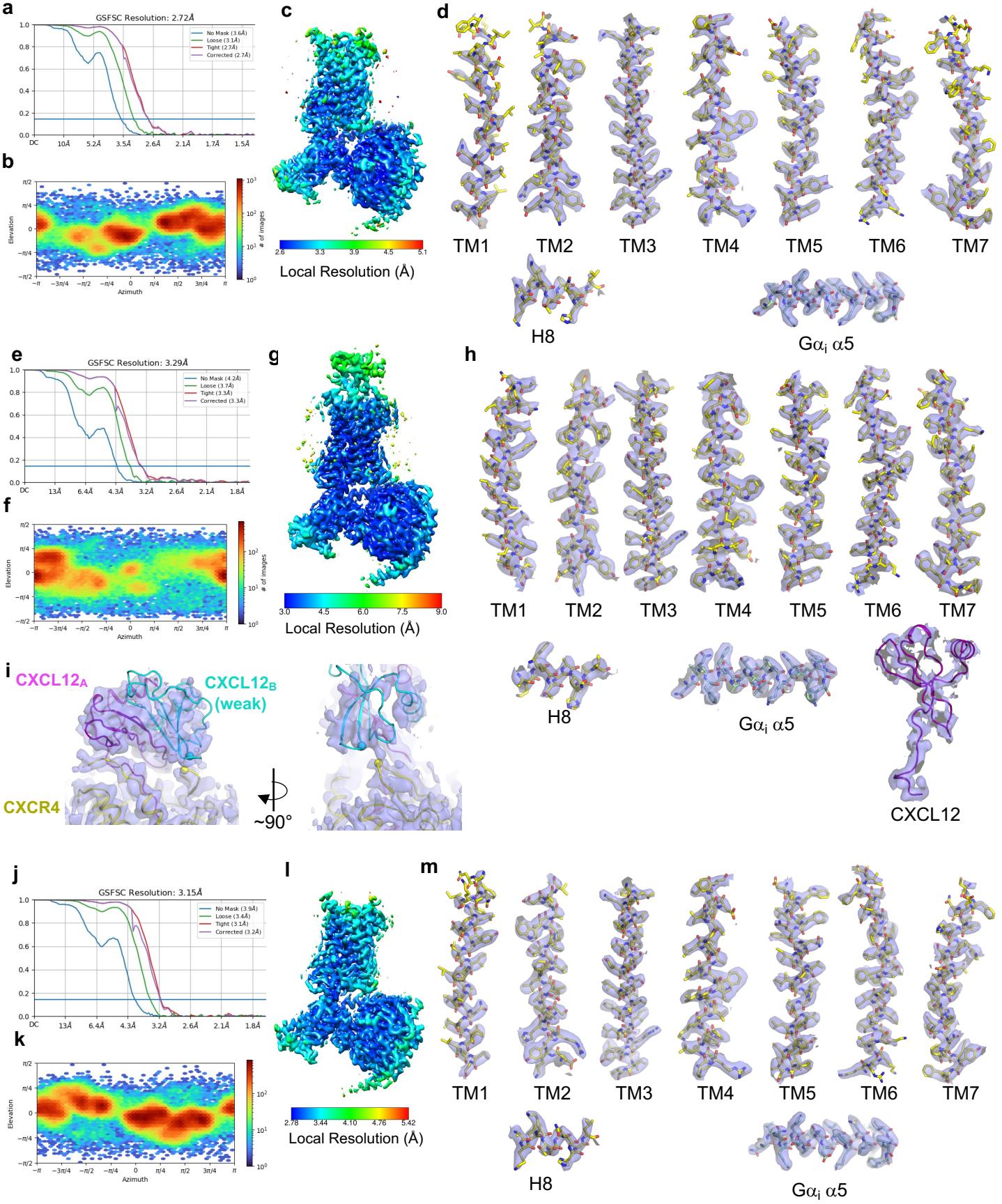
Methionine – 6x His – linker – G α _{i1-DN} (residues 2-354 + **S47C**, **G202T**, **G203A**, **E245A**, **A326S**)


G β ₁ (UniProt ref.: P62873)

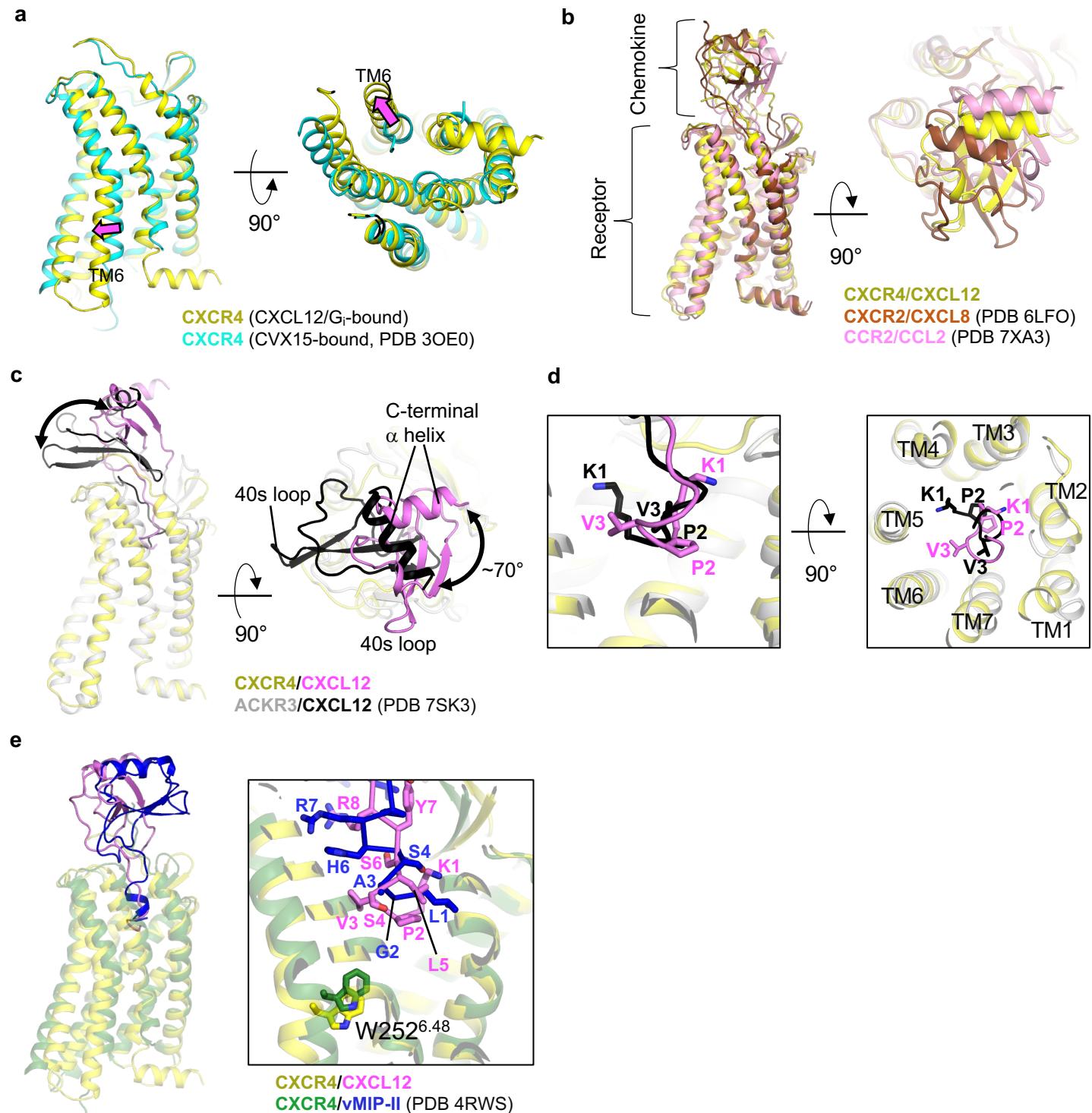
MHHHHHHGSSGSELDQLRQEAEQLKNQIRDARKACADATLSQITNNIDPVGRIQMRT~~R~~TLRGHLAKIYAMHWGTD~~S~~RLLV~~S~~
 SQDGK~~L~~IWD~~S~~YTT~~N~~KVHA~~I~~PLRSSW~~V~~MT~~C~~AYAPSGNYVACGGLDN~~I~~CSIY~~N~~L~~K~~T~~E~~GNVR~~S~~REL~~A~~GH~~T~~GYL~~S~~CCR~~F~~LDD~~N~~Q~~I~~
 VTSSGDTTCALW~~D~~IETGQQ~~T~~FTGHTG~~D~~VMSL~~S~~APD~~T~~RLFVSGACDASAKLWDV~~R~~EGMCRQ~~T~~FTG~~H~~ESD~~I~~NAICFFP~~G~~N~~G~~
 AFATGSDDATCRLFDL~~R~~ADQ~~E~~LM~~T~~YSHD~~N~~IICGITSFSKSG~~R~~LLAGYDDFNCNVWDALKAD~~R~~AGVLAGHDN~~R~~V~~S~~CLG~~V~~~~T~~
 DGMAVATGSWDSFLKIWN





Methionine – 6x His – G β ₁ (residues 2-340)

G γ ₂ (UniProt ref.: P59768)

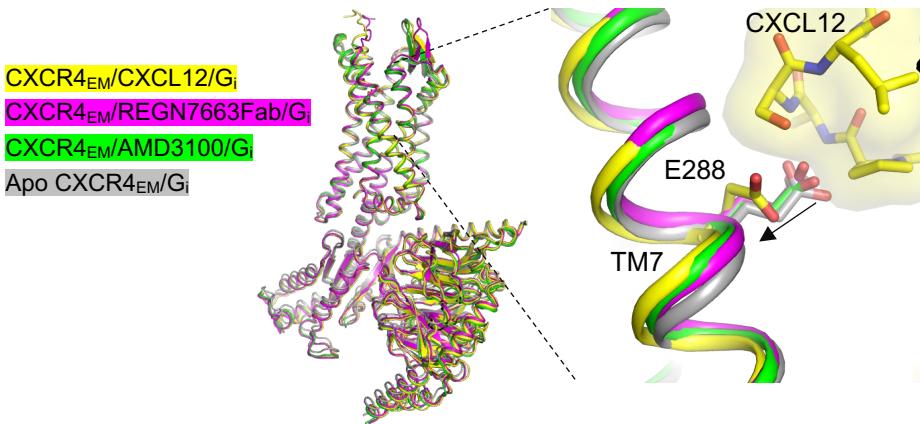

MASNNTASIAQARKLVEQLKMEANIDRIKVSKAAADLMAYCEAHAKEDPLLTPV~~P~~ASENP~~F~~REKKFFCAIL

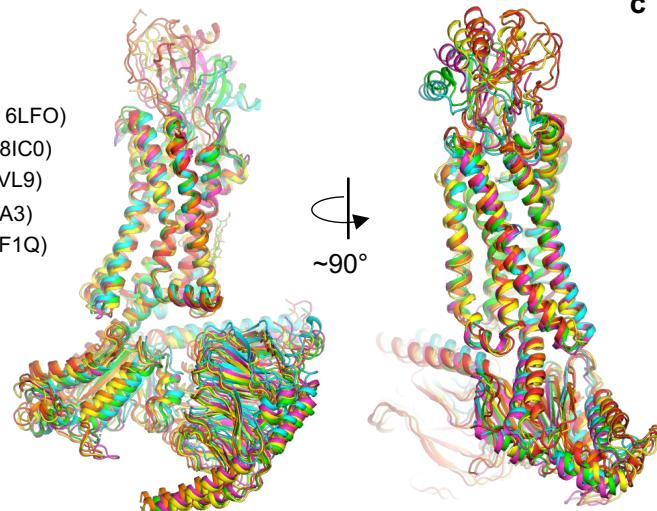
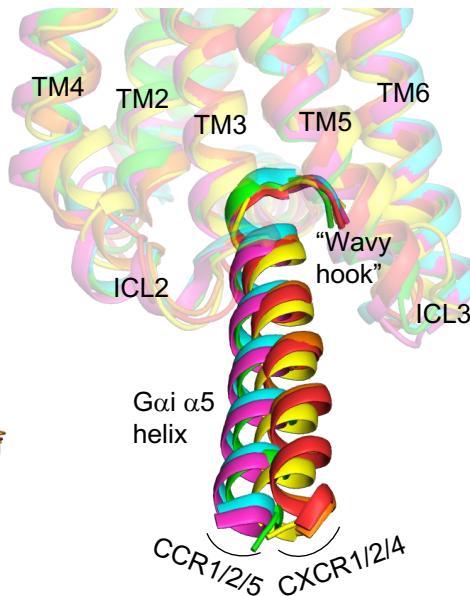
b

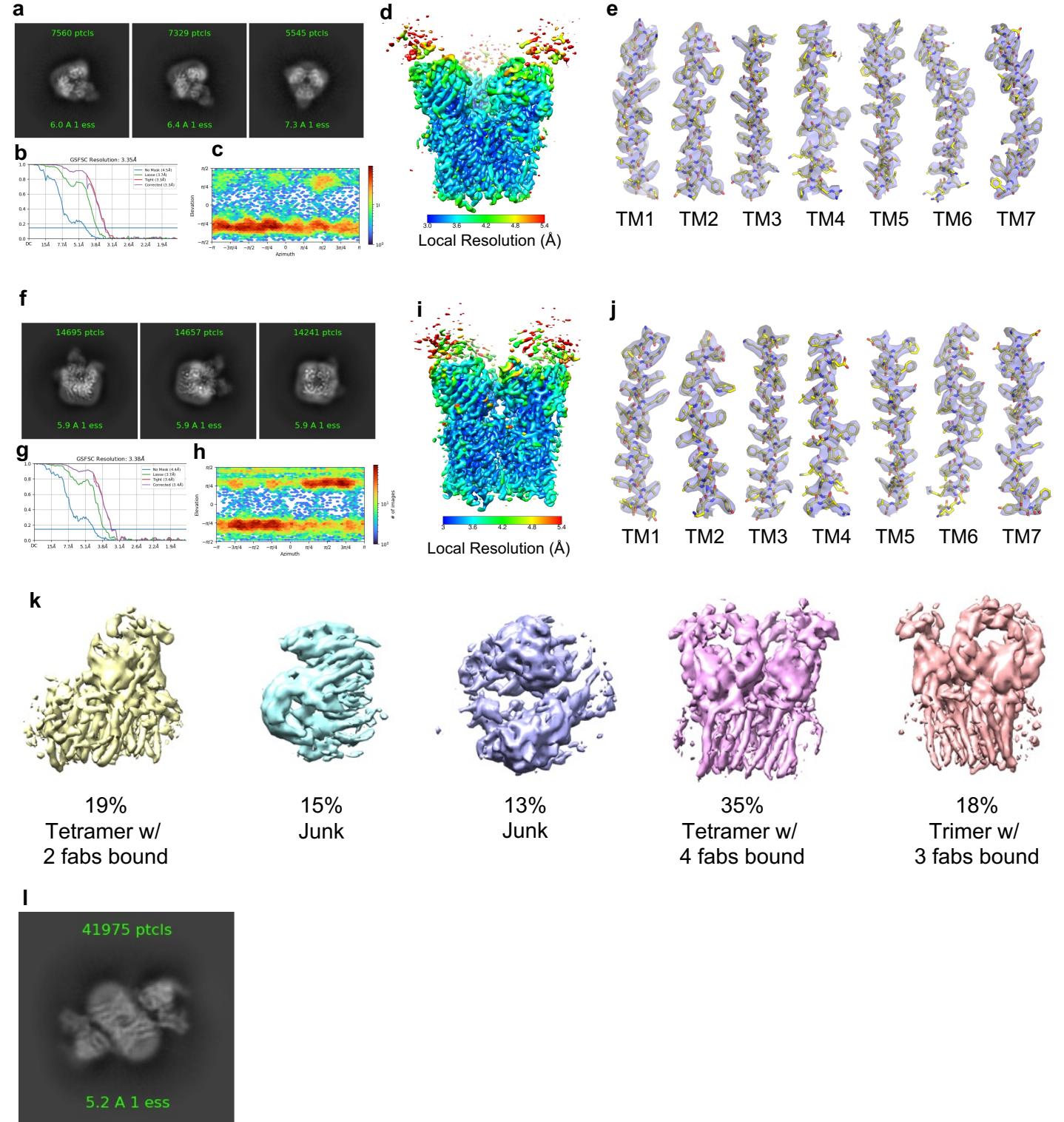

Extended Data Fig. 1. Protein constructs and FSEC-based protein screening. **a**, Primary structures of protein constructs used in structural studies. **b**, Fluorescence-detection size exclusion chromatography (FSEC) screening of wild type CXCR4 (blue) and N119S-containing CXCR4 (referred to as CXCR4_{EM}, red) in the presence (solid lines) or absence (dashed lines) of added G_i. The nominally wild type CXCR4 construct was identical to that shown in (a) without the N119S point mutation. Chromatograms are annotated with presumed peak positions of various species present in the samples.

a**b****c****d**

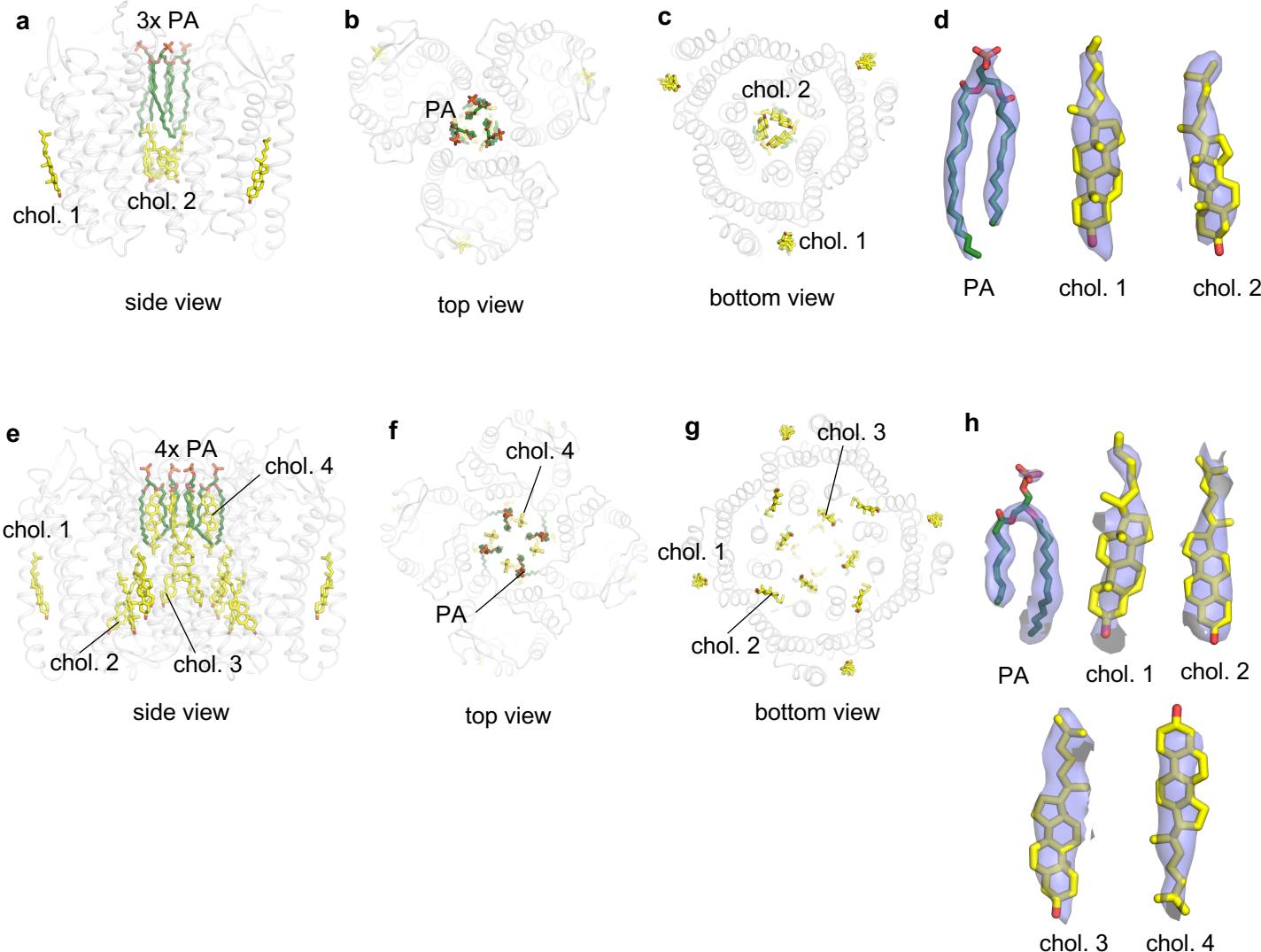
Extended Data Fig. 2. Purification of CXCR4 complexes. **a**, Size-exclusion chromatography (SEC) traces for a CXCR₄_{EM} purification with added G_i (blue), and for a purification prepared in the absence of exogenously added G_i (orange). **b,c**, SDS-PAGE (4-20% Tris-Glycine) showing the subunit content and purity of prepared cryoEM samples for CXCR₄_{EM}/G_i complex (b) and CXCR₄_{EM} prepared in the absence of added G_i. CXCR₄_{EM}/G_i complex sample is representative of multiple purifications performed. 2% (v/v) 2-Mercaptoethanol was present in the SDS-PAGE samples prior to loading. **d**, Blue native (BN) PAGE (4-16% Bis-Tris) of SEC-purified CXCR₄_{EM} monomer and oligomer samples prepared in the absence of added G_i.


Extended Data Fig. 3. CryoEM reconstruction of Apo CXCR4_{EM}/G_i, CXCL12-bound CXCR4_{EM}/G_i, AMD3100-bound CXCR4_{EM}/G_i. **a-d**, FSC curve (a), particle angular distribution plot (b), local resolution map calculated in cryoSPARC (c), and map/model fits of selected regions (d) for Apo CXCR4_{EM}/G_i. **e-h**, FSC curve (e), particle angular distribution plot (f), local resolution map calculated in cryoSPARC (g), and map/model fits of selected regions (h) for CXCL12-bound CXCR4_{EM}/G_i. **i**, two views showing fit of a CXCL12 dimer (arranged on the basis of PDB 3GV3) into cryoEM map, shown at 4 sigma in pymol. **j-m**, FSC curve (j), particle angular distribution plot (k), local resolution map calculated in cryoSPARC (l), and map/model fits of selected regions (m) for AMD3100-bound CXCR4_{EM}/G_i.

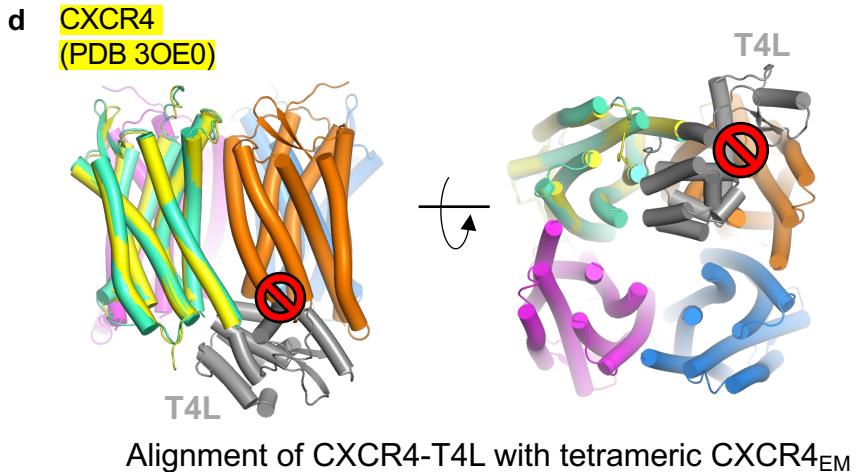
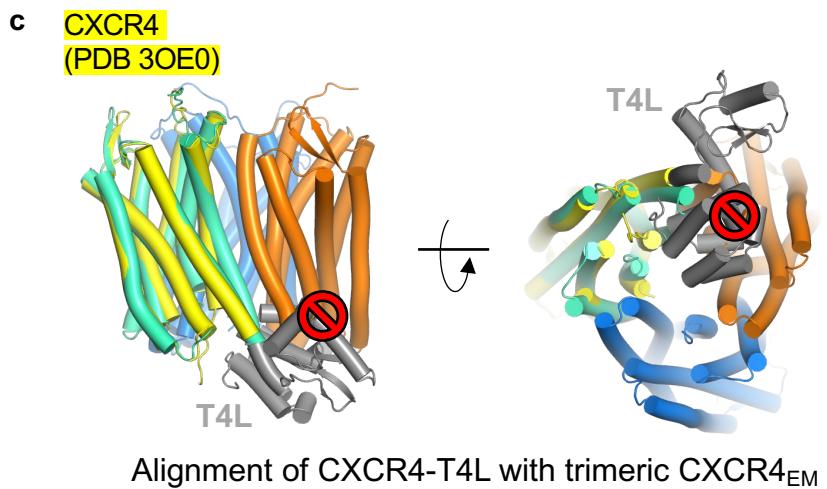
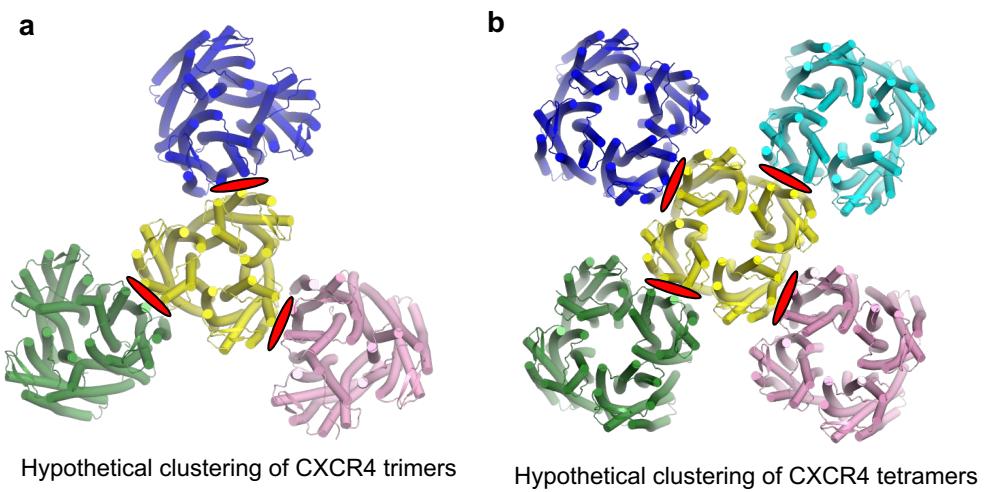


Extended Data Fig. 4. Structural comparisons of chemokine receptor structures. **a**, structural alignment of active CXCR4 (yellow, this study, CXCL12/G_i-bound complex) and inactive, antagonist-bound CXCR4 (cyan, PDB 3OE0). Magenta block arrows depict movement of TM6. **b**, Alignment of CXCR4/CXCL12 complex (yellow) with CXCR2/CXCL8 complex (brown, PDB 6LFO), and CCR2/CCL2 complex (pink, PDB 7XA3). G protein models are omitted for clarity. **c**, Receptor-based alignment of CXCR4/CXCL12 (yellow/pink) with ACKR3/CXCL12 (gray/black, PDB 7SK3). Arrow highlights different docking orientations of CXCL12 onto the two receptors. **d**, expanded views of showing different binding modes of CXCL12 N-termini (pink in CXCR4 complex and black in ACKR3 complex) in CXCR4 and ACKR3. **e**, alignment of CXCR4/CXCL12 complex (yellow/pink) and CXCR4/vMIP-II (green/blue). Inset shows expanded views of chemokine N-terminal positions within orthosteric pocket, highlighting the positions of toggle switch residue W252 in sticks.

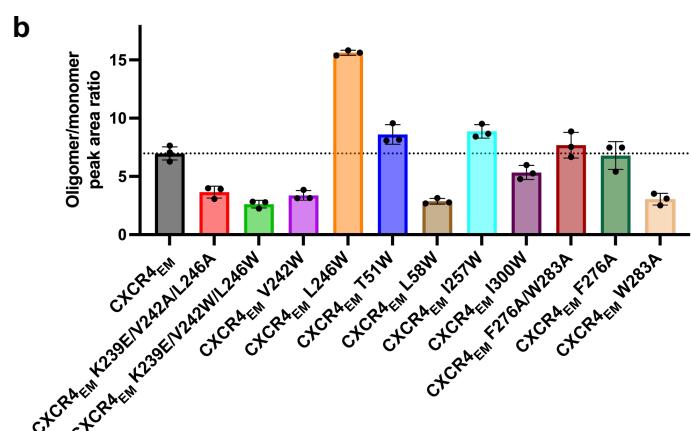
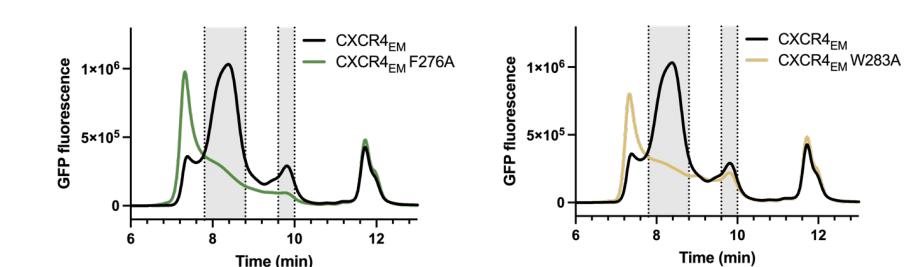
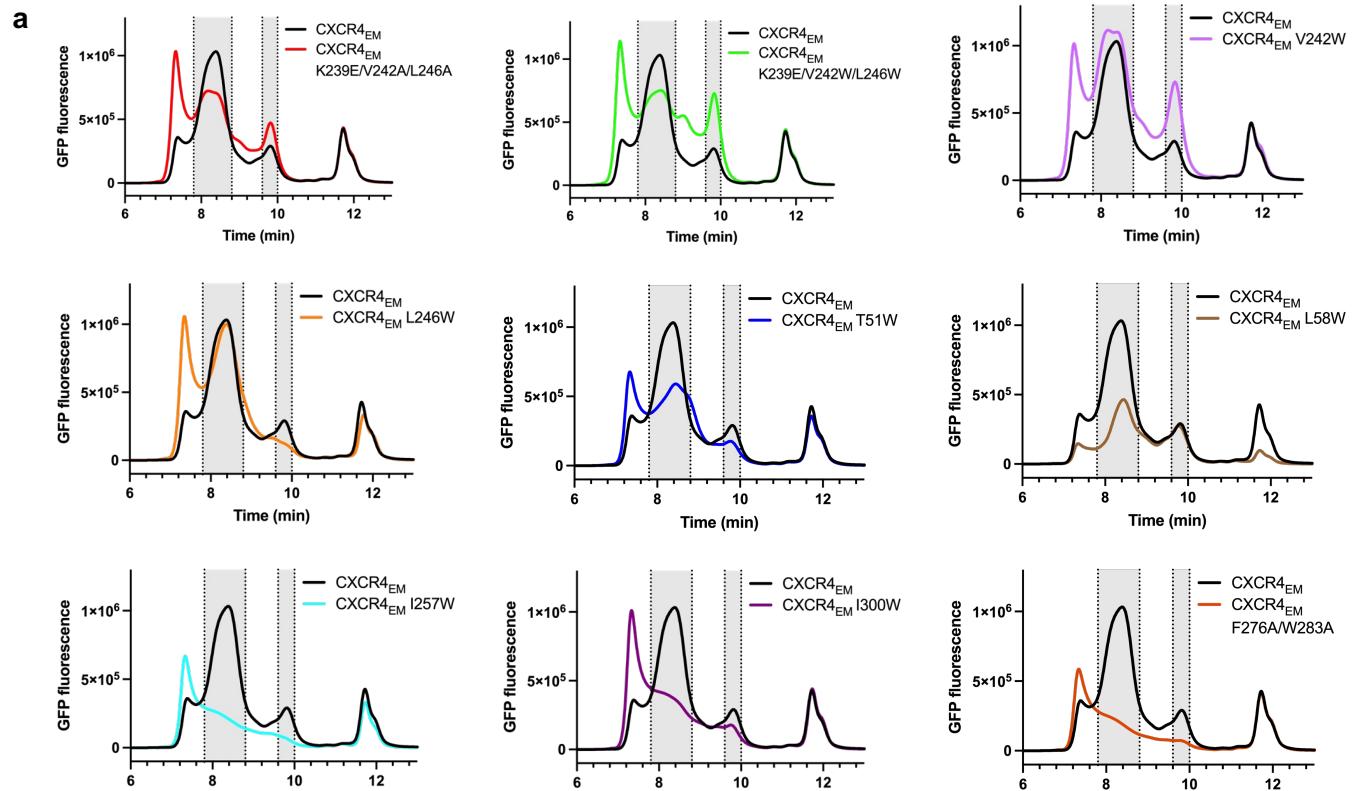

Extended Data Fig. 5. CryoEM reconstruction of REGN7663 Fab/CXCR4_{EM}/G_i and REGN7663 Fab/CXCR4_{EM}. **a-d**, FSC curve (a), particle angular distribution plot (b), local resolution map calculated in cryoSPARC (c), and map/model fits of selected regions (d) for REGN7663 Fab/CXCR4_{EM}/G_i. **e,f**, Expanded view of contacts between REGN7663 Fab (light chain in cyan, heavy chain in blue) and CXCR4 ECL2 (e) and N-term (f). Epitope and paratope residues are shown as sticks and labeled, and apparent salt bridges/hydrogen bonds between mAb and receptor are shown as dashed lines. **g**, structural alignment of CXCR4 bound to CXCL12 and REGN7663 Fab. N-term. and ECL2 are colored green (CXCL12-bound) or magenta (REGN7663 Fab-bound) to highlight their different positions. **h-k**, FSC curve (h), particle angular distribution plot (i), local resolution map calculated in cryoSPARC (j), and map/model fits of TM helices (k) for REGN7663 Fab/CXCR4_{EM} without G_i. **i**, aligned structures of CXCR4/REGN7663 Fab complex in the inactive (pink) and active (yellow, G_i-bound) conformations. Note the REGN7663 Fab variable region and cytoplasmic half of the CXCR4 domain are mostly superimposable.

a**b**


- CXCR4/CXCL12/G_i
- CXCR2/CXCL8/G_i (PDB 6LFO)
- CXCR1/CXCL8/G_i (PDB 8IC0)
- CCR1/CCL15/G_i (PDB 7VL9)
- CCR2/CCL2/G_i (PDB 7XA3)
- CCR5/MIP-1 α /G_i (PDB 7F1Q)

c




Extended Data Fig. 6. G α i interactions in chemokine receptors. **a**, alignment of CXCR4/Gi complexes bound to CXCL12 (yellow), REGN7663 Fab (magenta), AMD3100 (green) or in the absence of ligand (apo, gray). Inset shows expanded view around E288 residue. Bound CXCL12 is shown as yellow transparent surface and sticks, highlighting how it enforces a rotameric change of E288 and slight shift of TM7 in the CXCL12-bound complex. **b**, receptor-based alignment showing architecture of various chemokine/chemokine receptor/Gi complexes. **c**, expanded view showing docking of G α i α 5 helix into cytoplasmic pocket of chemokine receptors. Note that the G α i α 5 helix is positioned closer to ICL2 in CC chemokine receptor complexes, while it is closer to ICL3 in CXC chemokine receptor complexes.




Extended Data Fig. 7. CryoEM of CXCR4 oligomers. **a-e**, example 2D class averages obtained from tilted data collection (a), FSC curves (b), angular distribution plot (c), local resolution map (d) and model/map fits of TM helices (e) of trimeric CXCR4_{EM}/REGN7663 Fab complex. **f-j**, example 2D class averages obtained from tilted data collection (f), FSC curves (g), angular distribution plot (h), local resolution map (i) and model/map fits of TM helices (j) of tetrameric CXCR4_{EM}/REGN7663 Fab complex. **k**, Output maps from ab initio reconstruction conducted on the oligomeric CXCR4_{EM}/REGN7663 Fab particles. Particles belonging to classes of tetramer with 4 fabs bound or trimer with 3 fabs bound were selected for further processing. **l**, An example 2D class average showing an anti-parallel dimer of CXCR4_{EM}/G_i.

Extended Data Fig. 8. Lipids resolved in oligomeric structures of CXCR4. **a-c**, side (a), top-down (b) and bottom-up (c) views of trimeric CXCR4, highlighting positions of built lipid molecules. Cholesterols (chol.) are shown as yellow sticks and phosphatidic acid (PA) are shown as green sticks. **d**, fit of lipid molecules (shown as sticks) to map (transparent blue surface) in trimeric CXCR4. Chol. 1 and chol 2. refer to lipids labeled in a-c. **e-g**, side (e), top-down (f) and bottom-up (g) views of tetrameric CXCR4, highlighting positions of built lipid molecules. **h**, fit of lipid molecules (shown as sticks) to map (transparent blue surface) in tetrameric CXCR4.

Extended Data Fig. 9. Structural analysis of dimeric and oligomeric structures of CXCR4. **a,b**, top-down view of hypothetical models of four CXCR4 trimers (a) or five CXCR4 tetramers (b) clustered via dimeric interfaces (red ovals) observed in crystal structures. **c,d**, a single subunit from dimeric x-ray structure of CXCR4 (receptor in yellow, ICL3-fused T4L in gray) aligned to trimeric CXCR4 (c) or tetrameric CXCR4 (d). Side and top views are shown. Red symbols indicate steric clash between T4L and neighboring protomers that would prevent trimer or tetramer assembly. The steric hindrance caused by fused T4L may explain why dimeric CXCR4 was favored over trimeric or tetrameric CXCR4 in previous crystallographic studies.

Extended Data Fig. 10. FSEC analysis of CXCR4 oligomerization interface mutants. a, FSEC chromatograms of control construct CXCR4_{EM} (black trace) and its mutants (colored traces) tracking GFP fluorescence. The same chromatogram for the control are shown in each for comparison. Gray shaded regions indicate elution times corresponding to CXCR4 oligomer (7.8-8.8 min) and monomer (9.6-10 min). **b,** ratio of oligomer to monomer peak areas, calculated according to shaded regions in **a**. horizontal dotted line corresponds to mean value for CXCR4_{EM}. Column heights indicate mean values, and error bars show standard deviations calculated from N=3 or 4 FSEC experiments using two independently generated baculoviruses for each construct. Note that several mutants (I257W, I300W, F276A/W283A, F276A, W283A) showed poor chromatographic behavior overall, presumably due to poor expression or stability in detergent.

	CXCR4 _{EM} /G _i	CXCR4 _{EM} /G _i /CXCL12	CXCR4 _{EM} /G _i /AMD3100	CXCR4 _{EM} /G _i /REGN7663 Fab	CXCR4 _{EM} /REGN7663 Fab	CXCR4 _{EM} /REGN7663 Fab Trimer	CXCR4 _{EM} /REGN7663 Fab Tetramer
Data collection and processing							
Magnification	165,000	105,000	105,000	105,000	105,000	105,000	105,000
Voltage (kV)	200	300	300	300	300	300	300
Electron exposure (e ⁻ /Å ²)	~50	~40	~40	~40	~40	~40	~40
Defocus range	-1.0 to -2.0	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2
Pixel size (Å)	0.696	0.85	0.85	0.85	0.85	0.85	0.85
# of Movies	9,693	11,922	10,013	10,346	5,827	5,329	5,329
Initial number of particles	5.0M	13.0M	8.1M	7.1M	6.2M	3.0M	3.0M
Particles selected after 2D classification	615K	805K	803K	1.03M	639K	585K	585K
Final selected particles	183,399	87,963	193,216	148,703	102,810	27,104	31,775
Symmetry imposed	C1	C1	C1	C1	C1	C3	C4
Map resolution (Å)	2.72	3.29	3.15	3.36	3.10	3.35	3.38
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143	0.143
Refinement							
Initial Model used	This study	3HP3, this study	This study	4RWS, 7T2G	This study	This study	This study
Model composition							
Non-hydrogen atoms	6,963	7,401	7,006	10,409	4,107	12,684	16,968
Protein residues	889	966	892	1,339	513	1,557	2,056
Ligands	1	1	2	1	1	9	20
R.m.s. deviations							
Bond lengths (Å)	0.005	0.002	0.002	0.005	0.002	0.003	0.004
Bond angles (°)	0.653	0.493	0.457	0.642	0.629	0.715	0.700
Validation							
MolProbity score	1.74	1.56	1.41	1.69	1.50	1.55	1.75
Rotamer outliers (%)	0.00	0.00	0.00	0.00	0.00	0.67	0.00
Clash score	8.65	5.56	4.24	6.54	4.99	7.06	8.53
Ramachandran plot							
Favored (%)	96.02	96.12	96.71	95.31	96.42	97.08	95.85
Allowed (%)	3.98	3.88	3.29	4.46	3.58	2.92	4.15
Disallowed (%)	0.00	0.00	0.00	0.23	0.00	0.00	0.00
Deposition ID							
PDB	8U4N	8U4O	8U4P	8U4Q	8U4R	8U4S	8U4T
EMDB	41888	41889	41890	41891	41892	41893	41894

Extended Data Table 1. CryoEM data, structure refinement, and validation. Note that CXCR4_{EM}/REGN7663 Fab trimer and tetramer structures were obtained from the same dataset.