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Abstract

Resolving the molecular mechanisms driving childhood brain tumors will uncover tumor-specific
vulnerabilities and advance mechanism-of-action-based therapies. Here we describe a continuum
of cell-states in Group 3/4 medulloblastomas, the most frequent and fatal cerebellar embryonal
tumor subgroups, based on the differential activity of transcription-factor-driven gene networks
derived using a comprehensive single-nucleus multi-omic medulloblastoma atlas. We show that
Group 3/4 tumor diversity stems from enriched cell-states along four molecular identity axes:
photoreceptor, MYC, precursor, and unipolar brush cell-like. We identified a potential role of PAX6
in driving dual Group 3- and Group 4-like tumor trajectories in subtype VII tumors. Our study
demonstrates how oncogenic events together with lineage determinants drive Group 3/4 tumor
identity away from their original source in the cerebellar unipolar brush cell lineage.

Introduction encompassing pure Group 3 (11, I1I, I'V), mixed (I, V, VII),

Scarcity of accurate models of medulloblastoma, a
highly heterogeneous and malignant childhood tumor
group arising in the cerebellum (/-3), has hindered the
development of effective mechanism-of-action-based
treatment strategies. Advances in molecular profiling
in the last decade have characterized medulloblastoma
into four major subgroups: WNT, SHH, Group 3 and
Group 4 (4). Group 3 and 4 medulloblastomas (hereafter
referred together as Group 3/4 tumors), which are further
categorized into eight molecular subtypes (I-VIII)

to pure Group 4 (VI, VIII) tumors (3), together represent
the most common and lethal cohort. Despite their
prevalence, our knowledge of the tumor heterogeneity
and underlying regulatory networks in Group 3/4 tumors
is limited, and this lack of understanding has hampered
the development of mechanism-of-action-based therapies
that could improve patient survival at lower rates of
collateral damage (6).

Recent transcriptomic studies comparing Group 3/4
tumor gene expression programs to those of developing
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human cerebellum have hinted that these tumors likely
arise from upper rhombic lip-derived unipolar brush cell
(UBC) progenitors (7-9). However, it is still unclear how
the heterogeneous Group 3/4 biology can be derived
from and explained by the linear UBC differentiation
process, and which regulatory networks drive malignant
transformation. In this study, we generated and analyzed
single-nucleus multi-omic data of 38 Group 3/4
medulloblastoma samples to provide unparalleled insight
into the molecular mechanisms explaining similarities
and differences within Group 3/4 medulloblastoma. We
focused on differential activity of transcription-factor
regulated gene regulatory networks (TF-GRNs), a set of
genes comprising putative downstream targets of the TF
along with the TF itself, and identified four molecular axes
of identity of Group 3/4 medulloblastoma development.
We show that the spectrum of Group 3/4 subtypes can
be attributed to the continuum of cell-states along these
axes, which are connected through a shared regulatory
landscape. We further identified that the intermediate
nature of subtype VII tumors is due to the co-existence of
Group 3- and Group 4-like tumor trajectories arising from
bi-potent precursor cells in single tumors. Our findings
provide the mechanistic framework to explain Group 3/4
medulloblastoma biology in the context of its normal
developmental origin, opening new avenues to explore
and test novel medulloblastoma treatment strategies and
to faithfully model the different disease subtypes.

RESULTS
Group 3/4 medulloblastoma multi-omic atlas

Group 3/4 medulloblastomas appear as a separable,
yet continuous group of tumors when their transcriptomic
programs (bulk RNA-Seq samples, Fig. 1A; Fig. S1A-C;
Table S1) (8, 10-14) are visualized in a low dimensional
space, such as tSNE (t-distributed Stochastic Neighbor
Embedding) or UMAP (Uniform Manifold Approximation
and Projection). This result suggests the existence of a
gradient of biology that connects their distinct molecular
characteristics. Consequently, subtype-specific metagene
programs are also enriched in other subtypes of the same
subgroup (Fig. 1B; Fig. S1D-G; Table S2). For example,
Group 4 subtypes VI, VIl and VIII demonstrate enrichment
of the same signature, Sig_g (Fig. 1B). These observations
align with the previously proposed model that places
the continuum of medulloblastoma biology on a bipolar
Group 3 vs Group 4 axis (Fig. S1D) (/0). However,
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using diffusion trajectory analysis to identify potential
directions of the metagene programs, we discerned that
both Group 3 and Group 4 subtypes have their own linear
axis of separation (Fig. 1C; Fig. SIH-J), suggesting that a
multi-axial spectrum exists within Group 3/4 biology.

We hypothesized that the conserved biology across
closer subtypes is driven by the same underlying molecular
programs, as defined by TF-GRNs, while separable
subtypes are regulated by distinct TF-GRNs. To determine
the molecular programs that define this multi-axial tumor
biology, we generated multi-omic single-nucleus (inter-
changeable with “single-cell” for simplicity) data for a
cohort of 38 Group 3/4 patient samples encompassing
all eight Group 3/4 molecular subtypes (total nuclei =
355,295; total samples = 38: 32 samples with both RNA
and ATAC profiles from same nuclei, 1 sample with
both RNA and ATAC profiles from different nuclei, 5
samples with RNA profiles only; Fig. 1D-G; Fig. S2A-H;
Fig. S3A-F; Table S3). Expectedly, transcriptomic and
chromatin accessibility profiles showed sample-specific
cell-clusters (Fig. S2E; Fig. S3F), with samples from the
same molecular subtype located closer on the UMAP
(Fig. 1F).

To integrate the tumor data such that tumor cells
exhibiting similar molecular biology, but distinct levels
of gene expression, cluster together, we transformed
gene expression data into molecular program enrichment
profiles. We focused on TFs with highly variable expression
in our tumor atlas, to obtain the TF-GRN sets driving
inter-tumor heterogeneity and continuity across Group
3/4 tumors, and employed a two-step approach. Firstly,
for each of the above identified TFs, we defined a TF-
GRN in a tumor sample using SCENIC+ based analysis
(15), by identifying genes with correlated expression to
that TF and filtering for targets with putative binding sites
for the candidate TF in target-associated cis-regulatory
elements (CREs). We then converted the gene expression
matrix into TF-GRN score matrix using AUCell (16),
and obtained TF-GRNs that are differentially active in
the tumor clusters of the sample. Secondly, to integrate
the multi-omic data, we selected TFs associated with
intra-tumor heterogeneity across multiple samples and
obtained a conserved TF-GRN for each of the selected
TFs based on recurrent TF-target associations. We then
obtained TF-GRN scores for each of the selected TFs in
the tumor cells of the integrated data and used this TF-
GRN score matrix for further analysis, such as to generate
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Fig. 1. Overlapping heterogeneity defines the molecular continuity among G3/4 medulloblastoma.

A. UMAP distribution of Group 3/4 medulloblastoma (n=703, bulk-RNA-Seq) samples on the transcriptomic landscape colored by
subtype identity. B. Spider plot of scaled enrichment of metagene signatures across subtypes. C. Diffusion trajectory of Group 3/4
tumors on the transcriptomic landscape. Gradient of subtype identity along the Group 3 and Group 4 axes is shown by dotted lines.
D. Experimental design for generating single-nucleus multi-omic data from patient-derived tumor samples. E. Sample metadata of
our Group 3/4 medulloblastoma single-nucleus multi-omic study cohort. F, female. M, male. F. UMAP distribution of snRNA-Seq
(left) and snATAC-Seq (right) data colored by subtype identity. Non-neuronal cells are encircled. G. Graphical summary of data
modalities of single-nuclei comprising the Group 3/4 multi-omic atlas. snATAC-Seq nuclei from MB248 (n=3,194 nuclei) are
excluded in the chart. H. Graphical representation of SCENIC+ based TF-GRN approach to integrate snRNA-Seq and snATAC-
Seq data for the identification of the regulatory signatures driving intra-tumor heterogeneity. Conserved TF-GRNs across samples
provide insights into the continuous heterogeneity observed within Group 3/4 medulloblastoma.
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an integrated TF-GRN enrichment map (Fig. 1H and see
Methods for additional details).

Gene regulatory networks driving Group 3/4 identity

Using scaled enrichment of area under the curve
(AUC) scores for a set of TF-GRNs (n=108, Table S4)
selected from TF-GRNs active across tumor samples,
we integrated tumor cells based on their shared biology
(Fig. 2A,B; Fig. S4A-H). This integrated tumor cell
atlas displayed four axes on the diffusion map, which
we labeled as photoreceptor-like (PR,, t=tumor), MYC-
enriched, Precursor-like and UBC-like (UBC,, t=tumor),
based on the known function of associated TFs and the
enrichment of molecular programs in the annotated cells,
as described below. Cells belonging to Group 3 vs Group
4 tumors differentially contributed to these four axes (Fig.
2B).

To further molecularly define these four axes, we
first clustered the tumor cells (Fig. S4B) and identified
the TF-GRNs enriched in each cluster. We grouped the
identified 108 TF-GRNs into nine groups by hierarchical
clustering to identify co-enriched programs (Fig. 2C; Fig.
S5A-L; Table S4). TF-GRN programs 1 (representative
GRN: gNR3Cl1), 2 (gCRX) and 3 (gCREBS) included
well-known regulators of the photoreceptor lincage
(17) (Fig. S5D-F; Fig. S6A-G). TF-GRN programs 4
(gMYC) and 5 (gFOXN4) were enriched for cell-cycle
and progenitor- associated TFs (Fig. S5G,H) (18, 19).
Similarly, TF-GRN programs 6 (gEOMES), 7 (gOTX2), 8
(gLHX1) and 9 (gALX1) included well-known regulators
of early and late UBC development (Fig. S5I-L) (20,
21). Using hierarchical clustering, we grouped tumor

Fig. 2. Four axes of Group 3/4 medulloblastoma identity.
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clusters exhibiting similar program enrichment along the
identified axes and subdivided these groups into tumor
cell-states based on co-enrichment of molecular programs
defining more than one axis (Fig. 2D; Fig. S7TA-K; Table
S5). For example, while all clusters in the MYC axis
were enriched for TF-GRN program 4, tumor cells in
the MYC_CC states were also co-enriched for TF-GRN
program 5 (Cell cycle), the TF-GRN program these cells
share with the cell cycling Precursor states (Prec CC).
We also investigated the differential enrichment of CREs
associated with these TF-GRNs, which showed similar
enrichment profiles (Fig. 2E). TF-GRNs and associated
open chromatin regions mostly showed co-enrichment
patterns, except in tumors cells along the PR-axis, where
progenitor-like programs (4 and 5) were turned down
while the associated CREs remained comparatively
accessible as in undifferentiated MY C-axis clusters (Fig.
2D,E), a phenomenon shared with normal human rod
photoreceptors (Fig. S6F,G).

We observed that the tumor cells’ subgroup and
subtype identity was also distinctively associated with
the four axes. PR, and MYC axes were almost uniquely
populated by tumor cells from Group 3 samples, while the
Precursor and UBC, axes were predominantly populated
by tumor cells from Group 4 samples (Fig. 2F). At the
subtype level, subtypes III and IV exhibited PR, axis cell-
states, while subtype Il was enriched in the MYC axis
(Fig. 2F). Group 4 associated subtypes, VI and VIII,
showed almost exclusive association with Precursor and
UBC, states. Interestingly, subtypes I, V and VII, which
have intermediate Group 3/4 identity, were distributed
across the four axes.

Group 3/4 tumors originate from the cerebellar

A. 3D diffusion map of Group 3/4 tumor cells obtained from TF-GRN enrichment colored by axial identity. Dotted line indicate
axial trajectories. B. 3D diffusion map of Group 3/4 tumor cells colored by group identity. C. Hierarchical clustering of the 108
TF-GRNs based on co-enrichment in tumor clusters. D. Differential enrichment of TF-GRN score across tumor cell-clusters in
the integrated data. E. Differential enrichment of activity of constituent CREs of the TF-GRN-sets across cell-clusters in the
integrated data. F. Subtype and subgroup identity of cells comprising the cell-cluster in the integrated atlas. Each bar represent
a cluster’s proportional tumor subtype (top) or subgroup (bottom) composition. G. Enrichment of cell-state signatures in the
cerebellar granule cell/unipolar brush cell lineage and retinal photoreceptor lineages in the cell-cluster of the integrated Group 3/4
medulloblastoma atlas. UBCP cells were labelled as GCP/UBCP in the original atlas (20) but termed as UBCP here for simplicity.
RL pro, rhombic-lip progenitor. GCP, granule cell progenitor. UBCP, UBC progenitor. UBC diff., differentiating UBC. UBC def.,
defined UBC. RPC, retinal progenitor. RGC, retinal ganglion cell. Imm. PR, immature photoreceptor. Cone PR, cone photorecep-
tor. Rod PR, rod photoreceptor. H. Marker gene expression distribution in the integrated atlas. Photoreceptor, progenitor or UBC
cell-states marker genes are annotated as such. OTX2 (marked with asterisk) is a marker gene for both photoreceptor and UBC
lineages. Dot size indicates the proportion of cells in a cluster expressing a gene, and color denotes mean expression scaled across
cluster per gene. Fig. 2 next page W
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Fig. 3. Mutually repressive PR and UBC, associated TF-GRNs
drive Group 3 and Group 4 identity apart
A. Pearson correlation analysis of TF-GRN activity in the inte-

grated single-cell tumor data. PR;, MYC and UBC, associated TF-
GRN5s show high anti-correlation. Inset shows correlation between
key GRNs: gNRL, gCRX, gOTX2, gEOMES and gLMXIA.
Arrow shows putative direct interaction between TF pairs based
on SCENIC+ analysis and arrow head denotes the target of the in-
teraction. B. H3K27ac ChIP-Seq (/7) shows distinct enhancer sig-
nature enrichment at CRX, OTX2, and EOMES loci across Group

3/4 subtypes. Subtypes are arranged from pure high PR, (top) to

high Precursor (Prec.)/UBC; (bottom) phenotype. C. Integrated
snATAC-Seq reveals differential accessibility of CREs at CRX,
OTX2, and EOMES loci across Group 3/4 medulloblastoma axial
identities (this study). ChIP-Seq peaks for OTX2, CRX (24) and
EOMES (25) overlap CREs positively associated with expression
of key genes: CRX (left), OTX2 (middle) and EOMES (right).
Interaction arcs depict representative peak to gene links colored by
correlation of peak accessibility and gene expression. Red boxes
depict putative CREs involved in cross-regulations for each gene.
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rhombic lip (7-9) and also show enrichment of photoreceptor
programs (7, 9, 22). To identify the tumor cells resembling
the cell-states in cerebellar rhombic lip or retinal lineage,
we investigated the enrichment of these lineage programs
(Table S6) in tumor clusters (Fig. 2G). Briefly, the PR, axis
is linked to normal UBC progenitor and normal retinal
photoreceptor program, while UBC, is characterized by
an enrichment of normal differentiating and differentiated
UBC programs, as well as the enrichment of normal retinal
ganglion cell signature: a retinal lineage associated with
EOMES expression (Fig. S6D) (23). The MYC axis showed
enrichment of normal rhombic lip and granule cell progenitor
(GCP) signatures. The Precursor axis showed enrichment of
normal differentiating UBCs, with normal retinal progenitor
signature enriched in cell cycling Precursors (Prec_CC).
Expression patterns of marker genes of retinal photoreceptor
(e.g. CRX, NRL), cell cycling progenitor (e.g. TOP2A) and
cerebellar UBC lineage (e.g. EOMES, LMXIA) further
validated our axial and cell-states annotation (Fig. 2H).

In summary, the differential TF-GRN activity enrichment
map defines the continuum of biology of the eight subtypes
of Group 3/4 medulloblastoma along the four axes of
molecular identity.

Mutually repressive TF-GRN interactions drive Group 3
versus Group 4 separation

To investigate the transition between the four axial
identities, we investigated the correlation between the TF-
GRNs activity. We hypothesized that co-expressed TF-
GRNs will show high positive correlation, and mutually
exclusive, potentially repressive interactions between TF-
GRNs will be negatively correlated (Fig. S8A). Broadly,
PR, MYC and UBC, associated TF-GRNs were negatively
correlated, and Precursor and UBC, TF-GRNs were
positively correlated (Fig. 3A). Particularly, gCRX/gNRL
(PR, axis) and gEOMES/gLMXI1A (Precursor/UBC, axis)
were highly negatively correlated (Fig. 3A, inset). gMYC
activity was likewise negatively correlated with gEOMES/
gLMXI1A, and not-correlated to gCRX/gNRL (Fig. S8B).
These anti-correlative relationships suggest a mutual
exclusivity between PR, MYC and UBC, axial identities:
individual tumor cells cannot have two or more of these
identities simultaneously.

We next focused on TF-GRNs that drive the PR, and
UBC, separation. We hypothesized that this separation
results from the mutual repression of TF-GRN programs
associated with PR, and UBC,. To confirm direct regulatory
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Fig. 4. Group 3/4 identity programs are enriched in distinct stages of the developing cerebellar UBC lineage.

A. UMAP representation of cells in the human cerebellar UBC lineage (20) in the transcriptomic space. RL progenitor, thombic-lip
progenitor. UBCP, UBC progenitor. UBC diff., differentiating UBC. UBC def., defined UBC. B. Mapping of the UBC lineage cell-states
in the fetal human cerebellum (12 pcw) by alignment of the multiplexed single-molecule fluorescent in situ hybridization FISH data with
11 pcw snRNA-Seq data (20). Region of a coronal section containing the rhombic lip is shown. Top left: cell’s estimated rhombic-lip
(RL) progenitor, UBC progenitor (UBCP), differentiating (diff.) or defined (def.) UBC cell-identity colored by state. Top right: DAPI-

stained section with the rhombic lip ventricular zone (RLvz; green) and sub-ventricular zone (RLgy; blue) highlighted. Bottom left:
cell-label prediction score (scale capped at the 1st and 99th quantiles). Bottom right: Expression of key markers across the labelled
segments. Dot size indicates the proportion of segments expressing a gene, and color shows the mean expression level normalized to
segment area and scaled per gene. Scale bars, 250 uM. C. Cell-type density variations along predicted pseudotime within the UBC
lineage. D. Differential enrichment of Group 3 vs Group 4 metagene signature (top); Group 3/4 axial identity signature (middle), and
selected TF-GRNs activity (bottom) in the UBC lineage along pseudotime. E. Proposed model of Group 3/4 medulloblastoma identity
bifurcation. Tumor cell-states derived before UBC identity specification drive Group 3 tumor identity. Tumor cells that turn on UBC
specification program become Group 4 tumors.
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interactions between CRX/NRL and EOMES/LMXIA, the
key TF regulators of PR, and UBC; states, respectively,
we examined enhancer regions around CRX, NRL, OTX2,
EOMES, and LMXIA gene loci using our snATAC-Seq
atlas. By analyzing and overlaying co-localization of active
enhancers (H3K27ac signal) in Group 3/4 tumors (/1),
accessibility of identified CREs (this study), and the binding
sites of CRX and OTX2 in the human retina (24) and of
EOMES in human embryonic stem cells (25), we identified
potentially functional enhancers regulating cross-talk
between these key TFs (Fig. 3B,C; Fig. S8C,D).

These findings suggest a mutual repression between
CRX and EOMES, indicated by the potential binding of
CRX and EOMES to each other’s functional enhancers and
their anti-correlated gene expression (Fig. 3C). OTX2, on
the other hand, potentially directly regulates expression of
CRX/NRL and EOMES/LMX14 (Fig. 3A, inset). Altogether,
these data suggest that the presence of OTX2 provides a
permissive environment for tumor cells to differentiate along
both the PR, and UBC, lineage, while the mutually repressive
interaction between CRX/NRL and EOMES/LMXI1A drives
the trajectories apart.

The UBC lineage exhibits Group 3/4 specific programs at
distinct time-points

We (7) and others (8, 9) have previously shown that
the Group 3/4 transcriptomic program is best matched to
the UBC lineage of the developing human cerebellum. We
hypothesized that if tumor cells are arrested in the cell-
state space of normal UBC development, the tumor axial
or TF-GRN programs would be differentially enriched
during normal UBC development, allowing us to determine
the putative stages in which these tumor cells are arrested.
Therefore, we extracted the cells belonging to the developing
UBC lineage from our previously generated snRNA-Seq
atlas of the developing human cerebellum (Fig. 4A) (20).
We further estimated the spatial locations of the UBC cell-
states in the 12 post-conception week (PCW 12) human
cerebellum based on our multiplexed single-molecule in
situ hybridization dataset (Molecular Cartography, Resolve
Biosciences) (Fig. 4B) (20). Investigating the differential
enrichment of the identified gene-sets along the UBC lineage
(Fig. 4C), we observed that a Group 3 specific metagene
signature, PR/MYC axial programs, and TF-GRNs driving
PR/MYC axial identities are enriched in rhombic lip or UBC
progenitor cell-states (Fig. 4D; Fig. S9A-C). Conversely, a
Group 4 specific metagene signature, Precursor/UBC, axial
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program, and TF-GRNs driving Precursor/UBC, tumor
identities are enriched in differentiating and differentiated
UBC (i.e. defined UBC) cell-states (Fig. 4D; Fig. S9A-C).
Together, this nearly mutually exclusive enrichment pattern
of Group 3 and Group 4 regulatory networks along the
UBC lineage suggests that the coarse Group 3 vs Group 4
separation occurs at the point of UBC identity specification
(Fig. 4E). The spatial location of UBC progenitors and
differentiating UBCs, in the rhombic lip sub-ventricular
zone (RLgy,), a region with proliferative capacity (8, 9),
further confirms the source of Group 3/4 medulloblastomas
in the cerebellar rhombic lip, as reported by others (8, 9).

PAXG6 expression drives dual PRt-UBCt lineage identity in
subtype VII tumors

To investigate molecular drivers of Group 3/4 tumor
identities, we extrapolated the TF-GRNs obtained from
our single-cell multi-omic atlas to a larger bulk RNA-Seq
dataset of Group 3/4 medulloblastoma samples (n=703) (8,
10-14). We obtained the relative enrichment profiles of the
above identified TF-GRNSs in the tumor bulk transcriptomic
data and observed a high correspondence between cell-state
enrichment patterns across subtypes, similar to our mutli-
omic atlas results (Fig. SI0OA-H). tSNE analysis of the bulk
data based on TF-GRN enrichment scores showed that
Group 3/4 tumors can also be divided into four major axes
at the bulk level that correlated with enrichment of specific
axial signatures (Fig. SA).

Overlaying the status of common genetic driver events
(8, 14) in Group 3/4 medulloblastomas suggested a causal
relation between the driver event and the resultant phenotype
(Fig. SI0A-H). Briefly, predominantly MYC-driven subtype
II tumors, with documented MYC amplification or PVTI-
MYC fusion (Fig. S10B,I) and high MYC expression (Fig.
S10J), showed enrichment of the MYC and early PR, axial-
signature (Fig. S10B). SNCAIP duplication associated with
PRDMG6 activation (/4) in subtypes VI, VII and VIII tumors
drove tumors towards the UBC, axis (Fig. S10F-I). While
GFIIB rearrangements were distributed across subtypes,
GFI1B-driven subtype I and II tumors typically exhibited a
mixed PR-UBC, identity as observed from co-enrichment of
associated TF-GRNs (Fig. S10A,B,I).

We next focused on intermediate Group 3/4 tumors,
which primarily belonged to subtypes I, V and VII, and
exhibited a lower Group 3/Group 4 classification score (Fig.
5B; Fig. S10K,L). The intermediate identity of subtype V is
possibly due to lack of enrichment of late-PR, or late-UBC,


https://doi.org/10.1101/2024.02.09.579680
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579680; this version posted February 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Axes signature

Joshi, Stelzer, Okonechnikov et al.

B Intermediate Group 3/4 tumors

& 2
: %ﬁ%
B
i)

" ‘Precursor|

1
! Intermediate

Classification

UBC,

t

Cell cycle
score

Axes
PR ENYC
MPrecursor UBC,

UMAP1

C . . .Countspermilion _ _ _ D Subtype VIl tumor cell identity (n=178 samples)
g g g . g g - & 28 2
[ eaan [ ko ok [ XS B * * é i
Laed o
(é 3 7 * % 7 B * * g
o
| caev E o . - | I3 * 5 §
3 cae | §b =4 T # P i 30 LT JI-LI.I I.Il il i
§ 36 vi| KRR | | R fux: '_ . fs‘::a- gLHX1
EI_G:LV ‘." P [ x| E};—,’.&- %E'g s e : gCRX =
(‘E-G"M_VI # x4 r PR [ LR = y . . .
2 [ A PR e i .,...-.....'-.-..-.n. B ST EUC PR
5 o n 4 - : ¢ & - R .
& |oaavin| {045, * [ w1 B R $3 g PAXG exp.
PAX6 CRX EOMES Samples . ——
IMPR, late MIPR early [IPR early MYC IIMYCEIMYC CC MiPrec. CC [llPrec. late[ |UBC, early lIUBC, late
E Dual trajectory in tumors F Marker GRNs G H
iffusi PAX6exp. ; =
.'3;2:3‘.?.?,,. 3 PR (gCRX) Prec. (GTBR1) . UBC(QLHX1) f %
£ Poeid n
;", : ; %s
n=16,988 cells Al <
E
S

53

PAX6 motif
Diffusion pseudotime GRN enrichment Scaled gene exp.

| Spatial segregation of J In silico pertubrations

PR, and UBC, states
__4" ,‘.\;{%}; T » J3ts
L

TULP1 TRPC3

Gene exp.

flow

A

| [ -
0 1 2 0 2 0 2 Subgroup
Cell cycle score Motif enrichment ["IGroup 3
M Group 4
Low High low high
Developmenta_! CRX KO

EOMES KO

@
S
8

1000

] ELP4-AS (n=4/21)

@
S
)

;

Counts per million

or e
e[| ELPA-ASIMMPIL (n=8/21) of & a5 -~ B
:' E| 2\ < I?A §| ot ;I E
& 3 b4 3 |
8 8 3 © 5% g ¢ 8 3

w

Figure 5 legend next page »


https://doi.org/10.1101/2024.02.09.579680
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579680; this version posted February 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Joshi, Stelzer, Okonechnikov et al.

Fig. 5. PAX6 drives dual Group 3 and Group 4-like trajectory in subtype VII medulloblastomas.
A. tSNE distribution of Group 3/4 medulloblastoma bulk-RNA-Seq samples (n=703) on the TF-GRN enrichment space. Relative

enrichment of axial signatures (middle) and marker TF-GRNs (right) on the tSNE landscape. PR, Photoreceptor (tumor)-like. Prec.,

Precursor. UBC,, UBC (tumor)-like. B. Intermediate methylation classification score (1- abs(G3 score- G4 score)) on the tSNE map.
Dashed lines highlights presumptive separation among bulk axes. C Boxplot distribution of PAX6, CRX and EOMES expression in bulk
RNA-Seq samples (n=703) across subtypes. Expression in individual samples is shown as dots. Asterisk denotes log-fold change > 1 and
adjusted p-value < 0.001 for pairwise comparisons. Black, pair-wise comparisons to subtype VII tumors, Red, pair-wise comparisons

to subtype I tumors. D. Predicted deconvoluted axial cell-state identity in subtype VII samples arranged in order of increasing UBC;
identity (increasing gLHX-gCRX score). Each bar represents a sample’s proportional composition of tumor cell-states after removing
predicted normal neuronal cell fraction. Middle panel shows gCRX and gLHX1 AUC scores per sample, and the bottom panel illustrates
PAX6 (log2 counts per million) expression in each sample. Fitted linear model for PAX6 expression along the sample order: R2=0.1643.
p-value =1.99¢-08. E. UMAP distribution of a subtype VII tumor (MB129) cells in the TF-GRN space, annotated by axial identities.
Panels on right show predicted diffusion pseudotime (top) and cell-cycle score (bottom). F. Scaled enrichment of marker TF-GRNs in
MB129 tumor cells is shown on the UMAP. G. UMAP distribution of scaled PAX6 expression (top) and scaled PAX6 motif enrichment
(bottom) in MB129 tumor cells. H. Relative enrichment of Group 3 and Group 4 metagene signature in MB129 tumor cells annotated

with PR, Precursor and UBC, axial identity. I. Top: Spatial distribution of cells annotated as per axial identities. Middle: Cells assigned
to PR, Precursor (Prec.) and UBC; identities. Bottom: Expression of marker genes, TULP1, EOMES and TRPC3, for axial identities
PR,, Precursor and UBC,, respectively. MKI67 expression denotes cell-cycling cells. Scale bar, 200 uM. J. Developmental trajectory of

cell-states in MB129 (left). /n silico loss of CRX (middle) and EOMES (right) inhibits and promotes the acquisition of PR, cell-states,
respectively. Tumor cells are colored as per cell-state identities. Arrows show predicted local trajectory of cells. K. Axial-state transition

model suggesting presence of PAX6 expression leads to differentiation of tumor cells along the bifurcating PR, and UBC; trajectory.
L. Frequency of novel IncRNA (ELP4-AS) and a novel spliced form (ELP4-AS:IMMPIL) in subtype VII tumors of the ICGC cohort.
Boxplot distribution of P4X6 expression in Group 3/4 tumors (ICGC cohort). Samples with ELP4-AS transcription (with or without
splicing to IMMP1L, n=13/104) (grey box) are grouped separately from rest of the tumors, which are grouped as per subtype identity.

TF-GRN programs (1-2 and 9, respectively) that defines core networks regulating tumor-cell specification along the
either Group 3- or Group 4-like identity, respectively (Fig. PR, or UBC, axes, respectively. Increased PAX6 expression
S10E). Conversely, intermediate subtypes [ and VII could be  was also positively correlated to an increased proportion of
ascribed to the co-enrichment of PR, and UBC, associated Precursor and UBC; cell-states, suggesting that PAX6 drives
TF-GRN programs (1-3 and 6-9, respectively) in the same tumor identity from the PR, axis towards the UBC, axis (Fig.
tumor (Fig. S10A,G). 5D; Fig. S11B-G).

In the integrated multi-omic atlas, subtype VII tumor cells To investigate whether the intermediate Group 3/4
were distributed along the PR;-to-UBC, axis. We confirmed identity arises from co-expression of dual lineage factors
this observation using bulk RNA-Seq data, where ~31% in the same cells or instead results from the presence of
(55/178) of subtype VII tumors exhibited co-enrichment of two distinct lineages in separate cells in the same tumor,
PR, and UBC, TF-GRN programs and ~7% (12/178) showed we focused our analysis on three (out of six) subtype VII
predominance of PR, TF-GRN programs (Fig. S10G). In samples (MB26, MB292 and MB129, ICGC cohort) from
bulk tumors, we identified that the TF P4X6, a key regulator our atlas that showed a co-enrichment of PR, and UBC,-
in retinal and UBC lineage specification and differentiation associated TF-GRN programs (1-3 and 6-9) (Fig. S12A).
(26, 27), was highly expressed in subtype VII tumors These samples also exhibited a distinct dual PR, (gCRX)
(Fig. 5C; Table S7; Table S8). Further, subtype VII tumors and UBC, (gLHXI) trajectory arising from a common
expressed the Group 3-associated CRX (Fig. 5C) and NRL Precursor pool (gTBR1) in all the three samples (Fig. SE,F;
(Fig. S11A) at significantly higher levels when compared Fig. S12B-E). In all three samples, PAX6 expression and
to Group 4 subtypes (VI and VIII). On the other hand, PAX6 motif enrichment was high in the Precursor cells
they also expressed the Group 4-associated EOMES (Fig. and almost completely absent in the PR, tumor cells (Fig.
5C) and LMXIA (Fig. S11A) at significantly higher levels 5G; Fig. S12F,G). PAX6 expression further correlated to
when compared to pure Group 3 subtypes (II, III and IV). Precursor/UBC, markers and anti-correlated to PR, markers
Therefore, the intermediate identities of subtype VII likely (Fig. S12H). Axial compartments in these tumors exhibited
arise from this co-expression of TFs typically associated with a mutually inverse enrichment of Group 3 (PR, cells) and
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Group 4 (Precursor/UBC; cells) tumor programs, confirming
the intermediate nature of these tumor samples (Fig. SH;
Fig. S12LJ). Individual tumors recapitulated the axial TF-
GRN activity pattern as observed in the integrated Group
3/4 multi-omic atlas (Fig. S12K-P; Fig. 2B), albeit without
the MYC states due to absence of MYC expression. We then
investigated the spatial distribution of tumor cell-states in
two (out of three) of these intermediate tumors, in which
we had appropriate tissue available. This spatial analysis
showed that PR, and UBC, cells were spatially resolved (Fig.
5I; Fig. S13A-C), suggesting spatial compartmentalization
of axial-states within intermediate subtype VII samples.

Altogether, the presence of the divergent PR,/Precursor/
UBC, tumor states in individual tumors suggests a shared
regulatory landscape connecting these states, and that the
TF-GRN interactome driving heterogeneity across Group
3/4 tumors also drives the intermediate identity of individual
tumors.

To further test if the dual lineage in these intermediate
tumors arises from mutual repression of PR~ and UBC;-
associated TF-GRNs, as proposed earlier (Fig. 3D), we
computationally knocked-down CRX and FEOMES in
individual tumors using CellOracle (28). In silico loss of
CRX inhibited specification of PR, trajectory and loss of
EOMES inhibited acquisition of UBC, states while pushing
cells toward PR, identity (Fig. 5J; Fig. S14A-B). This data
suggests that indeed potential mutual repression between
key PR, and UBC, TF-GRNs drives tumor to acquire either
Group 3 or Group 4 identity, and UBC specification is
indeed the developmental time point that separates Group 3
and Group 4 (Fig. 4E). The absence of PAX6 TF-GRN in our
SCENIC+ analysis prevented us from performing in silico
PAX6 knock-down. However, based on P4X6 expression and
motif enrichment, together with the known dual function
of PAX6 in retinal and rhombic lip development (26, 27),
we propose that P4X6 expression in the Precursor pool
maintains a bi-potent state that facilitates both the PR,- and
UBC,-identity within the same tumor sample, but not in the
same tumor cells (Fig. 5K).

Genetic aberrations that could explain this sustained
subtype-specific PAX6 expression, such as small variants,
copy number aberrations or structural variants, have not
been identified to date. Therefore, we searched for potential
somatic aberrations underlying this aberrant expression,
using bulk RNA-Seq data of subtype VII tumors from the
ICGC cohort (11-14). We identified a previously unknown
non-coding transcript downstream of the PAX6 locus, and
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antisense to the ELP4 gene (termed here as: ELP4-AS, Fig.
SL; Table S9). Expression of this novel transcript positively
correlated with PAX6 expression (Fig. SL; 12/21 of subtype
VII samples and 1/4 of subtype I sample). We also identified
samples where ELP4-AS was spliced to the downstream
IMMPIL gene (ELP4-AS:IMMPIL, Fig. 5L), resulting
in a putative chimeric IncRNA in ~57% (8/13 tumors) of
ELP4-AS+ cases (Fig. S15A). All the 12 subtype VII tumors
harboring ELP4-AS expression showed intermediate (n=4)
or a predominantly Precursor/UBC, (n=8) identity, further
alluding that a mechanism driving P4X6 upregulation drives
tumors toward Group 4-like tumor states (Fig. S15B).

DISCUSSION

Despite advances in identifying a unified rhombic lip
origin of Group 3/4 medulloblastoma (8, 9), the causes of the
underlying heterogeneity within this group remain unknown.
Our single-cell multi-omic atlas unravels the molecular
underpinnings driving Group 3/4 subtype-specific biology,
while also addressing the continuity among these subtypes.
Master regulators of retinal lineages, such as OTX2, CRX
and PAX6, together with TFs driving UBC differentiation,
such as BARHLI1, LMX1A and EOMES, are among the
known modulators of regulatory circuits driving Group
3/4 medulloblastoma heterogeneity (71, 29). Our analysis
delineates the TF-interaction network that connects these
master regulators to drive divergent tumor states in the same
regulatory landscape; we also propose the regulatory logic
that determines the transition across these states. We show
that the presence of photoreceptor signature in Group 3/4
medulloblastoma, first reported in 1991 by Kramm ez al. (22)
is due to aberrant activation of a CRX-driven photoreceptor-
specification cascade, as also suggested by Garancher et
al. (29). Additionally, we show that the broad separation of
Group 3 and Group 4 medulloblastoma stems from the failure
of Group 3 tumors to attain EOMES/LMXI1A-driven UBC
identity and thus are propelled towards an alternative CRX/
NRL-driven photoreceptor identity through the remodeling
of the UBC progenitor (RLsvz) regulatory network. We
suggest expression of key master regulators including
OTX2 and PAX6 in the UBC progenitors prime this state to
acquire divergent retinal photoreceptor lineage, in the case
of stalled UBC specification. Further, we propose that, apart
from arising at distinct stages/states during UBC lincage
differentiation (8, 9), the mutual repression between CRX/
NRL- and EOMES/LMX1A-driven GRNs contributes to the
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mutual exclusion of Group 3 and Group 4 tumor identities.

Our study identifies the connecting links between the
oncogenic events and underlying lineage determinants
that drive tumor identity away from the normal cerebellar
UBC lineage, and induce aberrant retinal photoreceptor-
lineage identity. Our data opens up an exciting possibility
whereby a GFI11B/PAX6-driven tumor model, which shows
co-enrichment of typically mutually exclusive PR, and
Precursor/UBC, associated TF-GRN programs, can be tuned
by modulating the TF activity to obtain pure Group 3- or
Group 4-like tumors. Such model(s) would represent the
spectrum of Group 3/4 heterogeneity and further improve our
understanding of mechanisms that drive Group 3 or Group 4
identity and pinpoint underlying therapeutic vulnerabilities.
A deeper understanding of lineage specification in Group 3/4
medulloblastoma could further identify yet unknown genetic
or regulatory determinants of tumor identity.
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Fig. S1: Group 3/4 medulloblastoma bulk RNA-Seq data analysis and metagene signatures. (A) Group 3/4
medulloblastoma bulk-RNA-Seq metadata collated from three sources: ICGC, MAGIC and Newcastle (8, 10-14). Numbers
of samples per category are depicted in parenthesis. (B and C) UMAP distribution of tumor samples on the transcription
program landscape colored by group (B) and dataset (C) identity. (D) Scaled subgroup and subtype-specific metagene score
(NMF component value) per sample. Samples are arranged on a Group 3 —Group 4 metagene score scale. (E) Per sample
methylation-based Group 3 (top) and Group 4 (bottom) classification score (y axis) vs Group 3 — Group 4 metagene score (X
axis). Tumor samples are colored as per subgroup identity. (F and G) Jaccard similarity between subgroup (F) and subtype
(G) specific metagene gene-sets. For each metagene gene-set top 100 genes ranked by contribution per metagene were used.
(H and @) Diffusion map of samples colored as per subgroup (H) and dataset (I) identity. (J) Diffusion map with samples
colored as per subtype identity. DC2 is shown instead of DC3.
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Fig. S2: Group 3/4 tumor single-nucleus RNA-Seq (snRNA-Seq) data quality control (QC) metrics. (A) Number of cells
per sample in snRNA-Seq data post QC filtering. (B-D) Per sample distribution of number of genes (B), unique molecular
identifiers (UMIs) (C), and fractional mitochondrial gene contribution (D). Dotted line shows cut-off at 250 Genes (B) and
300 UMIs (C). (E and F) UMAP distribution of cells in the merged snRNA-Seq data (without batch correction) colored by
sample identity (E) and predicted cell-type labels using reference cerebellum data (20) (F). Non-neuronal normal cells are
encircled. (G and H) UMAP distribution of LIGER-fMNN batch-corrected snRNA-Seq data colored by predicted cell-type
label (G) and identified non-tumor cells (Normal and not-determined/ ND) (H).
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Fig. S4: UMAP and diffusion map distribution of tumor cells based on TF-GRN AUC scores. (A-F) UMAP distribution
of tumor cells colored by sample (A), KNN-leiden clusters (B), subgroup (C), subtype (D), axial (E) and cell-state (F)
identities in the TF-GRN enrichment space. (G and H) 3D diffusion map distribution of tumor cells colored by subtype (G)
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Fig. S5: TF-GRNs driving Group 3/4 medulloblastoma axial identities. (A) TF-GRNs (n=108) denoted by the name of
regulatory TF. TF-GRNs are arranged by their order in the hierarchical clustering. Colored column bars represent TF-GRN
groups, referred to as TF-GRN programs (1-9). (B and C) Jaccard similarity (B) and overlap similarity (C) indices for TF-
GRN sets. (D-L) Top three gene ontology (GO) Biological process and KEGG terms (sorted by —(Log10(adjusted p-value))

associated with genes contributing to each TF-GRN programs 1-9 (D-L).
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Fig. S6: Human developing retina multi-omic atlas. (A and B) UMAP distribution of developing human retina snRNA-
Seq data (A) and snATAC-Seq data (B) (/7) colored by cell-type annotation in the retinal TF-GRN enrichment space.
(C) Overlap of snRNA-Seq and snATAC-Seq data colored by data modality. (D) Expression of selected marker genes in
the annotated retinal cell-types. (E) Enrichment of selected retinal lineage marker gene-sets in retinal cell-types. Red box
encircles retinal photoreceptor cell-types. (F) Relative enrichment of Group 3/4 medulloblastoma tumor TF-GRNSs in the
retina snRNA-Seq atlas. (G) Relative enrichment of tumor TF-GRNs associated cis-regulatory elements (CREs) in the

retina snATAC-Seq atlas.
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Fig. S7: Axial gg;e-set signatures. (A and B) Weighted gene co-expression network analysis (WGCNA)-based module-trait
relationship correlation heatmap. Rows are modules identified from WGCNA analysis. Columns are tumor cells clustered
based on annotated axial identities (A) or cell-state identities (B). Correlation and associated p-value (in brackets) for each
module-trait combination are noted in each cell (A). Representative module per axis marked with the axis name on the left
in (A). (C) Hierarchical clustering of modules. (D-G) Scaled enrichment of signature axial gene-set module for UBC (D),
Precursor (E), PR, (F), and MYC (G) axes on the integrated tumor diffusion map. Diffusion map with cells colored by axial
identities at the bottom for reference. (H-K) Scaled enrichment of signature axial gene-set module for UBC, (G), Precursor
(H), PR, (I), and MYC (J) axes on the bulk-RNA-Seq diffusion map.
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TF-GRN correlation and enrichment
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Fig. S8: Regulatory feedback among TF-GRNs. (A)
Graphical representation of TF-GRN directed cell-
state transition model. Proposed TF-GRN interactions:
positive feedback loop between gA and gB. gA positively
upregulates gC and gD inhibits gA. Expected correlations
and enrichment of TF-GRNSs per cell-state from the proposed
TF-GRN network. (B) Pearson correlation between selected
TF-GRNSs activity in the single-cell multi-omic Group 3/4
medulloblastoma data. (C) H3K27ac ChIP-Seq (/1) signal
profile around NRL (left) and LMXIA (right) loci in Group
3/4 medulloblastoma subtypes. Subtypes are arranged from
pure high PR (top) to high Precursor (Prec.)/UBC, (bottom)
phenotype. (D) Chromatin accessibility profile around NRL
(left) and LMX1A (right) loci (overlapping region as selected
from H3K27ac signature profile in (C)) in Group 3/4
medulloblastoma subtypes. Tumor cells were pseudobulked
by axial annotation. Predicted CRX, OTX2 and EOMES
binding sites (based on published ChIP-Seq data) (24, 25),
identified CREs and representative peak-to-gene links for
the selected gene (NRL or LMXI1A) shown below. Red box
highlight putative CREs involved in cross-regulations for
each gene.
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Fig. S9: Signature gene-set enrichment in cerebellar UBC lineage. (A-C) Relative enrichment of subtype-specific
metagene signature (top 100 genes ranked by contribution) (A), Group 3/4 medulloblastoma weighted gene co-expression
network analysis (WGCNA) module sets (B), and Group 3/4 medulloblastoma TF-GRNs (C) in the cerebellar UBC lineage.
Density distribution of cerebellar UBC-lineage along pseudotime at the bottom for reference.
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Fig. S10: Bulk-RNA-Seq tumor TF-GRN enrichment. (A-H) TF-GRNs enrichment heatmap for subtype [ (A), 11 (B), 111
(C), IV (D), V (E), VI(F), VI (G), VIII (H). MYC (amplification), PV'TI (fusion), GFI1, GFI1B and PRDM6 (rearrangements)
events shown at the bottom of each strip. Samples with dual enrichment of PR - and UBC -associated TF-GRN programs
in subtype VII samples are encircled in green box. Samples with enrichment of only PR -associated TF-GRN programs are
encircled in red box. (G). (I) Distribution of samples with documented genomic alterations in MYC, GFI1B and PRDM6 on
the tSNE landscape. (J) Scaled expression of MYC on the tSNE landscape. (K) Group 3/4 tumor arranged on a Group 3 —
Group 4 methylation classification score. Methylation classification score for each subgroup is on a scale of 0-1. (L) Boxplot
distribution of intermediate classification score (1-abs(G3 score — G4 score)). Samples are grouped by subtype identity.
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Fig. S11: Increased PAX6 expression drives tumors toward UBC, states. (A) Expression of OTX2 (left), NRL (middle)
and LMXI1A (right) in bulk tumor samples across eight subtypes. Statistically significant upregulation of genes is shown by
dashed lines and asterisk (log-fold change >0.5 and adjusted p-value < 0.01). Black, subtype VII tumors compared with II-
IV tumors. Red, subtype I tumors compared with II-IV tumors. (B) Predicted composition of axial cell-states in subtype VII
samples (as shown in Fig. 5D) split by PR, Intermediate or Precursor/UBC, annotation. PR annotated samples exhibited
enrichment of PR -associated TF-GRN programs (red box, Fig. S10G), Intermediate samples exhibited dual enrichment of
PR, and UBC, associated TF-GRN programs (green boxes, Fig S10G), Precursor/UBC, annotated samples are rest of the
samples. (C-G) Expression distribution of PAX6 (C), CRX (D), NRL (E), EOMES (F) and LMX14 (G) in PR, Intermediate
and Precursor (Prec.)/UBC, annotated subtype samples, as in (B). Dots represent individual samples. Outliers not shown.
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Fig. S12: Intermediate nature of PAX6+ subtype VII samples. (A) Enrichment of TF-GRNs in bulk RNA-Seq data of
selected subtype VII samples, MB129, MB292 and MB26. (B) UMAP distribution of tumor cells for MB26. Cells are colored
as per axial identities. Panels on the left shows diffusion pseudotime (top) and cell cycle score (bottom). (C) Enrichment
of marker TF-GRNs gCRX (PR)), gTBR1 (Prec./Precursor) and gLHX1 (UBC)) shown on the MB26 UMAP. (D) UMAP
distribution of tumor cells for MB292. Cells are colored as per axial identities. Panels show diffusion pseudotime (top) and
cell cycle score (bottom). (E) Enrichment of marker TF-GRNs shown on the MB292 UMAP. (F-G) Scaled PAX6 expression
(top) and PAX6 motif enrichment (bottom) on the MB26 (F) and MB292 (G) UMAP. (H) Scaled expression of CRX and
EOMES along with their Pearson correlation with P4X6 in MB26 (left), MB292 (middle) and MB129 (right). Enrichment of
marker TF-GRNs shown on the MB292 UMAP. (I-J) Scaled Group 3 and Group 4 metagene AUC score in cells labeled as
PR, Precursor or UBC, in MB26 (I) and MB292 (J). (K-M) Tumor cell density along the PR -to-UBC, trajectory pseudotime
for MB26 (K), MB292 (L) and MB129 (M). (N-P) TF-GRN enrichment (left) and TF-GRN associated CREs enrichment
(right) along the predicted PR -to-UBC, trajectory pseudotime for MB26 (N), MB292 (O) and MB129 (P).
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Fig. S13: Spatial compartmentalization in subtype VII samples. (A-C) Spatial transcriptomic data for MB129 region 2
(A), MB292 region 1 (B) and MB292 region 2 (C). Cells are colored by predicted axial annotation. Top panels show spatial
location of cells labeled as PR -, Precursor- and UBC - like tumor cells. Bottom panels show scaled expression of marker
genes TULPI (PR)), EOMES (Precursor) and NNAT (UBC). Expression of MKI67 represent cell-cycling tumor cells. Scale
bars, 200 uM.
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Fig. S14: In silico perturbation of CRX and EOMES GRN. (A and B) /n silico knock-out (KO) of CRX and EOMES in
MB26 (A) and MB292 (B). Cells are colored by cell-states. Arrows show predicted local trajectory of cells in control, CRX
KO and EOMES KO simulations.
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Supplemental Table Legends

Table S1

. Metadata for samples included in the bulk RNA-Seq data.
Table S2.
Table S3.
Table S4.
Table S5.
Table S6.
Table S7.
Table S8.
Table S9.

Metagene sets from NMF analysis of bulk RNA-Seq samples. Top 100 genes ranked by contribution are shown.
Metadata for samples included in the single-nucleus multi-omic atlas.

108 TF-GRN sets obtained from integrated tumor data analysis.

Gene module sets obtained from the weighted gene co-expression network analysis (WGCNA).

Signature gene set for selected cell-types in GC/UBC and retinal lineages.

Log-fold change and adjusted p-value for selected genes in subtype I/VII pair-wise comparisons.

Top 250 differentially expressed genes in subtype I and subtype VII tumor in pair-wise comparisons.

ICGC samples with ELP4-AS or ELP4-AS:IMMPIL transcripts.
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Materials and Methods

Sample selection

Target tumor tissue samples were collected from published
studies (ICGC (/4) and INFORM (30) cohorts). No statistical
methods were used to pre-determine the sample size.
Experiments were not randomized, and investigators were
not blinded to tumor sample characteristics and experiment
outcome.

per cluster to obtain the TF-GRN enrichment heatmap.
The scaled TF-GRN matrix (clusters x TF-GRNs) was
hierarchically clustered to obtain groups of co-enriched TF-
GRNs (annotated as TF-GRN programs) and groups of tumor
cluster exhibiting similar TF-GRN activity (annotated as
tumor axes and cell-states). We also used addmodulescore()
(Seurat, R) (41) to calculate activity scores for each of the
identified 108 TF-GRN sets in the combined tumor cell data
and used this score to calculate Pearson correlation between
TF-GRNS.

Single-nucleus multi-omic sequencing

Flash frozen tumor samples were processed to extract
nuclei as described (20). Tumor samples were finely cut
into pieces using a surgical blade on dry ice. Cut tissue was
homogenized in the homogenization buffer (for details of
reagents, 20) by trituration or douncing with a micropestle.
Cellular debris was removed by centrifugation at 100g for
1 min, followed by nuclei pelleting from the supernatant
at 500g for 5 min. Pelleted nuclei were washed once in the
homogenization buffer before pelleting again at 500g for 5
min. Washed nuclei were re-suspended in 1x Nuclei buffer
(10x Genomics) and filtered through a 40pm filter to remove
the left-over debris. Nuclei concentration was estimated by
counting nuclei on Countess II FL. Automated Cell Counter
(Thermo Fisher Scientific) with Hoechst DNA dye and
propidium iodide for nuclei staining. Extracted nuclei were
processed using Chromium Single Cell Multiome ATAC +
Gene expression kit and Chromium Controller instrument
(10x Genomics) as per manufacturer’s recommendations.
One sample, MB248, was processed with Chromium
Next GEM Single Cell 3° v3.1 and ATAC vl.1 kits, as per
manufacturer’s recommendation. 15,000-20,000 nuclei were
loaded per channel along with the Multiome/3’/ATAC gel
bead. DNA and cDNA libraries were prepared as described
in respective kit protocols. Libraries were quantified using
Qubit Fluorometer (Thermo Fisher Scientific) and profiled
using Fragment Analyzer. GEX and ATAC libraries were
sequenced using NextSeq2000 to recommended lengths and
depth. If the ATAC library was not of good quality, we still
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used the obtained RNA-Seq library if that was found to be
of sufficient quality. RNA-Seq and ATAC-Seq datasets were
further analyzed separately.

Single-nucleus RNA sequencing (snRNA-Seq) data
processing

De-multiplexed reads were aligned to human genome
assembly GRCh38 (v. pl3, release 37, gencodegenes.
org). Genome version associated comprehensive gene
annotation (PRI) was customized by filtering to transcripts
with the following biotypes: protein coding, IncRNA,
IG and TR gene and pseudogene as recommended by
cellranger mkgtf wrapper. Reads were aligned using
STARsolo (37) with parameters: --soloType CB_UMI
Simple --soloFeatures Gene GeneFull --soloUMlIfiltering
MultiGeneUMI  --soloCBmatchWLtype — IMM multi
pseudocounts --soloCellFilter None --outSAMmultNmax /
--limitSjdblInsertNsj /500000. For overlapping genes where
intronic alignment recovered low counts, exonic alignment
counts were used. Predicted cells were separated from
debris using diem pipeline (R) (32). Cells with mitochondria
fraction > 1 median absolute deviation (MAD) above the
mean or above 2% (whichever is greater), and number
of detected genes greater than 6600 were filtered out. We
further removed cells with an intronic fraction (number
of reads aligned to intron/total number of reads aligned to
exon+intron) less than 25%. Filtered cells were then corrected
for background signature using SoupX (R) (33) and celda
(decontXcounts(), R) (34) pipeline. Finally, putative doublets
identified by scrublet (Python) (35) for snRNA-Seq data and
those identified from snATAC-Seq data (see below, Single-
nucleus ATAC sequencing data processing) were removed.
Filtered gene expression matrices were normalized using
the scran (R) (36) approach. A list of 1,500 highly variable
genes (HVG) per sample was also obtained after removing
mitochondrial (prefix: MT-) and ribosomal genes (prefixes:
RPS, RPL, MRPS, MRPL). HVG from all the samples were
combined, and sex-chromosome-specific genes (chr X and
Y) were further removed to obtain a set of combined sample
HVG gene-set for the single-cell cohort. Post-identification
of “normal” cells (described below, Single-cell annotation),
a list of 1,500 HVG was re-calculated from each sample and
a combined tumor HVG gene-set was obtained from their
union after filter sex chromosome specific genes.

Tumor single-cell annotation
We used a published single-nucleus developing human
cerebellum atlas (20) as a reference to identify putative cell-

36


https://doi.org/10.1101/2024.02.09.579680
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579680; this version posted February 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

identities of each tumor cell, particularly to identify non-
tumor cells, such as endothelial, immune or glial cell-types.
Normalized gene expression matrices from reference and
target (tumor samples) were subsetted to the intersection
of HVGs (5,000 genes from reference, combined sample
HVG from single-cell tumor data) and cosine scaled
(cosineNorm(), batchelor, R) (37). A LinearSVC model
(sklearn.svm, Python) was first calibrated using Calibrat
edClassifierCV(method="isotonic’)  (sklearn.calibration,
Python) using the reference data and then the fitted model
was used to assign best matching cell identities to tumor cells.
Cells that were identified as immune, mural/endothelial,
astrocytes or oligodendrocytes were assigned as “normal”
cells. Additionally, cells identified as cerebellar granule
neurons (GC-defined) but appeared as a distant cluster on
UMAP, separated from the bulk of tumor cells, were also
assigned as “normal”. These normal cells were removed for
the integrated tumor data analysis.

Integration of snRNA-Seq data

We integrated all tumor samples together with and without
batch-correction (across tumor samples) using LIGER (R)
(38). Normalized gene-expression matrices from individual
samples were subsetted to the combined sample HVG
set, followed by cosine scaling. The scaled expression
matrices were then used as an input for integrative NMF
factorization using the function optimizeALS(k=50, max.
iters=100000). The obtained factors were then batch
corrected using the fastMNN approach (reducedMNN(),
batchelor, R). Corrected and uncorrected factors were used
to obtain UMAP embedding of the integrated snRNA-Seq
data. The batch corrected factors were further used to cluster
cells using KNN (sklearn.neighbors, kneighbors graph(
n_neighbors=11, metric="cosine’, include self=True),
Python) and leiden clustering (leidenalg, lfind partition(),
Python).

Single-nucleus ATAC sequencing (snATAC-Seq) data
processing

ATAC-Seq reads were aligned to GRCh38 using Cellranger’s
cellranger arc wrapper and processed downstream using
ArchR (R)(39). Briefly, fragmentfiles obtained postalignment
were converted into arrow files (createArrowFiles())
using custom gene annotation (same annotation as used
for snRNA-Seq analysis) with a cut-off Transcription Start
Site (TSS) enrichment of 3 and minimum 3000 fragments
per cell. Putative doublets were identified by calculating a
doublet score per cell (addDoubletScores()) and filterRatio

37

Materials and Methods for Joshi, Stelzer, Okonechnikov ef al.

of 1 (filterDoublets()), and were removed along with
doublets identified in the snRNA-Seq processing. Cells with
high fragment counts, 2x MAD above mean, were further
removed. Filtered cells were then clustered and a final QC
was done by removing clusters that exhibited comparatively
low TSS enrichment and number of fragments per cell,
along with lack of enrichment of known marker genes,
obtained from the integrated snRNA-Seq data analysis. Cell
clusters were also assigned putative “normal” identity if they
were enriched for markers for immune, mural/endothelial,
astrocyte or oligodendrocyte lineage, based on predicted
gene-scores.

Integrating snRNA-Seq and snATAC-Seq data

Out of the 38 samples in the single-cell cohort, 32 were
obtained from the multi-omic approach, with only a single
tumor sample, MB248, that had snRNA-Seq and snATAC-
Seq data from separate experiments. From here onwards, we
only used tumor cell data in snATAC-Seq and hence any cell
identified as “normal” based on snRNA-Seq or snATAC-Seq
processing were removed. For multi-omics data, the majority
of cells had both snRNA-Seq and snATAC-Seq data, but as
per-sample snRNA-Seq and snATAC-Seq data was processed
separately, variable number of cells were obtained per sample
that passed QC parameters in one modality (snRNA-Seq or
snATAC-Seq) but not in the other. To maximize data for
downstream processing, we did not remove these cells from
either data set, snRNA-Seq or snATAC-Seq, but imputed
the missing RNA counts (normalized logcounts) for cells in
the snATAC-Seq data of the same sample. Before imputing,
snATAC-Seq data clusters that had RNA counts for less than
50% of cells or total number of cells with RNA counts was
less than 100 were removed due to lack of a proper reference
in these clusters. The imputed RNA count was then obtained
from a weighted sum of normalized logcounts of 5 nearest
neighbors  (sklearn.neighbors.NearestNeighbors()). For
sample MB248, snRNA-Seq and snATAC-Seq data were
integrated using addGenelntegrationMatrix() (ArchR).

Post integration, a joint dimensionality reduction of
snRNA-Seq and snATAC-Seq data was obtained per sample.
Using addCombinedDims() (ArchR), we combined Latent
Semantic Indexing (LSI) based factorization of snATAC-
Seq data to singular value decomposition (SVD) based
factorization of snRNA-Seq data, excluding dimensions
that had a correlation of greater than 0.75 to sequencing
depth. The joint dimensional reduction was used to identify
clustering (referred to as combined cluster) and UMAP
representation of the combined ATAC-RNA data.
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Per sample peak calling in the snATAC-Seq data

Peaks were called per-sample on the tumor cells grouped
by combined cluster annotation. First a minimum of
40 cells and a maximum of 500 cells per group, with a
sampling ratio of 0.8, were used to generate pseudobulk
replicates via addGroupCoverages(). Then peaks were
identified using MACS2 caller with a reproducibility of 2
via addReproduciblePeakSet(). Rest of the parameters used
were defaults as defined in the function definition.

Creating a cisTopic object per sample

In order to prepare data for SCENIC+ pipeline (Python) (15),
the “peaks by cells” matrix (referred to as peak matrix here
onwards) obtained from the ArchR analysis was converted
to cisTopic object (pycisTopic, Python) to obtain topics and
differentially accessible regions (DARs), which represent
candidate enhancers for SCENIC+ analysis. Peak matrix
was reduced to 50 topics (run_cgs models(), pycisTopic),
obtained topics were binarized into region sets by ‘otsu’
method and selection of top 3,000 regions per topic. DARs
were identified by first identifying highly variable features
(HVF), based on the log-normalized peak matrix, and then
identifying marker regions using a cut-off adjusted p-value
less than 0.05 and Log2FC greater than 0.5. If no marker
regions were identified, then lower thresholds (Log2FC <0.1
and adjusted p-value <0.5) were used.

Creating motif-enrichment dictionary

Candidate enhancer regions identified from topic analysis
and DARs were then assessed for motif-enrichment leading
to creation of cistromes, an object associating transcription
factors (TFs) to potential target regions. We used run_
pycisTarget() wrapper from SCENIC+, along with motif-
ranking, motif-score and motif-annotation provided by the
Aertslab for GRCh38 (15) to obtain the TF-region cistromes
per sample. Default settings were used for the function with
the exception of run_without _promoters = True. Further,
only TFs that were present in the combined tumor HVG set
were selected for further processing.

Gene regulatory network identification

We used the SCENIC+ approach for the multi-omic data to
identify TF-associated gene regulatory networks (TF-GRNs)
per sample. To identify tumor TF-GRNs, we first removed
cells that were assigned as “normal” identity in snRNA-Seq
or snATAC-Seq data processing. For each sample, we used
snRNA-Seq data (after converting it into anData object),
snATAC-Seq data (as cisTopic object) and motif-enrichment
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dictionary (obtained from pycisTarget) to create a SCENIC+
object. Additionally, we provide a TF adjacency matrix with
correlation values from a separate run of pyscenic (Python)
(16) using ‘genie3’ method (-m flag). SCENIC+ first
identified region-to-gene linkage for identified enhancers
and their target genes and then assigned TF-to-gene links
by associating TF that are enriched in the enhancers found
linked to target genes. In the final step, SCENIC+ uses
region-to-gene and TF-to-gene links to identify regulons
(TF-to-region-to-gene links) that are among the top ranked
based on importance scores and assigns positive or negative
regulatory relationships based on the correlation between
the TF and assigned target gene. SCENIC+ outputs a list
of possible regulons with putative activation or repression
relationships. For our analysis, we focused on positive TF-
target interactions, represented as ‘+ +’ in SCENIC+.

TF-GRNs selection and compilation

Foreach sample, a set of active TF-GRNs was identified using
SCENIC+ approach as described above. For each of the TF-
GRNS, an “Area Under the Curve” (AUC)-based enrichment
score (AUCell run(), AUCell, R) (16) was calculated for all
the tumor cells using log normalized RNA counts (including
the imputed counts). From the identified TF-GRNs, GRNs
associated with heterogeneity were identified based on the
differential enrichment of TF-GRN AUC scores across
combined_cluster annotation using Wilcox-rank test
(findmarkers(), scran, R). The top three marker TF-GRNs
per cluster per sample were used as representative of
differentially active GRNs for that sample. After identifying
such sets of TF-GRNs for each sample, we combined the
obtained gene-sets as follows: 1) we selected TFs that
were found to be associated with differentially active TF-
GRNS in at least two samples, and then 2) for each of these
selected TFs, we filtered target genes that were identified as
linked to the TF in more than 20% of the samples where
the TF was found to be active, with the association being
present in at-least three samples. TF-GRN sets with sizes
of less than 15 genes (including the TF) were also removed.
In this way, we identified a conserved set of TF-gene links
that were biologically replicated while reducing the number
of associated genes by increasing the number of replicates
required for the TFs that were widely used. This resulted in
108 TF-GRNs (Supplementary Table S4).

Integrating tumor RNA data across samples using TF-
GRN enrichment scores
We obtained the AUC enrichment score for each of the
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TF-GRN gene-sets (n=108) for all of the tumor cells using
AUCell run(aucMaxRank=0.1*nGenes, normAUC=TRUE)
(AUCell). The resulting enrichment score matrix was
factorized using NMF (rank=25) and the obtained NMF
factors were used for clustering (KNN-leiden) the integrated
tumor data (resulting in 101 clusters), and obtained UMAP
embedding and diffusion plots (destiny, R) (40). The TF-
GRN AUC score matrix was scaled across cells and averaged
per cluster to obtain the TF-GRN enrichment heatmap.
The scaled TF-GRN matrix (clusters x TF-GRNs) was
hierarchically clustered to obtain groups of co-enriched TF-
GRNss (annotated as TF-GRN programs) and groups of tumor
cluster exhibiting similar TF-GRN activity (annotated as
tumor axes and cell-states). We also used addmodulescore()
(Seurat, R) (41) to calculate activity scores for each of the
identified 108 TF-GRN sets in the combined tumor cell data
and used this score to calculate Pearson correlation between
TF-GRNs.

Integrating snATAC-Seq data across samples

ArchR generated arrows files across tumors were merged
to obtain a combined ArchR object. The merged ArchR
object was factored using addlterativelSl(iterations=>35,
clusterParams = list(resolution = c(0.1, 0.2, 0.4, 0.8),
sampleCells = 20000, n.start = 10), varFeatures = 100000,
dimsToUse = 1:100, totalFeatures = 500000) and obtained
factors were used to calculate joint UMAP representation of
the snATAC-Seq data. The merged ArchR object was then
subsetted to tumor cells to identify peaks in the integrated
data. Similar to peak identification in individual samples, first
the integrated data was pseudobulked by tumor cell clusters
(as identified in Integrating tumor data using TF-GRN
enrichment scores) using addGroupCoverages(maxCells
= 1000, minReplicates = 5, maxReplicates = 15,
maxFragments = 50 * 10°6). Peaks were called using addRe
produciblePeakSet(reproducibility = “2”). Frequency of the
identified peak’s activity per tumor cluster was calculated
by dividing the number of cells in a cluster in which the
peak was detected by the total cluster population. Peaks that
showed less than 3% frequency in all the tumor clusters were
filtered out to obtain a robust peak set.

TF-GRN cis-regulatory elements (CREs) activity in
tumor cells

Cis-regulatory elements (CREs) associated with a candidate
TF and its identified target genes were combined to obtain
a non-overlapping region set that defined the putative
functional binding regions of that TF. For each TF-GRN, the
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obtained CREs were filtered to those CREs that overlapped
with the above identified robust peak set (see Integrating
snATAC-Seq data across samples), which together
represented a pseudo-peak for that TF-GRN. A TF-GRN x
tumor cluster pseudo-peak counts matrix was obtained by
summing the peak counts of the associated CREs per tumor
cluster. This matrix was divided by sum of column values,
scaled to 10,000, and finally log2 transformed to obtain
a normalized CRE activity matrix. The normalized CRE
activity matrix was scaled across rows to obtain the CRE
enrichment heatmap.

Subtype VII tumor sample trajectory analysis

TF-GRN AUC score for the integrated tumor data was
subsetted by sample and used to obtain UMAP representation
and diffusion map based pseudotime. Tumor cells with
snATAC-Seq data were used to obtain PR to UBC, trajectory
using addTrajectory()(ArchR). The obtained trajectory was
used to calculate TF-GRN and associated CRE enrichment
signatures across pseudotime.

Weighted gene co-expression network analysis (WGCNA)
We used the combined logcounts and final annotation for
the tumor data to identify a set of genes that showed axes
or cell-state correlated activity using WGCNA (R) (42).
A normalized gene expression matrix was subsetted to a
combined tumor HVG set. For the WGCNA run, softPower
was set to 9 and minimum module size was set to 20. A
total of 24 modules were identified. Modules showing
highest correlation with axial identities were selected as
representative for the respective annotation.

In silico gene knock-out

CellOracle (R) (28) approach was used to perform in silico
perturbations for CRX and EOMES in subtype VII tumor
single-cell data. A sample-specific TF-GRN network,
identified through the SCENIC+ analysis, was provided
as an input in the form of a TF-target dictionary. For each
sample, raw gene expression counts, PCA calculated using
runPCA() (scran), and TF-GRN AUC score-based diffusion
pseudotime were used. Expression of CRX/EOMES was set
to 0 to perform in silico loss-of-function analysis.

Bulk tumor RNA-Seq data processing

The bulk RNA-Seq data was collated from published
studies for three cohorts: ICGC (17-14), MAGIC (8) and
Newcastle (/0). Except for the ICGC cohort, processed
read count matrices were used for MAGIC and Newcastle
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samples. For samples belonging to the ICGC cohort, raw
reads were aligned to human genome assembly GRCh38
(v. pl3, release 37, gencodegenes.org), using STAR
aligner (43). RNA-Seq samples belonging to individual
cohorts were normalized separately using DESeq2 (R) (44).
Intersection of genes among the top 5,000 HVGs per cohort
were used for subsetting data for NMF factorization. NMF
factorization was performed using sklearn.composition.
NMF (init="nndsvd”, max_iter=100000). NMF rank 2 and
8 were used to obtain subgroup- and subtype-associated
latent factors or metagene signatures. To obtain the gene-
set associated with each latent factor/metagene signature,
the top 100 genes ranked by contribution to that factor
were used. The obtained NMF latent factors (rank=8) were
used for UMAP, tSNE, and Diffusion map projection of
the bulk data. Differentially active genes in subtype I or
VII tumors were obtained from pairwise comparison using
lfcShrink(type="ashr”) (DeSeq2).

Gene-set AUC scores for bulk RNA-Seq data

AUC enrichment scores of the TF-GRN gene-sets or
WGCNA identified modules were calculated for each of the
bulk tumor samples using AUCell run(). AUC scores for
tumor samples were scaled for each cohort (ICGC, MDT,
and Newcastle) separately and then merged. Scaled TF-
GRN AUC scores were used to obtain tSNE representation
of the bulk-RNA-Seq tumor data on the TF-GRN enrichment
space.

Human retina single-cell multi-omic atlas data processing
Processed filtered snRNA-Seq and snATAC-Seq data for the
developing human retina were obtained from GSE183684
(17). snRNA-Seq and snATAC-Seq data were processed
similar to tumor data. snRNA-Seq data was integrated
together without batch-correction using NMF factorization
(rank 25) and clustered using KNN-leiden approach.
Obtained clusters were annotated based on marker gene
expression (/7). For SCENIC+ analysis, snRNA-Seq data
was converted to anDATA format, and snATAC-Seq data was
converted into cisTopic format followed by processing with
pycisTarget to obtain cistromes, as described for the tumor
data. Processed data was then used as input for SCENIC+
pipeline to obtain active regulons per sample. The top three
TF-GRNs per “combined_cluster” for each of the samples
were obtained based on differential AUC score enrichment
(Wilcoxon test, findMarkers(), scran). TF-GRNs identified
per sample were combined with a minimum requirement
of the TF being associated with differentially expressed
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GRNs in at least two samples and the target gene being
associated with the TF in at least 20% of the samples, with
a minimum of three samples. Finally, TF-GRNs with a size
of less than 15 genes were removed. Similar to the tumor
data, the AUC score was calculated for each of the retinal
lineage cells using AUCell run(aucMaxRank=0.1*nGenes,
normAUC=TRUE).

Integration of snRNA-Seq and snATAC-Seq data
was obtained using scJoint (45). Normalized logcounts
were used for snRNA-Seq and predicted gene scores
(addGeneScoreMatrix(), ArchR) were used for snATAC-
Seq. Gene expression matrices were subsetted to top 5000
HVGs across the integrated snRNA-Seq data excluding
mitochondrial, ribosomal and sex chromosomal genes.
scJoint based predicated labels for ATAC cells were used to
annotate integrated snATAC-Seq data. For each of the ATAC
cells, TF-GRN activity was imputed from the weighted sum
of TF-GRN AUC score of the five nearest RNA cells obtained
based on scJoint generated embedding for snRNA-Seq and
snATAC-Seq data. Calculated TF-GRN AUC scores for
snRNA-Seq data and imputed AUC scores for snATAC-Seq
data were used to obtain joint representation of snRNA-Seq
and snATAC-Seq data on the TF-GRN enrichment space.
AUC scores from the snRNA-Seq data were used to obtain
NMF model (rank=25), then the obtained model was used
to factorize both the RNA-Seq and ATAC-Seq AUC score
matrices. Post factorization, RNA and ATAC factor matrices
were merged for a combined UMAP embedding.

Post-integration peak calling was done on the snATAC-

Seq data by grouping cells based on scJoint predicted labels.
A sample ratio of 0.8, 2 minimum replicates and 8 maximum
replicates were used to obtain pseudo-bulks, followed by
calling peaks by MACS?2 caller using a reproducibility of 2.
A robust peak-set was obtained by removing peaks that were
detected in less than 3% of cells in all the clusters.
Tumor TF-GRN gene-set enrichment score was obtained
using AUCell run() and retina logcounts gene expression
matrix. TF-GRN AUC scores were scaled across cells and
averaged by cluster to obtain a tumor TF-GRN gene-set
enrichment heatmap.

Tumor TF-GRN CREs were intersected to obtain
overlapping regions in the retinal robust peak matrix. Peak
counts for all the CREs associated with each TF-GRN were
summed to obtain TF-GRN by retina cluster matrix. The
pseudo-bulked peak matrix was divided by column sums,
scaled to 10,000, log2 transformed and finally scaled across
clusters to obtain tumor TF-GRN CRE enrichment heatmap.
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Deconvolution of bulk RNA-Seq tumor data

Bulk RNA-Seq data was deconvoluted using BayesPrism (R)
(46) separately for each cohort (ICGC, MDT, Newcastle).
Tumor data with cell-state annotation was combined with
non-neuronal cells from single-nucleus human cerebellum
data (20) to create the reference for deconvolution. An
intersection of combined single-cell multi-omic atlas derived
tumor HVG set and the top 7,500 HVGs from the bulk tumor
cohort was used to subset the gene expression matrices of the
reference and target data. Estimated proportion for each of
the reference cell-state were obtained for each of the tumor
sample, and combined estimate of the non-neuronal cells
were removed to obtain the proportional composition of
tumor cells in terms of the reference cell-states as annotated
in the integrated Group 3/4 medulloblastoma atlas.

ChIP-Seq data analysis

Published H3K27Ac ChIP-Seq data (//) was aligned to
GRCh38usingbowtie2 (47). Duplicated, unmapped and multi-
mapped reads were marked and removed using sambamba.
Deduplicated alignment bam files were sorted using
sambamba and indexed using samtools. Obtained alignment
was normalized using bamCoverage —normalizeUsing CPM
—binSize 20 smoothLength 60 —extendedReads 150 —bl hg38.
blacklist.v2.bed (deepTools, Python) and converted into
bigwig format. Enhancer signal for a subtype was obtained
from averaged normalized signal of the constituting samples
using wiggletools. wigToBigWig was used to convert
obtained Wig files to bigwig and followed by conversion to
BedGraph format using bigWigtoBedGraph tool. Bed files
for human OTX2 (GSE137311), CRX (GSE137311) and
EOMES (GSE26097) binding regions were obtained from
Remap (https://remap2022.univ-amu.fr/). Track plots were
prepared by SparK (https://github.com/harbourlab/SparK).

Identification of ELP4-AS and ELP4-AS:IMMPIL

Novel long non-coding RNA transcript, ELP4-AS, was
identified using StringTie based de novo transcriptome
assembly using the ICGC cohort RNA-Seq data. The
spliced variant of ELP4-AS with downstream IMMPI1L was
identified using Arriba toolkit based on the RNA-Seq data
(48). Presence of ELP4-AS and novel splicing transcript was
confirmed by RT-qPCR in individual samples. Presence of
fusions at genome level was also investigated using WGS
data and SOPHIA algorithm (49).

Gene-set AUC scores in the unipolar brush cell (UBC)
lineage
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In published human cerebellar snRNA-Seq data (20), the
UBC lineage was defined as composed of the following cell-
types: rhombic-lip progenitor (RL progenitor), bi-potent
GC/UBC progenitor (GCP/UBCP, annotated as UBCP in
current study), differentiating UBC (UBC diff.) and defined
(or differentiated) UBC (UBC def.). Normalized gene
expression counts for the 5,835 cells representing the UBC
lineage were extracted from the combined cerebellum atlas.
Gene expression matrix was further subsetted to the top
1,000 HVGs and factorized using optimizeALS() (LIGER,
rank 15). Obtained iNMF factors were batch corrected
using reducedMNN() and obtained corrected-INMF factors
were used to generate the UMAP representation of the UBC
lineage. Obtained UMAP factors were used to calculate
slingshot() (slingshot, R) (50) based pseudo-temporal
lineage order with RL progenitor as the starting point. Cells
were binned into 100 distinct bins based on pseudotime.
AUC score for the NMF metagenes, TF-GRNs and WGCNA
was calculated for each of the cells in the UBC lineage and
scaled across cells. Scaled gene-set scores were smoothened
using loess() along pseudotime, averaged per bin, followed
by scaling across bins.

Multiplexed single molecule
(smFISH) data analysis

For 12-week post-conception human cerebellum spatial
mapping was performed using published processed smFISH
dataset generated using the Molecular Cartography (Resolve
Biosciences) and smFISH probeset targeting 100 genes (20).
The dataset contains information on segmentation as defined
by Baysor (57), and independently imputed cell type and
state/subtype labels together with their prediction scores as
estimated by Tangram (52). For tumor data, tumor samples
were processed using a tumor specific set of target genes
(53). Tumor cell identities were imputed at the cell-state
level using Tangram using sample-specific snRNA-Seq data
as reference.

in situ hybridisation
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