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Abstract

Nucleosomes represent elementary building units of eukaryotic chromosomes and

consist of DNA wrapped around a histone octamer flanked by linker DNA segments.

Nucleosomes are central in epigenetic pathways and their genomic positioning is

associated with regulation of gene expression, DNA replication, DNA methylation

and DNA repair, among other functions. Building on prior discoveries, that DNA

sequences noticeably affect nucleosome positioning, our objective is to identify

nucleosome positions and related features across entire genome. Here we introduce an

interpretable framework based on the concepts of deep residual networks (NuPose).

Trained on high-coverage human experimental MNase-seq data, NuPose is able to

learn sequence and structural patterns and their dependencies associated with

nucleosome organization in human genome. NuPoSe can be used to identify

nucleosomal regions, not covered by experiments, and be applied to unseen data from

different organisms and cell types. Our findings point to 43 informative DNA

sequence features, most of them constitute tri-nucleotides, di-nucleotides and one

tetra-nucleotide. Most features are significantly associated with the structural

characteristics, namely, periodicity of nucleosomal DNA and its location with respect

to a histone octamer. Importantly, we show that linker DNA features contribute ~10%

to the quality of the prediction model, which together with comprehensive training

sets, deep-learning architecture and feature selection may explain the advanced

performance of NuPose of 80-89% accuracy.

Keywords: Interpretable deep learning, Nucleosome positioning; Nucleosome

positioning features; ResNet;
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Abbreviations

ACC: Accuracy

AUC: Area under curve

CNN: Convolutional neural network

CS: Candidate solution

DL: Deep learning

FFT: Fast Fourier Transform

NP: Nucleosome positioning

MCC: Matthew's correlation coefficient

MFI: Minor groove facing histone octamer

MFO: Minor groove facing outward from the histone octamer

NuPose: prediction model/method trained on all features

NuPose*: NuPose trained without flanking DNA linkers

NuPoseWS: A version of NuPose with excluded skip connections

PCC: Pearson correlation coefficient

PRE: Precision

ResNet: Deep residual network

ROC: Receiver operating characteristic

SEN: Sensitivity

SHL: Super-helical location

SPC: specificity

SVM: Support vector machine

SVMTrader: A combination of Trader and SVM
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Introduction

The human genome is packaged into chromatin with nucleosomes serving as

building blocks. Nucleosomes consist of ~147 base pairs (bp) of DNA (“nucleosomal

DNA”) wrapping ~1.7 turns around a histone octamer1. Nucleosomes are connected

together by about 20-90 bp DNA segments, called linkers. There are 30 million

nucleosomes in the human genome, and their specific positions are associated with

key biological functions mediating DNA accessibility, gene expression, DNA

methylation and binding of various chromatin factors2-4. Different experimental

methods have been proposed for nucleosome mapping which include DNase-seq,

ATAC-seq and NOME-seq, but they generally lack the single nucleotide precision

which is necessary for deciphering sequence patterns modulating the preferable

location of DNA on histone octamers5,6. Other techniques, employing directed

chemical cleavage, may offer very high resolution but might not be viable for

mapping across the entire genome7. MNase-seq is widely used method for

nucleosome detection, despite its demand for extensive sequencing coverage8,9. For

instance, to achieve a high-resolution map of nucleosomes in human cells, several

billion reads are necessary. Despite the availability of extensive datasets, the

experimental mapping efforts have not precisely determined nucleosome positions

(NP) in the entire human genome which underscores the necessity to develop

comprehensive prediction methods for NP.

Nucleosome positioning in cells in general is influenced by the DNA sequence

features, by chromatin physical barriers and by chromatin factors which can slide

nucleosomes10-14. Although DNA molecule is flexible, its certain conformations may

be energetically favorable for nucleosome formation depending on its sequence15-17.

Motivated by these ideas, various studies have been carried out to identify the DNA-

specific features that are effective in forming nucleosomes18-22. Although first

analyses on this subject were performed on very small data sets, these studies were

capable to distinguish certain sequence patterns governing nucleosome positioning. It

was proposed that the deformation cost of bending DNA around a histone octamer

could depend on the locations of certain pyrimidine-purine dinucleotides that were

easier deformed compared to others23,24. While there is no consensus on this topic,

sequence patterns were described where A/T rich sequence motifs determined the

rotational orientation of DNA so that minor grooves faced towards the histone

octamer, whereas G/C rich motifs were associated with the minor grooves facing
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outward25,26. However, there is no consensus on the subject. Generally, the

contribution of genomic sequence in explaining the in vivo nucleosome positioning

has been proposed to be substantial27,28.

The experimental determination of NP is a time- and cost-consuming process.

Hence, different discriminant and generative computational methods were proposed,

inspired by the idea of NP dependence on DNA sequence29-33. One group of studies

used di- and tri-nucleotide composition trying to maximize the distance in feature

space between nucleosomal footprints and nucleosome free regions34. These

approaches did not account for precise locations of DNA sequence patterns and this

choice was partially explained by the relatively low-resolution and a small amount of

data coming from the SELEX and microarray MNase-seq techniques. In the later

studies, the authors tried to account for the DNA local structural properties and long-

range sequence-order effects which were proven to be very effective35. Most recently,

several deep learning (DL) approaches have been developed with the goal of

predicting NP in a genome36,37. One such approach (LeNup) proposed to combine the

concepts of the convolutional neural network (CNN), inception modules, and a gating

mechanism38.

Despite all these above-mentioned efforts, the DNA sequence-based features

effective in forming nucleosomes have not been well understood because of the

following reasons. First, most machine learning studies have focused on predicting

NP rather than identifying NP features. Second, existing NP prediction approaches

have used only parts of the human genome for training due to the high memory and

time complexities of these algorithms. For example, in CNN, numerous kernels in

convolution and pooling layers do not allow to efficiently train the model and identify

NP features in the on the whole genome scale39. Furthermore, given the large scale of

NP data, using advanced deep learning techniques like capsule networks also poses a

challenge in terms of time complexity40,41. Finally, existing studies have neglected to

consider the linker DNA regions adjacent to nucleosomes.

Here, powered by the high coverage human data, we have developed an

interpretable deep-learning framework based on the concepts of deep residual

networks (ResNet) and a two-step feature selection approach. Our proposed method

extracts a variety of NP features that are not typically extractable by common deep-

learning approaches. These features undergo a two-step feature selection process, and

the final NP prediction model and features are selected using a ResNet-based
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approach. We find 43 sequence features that are important for identification of

nucleosome regions genome-wide with the accuracy up to 89%. Importantly, we show

that not only nucleosomal but also flanking linker DNA sequence is important for

nuclesome positioning and in total contribute ~10% to the quality of the model.

Materials and Methods

Figure 1 shows the main steps of our computational framework (NuPose) which

can score the nucleosome positioning (dyad locations) genome-wide and evaluates the

importance of features contributing to the quality of prediction model. NuPose

includes the following major steps: (a) identification of nucleosome dyad from the

experimental MNase-seq data, (b) feature extraction, (c) generation of candidate

subsets of features, and (d) selection of the most effective features in forming a

nucleosome and generating an NP prediction model.

Identifying nucleosome positions from the MNase-seq data

We followed the protocol developed in our previous study42. High-coverage data

of paired-end 147 bp length MNase-seq fragments from seven human lymphoblastoid

cell lines (GSE36979) were used in this study for mapping of nucleosome positions28.

Fragments of 147 bp lengths are the most abundant in this data set and correspond to

the nucleosomal DNA, whereas longer or shorter fragments may result from over- or

under-digestion of nucleosomal DNA, can come from the sequence-specific

spontaneous DNA unwrapping and may provide less precise estimates of individual

nucleosome positions. The fragments (both complementary strands were used) were

mapped to the reference human genome (GRCh37). Since there can be multiple

overlapping nucleosomal fragments, we applied a previously developed protocol to

identify the representative dyad positions43. First, the fragments’ midpoint counts

(dyad counts) at each genomic location were smoothed out (Eq. 1):

�(�, ℎ = 15) = 1
ℎ × �=1

� �(� − �) × �(�)� (1)

where N is the length of a chromosome, and d(j) indicates the total number of mapped

DNA fragments with their midpoint nucleotides placed at the jth genomic location.

Here, K is the tri-weight kernel function (Eq. 2), and h is the bandwidth of the kernel
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function. The value of h was tuned up to 15, as prior studies have shown that smaller

values for h can increase the accuracy of identifying NP28,43.

� � = (1 − (�
ℎ )
2)3 |�| ≤ ℎ

0 |�| > ℎ
(2)

Second, the bwtool software package was used to obtain the local maximum

values of the smoothed dyad counts44. The minimum distance between the

neighboring local maxima was set to 150 bp with “find local-extrema -maxima -min-

sep=150”. Then, for every 60-bp window centered at each local maxima, the dyad

location with the highest number of dyad counts was determined as the representative

dyad and any other dyad positions were discarded. In the cases where two or more

dyad positions had the same dyad counts within the same interval, the representative

dyad was determined as the one located closest to the local maximum of the smoothed

counts.

As a result, we were able to determine nucleosome positions for over 1 million

nucleosomes, from which the positive and negative data sets were chosen. For a

positive set, 100 bp long fragments were extracted from both sides of the dyad

position (Figure 1b), with 73 bp on each side of the dyad representing the

nucleosomal footprint, and the remaining 27 bp on each side representing the linker

DNA. The negative data set was taken from the inter-nucleosomal regions that did not

overlap with any nucleosomal DNA fragments. For a negative set, we identified the

midpoint between two consequent nucleosomal dyads, separated by >400 bp distance,

and then included 100 bp on both sides from the midpoint. Both positive and negative

datasets included genomic regions of 201 bp lengths (so called samples). In

generating datasets, to avoid biasing towards sequence repeats, the repeated genomic

regions were disregarded using the WindowMasker software tool45. As a result, each

of the positive and negative datasets comprised 115,640 one-stranded DNA sequence

regions (a total of 231,280).

Extracting features

For every DNA strand from positive and negative data sets, a total of

42+43+44=336 di-nucleotide, tri-nucleotide and tetra-nucleotide sequence patterns

were defined, and for every sequence pattern, five groups of features were extracted

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579668doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579668
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

(Figure 1b). The first group pertained to the total number of occurrences of a pattern

within a sequence. The second group corresponded to statistical features, the average

and standard deviation values of the distribution of distances between a pattern's

occurrences and the nucleosomal dyad. For the negative set, distances were measured

from the midpoint of the inter-nucleosomal region (counted in the number of bases).

Previous studies demonstrated that the frequency of di-nucleotides across

nucleosomal DNA follows 10-11 base pair and, in some cases, 12 base pair periodic

patterns. Therefore, we introduced the third group of features, calculated as the total

number of occurrences of a sequence pattern separated by multiples of k (k = 10, 11,

or 12 bases):

�� = �=1
�−1

�=�+1
� ���(���� −��, �) (3)

���(�,�) = 1
0

� ��� �=0
�0ℎ����y� (4)

where Li is the genomic location of a sequence pattern and T is the total number of

occurrences of a sequence pattern in a data sample. Due to the two-fold symmetry of

DNA in nucleosome structures, DNA complementary strands should be structurally

superimposed if the nucleosome structure is rotated by 180 degrees. Considering the

symmetry attribute of a nucleosome, the fourth group of features included sequence

similarity scores calculated. Finally, the fifth group pertained to the presence/absence

of a certain sequence pattern at a certain distance from the dyad position (a midpoint

in case of a negative set). All features were extracted for each of the 336 sequence

patterns in every data sample. Moreover, since micrococcal nuclease has a strong

sequence specificity and cleaves the 5' side of A/T much faster than of G/C at

flanking regions, we ignored regions located at 71-77 bases away from the dyad. All

in all, a total of 34,276 features were defined and extracted for every data sample.

Selecting informative features

Selecting an optimal subset of features is computationally intensive (a non-

deterministic polynomial-hard problem), so it is not practical to score all possible

subsets of features46. We introduced an interpretable multi-step feature selection

approach and generated an NP prediction model based on the concepts of ResNet. In
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the first feature selection step, the Pearson correlation coefficients (PCC) were

calculated between all feature values, and as a result 47 features were found to be

redundant with PCC greater than 0.5 when compared to other features. The remaining

features underwent the second step of the feature selection, which involved combining

our previously developed metaheuristic Trader algorithm and support vector machine

(SVM) classifier (we refer to it as SVMTrader)47. Trader speeds up the search by

updating each feature subset by introducing random changes to candidate solutions

(CS) to explore new regions of the global search space and aiding in escaping from

the local minima. Additionally, the algorithm divides candidate solutions into several

groups, enabling diversification of the search. This process allows for independent

and more effective exploration of different regions within the global search space.

Consequently, it leads to faster convergence and improved performance as was shown

in the previous study47,48. The pseudo code of the Trader-based feature selection

method is presented in the supplementary file.

At the end of the above-described feature selection step, a total of 100 improved

CSs were generated and analyzed using the fully connected part of NuPose, which

was designed based on the concepts of ResNet49. NuPose’s architecture included 50

fully connected hidden layers and differed from the architecture of ResNet by

replacing convolution and pooling layers with the feature extraction and selection

procedure described above (Figure 1 and Figure S1). Skip connections feed the input

of a residual block to the output of another residual block (Eq. 5), with each block

consisting of five fully connected hidden layers. These skip connections help to

minimize the vanishing gradient problem and increase the performance of the deep

neural network.

��0�
� =

����−4
� + ( �=1

� (��0�−1
� ×��−1,�

�,� )) �X � ��� 5 = 0�

( �=1
� (��0�−1

� ×��−1,�
�,� ))� �X � ��� 5 ≠ 0

(5)

where ����−4
� denotes the input of the jth neuron associated with the i-4th layer, and H

is the total number of neurons in a hidden layer. ��0�−1
� refers to the output of the kth

neuron associated with the (i-1)th layer, and ��−1,�
�,� is the weight of the edge

connecting the kth neuron of the (i-1)th layer to the jth neuron of the ith layer,

respectively. Here,  is an activation function of a layer i, in our case the sigmoid
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function. The epoch number and batch size parameters were set to 10,000 and 500,

respectively. To prevent overfitting, the early stopping technique was used with a

value of 5 for the patience parameter. The ResNet described above was applied to

each of the 100 improved CS and certain NP features were selected based on the

weights associated with the first layer of the described ResNet, similar to a previously

introduced DL method50. Features with the weights larger than the mean value of all

weights (�) associated with edges connecting neurons from the first layer to those of

the second layer were chosen

��� = �� | �=1
� (���1

� ×�1,2
�,�)� | > �} (6)

where ��� and �� represent a set of selected features from the ith CS and jth features

within that CS, respectively. Here, ���1
� is associated with the value of the jth feature.

� = �=1
� | �=1

� (���1
� ×�1,2

�,� )� |�
� (7)

The union of the selected features from each CS was chosen as informative

features in the formation of a nucleosome ( �=1
� ���� , where n is the total number of

CSs), and the final NP prediction model was generated based on these informative

features. The informative NP features were then ranked based on their influence on

the NuPose model. For this purpose, several NP prediction models were generated by

removing each of the informative features and keeping the remaining ones. The areas

under the receiver operating characteristic curves (AUC-ROC) were then compared

using the DeLong test51. If Z-score was greater than 1.96, then the two NP models

were assumed to significantly differ from each other with p-value <0.0552. The final

ranking of features was determined by the inverse order of the DeLong test Z-scores

since a significant drop in the Z-score of the model performance upon removing a

feature would correspond to the most informative feature in the final ranking. The

NuPose workflow was implemented in the Python programming language equipped

with the Keras deep learning library.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579668doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579668
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

Results

Comparing NuPose with previous methods

In this section, we compare NuPose performance with other previously

introduced NP prediction methods38,53-55. These methods have been developed and

evaluated based on the main three datasets: (i) derived from H.sapiens containing

2,273 positive and 2,300 negative samples (data set HS), (ii) derived from C.elegans

consisting of 2,567 positive and 2,608 negative samples (data set CE), and (iii)

D.melanogaster comprising 2,900 positive and 2,850 negative samples (data set

DM)56. It should be mentioned that due to the computational complexity, all these

studies trained their prediction models on a relatively small fraction of genomes (50

times smaller than a data set used to train NuPose), for example, only chromosome 20

was used in case of H.sapiens (HS) dataset. Besides, these datasets consisted of 147-

base DNA sequences and excluded linker DNA regions. Therefore, we re-trained

NuPose on these datasets without considering linker regions (so called NuPose*).

Consequently, to directly compare NuPose* performance with the results reported in

other methods’ papers, we have generated predictions using 5-fold and 20-fold cross-

validation (Table 1). As can be seen in this table, the NuPose* and LeNup methods

outperformed other techniques in terms of various performance criteria. Moreover,

even though NuPose* model did not used the linker features, it surpassed LeNup by

~8% and 2% in terms of MCC for the H.sapiens (HS) and C.elegans (CE) datasets

respectively, whereas for D.melanogaster (DE) dataset LeNup outperformed NuPose

by 2%.

Generalization of the model across different species and cell lines

Next, we asked, if NuPose framework trained on one specific cell line can be

applicable for identifying NP in a different cell line in the same organism. To answer

this question, an additional MNase-seq dataset from CD4+T cells was obtained56.

This dataset covered regions of the human genome in activated and resting CD4+T

cells. We trained three models on our original human lymphoblastoid cell lines:

SVMTrader, NuPose and a version of NuPose which excluded skip connections

(NuPoseWS, to evaluate the effects of skip connections on the performance of the NP

prediction model). Then we applied these models to predict nucleosome positioning

of CD4+T cells (Figure 2a). The results indicated a decrease in the performance of all

models, especially SVMTrader, when applied to an independent set of CD4+T cells
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(Figure S2, S3), which is likely due to the fact that prediction models were trained on

a set from a different cell line. However, NuPose performed quite well even though it

was applied to a different cell type (AUC dropped from 0.95 to 0.87). Moreover,

NuPose outperformed two other prediction methods on both resting and activated

cells in terms of criteria shown in (Figure 2b and Figure S2). Interestingly, predictions

produced by all three models were considerably more accurate for resting cells,

compared to activated cells. Possible reasons explaining this result will be discussed

later.

Furthermore, we have assessed the ability of the model trained on one organism

to predict nucleosome positioning in another organism. The results showed that

NuPose* trained on the HS dataset outperformed models trained on DM and CE in

terms of criteria shown in Figure 2c. Even though the performance dropped upon

switching to a different organism, model generated based on the HS data reasonably

predicted NP in CE. However, the prediction quality for DM using methods trained on

other organisms was relatively low.

Identification of informative nucleosome positioning features

First, we checked whether the inclusion of linker DNA features enhanced the

prediction accuracy of our model. Therefore, we have developed a NuPose approach

using two different schemes with (NuPose) and without the linker DNA-related

features (NuPose*) (Figure 3a). Our results demonstrated that the linker DNA features

resulted in more than 10% increase in the performance (MCC = 0.79 compared to

0.60 and AUC = 0.95 compared to 0.87), no matter what data representation, method

or network architecture was used (Figure 3b, Table S1). It was observed that NuPose

surpassed all other approaches, emphasizing the role of DL, skip connections and

feature selection in increasing the performance (Figure S3 and Table S1).

Next, we inquired about sequence features which had the most significant impact

on the model's performance. To assess the significance of each feature’s contribution

to the quality of the model, we followed the protocol described in Methods. We

showed that the second and fourth categories of features, (statistical and sequence

similarity-based features) were not selected as being informative. Our results pointed

to 43 informative features which governed the NP genome-wide (Figure S4, Tables

S2-S5). We have also calculated the correlation between the informative features

chosen by NuPose and those features that were not chosen by NuPose (Figure S5, S6).
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Among them, nine features were related to the periodicity of sequence patterns in the

nucleosomal footprint DNA (Figure 4a and Figure S7, Table S3). Although we

formulated our feature periodicity calculations in real space, the power spectra from

the Fast Fourier Transform (FFT) confirmed the largest amplitude for the components

with 10-12 bp periodicity (Figure S8). Based on the feature ranking results, the

periodicity related feature, as a group was more influential than other types of features

in distinguishing nucleosomal and inter-nucleosomal DNAs, contributing up to ~40%

to the quality of the model (Table S2 and Figure S4).

Out of all informative features, the most informative one was related to the

CCG/CGG sequence pattern. Although this pattern was depleted in terms of its

occurrences on nucleosomal compared to inter-nucleosomal regions, nucleosomal

DNA had higher percentage of these sequence patterns separated by ~10 base pairs

(75% versus 55%). Other periodicity related features with high contribution to the

quality of the model included tri-nucleotides AGT/ACT and CAT/ATG (~11% in

total) and dinucleotides AG/CT and AT (as well as TA due to its high PCC value with

AT, Figure S5). The only informative tetra-nucleotide was AAAA/TTTT. Overall, our

results indicated that the sequence patterns, whose periodicity has been selected as

informative features, generally exhibited a much higher nucleosome occupancy values

relative to other sequence patterns (Figure S9).

Powered by the structural knowledge of the locations of nucleosomal DNA with

respect to the histone octamer, we calculated the enrichment and depletion of different

sequence patterns with respect to the DNA minor groove facing histone octamer (MFI)

(corresponding major grove will be facing out) or a minor groove facing outward

(MFO) and corresponding major groove will facing a histone octamer. (Table S3). We

found that AT, CCG/CGG and AAAA/TTTT patterns were enriched on minor

grooves facing inward with high effect size (Odds ratio = 2.17 - 4.38). It is consistent

with previous experimental measurements of tri-nucleotide bendability showing that

these patterns have low bendability toward the major groove (and high bendability

toward minor grooves)57. Interestingly, periodicity of AAAA/TTTT (an example of an

A-tract) is an informative factor in NP prediction, even though A-tracts are more rare

in nucleosomal compared to inter-nucleosomal DNA, and long A-tracts (longer than 5

bp) may serve as excluding nucleosome boundaries58,59. On the other hand, all other

periodicity related features were enriched on minor grooves facing out (Table S3).
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Among other informative features, 12 features were associated with the total

number of occurrences (composition) of certain di- and tri-nucleotide patterns (Figure

5a). Nucleosomal footprints regions were overall depleted in terms of A/T-based di-

and tri-nucleotide sequence patterns compared to the inter-nucleosomal regions,

whereas linker regions were enriched with respect to AT and TA dinucleotides

compared to the inter-nucleosomal regions (Table S4, Figure S6).

Finally, the remaining 22 features were associated with the presence of specific

sequence patterns at certain positions relative to the dyad (Figure S10 and Table S5).

Each of these features contributed only up to 3% to the quality of the model

individually and majority of them had statistically significant positive or neagtive

associations with the structural characteristics of nucleosomes. For example, highly

informative CCG/CGG, ACT/AGT, and CAT/ATG, were associated with SHL ±2

(Figure 5b), where the CCG/CGG sequence pattern was depleted at this location

(minor groove facing out, MFO), while the latter two were enriched. Two sequence

patterns AG/CT (and AGT/ACT) were enriched at position SHL ±6 (facing out) and

depleted at SHL ±4.5 (facing in), consistent with its propensity to be enriched on the

minor grooves facing out. Interestingly, some linker-associated features were also

position specific (Table S5).

Discussion

Powered by the idea of dependency of nucleosome positioning on DNA sequence,

we have introduced an interpretable deep residual network-based framework for

selecting informative NP features and classifying nucleosome regions across human

genome. Our method showed superior performance compared to previous approaches

that could be due to the use of deep-learning architecture, extensive training set and

feature selection algorithms. We have confirmed that our method can distinguish

nucleosomal from inter-nucleosomal regions in organisms other than human, although

the performance may drop depending on the organism and cell type. In addition, our

analysis allowed us to gain insights into the contribution of in vivo factors into

nucleosome positioning. Namely, we showed that in activated cells, where in vivo

factors may actively modify chromatin structure and affect nucleosome positioning,

the accuracy of our model decreased to ~60% compared to ~80% in resting cells. This

is in line with the previous study that demonstrated that a pronounced similarity
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between the in vivo and in vitro nucleosome maps diminishes in the regions of

actively expressed genes5.

A total of 43 features were identified as informative and ranked based on their

relevance. Many previous studies identified di-nucleotide periodic preferences

(WW/SS/YY/RR) that might influence nucleosome positioning, where W, S, Y, and

R respectively represent A/T, C/G, C/T, and A/G16,60. We have confirmed this trend

for AT, TA, CA/TG, CC/GG and AG/CT dinucleotides, but showed that the vast

majority of informative features constituted tri-nucleotides, some of them were

extensions of the informative di-nucleotide features: (C)AT/AT(G), (G)CA/TG(C),

CC(G)/(C)GG, AG(T)/(A)CT, and AAA(A)/(T)TTT (a nucleotide in parentheses

indicates the extension of the di-nucleotide). Indeed, di-nucleotide based models do

not fully capture the nucleosome formation as bendability of di-nucleotides depends

on the local sequence context, and physico-chemical properties of longer sequence

patterns are not additive of corresponding base pair steps57,61. Prior studies also argued

that the 10-11 bp periodicity of the DNA sequence patterns observed in nucleosomes

was related to the DNA bendability in those regions facing a histone octamer62,63.

Therefore, we have estimated the statistical power of the association of informative

features with the DNA and nucleosome structural attributes. Indeed, the majority of

informative features demonstrated statistically significant associations with the minor

and major DNA grooves and their locations with respect to a histone octamer. The

most informative CCG/CGG feature tends to be located at a major groove facing

outward (minor groove inward). We hypothesize that it could be associated with the

5’ cytosine methylation which always happens in the major groove, which, in turn,

should be solvent exposed. Indeed, DNMT1 methyltransferases have strong

specificity for CCG patterns and there are multiple studies showing that DNA

methylation is favoring nucleosome formation, although in the genomic context

dependent fashion64-67.

It should be mentioned that our model is based not only on the preference of

certain sequence patterns, but also on their depletion. For example, we have

confirmed that nucleosomal footprints were depleted in terms of A/T containing

nucleotides compared to inter-nucleosomal regions, whereas nucleosome flanking

linker regions were enriched with A/T-based sequence patterns. It can be attributed to

the requirement of the DNA flexibility of linker regions, their potential binding to H1

histone, as well as the formation of the stem-like structures68. In line with this, we

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579668doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579668
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

showed that the linker DNA features lead to ~10% increase in the performance. This

is important as prior nucleosome positioning prediction methods completely

overlooked the effect of linkers. Indeed, nucleosomes can occupy different alternative

positions but not too far from their original ones, namely, in the vicinity of the linker

regions. In fact, it was shown previously that periodic oscillation of sequence patterns

may go beyond the ends of nucleosomes68.

Finally, we showed that the distance of sequence patterns from the dyad can also

be important. When a histone octamer binds to DNA, it confronts a choice among

various potential translational positions determined by the mechanical properties of

DNA, its shape parameters and by the affinity of histone-DNA interactions. The

interactions between histones and DNA within nucleosomes exhibit diverse strengths

and may play distinct roles in bending the DNA and influencing the nucleosome

stability69,70. In addition, one could posit that features dependent on location may arise

due to the need for sequence-specific recognition of nucleosomes by various binding

partners, rather than being driven solely by the necessity for DNA bending. For

example, it was shown previously that pioneer transcription factors and other

nucleosome binders use distinct binding modes recognizing specific regions of

nucleosomal DNA42,71-73.

Our results do not imply that the identified features are the sole influential factors

in forming nucleosomes. It is imperative to emphasize that sequence-governed

nucleosome positioning is statistical in nature, and the informative features do not

contribute to nucleosome positioning individually, as they might not appear in all

genomic regions at the same time. In other words, diverse combinations of the

identified features (243 possible states) may correspond to different nucleosomes with

certain genomic location preferences, as shown earlier74-76. The application of our

model is not confined only to understanding the mechanisms of nucleosome

positioning. It has been shown that nucleosome positioning can be used as a feature in

classifying disease subtypes in cancer and in improving the sensitivity of liquid

biopsy77.
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Figures

Figure 1. The framework of the proposed deep learning method (NuPose). (a) Mapping of MNase-seq fragments to the reference

genome and identification of nucleosomal dyads. (b) Extraction of five groups of features from nucleosomal and

inter-nucleosomal regions. (c) Feature selection approach to generate candidate feature subsets. (d) Selection of nucleosome

positioning features and generation of prediction model using ResNet.
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Figure 2. Generalization of the NuPose prediction model across different cell lines and organisms. (a-b) An overview and the

performance accuracy of NuPose trained on the MNase-seq data from human lymphoblastoid cell lines and tested on the

independent MNase-seq data derived from CD4+T cells: activating and resting cells. (c) Outcomes of models trained using data

from one organism and applied to other organisms. HS, CE and DM refer to the data sets from H.sapiens, C.elegans and

D.melanogaster, respectively.
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Figure 3. Enhancement of prediction accuracy by inclusion of linker DNA associated features. Two schemes were employed to

generate datasets. (a) Scheme #1 comprises features derived from nucleosomal footprint DNA only, while scheme #2 considers

both the footprint and linker DNA. (b) The ROC and PR curves of the methods. Dashed lines and asterisks (*) correspond to

models which do not use linker DNA-related features. NuPoseWS is a version of NuPose which excluded skip connections.

SVMTrader is a combination of Trader and SVM.
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Figure 4. Illustration of the informative periodicity-related features. (a) Locations of DNA minor grooves facing a histone

octamer (blue, MFI) and facing out (white, MFO) on nucleosomal DNA sequence. Integer numbers along the DNA sequence

show the assignment of super-helical locations (SHL). (b) Illustration of the informative periodicity related features with

statistically significant associations with MFO and MFI throughout the whole nucleosomal footprint (Table S3). Features

associated with the specific SHL locations are shown in Figure 5. Highly correlated features with PCC >0.5 are AT and TA,

CC/GG and CCA/TGG, CCG/GCC and GC but only one informative feature from the group is shown. (c) The frequency

(#sequence patterns/#samples) of several representative periodicity-related informative features. Figures S5 and S6 show the

results for all features. The dashed lines show minor grooves facing outward. (d) Results of the Fast Fourier Transform analyses.

A component with the largest amplitude is shown as a red dot.
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Figure 5. The composition and distance-related informative features. (a) Features associated with the composition of di- and

tri-nucleotide sequence patterns in positive (green and brown) and negative (blue and purple) groups. Assignments to

super-helical locations (SHL) for nucleosomal footprints were based on Figure 4a. Y-axis shows the frequency of a given

sequence pattern from Figure 4c divided by the length of the nucleosomal footprint (left panel) or linker DNA (right panel) for

comparison. (b) The informative distance-related features were grouped based on SHL (left) and MFI/MFO (right). Y-axis shows

the percentage of AUC drop when a specific feature is removed. Note that the features may be depleted or enriched at a given

location (Table S5).
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Tables

Train/test
dataset

K-fold Method Sensitivity Specificity Accuracy MCC AUC

HS

K= 5
NuPoSe* 0.89 0.89 0.89 0.78 0.96
LeNup 0.90 0.84 0.87 0.77 ---

K= 20
NuPoSe* 0.94 0.94 0.94 0.85 0.98
LeNup 0.92 0.85 0.88 0.79 0.94

K= M

NuPoSe* 0.98 0.95 0.97 0.88 0.99
3LS 0.91 0.88 0.90 0.80 0.95

iNuc-PseKNC 0.87 0.84 0.86 0.73 0.9
iNuc-STNC 0.89 0.85 0.87 0.75 ---

CE

K= 5 NuPoSe* 0.95 0.84 0.89 0.80 0.96

K= 20
NuPoSe* 0.95 0.91 0.92 0.86 0.98
LeNup 0.93 0.90 0.91 0.84 0.96

K= M

NuPoSe* 0.98 0.98 0.98 0.89 0.99
3LS 0.86 0.89 0.87 0.75 0.95

iNuc-PseKNC 0.90 0.83 0.86 0.74 0.93

iNuc-STNC 0.91 0.86 0.88 0.77 ---

DM

K= 5 NuPoSe* 0.79 0.88 0.83 0.65 0.90

K= 20
NuPoSe* 0.86 0.91 0.87 0.76 0.93
LeNup 0.89 0.87 0.88 0.78 0.94

K= M

NuPoSe* 0.90 0.93 0.91 0.80 0.95
3LS 0.84 0.82 0.83 0.66 0.91

iNuc-PseKNC 0.78 0.81 0.79 0.60 0.87
iNuc-STNC 0.79 0.83 0.81 0.63 ---

Table 1. Comparing the performance of NuPoSe* with previous studies. Values in bold show the best-acquired result for a given

organism and cross-validation method. M indicates the total number of sequences in the dataset. NuPoSe*corresponds to NuPoSe

trained on datasets without linker DNA, since previous studies did not include linkers into consideration. HS, CE and DM refer

to data from H.sapiens, C.elegans and D.melanogaster, respectively.
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