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Abstract

Nucleosomes represent elementary building units of eukaryotic chromosomes and
consist of DNA wrapped around a histone octamer flanked by linker DNA segments.
Nucleosomes are central in epigenetic pathways and their genomic positioning is
associated with regulation of gene expression, DNA replication, DNA methylation
and DNA repair, among other functions. Building on prior discoveries, that DNA
sequences noticeably affect nucleosome positioning, our objective is to identify
nucleosome positions and related features across entire genome. Here we introduce an
interpretable framework based on the concepts of deep residual networks (NuPose).
Trained on high-coverage human experimental MNase-seq data, NuPose is able to
learn sequence and structural patterns and their dependencies associated with
nucleosome organization in human genome. NuPoSe can be used to identify
nucleosomal regions, not covered by experiments, and be applied to unseen data from
different organisms and cell types. Our findings point to 43 informative DNA
sequence features, most of them constitute tri-nucleotides, di-nucleotides and one
tetra-nucleotide. Most features are significantly associated with the structural
characteristics, namely, periodicity of nucleosomal DNA and its location with respect
to a histone octamer. Importantly, we show that linker DNA features contribute ~10%
to the quality of the prediction model, which together with comprehensive training
sets, deep-learning architecture and feature selection may explain the advanced

performance of NuPose of 80-89% accuracy.
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Abbreviations

ACC: Accuracy

AUC: Area under curve

CNN: Convolutional neural network

CS: Candidate solution

DL: Deep learning

FFT: Fast Fourier Transform

NP: Nucleosome positioning

MCC: Matthew's correlation coefficient

MEFTI: Minor groove facing histone octamer

MFO: Minor groove facing outward from the histone octamer
NuPose: prediction model/method trained on all features
NuPose": NuPose trained without flanking DNA linkers
NuPoseVs: A version of NuPose with excluded skip connections
PCC: Pearson correlation coefficient

PRE: Precision

ResNet: Deep residual network

ROC: Receiver operating characteristic

SEN: Sensitivity

SHL: Super-helical location

SPC: specificity

SVM: Support vector machine

SVMTrader: A combination of Trader and SVM
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Introduction

The human genome is packaged into chromatin with nucleosomes serving as
building blocks. Nucleosomes consist of ~147 base pairs (bp) of DNA (“nucleosomal
DNA”) wrapping ~1.7 turns around a histone octamer'. Nucleosomes are connected
together by about 20-90 bp DNA segments, called linkers. There are 30 million
nucleosomes in the human genome, and their specific positions are associated with
key biological functions mediating DNA accessibility, gene expression, DNA
methylation and binding of various chromatin factors®*. Different experimental
methods have been proposed for nucleosome mapping which include DNase-seq,
ATAC-seq and NOME-seq, but they generally lack the single nucleotide precision
which is necessary for deciphering sequence patterns modulating the preferable
location of DNA on histone octamers™. Other techniques, employing directed
chemical cleavage, may offer very high resolution but might not be viable for
mapping across the entire genome’. MNase-seq is widely used method for
nucleosome detection, despite its demand for extensive sequencing coverage®®. For
instance, to achieve a high-resolution map of nucleosomes in human cells, several
billion reads are necessary. Despite the availability of extensive datasets, the
experimental mapping efforts have not precisely determined nucleosome positions
(NP) in the entire human genome which underscores the necessity to develop
comprehensive prediction methods for NP.

Nucleosome positioning in cells in general is influenced by the DNA sequence
features, by chromatin physical barriers and by chromatin factors which can slide

nucleosomes!'%-14

. Although DNA molecule is flexible, its certain conformations may
be energetically favorable for nucleosome formation depending on its sequence'>!.
Motivated by these ideas, various studies have been carried out to identify the DNA-
specific features that are effective in forming nucleosomes!®?2. Although first
analyses on this subject were performed on very small data sets, these studies were
capable to distinguish certain sequence patterns governing nucleosome positioning. It
was proposed that the deformation cost of bending DNA around a histone octamer
could depend on the locations of certain pyrimidine-purine dinucleotides that were
easier deformed compared to others?2*. While there is no consensus on this topic,
sequence patterns were described where A/T rich sequence motifs determined the

rotational orientation of DNA so that minor grooves faced towards the histone

octamer, whereas G/C rich motifs were associated with the minor grooves facing


https://doi.org/10.1101/2024.02.09.579668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579668; this version posted February 12, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

outward®2°, However, there is no consensus on the subject. Generally, the
contribution of genomic sequence in explaining the in vivo nucleosome positioning
has been proposed to be substantial®’-?%.

The experimental determination of NP is a time- and cost-consuming process.
Hence, different discriminant and generative computational methods were proposed,
inspired by the idea of NP dependence on DNA sequence®-3. One group of studies
used di- and tri-nucleotide composition trying to maximize the distance in feature
space between nucleosomal footprints and nucleosome free regions’*. These
approaches did not account for precise locations of DNA sequence patterns and this
choice was partially explained by the relatively low-resolution and a small amount of
data coming from the SELEX and microarray MNase-seq techniques. In the later
studies, the authors tried to account for the DNA local structural properties and long-
range sequence-order effects which were proven to be very effective®. Most recently,
several deep learning (DL) approaches have been developed with the goal of
predicting NP in a genome®*37. One such approach (LeNup) proposed to combine the
concepts of the convolutional neural network (CNN), inception modules, and a gating
mechanism?3.

Despite all these above-mentioned efforts, the DNA sequence-based features
effective in forming nucleosomes have not been well understood because of the
following reasons. First, most machine learning studies have focused on predicting
NP rather than identifying NP features. Second, existing NP prediction approaches
have used only parts of the human genome for training due to the high memory and
time complexities of these algorithms. For example, in CNN, numerous kernels in
convolution and pooling layers do not allow to efficiently train the model and identify
NP features in the on the whole genome scale®. Furthermore, given the large scale of
NP data, using advanced deep learning techniques like capsule networks also poses a
challenge in terms of time complexity*®*!. Finally, existing studies have neglected to
consider the linker DNA regions adjacent to nucleosomes.

Here, powered by the high coverage human data, we have developed an
interpretable deep-learning framework based on the concepts of deep residual
networks (ResNet) and a two-step feature selection approach. Our proposed method
extracts a variety of NP features that are not typically extractable by common deep-
learning approaches. These features undergo a two-step feature selection process, and

the final NP prediction model and features are selected using a ResNet-based
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approach. We find 43 sequence features that are important for identification of
nucleosome regions genome-wide with the accuracy up to 89%. Importantly, we show
that not only nucleosomal but also flanking linker DNA sequence is important for

nuclesome positioning and in total contribute ~10% to the quality of the model.

Materials and Methods

Figure 1 shows the main steps of our computational framework (NuPose) which
can score the nucleosome positioning (dyad locations) genome-wide and evaluates the
importance of features contributing to the quality of prediction model. NuPose
includes the following major steps: (a) identification of nucleosome dyad from the
experimental MNase-seq data, (b) feature extraction, (c) generation of candidate
subsets of features, and (d) selection of the most effective features in forming a

nucleosome and generating an NP prediction model.

Identifying nucleosome positions from the MNase-seq data

We followed the protocol developed in our previous study*’. High-coverage data
of paired-end 147 bp length MNase-seq fragments from seven human lymphoblastoid
cell lines (GSE36979) were used in this study for mapping of nucleosome positions?®,
Fragments of 147 bp lengths are the most abundant in this data set and correspond to
the nucleosomal DNA, whereas longer or shorter fragments may result from over- or
under-digestion of nucleosomal DNA, can come from the sequence-specific
spontaneous DNA unwrapping and may provide less precise estimates of individual
nucleosome positions. The fragments (both complementary strands were used) were
mapped to the reference human genome (GRCh37). Since there can be multiple
overlapping nucleosomal fragments, we applied a previously developed protocol to
identify the representative dyad positions®. First, the fragments’ midpoint counts

(dyad counts) at each genomic location were smoothed out (Eq. 1):
D(i,h=15)=1x 3% K(i—j)xd()) (1)

where N is the length of a chromosome, and d(j) indicates the total number of mapped
DNA fragments with their midpoint nucleotides placed at the j* genomic location.

Here, K is the tri-weight kernel function (Eq. 2), and /4 is the bandwidth of the kernel
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function. The value of # was tuned up to 15, as prior studies have shown that smaller
values for / can increase the accuracy of identifying NP?843,

1-(3)?)3 ul<h
K= {7 o h @

Second, the bwtool software package was used to obtain the local maximum
values of the smoothed dyad counts*. The minimum distance between the
neighboring local maxima was set to 150 bp with “find local-extrema -maxima -min-
sep=150". Then, for every 60-bp window centered at each local maxima, the dyad
location with the highest number of dyad counts was determined as the representative
dyad and any other dyad positions were discarded. In the cases where two or more
dyad positions had the same dyad counts within the same interval, the representative
dyad was determined as the one located closest to the local maximum of the smoothed
counts.

As a result, we were able to determine nucleosome positions for over 1 million
nucleosomes, from which the positive and negative data sets were chosen. For a
positive set, 100 bp long fragments were extracted from both sides of the dyad
position (Figure 1b), with 73 bp on each side of the dyad representing the
nucleosomal footprint, and the remaining 27 bp on each side representing the /inker
DNA. The negative data set was taken from the inter-nucleosomal regions that did not
overlap with any nucleosomal DNA fragments. For a negative set, we identified the
midpoint between two consequent nucleosomal dyads, separated by >400 bp distance,
and then included 100 bp on both sides from the midpoint. Both positive and negative
datasets included genomic regions of 201 bp lengths (so called samples). In
generating datasets, to avoid biasing towards sequence repeats, the repeated genomic
regions were disregarded using the WindowMasker software tool®. As a result, each
of the positive and negative datasets comprised 115,640 one-stranded DNA sequence

regions (a total of 231,280).

Extracting features
For every DNA strand from positive and negative data sets, a total of
42+43+44=336 di-nucleotide, tri-nucleotide and tetra-nucleotide sequence patterns

were defined, and for every sequence pattern, five groups of features were extracted
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(Figure 1b). The first group pertained to the total number of occurrences of a pattern
within a sequence. The second group corresponded to statistical features, the average
and standard deviation values of the distribution of distances between a pattern's
occurrences and the nucleosomal dyad. For the negative set, distances were measured
from the midpoint of the inter-nucleosomal region (counted in the number of bases).
Previous studies demonstrated that the frequency of di-nucleotides across
nucleosomal DNA follows 10-11 base pair and, in some cases, 12 base pair periodic
patterns. Therefore, we introduced the third group of features, calculated as the total
number of occurrences of a sequence pattern separated by multiples of k (k = 10, 11,

or 12 bases):
T-1<T
Fy=3,1 Yty PRD(Li=Lj, k) 3)

v mod k=0
otherwise

PRD(v, k) = {} (@)

where L; is the genomic location of a sequence pattern and 7 is the total number of
occurrences of a sequence pattern in a data sample. Due to the two-fold symmetry of
DNA in nucleosome structures, DNA complementary strands should be structurally
superimposed if the nucleosome structure is rotated by 180 degrees. Considering the
symmetry attribute of a nucleosome, the fourth group of features included sequence
similarity scores calculated. Finally, the fifth group pertained to the presence/absence
of a certain sequence pattern at a certain distance from the dyad position (a midpoint
in case of a negative set). All features were extracted for each of the 336 sequence
patterns in every data sample. Moreover, since micrococcal nuclease has a strong
sequence specificity and cleaves the 5' side of A/T much faster than of G/C at
flanking regions, we ignored regions located at 71-77 bases away from the dyad. All

in all, a total of 34,276 features were defined and extracted for every data sample.

Selecting informative features

Selecting an optimal subset of features is computationally intensive (a non-
deterministic polynomial-hard problem), so it is not practical to score all possible
subsets of features*. We introduced an interpretable multi-step feature selection

approach and generated an NP prediction model based on the concepts of ResNet. In
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the first feature selection step, the Pearson correlation coefficients (PCC) were
calculated between all feature values, and as a result 47 features were found to be
redundant with PCC greater than 0.5 when compared to other features. The remaining
features underwent the second step of the feature selection, which involved combining
our previously developed metaheuristic 7rader algorithm and support vector machine
(SVM) classifier (we refer to it as SVMT™)47  Trader speeds up the search by
updating each feature subset by introducing random changes to candidate solutions
(CS) to explore new regions of the global search space and aiding in escaping from
the local minima. Additionally, the algorithm divides candidate solutions into several
groups, enabling diversification of the search. This process allows for independent
and more effective exploration of different regions within the global search space.
Consequently, it leads to faster convergence and improved performance as was shown
in the previous study*’*8. The pseudo code of the Trader-based feature selection
method is presented in the supplementary file.

At the end of the above-described feature selection step, a total of 100 improved
CSs were generated and analyzed using the fully connected part of NuPose, which
was designed based on the concepts of ResNet*. NuPose’s architecture included 50
fully connected hidden layers and differed from the architecture of ResNet by
replacing convolution and pooling layers with the feature extraction and selection
procedure described above (Figure 1 and Figure S1). Skip connections feed the input
of a residual block to the output of another residual block (Eq. 5), with each block
consisting of five fully connected hidden layers. These skip connections help to
minimize the vanishing gradient problem and increase the performance of the deep

neural network.

Inp! , + o(I (Outk  xW* ) if imod 5=0
ki ' 5)
c(zkH=1 (Outﬁ‘_1 x Wk ) if imod5+0

Out{ = {
i—1,i

where np{_ 4 denotes the input of the j" neuron associated with the i-4" layer, and H
is the total number of neurons in a hidden layer. Ouiff.‘_1 refers to the output of the ki
neuron associated with the (i-1)” layer, and Wfﬂl . Is the weight of the edge

connecting the &” neuron of the (i-1)” layer to the ;j* neuron of the i layer,

respectively. Here, o is an activation function of a layer i, in our case the sigmoid
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function. The epoch number and batch size parameters were set to 10,000 and 500,
respectively. To prevent overfitting, the early stopping technique was used with a
value of 5 for the patience parameter. The ResNet described above was applied to
each of the 100 improved CS and certain NP features were selected based on the
weights associated with the first layer of the described ResNet, similar to a previously
introduced DL method>’. Features with the weights larger than the mean value of all
weights (1) associated with edges connecting neurons from the first layer to those of

the second layer were chosen
H . .
SFi={V; |13, Unp] x Wi |> p} (6)

where SF; and V' ; represent a set of selected features from the i CS and j™ features
within that CS, respectively. Here, I np{ is associated with the value of the j* feature.
1

H H 1 k
2o 2y Unpypxw )|

= ()

The union of the selected features from each CS was chosen as informative
features in the formation of a nucleosome (U?=1 S F;, where n is the total number of

CSs), and the final NP prediction model was generated based on these informative
features. The informative NP features were then ranked based on their influence on
the NuPose model. For this purpose, several NP prediction models were generated by
removing each of the informative features and keeping the remaining ones. The areas
under the receiver operating characteristic curves (AUC-ROC) were then compared
using the DeLong test’!. If Z-score was greater than 1.96, then the two NP models
were assumed to significantly differ from each other with p-value <0.05°2. The final
ranking of features was determined by the inverse order of the DeLong test Z-scores
since a significant drop in the Z-score of the model performance upon removing a
feature would correspond to the most informative feature in the final ranking. The
NuPose workflow was implemented in the Python programming language equipped

with the Keras deep learning library.

10
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Results
Comparing NuPose with previous methods

In this section, we compare NuPose performance with other previously
introduced NP prediction methods**33-35, These methods have been developed and
evaluated based on the main three datasets: (i) derived from H.sapiens containing
2,273 positive and 2,300 negative samples (data set HS), (i1) derived from C.elegans
consisting of 2,567 positive and 2,608 negative samples (data set CE), and (iii)
D.melanogaster comprising 2,900 positive and 2,850 negative samples (data set
DM)*. Tt should be mentioned that due to the computational complexity, all these
studies trained their prediction models on a relatively small fraction of genomes (50
times smaller than a data set used to train NuPose), for example, only chromosome 20
was used in case of H.sapiens (HS) dataset. Besides, these datasets consisted of 147-
base DNA sequences and excluded linker DNA regions. Therefore, we re-trained
NuPose on these datasets without considering linker regions (so called NuPose®).
Consequently, to directly compare NuPose* performance with the results reported in
other methods’ papers, we have generated predictions using 5-fold and 20-fold cross-
validation (Table 1). As can be seen in this table, the NuPose* and LeNup methods
outperformed other techniques in terms of various performance criteria. Moreover,
even though NuPose* model did not used the linker features, it surpassed LeNup by
~8% and 2% in terms of MCC for the H.sapiens (HS) and C.elegans (CE) datasets
respectively, whereas for D.melanogaster (DE) dataset LeNup outperformed NuPose

by 2%.

Generalization of the model across different species and cell lines

Next, we asked, if NuPose framework trained on one specific cell line can be
applicable for identifying NP in a different cell line in the same organism. To answer
this question, an additional MNase-seq dataset from CD4+T cells was obtained?®.
This dataset covered regions of the human genome in activated and resting CD4+T
cells. We trained three models on our original human lymphoblastoid cell lines:
SVMTader - NuPose and a version of NuPose which excluded skip connections
(NuPose"s, to evaluate the effects of skip connections on the performance of the NP
prediction model). Then we applied these models to predict nucleosome positioning
of CD4+T cells (Figure 2a). The results indicated a decrease in the performance of all

models, especially SVMT™" when applied to an independent set of CD4+T cells
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(Figure S2, S3), which is likely due to the fact that prediction models were trained on
a set from a different cell line. However, NuPose performed quite well even though it
was applied to a different cell type (AUC dropped from 0.95 to 0.87). Moreover,
NuPose outperformed two other prediction methods on both resting and activated
cells in terms of criteria shown in (Figure 2b and Figure S2). Interestingly, predictions
produced by all three models were considerably more accurate for resting cells,
compared to activated cells. Possible reasons explaining this result will be discussed
later.

Furthermore, we have assessed the ability of the model trained on one organism
to predict nucleosome positioning in another organism. The results showed that
NuPose* trained on the HS dataset outperformed models trained on DM and CE in
terms of criteria shown in Figure 2c. Even though the performance dropped upon
switching to a different organism, model generated based on the HS data reasonably
predicted NP in CE. However, the prediction quality for DM using methods trained on

other organisms was relatively low.

Identification of informative nucleosome positioning features

First, we checked whether the inclusion of linker DNA features enhanced the
prediction accuracy of our model. Therefore, we have developed a NuPose approach
using two different schemes with (NuPose) and without the linker DNA-related
features (NuPose”) (Figure 3a). Our results demonstrated that the linker DNA features
resulted in more than 10% increase in the performance (MCC = 0.79 compared to
0.60 and AUC = 0.95 compared to 0.87), no matter what data representation, method
or network architecture was used (Figure 3b, Table S1). It was observed that NuPose
surpassed all other approaches, emphasizing the role of DL, skip connections and
feature selection in increasing the performance (Figure S3 and Table S1).

Next, we inquired about sequence features which had the most significant impact
on the model's performance. To assess the significance of each feature’s contribution
to the quality of the model, we followed the protocol described in Methods. We
showed that the second and fourth categories of features, (statistical and sequence
similarity-based features) were not selected as being informative. Our results pointed
to 43 informative features which governed the NP genome-wide (Figure S4, Tables
S2-S5). We have also calculated the correlation between the informative features

chosen by NuPose and those features that were not chosen by NuPose (Figure S5, S6).

12
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Among them, nine features were related to the periodicity of sequence patterns in the
nucleosomal footprint DNA (Figure 4a and Figure S7, Table S3). Although we
formulated our feature periodicity calculations in real space, the power spectra from
the Fast Fourier Transform (FFT) confirmed the largest amplitude for the components
with 10-12 bp periodicity (Figure S8). Based on the feature ranking results, the
periodicity related feature, as a group was more influential than other types of features
in distinguishing nucleosomal and inter-nucleosomal DNAs, contributing up to ~40%
to the quality of the model (Table S2 and Figure S4).

Out of all informative features, the most informative one was related to the
CCG/CGG sequence pattern. Although this pattern was depleted in terms of its
occurrences on nucleosomal compared to inter-nucleosomal regions, nucleosomal
DNA had higher percentage of these sequence patterns separated by ~10 base pairs
(75% versus 55%). Other periodicity related features with high contribution to the
quality of the model included tri-nucleotides AGT/ACT and CAT/ATG (~11% in
total) and dinucleotides AG/CT and AT (as well as TA due to its high PCC value with
AT, Figure S5). The only informative tetra-nucleotide was AAAA/TTTT. Overall, our
results indicated that the sequence patterns, whose periodicity has been selected as
informative features, generally exhibited a much higher nucleosome occupancy values
relative to other sequence patterns (Figure S9).

Powered by the structural knowledge of the locations of nucleosomal DNA with
respect to the histone octamer, we calculated the enrichment and depletion of different
sequence patterns with respect to the DNA minor groove facing histone octamer (MFT)
(corresponding major grove will be facing out) or a minor groove facing outward
(MFO) and corresponding major groove will facing a histone octamer. (Table S3). We
found that AT, CCG/CGG and AAAA/TTTT patterns were enriched on minor
grooves facing inward with high effect size (Odds ratio = 2.17 - 4.38). It is consistent
with previous experimental measurements of tri-nucleotide bendability showing that
these patterns have low bendability toward the major groove (and high bendability
toward minor grooves)®’. Interestingly, periodicity of AAAA/TTTT (an example of an
A-tract) is an informative factor in NP prediction, even though A-tracts are more rare
in nucleosomal compared to inter-nucleosomal DNA, and long A-tracts (longer than 5
bp) may serve as excluding nucleosome boundaries®®>°. On the other hand, all other

periodicity related features were enriched on minor grooves facing out (Table S3).
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Among other informative features, 12 features were associated with the total
number of occurrences (composition) of certain di- and tri-nucleotide patterns (Figure
5a). Nucleosomal footprints regions were overall depleted in terms of A/T-based di-
and tri-nucleotide sequence patterns compared to the inter-nucleosomal regions,
whereas linker regions were enriched with respect to AT and TA dinucleotides
compared to the inter-nucleosomal regions (Table S4, Figure S6).

Finally, the remaining 22 features were associated with the presence of specific
sequence patterns at certain positions relative to the dyad (Figure S10 and Table S5).
Each of these features contributed only up to 3% to the quality of the model
individually and majority of them had statistically significant positive or neagtive
associations with the structural characteristics of nucleosomes. For example, highly
informative CCG/CGG, ACT/AGT, and CAT/ATG, were associated with SHL +2
(Figure 5b), where the CCG/CGG sequence pattern was depleted at this location
(minor groove facing out, MFO), while the latter two were enriched. Two sequence
patterns AG/CT (and AGT/ACT) were enriched at position SHL +6 (facing out) and
depleted at SHL +4.5 (facing in), consistent with its propensity to be enriched on the
minor grooves facing out. Interestingly, some linker-associated features were also

position specific (Table S5).

Discussion

Powered by the idea of dependency of nucleosome positioning on DNA sequence,
we have introduced an interpretable deep residual network-based framework for
selecting informative NP features and classifying nucleosome regions across human
genome. Our method showed superior performance compared to previous approaches
that could be due to the use of deep-learning architecture, extensive training set and
feature selection algorithms. We have confirmed that our method can distinguish
nucleosomal from inter-nucleosomal regions in organisms other than human, although
the performance may drop depending on the organism and cell type. In addition, our
analysis allowed us to gain insights into the contribution of in vivo factors into
nucleosome positioning. Namely, we showed that in activated cells, where in vivo
factors may actively modify chromatin structure and affect nucleosome positioning,
the accuracy of our model decreased to ~60% compared to ~80% in resting cells. This

is in line with the previous study that demonstrated that a pronounced similarity

14


https://doi.org/10.1101/2024.02.09.579668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579668; this version posted February 12, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

between the in vivo and in vitro nucleosome maps diminishes in the regions of
actively expressed genes’.

A total of 43 features were identified as informative and ranked based on their
relevance. Many previous studies identified di-nucleotide periodic preferences
(WW/SS/YY/RR) that might influence nucleosome positioning, where W, S, Y, and
R respectively represent A/T, C/G, C/T, and A/G'®0, We have confirmed this trend
for AT, TA, CA/TG, CC/GG and AG/CT dinucleotides, but showed that the vast
majority of informative features constituted tri-nucleotides, some of them were
extensions of the informative di-nucleotide features: (C)AT/AT(G), (G)CA/TG(C),
CC(G/(O)GG, AG(T)(A)CT, and AAA(A)/(T)TTT (a nucleotide in parentheses
indicates the extension of the di-nucleotide). Indeed, di-nucleotide based models do
not fully capture the nucleosome formation as bendability of di-nucleotides depends
on the local sequence context, and physico-chemical properties of longer sequence
patterns are not additive of corresponding base pair steps’”®!. Prior studies also argued
that the 10-11 bp periodicity of the DNA sequence patterns observed in nucleosomes
was related to the DNA bendability in those regions facing a histone octamer®>%3.
Therefore, we have estimated the statistical power of the association of informative
features with the DNA and nucleosome structural attributes. Indeed, the majority of
informative features demonstrated statistically significant associations with the minor
and major DNA grooves and their locations with respect to a histone octamer. The
most informative CCG/CGG feature tends to be located at a major groove facing
outward (minor groove inward). We hypothesize that it could be associated with the
5’ cytosine methylation which always happens in the major groove, which, in turn,
should be solvent exposed. Indeed, DNMTI1 methyltransferases have strong
specificity for CCG patterns and there are multiple studies showing that DNA
methylation is favoring nucleosome formation, although in the genomic context
dependent fashion%+¢7,

It should be mentioned that our model is based not only on the preference of
certain sequence patterns, but also on their depletion. For example, we have
confirmed that nucleosomal footprints were depleted in terms of A/T containing
nucleotides compared to inter-nucleosomal regions, whereas nucleosome flanking
linker regions were enriched with A/T-based sequence patterns. It can be attributed to
the requirement of the DNA flexibility of linker regions, their potential binding to H1

histone, as well as the formation of the stem-like structures®®. In line with this, we
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showed that the linker DNA features lead to ~10% increase in the performance. This
is important as prior nucleosome positioning prediction methods completely
overlooked the effect of linkers. Indeed, nucleosomes can occupy different alternative
positions but not too far from their original ones, namely, in the vicinity of the linker
regions. In fact, it was shown previously that periodic oscillation of sequence patterns
may go beyond the ends of nucleosomes®®,

Finally, we showed that the distance of sequence patterns from the dyad can also
be important. When a histone octamer binds to DNA, it confronts a choice among
various potential translational positions determined by the mechanical properties of
DNA, its shape parameters and by the affinity of histone-DNA interactions. The
interactions between histones and DNA within nucleosomes exhibit diverse strengths
and may play distinct roles in bending the DNA and influencing the nucleosome
stability®>’. In addition, one could posit that features dependent on location may arise
due to the need for sequence-specific recognition of nucleosomes by various binding
partners, rather than being driven solely by the necessity for DNA bending. For
example, it was shown previously that pioneer transcription factors and other
nucleosome binders use distinct binding modes recognizing specific regions of
nucleosomal DNA#271-73,

Our results do not imply that the identified features are the sole influential factors
in forming nucleosomes. It is imperative to emphasize that sequence-governed
nucleosome positioning is statistical in nature, and the informative features do not
contribute to nucleosome positioning individually, as they might not appear in all
genomic regions at the same time. In other words, diverse combinations of the
identified features (2% possible states) may correspond to different nucleosomes with
certain genomic location preferences, as shown earlier’*’6. The application of our
model is not confined only to understanding the mechanisms of nucleosome
positioning. It has been shown that nucleosome positioning can be used as a feature in
classifying disease subtypes in cancer and in improving the sensitivity of liquid

biopsy”’.
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Figure 1. The framework of the proposed deep learning method (NuPose). (a) Mapping of MNase-seq fragments to the reference
genome and identification of nucleosomal dyads. (b) Extraction of five groups of features from nucleosomal and
inter-nucleosomal regions. (c) Feature selection approach to generate candidate feature subsets. (d) Selection of nucleosome

positioning features and generation of prediction model using ResNet.
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Figure 2. Generalization of the NuPose prediction model across different cell lines and organisms. (a-b) An overview and the
performance accuracy of NuPose trained on the MNase-seq data from human lymphoblastoid cell lines and tested on the
independent MNase-seq data derived from CD4+T cells: activating and resting cells. (c) Outcomes of models trained using data
from one organism and applied to other organisms. HS, CE and DM refer to the data sets from H.sapiens, C.elegans and

D.melanogaster, respectively.
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Figure 3. Enhancement of prediction accuracy by inclusion of linker DNA associated features. Two schemes were employed to
generate datasets. (a) Scheme #1 comprises features derived from nucleosomal footprint DNA only, while scheme #2 considers
both the footprint and linker DNA. (b) The ROC and PR curves of the methods. Dashed lines and asterisks (*) correspond to
models which do not use linker DNA-related features. NuPose™S is a version of NuPose which excluded skip connections.

SVMTrder i 3 combination of Trader and SVM.
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Figure 4. Illustration of the informative periodicity-related features. (a) Locations of DNA minor grooves facing a histone
octamer (blue, MFI) and facing out (white, MFO) on nucleosomal DNA sequence. Integer numbers along the DNA sequence
show the assignment of super-helical locations (SHL). (b) Illustration of the informative periodicity related features with
statistically significant associations with MFO and MFI throughout the whole nucleosomal footprint (Table S3). Features
associated with the specific SHL locations are shown in Figure 5. Highly correlated features with PCC >0.5 are AT and TA,
CC/GG and CCA/TGG, CCG/GCC and GC but only one informative feature from the group is shown. (c) The frequency
(#sequence patterns/#samples) of several representative periodicity-related informative features. Figures S5 and S6 show the
results for all features. The dashed lines show minor grooves facing outward. (d) Results of the Fast Fourier Transform analyses.

A component with the largest amplitude is shown as a red dot.
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Figure 5. The composition and distance-related informative features. (a) Features associated with the composition of di- and
tri-nucleotide sequence patterns in positive (green and brown) and negative (blue and purple) groups. Assignments to
super-helical locations (SHL) for nucleosomal footprints were based on Figure 4a. Y-axis shows the frequency of a given
sequence pattern from Figure 4c divided by the length of the nucleosomal footprint (left panel) or linker DNA (right panel) for
comparison. (b) The informative distance-related features were grouped based on SHL (left) and MFI/MFO (right). Y-axis shows
the percentage of AUC drop when a specific feature is removed. Note that the features may be depleted or enriched at a given
location (Table S5).
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Tables

T;E:t"a/:::t K-fold Method Sensitivity Specificity Accuracy mcc AUC
s NuPoSe’ 0.89 0.89 0.89 0.78 0.96

LeNup 0.90 0.84 0.87 0.77
20 NuPose’ 0.94 0.94 0.94 0.85 0.98
s LeNup 0.92 0.85 0.88 0.79 0.94
NuPoSe’ 0.98 0.95 0.97 0.88 0.99
m 305 0.91 0.88 0.90 0.80 0.95

iNuc-PseKNC 0.87 0.84 0.86 073 0.9

iNUC-STNC 0.89 0.85 0.87 0.75
K=5 NuPoSe’ 0.95 0.84 0.89 0.80 0.96
20 NuPoSe’ 0.95 0.91 0.92 0.86 0.98
LeNup 0.93 0.90 0.91 0.84 0.96
e NuPoSe’ 0.98 0.98 0.98 0.89 0.99
305 0.86 0.89 0.87 075 0.95
=M T Nuc-pseknC 0.90 0.83 0.86 074 0.93

iNUC-STNC 0.91 0.86 0.88 0.77
K=5 NuPoSe’ 0.79 0.88 0.83 0.65 0.90
20 NuPose’ 0.86 0.91 0.87 0.76 0.93
LeNup 0.89 0.87 0.88 0.78 0.94
DM NuPoSe’ 0.90 0.93 0.91 0.80 0.95
m 305 0.84 0.82 0.83 0.66 0.91
iNuc-PseKNC 0.78 0.81 0.79 0.60 0.87

iNUC-STNC 0.79 0.83 0.81 0.63

Table 1. Comparing the performance of NuPoSe* with previous studies. Values in bold show the best-acquired result for a given
organism and cross-validation method. M indicates the total number of sequences in the dataset. NuPoSe*corresponds to NuPoSe
trained on datasets without linker DNA, since previous studies did not include linkers into consideration. HS, CE and DM refer

to data from H.sapiens, C.elegans and D.melanogaster, respectively.
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