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ABSTRACT 1 

Automatic dense 3D surface registration is a powerful technique for comprehensive 3D shape 2 
analysis that has found a successful application in human craniofacial morphology research, 3 
particularly within the mandibular and cranial vault regions. However, a notable gap exists when 4 
exploring the frontal aspect of the human skull, largely due to the intricate and unique nature of 5 
its cranial anatomy. To better examine this region, this study introduces a simplified single-6 
surface craniofacial bone mask comprising 9,999 quasi-landmarks, which can aid in the 7 
classification and quantification of variation over human facial bone surfaces. 8 

Automatic craniofacial bone phenotyping was conducted on a dataset of 31 skull scans obtained 9 
through cone-beam computed tomography (CBCT) imaging. The MeshMonk framework 10 
facilitated the non-rigid alignment of the constructed craniofacial bone mask with each individual 11 
target mesh. To gauge the accuracy and reliability of this automated process, 20 anatomical 12 
facial landmarks were manually placed three times by three independent observers on the same 13 
set of images. Intra- and inter-observer error assessments were performed using root mean 14 
square (RMS) distances, revealing consistently low scores. 15 

Subsequently, the corresponding automatic landmarks were computed and juxtaposed with the 16 
manually placed landmarks. The average Euclidean distance between these two landmark sets 17 
was 1.5mm, while centroid sizes exhibited noteworthy similarity. Intraclass coefficients (ICC) 18 
demonstrated a high level of concordance (>0.988), and automatic landmarking showing 19 
significantly lower errors and variation.  20 

These results underscore the utility of this newly developed single-surface craniofacial bone 21 
mask, in conjunction with the MeshMonk framework, as a highly accurate and reliable method 22 
for automated phenotyping of the facial region of human skulls from CBCT and CT imagery. 23 
This craniofacial template bone mask expansion of the MeshMonk toolbox not only enhances 24 
our capacity to study craniofacial bone variation but also holds significant potential for shedding 25 
light on the genetic, developmental, and evolutionary underpinnings of the overall human 26 
craniofacial structure.  27 

INTRODUCTION 28 

The field of phenomics – understanding the qualitative and quantitative traits that characterize a 29 
phenotype- is a fast-developing field [1]. Over the past two decades, numerous publications 30 
have not only unveiled genetic variants associated with phenotypes, but also made significant 31 
advancements in phenotyping methodologies [2, 3]. Moreover, the emergence of new 32 
technologies has enabled us to capture high quality 3D scans, encompassing both hard and soft 33 
tissue structures [1, 4, 5]. Although there have been significant strides made in understanding 34 
facial soft tissue variation, with technical advances implemented for genome wide association 35 
studies (GWAS) on facial shape [3, 6], the underlying craniofacial structure remains largely 36 
unexplored. This is in part due to the intricate nature of the entire skull shape and challenges in 37 
acquiring large numbers of 3D scans. Nevertheless, understanding human craniofacial structure 38 
is pivotal due to its substantial contribution to our facial appearance, particularly owing to its 39 
relative independence from biological factors such as weight and reduced susceptibility to age-40 
related changes after reaching adulthood [7, 8]. Hence, a comprehensive exploration of skull 41 
morphology is essential for gaining a holistic understanding of the genetic determinants 42 
governing human facial shape. Although a recent GWAS was performed on the cranial vault [9], 43 
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a more comprehensive study of the viscerocranium (craniofacial bone structure) is imperative to 44 
tie in with facial soft tissue research that has been so successful in recent years.  45 

Typically, studies describing the shape of the human skull have predominantly been within the 46 
field of Anthropology. In this context, the shape of the skull has been used to categorize an 47 
individual’s sex and ancestral origins [10, 11]. While sex often relies on visual indicators, the 48 
assessment of ancestry is more complex. Computational tools such as FORDISC [12] utilize 49 
skull measurements to estimate ancestry but cannot account for admixture and smaller 50 
subpopulations. Furthermore, estimations of soft-tissue thickness have been employed for facial 51 
reconstruction from a skull [13, 14] and skull shape analyses provide insights on primates to 52 
homo sapiens evolutionary processes [15, 16]. In the medical realm, skull shape is often used to 53 
describe specific pathologies or act as a non-syndromic reference [17, 18]. More recently, the 54 
dental and plastic surgery fields have also capitalized on skull shape analyses to aid in 55 
reconstructive surgical procedures [19, 20]. However, many of these previous approaches were 56 
constrained by the reliance on manual cranial landmarks (usually less than 50) and the use of 57 
physical skulls or radiographs as data sources [21, 22]. These conventional approaches bring 58 
inherent challenges. Firstly, the process is time-consuming, requires trained observers, and is 59 
prone to intra- and inter-observer error, thereby complicating standardization [23-25]. Although 60 
shape analysis can be performed by considering the overall configuration of a few landmarks, 61 
such an approach trivializes the complete complexity of cranial facial shape [26, 27]. Although, 62 
algorithms were developed in the early 2000s that have allowed automatic 3D dense 63 
phenotyping [28], they have vastly improved since then [26, 27, 29].  64 

A more recent framework for automatic 3D dense phenotyping, “MeshMonk”, was introduced by 65 
White et al. [27] in 2019. MeshMonk provides a facial soft tissue mesh comprising 66 
approximately 7160 points, accompanied by algorithms to facilitate the alignment of this mask to 67 
3D facial scans. This framework has provided a straightforward, standardized, and validated 68 
method to describe the phenotypic variation found in facial shape using large datasets by 69 
simplifying automated landmarking. While its application has led to multiple publications 70 
exploring the genetic architecture of the human face [2, 3, 6], it is crucial to note however, that 71 
the framework does not include a complete hard-tissue component. Global registration masks 72 
using Meshmonk have been developed and utilized for specific segments of the skull, including 73 
the lower jaw [30] and the cranial vault [9], however, assessment of the facial bones within the 74 
craniofacial complex has not been explored. The frontal aspect of the skulls facial skeleton 75 
poses significant challenges due to its intricate structure, with a separate lower jaw, as well as 76 
orbital and nasal cavities. While the performance of a full skull mask application using the 77 
meshmonk framework has already been published [31], the mask itself is not freely available for 78 
download, it also utilizes approximately 155,000 vertices making it computationally intensive, in 79 
addition to the full cranium being a specific requirement that is often not present in CBCT scans. 80 
This prevents its use on dental CBCT scans which are one of the most common types of facial 81 
scans performed.  To perform large-scale GWAS that explore hard structures of the human 82 
face, it requires a large number of bone scans to be processed accurately and efficiently. 83 
Fortunately, advancements in medical technology have increased the availability of these scans 84 
via Magnetic Resonance Imaging (MRI) and Computer Tomography (CT). The use of Cone 85 
Beam CT (CBCT) has also emerged as a prominent imaging technique in the dental field. CBCT 86 
scans have the advantage of lower radiation dosages than conventional CT scans and reduced 87 
costs, rendering them viable for research purposes. To facilitate and cover the broad range of 88 
bone scans available, a suitable landmarking approach must be devised to simplify the intricate 89 
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aspects of skull morphology without sacrificing critical information, therefore ensuring a more 90 
comprehensive and powerful analysis. 91 

 92 

For this research, by focusing solely on facial bones within the frontal region of the skull, we 93 
provide a simplified mesh which reduces computational demands that is compatible with the 94 
MeshMonk framework. The frontal region of the skull encompassing the facial bones is captured 95 
and reconstructed as a 3D replicate. A template or “mask” consisting of thousands of points 96 
(n=9999), or “quasi-landmarks” are aligned and non-rigidly mapped onto the target following the 97 
targets geometry. These quasi-landmarks replace manually placed positions and are in 98 
anatomical correspondence across all individuals, allowing a more comprehensive shape 99 
evaluation. Validation, reliability, and accuracy assessments of the quasi-landmark placement is 100 
accomplished by comparing the automatically placed landmarks with manually positioned 101 
landmarks. The present research constitutes an important extension to the MeshMonk 102 
framework, enabling its application to skull scans, both CT and CBCT, thereby empowering 103 
researchers to delve more easily into the analysis of craniofacial bone structure. This 104 
augmentation broadens the potential scope of investigations in phenomics research and 105 
facilitates a comprehensive exploration of the genetic determinants underlying the human skull, 106 
in particular craniofacial bone morphology. 107 

 108 

MATERIALS & METHODS 109 

PARTICIPANT RECRUITMENT & STUDY SAMPLE 110 

Participants for this research were collected at Indiana University Indianapolis (IUI). The study 111 
underwent ethical review and received approval from the institutional review board (IU IRB 112 
1801992304). Prior to participating, individuals provided informed consent, which included 113 
disclosure of potential radiation exposure associated with Cone Beam Computed Tomography 114 
(CBCT) imaging. To ensure anonymity, each participant was assigned a unique identification 115 
number, and all collected data were securely stored on a server accessible only to those with 116 
pre-existing ethical authorization. The study exclusively enrolled individuals aged 18 and above, 117 
excluding those with a history of significant facial trauma, individuals with incomplete data, or 118 
scans that lacked complete orbital information. In total, the dataset comprised 31 skulls. 119 

CBCT imaging procedures were conducted at the IU School of Dentistry within the Orthodontics 120 
and Oral Facial Genetics Department, utilizing a Carestream 9300 machine manufactured by 121 
Carestream Health, Inc. (NY). All full-face scans adhered to specific parameters, including a 122 
field of view (FOV) of 17 cm x 13.5 cm (this encompasses all facial bones, whilst excluding most 123 
of the frontal bone/ forehead), an X-ray tube current of 15 mA, an X-ray tube voltage of 90 kV, 124 
and a scan duration of 28 seconds. The scans themselves were administered by a qualified and 125 
licensed professional. 126 

DICOM EXTRACTION AND DATA CLEANING 127 

The DICOM images obtained from the CBCT were processed in the free software 3D Slicer 128 
[32]. A threshold of between 400-600 and maximum Hounsfield units was set. The resulting 129 
mesh was filtered for the largest island to remove pieces of the spine and loose internal 130 
structures. In addition, minor holes were closed using the closing smoothing with a kernel size 131 
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of 2.0mm. The skull meshes were then imported into Blender [33] where a half-cylindrical mesh 132 
was placed around the skull and the shrink-wrap modifier applied (Supplementary Figure S1). In 133 
addition, the subdivision surface modifier was applied to increase the resolution. This process 134 
was repeated a further 5x with two decimate modifiers (un-subdivide setting) in-between to 135 
prevent the resulting mesh file from being too large. The output was a high polygon count mesh 136 
with an uneven vertex distribution. To counteract this, the meshes were reduced to 30,000 137 
triangles in Meshmixer [34] then evenly re-meshed, resulting in regularly spaced vertices, and a 138 
similar number of faces between meshes. 139 

PHENOTYPING 140 

The most even and complete skull mesh was used as a preliminary mask and symmetrized in 141 
Blender (one half delete, the center vertices moved to X=0 and the mesh mirrored). A subset of 142 
20 skulls were masked with this preliminary mask using the Meshmonk framework [27] in 143 
Matlab [35]. This toolbox uses a 3-step process to non-rigidly align the mask to each target 144 
shape: 1) initialization is performed by placing eleven manual landmarks (Supplementary Figure 145 
S2) (custom script within MeVisLab (available: http://www.mevislab.de/)) on both the mask and 146 
target shapes which are utilized to estimate the rigid registration, 2) rigid registration is 147 
optimized via iterative closest point registration, 3) non-rigid registration is performed to adapt 148 
the shape of the mask to the shape of the target mesh. Thus, resulting in all 20 skulls consisting 149 
of 9,999 quasi-landmarks in corresponding anatomical locations. After Procrustes 150 
Superimposition for alignment and scaling, the skulls were averaged resulting in the final 151 
average mask. This mask was consequently symmetrized in shape by averaging the original 152 
and its reflection.  153 

The full set of 31 skulls were then registered via Meshmonk using the final average mask and 154 
eleven initial landmarks. This process was repeated three times with three different sets of initial 155 
landmarks to test the reliability of the automatic landmarking using the newly developed bone 156 
mesh. The process from DICOM data to masked skull took approximately 30 minutes per skull, 157 
however this time depends predominantly on the speed of the CPU. 158 

VALIDATION LANDMARKS 159 

To assess the agreement between manually and automatically placed landmarks, the 31 skulls 160 
were landmarked manually with 20 landmarks by three observers (Figure 1). Observer 1 was 161 
well versed in this procedure due to their anthropological background; the others were 162 
untrained. Landmarks were chosen which evenly covered the skull and represented the areas 163 
consistently captured by CBCT with clear definitions taken from literature [31, 37]. These “gold-164 
standard” landmarks were placed on the skulls after shrink-wrapping and remeshing as 165 
described previously for a more accurate comparison. Each observer landmarked all 31 skulls 166 
three times, with at least 24 hours between sessions.  167 

To automatically place landmarks which coincide with the manual landmarks, a leave-one-out 168 
approach was used. One skull was determined to be the target skull, while the remaining 30 169 
were the training dataset. Manually placed landmarks (averages per observer over the 3 170 
landmarking rounds) were transferred to the masked skulls by translating them to barycentric 171 
coordinates. Their location on the masked skull was calculated via a weighted sum (Barycentric 172 
coordinates) of the three closest quasi-landmarks. These were averaged over the training set 173 
and then translated back to cartesian coordinates on the target skull. Due to the process of 174 
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averaging, the resulting landmark on the target skull was not always on the surface. To 175 
circumvent this issue, the landmark was projected to the closest point on the surface of the 176 
target skull. This placement was repeated using each observers’ manual landmarks individually, 177 
and an average of all observers’ landmarks. 178 

An overview of the pre-assessment process can be found in Figure 2. 179 

RELIABILITY ASSESSMENT 180 

While automatic landmarking is consistent within itself, the MeshMonk toolbox requires the 181 
placement of initial landmarks for registration. As these are placed manually, variation can be 182 
present. Reliability of this process was assessed by calculating the Root Mean Square (RMS) 183 
distance (root square of the mean of squared Euclidean distances) of the resulting masked 184 
quasi-landmarks to the centroid (mean point over all landmarks) over all three iterations. A 185 
smaller RMS shows less variation between quasi-landmark placement. RMS was calculated for 186 
both the 20 automatic landmarks, as well as the 9,999 quasi-landmarks on the craniofacial bone 187 
mask. 188 

Intra-Observer reliability was calculated as the RMS between the three rounds of landmarking 189 
for each observer, the centroid size of the landmark configuration, as well as the standard 190 
deviation of the xyz coordinates separately. Inter-observer reliability was between the three 191 
observers over the average of their three landmarking rounds. The reliability of the automatic 192 
landmarking was analyzed using the three sets of automatic landmarks derived from the three 193 
observers’ manual landmarks. 194 

To analyze if the automatic and manual landmarks were more or less variable, descriptive 195 
statistics (Mean, Standard Deviation, Minimum, Maximum) as well as an ANOVA on centroid 196 
size with Observer, Skull, and nested Observer/Iteration was performed. MANOVA were 197 
performed on the generalized Procrustes analysis (GPA) aligned landmarks for both the manual 198 
and automatic landmarks with Skull and Observer as factors (as well as nested 199 
Observer/Iteration for the manual landmarks) to see which of these explained variation within 200 
the landmarks. In addition, Levene’s Test was performed on the variance of the standard 201 
deviation over the xyz coordinates between the automatic and manual landmarks to analyze if 202 
the error variation was statistically different. Intraclass correlation coefficients (ICC) were 203 
calculated for intra and inter-observer centroid sizes (two-way consistency (inter-) and 204 
agreement (intra-). 205 

All statistical analyses were performed either in Matlab, or in R using the packages Geomorph 206 
[38], irr [39], and SimplyAgree [40]. Plots were created using ggplot2 [41].  207 

ACCURACY ASSESSMENT 208 

To calculate the accuracy of the automatic landmarks in relation to the ‘gold standard’ manual 209 
landmarks, multiple approaches were used. Initially, the Euclidean distance between the 210 
average manual and automatic landmarks were calculated to provide basic information as to 211 
which landmarks show the highest accuracy. Bland-Altman plots were used to visualize the 212 
agreement between centroid sizes, as well as individually for xyz coordinates. ICC statistics 213 
were used to compare landmark indications using both xyz coordinates and centroid sizes (two-214 
way agreement). To determine if the method explained variation between the landmarks, an 215 
ANOVA was performed on centroid sizes with skull, observer, and method as predictors. 216 
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To determine which factors explained variance within the landmarks, multiple MANOVA tests 217 
were performed. The landmarks were GPA aligned and inputted into a MANOVA with skull, 218 
observer, and method as factors. A second MANOVA was performed on the principal 219 
component scores from a shape principal component analysis using the PCs which explained 220 
95% of the variation between the landmarks. 221 

Due to the shrink-wrapping process, gaps such as eye sockets are filled in and defined by 222 
quasi-landmarks. To calculate which of the landmarks are the best and most stable to define 223 
points on the physical skull we calculated the distance between the meshmonk skull and the 224 
original skull (before wrapping) along the normal vectors. Any landmarks with distances more 225 
than 10mm in more than half of the skulls were removed. The remaining skull was symmetrized 226 
so that the same landmarks were kept on either side.  227 

IMAGE APPLICATION 228 

The craniofacial bone mask, instructions for CBCT export and shrink-wrapping, script for 229 
producing quality control images, as well as the IDs for the vertices that do not define true points 230 
on the skulls can be found in the Supplementary Material and on our website at 231 
https://walshlab.sitehost.iu.edu/pages/craniofacial.html.  232 

We also provide visualization of a basic proof of application; our 31 masked skulls were used to 233 
analyze sexual dimorphism and perform a Principal Component Analysis (PCA) to show the 234 
variation attributed to sex and Principal Component (PC) 1. Each analysis was prefaced with a 235 
Partial Least Squares Regression (PLSR) to remove the effects of age, height, weight, ancestry, 236 
and sex (sex only to analyze PC1). 237 

To analyze if this method could also be applied to CT images, we downloaded a CT image from 238 
the MUG500+ dataset [36]. These images were previously cleaned, and we ran a cleaned 239 
version through our masking pipeline.  240 

RESULTS 241 

RELIABILITY 242 

Due to the fact that our “gold standard” landmarks were placed manually, a large emphasis 243 
must be made on the intra- and inter-observer error. Table 1 shows the average RMS distance 244 
over the 20 landmarks for each observer, inter-observer, and for the automated landmarking. 245 
RMS per landmark can be found in Supplementary Table 1 & 2. RMS distances were also 246 
calculated over the three meshmonk iterations for all 9,999 quasi-landmarks (Supplementary 247 
Figure 3) which show that the outer rim, especially over corners (mandibular angle, nasal 248 
spine), show the most variation in the automatic landmarking. However, the error at the gonion 249 
for automatic landmarking (0.33mm) is lower than that of manual landmarking (0.65mm), and 250 
smaller than the lowest error (Incisors = 0.41mm) for the trained observer. The majority of the 251 
central face has an error of under 0.1mm. The largest manual error is seen in the Zygomaxillare 252 
(2.22mm) for both inter- and intra-observer errors. On average, automatic landmarking was 253 
more than 5x more reliable than a trained observer. Variation in landmarking errors can be 254 
found in Supplementary Figure 4 & 5. In addition, the intra-observer standard deviation of the 255 
landmarking in the x, y, and z directions was calculated per landmark (Supplementary Table 3). 256 
The average standard deviation over all axes for the trained observer was 0.415mm with a 257 
range of 0.258-0.716mm. Observer 1 showed consistently smaller landmarking errors than the 258 
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two untrained observers (Supplementary Figure S6). Intra-observer ICC was O1=0.998 (95% 259 
CI: 0.997 < ICC < 0.999), O2=0.988 (95% CI: 0.977 < ICC < 0.994) and O3=0.994 (95% CI: 260 
0.987 < ICC < 0.997). Inter-observer ICC was 0.998 (95% CI: 0.997 < ICC < 0.999) showing 261 
high concordance in landmarking. 262 
An ANOVA over the centroid sizes with observer, skull and nested observer/iteration as factors 263 
showed that all factors contributed significantly to variation in centroid size (Supplementary 264 
Table S4). A MANOVA was performed on the GPA aligned manual landmarks with observer, 265 
skull, and nested observer/iteration as predictors (Supplementary Table S5). The skull itself 266 
contributed the largest amount of variation (R2=94%) while the other predictors did not 267 
contribute. 268 

By treating the automatic landmarks obtained by using each observer’s manual landmarks as 269 
the “gold standard’ we could calculate inter-observer error for the automatic landmarks. The 270 
mean standard deviation was smaller for automatic landmarks (0.77mm) than for manual 271 
landmarks (0.902mm). Levene’s test for equal variance also showed that the variation within the 272 
automatic landmarks was significantly smaller than that in the manual landmarks 273 
(Supplementary Table S6). The standard deviation of the average over the xyz axes was 274 
smaller for the automatic landmarks than for the manual landmarks for all landmarks, and with 275 
less extreme outliers (Supplementary Figure S7). 80% of variation within the automatic 276 
landmarks was explained by individual variation, while 19% was explained by observer 277 
differences (Supplementary Table S5). 278 

ACCURACY 279 

Euclidean Distance Comparison 280 

As a first measure of accuracy, the Euclidean distance between the manual and automatic 281 
landmarks was calculated (Table 2). The average distance over all landmarks was 1.5mm, with 282 
a range from 0.1mm (Intercanine) to 7.2mm (Marginal Tubercle). A Bland-Altman plot was 283 
generated to evaluate if specific axes show higher discordance (Supplementary Figure 7). The 284 
variation shown on the principal axes found in Supplementary Figure 8 illustrates that often the 285 
first axis follows the contour of the skull. Landmarks with clear definition points in all axes show 286 
smaller errors while those that have a sliding placement along a contour generate larger errors. 287 
ICC for each axes are 0.998 or above showing high agreement.  288 

Centroid Size Comparison 289 

A Bland-Altman plot shows a mean difference in centroid size of 0.4mm between the two 290 
methods, in addition to high concordance between centroid sizes over all the CBCT skulls 291 
(Figure 3). ICC calculated from centroid sizes was 0.99 (95% CI: 0.986 < ICC < 0.994) showing 292 
negligible differences in the landmarking method. An ANOVA on centroid size with skull and 293 
method as factors showed that the method itself was not significant (p=0.06), while skull and 294 
observer were highly significant (p<0.001) (Table 3). 295 

Shape Comparison 296 

A MANOVA performed on the GPA aligned coordinates with skull, observer, and method as 297 
predictors showed that the Method could only explain 2% of the variation, while observer 298 
accounted for 4.6% and the skulls were 40% (Supplementary Table S7). In addition, a 299 
MANOVA was performed on the first 13 PCs (explaining ~95% of the variation) of the auto and 300 
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manual landmarks using the same predictors. Only observer and skull significantly affected PC 301 
scores, the method was not significant (Supplementary Table S8).  302 

ESTABLISHED LANDMARKS & SUCCESSFUL IMAGE APPLICATION 303 

Of the 9,999 original quasi-landmarks, 6,707 were defined as “true” landmarks pertaining to 304 
locations on the physical skull. Those landmarks that fill gaps were flagged and can visually be 305 
seen to locate to 1) gaps such as the eye sockets and nose, 2) areas near the back of the skull 306 
that are not well represented in CBCT images (Figure 4). A basic analysis of sexual dimorphism 307 
and PCA was performed on all 9,999 landmarks and can be found in the Supplementary 308 
Material (GIF 1 (Sex) and 2 (PC1)) as well as our website; 309 
https://walshlab.sitehost.iu.edu/pages/craniofacial.html. The CT image taken from the 310 
MUG500+ dataset [36] was also successfully masked (Supplementary Figure S7).  311 

DISCUSSION 312 

While our understanding of human facial morphology and its variation has made notable 313 
progress, particularly with regards soft tissue variation, our knowledge of the underlying hard 314 
tissue structures has significantly trailed. This disparity can be primarily attributed to the paucity 315 
of extensive skull datasets and the limited development of advanced 3D morphometric methods 316 
for skull shape analysis. To overcome this, the utilization of CBCT imagery, typically taken by 317 
dentists provides a more accessible solution whilst offering superior resolution in the form of 318 
skull mesh reconstructions. Although the analysis of CBCT-derived skull data is not devoid of 319 
inherent challenges; they frequently exhibit only partial cranial representations and are 320 
characterized by the absence of posterior and superior cranial segments, alongside potential 321 
holes in the mesh structure. A consequence of this is that typically 3D masks must be adjusted 322 
to accommodate these challenging structural limitations. In addition, the meshes are often 323 
irregular, and prone to artifacts stemming from minor movements, dental interventions, and the 324 
utilization of head supports during imaging procedures. Lastly, CBCT skull meshes incorporate 325 
all hard tissue, including structures within the skull, making these meshes complex and difficult 326 
to mask. CT images show similar issues: while the mesh is often of the complete skull, artefacts 327 
are more extreme, and the surface texture is more irregular. 328 

With the aim of enhancing the manageability of hard tissue scans, we designed and provide a 329 
craniofacial template bone mask that not only reduces the complexity of skull scans by targeting 330 
a specific area of interest but also leverages a previously proven 3D phenotyping methodology 331 
[27]. Our craniofacial template bone mask encompasses 9,999 quasi-landmarks focusing solely 332 
on the externally visible aspect of the cranial structure, of which 6,707 define points on the 333 
physical skull. Through the process of shrink-wrapping and subsequent reduction of the skull 334 
meshes derived from Cone Beam Computed Tomography (CBCT) and Computed Tomography 335 
(CT) imagery, we achieve a substantial reduction in polygon count, facilitating more 336 
manageable data handling, particularly on less robust computational platforms. This innovative 337 
approach of wrapping the skulls also permits Meshmonk to mask the skull without the need to 338 
navigate complex interior structures or address gaps in the mesh. While the use of meshmonk 339 
on a full skull has been published [31], this application could not be applied to our CBCT or CT 340 
scans as the template is not freely available. The authors also note that the mask consisted of 341 
~177,000 quasi-landmarks and necessitated the use of the full skull captured using the same 342 
imaging modality. 343 
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This study aimed to provide an alternative craniofacial bone template that has been fully 344 
evaluated with regards to its reliability and accuracy. Meshmonk requires a few manually placed 345 
landmarks for its preliminary registration process and our findings reveal that variations in the 346 
placement of these landmarks do introduce some degree of error in the masking process. 347 
However, these errors predominantly manifest along the periphery of the mask and correspond 348 
to regions that may not always be entirely captured in CBCT scans. Specifically, the absence of 349 
posterior segments can result in the mask coalescing in this region. This is especially visible 350 
when calculating the “true” landmarks as it was evident these posterior points were not well 351 
represented in our cohort and thus flagged as “gaps”. Consequently, it is plausible that this 352 
issue may be more attributable to limitations inherent to the CBCT imaging technique rather 353 
than deficiencies in the masking methodology. Notably, the maximum Meshmonk error is higher 354 
than that seen for a mandible mask [30], albeit confined to these specific regions. Our errors 355 
were reduced by modifying the Meshmonk settings “NRM.FlagFloatingBoundary” and 356 
“NRM.FlagTargetBoundary” (for CT both were set to true, for CBCT only the first was set to 357 
true) and recommend that these settings be tested in combination with our script to produce a 358 
type of ‘quality control’ test image that depicts the mask overlaying the original mesh (see 359 
Supplementary File) to define the best settings for each user’s imagery. Enhanced CBCT image 360 
preprocessing techniques and the acquisition of more comprehensive CBCT images would 361 
potentially ameliorate this error. 362 

We also considered the intra- and inter-observer errors associated with manual landmarking of 363 
the skull. 20 landmarks were selected that were easily identifiable on the skull. Only one of the 364 
observers was trained in cranial landmarking, resulting in a significantly lower overall RMS error 365 
(0.66mm) in comparison to the other two observers (1.11mm and 0.94mm). These values are 366 
similar to those reported in other studies [27, 30, 31], albeit slightly higher than findings from a 367 
study employing specialized landmarking software  at some landmarks [31]. As expected, the 368 
inter-observer error was higher (1.44mm). When this was compared to the automatic 369 
landmarking error over the 3 different iterations of initial landmarks, the error was more than 6x 370 
smaller (0.12mm).  371 

Automatic phenotyping demonstrated good accuracy when compared to manual landmarking. 372 
To determine the corresponding automatic landmarks, the manual landmarks served as the gold 373 
standard. To mitigate bias, a leave-one-out approach was used. Analysis revealed a variation in 374 
Euclidean distance between manual and automatic landmarks ranging from 0.10mm - 7.24mm, 375 
with an average of 1.5mm. Notably, landmarks exhibiting higher values were often associated 376 
with regions that were less effectively masked (e.g., gonion where the mask did not always align 377 
with the edge of the skull) and were prone to higher inter-observer errors, as observed in 378 
previous studies [30]. Previous research has reported comparable errors between manual and 379 
automatic landmark placements ranging from 2.19mm [31], 1.4mm [30], 2.01mm [42] and 380 
1.26mm [27]. And our ICC values consistently demonstrated high levels of agreement (ICC > 381 
0.9). Interestingly, observer-related variability contributed to 19% of the variation in automatic 382 
landmark placement, but this factor was negligible in the case of manual placement. This 383 
observation suggests that variations introduced by different observers had an impact on the 384 
calculations for automatic landmark placement, as the manual placements were used to 385 
calculate the automatic landmark placement. Notably, a considerably smaller proportion of 386 
variation remained unexplained for the automatic landmarks (0.4% vs. 6%). An ANOVA on 387 
centroid size and a Multivariate Analysis of Variance (MANOVA) conducted on the first 13 388 
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Principal Components (PCs) demonstrated clearly that the method employed did not exert a 389 
significant influence on the variation observed in landmark configurations or shape. 390 

The conventional use of manual landmarks as the "gold standard," has been applied and 391 
observed in previous studies [27, 30, 43], it also raises certain inherent issues. Specifically in 392 
this case, two out of the three observers lacked prior training in landmarking. This introduces 393 
more variability in the automatic landmark placement. Moreover, our analysis focused on a 394 
limited set of 20 landmarks, therefore the accuracy of the remaining quasi-landmarks was not 395 
systematically assessed. However, given the low error associated with automatic landmarking, it 396 
is reasonable to assume that these additional landmarks exhibit a comparable level of accuracy, 397 
which remain significantly lower than manual landmarking errors. Another limiting factor was the 398 
quality of the CBCT images. Despite our efforts to select images with minimal artifacts, many 399 
still exhibited minor missing portions and common CBCT imaging artifacts. Additionally, there 400 
was considerable variability in the extent of image coverage, particularly in the posterior regions 401 
of the scans due to the CBCT machines’ limited FOV. Thus, it was expected that our results 402 
showed higher errors than commonly seen when landmarking complete 3D skull scans or 403 
physical skulls. However, these types of scans represent the reality of present data sets. It also 404 
underscores the viability of the shrink-wrapped craniofacial bone mask as an effective method 405 
that more easily facilitates the comparison of the human skulls geometric shape, particularly 406 
when derived from CBCT and CT imagery. To visualize the potential use of our mask on these 407 
types of scans, we provide a PCA and sexual dimorphism analysis that could easily show 408 
morphological variation even within our small sample set. Many research groups working on 409 
geometric morphometrics and the genetics behind skull and face shape may lack formal 410 
anthropological training, leading to elevated manual landmarking errors akin to those observed 411 
with observers 2 and 3. By providing a method for stable automatic landmarking, this error is 412 
minimized. It also reduces time investment, enhances objectivity, and has the capacity to 413 
analyze a greater number of landmarks. Additionally, the deliberate focus on the external 414 
aspects of the skull and the creation of a single-plane craniofacial bone mask not only reduces 415 
computational resource requirements but also standardizes subsequent analyses. We have also 416 
supplied a comprehensive workflow for the shrink-wrapping procedure, quality control scripts, 417 
and the vertex IDs for the stable landmarks, rendering this method easily adaptable in research 418 
laboratories without the need for specialized training. The adoption of a standardized mask 419 
further facilitates the efficient comparison of data across various studies. While this craniofacial 420 
bone mask may only encompass part of the cranium, this allows it to be applicable to CBCTs 421 
collected on devices with limited focal views. In the future we plan to extend this work to a full 422 
cranial mask and utilize the development of superior CT and CBCT scanners [44, 45] and deep 423 
learning for DICOM segmentation [46]. Ultimately, we envision that our work will pave the way 424 
for genetic association studies pertaining to cranial shape and high-resolution investigations into 425 
the genetic determinants influencing craniofacial bone morphology. 426 

CONCLUSION 427 

Within this study we designed and provide a freely available 3D craniofacial template bone 428 
mask for the dense 3D phenotyping of skull meshes exported from CBCT/CT scans in addition 429 
to a tutorial outlining the procedure for preparing these images for masking. The provided 430 
template can be used within the Meshmonk framework, facilitating the generation of high-431 
density cranial landmarks for subsequent analyses with minimal manual intervention and in a 432 
notably efficient manner. Our methodology has demonstrated a high level of accuracy, with 433 
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substantially reduced errors when compared to manual landmark placement. This standardized 434 
approach not only enhances reliability and precision but also minimizes the potential for errors 435 
in landmark identification and placement in hard tissue structures of the human face. 436 
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FIGURE LEGENDS 446 

Figure 1: Overview of the manually placed landmarks. Landmark definitions were taken from 447 
[31, 37]. 448 

Figure 2: Overview of pre-assessment steps. A: Skull mesh is exported from 3D slicer, B: Skull 449 
mesh is shrink wrapped in Blender, C: craniofacial bone mask is applied to all skulls using 450 
Meshmonk, D: 20 Landmarks are placed manually by 3 observers, E: Automatic Landmarks are 451 
determined. 452 
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Figure 3: A: Bland-Altman showing agreement of centroid size between manual and automatic 453 
landmark configurations, B: Comparison of manual and automatic centroid sizes. 454 

Figure 4: Visual representation of the “true” stable landmarks and the “gap” landmarks. Vertex 455 
IDs for these landmarks can be found in the supplementary file. 456 

TABLES 457 

Table 1: RMS distances (in mm) of repeated landmarking averaged over the 20 landmarks. Automatic landmarking is 458 
the average over the three rounds of Meshmonk. 459 

  Mean Std Min Max 

Automated 0.119 0.086 0.052 0.347 

Inter-Observer 1.442 0.462 0.738 2.393 

Intra-Observer 1 0.662 0.180 0.410 1.106 

Intra-Observer 2 1.109 0.372 0.597 2.056 

Intra-Observer 3 0.943 0.267 0.627 1.494 

 460 

Table 2: Descriptive statistics for the Euclidean distances between the average manual and average automatic 461 
landmarks in mm. 462 

Landmark Mean Std Min Max 

Nasion 1.079 0.677 0.223 3.301 

Subspinale 1.542 0.925 0.204 4.647 

Incison 0.855 0.620 0.160 3.420 

Pogonion 0.844 0.551 0.146 3.491 

Right Frontomalare Orbital  1.377 0.820 0.149 4.101 

Left Frontomalare Orbital  1.155 0.756 0.116 3.671 

Right Orbitale 1.346 0.798 0.228 3.657 

Left Orbitale 1.543 0.852 0.110 4.426 

Right Zygomaxillare 1.824 1.288 0.119 6.864 

Left Zygomaxillare 1.811 1.345 0.103 7.021 

Right Intercanine 1.083 0.724 0.100 4.573 

Left Intercanine 1.068 0.754 0.110 3.892 

Right Marginal Tubercle 1.820 1.220 0.285 7.246 

Right Zygion 1.422 0.933 0.141 5.032 

Right Koronion 2.131 1.208 0.365 6.210 

Right Gonion 2.132 0.929 0.302 4.077 

Left Marginal Tubercle 1.842 1.118 0.253 5.285 

Left Zygion 1.485 0.939 0.128 4.175 

Left Koronion 2.163 1.274 0.196 6.617 

Left Gonion 1.938 1.017 0.157 4.560 

 463 
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Table 3: ANOVA on centroid size of manual and automatic landmark configurations. Skull and method were inputted 464 
as factors. 465 

  Df Sum Sq 

Mean 

Sq F value Pr(>F) 

Skull 30 22825.48 760.849 958.120 <0.001 

Observer 2 241.90 120.951 152.311 <0.001 

Method        1 2.84 2.844 3.581 0.062 

Skull*Observer 60 20.13 0.336 0.423 1.000 

Residuals     92 73.06 0.794 
  466 
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