

Automated 3D Landmarking of the Skull: A Novel Approach for Craniofacial Analysis

Franziska Wilke¹, Harold Matthews^{2,3}, Noah Herrick^{1,4}, Nichole Dopkins¹, Peter Claes^{2,3}, Susan Walsh^{1*}

¹ Department of Biology, Indiana University Indianapolis, Indianapolis, USA.

² Department of Human Genetics, KU Leuven, Leuven, Belgium.

³ Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.

⁴ Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

*Corresponding Author:

Susan Walsh

Department of Biology, Indiana University Indianapolis, 723 W Michigan St, Indianapolis, IN 46202, USA.

(317) 274-0593

walshsus@iu.edu

1 ABSTRACT

2 Automatic dense 3D surface registration is a powerful technique for comprehensive 3D shape
3 analysis that has found a successful application in human craniofacial morphology research,
4 particularly within the mandibular and cranial vault regions. However, a notable gap exists when
5 exploring the frontal aspect of the human skull, largely due to the intricate and unique nature of
6 its cranial anatomy. To better examine this region, this study introduces a simplified single-
7 surface craniofacial bone mask comprising 9,999 quasi-landmarks, which can aid in the
8 classification and quantification of variation over human facial bone surfaces.

9 Automatic craniofacial bone phenotyping was conducted on a dataset of 31 skull scans obtained
10 through cone-beam computed tomography (CBCT) imaging. The MeshMonk framework
11 facilitated the non-rigid alignment of the constructed craniofacial bone mask with each individual
12 target mesh. To gauge the accuracy and reliability of this automated process, 20 anatomical
13 facial landmarks were manually placed three times by three independent observers on the same
14 set of images. Intra- and inter-observer error assessments were performed using root mean
15 square (RMS) distances, revealing consistently low scores.

16 Subsequently, the corresponding automatic landmarks were computed and juxtaposed with the
17 manually placed landmarks. The average Euclidean distance between these two landmark sets
18 was 1.5mm, while centroid sizes exhibited noteworthy similarity. Intraclass coefficients (ICC)
19 demonstrated a high level of concordance (>0.988), and automatic landmarking showing
20 significantly lower errors and variation.

21 These results underscore the utility of this newly developed single-surface craniofacial bone
22 mask, in conjunction with the MeshMonk framework, as a highly accurate and reliable method
23 for automated phenotyping of the facial region of human skulls from CBCT and CT imagery.
24 This craniofacial template bone mask expansion of the MeshMonk toolbox not only enhances
25 our capacity to study craniofacial bone variation but also holds significant potential for shedding
26 light on the genetic, developmental, and evolutionary underpinnings of the overall human
27 craniofacial structure.

28 INTRODUCTION

29 The field of phenomics – understanding the qualitative and quantitative traits that characterize a
30 phenotype- is a fast-developing field [1]. Over the past two decades, numerous publications
31 have not only unveiled genetic variants associated with phenotypes, but also made significant
32 advancements in phenotyping methodologies [2, 3]. Moreover, the emergence of new
33 technologies has enabled us to capture high quality 3D scans, encompassing both hard and soft
34 tissue structures [1, 4, 5]. Although there have been significant strides made in understanding
35 facial soft tissue variation, with technical advances implemented for genome wide association
36 studies (GWAS) on facial shape [3, 6], the underlying craniofacial structure remains largely
37 unexplored. This is in part due to the intricate nature of the entire skull shape and challenges in
38 acquiring large numbers of 3D scans. Nevertheless, understanding human craniofacial structure
39 is pivotal due to its substantial contribution to our facial appearance, particularly owing to its
40 relative independence from biological factors such as weight and reduced susceptibility to age-
41 related changes after reaching adulthood [7, 8]. Hence, a comprehensive exploration of skull
42 morphology is essential for gaining a holistic understanding of the genetic determinants
43 governing human facial shape. Although a recent GWAS was performed on the cranial vault [9],

44 a more comprehensive study of the viscerocranum (craniofacial bone structure) is imperative to
45 tie in with facial soft tissue research that has been so successful in recent years.

46 Typically, studies describing the shape of the human skull have predominantly been within the
47 field of Anthropology. In this context, the shape of the skull has been used to categorize an
48 individual's sex and ancestral origins [10, 11]. While sex often relies on visual indicators, the
49 assessment of ancestry is more complex. Computational tools such as FORDISC [12] utilize
50 skull measurements to estimate ancestry but cannot account for admixture and smaller
51 subpopulations. Furthermore, estimations of soft-tissue thickness have been employed for facial
52 reconstruction from a skull [13, 14] and skull shape analyses provide insights on primates to
53 *homo sapiens* evolutionary processes [15, 16]. In the medical realm, skull shape is often used to
54 describe specific pathologies or act as a non-syndromic reference [17, 18]. More recently, the
55 dental and plastic surgery fields have also capitalized on skull shape analyses to aid in
56 reconstructive surgical procedures [19, 20]. However, many of these previous approaches were
57 constrained by the reliance on manual cranial landmarks (usually less than 50) and the use of
58 physical skulls or radiographs as data sources [21, 22]. These conventional approaches bring
59 inherent challenges. Firstly, the process is time-consuming, requires trained observers, and is
60 prone to intra- and inter-observer error, thereby complicating standardization [23-25]. Although
61 shape analysis can be performed by considering the overall configuration of a few landmarks,
62 such an approach trivializes the complete complexity of cranial facial shape [26, 27]. Although,
63 algorithms were developed in the early 2000s that have allowed automatic 3D dense
64 phenotyping [28], they have vastly improved since then [26, 27, 29].

65 A more recent framework for automatic 3D dense phenotyping, "MeshMonk", was introduced by
66 White et al. [27] in 2019. MeshMonk provides a facial soft tissue mesh comprising
67 approximately 7160 points, accompanied by algorithms to facilitate the alignment of this mask to
68 3D facial scans. This framework has provided a straightforward, standardized, and validated
69 method to describe the phenotypic variation found in facial shape using large datasets by
70 simplifying automated landmarking. While its application has led to multiple publications
71 exploring the genetic architecture of the human face [2, 3, 6], it is crucial to note however, that
72 the framework does not include a complete hard-tissue component. Global registration masks
73 using Meshmonk have been developed and utilized for specific segments of the skull, including
74 the lower jaw [30] and the cranial vault [9], however, assessment of the facial bones within the
75 craniofacial complex has not been explored. The frontal aspect of the skulls facial skeleton
76 poses significant challenges due to its intricate structure, with a separate lower jaw, as well as
77 orbital and nasal cavities. While the performance of a full skull mask application using the
78 meshmonk framework has already been published [31], the mask itself is not freely available for
79 download, it also utilizes approximately 155,000 vertices making it computationally intensive, in
80 addition to the full cranium being a specific requirement that is often not present in CBCT scans.
81 This prevents its use on dental CBCT scans which are one of the most common types of facial
82 scans performed. To perform large-scale GWAS that explore hard structures of the human
83 face, it requires a large number of bone scans to be processed accurately and efficiently.
84 Fortunately, advancements in medical technology have increased the availability of these scans
85 via Magnetic Resonance Imaging (MRI) and Computer Tomography (CT). The use of Cone
86 Beam CT (CBCT) has also emerged as a prominent imaging technique in the dental field. CBCT
87 scans have the advantage of lower radiation dosages than conventional CT scans and reduced
88 costs, rendering them viable for research purposes. To facilitate and cover the broad range of
89 bone scans available, a suitable landmarking approach must be devised to simplify the intricate

90 aspects of skull morphology without sacrificing critical information, therefore ensuring a more
91 comprehensive and powerful analysis.

92

93 For this research, by focusing solely on facial bones within the frontal region of the skull, we
94 provide a simplified mesh which reduces computational demands that is compatible with the
95 MeshMonk framework. The frontal region of the skull encompassing the facial bones is captured
96 and reconstructed as a 3D replicate. A template or “mask” consisting of thousands of points
97 ($n=9999$), or “quasi-landmarks” are aligned and non-rigidly mapped onto the target following the
98 targets geometry. These quasi-landmarks replace manually placed positions and are in
99 anatomical correspondence across all individuals, allowing a more comprehensive shape
100 evaluation. Validation, reliability, and accuracy assessments of the quasi-landmark placement is
101 accomplished by comparing the automatically placed landmarks with manually positioned
102 landmarks. The present research constitutes an important extension to the MeshMonk
103 framework, enabling its application to skull scans, both CT and CBCT, thereby empowering
104 researchers to delve more easily into the analysis of craniofacial bone structure. This
105 augmentation broadens the potential scope of investigations in phenomics research and
106 facilitates a comprehensive exploration of the genetic determinants underlying the human skull,
107 in particular craniofacial bone morphology.

108

109 MATERIALS & METHODS

110 PARTICIPANT RECRUITMENT & STUDY SAMPLE

111 Participants for this research were collected at Indiana University Indianapolis (IUI). The study
112 underwent ethical review and received approval from the institutional review board (IU IRB
113 1801992304). Prior to participating, individuals provided informed consent, which included
114 disclosure of potential radiation exposure associated with Cone Beam Computed Tomography
115 (CBCT) imaging. To ensure anonymity, each participant was assigned a unique identification
116 number, and all collected data were securely stored on a server accessible only to those with
117 pre-existing ethical authorization. The study exclusively enrolled individuals aged 18 and above,
118 excluding those with a history of significant facial trauma, individuals with incomplete data, or
119 scans that lacked complete orbital information. In total, the dataset comprised 31 skulls.

120 CBCT imaging procedures were conducted at the IU School of Dentistry within the Orthodontics
121 and Oral Facial Genetics Department, utilizing a Carestream 9300 machine manufactured by
122 Carestream Health, Inc. (NY). All full-face scans adhered to specific parameters, including a
123 field of view (FOV) of 17 cm x 13.5 cm (this encompasses all facial bones, whilst excluding most
124 of the frontal bone/ forehead), an X-ray tube current of 15 mA, an X-ray tube voltage of 90 kV,
125 and a scan duration of 28 seconds. The scans themselves were administered by a qualified and
126 licensed professional.

127 DICOM EXTRACTION AND DATA CLEANING

128 The DICOM images obtained from the CBCT were processed in the free software 3D Slicer
129 [32]. A threshold of between 400-600 and maximum Hounsfield units was set. The resulting
130 mesh was filtered for the largest island to remove pieces of the spine and loose internal
131 structures. In addition, minor holes were closed using the closing smoothing with a kernel size

132 of 2.0mm. The skull meshes were then imported into Blender [33] where a half-cylindrical mesh
133 was placed around the skull and the shrink-wrap modifier applied (Supplementary Figure S1). In
134 addition, the subdivision surface modifier was applied to increase the resolution. This process
135 was repeated a further 5x with two decimate modifiers (un-subdivide setting) in-between to
136 prevent the resulting mesh file from being too large. The output was a high polygon count mesh
137 with an uneven vertex distribution. To counteract this, the meshes were reduced to 30,000
138 triangles in Meshmixer [34] then evenly re-meshed, resulting in regularly spaced vertices, and a
139 similar number of faces between meshes.

140 **PHENOTYPING**

141 The most even and complete skull mesh was used as a preliminary mask and symmetrized in
142 Blender (one half delete, the center vertices moved to X=0 and the mesh mirrored). A subset of
143 20 skulls were masked with this preliminary mask using the Meshmonk framework [27] in
144 Matlab [35]. This toolbox uses a 3-step process to non-rigidly align the mask to each target
145 shape: 1) initialization is performed by placing eleven manual landmarks (Supplementary Figure
146 S2) (custom script within MeVisLab (available: <http://www.mevislab.de/>)) on both the mask and
147 target shapes which are utilized to estimate the rigid registration, 2) rigid registration is
148 optimized via iterative closest point registration, 3) non-rigid registration is performed to adapt
149 the shape of the mask to the shape of the target mesh. Thus, resulting in all 20 skulls consisting
150 of 9,999 quasi-landmarks in corresponding anatomical locations. After Procrustes
151 Superimposition for alignment and scaling, the skulls were averaged resulting in the final
152 average mask. This mask was consequently symmetrized in shape by averaging the original
153 and its reflection.

154 The full set of 31 skulls were then registered via Meshmonk using the final average mask and
155 eleven initial landmarks. This process was repeated three times with three different sets of initial
156 landmarks to test the reliability of the automatic landmarking using the newly developed bone
157 mesh. The process from DICOM data to masked skull took approximately 30 minutes per skull,
158 however this time depends predominantly on the speed of the CPU.

159 **VALIDATION LANDMARKS**

160 To assess the agreement between manually and automatically placed landmarks, the 31 skulls
161 were landmarked manually with 20 landmarks by three observers (Figure 1). Observer 1 was
162 well versed in this procedure due to their anthropological background; the others were
163 untrained. Landmarks were chosen which evenly covered the skull and represented the areas
164 consistently captured by CBCT with clear definitions taken from literature [31, 37]. These “gold-
165 standard” landmarks were placed on the skulls after shrink-wrapping and remeshing as
166 described previously for a more accurate comparison. Each observer landmarked all 31 skulls
167 three times, with at least 24 hours between sessions.

168 To automatically place landmarks which coincide with the manual landmarks, a leave-one-out
169 approach was used. One skull was determined to be the target skull, while the remaining 30
170 were the training dataset. Manually placed landmarks (averages per observer over the 3
171 landmarking rounds) were transferred to the masked skulls by translating them to barycentric
172 coordinates. Their location on the masked skull was calculated via a weighted sum (Barycentric
173 coordinates) of the three closest quasi-landmarks. These were averaged over the training set
174 and then translated back to cartesian coordinates on the target skull. Due to the process of

175 averaging, the resulting landmark on the target skull was not always on the surface. To
176 circumvent this issue, the landmark was projected to the closest point on the surface of the
177 target skull. This placement was repeated using each observers' manual landmarks individually,
178 and an average of all observers' landmarks.

179 An overview of the pre-assessment process can be found in Figure 2.

180 RELIABILITY ASSESSMENT

181 While automatic landmarking is consistent within itself, the MeshMonk toolbox requires the
182 placement of initial landmarks for registration. As these are placed manually, variation can be
183 present. Reliability of this process was assessed by calculating the Root Mean Square (RMS)
184 distance (root square of the mean of squared Euclidean distances) of the resulting masked
185 quasi-landmarks to the centroid (mean point over all landmarks) over all three iterations. A
186 smaller RMS shows less variation between quasi-landmark placement. RMS was calculated for
187 both the 20 automatic landmarks, as well as the 9,999 quasi-landmarks on the craniofacial bone
188 mask.

189 Intra-Observer reliability was calculated as the RMS between the three rounds of landmarking
190 for each observer, the centroid size of the landmark configuration, as well as the standard
191 deviation of the xyz coordinates separately. Inter-observer reliability was between the three
192 observers over the average of their three landmarking rounds. The reliability of the automatic
193 landmarking was analyzed using the three sets of automatic landmarks derived from the three
194 observers' manual landmarks.

195 To analyze if the automatic and manual landmarks were more or less variable, descriptive
196 statistics (Mean, Standard Deviation, Minimum, Maximum) as well as an ANOVA on centroid
197 size with Observer, Skull, and nested Observer/Iteration was performed. MANOVA were
198 performed on the generalized Procrustes analysis (GPA) aligned landmarks for both the manual
199 and automatic landmarks with Skull and Observer as factors (as well as nested
200 Observer/Iteration for the manual landmarks) to see which of these explained variation within
201 the landmarks. In addition, Levene's Test was performed on the variance of the standard
202 deviation over the xyz coordinates between the automatic and manual landmarks to analyze if
203 the error variation was statistically different. Intraclass correlation coefficients (ICC) were
204 calculated for intra and inter-observer centroid sizes (two-way consistency (inter-) and
205 agreement (intra-)).

206 All statistical analyses were performed either in Matlab, or in R using the packages Geomorph
207 [38], irr [39], and SimplyAgree [40]. Plots were created using ggplot2 [41].

208 ACCURACY ASSESSMENT

209 To calculate the accuracy of the automatic landmarks in relation to the 'gold standard' manual
210 landmarks, multiple approaches were used. Initially, the Euclidean distance between the
211 average manual and automatic landmarks were calculated to provide basic information as to
212 which landmarks show the highest accuracy. Bland-Altman plots were used to visualize the
213 agreement between centroid sizes, as well as individually for xyz coordinates. ICC statistics
214 were used to compare landmark indications using both xyz coordinates and centroid sizes (two-
215 way agreement). To determine if the method explained variation between the landmarks, an
216 ANOVA was performed on centroid sizes with skull, observer, and method as predictors.

217 To determine which factors explained variance within the landmarks, multiple MANOVA tests
218 were performed. The landmarks were GPA aligned and inputted into a MANOVA with skull,
219 observer, and method as factors. A second MANOVA was performed on the principal
220 component scores from a shape principal component analysis using the PCs which explained
221 95% of the variation between the landmarks.

222 Due to the shrink-wrapping process, gaps such as eye sockets are filled in and defined by
223 quasi-landmarks. To calculate which of the landmarks are the best and most stable to define
224 points on the physical skull we calculated the distance between the meshmonk skull and the
225 original skull (before wrapping) along the normal vectors. Any landmarks with distances more
226 than 10mm in more than half of the skulls were removed. The remaining skull was symmetrized
227 so that the same landmarks were kept on either side.

228 IMAGE APPLICATION

229 The craniofacial bone mask, instructions for CBCT export and shrink-wrapping, script for
230 producing quality control images, as well as the IDs for the vertices that do not define true points
231 on the skulls can be found in the Supplementary Material and on our website at
232 <https://walshlab.sitehost.iu.edu/pages/craniofacial.html>.

233 We also provide visualization of a basic proof of application; our 31 masked skulls were used to
234 analyze sexual dimorphism and perform a Principal Component Analysis (PCA) to show the
235 variation attributed to sex and Principal Component (PC) 1. Each analysis was prefaced with a
236 Partial Least Squares Regression (PLSR) to remove the effects of age, height, weight, ancestry,
237 and sex (sex only to analyze PC1).

238 To analyze if this method could also be applied to CT images, we downloaded a CT image from
239 the MUG500+ dataset [36]. These images were previously cleaned, and we ran a cleaned
240 version through our masking pipeline.

241 RESULTS

242 RELIABILITY

243 Due to the fact that our “gold standard” landmarks were placed manually, a large emphasis
244 must be made on the intra- and inter-observer error. Table 1 shows the average RMS distance
245 over the 20 landmarks for each observer, inter-observer, and for the automated landmarking.
246 RMS per landmark can be found in Supplementary Table 1 & 2. RMS distances were also
247 calculated over the three meshmonk iterations for all 9,999 quasi-landmarks (Supplementary
248 Figure 3) which show that the outer rim, especially over corners (mandibular angle, nasal
249 spine), show the most variation in the automatic landmarking. However, the error at the gonion
250 for automatic landmarking (0.33mm) is lower than that of manual landmarking (0.65mm), and
251 smaller than the lowest error (Incisors = 0.41mm) for the trained observer. The majority of the
252 central face has an error of under 0.1mm. The largest manual error is seen in the Zygomaticare
253 (2.22mm) for both inter- and intra-observer errors. On average, automatic landmarking was
254 more than 5x more reliable than a trained observer. Variation in landmarking errors can be
255 found in Supplementary Figure 4 & 5. In addition, the intra-observer standard deviation of the
256 landmarking in the x, y, and z directions was calculated per landmark (Supplementary Table 3).
257 The average standard deviation over all axes for the trained observer was 0.415mm with a
258 range of 0.258-0.716mm. Observer 1 showed consistently smaller landmarking errors than the

259 two untrained observers (Supplementary Figure S6). Intra-observer ICC was O1=0.998 (95%
260 CI: 0.997 < ICC < 0.999), O2=0.988 (95% CI: 0.977 < ICC < 0.994) and O3=0.994 (95% CI:
261 0.987 < ICC < 0.997). Inter-observer ICC was 0.998 (95% CI: 0.997 < ICC < 0.999) showing
262 high concordance in landmarking.

263 An ANOVA over the centroid sizes with observer, skull and nested observer/iteration as factors
264 showed that all factors contributed significantly to variation in centroid size (Supplementary
265 Table S4). A MANOVA was performed on the GPA aligned manual landmarks with observer,
266 skull, and nested observer/iteration as predictors (Supplementary Table S5). The skull itself
267 contributed the largest amount of variation ($R^2=94\%$) while the other predictors did not
268 contribute.

269 By treating the automatic landmarks obtained by using each observer's manual landmarks as
270 the "gold standard" we could calculate inter-observer error for the automatic landmarks. The
271 mean standard deviation was smaller for automatic landmarks (0.77mm) than for manual
272 landmarks (0.902mm). Levene's test for equal variance also showed that the variation within the
273 automatic landmarks was significantly smaller than that in the manual landmarks
274 (Supplementary Table S6). The standard deviation of the average over the xyz axes was
275 smaller for the automatic landmarks than for the manual landmarks for all landmarks, and with
276 less extreme outliers (Supplementary Figure S7). 80% of variation within the automatic
277 landmarks was explained by individual variation, while 19% was explained by observer
278 differences (Supplementary Table S5).

279 ACCURACY

280 *Euclidean Distance Comparison*

281 As a first measure of accuracy, the Euclidean distance between the manual and automatic
282 landmarks was calculated (Table 2). The average distance over all landmarks was 1.5mm, with
283 a range from 0.1mm (Intercanine) to 7.2mm (Marginal Tubercl). A Bland-Altman plot was
284 generated to evaluate if specific axes show higher discordance (Supplementary Figure 7). The
285 variation shown on the principal axes found in Supplementary Figure 8 illustrates that often the
286 first axis follows the contour of the skull. Landmarks with clear definition points in all axes show
287 smaller errors while those that have a sliding placement along a contour generate larger errors.
288 ICC for each axes are 0.998 or above showing high agreement.

289 *Centroid Size Comparison*

290 A Bland-Altman plot shows a mean difference in centroid size of 0.4mm between the two
291 methods, in addition to high concordance between centroid sizes over all the CBCT skulls
292 (Figure 3). ICC calculated from centroid sizes was 0.99 (95% CI: 0.986 < ICC < 0.994) showing
293 negligible differences in the landmarking method. An ANOVA on centroid size with skull and
294 method as factors showed that the method itself was not significant ($p=0.06$), while skull and
295 observer were highly significant ($p<0.001$) (Table 3).

296 *Shape Comparison*

297 A MANOVA performed on the GPA aligned coordinates with skull, observer, and method as
298 predictors showed that the Method could only explain 2% of the variation, while observer
299 accounted for 4.6% and the skulls were 40% (Supplementary Table S7). In addition, a
300 MANOVA was performed on the first 13 PCs (explaining ~95% of the variation) of the auto and

301 manual landmarks using the same predictors. Only observer and skull significantly affected PC
302 scores, the method was not significant (Supplementary Table S8).

303 ESTABLISHED LANDMARKS & SUCCESSFUL IMAGE APPLICATION

304 Of the 9,999 original quasi-landmarks, 6,707 were defined as “true” landmarks pertaining to
305 locations on the physical skull. Those landmarks that fill gaps were flagged and can visually be
306 seen to locate to 1) gaps such as the eye sockets and nose, 2) areas near the back of the skull
307 that are not well represented in CBCT images (Figure 4). A basic analysis of sexual dimorphism
308 and PCA was performed on all 9,999 landmarks and can be found in the Supplementary
309 Material (GIF 1 (Sex) and 2 (PC1)) as well as our website;
310 <https://walshlab.sitehost.iu.edu/pages/craniofacial.html>. The CT image taken from the
311 MUG500+ dataset [36] was also successfully masked (Supplementary Figure S7).

312 DISCUSSION

313 While our understanding of human facial morphology and its variation has made notable
314 progress, particularly with regards soft tissue variation, our knowledge of the underlying hard
315 tissue structures has significantly trailed. This disparity can be primarily attributed to the paucity
316 of extensive skull datasets and the limited development of advanced 3D morphometric methods
317 for skull shape analysis. To overcome this, the utilization of CBCT imagery, typically taken by
318 dentists provides a more accessible solution whilst offering superior resolution in the form of
319 skull mesh reconstructions. Although the analysis of CBCT-derived skull data is not devoid of
320 inherent challenges; they frequently exhibit only partial cranial representations and are
321 characterized by the absence of posterior and superior cranial segments, alongside potential
322 holes in the mesh structure. A consequence of this is that typically 3D masks must be adjusted
323 to accommodate these challenging structural limitations. In addition, the meshes are often
324 irregular, and prone to artifacts stemming from minor movements, dental interventions, and the
325 utilization of head supports during imaging procedures. Lastly, CBCT skull meshes incorporate
326 all hard tissue, including structures within the skull, making these meshes complex and difficult
327 to mask. CT images show similar issues: while the mesh is often of the complete skull, artefacts
328 are more extreme, and the surface texture is more irregular.

329 With the aim of enhancing the manageability of hard tissue scans, we designed and provide a
330 craniofacial template bone mask that not only reduces the complexity of skull scans by targeting
331 a specific area of interest but also leverages a previously proven 3D phenotyping methodology
332 [27]. Our craniofacial template bone mask encompasses 9,999 quasi-landmarks focusing solely
333 on the externally visible aspect of the cranial structure, of which 6,707 define points on the
334 physical skull. Through the process of shrink-wrapping and subsequent reduction of the skull
335 meshes derived from Cone Beam Computed Tomography (CBCT) and Computed Tomography
336 (CT) imagery, we achieve a substantial reduction in polygon count, facilitating more
337 manageable data handling, particularly on less robust computational platforms. This innovative
338 approach of wrapping the skulls also permits Meshmonk to mask the skull without the need to
339 navigate complex interior structures or address gaps in the mesh. While the use of meshmonk
340 on a full skull has been published [31], this application could not be applied to our CBCT or CT
341 scans as the template is not freely available. The authors also note that the mask consisted of
342 ~177,000 quasi-landmarks and necessitated the use of the full skull captured using the same
343 imaging modality.

344 This study aimed to provide an alternative craniofacial bone template that has been fully
345 evaluated with regards to its reliability and accuracy. Meshmonk requires a few manually placed
346 landmarks for its preliminary registration process and our findings reveal that variations in the
347 placement of these landmarks do introduce some degree of error in the masking process.
348 However, these errors predominantly manifest along the periphery of the mask and correspond
349 to regions that may not always be entirely captured in CBCT scans. Specifically, the absence of
350 posterior segments can result in the mask coalescing in this region. This is especially visible
351 when calculating the “true” landmarks as it was evident these posterior points were not well
352 represented in our cohort and thus flagged as “gaps”. Consequently, it is plausible that this
353 issue may be more attributable to limitations inherent to the CBCT imaging technique rather
354 than deficiencies in the masking methodology. Notably, the maximum Meshmonk error is higher
355 than that seen for a mandible mask [30], albeit confined to these specific regions. Our errors
356 were reduced by modifying the Meshmonk settings “NRM.FlagFloatingBoundary” and
357 “NRM.FlagTargetBoundary” (for CT both were set to true, for CBCT only the first was set to
358 true) and recommend that these settings be tested in combination with our script to produce a
359 type of ‘quality control’ test image that depicts the mask overlaying the original mesh (see
360 Supplementary File) to define the best settings for each user’s imagery. Enhanced CBCT image
361 preprocessing techniques and the acquisition of more comprehensive CBCT images would
362 potentially ameliorate this error.

363 We also considered the intra- and inter-observer errors associated with manual landmarking of
364 the skull. 20 landmarks were selected that were easily identifiable on the skull. Only one of the
365 observers was trained in cranial landmarking, resulting in a significantly lower overall RMS error
366 (0.66mm) in comparison to the other two observers (1.11mm and 0.94mm). These values are
367 similar to those reported in other studies [27, 30, 31], albeit slightly higher than findings from a
368 study employing specialized landmarking software at some landmarks [31]. As expected, the
369 inter-observer error was higher (1.44mm). When this was compared to the automatic
370 landmarking error over the 3 different iterations of initial landmarks, the error was more than 6x
371 smaller (0.12mm).

372 Automatic phenotyping demonstrated good accuracy when compared to manual landmarking.
373 To determine the corresponding automatic landmarks, the manual landmarks served as the gold
374 standard. To mitigate bias, a leave-one-out approach was used. Analysis revealed a variation in
375 Euclidean distance between manual and automatic landmarks ranging from 0.10mm - 7.24mm,
376 with an average of 1.5mm. Notably, landmarks exhibiting higher values were often associated
377 with regions that were less effectively masked (e.g., gonion where the mask did not always align
378 with the edge of the skull) and were prone to higher inter-observer errors, as observed in
379 previous studies [30]. Previous research has reported comparable errors between manual and
380 automatic landmark placements ranging from 2.19mm [31], 1.4mm [30], 2.01mm [42] and
381 1.26mm [27]. And our ICC values consistently demonstrated high levels of agreement (ICC >
382 0.9). Interestingly, observer-related variability contributed to 19% of the variation in automatic
383 landmark placement, but this factor was negligible in the case of manual placement. This
384 observation suggests that variations introduced by different observers had an impact on the
385 calculations for automatic landmark placement, as the manual placements were used to
386 calculate the automatic landmark placement. Notably, a considerably smaller proportion of
387 variation remained unexplained for the automatic landmarks (0.4% vs. 6%). An ANOVA on
388 centroid size and a Multivariate Analysis of Variance (MANOVA) conducted on the first 13

389 Principal Components (PCs) demonstrated clearly that the method employed did not exert a
390 significant influence on the variation observed in landmark configurations or shape.

391 The conventional use of manual landmarks as the "gold standard," has been applied and
392 observed in previous studies [27, 30, 43], it also raises certain inherent issues. Specifically in
393 this case, two out of the three observers lacked prior training in landmarking. This introduces
394 more variability in the automatic landmark placement. Moreover, our analysis focused on a
395 limited set of 20 landmarks, therefore the accuracy of the remaining quasi-landmarks was not
396 systematically assessed. However, given the low error associated with automatic landmarking, it
397 is reasonable to assume that these additional landmarks exhibit a comparable level of accuracy,
398 which remain significantly lower than manual landmarking errors. Another limiting factor was the
399 quality of the CBCT images. Despite our efforts to select images with minimal artifacts, many
400 still exhibited minor missing portions and common CBCT imaging artifacts. Additionally, there
401 was considerable variability in the extent of image coverage, particularly in the posterior regions
402 of the scans due to the CBCT machines' limited FOV. Thus, it was expected that our results
403 showed higher errors than commonly seen when landmarking complete 3D skull scans or
404 physical skulls. However, these types of scans represent the reality of present data sets. It also
405 underscores the viability of the shrink-wrapped craniofacial bone mask as an effective method
406 that more easily facilitates the comparison of the human skulls geometric shape, particularly
407 when derived from CBCT and CT imagery. To visualize the potential use of our mask on these
408 types of scans, we provide a PCA and sexual dimorphism analysis that could easily show
409 morphological variation even within our small sample set. Many research groups working on
410 geometric morphometrics and the genetics behind skull and face shape may lack formal
411 anthropological training, leading to elevated manual landmarking errors akin to those observed
412 with observers 2 and 3. By providing a method for stable automatic landmarking, this error is
413 minimized. It also reduces time investment, enhances objectivity, and has the capacity to
414 analyze a greater number of landmarks. Additionally, the deliberate focus on the external
415 aspects of the skull and the creation of a single-plane craniofacial bone mask not only reduces
416 computational resource requirements but also standardizes subsequent analyses. We have also
417 supplied a comprehensive workflow for the shrink-wrapping procedure, quality control scripts,
418 and the vertex IDs for the stable landmarks, rendering this method easily adaptable in research
419 laboratories without the need for specialized training. The adoption of a standardized mask
420 further facilitates the efficient comparison of data across various studies. While this craniofacial
421 bone mask may only encompass part of the cranium, this allows it to be applicable to CBCTs
422 collected on devices with limited focal views. In the future we plan to extend this work to a full
423 cranial mask and utilize the development of superior CT and CBCT scanners [44, 45] and deep
424 learning for DICOM segmentation [46]. Ultimately, we envision that our work will pave the way
425 for genetic association studies pertaining to cranial shape and high-resolution investigations into
426 the genetic determinants influencing craniofacial bone morphology.

427 CONCLUSION

428 Within this study we designed and provide a freely available 3D craniofacial template bone
429 mask for the dense 3D phenotyping of skull meshes exported from CBCT/CT scans in addition
430 to a tutorial outlining the procedure for preparing these images for masking. The provided
431 template can be used within the Meshmonk framework, facilitating the generation of high-
432 density cranial landmarks for subsequent analyses with minimal manual intervention and in a
433 notably efficient manner. Our methodology has demonstrated a high level of accuracy, with

434 substantially reduced errors when compared to manual landmark placement. This standardized
435 approach not only enhances reliability and precision but also minimizes the potential for errors
436 in landmark identification and placement in hard tissue structures of the human face.

437 **ACKNOWLEDGEMENTS**

438 We thank all the individuals and families that gave their time and took part in these facial
439 studies. We would also like to thank Dr. Kelton Stewart and Brenda McClarnon at IU School of
440 Dentistry for facilitating and taking the CBCT images used in this study. IUI personnel, data
441 collection, and analyses were supported by the National Institute of Health (NIDCR
442 1R15DE031929).

443 **AUTHOR CONTRIBUTIONS**

FW: Conceived and designed the analyses, collected the data, performed the analyses, wrote
the manuscript

NH: Collected the data, performed the analyses

ND: Performed the analyses

HM: Contributed data or analyses tools

PC: Contributed data or analyses tools

SW: Collected the data, conceived, designed the analyses, revised the manuscript & oversaw
the project

DATA AVAILABILITY

The craniofacial template bone mask that is the basis of this work can be downloaded from the
supplementary file and our website; <https://walshlab.sitehost.iu.edu/pages/craniofacial.html>

The MeshMonk (v.0.0.6) spatially dense facial-mapping software is provided by KU Leuven and
is free to use for academic purposes (<https://gitlab.kuleuven.be/mirc/meshmonk>). All code used
for analyses was modified from a previous publication (<https://doi.org/10.1038/s41588-020-00741-7>). Further underlying code is available as part of the Matlab software
(<https://www.mathworks.com>) as well as 3D Slicer (<https://www.slicer.org/>), Blender
(<https://www.blender.org/>), Meshmixer (<https://meshmixer.com/>) and MeVisLab
(<https://www.mevislab.de/>).

444 **COMPETING INTERESTS STATEMENT**

445 The author(s) declare no competing interests.

446 **FIGURE LEGENDS**

447 **Figure 1:** Overview of the manually placed landmarks. Landmark definitions were taken from
448 [31, 37].

449 **Figure 2:** Overview of pre-assessment steps. A: Skull mesh is exported from 3D slicer, B: Skull
450 mesh is shrink wrapped in Blender, C: craniofacial bone mask is applied to all skulls using
451 Meshmonk, D: 20 Landmarks are placed manually by 3 observers, E: Automatic Landmarks are
452 determined.

453 **Figure 3:** A: Bland-Altman showing agreement of centroid size between manual and automatic
454 landmark configurations, B: Comparison of manual and automatic centroid sizes.

455 **Figure 4:** Visual representation of the “true” stable landmarks and the “gap” landmarks. Vertex
456 IDs for these landmarks can be found in the supplementary file.

457 **TABLES**

458 **Table 1:** RMS distances (in mm) of repeated landmarking averaged over the 20 landmarks. Automatic landmarking is
459 the average over the three rounds of Meshmonk.

	Mean	Std	Min	Max
Automated	0.119	0.086	0.052	0.347
Inter-Observer	1.442	0.462	0.738	2.393
Intra-Observer 1	0.662	0.180	0.410	1.106
Intra-Observer 2	1.109	0.372	0.597	2.056
Intra-Observer 3	0.943	0.267	0.627	1.494

460

461 **Table 2:** Descriptive statistics for the Euclidean distances between the average manual and average automatic
462 landmarks in mm.

Landmark	Mean	Std	Min	Max
Nasion	1.079	0.677	0.223	3.301
Subspinale	1.542	0.925	0.204	4.647
Incison	0.855	0.620	0.160	3.420
Pogonion	0.844	0.551	0.146	3.491
Right Frontomolare Orbital	1.377	0.820	0.149	4.101
Left Frontomolare Orbital	1.155	0.756	0.116	3.671
Right Orbitale	1.346	0.798	0.228	3.657
Left Orbitale	1.543	0.852	0.110	4.426
Right Zygomaticallare	1.824	1.288	0.119	6.864
Left Zygomaticallare	1.811	1.345	0.103	7.021
Right Intercanine	1.083	0.724	0.100	4.573
Left Intercanine	1.068	0.754	0.110	3.892
Right Marginal Tuberclle	1.820	1.220	0.285	7.246
Right Zygion	1.422	0.933	0.141	5.032
Right Koronion	2.131	1.208	0.365	6.210
Right Gonion	2.132	0.929	0.302	4.077
Left Marginal Tuberclle	1.842	1.118	0.253	5.285
Left Zygion	1.485	0.939	0.128	4.175
Left Koronion	2.163	1.274	0.196	6.617
Left Gonion	1.938	1.017	0.157	4.560

463

464 **Table 3:** ANOVA on centroid size of manual and automatic landmark configurations. Skull and method were inputted
465 as factors.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Skull	30	22825.48	760.849	958.120	<0.001
Observer	2	241.90	120.951	152.311	<0.001
Method	1	2.84	2.844	3.581	0.062
Skull*Observer	60	20.13	0.336	0.423	1.000
Residuals	92	73.06	0.794		

466

467 REFERENCES

1. Houle, D., D.R. Govindaraju, and S. Omholt, *Phenomics: the next challenge*. *Nature Reviews Genetics*, 2010. **11**(12): p. 855-866.
2. Naqvi, S., et al., *Decoding the Human Face: Challenges and Progress in Understanding the Genetics of Craniofacial Morphology*. *Annual Review of Genomics and Human Genetics*, 2022. **23**(1).
3. White, J.D., et al., *Insights into the genetic architecture of the human face*. *Nature Genetics*, 2021. **53**(1): p. 45-53.
4. Van Vlijmen, O., et al., *A comparison between 2D and 3D cephalometry on CBCT scans of human skulls*. *International journal of oral and maxillofacial surgery*, 2010. **39**(2): p. 156-160.
5. Bayome, M., et al. *3D analysis and clinical applications of CBCT images*. in *Seminars in Orthodontics*. 2015. Elsevier.
6. Claes, P., et al., *Genome-wide mapping of global-to-local genetic effects on human facial shape*. *Nature Genetics*, 2018. **50**(3): p. 414-423.
7. Urban, J.E., et al., *Evaluation of morphological changes in the adult skull with age and sex*. *Journal of Anatomy*, 2016. **229**(6): p. 838-846.
8. Bishara, S.E., J.E. Treder, and J.R. Jakobsen, *Facial and dental changes in adulthood*. *American Journal of Orthodontics and Dentofacial Orthopedics*, 1994. **106**(2): p. 175-186.
9. Goovaerts, S., et al., *Joint Multi-Ancestry and Admixed GWAS Reveals the Complex Genetics behind Human Cranial Vault Shape*. 2022, Cold Spring Harbor Laboratory.
10. Ross, A.H., A.H. McKeown, and L.W. Konigsberg, *Allocation of crania to groups via the “new morphometry”*. *Journal of forensic sciences*, 1999. **44**(3): p. 584-587.
11. Buikstra, J.E., *Standards for data collection from human skeletal remains*. *Arkansas archaeological survey research series*, 1994. **44**: p. 18.
12. Jantz, R.L. and S.D. Ousley, *FORDISC 3.0: Personal computer forensic discriminant functions*. University of Tennessee, Knoxville, 2005.
13. Damas, S., O. Cordón, and O. Ibáñez, *Handbook on craniofacial superimposition: The MEPROCS project*. 2020: Springer Nature.
14. Sakuma, A., et al., *Application of Postmortem 3D-CT Facial Reconstruction for Personal Identification**. *Journal of Forensic Sciences*, 2010. **55**(6): p. 1624-1629.
15. Baab, K.L., K.P. McNulty, and F.J. Rohlf, *The shape of human evolution: A geometric morphometrics perspective*. *Evolutionary Anthropology: Issues, News, and Reviews*, 2012. **21**(4): p. 151-165.
16. Martínez-Abadías, N., et al., *Pervasive genetic integration directs the evolution of human skull shape*. *Evolution*, 2012. **66**(4): p. 1010-1023.

502 17. Downs, W.B., *Variations in facial relationships: their significance in treatment and prognosis*.
503 American journal of orthodontics, 1948. **34**(10): p. 812-840.

504 18. Weber, J., et al., *Morphometric analysis of untreated adult skulls in syndromic and nonsyndromic*
505 *craniosynostosis*. Neurosurgical Review, 2008. **31**: p. 179-188.

506 19. Kim, N.-K., et al., *A three-dimensional analysis of soft and hard tissue changes after a mandibular*
507 *setback surgery*. Computer methods and programs in biomedicine, 2006. **83**(3): p. 178-187.

508 20. Penney, G., et al., *Surgical Planning*. 2009, Google Patents.

509 21. Schulze, R.K.W., M.B. Gloede, and G.M. Doll, *Landmark identification on direct digital versus*
510 *film-based cephalometric radiographs: a human skull study*. American Journal of Orthodontics
511 and Dentofacial Orthopedics, 2002. **122**(6): p. 635-642.

512 22. Benfer, R.A., *Morphometric analysis of Cartesian coordinates of the human skull*. American
513 Journal of Physical Anthropology, 1975. **42**(3): p. 371-382.

514 23. Park, J., et al., *Reliability of 3D dental and skeletal landmarks on CBCT images*. The Angle
515 Orthodontist, 2019. **89**(5): p. 758-767.

516 24. Lou, L., et al., *Accuracy of measurements and reliability of landmark identification with*
517 *computed tomography (CT) techniques in the maxillofacial area: a systematic review*. Oral
518 Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontontology, 2007. **104**(3): p.
519 402-411.

520 25. Wong, J.Y., et al., *Validity and reliability of craniofacial anthropometric measurement of 3D*
521 *digital photogrammetric images*. The Cleft Palate-Craniofacial Journal, 2008. **45**(3): p. 232-239.

522 26. Hammond, P. and M. Suttie, *Large-scale objective phenotyping of 3D facial morphology*. Human
523 Mutation, 2012. **33**(5): p. 817-825.

524 27. White, J.D., et al., *MeshMonk: Open-source large-scale intensive 3D phenotyping*. Scientific
525 Reports, 2019. **9**(1).

526 28. Hutton, T.J., et al., *Estimating average growth trajectories in shape-space using kernel*
527 *smoothing*. IEEE Transactions on Medical Imaging, 2003. **22**(6): p. 747-753.

528 29. Weinberg, S.M., et al., *The 3D Facial Norms Database: Part 1. A Web-Based Craniofacial*
529 *Anthropometric and Image Repository for the Clinical and Research Community*. The Cleft
530 Palate-Craniofacial Journal, 2016. **53**(6): p. 185-197.

531 30. Verhelst, P.-J., et al., *Automatic 3D dense phenotyping provides reliable and accurate shape*
532 *quantification of the human mandible*. Scientific Reports, 2021. **11**(1).

533 31. Bermejo, E., et al., *Automatic landmark annotation in 3D surface scans of skulls: Methodological*
534 *proposal and reliability study*. Computer Methods and Programs in Biomedicine, 2021. **210**: p.
535 106380.

536 32. Kikinis, R., S.D. Pieper, and K.G. Vosburgh, *3D Slicer: a platform for subject-specific image*
537 *analysis, visualization, and clinical support*, in *Intraoperative imaging and image-guided therapy*.
538 2013, Springer. p. 277-289.

539 33. Community, B.O., *Blender - a 3D modelling and rendering package*. 2023, Blender Foundation. p.
540 <http://www.blender.org> version 3.6.1 LTS

541 34. Inc., A., *Meshmixer*. 2018, Autodesk Inc. p. <https://meshmixer.com/> version 3.5.

542 35. Higham, D.J. and N.J. Higham, *MATLAB guide*. 2016: SIAM.

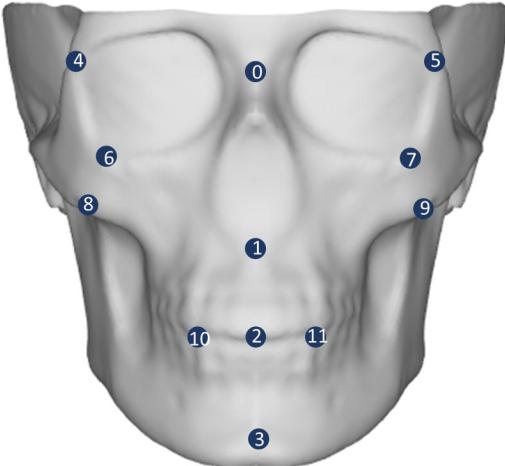
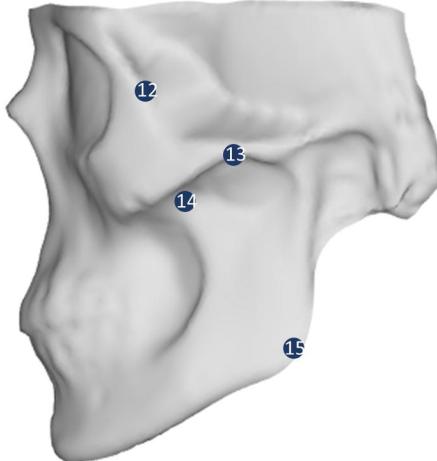
543 36. Li, J., et al., *MUG500+: Database of 500 high-resolution healthy human skulls and 29 craniotomy*
544 *skulls and implants*. Data in Brief, 2021. **39**: p. 107524.

545 37. Caple, J. and C.N. Stephan, *A standardized nomenclature for craniofacial and facial*
546 *anthropometry*. International journal of legal medicine, 2016. **130**(3): p. 863-879.

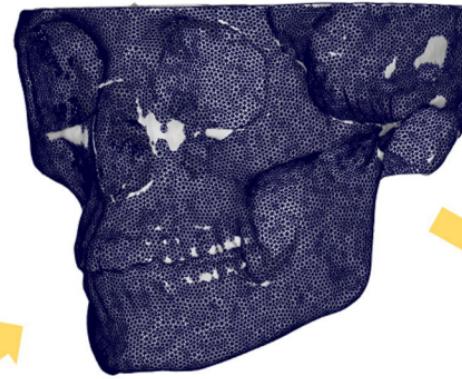
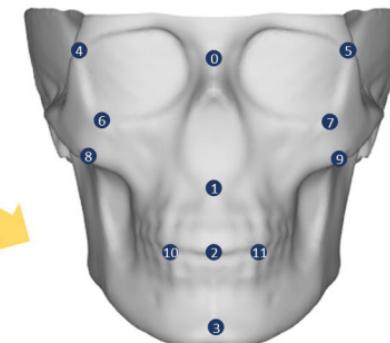
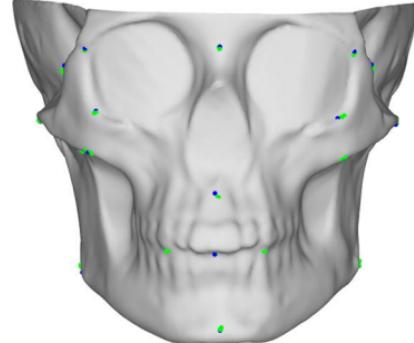
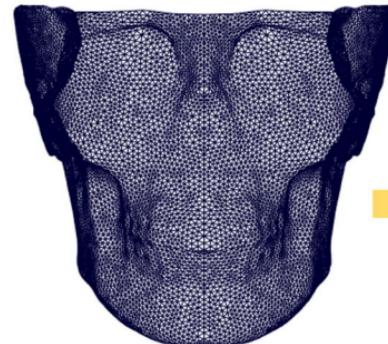
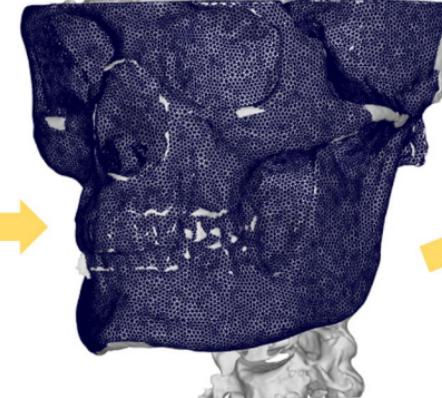
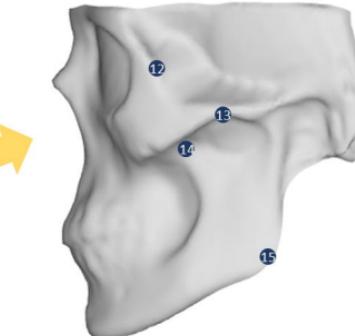
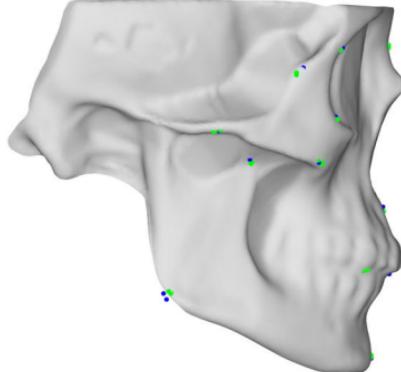
547 38. Adams, D.C. and E. Otárola-Castillo, *geomorph: an <scp>r</scp> package for the collection and*
548 *analysis of geometric morphometric shape data*. Methods in Ecology and Evolution, 2013. **4**(4):
549 p. 393-399.

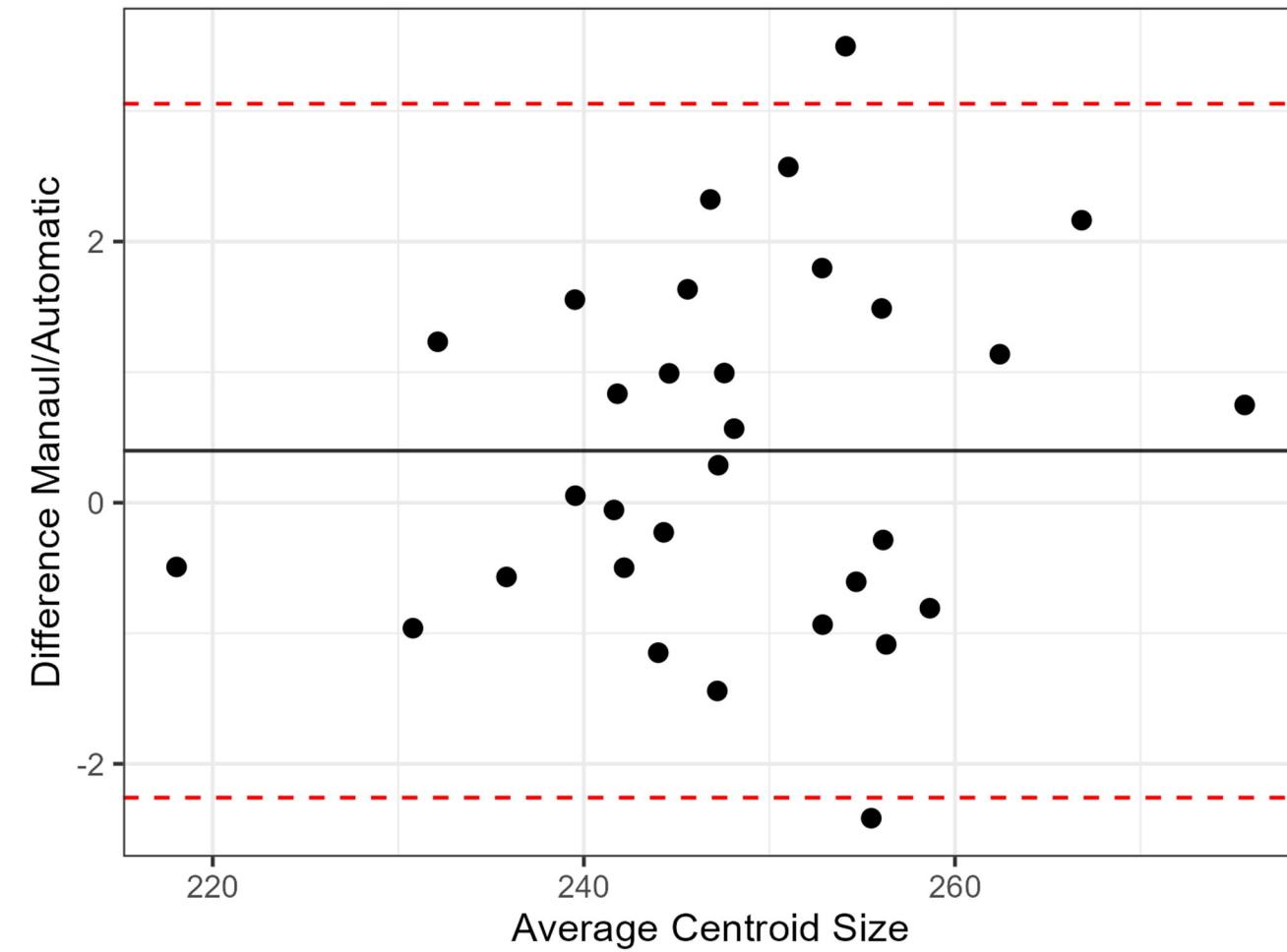
550 39. Gamer, M., et al., *Package 'irr'*. Various coefficients of interrater reliability and agreement, 2012.
551 40. Caldwell, A.R., *SimplyAgree: an R package and jamovi module for simplifying agreement and*
552 *reliability analyses*. Journal of Open Source Software, 2022. **7**(71): p. 4148.
553 41. Wickham, H., W. Chang, and M.H. Wickham, *Package 'ggplot2'*. Create elegant data
554 visualisations using the grammar of graphics. Version, 2016. **2**(1): p. 1-189.
555 42. Gupta, A., et al., *A knowledge-based algorithm for automatic detection of cephalometric*
556 *landmarks on CBCT images*. International journal of computer assisted radiology and surgery,
557 2015. **10**: p. 1737-1752.
558 43. Weinberg, S.M., et al., *Digital three-dimensional photogrammetry: evaluation of anthropometric*
559 *precision and accuracy using a Genex 3D camera system*. The Cleft palate-craniofacial journal,
560 2004. **41**(5): p. 507-518.
561 44. Dillenseger, J.-P., et al., *Image quality evaluation of small FOV and large FOV CBCT devices for*
562 *oral and maxillofacial radiology*. Dentomaxillofacial Radiology, 2017. **46**(1): p. 20160285.
563 45. Bache, S.T. and E. Samei, *A methodology for incorporating a photon-counting CT system into*
564 *routine clinical use*. Journal of Applied Clinical Medical Physics, 2023. **24**(8): p. e14069.
565 46. Fan, W., et al., *The Application of Deep Learning on CBCT in Dentistry*. Diagnostics, 2023. **13**(12):
566 p. 2056.
567

568



Landmark	Definition
0 Nasion	Most posterior point in the median plane above the nose
1 Subspinale	Most posterior point under the nasal spine
2 Incison	Point where all 4 incisors meet
3 Pogonion	Most anterior median point on the mental eminence of the mandible
4 Right Frontomolare Orbital	Point on orbital rim on the zygomaticofrontal suture
5 Left Frontomolare Orbital	Point on orbital rim on the zygomaticofrontal suture
6 Right Orbitale	Most inferior point on the orbital rim
7 Left Orbitale	Most inferior point on the orbital rim
8 Right Zygomaticum	Most prominent lower point of the zygomatic
9 Left Zygomaticum	Most prominent lower point of the zygomatic
10 Right Intercanine	Point where upper and lower canine meet
11 Left Intercanine	Point where upper and lower canine meet
12 Right Marginal Tuber	Most posterior point on the frontal process of the zygomatic
13 Right Zygion	Superior point on the zygomatic arch
14 Right Koronion	Superior point of the coronoid process
15 Right Gonion	Corner/angle of the mandible
16 Left Marginal Tuber	Most posterior point on the frontal process of the zygomatic
17 Left Zygion	Superior point on the zygomatic arch
18 Left Koronion	Superior point of the coronoid process
19 Left Gonion	Corner/angle of the mandible

a**b****c****d****e**

a**b**