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ABSTRACT

Automatic dense 3D surface registration is a powerful technique for comprehensive 3D shape
analysis that has found a successful application in human craniofacial morphology research,
particularly within the mandibular and cranial vault regions. However, a notable gap exists when
exploring the frontal aspect of the human skull, largely due to the intricate and unique nature of
its cranial anatomy. To better examine this region, this study introduces a simplified single-
surface craniofacial bone mask comprising 9,999 quasi-landmarks, which can aid in the
classification and quantification of variation over human facial bone surfaces.

Automatic craniofacial bone phenotyping was conducted on a dataset of 31 skull scans obtained
through cone-beam computed tomography (CBCT) imaging. The MeshMonk framework
facilitated the non-rigid alignment of the constructed craniofacial bone mask with each individual
target mesh. To gauge the accuracy and reliability of this automated process, 20 anatomical
facial landmarks were manually placed three times by three independent observers on the same
set of images. Intra- and inter-observer error assessments were performed using root mean
square (RMS) distances, revealing consistently low scores.

Subsequently, the corresponding automatic landmarks were computed and juxtaposed with the
manually placed landmarks. The average Euclidean distance between these two landmark sets
was 1.5mm, while centroid sizes exhibited noteworthy similarity. Intraclass coefficients (ICC)
demonstrated a high level of concordance (>0.988), and automatic landmarking showing
significantly lower errors and variation.

These results underscore the utility of this newly developed single-surface craniofacial bone
mask, in conjunction with the MeshMonk framework, as a highly accurate and reliable method
for automated phenotyping of the facial region of human skulls from CBCT and CT imagery.
This craniofacial template bone mask expansion of the MeshMonk toolbox not only enhances
our capacity to study craniofacial bone variation but also holds significant potential for shedding
light on the genetic, developmental, and evolutionary underpinnings of the overall human
craniofacial structure.

INTRODUCTION

The field of phenomics — understanding the qualitative and quantitative traits that characterize a
phenotype- is a fast-developing field [1]. Over the past two decades, humerous publications
have not only unveiled genetic variants associated with phenotypes, but also made significant
advancements in phenotyping methodologies [2, 3]. Moreover, the emergence of new
technologies has enabled us to capture high quality 3D scans, encompassing both hard and soft
tissue structures [1, 4, 5]. Although there have been significant strides made in understanding
facial soft tissue variation, with technical advances implemented for genome wide association
studies (GWAS) on facial shape [3, 6], the underlying craniofacial structure remains largely
unexplored. This is in part due to the intricate nature of the entire skull shape and challenges in
acquiring large numbers of 3D scans. Nevertheless, understanding human craniofacial structure
is pivotal due to its substantial contribution to our facial appearance, particularly owing to its
relative independence from biological factors such as weight and reduced susceptibility to age-
related changes after reaching adulthood [7, 8]. Hence, a comprehensive exploration of skull
morphology is essential for gaining a holistic understanding of the genetic determinants
governing human facial shape. Although a recent GWAS was performed on the cranial vault [9],
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a more comprehensive study of the viscerocranium (craniofacial bone structure) is imperative to
tie in with facial soft tissue research that has been so successful in recent years.

Typically, studies describing the shape of the human skull have predominantly been within the
field of Anthropology. In this context, the shape of the skull has been used to categorize an
individual's sex and ancestral origins [10, 11]. While sex often relies on visual indicators, the
assessment of ancestry is more complex. Computational tools such as FORDISC [12] utilize
skull measurements to estimate ancestry but cannot account for admixture and smaller
subpopulations. Furthermore, estimations of soft-tissue thickness have been employed for facial
reconstruction from a skull [13, 14] and skull shape analyses provide insights on primates to
homo sapiens evolutionary processes [15, 16]. In the medical realm, skull shape is often used to
describe specific pathologies or act as a non-syndromic reference [17, 18]. More recently, the
dental and plastic surgery fields have also capitalized on skull shape analyses to aid in
reconstructive surgical procedures [19, 20]. However, many of these previous approaches were
constrained by the reliance on manual cranial landmarks (usually less than 50) and the use of
physical skulls or radiographs as data sources [21, 22]. These conventional approaches bring
inherent challenges. Firstly, the process is time-consuming, requires trained observers, and is
prone to intra- and inter-observer error, thereby complicating standardization [23-25]. Although
shape analysis can be performed by considering the overall configuration of a few landmarks,
such an approach trivializes the complete complexity of cranial facial shape [26, 27]. Although,
algorithms were developed in the early 2000s that have allowed automatic 3D dense
phenotyping [28], they have vastly improved since then [26, 27, 29].

A more recent framework for automatic 3D dense phenotyping, “MeshMonk”, was introduced by
White et al. [27] in 2019. MeshMonk provides a facial soft tissue mesh comprising
approximately 7160 points, accompanied by algorithms to facilitate the alignment of this mask to
3D facial scans. This framework has provided a straightforward, standardized, and validated
method to describe the phenotypic variation found in facial shape using large datasets by
simplifying automated landmarking. While its application has led to multiple publications
exploring the genetic architecture of the human face [2, 3, 6], it is crucial to note however, that
the framework does not include a complete hard-tissue component. Global registration masks
using Meshmonk have been developed and utilized for specific segments of the skull, including
the lower jaw [30] and the cranial vault [9], however, assessment of the facial bones within the
craniofacial complex has not been explored. The frontal aspect of the skulls facial skeleton
poses significant challenges due to its intricate structure, with a separate lower jaw, as well as
orbital and nasal cavities. While the performance of a full skull mask application using the
meshmonk framework has already been published [31], the mask itself is not freely available for
download, it also utilizes approximately 155,000 vertices making it computationally intensive, in
addition to the full cranium being a specific requirement that is often not present in CBCT scans.
This prevents its use on dental CBCT scans which are one of the most common types of facial
scans performed. To perform large-scale GWAS that explore hard structures of the human
face, it requires a large number of bone scans to be processed accurately and efficiently.
Fortunately, advancements in medical technology have increased the availability of these scans
via Magnetic Resonance Imaging (MRI) and Computer Tomography (CT). The use of Cone
Beam CT (CBCT) has also emerged as a prominent imaging technique in the dental field. CBCT
scans have the advantage of lower radiation dosages than conventional CT scans and reduced
costs, rendering them viable for research purposes. To facilitate and cover the broad range of
bone scans available, a suitable landmarking approach must be devised to simplify the intricate
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90 aspects of skull morphology without sacrificing critical information, therefore ensuring a more
91 comprehensive and powerful analysis.

92

93  For this research, by focusing solely on facial bones within the frontal region of the skull, we
94  provide a simplified mesh which reduces computational demands that is compatible with the
95  MeshMonk framework. The frontal region of the skull encompassing the facial bones is captured
96 and reconstructed as a 3D replicate. A template or “mask” consisting of thousands of points
97  (n=9999), or “quasi-landmarks” are aligned and non-rigidly mapped onto the target following the
98 targets geometry. These quasi-landmarks replace manually placed positions and are in
99 anatomical correspondence across all individuals, allowing a more comprehensive shape
100 evaluation. Validation, reliability, and accuracy assessments of the quasi-landmark placement is
101  accomplished by comparing the automatically placed landmarks with manually positioned
102 landmarks. The present research constitutes an important extension to the MeshMonk
103  framework, enabling its application to skull scans, both CT and CBCT, thereby empowering
104  researchers to delve more easily into the analysis of craniofacial bone structure. This
105 augmentation broadens the potential scope of investigations in phenomics research and
106 facilitates a comprehensive exploration of the genetic determinants underlying the human skull,
107  in particular craniofacial bone morphology.

108
109 MATERIALS & METHODS
110 PARTICIPANT RECRUITMENT & STUDY SAMPLE

111  Participants for this research were collected at Indiana University Indianapolis (1Ul). The study
112  underwent ethical review and received approval from the institutional review board (IU IRB

113  1801992304). Prior to participating, individuals provided informed consent, which included

114  disclosure of potential radiation exposure associated with Cone Beam Computed Tomography
115 (CBCT) imaging. To ensure anonymity, each participant was assigned a unique identification
116  number, and all collected data were securely stored on a server accessible only to those with
117  pre-existing ethical authorization. The study exclusively enrolled individuals aged 18 and above,
118 excluding those with a history of significant facial trauma, individuals with incomplete data, or
119 scans that lacked complete orbital information. In total, the dataset comprised 31 skulls.

120 CBCT imaging procedures were conducted at the IU School of Dentistry within the Orthodontics
121  and Oral Facial Genetics Department, utilizing a Carestream 9300 machine manufactured by
122  Carestream Health, Inc. (NY). All full-face scans adhered to specific parameters, including a
123  field of view (FOV) of 17 cm x 13.5 cm (this encompasses all facial bones, whilst excluding most
124  of the frontal bone/ forehead), an X-ray tube current of 15 mA, an X-ray tube voltage of 90 kV,
125 and a scan duration of 28 seconds. The scans themselves were administered by a qualified and
126  licensed professional.

127 DICOM EXTRACTION AND DATA CLEANING

128 The DICOM images obtained from the CBCT were processed in the free software 3D Slicer
129  [32]. A threshold of between 400-600 and maximum Hounsfield units was set. The resulting
130 mesh was filtered for the largest island to remove pieces of the spine and loose internal

131  structures. In addition, minor holes were closed using the closing smoothing with a kernel size
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132 of 2.0mm. The skull meshes were then imported into Blender [33] where a half-cylindrical mesh
133  was placed around the skull and the shrink-wrap modifier applied (Supplementary Figure S1). In
134  addition, the subdivision surface modifier was applied to increase the resolution. This process
135 was repeated a further 5x with two decimate modifiers (un-subdivide setting) in-between to

136  prevent the resulting mesh file from being too large. The output was a high polygon count mesh
137  with an uneven vertex distribution. To counteract this, the meshes were reduced to 30,000

138 triangles in Meshmixer [34] then evenly re-meshed, resulting in regularly spaced vertices, and a
139  similar number of faces between meshes.

140 PHENOTYPING

141  The most even and complete skull mesh was used as a preliminary mask and symmetrized in
142  Blender (one half delete, the center vertices moved to X=0 and the mesh mirrored). A subset of
143 20 skulls were masked with this preliminary mask using the Meshmonk framework [27] in

144  Matlab [35]. This toolbox uses a 3-step process to non-rigidly align the mask to each target

145  shape: 1) initialization is performed by placing eleven manual landmarks (Supplementary Figure
146  S2) (custom script within MeVisLab (available: http://www.mevislab.de/)) on both the mask and
147  target shapes which are utilized to estimate the rigid registration, 2) rigid registration is

148  optimized via iterative closest point registration, 3) non-rigid registration is performed to adapt
149 the shape of the mask to the shape of the target mesh. Thus, resulting in all 20 skulls consisting
150 of 9,999 quasi-landmarks in corresponding anatomical locations. After Procrustes

151  Superimposition for alignment and scaling, the skulls were averaged resulting in the final

152  average mask. This mask was consequently symmetrized in shape by averaging the original
153  and its reflection.

154  The full set of 31 skulls were then registered via Meshmonk using the final average mask and
155 eleven initial landmarks. This process was repeated three times with three different sets of initial
156 landmarks to test the reliability of the automatic landmarking using the newly developed bone
157 mesh. The process from DICOM data to masked skull took approximately 30 minutes per skull,
158 however this time depends predominantly on the speed of the CPU.

159  VALIDATION LANDMARKS

160 To assess the agreement between manually and automatically placed landmarks, the 31 skulls
161  were landmarked manually with 20 landmarks by three observers (Figure 1). Observer 1 was
162  well versed in this procedure due to their anthropological background; the others were

163 untrained. Landmarks were chosen which evenly covered the skull and represented the areas
164  consistently captured by CBCT with clear definitions taken from literature [31, 37]. These “gold-
165 standard” landmarks were placed on the skulls after shrink-wrapping and remeshing as

166  described previously for a more accurate comparison. Each observer landmarked all 31 skulls
167 three times, with at least 24 hours between sessions.

168  To automatically place landmarks which coincide with the manual landmarks, a leave-one-out
169 approach was used. One skull was determined to be the target skull, while the remaining 30
170  were the training dataset. Manually placed landmarks (averages per observer over the 3

171  landmarking rounds) were transferred to the masked skulls by translating them to barycentric
172  coordinates. Their location on the masked skull was calculated via a weighted sum (Barycentric
173  coordinates) of the three closest quasi-landmarks. These were averaged over the training set
174  and then translated back to cartesian coordinates on the target skull. Due to the process of
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175 averaging, the resulting landmark on the target skull was not always on the surface. To

176  circumvent this issue, the landmark was projected to the closest point on the surface of the

177  target skull. This placement was repeated using each observers’ manual landmarks individually,
178 and an average of all observers’ landmarks.

179  An overview of the pre-assessment process can be found in Figure 2.
180 RELIABILITY ASSESSMENT

181  While automatic landmarking is consistent within itself, the MeshMonk toolbox requires the

182  placement of initial landmarks for registration. As these are placed manually, variation can be
183  present. Reliability of this process was assessed by calculating the Root Mean Square (RMS)
184  distance (root square of the mean of squared Euclidean distances) of the resulting masked

185 quasi-landmarks to the centroid (mean point over all landmarks) over all three iterations. A

186  smaller RMS shows less variation between quasi-landmark placement. RMS was calculated for
187  both the 20 automatic landmarks, as well as the 9,999 quasi-landmarks on the craniofacial bone
188  mask.

189 Intra-Observer reliability was calculated as the RMS between the three rounds of landmarking
190 for each observer, the centroid size of the landmark configuration, as well as the standard
191 deviation of the xyz coordinates separately. Inter-observer reliability was between the three
192  observers over the average of their three landmarking rounds. The reliability of the automatic
193 landmarking was analyzed using the three sets of automatic landmarks derived from the three
194  observers’ manual landmarks.

195 To analyze if the automatic and manual landmarks were more or less variable, descriptive
196  statistics (Mean, Standard Deviation, Minimum, Maximum) as well as an ANOVA on centroid
197  size with Observer, Skull, and nested Observer/lteration was performed. MANOVA were

198 performed on the generalized Procrustes analysis (GPA) aligned landmarks for both the manual
199 and automatic landmarks with Skull and Observer as factors (as well as nested

200 Observer/lteration for the manual landmarks) to see which of these explained variation within
201 the landmarks. In addition, Levene’s Test was performed on the variance of the standard

202  deviation over the xyz coordinates between the automatic and manual landmarks to analyze if
203  the error variation was statistically different. Intraclass correlation coefficients (ICC) were

204  calculated for intra and inter-observer centroid sizes (two-way consistency (inter-) and

205 agreement (intra-).

206  All statistical analyses were performed either in Matlab, or in R using the packages Geomorph
207  [38], irr [39], and SimplyAgree [40]. Plots were created using ggplot2 [41].

208 ACCURACY ASSESSMENT

209 To calculate the accuracy of the automatic landmarks in relation to the ‘gold standard’ manual
210 landmarks, multiple approaches were used. Initially, the Euclidean distance between the

211 average manual and automatic landmarks were calculated to provide basic information as to
212  which landmarks show the highest accuracy. Bland-Altman plots were used to visualize the
213  agreement between centroid sizes, as well as individually for xyz coordinates. ICC statistics
214  were used to compare landmark indications using both xyz coordinates and centroid sizes (two-
215 way agreement). To determine if the method explained variation between the landmarks, an
216  ANOVA was performed on centroid sizes with skull, observer, and method as predictors.
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217  To determine which factors explained variance within the landmarks, multiple MANOVA tests
218  were performed. The landmarks were GPA aligned and inputted into a MANOVA with skull,
219 observer, and method as factors. A second MANOVA was performed on the principal

220 component scores from a shape principal component analysis using the PCs which explained
221  95% of the variation between the landmarks.

222  Due to the shrink-wrapping process, gaps such as eye sockets are filled in and defined by

223  quasi-landmarks. To calculate which of the landmarks are the best and most stable to define
224  points on the physical skull we calculated the distance between the meshmonk skull and the
225  original skull (before wrapping) along the normal vectors. Any landmarks with distances more
226  than 10mm in more than half of the skulls were removed. The remaining skull was symmetrized
227  so that the same landmarks were kept on either side.

228 IMAGE APPLICATION

229  The craniofacial bone mask, instructions for CBCT export and shrink-wrapping, script for

230  producing quality control images, as well as the IDs for the vertices that do not define true points
231  onthe skulls can be found in the Supplementary Material and on our website at

232  https://walshlab.sitehost.iu.edu/pages/craniofacial.html.

233  We also provide visualization of a basic proof of application; our 31 masked skulls were used to
234  analyze sexual dimorphism and perform a Principal Component Analysis (PCA) to show the
235  variation attributed to sex and Principal Component (PC) 1. Each analysis was prefaced with a
236  Partial Least Squares Regression (PLSR) to remove the effects of age, height, weight, ancestry,
237  and sex (sex only to analyze PC1).

238 To analyze if this method could also be applied to CT images, we downloaded a CT image from
239 the MUG500+ dataset [36]. These images were previously cleaned, and we ran a cleaned
240  version through our masking pipeline.

241 RESULTS
242  RELIABILITY

243  Due to the fact that our “gold standard” landmarks were placed manually, a large emphasis
244 must be made on the intra- and inter-observer error. Table 1 shows the average RMS distance
245  over the 20 landmarks for each observer, inter-observer, and for the automated landmarking.
246  RMS per landmark can be found in Supplementary Table 1 & 2. RMS distances were also

247  calculated over the three meshmonk iterations for all 9,999 quasi-landmarks (Supplementary
248  Figure 3) which show that the outer rim, especially over corners (mandibular angle, nasal

249  spine), show the most variation in the automatic landmarking. However, the error at the gonion
250 for automatic landmarking (0.33mm) is lower than that of manual landmarking (0.65mm), and
251  smaller than the lowest error (Incisors = 0.41mm) for the trained observer. The majority of the
252  central face has an error of under 0.1mm. The largest manual error is seen in the Zygomaxillare
253  (2.22mm) for both inter- and intra-observer errors. On average, automatic landmarking was
254  more than 5x more reliable than a trained observer. Variation in landmarking errors can be

255  found in Supplementary Figure 4 & 5. In addition, the intra-observer standard deviation of the
256 landmarking in the x, y, and z directions was calculated per landmark (Supplementary Table 3).
257  The average standard deviation over all axes for the trained observer was 0.415mm with a

258 range of 0.258-0.716mm. Observer 1 showed consistently smaller landmarking errors than the
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259  two untrained observers (Supplementary Figure S6). Intra-observer ICC was 01=0.998 (95%
260 CI: 0.997 < ICC < 0.999), 02=0.988 (95% CI: 0.977 < ICC < 0.994) and 03=0.994 (95% ClI:
261 0.987 < ICC < 0.997). Inter-observer ICC was 0.998 (95% CI: 0.997 < ICC < 0.999) showing
262  high concordance in landmarking.

263  An ANOVA over the centroid sizes with observer, skull and nested observer/iteration as factors
264  showed that all factors contributed significantly to variation in centroid size (Supplementary
265 Table S4). A MANOVA was performed on the GPA aligned manual landmarks with observer,
266  skull, and nested observer/iteration as predictors (Supplementary Table S5). The skull itself
267  contributed the largest amount of variation (R*=94%) while the other predictors did not

268  contribute.

269 By treating the automatic landmarks obtained by using each observer’s manual landmarks as
270 the “gold standard’ we could calculate inter-observer error for the automatic landmarks. The
271  mean standard deviation was smaller for automatic landmarks (0.77mm) than for manual

272  landmarks (0.902mm). Levene’s test for equal variance also showed that the variation within the
273  automatic landmarks was significantly smaller than that in the manual landmarks

274  (Supplementary Table S6). The standard deviation of the average over the xyz axes was

275  smaller for the automatic landmarks than for the manual landmarks for all landmarks, and with
276 less extreme outliers (Supplementary Figure S7). 80% of variation within the automatic

277 landmarks was explained by individual variation, while 19% was explained by observer

278  differences (Supplementary Table S5).

279 ACCURACY
280 Euclidean Distance Comparison

281  As a first measure of accuracy, the Euclidean distance between the manual and automatic

282 landmarks was calculated (Table 2). The average distance over all landmarks was 1.5mm, with
283 arange from 0.1mm (Intercanine) to 7.2mm (Marginal Tubercle). A Bland-Altman plot was

284  generated to evaluate if specific axes show higher discordance (Supplementary Figure 7). The
285  variation shown on the principal axes found in Supplementary Figure 8 illustrates that often the
286 first axis follows the contour of the skull. Landmarks with clear definition points in all axes show
287  smaller errors while those that have a sliding placement along a contour generate larger errors.
288 ICC for each axes are 0.998 or above showing high agreement.

289  Centroid Size Comparison

290 A Bland-Altman plot shows a mean difference in centroid size of 0.4mm between the two

291 methods, in addition to high concordance between centroid sizes over all the CBCT skulls

292  (Figure 3). ICC calculated from centroid sizes was 0.99 (95% CI. 0.986 < ICC < 0.994) showing
293  negligible differences in the landmarking method. An ANOVA on centroid size with skull and
294  method as factors showed that the method itself was not significant (p=0.06), while skull and
295  observer were highly significant (p<0.001) (Table 3).

296  Shape Comparison

297 A MANOVA performed on the GPA aligned coordinates with skull, observer, and method as
298 predictors showed that the Method could only explain 2% of the variation, while observer

299  accounted for 4.6% and the skulls were 40% (Supplementary Table S7). In addition, a

300 MANOVA was performed on the first 13 PCs (explaining ~95% of the variation) of the auto and
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301  manual landmarks using the same predictors. Only observer and skull significantly affected PC
302  scores, the method was not significant (Supplementary Table S8).

303 ESTABLISHED LANDMARKS & SUCCESSFUL IMAGE APPLICATION

304  Of the 9,999 original quasi-landmarks, 6,707 were defined as “true” landmarks pertaining to
305 locations on the physical skull. Those landmarks that fill gaps were flagged and can visually be
306 seen to locate to 1) gaps such as the eye sockets and nose, 2) areas near the back of the skull
307 that are not well represented in CBCT images (Figure 4). A basic analysis of sexual dimorphism
308 and PCA was performed on all 9,999 landmarks and can be found in the Supplementary

309 Material (GIF 1 (Sex) and 2 (PC1)) as well as our website;

310 https://walshlab.sitehost.iu.edu/pages/craniofacial.html. The CT image taken from the

311 MUG500+ dataset [36] was also successfully masked (Supplementary Figure S7).

312 DISCUSSION

313  While our understanding of human facial morphology and its variation has made notable

314  progress, particularly with regards soft tissue variation, our knowledge of the underlying hard
315  tissue structures has significantly trailed. This disparity can be primarily attributed to the paucity
316  of extensive skull datasets and the limited development of advanced 3D morphometric methods
317  for skull shape analysis. To overcome this, the utilization of CBCT imagery, typically taken by
318 dentists provides a more accessible solution whilst offering superior resolution in the form of
319  skull mesh reconstructions. Although the analysis of CBCT-derived skull data is not devoid of
320 inherent challenges; they frequently exhibit only partial cranial representations and are

321  characterized by the absence of posterior and superior cranial segments, alongside potential
322  holes in the mesh structure. A consequence of this is that typically 3D masks must be adjusted
323 to accommodate these challenging structural limitations. In addition, the meshes are often

324  irregular, and prone to artifacts stemming from minor movements, dental interventions, and the
325  utilization of head supports during imaging procedures. Lastly, CBCT skull meshes incorporate
326  all hard tissue, including structures within the skull, making these meshes complex and difficult
327 to mask. CT images show similar issues: while the mesh is often of the complete skull, artefacts
328 are more extreme, and the surface texture is more irregular.

329  With the aim of enhancing the manageability of hard tissue scans, we designed and provide a
330 craniofacial template bone mask that not only reduces the complexity of skull scans by targeting
331 aspecific area of interest but also leverages a previously proven 3D phenotyping methodology
332  [27]. Our craniofacial template bone mask encompasses 9,999 quasi-landmarks focusing solely
333 on the externally visible aspect of the cranial structure, of which 6,707 define points on the

334  physical skull. Through the process of shrink-wrapping and subsequent reduction of the skull
335 meshes derived from Cone Beam Computed Tomography (CBCT) and Computed Tomography
336 (CT) imagery, we achieve a substantial reduction in polygon count, facilitating more

337 manageable data handling, particularly on less robust computational platforms. This innovative
338  approach of wrapping the skulls also permits Meshmonk to mask the skull without the need to
339 navigate complex interior structures or address gaps in the mesh. While the use of meshmonk
340 on a full skull has been published [31], this application could not be applied to our CBCT or CT
341  scans as the template is not freely available. The authors also note that the mask consisted of
342  ~177,000 quasi-landmarks and necessitated the use of the full skull captured using the same
343  imaging modality.
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344  This study aimed to provide an alternative craniofacial bone template that has been fully

345  evaluated with regards to its reliability and accuracy. Meshmonk requires a few manually placed
346 landmarks for its preliminary registration process and our findings reveal that variations in the
347  placement of these landmarks do introduce some degree of error in the masking process.

348 However, these errors predominantly manifest along the periphery of the mask and correspond
349 toregions that may not always be entirely captured in CBCT scans. Specifically, the absence of
350 posterior segments can result in the mask coalescing in this region. This is especially visible
351 when calculating the “true” landmarks as it was evident these posterior points were not well

352  represented in our cohort and thus flagged as “gaps”. Consequently, it is plausible that this

353 issue may be more attributable to limitations inherent to the CBCT imaging technique rather
354  than deficiencies in the masking methodology. Notably, the maximum Meshmonk error is higher
355 than that seen for a mandible mask [30], albeit confined to these specific regions. Our errors
356  were reduced by modifying the Meshmonk settings “NRM.FlagFloatingBoundary” and

357 “NRM.FlagTargetBoundary” (for CT both were set to true, for CBCT only the first was set to

358 true) and recommend that these settings be tested in combination with our script to produce a
359 type of ‘quality control’ test image that depicts the mask overlaying the original mesh (see

360 Supplementary File) to define the best settings for each user’s imagery. Enhanced CBCT image
361  preprocessing techniques and the acquisition of more comprehensive CBCT images would

362  potentially ameliorate this error.

363 We also considered the intra- and inter-observer errors associated with manual landmarking of
364  the skull. 20 landmarks were selected that were easily identifiable on the skull. Only one of the
365 observers was trained in cranial landmarking, resulting in a significantly lower overall RMS error
366  (0.66mm) in comparison to the other two observers (1.11mm and 0.94mm). These values are
367  similar to those reported in other studies [27, 30, 31], albeit slightly higher than findings from a
368  study employing specialized landmarking software at some landmarks [31]. As expected, the
369 inter-observer error was higher (1.44mm). When this was compared to the automatic

370 landmarking error over the 3 different iterations of initial landmarks, the error was more than 6x
371  smaller (0.12mm).

372  Automatic phenotyping demonstrated good accuracy when compared to manual landmarking.
373  To determine the corresponding automatic landmarks, the manual landmarks served as the gold
374  standard. To mitigate bias, a leave-one-out approach was used. Analysis revealed a variation in
375  Euclidean distance between manual and automatic landmarks ranging from 0.10mm - 7.24mm,
376  with an average of 1.5mm. Notably, landmarks exhibiting higher values were often associated
377  with regions that were less effectively masked (e.g., gonion where the mask did not always align
378  with the edge of the skull) and were prone to higher inter-observer errors, as observed in

379  previous studies [30]. Previous research has reported comparable errors between manual and
380 automatic landmark placements ranging from 2.19mm [31], 1.4mm [30], 2.01mm [42] and

381  1.26mm [27]. And our ICC values consistently demonstrated high levels of agreement (ICC >
382  0.9). Interestingly, observer-related variability contributed to 19% of the variation in automatic
383 landmark placement, but this factor was negligible in the case of manual placement. This

384  observation suggests that variations introduced by different observers had an impact on the

385 calculations for automatic landmark placement, as the manual placements were used to

386 calculate the automatic landmark placement. Notably, a considerably smaller proportion of

387  variation remained unexplained for the automatic landmarks (0.4% vs. 6%). An ANOVA on

388 centroid size and a Multivariate Analysis of Variance (MANOVA) conducted on the first 13
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389  Principal Components (PCs) demonstrated clearly that the method employed did not exert a
390 significant influence on the variation observed in landmark configurations or shape.

391 The conventional use of manual landmarks as the "gold standard," has been applied and

392  observed in previous studies [27, 30, 43], it also raises certain inherent issues. Specifically in
393  this case, two out of the three observers lacked prior training in landmarking. This introduces
394  more variability in the automatic landmark placement. Moreover, our analysis focused on a

395 limited set of 20 landmarks, therefore the accuracy of the remaining quasi-landmarks was not
396  systematically assessed. However, given the low error associated with automatic landmarking, it
397 is reasonable to assume that these additional landmarks exhibit a comparable level of accuracy,
398  which remain significantly lower than manual landmarking errors. Another limiting factor was the
399 quality of the CBCT images. Despite our efforts to select images with minimal artifacts, many
400  still exhibited minor missing portions and common CBCT imaging artifacts. Additionally, there
401  was considerable variability in the extent of image coverage, particularly in the posterior regions
402  of the scans due to the CBCT machines’ limited FOV. Thus, it was expected that our results
403  showed higher errors than commonly seen when landmarking complete 3D skull scans or

404  physical skulls. However, these types of scans represent the reality of present data sets. It also
405 underscores the viability of the shrink-wrapped craniofacial bone mask as an effective method
406 that more easily facilitates the comparison of the human skulls geometric shape, particularly
407  when derived from CBCT and CT imagery. To visualize the potential use of our mask on these
408 types of scans, we provide a PCA and sexual dimorphism analysis that could easily show

409  morphological variation even within our small sample set. Many research groups working on
410 geometric morphometrics and the genetics behind skull and face shape may lack formal

411  anthropological training, leading to elevated manual landmarking errors akin to those observed
412  with observers 2 and 3. By providing a method for stable automatic landmarking, this error is
413  minimized. It also reduces time investment, enhances objectivity, and has the capacity to

414  analyze a greater number of landmarks. Additionally, the deliberate focus on the external

415  aspects of the skull and the creation of a single-plane craniofacial bone mask not only reduces
416  computational resource requirements but also standardizes subsequent analyses. We have also
417  supplied a comprehensive workflow for the shrink-wrapping procedure, quality control scripts,
418 and the vertex IDs for the stable landmarks, rendering this method easily adaptable in research
419 laboratories without the need for specialized training. The adoption of a standardized mask

420  further facilitates the efficient comparison of data across various studies. While this craniofacial
421  bone mask may only encompass part of the cranium, this allows it to be applicable to CBCTs
422  collected on devices with limited focal views. In the future we plan to extend this work to a full
423  cranial mask and utilize the development of superior CT and CBCT scanners [44, 45] and deep
424  learning for DICOM segmentation [46]. Ultimately, we envision that our work will pave the way
425  for genetic association studies pertaining to cranial shape and high-resolution investigations into
426  the genetic determinants influencing craniofacial bone morphology.

427 CONCLUSION

428  Within this study we designed and provide a freely available 3D craniofacial template bone
429  mask for the dense 3D phenotyping of skull meshes exported from CBCT/CT scans in addition
430 to atutorial outlining the procedure for preparing these images for masking. The provided

431 template can be used within the Meshmonk framework, facilitating the generation of high-

432  density cranial landmarks for subsequent analyses with minimal manual intervention and in a
433  notably efficient manner. Our methodology has demonstrated a high level of accuracy, with
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434  substantially reduced errors when compared to manual landmark placement. This standardized
435  approach not only enhances reliability and precision but also minimizes the potential for errors
436 in landmark identification and placement in hard tissue structures of the human face.
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446  FIGURE LEGENDS

447  Figure 1: Overview of the manually placed landmarks. Landmark definitions were taken from
448  [31, 37].

449  Figure 2: Overview of pre-assessment steps. A: Skull mesh is exported from 3D slicer, B: Skull
450 mesh is shrink wrapped in Blender, C: craniofacial bone mask is applied to all skulls using

451  Meshmonk, D: 20 Landmarks are placed manually by 3 observers, E: Automatic Landmarks are
452  determined.
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453  Figure 3: A: Bland-Altman showing agreement of centroid size between manual and automatic
454  landmark configurations, B: Comparison of manual and automatic centroid sizes.

455  Figure 4: Visual representation of the “true” stable landmarks and the “gap” landmarks. Vertex
456  IDs for these landmarks can be found in the supplementary file.

457 TABLES

458 Table 1: RMS distances (in mm) of repeated landmarking averaged over the 20 landmarks. Automatic landmarking is
459  the average over the three rounds of Meshmonk.

Mean Std Min Max
Automated 0.119 0.086 0.052 0.347
Inter-Observer 1.442 0.462 0.738 2.393
Intra-Observer 1 0.662 0.180 0.410 1.106
Intra-Observer 2 1.109 0.372 0.597 2.056
Intra-Observer 3 0.943 0.267 0.627 1.494

460

461 Table 2: Descriptive statistics for the Euclidean distances between the average manual and average automatic
462  landmarks in mm.

Landmark Mean Std Min Max

Nasion 1.079 0.677 0.223 3.301
Subspinale 1.542 0.925 0.204 4.647
Incison 0.855 0.620 0.160 3.420
Pogonion 0.844 0.551 0.146 3.491
Right Frontomalare Orbital 1.377 0.820 0.149 4101
Left Frontomalare Orbital 1.155 0.756 0.116 3.671
Right Orbitale 1.346 0.798 0.228 3.657
Left Orbitale 1.543 0.852 0.110 4.426
Right Zygomaxillare 1.824 1.288 0.119 6.864
Left Zygomaxillare 1.811 1.345 0.103 7.021
Right Intercanine 1.083 0.724 0.100 4.573
Left Intercanine 1.068 0.754 0.110 3.892
Right Marginal Tubercle 1.820 1.220 0.285 7.246
Right Zygion 1.422 0.933 0.141 5.032
Right Koronion 2.131 1.208 0.365 6.210
Right Gonion 2.132 0.929 0.302 4.077
Left Marginal Tubercle 1.842 1.118 0.253 5.285
Left Zygion 1.485 0.939 0.128 4,175
Left Koronion 2.163 1.274 0.196 6.617
Left Gonion 1.938 1.017 0.157 4.560

463
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464 Table 3: ANOVA on centroid size of manual and automatic landmark configurations. Skull and method were inputted
465  asfactors.

Mean
Df Sum Sq Sq F value Pr(>F)

Skull 30 | 22825.48 | 760.849 958.120 | <0.001

Observer 2 241.90 | 120.951 152.311 <0.001

Method 1 2.84 2.844 3.581 0.062

Skull*Observer 60 20.13 0.336 0.423 1.000

Residuals 92 73.06 0.794
466
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Landmark

Nasion

Subspinale

Incison

Pogonion

Right Frontomalare Orbital
Left Frontomalare Orbital
Right Orbitale

Left Orbitale

Right Zygomaxillare
Left Zygomaxillare
Right Intercanine

Left Intercanine

Right Marginal Tubercle
Right Zygion

Right Koronion

Right Gonion

Left Marginal Tubercle
Left Zygion

Left Koronion

Left Gonion

Definition

Most posterior point in the median plane above the nose
Most posterior point under the nasal spine

Point where all 4 incisiors meet

Most anterior median point on the mental eminence of the mandible
Point on orbital rim on the zygomaticofrontal suture

Point on orbital rim on the zygomaticofrontal suture

Most inferior point on the orbital rim

Most inferior point on the orbital rim

Most prominent lower point of the zygomatic

Most prominent lower point of the zygomatic

Point where upper and lower canine meet

Point where upper and lower canine meet

Most posterior point on the frontal process of the zygomatic
Superior point on the zygomatic arch

Superior point of the coronoid process

Corner/angle of the mandible

Most posterior point on the frontal process of the zygomatic
Superior point on the zygomatic arch

Superior point of the coronoid process

Corner/angle of the mandible
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