

1 A paternal cardiac lesion induces cardiac adaptation in offspring

2
3 Benedetta Coppe¹⁻², María Galardi-Castilla³, Andrés Sanz-Morejón¹⁻³, Prateek Arora¹⁻², Javier Lucas⁴,
4 Laura Lalaguna³, Enrique Lara Pezzi³, Ignacio Flores⁴, Nadia Mercader¹⁻²⁻³

5
6 1. Institute of Anatomy, University of Bern, Switzerland;
7 2. Department for Biomedical Research, University of Bern, Switzerland.
8 3. Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain;
9 4. Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.

10 Abstract

11
12 **Background:** Following cardiac injury, whether the heart is permanently damaged or regenerating,
13 distal organs are subjected to changes in physiological function. It remains largely unknown whether
14 a cardiac lesion can affect gametes and transmit heritable changes to subsequent generations. Here,
15 we report the influence of paternal cardiac injury on the following generation.

16
17 **Methods:** We studied the intergenerational influence of neonatal cardiac injury in the mouse, an
18 animal model capable of regenerating the heart after early life injury. Neonatal male mice were
19 subjected to ventricular cryoinjury, crossed at adulthood, and their sires were compared with litters
20 derived from uninjured male mice. We used echocardiography, histology, and single nuclei RNA-
21 sequencing to thoroughly characterize cardiac morphology, composition, function, and response to
22 cardiac insult.

23
24 **Results:** We show that paternal cardiac injury affects the heart morphology of offspring under
25 physiological conditions. Furthermore, in response to the same injury, the F1 generation derived from
26 injured fathers shows better systemic and cardiac recovery, with non-pathological left ventricular
27 enlargement and improved cardiac function during the regenerative process. This is accompanied by
28 the activation of the immune system healing program at 3 weeks post-injury, together with enhanced
transcription of genes associated with physiological hypertrophy.

29
30 **Conclusions:** The memory of a paternal neonatal lesion can be transmitted to offspring and improve
their recovery from a cardiac insult.

31 32 Introduction

33
34 Early life experiences and habits influence cardiovascular health. Physical adversities experienced early
35 in life can increase the risk of developing cardiovascular disease (CVD) later in life (Kivimäki & Steptoe,
36 2018). In this regard, a study performed in zebrafish and confirmed in mice suggested that stress
37 disrupts physiological heart development (Apaydin et al., 2020). In humans, neonatal cardiac surgery
38 may lead to a higher incidence of long-term hypertension (Greenberg et al., 2021). Conversely, a
39 healthy lifestyle in childhood that prevents overweight, and obesity is associated with a reduced risk
40 of developing CVD and type 2 diabetes in adulthood (Fernandez-Jimenez et al., 2018; Laitinen et al.,
41 2015).

42
43 *In utero* exposure to a suboptimal environment has also been associated with changes in the
44 cardiovascular system. Maternal over-nutrition in mammals increases the risk of metabolic disorders
45 and CVD in the offspring. For example, Blackmore et al. (2014) found that the offspring of obese
46 mothers exhibit pathological cardiac hypertrophy associated with severe systolic and diastolic
47 dysfunction. Likewise, exposure to a protein-restricted diet during pre- and postnatal periods in mice
48 leads to increased reactive oxygen species production and decreased antioxidant activity in the hearts

50 of adult offspring (Nascimento et al., 2014). The development of the cardiovascular system in
51 newborns is influenced not only by the gestational environment, but also by the postnatal maternal
52 diet. Indeed, maternal milk provides nutrients (e.g., γ -linolenic acid) required for the cardiac metabolic
53 switch that is essential for cardiomyocyte (CM) maturation in neonatal mice (Paredes et al., 2023).

54
55 Although prenatal maternal exposures and postnatal events are recognized to affect the
56 cardiovascular system of the newborn later in life, it is less clear whether early parental stress
57 experiences can have a similar impact on the cardiovascular system of the next generation. Paternal
58 inheritance is a useful model for studying the direct germline transmission of parental experiences
59 because, unlike maternal inheritance (which can be potentially influenced by the *in utero*
60 environment), the male contribution to life is limited to the genetic and epigenetic material contained
61 in the fertilizing sperm (Bohacek & Mansuy, 2017). Paternal intergenerational inheritance refers to the
62 influence of paternal experiences on the phenotype of the F1 generation and has been observed in
63 response to changes in diet, exposure to toxicants, or psychological trauma (Fitz-James & Cavalli,
64 2022). Some of these factors, together with the paternal age at conception, smoking and alcohol
65 consumption, have also been associated with a higher risk of cardiac malformations in the offspring
66 (Peng et al., 2019).


67
68 Interestingly, a family history of myocardial infarction (MI) influences the risk of cardiovascular disease
69 in humans, with the risk being highest when the parental MI occurs at a younger age (Sesso et al.,
70 2001). Whether a parental cardiac injury directly influences the offspring is not known. Results from
71 experimentally induced chronic liver injury in rats suggest that organ damage may indeed lead to
72 positive adaptation to the same insult in the offspring (Zeybel et al., 2012). We performed acute cardiac
73 injury by cryo-lesion of the left ventricle in neonates, and found molecular, anatomical, and functional
74 cardiac effects in their offspring, providing evidence for intergenerational consequences of a paternal
75 history of cardiac injury in mammals.

76
77 **Results**

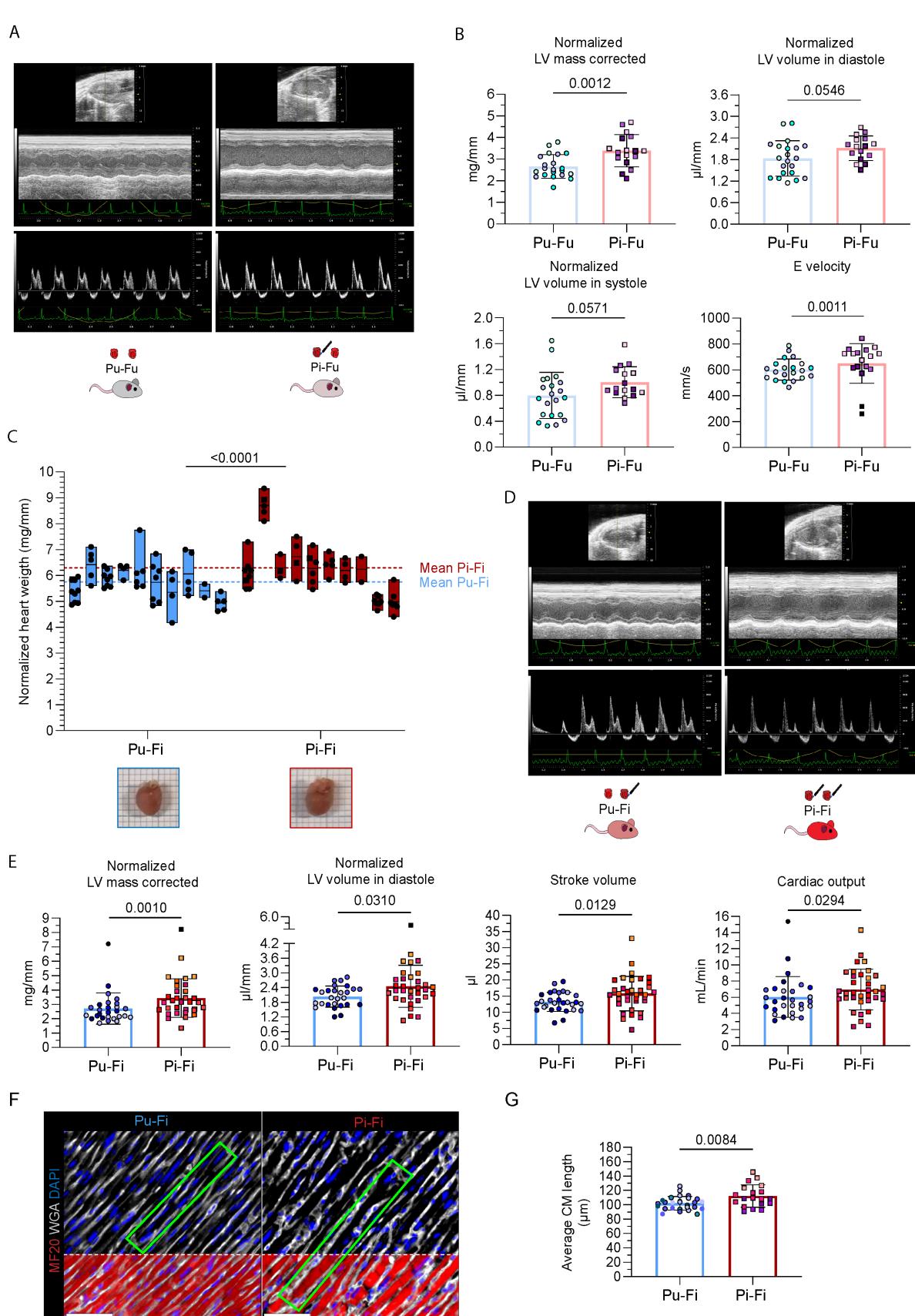
78
79 **Paternal cardiac injury induces temporal systemic changes in offspring in response to cardiac injury**
80 We used ventricular cryoinjury (CI) to study the intergenerational effect of early-life cardiac injury and
81 healing. Parental generation male mice underwent CI at postnatal day 1 (P1), were raised to adulthood,
82 and mated with control females. All animals were fertile and produced offspring. As a control,
83 uninjured male mice from the same genetic background and age were used and similarly crossed with
84 females from the same stock as the experimental group. Animals of the F1 generation were left
85 uninjured or subjected to CI at P1 (Figure 1A). Hereinafter, we use acronyms to refer to the F1
86 generation: "P" represents "paternal generation", "F" the "F1 generation", "u" stands for "uninjured",
87 and "i" for "injured". Thus, the uninjured offspring of uninjured fathers are termed "Pu-Fu", the
88 uninjured offspring of injured fathers are termed "Pi-Fu", and the injured offspring of uninjured or
89 injured fathers are termed "Pu-Fi" or "Pi-Fi", respectively (Figure 1A).

90
91 At weaning, 3 weeks *post-partum* (wpp), the survival of Pu-Fi and Pi-Fi was comparable (Figure S1A).
92 Pu-Fi and Pi-Fi size, evaluated as tibial length, were similar but smaller than the uninjured pups (Figure
93 S1B), suggesting a delayed growth in response to the injury. However, Pi-Fi mice showed an increased
94 normalized BW (BW vs tibial length) compared to Pu-Fi (Figure 1B), due to the increased body weight
95 (BW) gain observed at P8 (Figure 1C) and at weaning (Figure 1D). This phenotype was more
96 pronounced in males (Figure S1C) than in females (Figure S1D).

97

98

99


100

101

Figure 1. Systemic changes in the offspring of uninjured or injured fathers at weaning. A, Scheme of the experimental design utilized to investigate the effects of paternal heart injury on the next generation. In the control group, fathers were left uninjured; in the experimental group, fathers underwent cardiac cryoinjury at

102 P1. Offspring from both groups were left uninjured or injured at P1 and raised. P, paternal generation; F, F1
103 generation; u, uninjured; i, injured; CI, cryoinjury.
104 **B**, Body weight (BW) of F1 mice (g) normalized to tibial length (mm) under physiological condition and after CI at
105 weaning (3 weeks *post-partum* (wpp). Each bar represents data from siblings of multiple sires, identified by
106 different colors (number of sires: Pu-Fu=3, Pi-Fu=4, Pu-Fi=8, Pi-Fi=8). Shown is mean and S.D. One-way ANOVA,
107 Tukey's multiple comparison test.
108 **C**, Injured offspring BW (g) at P8. Each column shows siblings from two sires. Shown is mean and S.D. Unpaired
109 t-test.
110 **D**, F1 BW (g) under physiological condition and after cardiac injury at weaning (3 wpp). Each column represents
111 data from siblings of multiple sires, identified by different colors (number of sires: Pu-Fu=3, Pi-Fu=4, Pu-Fi=8, Pi-
112 Fi=8). Shown is mean and S.D. Kruskal-Wallis test, Dunn's multiple comparisons test.
113 **E**, Liver weight (mg) normalized to tibial length (mm) at weaning (3 wpp). Each bar represents data from siblings
114 of multiple sires, identified by different colors (number of sires: Pu-Fu=2, Pi-Fu=2, Pu-Fi=6, Pi-Fi=7). Shown is
115 mean and S.D. Kruskal-Wallis test, Dunn's multiple comparisons test. On the bottom, representative pictures of
116 livers from uninjured (after 10% Formalin fixation) and injured F1 (right after necropsy).
117 **F**, Hematoxylin/eosin staining of liver sections from injured F1 mice at weaning (3 wpp). Blue lines enclose
118 hepatocytes containing or not glycogen (stained in white). The Pu-Fi section is representative of 5 out of 8
119 analyzed samples, Pi-Fi of 7 out of 8 samples. Fuchsia circles enclose extramedullary hematopoiesis (EMH) *loci*.
120 Scale bar: 50 μ m.
121 **G**, Quantification of EMH sites normalized to liver area (mm²) in injured F1 mice at weaning (3 wpp). Each bar
122 represents data from siblings of multiple sires, identified by different colors (number of sires: Pu-Fi=2, Pi-Fi=2).
123 Shown is mean and S.D. Mann-Whitney test.
124
125 Necropsy of the four groups at weaning revealed a difference in normalized liver weight between Pi-
126 Fi and the other groups. Pi-Fi mice had heavier livers (Figure 1E) in line with the BW gained. Analysis of
127 liver tissue in the Pu-Fi and Pi-Fi groups revealed decreased glycogen storage in 5 out of 8 Pu-Fi livers
128 compared with 1 out of 8 Pi-Fi livers (Figure 1F). Both groups showed sites of extramedullary
129 hematopoiesis (EMH), which occurs physiologically in mouse fetal liver (Sonoda & Sasaki, 2012). EMH
130 is no longer detectable approximately two weeks after birth but is reactivated in response to stressors
131 such as infection, anemia, and MI (Alamo et al., 2017). The significant difference in the number of EMH
132 *loci* between the Pu-Fi and Pi-Fi groups (Figure 1G) indicated a reduced extramedullary hematopoietic
133 demand or a faster recovery in the offspring of injured fathers. Overall, the increase in body and liver
134 weights in Pi-Fi at weaning suggests a systemic protective response to cardiac injury in the offspring of
135 injured fathers.
136
137 Analysis of the same parameters in F1 mice at adulthood revealed that body (Figure S1E) and liver
138 (Figure S1F) weights were similar between the uninjured and injured groups, suggesting that the
139 systemic changes observed in response to cardiac injury in Pi-Fi mice are transient and limited to early
140 life.
141
142 **Cardiac changes can be observed in the offspring of injured fathers under physiological conditions
143 and in response to cardiac injury**
144 We next asked whether the paternal cardiac injury might also affect the morphology and functionality
145 of the offspring heart. We evaluated heart weight in the F1 generation under physiological conditions,
146 normalized by tibial length to account for the effect of the litter size on pup heart dimensions (Figure
147 S2A). While no increase in heart weight of Pi-Fu mice with respect to Pu-Fu mice was evident at
148 weaning (Figure S2B,C,D), echocardiographic analyses revealed a significantly heavier (*i.e.* normalized
149 left ventricle (LV) mass corrected) and larger (*i.e.* volume) LV in Pi-Fu mice during both systole and
150 diastole (Figure 2A,B). At the functional level, the E velocity was modestly but significantly higher in

151 Pu-Fi mice than in Pu-Fu mice (Figure 2A,B), with no differences in other cardiac functional parameters
 152 and wall thickness between the two groups (Figure S2E).
 153

154
 155
 156 **Figure 2. Cardiac morphological and functional changes in the offspring of uninjured or injured fathers at**
 157 **weaning. A, Representative echocardiographic images of hearts from uninjured mice of uninjured and injured**

158 fathers 3 weeks *post-partum* (wpp) (from top to bottom: two dimensional (2D), M-mode (MM), and pulse wave
159 Doppler (PW) echocardiography).

160 **B**, Morphological and functional assessment of cardiac features of the F1 mice of uninjured and injured fathers
161 under physiological conditions at weaning by echocardiography. Graphs show corrected LV mass (unpaired t-
162 test), LV volume in systole (unpaired t-test) and diastole (Mann-Whitney test), and mitral valve E velocity
163 (unpaired t-test) at 3 wpp. Morphological data are normalized to tibial length. Dots represent individual hearts
164 from different sires, identified by colors (n = 3 Pu-Fu, n = 3 Pi-Fu). Shown is mean and S.D.

165 **C**, Normalized heart size of siblings from different litters represented as floating bars with line at mean. Each bar
166 represents siblings of a single family. Dots represent individual animals. Two-way ANOVA.

167 **D**, Representative echocardiographic images of hearts from injured mice of uninjured and injured fathers 3 wpp
168 (from top to bottom: 2D, MM, and PW echocardiography).

169 **E**, Morphological and functional assessment of cardiac features of the injured F1 mice of uninjured and injured
170 fathers at weaning (3 wpp) by echocardiography. Graphs show corrected LV mass (Mann-Whitney test), LV
171 volume in diastole (unpaired t-test), stroke volume (Mann-Whitney test), and cardiac output (unpaired t-test).
172 Morphological data are normalized to tibial length. Dots represent individual hearts from different sires,
173 identified by colors (number of sires: Pu-Fi=5, Pi-Fi=6). Shown is mean and S.D.

174 **F**, Representative immunofluorescence of longitudinal plane CMs stained with MF20 (anti-myosin heavy chain,
175 red) WGA (wheat germ agglutinin, white) to highlight membranes, and DAPI (blue) to stain nuclei. Scale bar: 50
176 μ m.

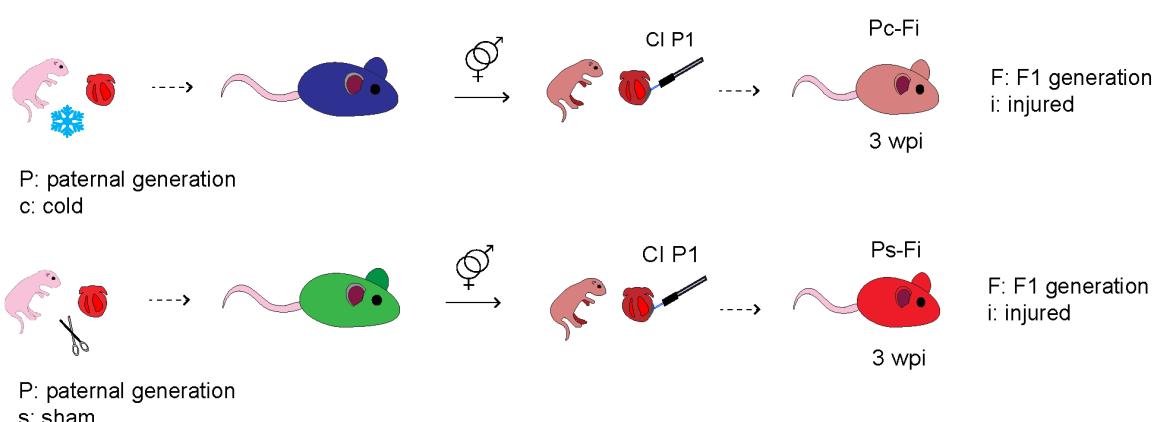
177 **G**, Quantification of average CM length at 3 wpi. Each bar represents data from siblings of multiple sires,
178 identified by different colors (number of sires: Pu-Fi=4, Pi-Fi=4). Shown is mean and S.D. Unpaired t-test.

179 P, paternal generation; F, F1 generation; u, uninjured; I, injured; LV, left ventricle; CM, cardiomyocyte.

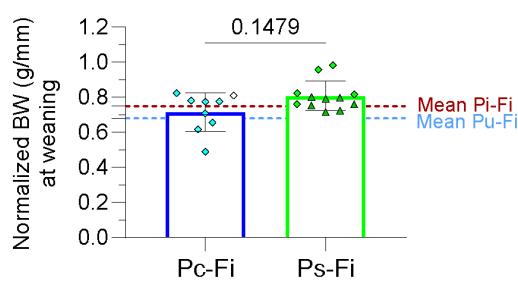
180

181 We then compared the cardiac morphology and functionality in the injured F1 mice of uninjured and
182 injured fathers at weaning. The normalized heart weight in injured F1 mice was significantly greater
183 than that of Pu-Fi mice in 8 out of 10 Pi-Fi litters (Figure 2C). This phenotype was observed in both
184 sexes but was more pronounced in males (Figure S3A) than in females (Figure S3B). Similarly, the
185 normalized LV corrected mass was significantly greater (P=0.0010) in Pi-Fi mice than in Pu-Fi mice
186 (Figure 2D,E). These findings suggest that cardiac remodeling after injury results in larger hearts in the
187 offspring of injured fathers. Functionally, echocardiography revealed similar ejection fraction and
188 fractional shortening between groups (Figure S3C); however, stroke volume and cardiac output were
189 both significantly higher in the Pi-Fi group than in the Pu-Fi group (19.3% and 22.1%, respectively)
190 (Figure 2D,E). The increased LV dimension in Pi-Fi mice in the absence of wall thickening (*i.e.*
191 interventricular septum and LV posterior wall; Figure S3C), together with the increased hemodynamic
192 measures, are signs of eccentric hypertrophy (Mihl et al., 2008; Müller & Dhalla, 2013). By
193 immunostaining the sarcolemma, we observed that CM length was slightly but significantly higher
194 (11.5%) in Pi-Fi mice than in Pu-Fi mice (Figures 2F,G), indicating cardiac remodeling. In sum, the
195 offspring of injured fathers exhibit congenital changes in heart morphology and function that are
196 exacerbated in response to injury, possibly leading to a more compliant LV and increased cardiac
197 functionality.

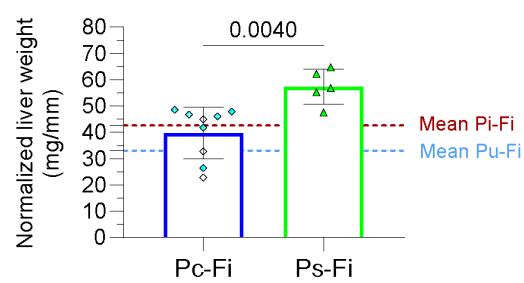
198

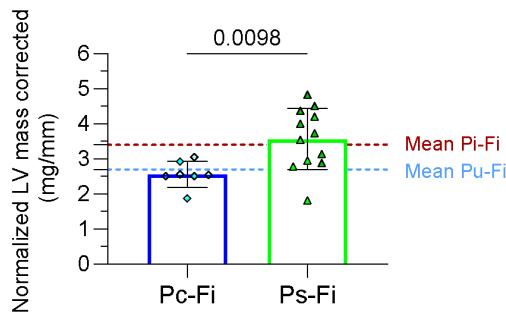

199 We next assessed the persistence of the cardiac phenotype and observed that cardiac remodeling was
200 still evident in adulthood when comparing injured F1 mice with uninjured F1 mice (Figure S4A), but
201 no differences were detected between Pu-Fu and Pi-Fu (Figure S4B) nor between Pu-Fi and Pi-Fi
202 (Figures S4C,D). Thus, the “memory” of a paternal cardiac injury transiently influences neonatal cardiac
203 development and its response to an early-life insult.

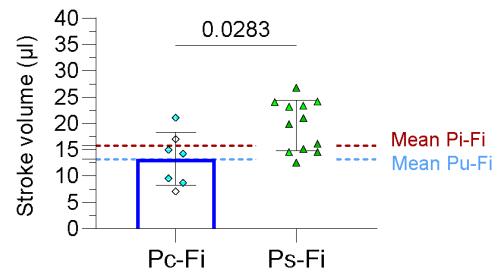
204


205 **Early-life cardiac changes in the offspring of injured fathers are partially induced by paternal
206 thoracotomy**

207 To understand the mechanism involved in the transmission of paternal cardiac damage to F1 mice, we
208 independently tested the effects of paternal cryoanesthesia and sham surgery, both steps performed
209 during the CI surgery, in the next generation. We anesthetized the fathers at P1 by deep hypothermia
210 (here named “cold”) or performed a thoracotomy (*i.e.*, sham), consisting of opening of the chest
211 without damaging the heart. We then compared the response to CI in the F1 generation (hereafter
212 named “Pc-Fi”, where “c” stands for “cold”; and Ps-Fi, where “s” stands for “sham”) (Figure 3A).
213


A


B


C

D

E

214
215 **Figure 3. Effects of paternal hypoxia/hypothermia and sham surgery in the offspring at weaning. A,** Schematic
216 representation of experiments to investigate the effects of paternal deep hypothermia (“cold”) and sham
217 surgery. Fathers underwent cryoanesthesia or thoracotomy at P1 and their offspring were injured (CI of the
218 heart) at P1. P, paternal generation; F, F1 generation; u, uninjured; i, injured; c, cold; s, sham; CI, cryoinjury.
219 **B,** Scatter dot plot showing body weight (BW) normalized to tibial length (g/mm) of the injured offspring of “cold”
220 and “sham” fathers at weaning (3 weeks post-partum (wpp)). Shown are the values in the offspring produced by
221 three sires (one “cold” and two “sham” fathers), identified by different colors. Dotted red and cyan lines
222 represent the mean value in Pi-Fi and Pu-Fi mice, respectively. Mann-Whitney test.
223 **C,** Plot showing normalized liver weight (g/mm) at weaning (3 wpp) of the injured offspring of “cold” and “sham”
224 fathers. Shown are the values of the offspring produced by three sires (one “cold” and two “sham” fathers),
225 identified by different colors. Dotted red and cyan lines represent the mean value in Pi-Fi and Pu-Fi mice,
226 respectively. Mann-Whitney test.

227 **D**, Scatter dot plot showing normalized LV mass corrected (mg/mm) of the injured offspring of “cold” and “sham”
228 fathers at weaning (3 wpp). Shown are the values of the offspring produced by three sires (one “cold” and two
229 “sham” fathers), identified by different colors. Dotted red and cyan lines represent the mean value in Pi-Fi and
230 Pu-Fi mice, respectively. Mann-Whitney test.

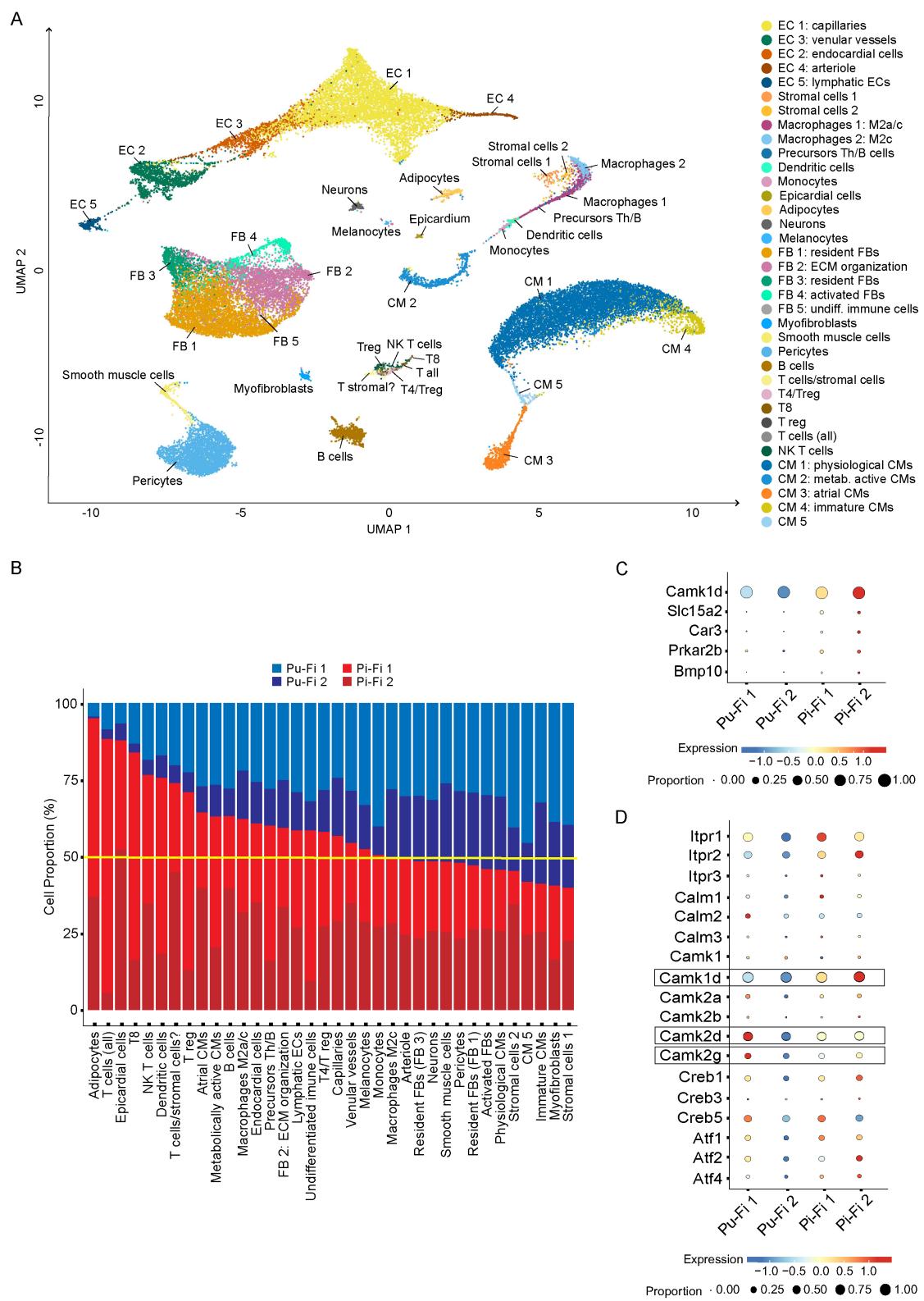
231 **E**, Plot showing stroke volume of the injured offspring of “cold” and sham fathers at weaning (3 wpp). Shown are
232 the values of the offspring produced by three sires (one “cold” and two “sham” fathers), identified by different
233 colors. Dotted red and cyan lines represent the mean value in Pi-Fi and Pu-Fi mice, respectively. Mann-Whitney
234 test.

235

236 In response to CI, normalized BW (Figure 3B), normalized liver weight (Figure 3C), heart weight (Figure
237 3D), and stroke volume (Figure 3E) were all higher in Ps-Fi mice than in Pc-Fi mice at weaning. Notably,
238 whereas the paternal neonatal hypoxic/hypothermic state induced in the next generation a similar
239 injury response to that observed in F1 mice of uninjured fathers (*i.e.* Pc-Fi and Pu-Fi) (Figures 3B,D,E),
240 the injured offspring of sham-operated fathers partially resembled the offspring of injured fathers (*i.e.*
241 Ps-Fi and Pi-Fi) (Figures 3B,D). As in CI, thoracotomy can induce sterile inflammation, leading to the
242 formation of pericardial adhesions, which in turn compromises cardiac functionality (Bailey et al.,
243 1984; Jiamsripong et al., 2010) and alters cardiac gene expression (Botos et al., 2023). Overall, these
244 data show that neonatal surgery, but not deep hypothermia, influences cardiac function as well as
245 body and liver weight in the next generation.

246

247 **Offspring of injured fathers show changes in cell type composition and upregulation of the inositol 248 triphosphate/calcium signaling pathway following neonatal cardiac injury**


249 To better understand the causes of the cardiac changes observed in the hearts of Pi-Fi mice at weaning,
250 we further investigated their cell composition and gene expression changes using single nuclei RNA-
251 sequencing (snRNA-seq). At 3 wpp, we collected the whole heart from two Pu-Fi mice and two Pi-Fi
252 mice and processed the samples for snRNA-seq. We captured 35,458 nuclei from the four samples and
253 sequenced a median of at least 1240 genes per nucleus.

254

255 Sequencing allowed us to identify cell clusters based on known marker genes from the literature (see
256 supplementary methods and Figures S5A, B). The cell clusters for cardiomyocytes, fibroblasts, T cells,
257 and other immune cells were then subjected to individual subclustering (Figures 4A and S6A-D).
258 Inspection of the proportions of all cell populations between Pu-Fi and Pi-Fi samples revealed that
259 adipocytes, lymphocytes, and epicardial cells were more abundant in Pi-Fi samples, whereas
260 myofibroblasts were lower in abundance (Figure 4B). Indeed, adipocytes were almost 20 times more
261 abundant in Pi-Fi samples than in Pu-Fi samples (284 vs 15 nuclei) and showed the largest difference
262 between the two groups. Among T cell populations, we identified natural killer T cells (NKT), cytotoxic
263 T cells (T8), and regulatory T cells (Treg) to be present in greater abundance in Pi-Fi samples. Similarly,
264 fibroblasts expressing genes involved in extracellular matrix organization (“FBs_2”), and M2a/c
265 macrophages, likely involved in wound healing and remodeling (see supplementary methods), were
266 higher in Pi-Fi samples. Other cell populations were observed as generally more abundant in Pi-Fi
267 samples; however, the changes were not markedly different across the replicates, with “Pu-Fi 1”
268 samples being similar to Pi-Fi samples.

269

270

271
272

273 **Figure 4. Whole heart snRNA-seq of injured offspring at weaning.** A, UMAP visualization of unsupervised
274 clustering of 21-dpi whole-heart samples from two replicates per condition (F1 from uninjured vs injured fathers).
275 The legend indicates the identified cell populations. EC, endothelial cell; FB, fibroblasts; T reg, T regulatory cells;
276 Th, T helper cells, NK, natural killer cells; CM, cardiomyocytes, undiff., undifferentiated; metab., metabolically.
277 B, Cell proportion representation of identified cell populations. P, paternal generation; F, F1 generation; u,
278 uninjured; i, injured.

279 **C**, Bubbleplot of selected genes among those differentially expressed in multiple cell populations identified upon
280 pseudobulk analysis. Dot color indicates gene expression levels scaled across samples (*i.e.* whole heart); dot size
281 denotes proportion of cells expressing the gene.

282 **D**, Bubbleplot of genes belonging to the inositol triphosphate/calcium signaling pathway. Dot color indicates
283 gene expression levels scaled across samples; dot size denotes proportion of cells expressing the gene.

284

285 We then used pseudobulk-EdgeR-LRT (Squair et al., 2021) to search for differentially expressed genes
286 (DEGs) across all cell populations. We identified 157 DEGs between Pu-Fi and Pi-Fi samples (Table S1).
287 We focused on those genes differentially expressed across multiple cell populations, which would
288 imply a broad and coordinated response to cardiac injury (Figure S6E). We found that *Camk1d*, a
289 calcium/calmodulin-dependent protein kinase, and *Slc15a2* (solute carrier family 15 member 2), a
290 transporter responsible for the absorption of small peptides, were more highly expressed in Pi-Fi
291 samples in most of the cell populations (Figures 4C and S6E). We next asked whether any of the
292 pathways linked to these genes were also activated. We found that the phosphoinositol-calcium (Pi3-
293 Ca²⁺) pathway, associated with *Camk1d*, showed an overall upregulation of multiple pathway genes.
294 The Pi3-Ca²⁺ pathway is physiologically implicated in cardiac hypertrophic growth and increased cardiac
295 contractility (Ghigo et al., 2017). Notably, while the more commonly described member *Camk2d*
296 (Dewenter et al., 2017) was highly expressed in Pu-Fi samples, *Camk1d* was highly differentially
297 expressed between the two groups (Figure 4D).

298

299 We further identified the upregulated expression of several other genes in Pi-Fi samples, including
300 *Car3*, encoding carbonic anhydrase III and previously described to be activated in hypertrophic
301 response to adrenergic stimulation (Alvarez et al., 2007); *Prkar2b* (protein kinase CAMP-dependent
302 type II regulatory subunit beta), a gene likely involved in the onset of cardiac hypertrophy (Saad et al.,
303 2018); and *Bmp10* (bone morphogenetic protein 10), described to have a role in cardiac proliferation
304 and repair after MI (Sun et al., 2014) (Figure 4C), among others (Figure S6E). To explore whether the
305 enhanced *Bmp10* expression translated to a superior regenerative ability of the heart, we compared
306 the regenerative response in Pu-Fi and Pi-Fi mice by measuring CM proliferation at 7 days post-injury
307 and scar resolution at 3 wpp. No differences were detected in either parameter at these time points
308 (Figures S7A-D).

309

310 Overall, snRNA-seq analysis of whole hearts indicated an increase in adipocytes, T lymphocytes, M2
311 macrophages and fibroblasts involved in extracellular matrix remodeling and scar healing in the
312 offspring of injured fathers with respect to the offspring of uninjured fathers, and a decrease in
313 myofibroblasts. These changes suggest the enhanced involvement of the immune system in the
314 healing process in the offspring of injured fathers. Also, the higher levels of genes involved in the Pi3-
315 Ca²⁺ pathway in Pi-Fi mice support the phenotypic observation of cardiac hypertrophic response to
316 cardiac damage.

317

318

319 **Discussion**

320

321 The intergenerational impact of early-life cardiac dysfunction remains unknown. Here, we used a
322 neonatal mouse model of transient cardiac injury to examine its effects on the next generation. We
323 show that the offspring of injured fathers develop a protective cardiac phenotype in response to the
324 same injury, characterized as a non-pathological remodeling of the heart involving protective cell
325 populations and improved cardiac functionality.

326 Paternal neonatal thoracotomy but not cryoanesthesia affected the offspring heart in a manner similar
327 to paternal CI. This suggests that the sterile inflammation, pericardial adhesion and possibly cardiac
328 dysfunction (Bailey et al., 1984; Jiamsripong et al., 2010), which occur in both CI and thoracotomy, but
329 not following hypoxia/hypothermia, may affect male gametes and the next generation.
330

331 Under physiological conditions, the offspring of injured fathers exhibited transient enhanced cardiac
332 growth at weaning, evidenced by increased LV dimensions and mitral valve E velocity. Considering the
333 young age of the mice when this occurred, and its transient nature (unchanged in adults), we
334 hypothesize that this is likely related to a physiological reduction in LV diastolic pressure and faster LV
335 relaxation early in life. Interestingly, the increased LV dimensions under physiological conditions were
336 more pronounced after injury, possibly due to the increased stroke volume and cardiac output, which
337 would lead to the establishment of mild eccentric hypertrophy. The changes in gene expression in the
338 PI3/Ca²⁺ pathway, which is involved in physiological cardiac hypertrophic growth and increased cardiac
339 contractility after MI (Ghigo et al., 2017), were consistent with this phenotype. Among the
340 calcium/calmodulin-dependent kinase family involved in the PI3/Ca²⁺ pathway, we found increased
341 expression of *Camk1d* in the offspring of injured fathers, whereas the offspring of control fathers
342 preferentially expressed the canonical *Camk2d* (Dewenter et al., 2017). In the setting of
343 ischemia/reperfusion injury, Camk2 appears to stimulate a pro-inflammatory response and is
344 associated with scar formation (Gray et al., 2017). The cardiac role of Camk1d is not known, but a
345 whole-body knockout mouse model for this protein manifests reduced heart weight (Groza et al.,
346 2023). The increase in *Camk1d* expression accords with the increase in the weight of injured hearts of
347 the offspring of injured fathers. We hypothesize that the higher expression of *Camk1d* might be linked
348 to a physiological hypertrophic response that maintains a functionally enlarged heart, similar to
349 athletes and pregnant women (Toncelli et al., 2022). Other genes found to be expressed at higher
350 levels in the injured offspring of injured fathers further support the activation of hypertrophic and
351 protective mechanisms.
352

353 Single-nuclei transcriptomics of whole hearts at weaning allowed us to further investigate whether the
354 memory of paternal cardiac injury triggers the involvement of different cells in response to the same
355 injury in the F1 generation. The most striking difference was the increase in adipocyte nuclei in the
356 offspring of injured fathers. In mice, fat depots are located sub-epicardially in the atrial-ventricular
357 groove of the heart. They correspond to human epicardial adipose tissue (Yamaguchi et al., 2015) and
358 resemble brown and beige adipocytes (Sacks et al., 2013). In humans, epicardial adipose tissue has
359 been described as a source of cardiac heat and protection of the myocardium under ischemia or
360 hypoxia (Lacobellis, 2015). Interestingly, the number of epicardial cells was also higher in the offspring
361 of injured fathers. Because epicardial cells proliferate rapidly in response to injury (Darehzereshki et
362 al., 2015), one possibility is that epicardial cell activation is more enhanced in injured offspring of
363 injured *versus* uninjured fathers and is accompanied by their differentiation into adipocytes
364 (Yamaguchi et al., 2015).
365

366 The injured offspring of injured fathers also displayed an enhanced immune response, with more
367 abundant NKT, T8, and T-reg nuclei. NKT cells are involved in cardiac remodeling following MI and have
368 an anti-inflammatory and protective function (Sobrin et al., 2012) by activating other immune cells,
369 such as dendritic cells, monocytes, macrophages, T and B cells (van Puijvelde & Kuiper, 2017), which
370 may explain the increase observed in Pi-Fi mice. T-reg cells have multiple roles in cardiac tissue repair:
371 they promote macrophage polarization towards the anti-inflammatory and healing M2 type, reduce
372 the expression of α -SMA in fibroblasts, and improve cardiac function in ischemic heart tissue (Kino et
373 al., 2020). The evident differences in the abundance of T-reg cells together with the increased number
374 of macrophages involved in wound healing and remodeling, the reduced presence of myofibroblasts

375 and the increased cardiac output, suggest an overall better healing in the offspring of injured fathers.
376 Further studies evaluating injuries performed at P7, a time window in which natural regeneration is
377 lost (Porrello et al., 2011), might provide opportunities to explore whether a paternal lesion not only
378 allows better recovery after injury, but also prolongs the regeneration window in the offspring.
379

380 At the systemic level, independent of paternal history, we observed that cardiac injury at P1 delays the
381 growth of animals. Similarly, in humans a history of cardiac surgery in infancy is associated with
382 developmental delay and growth problems (Scott & Neal, 2021). However, at the BW level, injured
383 offspring with a paternal history of injury showed increased weight gain and had similar BW to
384 uninjured F1 mice. This increased BW could lead to an increase in blood volume, resulting in the
385 observed eccentric hypertrophy and enhanced cardiac output. In turn, the enhanced cardiac
386 functionality might lead to better organ reperfusion, associated with a reduced EMH demand, and
387 partially to the increase in liver weight (this organ receives up to 25% of the cardiac output and is
388 particularly sensitive to blood flow fluctuations (Møller & Bernardi, 2013). Thus, the improved cardiac
389 functionality in the injured offspring of injured fathers could be the cause of better systemic perfusion,
390 which ameliorates the effects of ischemia on the developing animals. No differences were found at the
391 cardiac or systemic level at later stages, suggesting that the changes observed at weaning were limited
392 to early life. However, we cannot exclude the possibility that long-term consequences might persist in
393 the offspring of injured fathers and affect other biological processes.
394

395 Future work will need to address the influence of paternal cardiac injury history on offspring epigenetic
396 changes in cardiac and other cell types under physiological conditions, which may allow a more rapid
397 and robust response to injury. It will also be crucial to understand the genetic or epigenetic mechanism
398 that is altered in the gametes of injured fathers and how this is transmitted throughout the
399 development of the next generation, not only when an injury is performed early in life but also in
400 adulthood.
401

402 Approximately 40,000 children require heart surgery each year in the US alone (Pasquali et al.,
403 2020)(Pasquali et al., 2020). Consistent with our mouse model, the finding that neonatal cardiac
404 damage is inherited in mammals may change the way we understand disease and how we conduct
405 anamnesis, as parental cardiac health in early life must be taken into account to understand the health
406 and disease of individuals.
407
408

409 **Author contributions**

410 B.C.: conduction and planning of most of the experiments, supervision of experiments, experimental
411 design, quantification and interpretation of results, conceptualization of the project, writing the
412 manuscript.

413 M.G.: conduction and planning of experiments.

414 A.S.M.: conduction of preliminary experiments, experimental design, conceptualization of the project,
415 contribution to the manuscript.

416 J.L.: conduction of most experimental surgeries.

417 P.A. snRNA-seq bioinformatics analysis and interpretation, contribution to the manuscript.

418 L.L.: contribution to snRNA-seq results by providing technical support and protocols, contribution to
419 the manuscript.

420 E.L.P.: contribution to snRNA-seq results by providing technical support and protocols, contribution to
421 the manuscript.

422 I.F.: supervised experimental surgeries carried out by J.L., contribution to the manuscript.

423 N.M.: supervision of all experiments, experimental design, interpretation of results, conceptualization
424 of the project, securing funding, writing the manuscript.

425
426 **Material and methods**

427 **KEY RESOURCES TABLE**

REAGENT OR RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Troponin T2	Developmental Studies Hybridoma Bank	Cat# CT3 RRID:AB_528495
Myosin, sarcomere (MHC)	Developmental Studies Hybridoma Bank	Cat# MF 20 RRID:AB_2147781
Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker	Millipore	Cat#06-570 RRID:AB_310177
Wheat Germ Agglutinin 647-Conjugated	Invitrogen	Cat#W32466
Goat anti-Mouse IgG2b Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488	Thermo Fisher Scientific	Cat#A-21141 RRID:AB_2535778
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor® 647 conjugate	Thermo Fisher Scientific	Cat# A-21237
Biotin-SP-AffiniPure F(ab')2 Fragment Goat Anti-Rabbit IgG (H+L)	Jackson ImmunoResearch Labs	Cat#111-066-003 RRID:AB_2337966
Streptavidin Cy3 conjugate	Thermo Fisher Scientific	Cat#SA1010
Cy™3 Streptavidin	Jackson immunoresearch	Cat# 016-160-084 RRID: AB_2337244
Alexa Fluor® 647 anti-mouse TER-119/Erythroid Cells Antibody	BioLegend	Cat# 116218, RRID:AB_528961
Chemicals, peptides, and recombinant proteins		
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride)	Millipore	Cat#1246530100
Tri reagent	Sigma Aldrich	Cat#T9424-100ML
TRI Reagent™ Solution	Invitrogen	Cat#AM9738
1-bromo-3-chloropropane	Sigma Aldrich	Cat# B9673
Phosphate buffered saline (PBS)	Nzytech	Cat#MB18201
Formalin solution, neutral buffered, 10%	Sigma Aldrich	Cat#HT501128
Sucrose	Sigma Aldrich	Cat#S9378
Isopentane	Merck	Cat#106056
Xylol	Grogg	Cat#G990
p Xylene	Sigma Aldrich	Cat#S8059091
Tween 20	Sigma Aldrich	Cat#P1379-500ML
Triton X-100	Sigma Aldrich	Cat#T9284-500ML
Bovine Serum Albumin (BSA)	Sigma Aldrich	Cat#A7906-100G
Goat serum	Milian	Cat#S2000-100
Normal Goat Serum Blocking Solution	Vector Laboratories	Cat# S-1000-20
Citric acid monohydrate (for citrate buffer)	Sigma Aldrich	Cat#C1909-500G
Magnesium chloride (MgCl ₂)	Sigma Aldrich	Cat#M8266-100g
Spermidine trihydrochloride	Sigma Aldrich	Cat#S2501-1g
Tris (Hydroxymethyl) Aminomethane, Free-base, Reagent Grade (500gr)	EMS	Cat#11720
Hydrochloric Acid (HCL) 37%	Grogg	Cat#G840

DTT, Molecular Grade (DL-Dithiothreitol)	Promega	Cat# P1171
Calcium chloride dihydrate (CaCl ₂ .2H ₂ O)	Sigma Aldrich	Cat#223506-500G
Magnesium Acetate	Sigma Aldrich	Cat# M5661
Ethylenediaminetetraacetic acid (EDTA)	Sigma Aldrich	Cat# E6758
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid EGTA	Sigma Aldrich	Cat# E3889
Trypan blue	Hyclone	Cat# SV30084.01
Direct red80	Sigma Aldrich	Cat#365548
Picric Acid ((O ₂ N) ₃ C ₆ H ₂ OH) saturated 1,3%	Sigma Aldrich	Cat#P6744-1GA
Acetic acid (glacial) 100%	Merk	Cat#1.00063.1000
Ethanol (EtOH) 100%	Grogg	Cat#G003
2-Propanol	Sigma Aldrich	Cat67-63-0
Glycerine ≥99.5%, AnalaR NORMAPUR® ACS analytical reagent, redistilled	VWR Chemicals	Cat#56-81-5
Critical commercial assays		
Vetbond ^{3M} Tissue adhesive	Vetbond	Cat#1469SB
Weigert's Iron Hematoxylin A	EMS	Cat#26044-06
Weigert's Iron Hematoxylin B	EMS	Cat#26044-16
Eosin Y solution	Sigma Aldrich	Cat# 318906
Avidin/Biotin Blocking kit	Vector	Cat#VC-SP-2001-KI01
Fluorescence Mounting Medium	Ibidi	Cat#50001_IBI
Bouin's Solution (1L)	EMS	Cat#15990-01
Halt Protease Inhibitors Cocktail	Thermofisher	Cat# 78430
RNase OUT Recombinant Ribonuclease Inhibitor	Thermofisher	Cat# 10777019
Experimental models: Organisms/strains		
Mouse: C57BL/6J	The Jackson Laboratory	RRID:IMSR_JAX:000664
Software and algorithms		
ImageJ	Fiji/ImageJ	RRID:SCR_002285
NDP.view2 Image viewing software	Hamamatsu	Ref#U12388-01
GraphPad Prism 9	GraphPad Software	
Enrichr	(E. Y. Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021)	
ImmGen	(Heng et al., 2008)	
Vevo 2100 Workstation software Version 5.6.1.	Visual Sonics	

428

429 **Resource availability**

430 **Lead contact**

431 Further information and requests for resources and reagents should be directed to and will be fulfilled
432 by the lead contact, Nadia Mercader (nadia.mercader@unibe.ch).

433 **Data and code availability**

434 All sequencing data and code will be made available upon peer review.

435 **Experimental model**

436

437 All Experiments were approved by the Community of Madrid “Dirección General de Medio Ambiente”
438 in Spain. All animal procedures conformed to EU Directive 86/609/EEC and Recommendation
439 2007/526/EC regarding the protection of animals used for experimental and other scientific purposes,
440 enforced in Spanish law under Real Decreto 1201/2005. Experiments were conducted under the
441 license PROEX 310_19. Experiments were performed with neonatal and up to one-year-old C57BL/6J
442 mice. Animals were housed together until weaning and then at a density of 4 animals/cage, with the
443 exception of bred males, which were kept isolated after the first breeding. All experiments were
444 performed in a specific pathogen free facility under the following conditions: 20-24°C, 12 hours light-
445 dark cycle and 45-65% relative humidity. Standard chow was provided *ad libitum*. Litter, food, and
446 water were changed regularly.

447

448 **Experimental details**

449 Mice were subjected to cardiac injury, sham surgery or cryoanesthetized at P1 (1 day *post-partum*).
450 Injured males were raised to adulthood in parallel with uninjured males from other litters. Upon
451 reaching sexual maturity, male mice were mated with control females. To exclude the possibility that
452 *primiparous* females or a specific combination of breeding could influence the phenotype of the F1
453 generation, we bred some of the sires and dams more than once and in different combinations. The
454 offspring of uninjured and injured males were then left uninjured or cryoinjured at P1. The F1
455 generation was sacrificed at different time points depending on the scientific question (7 dpi for CM
456 proliferation; 3 wpp for echocardiography, scar resolution assessment, hypertrophy analysis, and
457 snRNA-seq; and 8-20 wpp for long-term experiments).

458 **Methods details**

459 **Left ventricular cryoinjury surgery**

460 Prior to surgery, a few drops of surgical glue were applied to the cage near the net to desensitize the
461 mother to its smell. Half of the litter was then separated from the mother and underwent the surgery.
462 Once the pups had woken up and regained their body temperature, they were returned to mother and
463 the other half of the litter was operated on to limit the stress caused to the mother by the separation
464 of the pups. Surgery was performed as described by (Aix et al., 2016). Briefly, P1 mice were
465 anesthetized by hypothermia (*i.e.* cryoanesthesia). A small incision was made in the skin, above the
466 approximate projection of the 3rd and 4th intercostal space. The pectoral muscles were then dissected
467 to expose the thoracic cage and the interior of the chest. With gentle pressure on the abdomen, the
468 apical part of the heart was exposed and approximately 15% of the heart was frozen with a small 24-
469 caliber probe (1 mm) previously immersed in liquid nitrogen. The costal plane was closed, and the skin
470 incision was sutured with surgical glue. Mice were placed on a thermostatic plate to recover body
471 temperature before being returned to the mother. Sham-operated animals underwent the same
472 procedure except for the cryoinjury. Surgery was performed in a blinded fashion.

473 **Echocardiography**

474 Transthoracic echocardiography was performed in a blinded fashion by an experienced operator using
475 a high-frequency ultrasound system (Vevo 2100, Visualsonics Inc., Canada) with a 30-MHz linear probe.
476 Two-dimensional (2D) and M-mode (MM) echography was performed at a frame rate greater than 230
477 frames/sec, and pulse wave Doppler (PW) was acquired at a pulse repetition frequency of 40 kHz. Mice
478 were lightly anesthetized with 0.5-2% isoflurane in oxygen, with isoflurane delivery adjusted to
479 maintain a heart rate of 450±50 bpm. Mice were placed in supine position using a heating platform,
480 and heated ultrasound gel was used to maintain normothermia. A basal apex electrocardiogram (ECG)

481 was monitored continuously. Images were transferred to a computer and analyzed off-line using the
482 Vevo 2100 Workstation software. Parasternal standard 2D and MM, long and short axis views (LAX and
483 SAX views, respectively) were acquired to assess left ventricular systolic function. LV ejection fraction,
484 LV fractional shortening, and LV chamber dimensions were calculated from these views.

485
486 The mitral valve inflow pattern was assessed using 4-chamber apical PW Doppler echography to
487 evaluate diastolic function. Early and late diastolic velocity peak waves (E and A, respectively), the E/A
488 ratio and isovolumetric relaxation time (IVRT) were measured.

489 **SnRNA-seq of the whole heart**

490 Whole heart processing was performed according to the protocol of (Cui & Olson, 2020) with some
491 modifications. One whole heart per sample was extracted from euthanized male mice at 21 days post-
492 injury, snap frozen, and stored at -80°C until all samples were available. Two replicates per condition
493 (injured offspring from either uninjured or injured fathers) were used. Cardiac tissue was homogenized
494 and the Ter119 antibody (BioLegend, 1:200) was used to exclude blood cells. After sorting, the integrity
495 of the nuclei was assessed on 5-μl samples diluted 1:2 with trypan blue on the Countess III cell counter
496 (Thermo Fisher). Each nuclear suspension was loaded into a port of a Chromium Next GEM Chip G (10x
497 Genomics) with a target output of 10,000 nuclei. Individual nuclei were encapsulated into emulsion
498 droplets using the Chromium Controller (10x Genomics). SnRNA-seq libraries were prepared using the
499 Chromium Next GEM Single Cell 3' Kit v3.1 (10x Genomics) and each library was amplified using a
500 SureCycler 8800 thermal cycler (Agilent Technologies). The average size of each library was then
501 calculated using a high sensitivity DNA chip on a 2100 Bioanalyzer (Agilent Technologies) and the
502 concentration was determined using a Qubit fluorometer (Thermo Fisher Scientific). Individual libraries
503 were diluted to 10 nM and pooled for sequencing. The library pool was sequenced at 650 pM in paired-
504 end reads (28 bp Read1, 10 bp Index1, 10 bp Index 2 and 90 bp Read2) on a P3 flow cell (100 cycles) of
505 the NextSeq 2000 platform (Illumina). FastQ files for each sample were generated using the cellranger
506 mkfastq pipeline (10x Genomics). Sequencing was performed in the Genomics Unit of the Spanish
507 National Center for Cardiovascular Research (CNIC).

508 **snRNA-seq bioinformatics analysis**

509 For bioinformatics analysis we used the *Mus musculus* genome assembly v106 from Ensembl
510 (Cunningham et al., 2022). Cell doublet information was removed using the Scrublet algorithm (Wolock
511 et al., 2019). Counts were then processed using the Seurat pipeline (v4.0) in R (v4.0) (FC et al., 2023;
512 Garnier et al., 2023; Hvitfeldt, 2021; R Core Team, 2018). We removed cells with less than 200 reads
513 per cell. We also removed mitochondrial reads that may have included by contamination. We
514 integrated the samples using the Seurat Feature Integration pipeline and performed clustering of the
515 cells. With the markers obtained after clustering, we assigned the cell types using in-house expertise
516 and public data on cardiac single cell/nuclei RNA-seq (see supplementary methods for the
517 classification). We performed differential expression analysis between control and experimental
518 groups in different cell types with a minimum average of 100 cells using the Libra tool with pseudobulk
519 and EdgeR-LRT-based differential expression (Squair et al., 2021). Gene ontology enrichment analysis
520 and pathway analysis were performed using the Clusterprofiler tool (Wu et al., 2021). Graphs were
521 plotted using viridis, palleteer, tidyverse, dittoSand, and UpSetR (Bunis et al., 2020; Garnier et al., 2023;
522 Hvitfeldt, 2021; Wickham et al., 2019; Conway et al., 2017).

523 **Histological analysis**

524
525 Organs were immediately dissected after sacrifice, quickly washed in PBS, dried, and measured. They
526 were fixed in 10% formalin for 48 hours at 4°C and then either dehydrated through a graded series of

527 ethanol and embedded in paraffin wax. Paraffin- samples were sectioned at 7 μ m using a microtome
528 and mounted on Superfrost Plus slides. Prior to staining, sections were deparaffinized in xylol, and
529 rehydrated through a graded series of ethanol and washed in distilled water.

530

531 The following primary and secondary antibodies (Abs) were used for immunofluorescence of paraffin-
532 embedded sections. Primary Abs: mouse anti-Tnnt2 (DSHB, 1:50), mouse anti-Mf20 (Developmental
533 Studies Hybridoma Bank, 1:40), PhH3 (Millipore AB_310177, 1:300). Secondary Abs: anti-WGA 647-
534 conjugated (Invitrogen, 1:200), Alexa Fluor 488, 568, 647 (Thermo Fisher Scientific, 1:250) and biotin
535 anti-rabbit (Jackson Immuno Research, 1:250) followed by incubation with Cy3 streptavidin conjugate
536 (Thermo Fisher Scientific, 1:250). Nuclei were stained with DAPI (Millipore, 1:500) and slides were
537 mounted with Fluorescence Mounting Medium (Ibidi). Sections were rehydrated and antigen retrieved
538 with 100 mM citrate buffer pH 6.0. PBS Triton X-100 0,5% was used for permeabilization and Histoblock
539 (5% BSA, 5% goat serum, 20 mM MgCl₂ in PBS) to block non-specific binding. Primary Abs were left
540 over night at 4°C, secondary Abs for 1 hour at room temperature. For Ab amplification, endogenous
541 avidin and biotin were blocked with the Avidin/Biotin blocking kit (Vector). All washes were performed
542 with PBS Tween 0.1%.

543

544 CM proliferation was quantified as the number of proliferating CMs (PhH3+, Tnnt2/Mf20+) normalized
545 to the area of total nuclei (DAPI+). Eccentric hypertrophy was measured as length of longitudinal CMs
546 in WGA+ Tnnt2+/MF20+ CMs.

547

548 Cardiac collagen deposition was assessed by Sirius Red staining. Rehydrated sections were stained in
549 Weigert's hematoxylin for 8 min, washed in tap water for 10 minutes, stained in Picosirius red solution
550 (0.1%w/v Direct Red 80 in picric acid) for 1 hour, washed twice in acidified water (0.5% acetic acid),
551 dried, dehydrated with three changes of 100% ethanol, and mounted. Scar resolution was measured
552 as the percentage of collagen area normalized to the cardiac area of the section.

553

554 Histological analysis of liver was performed on hematoxylin and eosin-stained sections. After
555 rehydration, sections were stained in Harris haematoxylin for 3 minutes, washed, dipped in 1% acid
556 alcohol solution for a few seconds, rinsed in water, counterstained in 1% eosin for 3-5 minutes,
557 dehydrated in increasing concentrations of alcohol, cleared in xylol, and mounted with mounting
558 medium. Glycogen deposition and EMH loci were evaluated qualitatively or quantitatively in liver
559 sections.

560

561 Images from histological and immunostained sections were acquired with slide scanners (Hamamatsu
562 NanoZoomer 2.0RS and AxioScan Z1) or confocal microscope (Leica SP8 and Zeiss700) using 10x and
563 20x objectives.

564 **Quantification and statistical analysis**

565 The statistical analysis tests used in each comparison are shown in the legend of each figure and do
566 not include outlier values. Normal distribution was assessed in each case by the D'Agostino-Pearson
567 normality test prior to selecting the statistical test to be performed, after excluding outliers. GraphPad
568 Prism 9 software was used for statistical tests and plotting. All statistical values are displayed as mean
569 \pm standard deviation. All statistics related to snRNA-Seq were performed using the respective packages
570 and core R.

571 **AKNOWLEDGMENTS**

572 This project has received funding from the European Union's Horizon 2020 research and innovation
573 programme under grant agreement No 819719 and an Interdisciplinary Grant (UniBe ID Grant) from
574 the University of Bern to N.M. We thank the animal facility, the histology and pathology unit, the
575 advanced imaging unit, and the genomics unit of the Centro Nacional de Investigaciones
576 Cardiovasculares CNIC. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio
577 de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation and is a Severo Ochoa Center of
578 Excellence (SEV-2015-0505). We are also grateful to MIC-Bern from the University of Bern. B.C. is
579 affiliated to the Graduate School for Cellular and Biomedical Sciences (GCB) of the University of Bern.
580 We thank T. Pedrazzini and V. Corces as well as all the lab member of the N.M. lab for sharing
581 knowledge and advice, and Carlos Garrido Fernández for his help in the setup of the preliminary
582 experiments.

583

584 **References**

585 Aix, E., Gutiérrez-Gutiérrez, Ó., Sánchez-Ferrer, C., Aguado, T., & Flores, I. (2016). Postnatal telomere
586 dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. *Journal of Cell
587 Biology*, 213(5), 571–583. <https://doi.org/10.1083/jcb.201510091>

588 Alvarez, B. V., Johnson, D. E., Sowah, D., Soliman, D., Light, P. E., Xia, Y., Karmazyn, M., & Casey, J. R.
589 (2007). Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy. *The
590 Journal of Physiology*, 579(1), 127–145. <https://doi.org/10.1113/jphysiol.2006.123638>

591 Apaydin, D. C., Jaramillo, P. A. M., Corradi, L., Cosco, F., Rathjen, F. G., Kammertoens, T., Filosa, A., &
592 Sawamiphak, S. (2020). Early-Life Stress Regulates Cardiac Development through an IL-4-
593 Glucocorticoid Signaling Balance. *Cell Reports*, 33(7), 108404.
594 <https://doi.org/10.1016/j.celrep.2020.108404>

595 Bailey, L. L., Li Ze-jian, & Schulz, E. (1984). A cause of right ventricular dysfunction after cardiac
596 operations. *Journal of Thoracic and Cardiovascular Surgery*, 87(4), 539–542.
597 [https://doi.org/10.1016/s0022-5223\(19\)37353-2](https://doi.org/10.1016/s0022-5223(19)37353-2)

598 Blackmore, H. L., Niu, Y., Fernandez-Twinn, D. S., Tarry-Adkins, J. L., Giussani, D. A., & Ozanne, S. E.
599 (2014). Maternal Diet-induced Obesity Programs Cardiovascular Dysfunction in Adult Male
600 Mouse Offspring Independent of Current Body Weight. *Endocrinology*, 155(10), 3970–3980.
601 <https://doi.org/10.1210/en.2014-1383>

602 Bohacek, J., & Mansuy, I. M. (2017). A guide to designing germline-dependent epigenetic inheritance
603 experiments in mammals. In *Nature Methods* (Vol. 14, Issue 3, pp. 243–249). Nature Publishing
604 Group. <https://doi.org/10.1038/nmeth.4181>

605 Botos, M. A., Arora, P., Chouvardas, P., & Mercader, N. (2023). Transcriptomic data meta-analysis
606 reveals common and injury model specific gene expression changes in the regenerating
607 zebrafish heart. *Scientific Reports*, 13(1), 1–12. <https://doi.org/10.1038/s41598-023-32272-6>

608 Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: an R package for the visualization of
609 intersecting sets and their properties. *Bioinformatics*, 33(18), 2938–2940.
610 <https://doi.org/10.1093/bioinformatics/btx364>

611 Cui, M., & Olson, E. N. (2020). Protocol for Single-Nucleus Transcriptomics of Diploid and Tetraploid
612 Cardiomyocytes in Murine Hearts. *STAR Protocols*, 1(2), 100049.
613 <https://doi.org/10.1101/2020.09.10.235419>

614 Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Austine-
615 Orimoloye, O., Azov, A. G., Barnes, I., Bennett, R., Berry, A., Bhai, J., Bignell, A., Billis, K., Boddu,
616 S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin Fioretto, L., ... Flicek, P. (2022). Ensembl 2022.
617 *Nucleic Acids Research*, 50(D1), D988–D995. <https://doi.org/10.1093/nar/gkab1049>

618 Darehzereshki, A., Rubin, N., Gamba, L., Kim, J., Fraser, J., Huang, Y., Billings, J., Mohammadzadeh, R.,
619 Wood, J., Warburton, D., Kaartinen, V., & Lien, C. L. (2015). Differential regenerative capacity of
620 neonatal mouse hearts after cryoinjury. *Developmental Biology*, 399(1), 91–99.
621 <https://doi.org/10.1016/j.ydbio.2014.12.018>

622 Dewenter, M., Von Der Lieth, A., Katus, H. A., & Backs, J. (2017). Calcium signaling and transcriptional
623 regulation in cardiomyocytes. In *Circulation Research* (Vol. 121, Issue 8, pp. 1000–1020).
624 Lippincott Williams and Wilkins. <https://doi.org/10.1161/CIRCRESAHA.117.310355>

625 FC, M., Davis, T. L., & ggplot2 authors. (2023). *ggpattern: "ggplot2" Pattern Geoms*.

626 Fernandez-Jimenez, R., Al-Kazaz, M., Jaslow, R., Carvajal, I., & Fuster, V. (2018). Children Present a
627 Window of Opportunity for Promoting Health: JACC Review Topic of the Week. In *Journal of the
628 American College of Cardiology* (Vol. 72, Issue 25, pp. 3310–3319). Elsevier USA.
629 <https://doi.org/10.1016/j.jacc.2018.10.031>

630 Fitz-James, M. H., & Cavalli, G. (2022). Molecular mechanisms of transgenerational epigenetic
631 inheritance. In *Nature Reviews Genetics* (Vol. 23, Issue 6, pp. 325–341). Nature Research.
632 <https://doi.org/10.1038/s41576-021-00438-5>

633 Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, Pedro, A., Sciaini, Marco, Scherer, & Cédric.
634 (2023). *viridis(Lite) - Colorblind-Friendly Color Maps for R*.
635 <https://doi.org/10.5281/zenodo.4679424>

636 Ghigo, A., Laffargue, M., Li, M., & Hirsch, E. (2017). PI3K and Calcium Signaling in Cardiovascular
637 Disease. In *Circulation Research* (Vol. 121, Issue 3, pp. 282–292). Lippincott Williams and
638 Wilkins. <https://doi.org/10.1161/CIRCRESAHA.117.310183>

639 Gray, C. B. B., Suetomi, T., Xiang, S., Blackwood, E. A., Glembotski, C. C., Miyamoto, S., Westenbrink,
640 B. D., & Brown, J. H. (2017). CaMKII δ subtypes differentially regulate infarct formation following
641 ex vivo myocardial ischemia/reperfusion through NF- κ B and TNF- α . *Journal of Molecular and
642 Cellular Cardiology*, 103, 48–55. <https://doi.org/10.1016/j.yjmcc.2017.01.002>

643 Greenberg, J. H., McArthur, E., Thiessen-Philbrook, H., Zappitelli, M., Wald, R., Kaushal, S., Ng, D. K.,
644 Everett, A. D., Chanchlani, R., Garg, A. X., & Parikh, C. R. (2021). Long-term Risk of Hypertension
645 after Surgical Repair of Congenital Heart Disease in Children. *JAMA Network Open*, 4(4),
646 e215237–e215237. <https://doi.org/10.1001/jamanetworkopen.2021.5237>

647 Groza, T., Gomez Lopez, F. L., Mashhadi, H. H., Muñoz-Fuentes, V., Gunes, O., Wilson, R., Cacheiro, P.,
648 Frost, A., Keskivali-Bond, P., Vardal, B., McCoy, A., Cheng, T. K., Santos, L., Wells, S., Smedley, D.,
649 Mallon, A. M., & Parkinson, H. (2023). The International Mouse Phenotyping Consortium:
650 comprehensive knockout phenotyping underpinning the study of human disease. *Nucleic Acids
651 Research*, 51(1), D1038–D1045. <https://doi.org/10.1093/nar/gkac972>

652 Hvitfeldt, E. (2021). *paletteer: Comprehensive Collection of Color Palettes*.
653 <https://github.com/EmilHvitfeldt/paletteer>

654 Iacobellis, G. (2015). Local and systemic effects of the multifaceted epicardial adipose tissue depot. In
655 *Nature Reviews Endocrinology* (Vol. 11, Issue 6, pp. 363–371). Nature Publishing Group.
656 <https://doi.org/10.1038/nrendo.2015.58>

657 Jiamsripong, P., Alharthi, M. S., Calleja, A. M., McMahon, E. M., Katayama, M., Westerdale, J., Milano,
658 M., Heys, J. J., Mookadam, F., & Belohlavek, M. (2010). Impact of pericardial adhesions on
659 diastolic function as assessed by vortex formation time, a parameter of transmural flow
660 efficiency. *Cardiovascular Ultrasound*, 8(1), 1–6. <https://doi.org/10.1186/1476-7120-8-42>

661 Kino, T., Khan, M., & Mohsin, S. (2020). The regulatory role of T cell responses in cardiac remodeling
662 following myocardial infarction. In *International Journal of Molecular Sciences* (Vol. 21, Issue 14,
663 pp. 1–13). MDPI AG. <https://doi.org/10.3390/ijms21145013>

664 Kivimäki, M., & Steptoe, A. (2018). Effects of stress on the development and progression of
665 cardiovascular disease. In *Nature Reviews Cardiology* (Vol. 15, Issue 4, pp. 215–229). Nature
666 Publishing Group. <https://doi.org/10.1038/nrcardio.2017.189>

667 Laitinen, T. T., Pahkala, K., Magnussen, C. G., Oikonen, M., Viikari, J. S. A., Sabin, M. A., Daniels, S. R.,
668 Heinonen, O. J., Taittonen, L., Hartiala, O., Mikkilä, V., Hutili-Kähönen, N., Kähönen, M.,
669 Raitakari, O. T., & Juonala, M. (2015). Lifetime measures of ideal cardiovascular health and their
670 association with subclinical atherosclerosis: The Cardiovascular Risk in Young Finns Study.
671 *International Journal of Cardiology*, 185, 186–191. <https://doi.org/10.1016/j.ijcard.2015.03.051>

672 Mihl, C., Dassen, W. R. M., & Kuipers, H. (2008). Cardiac remodelling: Concentric versus eccentric
673 hypertrophy in strength and endurance athletes. In *Netherlands Heart Journal* (Vol. 16, Issue 4,
674 pp. 129–133). Bohn Stafleu van Loghum. <https://doi.org/10.1007/BF03086131>

675 Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. In *European Heart Journal*
676 (Vol. 34, Issue 36, pp. 2804–2811). Oxford Academic. <https://doi.org/10.1093/eurheartj/eht246>

677 Müller, A. L., & Dhalla, N. S. (2013). Differences in concentric cardiac hypertrophy and eccentric
678 hypertrophy. In *Cardiac Adaptations: Molecular Mechanisms* (Vol. 4, pp. 147–166). Springer
679 New York. https://doi.org/10.1007/978-1-4614-5203-4_8

680 Nascimento, L., Freitas, C. M., Silva-Filho, R., Leite, A. C. R., Silva, A. B., da Silva, A. I., Ferreira, D. S.,
681 Pedroza, A. A., Maia, M. B. S., Fernandes, M. P., & Lagranha, C. (2014). The effect of maternal
682 low-protein diet on the heart of adult offspring: Role of mitochondria and oxidative stress.
683 *Applied Physiology, Nutrition and Metabolism*, 39(8), 880–887. <https://doi.org/10.1139/apnm-2013-0452>

685 Paredes, A., Justo-Méndez, R., Jiménez-Blasco, D., Núñez, V., Calero, I., Villalba-Orero, M., Alegre-
686 Martí, A., Fischer, T., Gradillas, A., Sant'Anna, V. A. R., Were, F., Huang, Z., Hernansanz-Agustín,
687 P., Contreras, C., Martínez, F., Camafeita, E., Vázquez, J., Ruiz-Cabello, J., Area-Gómez, E., ...
688 Ricote, M. (2023). γ -Linolenic acid in maternal milk drives cardiac metabolic maturation. *Nature*,
689 618(7964), 365–373. <https://doi.org/10.1038/s41586-023-06068-7>

690 Pasquali, S. K., Thibault, D., O'brien, S. M., Jacobs, J. P., Gaynor, J. W., Romano, J. C., Gales, M., Hill, K.
691 D., Jacobs, M. L., Shahian, D. M., Backer, C. L., & Mayer, J. E. (2020). National Variation in
692 Congenital Heart Surgery Outcomes. *Circulation*, 142(14), 1351–1360.
693 <https://doi.org/10.1161/CIRCULATIONAHA.120.046962>

694 Peng, J., Meng, Z., Zhou, S., Zhou, Y., Wu, Y., Wang, Q., Wang, J., & Sun, K. (2019). The non-genetic
695 paternal factors for congenital heart defects: A systematic review and meta-analysis. In *Clinical*

696 *Cardiology* (Vol. 42, Issue 7, pp. 684–691). John Wiley and Sons Inc.
697 <https://doi.org/10.1002/clc.23194>

698 Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., & Sadek, H. A.
699 (2011). Transient regenerative potential of the neonatal mouse heart. *Science*, 331(6020),
700 1078–1080. <https://doi.org/10.1126/science.1200708>

701 R Core Team, . (2018). R: A language and environment for statistical computing. *R Foundation for
702 Statistical Computing, Vienna*.

703 Saad, N. S., Elnakish, M. T., Ahmed, A. A. E., & Janssen, P. M. L. (2018). Protein Kinase A as a
704 Promising Target for Heart Failure Drug Development. In *Archives of Medical Research* (Vol. 49,
705 Issue 8, pp. 530–537). Elsevier Inc. <https://doi.org/10.1016/j.arcmed.2018.12.008>

706 Sacks, H. S., Fain, J. N., Bahouth, S. W., Ojha, S., Frontini, A., Budge, H., Cinti, S., & Symonds, M. E.
707 (2013). Adult Epicardial Fat Exhibits Beige Features. *The Journal of Clinical Endocrinology &
708 Metabolism*, 98(9), E1448–E1455. <https://doi.org/10.1210/jc.2013-1265>

709 Scott, M., & Neal, A. E. (2021). Congenital Heart Disease. In *Primary Care - Clinics in Office Practice*
710 (Vol. 48, Issue 3, pp. 351–366). W.B. Saunders. <https://doi.org/10.1016/j.pop.2021.04.005>

711 Sesso, H. D., Lee, I. M., Gaziano, J. M., Rexrode, K. M., Glynn, R. J., & Buring, J. E. (2001). Maternal
712 and paternal history of myocardial infarction and risk of cardiovascular disease in men and
713 women. *Circulation*, 104(4), 393–398. <https://doi.org/10.1161/hc2901.093115>

714 Sobirin, M. A., Kinugawa, S., Takahashi, M., Fukushima, A., Homma, T., Ono, T., Hirabayashi, K., Suga,
715 T., Azalia, P., Takada, S., Taniguchi, M., Nakayama, T., Ishimori, N., Iwabuchi, K., & Tsutsui, H.
716 (2012). Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure
717 in mice. *Circulation Research*, 111(8), 1037–1047.
718 <https://doi.org/10.1161/CIRCRESAHA.112.270132>

719 Squair, J. W., Gautier, M., Kathe, C., Anderson, M. A., James, N. D., Hutson, T. H., Hudelle, R., Qaiser,
720 T., Matson, K. J. E., Barraud, Q., Levine, A. J., La Manno, G., Skinnider, M. A., & Courtine, G.
721 (2021a). Confronting false discoveries in single-cell differential expression. *Nature
722 Communications*, 12(1), 1–15. <https://doi.org/10.1038/s41467-021-25960-2>

723 Squair, J. W., Gautier, M., Kathe, C., Anderson, M. A., James, N. D., Hutson, T. H., Hudelle, R., Qaiser,
724 T., Matson, K. J. E., Barraud, Q., Levine, A. J., La Manno, G., Skinnider, M. A., & Courtine, G.
725 (2021b). Confronting false discoveries in single-cell differential expression. *Nature
726 Communications*, 12(1), 1–15. <https://doi.org/10.1038/s41467-021-25960-2>

727 Sun, L., Yu, J., Qi, S., Hao, Y., Liu, Y., & Li, Z. (2014). Bone Morphogenetic Protein-10 induces
728 cardiomyocyte proliferation and improves cardiac function after myocardial infarction. *Journal
729 of Cellular Biochemistry*, 115(11), n/a-n/a. <https://doi.org/10.1002/jcb.24856>

730 Toncelli, L., Pasquini, L., Masini, G., Orlandi, M., Paci, G., Mecacci, F., Pedrizzetti, G., & Galanti, G.
731 (2022). Difference in cardiac remodeling between female athletes and pregnant women: a case
732 control study. *Cardiovascular Ultrasound*, 20(1), 10. [https://doi.org/10.1186/s12947-022-00280-7](https://doi.org/10.1186/s12947-022-
733 00280-7)

734 van Puijvelde, G. H. M., & Kuiper, J. (2017). NKT cells in cardiovascular diseases. *European Journal of
735 Pharmacology*, 816, 47–57. <https://doi.org/10.1016/j.ejphar.2017.03.052>

736 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo,
737 X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
738 *Innovation*, 2(3), 100141. <https://doi.org/10.1016/j.xinn.2021.100141>

739 Yamaguchi, Y., Cavallero, S., Patterson, M., Shen, H., Xu, J., Kumar, S. R., & Sucov, H. M. (2015).
740 Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by
741 mesenchymal transformation and PPAR γ activation. *Proceedings of the National Academy of
742 Sciences of the United States of America*, 112(7), 2070–2075.
743 <https://doi.org/10.1073/pnas.1417232112>

744 Zeybel, M., Hardy, T., Wong, Y. K., Mathers, J. C., Fox, C. R., Gackowska, A., Oakley, F., Burt, A. D.,
745 Wilson, C. L., Anstee, Q. M., Barter, M. J., Masson, S., Elsharkawy, A. M., Mann, D. A., & Mann, J.
746 (2012). Multigenerational epigenetic adaptation of the hepatic wound-healing response. *Nature
747 Medicine*, 18(9), 1369–1377. <https://doi.org/10.1038/nm.2893>

748