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Abstract: 
Background: Spatial molecular data is increasingly being generated in biological tissue studies 
to increase our understanding of cell infiltration and spatial architecture of tissues. Examples of 
technologies used to study the spatial contexture of tissues are single-cell protein expression 
assays and spatial transcriptomics. The increased use of spatial biology technologies has also 
resulted in an increase in the development of statistical methods to describe the spatial landscape 
in tissues. Due to the lack of consensus on “gold standard” statistical approaches for assessing 
the spatial contexture of tissues, we created an R package, scSpatialSIM, to assess different 
statistical and bioinformatic methods. scSpatialSIM allows users to simulate single-cell 
molecular data to mimic real tissues at scale, clustering of cell types, and co-clustering / co-
localization of two or more cell types. scSpatialSIM also contains functions that give users the 
ability to simulate quantitative distributions for positive and negative cells (e.g., gene expression, 
fluorescence intensity). 
Results: We demonstrate that scSpatialSIM allows users to easily simulate various kernel 
densities of probability distributions used to create the marked point pattern – points distributed 
in space with either numeric or categorical features. Using scSpatialSIM, we used four univariate 
spatial simulation scenarios to compare three different measures for spatial clustering (Ripley’s 
K(r), nearest neighbor G(r), and pair correlation g(r)). We found that Ripley’s K(r) identifies the 
most radii with significant clustering in all four scenarios. Nearest neighbor G(r) only identified 
all samples as significantly clustered at one radius (r = 0.07) in one simulation scenario (high 
abundance large cluster size). Pair correlation g(r) was better able to detect significant clustering 
at low radii when abundance was low. 
Conclusions: Vignettes developed for scSpatialSIM cover the creation of single-type and multi-
type spatial single-cell molecular data, as well as how these simulated data can be used with 
other R packages, such as spatialTIME, to derive spatial statistics. Development of this package 
is crucial for furthering our understanding of the power of existing methods and the development 
of novel applications to assess the spatial contexture of tissues by providing an objective 
platform for simulating spatial single-cell molecular data. 
 
Keywords: spatial clustering, co-localization, simulation studies, single-cell protein data, spatial 
transcriptomics 
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Background: 
 Studying the spatial contexture of cells in biological tissues is increasing in popularity 
among biomedical researchers. New technologies allow the profiling and phenotyping of cells in 
tissue microarrays (TMAs) and whole tissue slides to understand the spatial architecture of 
tissues, such as the tumor microenvironment (TME), and the distributions of cells in 2-
diminsional space. The ability to characterize the spatial context of cells has allowed for further 
exploration of the correlation between the tissue architecture and patient outcomes, such as 
overall survival or response to therapies [1-3]. In contrast to studying only the cell abundance or 
density, the spatial contexture of cell types and their level of aggregation or dispersion can 
provide more details about the organization of complex tissues and answer important questions 
about cell-cell communication and their associations [3, 4].  

Single-cell protein imaging platforms, such as multiplex immunofluorescence (mIF) or 
immunohistochemistry (mIHC) [5], have been successfully used to profile cell types in tissues, 
as well as spatially characterize the immune microenvironment of several malignancies [3, 6]. In 
addition to single-cell protein data, spatial resolved transcriptomics (SRT) has recently gained 
traction in biological research. SRT experiments can range from studies involving imaging or 
sequencing regions of tissue (GeoMx, [7], Nanostring, Seattle, WA) to equally spaced grids with 
unique molecular identifiers (UMIs) and spatial barcodes containing between 5 and 10 cells 
(Visium [8], 10x Genomics, Pleasanton, CA) to sub-cellular transcript locations (CosMx Spatial 
Molecular Imaging [9], Nanostring, Seattle, WA; Xenium [10], 10x Genomics). These spatial 
molecular technologies require complex statistical and bioinformatic methods to summarize the 
spatial characteristics of the tissues. Statistical methods from the field of ecology have been used 
to assess the level of clustering of cell types in tissues, but there is a lack of consensus on which 
method is the “gold standard”.  

To bridge this gap in the literature, we have developed an R package, scSpatialSIM, that 
allows for fine-tuned simulation of spatial single-cell molecular data; these can be leveraged to 
compare available statistical methods for measuring single-cell spatial data. While packages like 
spaSim exist to simulate cell-level data to mimic tissue architectures, scSpatialSIM can also 
simulate continuous data (e.g., mIF intensity data, SRT gene expression data) depending on user 
input and parameter settings [11]. Our simulation framework conceptualizes cell spatial 
distributions as marked point patterns generated by an underlying point process that controls the 
spatial clustering and repulsion of cells and cell subtypes. Simulated mIF and SRT datasets 
generated by our package allow for benchmarking of statistical methods to determine the power 
of these approaches to detected different levels of clustering, co-localization, or segregation of 
cell types.  
  
Implementation: 

scSpatialSIM is an R package that is available for installation on R4.0.0 [12] or later from 
GitHub (https://github.com/fridleylab/scSpatialSIM) and CRAN. The functions within 
scSpatialSIM support “piping” (i.e., using the magrittr `%>%` function), which allows function 
calls to be chained together to develop whole simulation pipelines from start to finish. This 
feature is possible with the implementation of the spatial simulation object (S4 class 
SpatSimObj). The SpatSimObj serves as storage for all the parameters and results performed 
with scSpatialSIM. Our goal was to provide a collection of methods that allow for the creation of 
realistic simulations of cell types within tissue samples in a stepwise manner: 1) point patterns, 
2) tissue regions or domains, 3) holes/non-cellular areas, and 4) cell phenotypes (Figure 1). The 
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SpatSimObj also stores the simulation space (class `owin` from spatstat [13]), the number of 
independent simulations to perform, and the number of cell types to simulate. Additionally, we 
have created vignettes (https://fridleylab.github.io/scSpatialSIM) that demonstrate how to use 
scSpatialSIM as well as how the outputs of scSpatialSIM can be input into other R packages to 
derive spatial statistics, such as with the R package spatialTIME [14].  

Following the creation of the spatial simulation object, the point pattern is created using 
`GeneratePointPattern()` which calls the `rpoispp()` function from spatstat. All other point 
classifications (i.e., creating a marked point process) are performed by randomly creating 
probability surface using Gaussian kernels within user provided constraints. If no parameter 
options are provided, single and multi-type simulations use the default parameters to set the 
kernels for the creation of the probability surface. Tissue class assignment allows for two 
different tissue types or domains (i.e., tumor vs stroma compartment) to be assigned on each 
point pattern. Similarly, the package allows for the generation of regions in which no cells are 
measured due to technical and biological reasons (e.g., folded regions of tissue, holes) which 
may be common in biological tissue samples constructed into tissue microarrays (TMAs) [3]. 
Differences between single- and multi-type cell simulations comes from the ability to adjust the 
level of colocalization or segregation of cell types. Using the function `GenerateCellPositivity()`, 
users provide a `shift` parameter which allows for co-localization or spatial segregation of 
simulated cell types. This is a critical parameter allowing benchmarking of statistical methods to 
assess their ability to detect clustering or colocalization of different cell types. 

We have also provided methods for exporting the data within the SpatSimObj in tabular 
form for use by other analysis software or R packages, such as the R package spatialTIME [14]. 
For example, traditionally there are spatial files that represent each sample in their entirety as 
well as a summary file that contains the number of total cells positive for markers and their 
corresponding proportion of total cells. scSpatialSIM can export these data from its S4 object 
into a summary data frame and list of sample level data frames. This makes it easier to simulate 
numerous scenarios of cell clustering in tissues and use external software to test analytical 
approaches. Additionally, different distributions can be generated by cell positivity (such as 
fluorescence intensity or gene expression) using the exported data with 
`GenerateDistributions()`. For example, fluorescence intensity of FOXP3 protein marker to 
determine regulatory T cell phenotype status in spatial single-cell protein studies. 
 
Results:  
 Using scSpatialSIM, we created four simulation scenarios with either high or low kernel 
density (i.e., high or low abundance of the cell type of interest) combined with either high or low 
kernel variance (i.e., cells are in a tightly clustered pattern or cells are in a more dispersed 
clustered pattern) to represent tissues with different cell abundances and cluster sizes with 1000 
simulated samples each. Using these simulations, we applied spatial summary functions within 
the spatialTIME R package (Ripley’s K(r), nearest neighbor G(r), and pair correlation g(r)) with 
100 permutations to demonstrate the ability of the summary functions to identify significant 
spatial clustering of positive cells (over complete spatial randomness) at radii of 0 to 0.5 in 
increments of 0.01 (Figure 2). Table 1 shows the number of radii for which each summary 
function had the highest frequency of significant samples, indicating that Ripley’s K(r) was able 
to identify cell-type clustering more often than the other two measures. We also found in 
simulations with high kernel density (high abundance of cells positive for a marker) that Ripley’s 
K(r) identified 100% of samples showing significant clustering across 24 and 46 radii for small 
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and large clusters sizes (i.e., variance in the kernel), respectively. Conversely, at no radius did 
the nearest neighbor G(r) measure identify more samples with significant clustering than 
Ripley’s K(r) or pair correlation g(r), and only one radius (r=0.07) identified clustering in the 
high abundance/large cluster size simulation with 100% of samples significantly clustered.  
 
Discussion:  
 scSpatialSIM is an R package that provides users with a simplified coding interface to 
simulate spatial single-cell molecular data. It provides functions that allow adjustment of cell 
clustering, tissue assignment, and tissue holes, along with the ability to simulate continuous 
measurements. The package also allows for easy exporting of simulated data to be used 
downstream in other software packages. To illustrate the use of scSpatialSIM, we demonstrated 
its use in benchmarking univariate point pattern summary functions Ripley’s K(r), nearest 
neighbor G(r), and pair correlation g(r). scSpatialSIM’s intended use is to simulate spatial single-
cell molecular data for benchmarking new statistical and bioinformatics approaches to 
summarize the spatial architecture of tissues.  
 
Conclusions: 

Simulation of realistic spatial single-cell molecular data allows for benchmarking of 
different spatial statistics in a biologically meaningful context. Increased use of technologies that 
provide biological information within a spatial context will undoubtably result in new analytical 
approaches to summarize spatial information primed for further scientific study to define their 
biological consequences. The R package scSpatialSIM provides a platform to initiate these 
comparisons at scale with the ability to fine tune different features of the spatial architecture in 
the simulated tissue sample.  
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