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Abstract:

Background: Spatial molecular datais increasingly being generated in biological tissue studies
to increase our understanding of cell infiltration and spatial architecture of tissues. Examples of
technologies used to study the spatial contexture of tissues are single-cell protein expression
assays and spatial transcriptomics. The increased use of spatial biology technologies has aso
resulted in an increase in the devel opment of statistical methods to describe the spatial landscape
in tissues. Due to the lack of consensus on “gold standard” statistical approaches for assessing
the spatial contexture of tissues, we created an R package, scSpatial S M, to assess different
statistical and bioinformatic methods. scSpatial SSM allows users to simulate single-cell
molecular datato mimic real tissues at scale, clustering of cell types, and co-clustering / co-
localization of two or more cell types. scSpatial SSM also contains functionsthat give users the
ability to simulate quantitative distributions for positive and negative cells (e.g., gene expression,
fluorescence intengity).

Results: We demonstrate that scSpatial SSM allows users to easily simulate various kernel
densities of probability distributions used to create the marked point pattern — points distributed
in space with either numeric or categorical features. Using scSpatial SSM, we used four univariate
gpatial simulation scenarios to compare three different measures for spatial clustering (Ripley’s
K(r), nearest neighbor G(r), and pair correlation g(r)). We found that Ripley’s K(r) identifiesthe
most radii with significant clustering in all four scenarios. Nearest neighbor G(r) only identified
all samples as significantly clustered at one radius (r = 0.07) in one simulation scenario (high
abundance large cluster size). Pair correlation g(r) was better able to detect significant clustering
at low radii when abundance was low.

Conclusions: Vignettes developed for scSpatial SSM cover the creation of single-type and multi-
type spatial single-cell molecular data, as well as how these simulated data can be used with
other R packages, such as spatial TIME, to derive spatial statistics. Development of this package
iscrucial for furthering our understanding of the power of existing methods and the development
of novel applications to assess the spatial contexture of tissues by providing an objective
platform for ssimulating spatial single-cell molecular data.
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Background:

Studying the spatial contexture of cellsin biological tissuesisincreasing in popularity
among biomedical researchers. New technologies allow the profiling and phenotyping of cellsin
tissue microarrays (TMAS) and whole tissue slides to understand the spatial architecture of
tissues, such as the tumor microenvironment (TME), and the distributions of cellsin 2-
diminsional space. The ability to characterize the spatial context of cells has alowed for further
exploration of the correlation between the tissue architecture and patient outcomes, such as
overall survival or response to therapies [1-3]. In contrast to studying only the cell abundance or
density, the spatial contexture of cell types and their level of aggregation or dispersion can
provide more details about the organization of complex tissues and answer important questions
about cell-cell communication and their associations [3, 4].

Single-cell protein imaging platforms, such as multiplex immunofluorescence (mIF) or
immunohistochemistry (mIHC) [5], have been successfully used to profile cell typesin tissues,
aswell as spatially characterize the immune microenvironment of several malignancies |3, 6]. In
addition to single-cell protein data, spatial resolved transcriptomics (SRT) has recently gained
traction in biological research. SRT experiments can range from studies involving imaging or
sequencing regions of tissue (GeoMx, [7], Nanostring, Seattle, WA) to equally spaced grids with
unique molecular identifiers (UMIs) and spatial barcodes containing between 5 and 10 cells
(Visium [8], 10x Genomics, Pleasanton, CA) to sub-cellular transcript locations (CosMx Spatial
Molecular Imaging [9], Nanostring, Seattle, WA; Xenium [10], 10x Genomics). These spatial
molecular technol ogies require complex statistical and bioinformatic methods to summarize the
gpatial characteristics of the tissues. Statistical methods from the field of ecology have been used
to assess the level of clustering of cell typesin tissues, but thereis alack of consensus on which
method is the “gold standard”.

To bridge this gap in the literature, we have developed an R package, scSpatial SM, that
allows for fine-tuned ssimulation of spatial single-cell molecular data; these can be leveraged to
compare available statistical methods for measuring single-cell spatial data. While packages like
spaSm exist to simulate cell-level datato mimic tissue architectures, scSpatialSSM can also
simulate continuous data (e.g., mIF intensity data, SRT gene expression data) depending on user
input and parameter settings [11]. Our simulation framework conceptualizes cell spatial
distributions as marked point patterns generated by an underlying point process that controls the
gpatial clustering and repulsion of cells and cell subtypes. Simulated mIF and SRT datasets
generated by our package alow for benchmarking of statistical methods to determine the power
of these approaches to detected different levels of clustering, co-localization, or segregation of
cell types.

I mplementation:

scSpatialSIM isan R package that is available for installation on R4.0.0 [12] or later from
GitHub (https://github.com/fridleylab/scSpatia SIM) and CRAN. The functions within
scpatial SIM support “piping” (i.e., using the magrittr “%>%" function), which allows function
callsto be chained together to develop whole simulation pipelines from start to finish. This
feature is possible with the implementation of the spatial ssimulation object ($4 class
SpatSimObj). The SpatSImObj serves as storage for all the parameters and results performed
with scpatial SM. Our goal was to provide a collection of methods that allow for the creation of
realistic smulations of cell types within tissue samples in a stepwise manner: 1) point patterns,
2) tissue regions or domains, 3) holes/non-cdlular areas, and 4) cell phenotypes (Figure 1). The
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SpatSimObj also stores the simulation space (class "owin™ from spatstat [13]), the number of
independent simulations to perform, and the number of cell types to simulate. Additionally, we
have created vignettes (https:/fridleylab.github.io/scSpatial SIM) that demonstrate how to use
scSpatial SSM aswell as how the outputs of scSpatialSIM can be input into other R packagesto
derive spatial statistics, such as with the R package spatial TIME [14].

Following the creation of the spatial simulation object, the point pattern is created using
“GeneratePointPattern()” which calls the “rpoispp()” function from spatstat. All other point
classifications (i.e., creating a marked point process) are performed by randomly creating
probability surface usng Gaussian kernels within user provided congtraints. If no parameter
options are provided, single and multi-type simulations use the default parameters to set the
kernels for the creation of the probability surface. Tissue class assignment allows for two
different tissue types or domains (i.e., tumor vs stroma compartment) to be assigned on each
point pattern. Similarly, the package alows for the generation of regionsin which no cells are
measured due to technical and biological reasons (e.g., folded regions of tissue, holes) which
may be common in biological tissue samples constructed into tissue microarrays (TMAS) [3].
Differences between single- and multi-type cell simulations comes from the ability to adjust the
level of colocalization or segregation of cell types. Using the function “GenerateCellPositivity(),
users provide a “shift” parameter which allows for co-localization or spatial segregation of
simulated cell types. Thisisacritical parameter allowing benchmarking of statistical methods to
assess their ability to detect clustering or colocalization of different cell types.

We have also provided methods for exporting the data within the SpatSimObj in tabular
form for use by other analysis software or R packages, such asthe R package spatial TIME [14].
For example, traditionally there are spatial files that represent each samplein their entirety as
well as a summary file that contains the number of total cells positive for markers and their
corresponding proportion of total cells. scSpatialSSIM can export these data from its $4 object
into asummary data frame and list of sample level dataframes. This makesit easier to simulate
numerous scenarios of cell clustering in tissues and use external software to test analytical
approaches. Additionally, different distributions can be generated by cell positivity (such as
fluorescence intensity or gene expression) using the exported data with
“GenerateDistributions()". For example, fluorescence intensity of FOXP3 protein marker to
determine regulatory T cell phenotype status in spatial single-cell protein studies.

Results:

Using scSpatial SM, we created four ssmulation scenarios with either high or low kernel
density (i.e., high or low abundance of the cell type of interest) combined with either high or low
kerndl variance (i.e., cellsarein atightly clustered pattern or cells are in a more dispersed
clustered pattern) to represent tissues with different cell abundances and cluster sizes with 1000
simulated samples each. Using these simulations, we applied spatial summary functions within
the spatial TIME R package (Ripley’s K(r), nearest neighbor G(r), and pair correlation g(r)) with
100 permutations to demonstrate the ability of the summary functions to identify significant
gpatial clustering of positive cells (over complete spatial randomness) at radii of 0t0 0.5in
increments of 0.01 (Figure 2). Table 1 shows the number of radii for which each summary
function had the highest frequency of significant samples, indicating that Ripley’s K(r) was able
to identify cell-type clustering more often than the other two measures. We also found in
simulations with high kernel density (high abundance of cells positive for amarker) that Ripley’s
K(r) identified 100% of samples showing significant clustering across 24 and 46 radii for small
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and large clusters sizes (i.e., variance in the kernel), respectively. Conversaly, at no radius did
the nearest neighbor G(r) measure identify more samples with significant clustering than
Ripley’s K(r) or pair correlation g(r), and only one radius (r=0.07) identified clustering in the
high abundance/large cluster size ssmulation with 100% of samples significantly clustered.

Discussion:

scSpatial SIM is an R package that provides users with asimplified coding interface to
simulate spatial single-cell molecular data. It provides functions that allow adjustment of cell
clustering, tissue assignment, and tissue holes, along with the ability to simulate continuous
measurements. The package also allows for easy exporting of simulated data to be used
downstream in other software packages. To illustrate the use of scpatialSIM, we demonstrated
its use in benchmarking univariate point pattern summary functions Ripley’s K(r), nearest
neighbor G(r), and pair correlation g(r). scSpatial SM’ s intended use isto simulate spatial single-
cell molecular data for benchmarking new statistical and bioinformatics approaches to
summarize the spatial architecture of tissues.

Conclusions:

Simulation of realistic spatial single-cell molecular data allows for benchmarking of
different spatial statisticsin a biologically meaningful context. Increased use of technologies that
provide biological information within a spatial context will undoubtably result in new analytical
approaches to summarize spatial information primed for further scientific study to define their
biological consequences. The R package scSpatial SSM provides a platform to initiate these
comparisons at scale with the ability to fine tune different features of the spatial architecturein
the simulated tissue sample.
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