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ABSTRACT

An Electroencephalography (EEG) dataset utilizing rich text stimuli can advance the understanding of how the brain encodes
semantic information and contribute to semantic decoding in brain-computer interface (BCI). Addressing the scarcity of EEG
datasets featuring Chinese linguistic stimuli, we present the ChineseEEG dataset, a high-density EEG dataset complemented
by simultaneous eye-tracking recordings. This dataset was compiled while 10 participants silently read approximately 11 hours
of Chinese text from two well-known novels. This dataset provides long-duration EEG recordings, along with pre-processed
EEG sensor-level data and semantic embeddings of reading materials extracted by a pre-trained natural language processing
(NLP) model. As a pilot EEG dataset derived from natural Chinese linguistic stimuli, ChineseEEG can significantly support
research across neuroscience, NLP, and linguistics. It establishes a benchmark dataset for Chinese semantic decoding, aids in
the development of BCls, and facilitates the exploration of alignment between large language models and human cognitive
processes. It can also aid research into the brain’s mechanisms of language processing within the context of the Chinese
natural language.

Background & Summary

The human brain’s ability to rapidly comprehend linguistic information and generate corresponding linguistic expressions
is an indicator of its complex processing capabilities'. When exposed to linguistic stimuli, the human brain encodes the
semantic information through neural activities”. By analyzing such neural activities, we can uncover the encoding mechanisms
of semantics in the brain®. A variety of neural signals, including EEG, Functional Magnetic Resonance Imaging (fMRI),
Electrocorticography (ECoG) are employed in language-related tasks, from academic research like investigating language
processing in the brain to practical applications like language decoding in BCI*~. Recently, a lot of studies on neurolinguistics
utilized both machine learning methods and modern deep learning methods in NLP to explore linguistic-related problems!®-1°.
However, these data-driven methods rely heavily on massive and comprehensive datasets!”. In the field of NLP, it is relatively
easy to collect large amounts of natural language data. In contrast, acquiring a large volume of neural signals generated in
response to natural language stimuli poses significant challenges. To utilize the strong ability of modern data-driven methods,
it is important to scale neural datasets to commensurate the state-of-the-art NLP to encompass the wide range of language
expressions encountered in daily life. Among all neuroimaging techniques, EEG holds great potential to meet this demand.
EEG is non-invasive and cost-effective!®, which allows the creation of long-duration neural signal datasets enriched with
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semantic information. Meanwhile, EEG features high temporal resolution'®, which enables it to precisely capture the brain’s
rapid dynamic changes in the language processing process.

Despite the abundance of EEG datasets for natural visual stimuli (e.g., THINGS-EEG)?°-?3, those for natural language
stimuli remain scarce. Currently, only a few language-related EEG datasets exist, such as the ZuCo dataset>*. However, the
majority of these datasets are collected using stimuli from English language corpora. This leads to limited research on the
neural representations of other languages like Chinese. The brain’s processing mechanisms differ for various languages. For
example, the brain exhibits specificity in response to Chinese compared to English?>. Therefore, it is important to create an
EEG dataset based on other language stimuli. Chinese, being distinct from English in both structure and semantics, provides
an opportunity to expand our understanding of neural responses to linguistic stimuli. An EEG dataset stimulated by Chinese
corpora can facilitate the investigation of cross-linguistic commonalities and variations in language processing in the brain,
bringing new perspectives to our understanding of language processing mechanisms.

To address these gaps, we have collected an EEG dataset, named the "ChineseEEG" (Chinese Linguistic Corpora EEG
Dataset). It contains high-density EEG data and simultaneous eye-tracking data recorded from 10 participants, each silently
reading Chinese text for about 11 hours. The text materials are sourced from two well-known novels, The Little Prince
and Garnett Dream, both in their Chinese versions. This dataset further comprises multiple versions of pre-processed EEG
sensor-level data generated under different parameter settings, offering researchers a diverse range of selections. Additionally,
we provide embeddings of the Chinese text materials encoded from BERT-base-chinese model, which is a pre-trained NLP
model specifically used for Chinese %°, aiding researchers in exploring the alignment between text embeddings from NLP
models and brain information representations in neural signals.

ChineseEEG is a pilot EEG dataset specifically stimulated by Chinese text. It offers several advantages. Firstly, each
participant was exposed to around 11 hours of diverse Chinese linguistic stimuli, encompassing a broad spectrum of semantic
information. The extensive exposure is significant for studying the long-term neural dynamics of language processing in the
brain. Secondly, we employed 128 channels of high-density EEG data, which offers superior spatial resolution for precise
localization of brain regions involved in language processing. Besides, with a sampling rate of 1 kHz, it effectively captures
the dynamics of neural representations during reading. Thirdly, EEG data generated from Chinese language stimuli will
significantly support research within the Chinese context, aiding researchers in revealing the characteristics of brain signal
representations under Chinese stimuli, and promoting the development of brain-to-text translation, semantic decoding and other
practical applications tailored to Chinese context. This dataset can also bring diversity to languages used in related research,
encouraging the exploration of similarities and differences in language processing stimulated by different languages. Lastly,
this dataset can effectively facilitate the integration of neuroscience and computer science methodologies. The inclusion of
the text embeddings is beneficial for scholars in neuroscience domain who lack text processing experience, enabling them to
directly utilize the embeddings from computational linguistic models to explore neuroscience problems. The dataset can also
facilitate the entry of computer science scholars into the field of neuroscience, enabling them to use computational methods to
explore topics in neuroscience such as the encoding mechanisms of the Chinese language in the brain and the utilization of
EEG for text decoding.

Methods

Participants and task overview

We recruited 15 participants (18-26 years old, averaged 21.26 years old, and 8 males). 3 participants participated the pre-
experimental test before the official experiment to ensure the rationality of the experimental procedure and the stability of
the devices. In the official experiment, 2 participants withdrew halfway due to scheduling conflicts. In total, data from only
10 participants were used (18-24 years old, averaged 20.68 years old, and 5 males). No participant reported neurological or
psychiatric history. All participants are right-handed and have normal or corrected-to-normal vision. Each participant voluntarily
enrolled in and signed the informed consent form before the experiment and got a coupon compensation of approximately 50
MOP (MORP is the official currency of the Macao Special Administrative Region of China) for each experimental run (25 runs
in total). This study complied with the Declaration of Helsinki and was performed according to the ethics committee approval
of the Institutional Review Board of the University of Macau.

Experimental material

The experimental materials consist of two novels, both in the genre of children’s literature. The first is the Chinese translation
of The Little Prince and the second is Garnett Dream. The text of these novels was sourced from the internet. Using novels,
especially children’s literature provides several advantages for research, especially within a naturalistic paradigm. Firstly, given
their extensive size, these novels offer vast and diverse linguistic content, encompassing the majority of frequently utilized
Chinese characters and daily expressions. Besides, children’s literature can create an engaging environment for participants,
making them more focused and emotionally engaged in the experiment.
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Each novel was used as the material for a single session in the experiment. Each session was divided into several runs. For
The Little Prince, the preface was used as the material for the practice reading phase. The main body of the novel was then
used for seven runs in the formal reading phase. The first six runs each includes 4 chapters of the novel, while the seventh
run includes the last two chapters. For Garnett Dream, the first 18 chapters were used for 18 runs in the formal reading
stage, with each run including a complete chapter. Due to the loss of markers during the EEG collection process, run 18 of
ses-GarnettDream of sub-07 is unusable. We request this participant to re-complete the reading task using Chapter 19 of
Garnett Dream.

To properly present the text on the screen during the experiment, the content of each run was segmented into a series of
units, with each unit containing no more than 10 Chinese characters. These segmented contents were saved in Excel (.xIsx)
format for subsequent usage. During the experiment, three adjacent units from each run’s content will be displayed on the
screen in three separate lines, with the middle line highlighted for the participant to read. The relevant code has been uploaded
to the GitHub repository. See Code availability section for detailed information.

The overview of experimental materials is shown in Table 1. In summary, a total of 115,233 characters (24,324 in The Little
Prince and 90,909 in Garnett Dream), of which 2,985 characters are unique, are used as experimental stimuli in ChineseEEG
dataset.

Experimental procedures
Participants were instructed to sit in an adjustable chair, whose eyes were approximately 67 cm away from the monitor (Dell,
width: 54 cm, height: 30.375 cm, resolution: 1,920x1,080 pixels, vertical refresh rate: 60 Hz), see Figure 1b. They were tasked
with reading a novel and were required to keep their heads still and keep their gaze on the highlighted (red) Chinese characters
moving across the screen, reading at a pace set by the program. They were required to read an entire novel in multiple runs
within a single session. Each run is divided into two phases: the eye-tracker calibration phase and the reading phase, with a
break between two adjacent runs to allow the experimenter to check the electrodes’ impedance and add saline if necessary. Each
run includes either 3 to 4 chapters of The Little Prince or a single chapter of Garnett Dream, lasting approximately 30 minutes.
The presentation of stimuli was managed using PsychoPy v2023.2.3%7, with the EGI PyNetstation v1.0.1 module facilitating
the connection between PsychoPy and EGI Netstation. We also utilized g3pylib package to control our eye-tracker to follow
the eye movement trajectories of the participants.

Phase 1: Eye-tracker calibration phase

At the beginning of each run, participants were required to undergo an eye-tracker calibration process. Initially, the message
"Hello! Please press the spacebar to start calibration" was displayed at the screen’s center. Participants were instructed to keep
their gaze at a fixation point, which sequentially appeared at the four corners and the center of the screen, each for 5 seconds.
If the calibration failed, participants were prompted to start another calibration. Upon successful calibration, the message
“Calibration successful! The page will automatically redirect in 5 seconds” was displayed at the center of the screen.

Phase 2: Reading phase

After the calibration phase, participants were automatically directed to the reading phase. During the reading process, the
screen initially displayed the serial number of the current chapter. Subsequently, the text appeared with three lines per page,
ensuring each line contained no more than ten Chinese characters (excluding punctuation). On each page, the middle line was
highlighted as the focal point, while the upper and lower lines were displayed with reduced intensity as the background. Each
character in the middle line was sequentially highlighted with red color for 0.35 s, and participants were required to read the
novel content following the highlighted cues.

It should be noted that during the initial participation in the experiment, participants were required to complete a practice
reading phase. The preface chapter of The Little Prince was selected as the reading material for this phase. All settings remained
the same as those of the formal reading stage, to familiarize participants with the eye-tracker calibration process and the reading
task.

After each run, participants were provided with adequate rest time until they reported ready to start the subsequent run.
During the rest period, the experimenter replenished the saline solution on the electrodes of the EEG cap, which helped to
maintain a low impedance, ensuring the collection of high-quality EEG data. Additionally, the experimenter checked the power
status of the eye-tracker and replaced the batteries as necessary to ensure its continuous operation.

Data collection and analysis

This section shows the details of the data collection, pre-processing, and data analysis procedure. The modalities included in
our dataset are shown in 1d, including raw data and derivatives. Raw data contains the raw EEG data, eye-tracking data, raw
text materials, and derivatives contain pre-processed EEG data and text embeddings generated by a pre-trained NLP model
BERT-base-chinese.
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EEG data collection

EEG data was acquired using an EGI 128-channel cap based on the GSN-HydroCel-128 montage with the Geodesic Sensor
Net system (see Figure 1a). The egi-pynetstation v1.0.1 package was used to control the EGI system. During recording, the
sampling rate was 1 kHz. The impedance of each electrode was kept below 50 kQ during the experiment. Setups and recording
parameters are similar to our previous EEG dataset’®. To precisely co-register EEG segments with individual characters during
the experiment, we marked the EEG data with triggers (Table 2). The raw EEG data was exported to metafile format (.mff) files
on the macOS system.

Eye-tracking data collection

Eye-tracking data was acquired using Tobii Pro Glasses 3 (see Figure 1a). The device features 16 illuminators and 4 eye
cameras integrated into scratch-resistant lenses, along with a wide-angle scene camera, allowing for a comprehensive capture of
participant behavior and environmental context. We utilized the package g3pylib to control the glasses. During recording, the
sampling rate was set to 100 Hz. The raw data was exported to .zip files.

EEG data pre-processing

To retain maximum amount of valid information in the data, we performed minimal pre-processing on the data, allowing
researchers to further process the data according to their specific research needs. The pre-processing pipeline is shown in
Figure 2. These pre-processing steps include data segmentation, downsampling, powerline filtering, band-pass filtering, bad
channel interpolation, independent component analysis (ICA), and re-referencing. The MNE v1.6.0%° package was utilized to
implement all pre-processing steps.

During the data segmentation phase, we only retained data from the formal reading phase of the experiment. Based on the
event markers during the data collection phase, we segmented the data, removing sections irrelevant to the formal experiment
such as calibration and preface reading. To minimize the impact of subsequent filtering steps on the beginning and end of the
signal, an additional 10 seconds of data was retained before the start of the formal reading phase. Subsequently, the signal was
downsampled to 256 Hz.

Following this, a 50 Hz notch filter was applied to remove the powerline noise from the signal. Next, we performed
band-pass overlap-add FIR filter on the signal to eliminate the low-frequency direct current components and high-frequency
noise. Here, two versions of filtered data were offered. The first one has a filter band of 0.5-80 Hz and the second one has
a filter band of 0.5-30 Hz. Researchers can choose the appropriate version based on their specific needs. After filtering, we
performed an interpolation of bad channels. The bad channels were selected automatically using a Python-implemented EEG
pre-processing package pyprep v0.4.3

. After automatic detection, we manually checked to avoid mislabeling or errors before interpolation. The spherical spline
interpolation in the MNE package was utilized in this process.

Independent Component Analysis (ICA) was then applied to the data, utilizing the infomax algorithm available in the MNE
package. The number of independent components was set to 20, ensuring that they contain the majority of information while
not being so numerous to increase the burden of manual processing. Additionally, we set the random seed of the ICA algorithm
to 97 to ensure the reproducibility of the ICA results. An automatic method was used to inspect and label components. It
was implemented using mne-iclabel v0.5.13°, which is a Python-implemented package for automatic independent component
labeling. By manually inspecting the independent components after automatic labeling, we excluded obvious noise components
such as Electrooculography (EOG) and Electrocardiogram (ECG). Finally, the data was re-referenced using the average method.

The process of manually identifying bad channels and excluding independent components during the ICA step can
be conducted through annotations in a Graphical User Interface (GUI), making the annotation process quicker and more
user-friendly.

Data Records

The full dataset is publicly accessible via the ChineseNeuro Symphony community (CHNNeuro) in the Science Data Bank
(ScienceDB) platform (https://doi.org/10.57760/sciencedb.CHNNeuro.00002) or via the Openneuro platform (https:
//lopenneuro.org/datasets/ds004952).

EEG data organization

The dataset is organized following the EEG-BIDS?! specification, which is an extension to the brain imaging data structure for
EEG. The overview directory tree of our dataset is shown in Figure 3. The dataset contains some regular BIDS files, 10 partici-
pants’ data folders, and a derivatives folder. The stand-alone files offer an overview of the dataset: i) dataset_description.json
is a JSON file depicting the information of the dataset, such as the name, dataset type and authors; ii) participants.tsv con-
tains participants’ information, such as age, sex, and handedness; iii) participants.json describes the column attributes in
participants.tsv; iv) README.md contains a detailed introduction of the dataset.
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Each participant’s folder contains two folders named ses-LittlePrince and ses-GarnettDream, which store the data of this
participant reading two novels, respectively. Each of the two folders contains a folder eeg and one file sub-xx_scans.tsv. The tsv
file contains information about the scanning time of each file. The eeg folder contains the source raw EEG data of several runs,
channels, and marker events files. Each run includes an eeg.json file, which encompasses detailed information for that run,
such as the sampling rate and the number of channels. Events are stored in events.tsv with onset and event ID. The EEG data
is converted from raw metafile format (.mff file) to BrainVision format (.vhdr, .vmrk and .eeg files) since EEG-BIDS is not
officially compatible with .mff format. All data is formatted to EEG-BIDS using the mne-bids v0.143!:3% package in Python.

The derivatives folder contains six folders: eyetracking_data, filtered_0.5_80, filtered_0.5_30, preproc, novels, and
text_embeddings. The eyetracking_data folder contains all the eye-tracking data. Each eye-tracking data is formatted in a
.zip file with eye moving trajectories and other parameters like sampling rate saved in different files. The filtered_0.5_80
folder and filtered_0.5_30 folder contain data that has been processed up to the pre-processing step of 0.5-80 Hz and 0.5-30
Hz band-pass filtering respectively. This data is suitable for researchers who have specific requirements and want to perform
customized processing on subsequent pre-processing steps like ICA and re-referencing. The preproc folder contains minimally
pre-processed EEG data that is processed using the whole pre-processing pipeline. It includes four additional types of files
compared to the participants’ raw data folders in the root directory: i) bad_channels.json contains bad channels marked during
bad channel rejection phase. ii) ica_components.npy stores the values of all independent components in the ICA phase. iii)
ica_components.json includes the independent components excluded in ICA (the ICA random seed is fixed, allowing for
reproducible results). iv) ica_components_topography.png is a picture of the topographic maps of all independent components,
where the excluded components are labeled in grey. The novels folder contains the original and segmented text stimuli materials.
The original novels are saved in .txt format and the segmented novels corresponding to each experimental run are saved in
Excel (.xIsx) files. The text_embeddings folder contains embeddings of the two novels. The embeddings corresponding to each
experimental run are stored in NumPy (.npy) files.

Technical Validation

Classic sensor-level EEG analysis

The EEG data in the dataset can be used to do classic time-frequency analysis. In this section, pre-processed EEG data was
used to extract neural oscillations in different frequency bands. Specifically, we targeted the segment corresponding to the
sentence "Draw me a sheep" in The Little Prince from the 0.5-80 Hz filtered pre-processed data of sub-07. The analysis was
exclusively focused on the C3 electrode to investigate the neural activities at the scalp location overlying the temporal lobe,
which is a language processing related area.

To dissect the frequency components inherent in the C3 electrode’s signal, we applied the Fast Fourier Transform (FFT)
algorithm to the data. This mathematical technique transforms the time-domain signal into the frequency domain, revealing the
spectrum of frequencies present in the neural recordings. We defined frequency bands of interest—Theta (4-8 Hz), Alpha (8-12
Hz), Beta (12-30 Hz), and Gamma (30-100 Hz)—to categorize the neural oscillations according to their respective frequency
ranges.

For each frequency band, we separated the components from the FFT results and conducted an inverse FFT to retrieve the
time-domain signal representing the band’s oscillatory activity. This step allows for the quantitative analysis of the amplitude of
oscillations within each frequency band, offering insights into the neurophysiological activity in these specific ranges. The
results of different frequency bands are shown in Figure 4.

EEG source reconstruction

Apart from the sensor level analysis, the EEG data allows for conducting source localization. Here, a segment of the data was
utilized as an example to perform the source-level analysis using the MNE package. In surface reconstruction, we utilized
the fsaverage MRI template in MNE package. A 3-layer Boundary Element Method (BEM) model with 15360 triangles and
conductivities of 0.3 S/m, 0.006 S/m, and 0.3 S/m for the brain, skull, and scalp compartments respectively was created. Source
spaces consisted of 10242 sources per hemisphere. A segment of the pre-processed EEG data with a band-pass frequency
band of 0.5-80 Hz corresponding to one line displayed in the experiment was used to calculate the inverse solution. Inverse
solutions were calculated using dynamic Statistical Parametric Maps (dSPM). The method was selected because it is widely
used by researchers and is representative of currently used methods??. We offer the code of source reconstruction in our GitHub
repository. See Code availability section for detailed information.

The visualization of the source activities is shown in Figure 5b. Results for the left and right hemispheres are presented
separately. The moments of peak activation in the left and right brain regions are chosen for visualization. The source
localization results for the first segment reveal a dispersed activation area, encompassing the anterior temporal lobe and
temporo-parietal region, which are associated with language comprehension and primary processing®*. The results of the
second segment exhibit more focused activation, particularly near the left middle temporal gyrus, an area (encompassing
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Wernicke’s area) intimately related to language comprehension®>. The activation areas for the third segment are localized
in the left temporal and frontal lobes, potentially representing high-level stages of language processing, including sentence
construction, semantic processing, and language expression>®. Figure 5c presents plots of source activities over time, derived
from 12 sources in the corresponding region with strongest activities. The first two curves in each plot correspond to sources in
the left and right hemispheres that reach maximum peak values.

Text embeddings with pre-trained language model

To assist researchers in efficiently exploring the alignment between EEG and text representations, as well as in text decoding
based on EEG, this study provides embeddings of two novels calculated using a pre-trained language model, accompanied by
the code to compute these embeddings. This work employed Google’s pre-trained language model BERT-base-Chinese?®. This
model, pre-trained on Chinese corpora, effectively encodes Chinese semantic features. During the experimental procedure,
each displayed line of text contains n Chinese characters. The BERT-base-Chinese model processes these n Chinese characters,
yielding an embedding of size (n, 768), where n represents the number of Chinese characters, and 768 the dimensionality of
the embedding. To ensure displayed lines of varying length to have embeddings of the same shape, the first dimension of
the embeddings is averaged to standardize the embedding size to (I, 768) for each instance. This processing procedure was
implemented using the Hugging Face Transformers v4.36.2%7 package.

Temporal alignment between EEG and text sequences

To facilitate semantic decoding, it is necessary to align specific text with its corresponding EEG segment in the temporal
domain. During the marking process when collecting the data, the start and end of each line of the stimuli were annotated,
thereby enabling the alignment of each text line with a corresponding segment of EEG data. Given the consistent highlighting
duration for each character, the EEG segment can be equally divided to match the corresponding character. In the GitHub
repository, we offer the script to align the EEG segments to their corresponding text and text embeddings.

Usage Notes

Prior to using the data
The code for the experiment and data analysis has been uploaded to GitHub to facilitate sharing and utilization, which is
accessible at https://github.com/ncclabsustech/Chinese_reading_task_eeg_processing.

The code repository contains four main modules, each including scripts desired to reproduce the experiment and data
analysis procedures. The script cut_chinese_novel.py in the novel_segmentation_and_text_embeddings folder contains the code
to prepare the stimulation materials from source materials. The script play_novel.py in the experiment module contains code for
the experiment, including text stimuli presentation and control of the EGI device and Tobii Glasses 3 eye-tracker. The script
preprocessing.py in data_preprocessing_and_alignment module contains the main part of the code to apply pre-processing
on EEG data. The script align_eeg_with_sentence.py in the same module contains code to align the EEG segments with
corresponding text contents and text embeddings. The docker module contains the Docker image required for deploying and
running the code, as well as tutorials on how to use Docker for environment deployment.

The code for EEG data pre-processing is highly configurable, permitting flexible adjustments of various pre-processing
parameters, such as data segmentation range, downsampling rate, filtering range, and choice of ICA algorithm, thereby ensuring
convenience and efficiency. Researchers can modify and optimize this code according to their specific requirements.

Before using our ChineseEEG dataset, we encourage all users to check the README.md and the updated information in the
GitHub repository.

Potentials opportunities

The ChineseEEG dataset is a potential resource for accelerating the exploration of scientific problems such as brain’s neural
representations of semantic information, and mechanisms of the human brain in learning, memory, and attention. It can also
contribute in enhancing the development of applications such as BCI systems.

The utilization of ChineseEEG dataset can deepen our understanding of the learning process of languages in the human
brain, especially how the human brain learns Chinese, such as holistic Chinese word recognition38. Besides, This dataset can
also help us in exploring representations in EEG that reflect the language processing process, along with their association with
brain functions such as decision making, memory storage and retrieval.

The ChineseEEG dataset also offers crucial opportunities in practical applications like brain-to-text BCL. The abundant data
in the dataset can facilitate the utilization of modern data-driven methods from NLP in language related tasks, such as training
large-scale models to learn the complex semantic patterns in neural signals, and aligning neural signals with natural languages
in the representation space. For example, by using large-scale neural data to train deep learning models, these models can
effectively learn the complex semantic representations of the brain under linguistic stimuli and generalize well across a wide
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range of downstream tasks, such as semantic decoding®, text-based emotion recognition*” and sentiment classification*!. It
can also mitigate the challenge of inter-subject generalization in BCI systems caused by the variability of neural signals among
individuals. By training the model on vast neural signals enriched with diverse semantic information from different subjects,
the model can learn to extract invariant semantic patterns and structures across individuals, thereby becoming more adaptable
to a wide range of individuals.

Given that most existing EEG datasets primarily focus on English language materials, the ChineseEEG dataset can be
especially useful for exploring both scientific problems and practical applications in the context of Chinese language, prompting
cross-cultural research in related fields.

Code availability

The code for all modules is openly available on GitHub (https://github.com/ncclabsustech/Chinese_reading_task_eeg_
processing). All scripts were developed in Python 3.10%2. Package openpyxl v3.1.2 was utilized to export segmented text
in Excel (.xlIsx) files, and egi-pynetstation v1.0.1, g3pylib v0.1.1, psychopy v2023.2.3%” were used to implement the scripts
for EGI device control, Tobii eye-tracker control, stimuli presentation respectively. In the data pre-processing scripts, MNE
v1.6.0%, pybv v0.7.5%, pyprep v0.4.3*, mne-iclabel v0.5.1°° were used to implement the pre-processing pipeline, while
mne-bids v0.14°!-3% was used to organize the data into BIDS format. The text embeddings were calculated using Hugging Face
transformers v4.36.2%7. For more details about code usage, please refer to the GitHub repository.
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Table 1. An overview of the experiment

Session Run Chapter Number of Chinese characters Duration
Preface 210
1 1-4 3,805 24min34s
2 5-8 3,734 24minSs
LittlePrince 3 9-12 3,218 20min50s
4 13-16 4,030 25min59s
5 17-20 1,713 11minlls
6 21-24 3,635 23min27s
7 25-27 4,189 26min54s
1 1 5,267 34minl7s
2 2 4,406 28min39s
3 3 5,327 34min35s
4 4 3,906 25minl5s
5 5 4,989 32minl4s
6 6 4,413 28min29s
7 7 3,912 25min25s
8 8 5,537 35min52s
9 9 4,171 27min2s
GarnettDream 10 10 5,943 38min30s
11 11 4,351 28min2ls
12 12 4,830 31minl3s
13 13 3,799 24min31s
14 14 4,963 32min9s
15 15 4,656 29min55s
16 16 4,615 29min42s
17 17 5,273 33min57s
18 18 5,113 32min57s
19 19 5,438 35min10s
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Table 2. EEG triggers

Trigger Description

EYES Start of eye-tracker recording

EYEE End of eye-tracker recording

CALS Start of the calibration stage before reading
CALE End of the calibration stage

BEGN  Start of EEG data collection by the EGI device
STOP Stop collecting EEG data

CHxx Start of each chapter, where xx is the chapter number (e.g., the first chapter is CHO1)
ROWS  Start of a new line of text

ROWE  End of a line

PRES Start of the preface reading phase

PREE End of the preface reading phase
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Figure 1. Overview of the experiment and the modalities included in the dataset. (a) Equipment utilized in the experiment,
including the EGI device for collecting EEG data and the Tobii Glasses 3 eye-tracker for tracking eye movements. (b) The
experiment setup. Participants were instructed to sit quietly approximately 67cm from the screen and sequentially read the
highlighted text. (c) The experimental protocol. Participants’ 128-channel EEG signals and eye-tracking data were recorded
while reading the highlighted text. (d) The data modalities in the dataset. The dataset comprises raw data such as the original

textual stimuli, eye movement data, EEG data, and derivatives such as text embeddings from pre-trained NLP models and
pre-processed EEG data.
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Figure 2. EEG pre-processing pipeline. (a) Data segmentation: Data is segmented based on markers, retaining only the data
from the formal reading phase. (b) Band-pass filtering: Two versions of filtered data are provided, with band-pass ranges of

0.5-30 Hz and 0.5-80 Hz respectively. (c) Bad channel interpolation: Our bad channel detection includes automatic detection
implemented with the pyprep package and manual checking. For interpolation, the spherical spline interpolation implemented
in MNE is utilized. (d) ICA denoising: In this part, the automatic labeling method in mne-iclabel package is utilized followed

by a manual checking to remove noisy independent components such as eye movements and heartbeats. (e) Dataset

organization: Our dataset is organized in the BIDS format. The detailed file structure is shown in Figure 3.
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Figure 3. File structure of the dataset. (a) Eye-tracking data: Each experimental run is associated with a .zip file that contains
eye-tracking data. (b) Electrode information files: These include detailed information of electrodes such as the location, type,
and sampling rate, as well as information on any channels marked as bad during pre-processing. (c) EEG data and event-related

files: Including EEG data in BrainVision format and event files that record marker information. (d) ICA-related files:

Containing independent components in numpy format, records of removed components during pre-processing, and topographic
maps of the components. (e) Text materials: Containing original and segmented text. (f) Text embedding files: Each file
corresponds to an experimental run and is stored in .npy format. (g) Raw EEG data.
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Figure 4. EEG time course and the neural oscillations under different frequency bands (i.e., Theta, Alpha, Beta, and Gamma)
corresponding to the Chinese sentence meaning "Draw me a sheep". The pre-processed EEG data using 0.5-80 Hz band-pass
filter from ses-LittlePrince of sub-07 was used in the analysis. We illustrated the EEG signals from electrode C3, which locates
at a language processing related area overlying the temporal lobe.

14/15


https://doi.org/10.1101/2024.02.08.579481
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.08.579481; this version posted February 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Sensor-level data b Source-level visualization c Source activity

RO EBER B £ F

VR SR AU R PR R P %%Ww" Wbl st ML
i Aring = A W X Y skt

[viote iy " R e O dlihmdshoe

R e ""W"”’"Mw i dsPm 2wt ot ey e AN ey w
b TR U Mrm,.w,“ i ol — "

AT gt e A, ety Pl O bbb ith s O T

L s MPRVUL WP N P Pt xw ] ) N i e

mmwwww*ﬁ” ", T § AT TR N T ;

12}

& g
ol ¥ S )
R ki s e i "
T
B X EAKME B K B
ey R o rnger
b gl AT y w
o S AN A o b ‘
B s e, v dSPM 8 i memmwww.ﬁ
(] s ong !
g A ww‘ ! OWWWMWJWMMM
ko o g i A YU R
< e oo Py Oomm Ww\.m MMMMMWA
www e u T TEINT TP W
O domr s S A At T 3 M L s m
ety P PR L TN D) A LSt st e i
oo RS s s e,
Time(s)
— I F R4 IF AR i
- :v w:"'", ml‘b:j‘ b ‘| M’"‘W \,“_,_. sk PR NN T A\ n m ‘4.“:‘:
ad'’
R T e il dSPM En bty “.“A m“‘““”‘“ ““ "“““&““i “"‘““‘““
A et
N it Mwwwww AT o O oo WAL AN st A b it
e i,,..,w MWWM 'th\“/ 8 K | Y
W»‘W:'\x%w‘i“ Gl i AP WJ#‘ gw{m@mu Wwwxwmwm ﬂ"fﬁ"w
A " v ) PP I I N Y B YWY e sy )
':WM"" - ¥ ’it *ﬁf::m”mw\“#y (/)m TR RN u Mt h
U Rk Al Y Vi ,Mf\w/ WMMMWWMWW
Time(s)

Figure 5. EEG source localization analysis. (a) EEG sensor-level data: Three segments of pre-processed EEG data using
0.5-80 Hz band-pass filter were selected for analysis, accompanied by the corresponding text segments shown above the EEG
segments. (b) Visualization of brain activation after source analysis: The dSPM method was utilized to solve the inverse
problem. Results for the left and right hemispheres are presented separately. The moments of peak activation in the left and
right brain regions are chosen for visualization. (c) Plots of source activity over time: Each plot contains the activities of 12
sources in the region with the strongest activity.
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