

1 **TITLE:** Diversity of *Vibrio cholerae* O1 through the human gastrointestinal tract during cholera

2 **AUTHORS:** Patrick Lypaczewski^{*1}, Denise Chac^{*2}, Chelsea N. Dunmire², Kristine M.
3 Tandoc², Fahima Chowdhury³, Ashraful I. Khan³, Taufiqur Bhuiyan³, Jason B. Harris^{4,5,6},
4 Regina C. LaRocque^{5,7}, Stephen B. Calderwood^{5,7}, Edward T. Ryan^{5,7,8}, Firdausi Qadri³, B.
5 Jesse Shapiro¹, Ana A. Weil^{2,9}

6 * Co-first authorship

7 ^ Co-corresponding authors: anaweil@uw.edu; jesse.shapiro@mcgill.ca

8 **AFFILIATIONS:**

9 ¹Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada

10 ²Department of Medicine, University of Washington, Seattle, WA, USA

11 ³Infectious Diseases Division, International Center for Diarrheal Disease Research,
12 Bangladesh, Dhaka, Bangladesh

13 ⁴Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA

14 ⁵Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, US

15 ⁶Division of Global Health, Massachusetts General Hospital for Children, Boston, MA, USA

16 ⁷Harvard Medical School, Boston, MA, USA

17 ⁸Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston,
18 MA, USA

19 ⁹Department of Global Health, University of Washington, Seattle, WA, USA

20 **ABSTRACT**

21 *Vibrio cholerae* O1 causes the diarrheal disease cholera, and the small intestine is the site of
22 active infection. During cholera, cholera toxin is secreted from *V. cholerae* and induces a
23 massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, *V.*
24 *cholerae* genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid
25 that may more closely represents the site of active infection. We hypothesized that the *V.*
26 *cholerae* O1 population bottlenecks along the gastrointestinal tract would result in reduced
27 genetic variation in stool compared to vomit. To test this, we sequenced *V. cholerae* genomes
28 from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both
29 vomit and stool, consistent with a single infecting population rather than co-infection with
30 divergent *V. cholerae* O1 lineages. The number of single nucleotide variants decreased
31 between vomit and stool in four patients, increased in two, and remained unchanged in four.
32 The number of genes encoded in the *V. cholerae* genome decreased between vomit and stool
33 in eight patients and increased in two. Pangenome analysis of assembled short-read
34 sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained
35 deletions in genomes from vomit compared to stool. However, these deletions were not
36 detected by PCR or long-read sequencing, indicating that interpreting gene presence or
37 absence patterns from short-read data alone may be incomplete. Overall, we found that *V.*
38 *cholerae* O1 isolated from stool is genetically similar to *V. cholerae* recovered from the upper
39 intestinal tract.

40 **IMPORTANCE**

41 *Vibrio cholerae* O1, the bacterium that causes cholera, is ingested in contaminated food or
42 water and then colonizes the upper small intestine and is excreted in stool. Shed *V. cholerae*
43 genomes are usually studied, but *V. cholerae* isolated from vomit may be more representative
44 of where *V. cholerae* colonizes in the upper intestinal epithelium. *V. cholerae* may experience
45 bottlenecks, or large reductions in bacterial population sizes or genetic diversity, as it passes
46 through the gut. Passage through the gut may select for distinct *V. cholerae* mutants that are
47 adapted for survival and gut colonization. We did not find strong evidence for such adaptive
48 mutations, and instead observed that passage through the gut results in modest reductions in
49 *V. cholerae* genetic diversity, and only in some patients. These results fill a gap in our
50 understanding of the *V. cholerae* life cycle, transmission, and evolution.

51

52 **KEYWORDS:** cholera, whole-genome sequencing, comparative genomics, single nucleotide
53 variants, *Vibrio cholerae*, vomit, stool, population bottleneck, nanopore sequencing

54

55 **RUNNING TITLE:** *V. cholerae* genetic diversity in vomit and stool

56 **INTRODUCTION**

57 *Vibrio cholerae* O1 causes the diarrheal disease cholera, and recent outbreaks are increasing
58 in size and duration¹. In this context, genomic studies are increasingly conducted to gain an
59 understanding of molecular epidemiology and evolving antimicrobial resistance. Although *V.*
60 *cholerae* is a small intestinal pathogen, human clinical *V. cholerae* O1 genomes are generated
61 from stool isolates. Gastric acidity kills many ingested *V. cholerae*; however, the proportion
62 that survive can then move into the small bowel². Here, *V. cholerae* can replicate, and the
63 highly motile organisms that locate to small bowel intestinal crypts penetrate the mucin layer
64 overlying the small bowel epithelium and form microcolonies through the action of colonization
65 factors including the Toxin co-regulated pilus (**TCP**)³. *V. cholerae* also secrete cholera toxin
66 (CT) that binds to intestinal epithelial cells and stimulates secretion of chloride, causing
67 sodium and water to pass into the intestinal lumen, resulting in diarrhea, vomiting, and
68 dehydration that may be severe. The massive fluid influx into the small intestine can overflow
69 into the stomach and can result in vomiting; the majority of cholera patients experience
70 vomiting during the course of illness⁴. This is in contrast with other disease processes in
71 which gastric contents alone are vomited. Studies of cholera vomit demonstrate high *V.*
72 *cholerae* cell counts, and the vomit pH levels approximate the small intestinal environment^{5,6}.

73

74 *V. cholerae* O1 genomes generated from stool isolates reflect the *V. cholerae* population shed
75 via the large intestine, but *V. cholerae* isolated from vomit may be more representative of the
76 small intestinal *V. cholerae* population that is mediating infection. The genetic diversity of *V.*
77 *cholerae* O1 could vary along the gastrointestinal (**GI**) tract for several reasons. First, genetic
78 diversity could be reduced through population bottlenecks when a large infecting population is
79 reduced to a smaller number of survivors due to bile and low gastric pH. In animal models,
80 there is an estimated 40-fold reduction in the *V. cholerae* population from the oral inoculum
81 compared to the site of small intestinal colonization⁷. Second, directional natural selection

82 might favor distinct strains from a mixed inoculum. Third, *de novo* mutations, gene transfer
83 events, or gene losses might occur within a patient, some of which might confer adaptation to
84 different niches along the GI tract.

85

86 Based on sequencing of *V. cholerae* O1 isolate genomes⁸ and metagenomes^{9,10} from stool,
87 we have previously found that co-infections by distinct strains of *V. cholerae* O1 in humans
88 appear to be rare in the excreted population, but these could be more common in the
89 inoculum, especially in hyperendemic areas. Similarly, the *V. cholerae* O1 population in stool
90 from single individuals contains only minor point mutations and dozens of gene content
91 variants. The level of genetic diversity of *V. cholerae* O1 in the upper GI tract during infection
92 is not known.

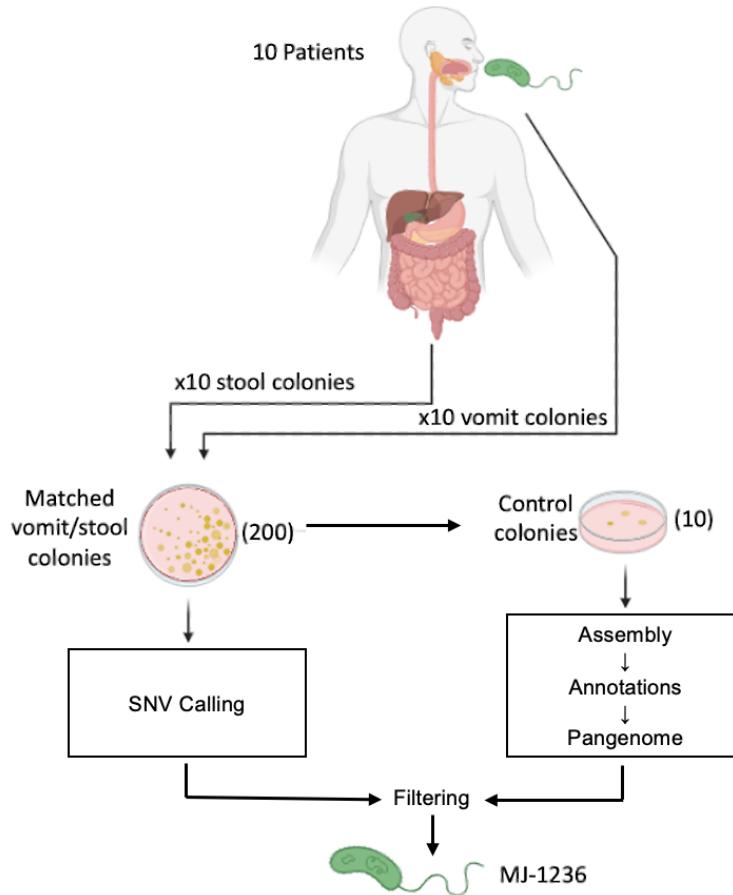
93

94 To determine the genetic diversity of *V. cholerae* during transit through infected patients, we
95 sequenced *V. cholerae* O1 genomes from paired vomit and stool samples from ten cholera
96 patients in Dhaka, Bangladesh, a region hyperendemic for cholera (**Figure 1**). We compared
97 the single nucleotide variants (**SNVs**) in these 200 genomes and examined variation in gene
98 presence and absence. We show a modest decrease in *V. cholerae* SNVs and gene content
99 variation between vomit and stool, suggesting that passage through the gut does not
100 dramatically reduce genetic diversity or strain variation. We also provide evidence supporting
101 the use of long-read sequencing technologies in accurately determining gene content variation.

102 **METHODS**

103 *Sample collection and Vibrio cholerae isolation*

104 To examine within-host *V. cholerae* diversity, stool and vomit samples were collected between
105 April 2018 and August 2019 in Dhaka City, Bangladesh from patients aged 2-60 years with
106 severe acute diarrhea and a stool culture positive for *V. cholerae* O1 who had no major
107 comorbid conditions, as in prior studies^{8,9}. All samples were collected at the International
108 Centre for Diarrhoeal Disease Research, in Dhaka Bangladesh (**icddr,b**) following the
109 informed consent process. A maximum of 50 mL of vomit and stool were collected
110 immediately upon admission concurrent with clinical interventions, including rehydration and
111 administration of antibiotics. Samples were immediately frozen at -80 °C.


112

113 Vomit and diarrheal stool from Bangladesh were stored at the University of Washington at -80
114 °C and inoculated directly into alkaline peptone water and streaked onto thiosulfate-citrate-bile
115 salts-sucrose agar, a medium selective for *V. cholerae*, or Luria-Bertani (**LB**) agar and tryptic
116 soy agar containing 5% sheep's blood. Methods used to isolate *V. cholerae* from these vomit
117 and stool samples have been previously described⁵. After incubation at 37 °C for 24 hours,
118 suspect *V. cholerae* colonies were selected and confirmed for the presence of *ctxA* and *V.*
119 *cholerae* O1 *rfb* gene by PCR¹¹ to confirm identification. Twenty individual confirmed *V.*
120 *cholerae* O1 colonies from each patient (10 from vomit and 10 from stool) were inoculated into
121 LB broth and grown at 37 °C while shaking aerobically overnight. For each colony, 1 mL of
122 broth culture was stored at -80 °C with 20% glycerol until DNA was extracted.

123

124 As a control for sequencing errors and mutations that could occur within culture rather than
125 within patients, we selected one isolate from one cholera patient vomit sample. The glycerol
126 stock of this isolate was streaked onto LB agar and ten colonies were picked for whole

127 genome sequencing. These colonies were used in subsequent analyses as control colonies
128 (Figure 1).

129

130 **Figure 1. Sampling and sequencing *V. cholerae* O1 isolates from patient vomit and stool.** Ten
131 patients were recruited for this study. For each patient, vomit and stool samples were plated to isolate
132 colonies. From each vomit and stool sample, 10 colonies were used for whole genome sequencing in
133 addition to 10 control colonies to evaluate for sequencing errors. Reads were processed independently
134 for SNV calling and pangenome analysis (gene presence/absence) after assembly and annotations,
135 with control colonies used to set filtering thresholds.

136

137 *DNA extraction and sequencing*

138 Bacterial glycerol stocks were streaked on LB agar and incubated at 30 °C for 24 hours, and a
139 single colony was picked and grown in 4 mL LB broth with agitation at 37 °C for 18 hours.
140 Genomic DNA was extracted from each of the 200 isolates and 10 control colonies using the
141 Qiagen DNeasy Blood and Tissue kit with RNase treatment according to manufacturer's
142 instructions. DNA was then eluted in molecular grade DNase/RNase-free water. Sequencing
143 libraries were prepared with the Lucigen NxSeq AmpFREE kit, pooled and sequenced at the
144 McGill Genome Centre on one lane of Illumina NovaSeq6000 Prime v1.5 with paired-end 150
145 bp reads.

146

147 *Sequence alignments and SNV analysis*

148 Either the *V. cholerae* O1 strain MJ-1236¹² or a *de novo* assembly of the genome from the
149 deeply sequenced colony control was used as a reference genome for analysis. To build a
150 phylogeny, reads were processed using Snippy v4.6.0 with default parameters¹³ and the
151 'snippy-core' command was used to generate a core SNV alignment. IQ-Tree v2.2.2.7 was used
152 to infer a maximum likelihood phylogenetic tree from this alignment¹⁴. The TPM3u+F+I model
153 was chosen by ModelFinder with bootstrap values determined by UFBoot¹⁵ and rooted on the
154 reference strain for display using iTol¹⁶. Demultiplexed paired end reads were aligned to the
155 reference genome using the Burrows-Wheeler aligner v0.7.17 with the Maximal Exact Match
156 algorithm¹⁷. The alignment files were transformed using samtools v1.17¹⁸ to generate a pileup
157 file. The variant calls were made using VarScan2 v2.4.3¹⁹. Samples were excluded from SNV
158 analyses if their breadth of coverage was two standard deviations or more below the median.
159 SNVs within each patient were extracted using bcftools v1.13 with the command 'bcftools isec -
160 n-[#samples]'. Only SNVs at >90% frequency and read depth >25 were included. These
161 thresholds were established because they resulted in zero SNVs among the control colony
162 genomes. The final list was manually inspected using integrated genome viewer v2.16.0²⁰ to

163 remove any false positives resulting from poor mapping or instances in which one colony per
164 group failed to be accurately called and appeared as intra-sample variation. In samples with
165 less than ten colonies remaining after quality filtering, the number of SNVs was normalized to
166 the number of SNVs per ten colonies (e.g. 1/9 becomes 1.1/10).

167

168 *Genome assembly and pangenome analysis*

169 Isolated genomes were assembled using Unicycler v0.4.9²¹ in Illumina-only mode. The
170 resulting assemblies were quality controlled using checkM²² to estimate genome
171 completeness. Four genomes with a completeness score < 100 (isolates BSC08, GSC06,
172 HVC04 and JSC11) were removed from the pangenome analysis. Gene annotations were
173 performed using Prokka v1.14.5²³ with the reference MJ-1236 proteome as an additional
174 database using the '--proteins' additional argument to maintain consistent annotations and
175 names. Pangenome determination was performed using Panaroo v1.2.8²⁴ using '--clean-mode
176 sensitive' to retain the most genes found. We used the Cochran–Mantel–Haenszel test to
177 measure systematic associations between gene presence/absence in vomit and stool, with
178 each patient treated as an observation and the frequency of each gene's presence in the
179 vomit and stool derived from the panaroo-generated pangenome table. To identify
180 associations at the level of operons, we used the same implementation of the Cochran–
181 Mantel–Haenszel test and counted observations at the level of operons rather than genes.

182

183 *Long-read resequencing*

184 Following analysis using short-read data described above, eight colonies with inferred gene
185 content differences within the *tcp* operon were selected for long-read resequencing using a
186 MinION from Oxford Nanopore Technologies. DNA was re-extracted as above and prepared
187 for sequencing using the Rapid Barcoding Kit (SQK-RBK004) according to manufacturer's
188 instructions to generate sequencing libraries. The libraries were sequenced on a R9.4.1

189 MinION flow cell. Raw sequencing data was basecalled and demultiplexed to FASTQ files
190 using guppy v6.3.2 (Oxford Nanopore Technologies) using the model
191 dna_r9.4.1_450bps_sup. Reads were assembled using Flye v2.9.1²⁵ and a pangenome
192 analysis performed as described above. The results for the *tcp* operon were manually
193 inspected and compared to the short-read data.

194

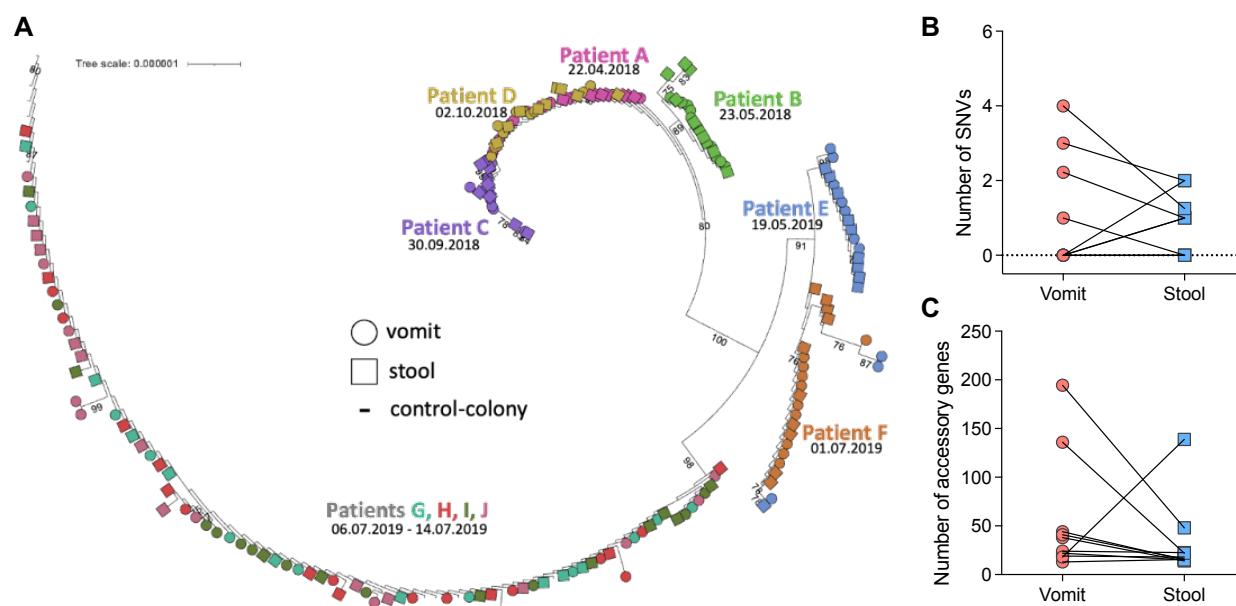
195 *PCR analysis*

196 Colony PCR was performed on *V. cholerae* O1 DNA extracted by boiling *V. cholerae* O1
197 isolates in molecular grade water at 95 °C for 10 minutes. Taq 2X Master Mix (New England
198 Biolabs) was used for the reaction and PCR primers are listed in **Supplementary Table 1**.
199 PCR products were run on 1.0% agarose gels along an 1kb ladder. Reference *V. cholerae* O1
200 strains were used to evaluate the *tcp* operon including PIC018, a clinical strain of *V. cholerae*
201 O1 also isolated in Bangladesh²⁶ known to have an intact TCP, and a *tcpA* knockout mutant
202 strain of a *V. cholerae* O1 clinical strain isolated in Haiti²⁷ gifted by Brandon Sit and Matthew
203 Waldor.

204

205 *Ethics Statement*

206 The Ethical and Research Review Committees of the icddr,b and the Institutional Review
207 Boards of Massachusetts General Hospital and the University of Washington approved the
208 study. All adult subjects provided written informed consent and parents/guardians of children
209 provided written informed consent.


210

211

212 RESULTS

213 From each of the ten cholera patients, we isolated ten *V. cholerae* colonies from vomit and ten
214 from stool. All isolates were *V. cholerae* serogroup O1 and serotype Ogawa, ascertained
215 using slide agglutination testing using polyvalent and specific antisera, as in prior studies²⁸.
216 Isolates underwent whole genome sequencing for identification of SNVs and gene content
217 variation (Figure 1). We performed a phylogenetic analysis to examine relatedness of the
218 isolates and found clustering by patient independent of sample type (Figure 2A). The ten
219 control colonies grouped together, separated by very short branch lengths, indicating high-
220 quality sequencing and low false-positive SNV identification (Figure 2A). We observed a
221 temporal signal in the phylogeny, with genomes isolated in 2018 and 2019 separated by a
222 long branch with strong bootstrap support of 100. Several patients clustered together by time
223 (e.g. A, B, C, D and G, H, I, J), which may suggest common exposures (Figure 2A). Instances
224 in which more than one patient's isolates grouped together on the tree (e.g. patients E and F)
225 were generally not well supported by bootstraps, making it difficult to reject a model with a
226 single colonization event per patient.

227

228

229 **Figure 2. *V. cholerae* O1 within-patient diversity is modestly reduced in stool compared to vomit.**

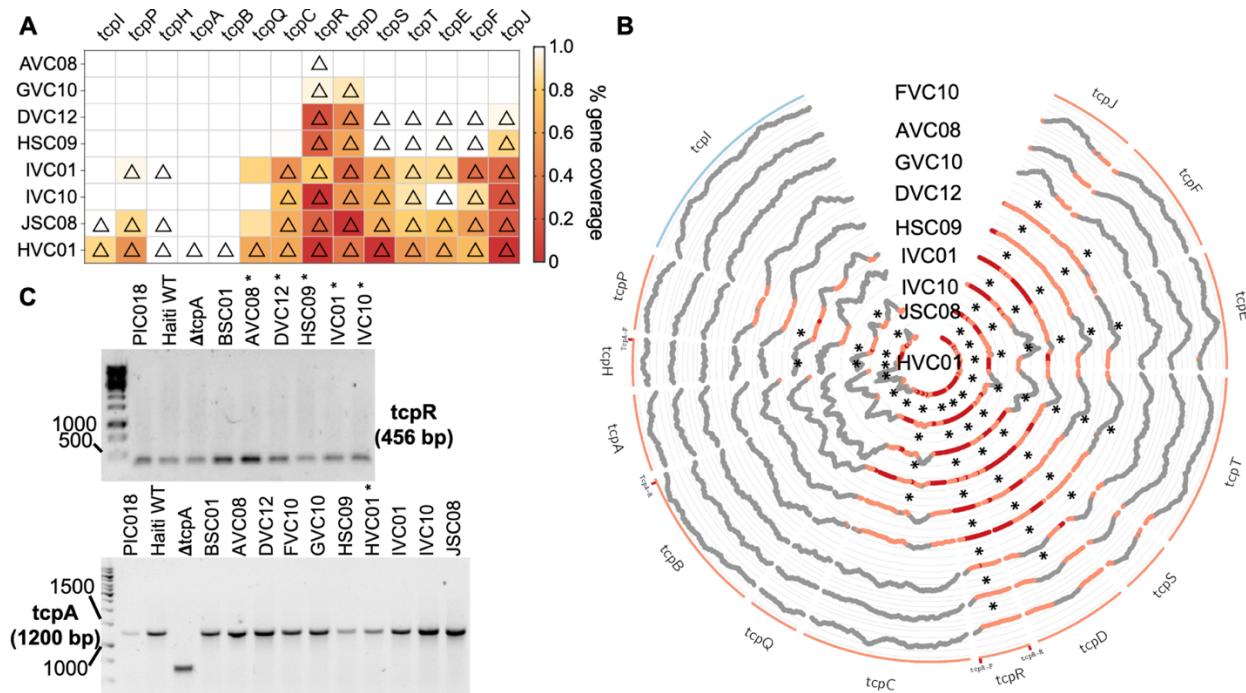
230 **A)** Maximum-likelihood phylogeny of 200 isolates sequenced, demonstrating that isolates cluster by
231 patient and collection date. Ten control colony isolates are also shown. The tree is rooted on the MJ-
232 1236 *V. cholerae* O1 reference genome (branching at the base of patient C). Samples are colored per
233 patient. Collection dates are indicated below patient identifiers. Bootstrap values > 75 are displayed. **B)**
234 Intra-patient variation based on SNVs called against the MJ-1236 reference genome across paired
235 vomit and stool *V. cholerae* genomes, demonstrating a decrease in SNVs in 4 patients, an increase in 3
236 patients, and no change in 3 patients. The number of SNVs is normalized per 10 colonies, to account
237 for some samples only containing 9 sequenced colonies. **C)** Comparison of within-patient *V. cholerae*
238 gene content in vomit and stool from 10 patients, showing a decrease in 8 patients and an increase in 2
239 patients. Only 'accessory' genes that vary in their presence/absence in our dataset are counted here;
240 'core' genes common to all genomes are not included.

241
242 We next focused on genetic variation using an SNV analysis. Most samples yielded high
243 breadth of coverage (median of 95% to the reference genome) and seven samples with low
244 coverage were excluded (**Supplementary Figure S1**). Because we used multiple media types
245 to isolate *V. cholerae* O1, we tested if the media type was associated with an increase or
246 decrease in intra-sample variation, and found no differences (**Supplementary Table S2**). In
247 comparing vomit and stool within one patient, our findings supported low within-patient
248 diversity. SNVs were always found in a small fraction of colonies from each patient sample (15
249 SNVs present in 1/10 colonies, 4 SNVs present in 2/10 colonies), and therefore we focused
250 on the number of SNVs per vomit or stool sample rather than their frequencies. If significant
251 bottlenecks occur as *V. cholerae* O1 passed through the gut, we would then expect less
252 genetic variation in stool compared to vomit. Among the seven patients with detectable SNVs,
253 four had fewer SNVs in stool compared to vomit, and three had more (full list of SNVs in
254 **Supplementary Table S3**). Three out of ten patients had no detectable SNVs between vomit

255 and stool isolates (**Figure 2B**). Although the number of SNVs decreased from vomit to stool
256 more often than increased, this difference was not significant (one-sided binomial test, $p =$
257 0.34). To account for elements of the genome present only in our isolates and not in the MJ-
258 1236 *V. cholerae* O1 reference strain, we repeated an identical analysis using a *de novo*
259 genome assembly using a colony control, which yielded one additional SNV and otherwise
260 identical results (**Supplementary Figure S2, Supplementary Table S4**). Thus, we
261 determined that our SNV calling was robust to the choice of reference genome.

262

263 In addition to reducing the diversity of point mutations (i.e. SNVs) in a population, bottlenecks
264 would also be expected to reduce pangenome variation. To test this hypothesis, we compared
265 *V. cholerae* gene content variation (e.g., presence or absence) in vomit and stool from the
266 same patient. Based on genomes with high estimated completeness (see Methods), we found
267 a larger total gene content in vomit compared to stool in eight patients, and smaller in two
268 patients (**Figure 2C**; one-sided binomial test, $p = 0.055$). As previously observed⁸, *V. cholerae*
269 O1 gene content is more variable than SNVs within patients, potentially making it easier to
270 detect a change in variation from vomit to stool. Together with the reduction in the number of
271 SNVs from vomit to stool in more patients, these results are consistent with the hypothesis
272 that bottlenecks occur as *V. cholerae* O1 passes through the gut, but that bottlenecks are not
273 evident in all patients and may produce only modest reductions in genetic variation.


274

275 We conducted additional analyses to examine the possibility that vomit and stool isolates may
276 experience different selective pressures that select for different genes in the *V. cholerae* O1
277 population. To identify genes potentially involved in niche adaptation, we tested for genes that
278 varied within patients and were systematically associated with either vomit or stool across
279 patients. We did not find any significant associations at the level of individual genes

280 (Cochran–Mantel–Haenszel test, $p > 0.05$). Because our sample size was likely
281 underpowered to identify gene-specific associations, and the deletion of any member of an
282 operon was likely to disrupt the function of the entire operon, we grouped genes into
283 annotated operons and found that all genes in the *tcp* operon were observed more often in
284 stool than vomit (Cochran–Mantel–Haenszel test, $p = 0.002$). No other significant associations
285 were found. The *tcp* operon encodes the toxin-coregulated pilus, a key bundle forming pilus
286 factor that allows *V. cholerae* to colonize the small intestine^{29,30}. Genes essential for human
287 colonization could be stochastically lost from the *V. cholerae* O1 genome in the extra-human
288 environment, and we could expect these loss events would be less common in isolates from
289 stool than the vomit, because the small intestine is a strong selective filter for gut
290 colonization.

291
292 To confirm these putative gene loss events, we aligned the raw reads for a set of eight
293 isolates that varied in their presence or absence patterns of *tcp* genes to measure the breadth
294 and depth of coverage of these genes. Genes with substantially reduced breadth of coverage
295 were always called as absent from the pangenome, but the inverse was not always true
296 (**Figure 3A–B**). To further validate these apparent partial deletions, we performed a series of
297 PCRs targeting portions of the genes (primer locations indicated on **Figure 3B**). We were
298 unable to detect any deletion within the *tcp* operon by PCR (**Figure 3C**). To reconcile these
299 conflicting data, we performed long-read resequencing on these eight isolates using Oxford
300 Nanopore Technologies. Interestingly, all eight long-read resequenced isolates contained the
301 entire *tcp* operon, confirming the results of the PCR analysis (**Supplementary Table S5**).
302 While these genes often contained frameshift mutations (**Supplementary Table S5**), which
303 might lead to truncated genes, the frameshifts always occurred as part of or immediately
304 downstream of homopolymer sequences that are known to be error-prone in the long-read
305 sequencing³¹. These frameshifts are therefore likely sequencing artifacts. These validation

306 steps suggest caution in interpreting gene presence/absence patterns from short-read data
307 alone.
308

309
310 **Figure 3. *tcp* genes absent from the *V. cholerae* O1 pangenome have low breadth and depth by**
311 **short-read coverage and are identified as present by PCR.**

312 **A)** The short-read coverage of *tcp* operon genes in 8 genomes with variable presence/absence as
313 determined by panaroo was computed using bedtools and the raw reads aligned to the reference genome
314 *tcp* sequences. Genes called as absent by panaroo are marked with a triangle. The breadth of coverage
315 of each gene is colored according to the scale shown on the right. **B)** Circos plot showing coverage of *tcp*
316 genes. Genes are colored according to the forward (blue) or reverse (red) organization in the genome.
317 The locations of the primers used in PCR assays are indicated on the genes as 'gene-F/R'. Gene
318 coverage is plotted at each individual base and highlighted in orange at <10% and red at absolute zero.
319 Genes called as absent by panaroo are marked with an asterisk (*). **C)** *tcp* genes assessed in study
320 isolates using PCR. An asterisk (*) indicates expected absence of the gene according to the pangenome
321 analysis. Clinical isolates of *V. cholerae* O1 known to have intact *tcp* and a Δ tcpA mutant were also used

322 as controls. PCR primers are listed in **Supplementary Table S1**. PCR products were run on 1.0%
323 agarose gels and 1kB ladder.
324

325 **DISCUSSION**

326
327 *V. cholerae* O1 genomic studies in human disease have been based on *V. cholerae* recovered
328 from the stool of patients with cholera, but isolates from vomit may better represent the *V.*
329 *cholerae* O1 population at the site of active infection in the small intestine. Here, we examined
330 the genetic relatedness between *V. cholerae* O1 recovered from the vomit versus the stool
331 from patients with cholera in Bangladesh. We found an overall low level of genetic diversity
332 between sample types. This suggests that bottlenecks between vomit and stool are not
333 pronounced enough to reduce genetic diversity in the *V. cholerae* O1 population, or that
334 genetic diversity in the initial inoculum is so low that our sample size was insufficient to detect
335 a difference. Additionally, vomiting typically occurs early in the course of infection^{4,32}, but does
336 not directly represent the infecting inoculum. Therefore, we cannot exclude a larger bottleneck
337 occurring between the inoculum and the small intestinal *V. cholerae* population. Another
338 explanation for the lack of divergence between *V. cholerae* populations from vomit and stool is
339 that these *V. cholerae* populations are mixed during physiological processes. During high
340 volume fluid secretion by the small intestine, fluid may transit into large intestine and be
341 excreted very rapidly, possibly on the order of minutes to a few hours, effectively
342 homogenizing *V. cholerae* populations across the gut.

343

344 Our initial analysis using short-read sequencing suggested that deletions in the *tcp* operon
345 were present more often in vomit than in stool isolates. Because vomit could include ingested
346 environmental strains that may not encode a functional TCP, we thought it was plausible that
347 TCP loss may be observed in vomit isolates more often than in stool isolates³³. Our results do
348 not fully exclude the possibility that TCP may be sporadically lost by pandemic *V. cholerae* O1
349 strains in the environment and these genomes would rarely be recovered from humans since
350 they would have impaired ability to colonize the human intestine and survive transit through
351 the GI tract. However, the TCP loss events detected using assembled short reads and

352 pangenome analysis were not confirmed by PCR or long-read sequencing of a subset of
353 genomes. The low depth and breadth of short-read coverage in many of the *tcp* genes
354 suggests that this region of the genome may be difficult to sequence and assemble for
355 technical reasons. It is also possible that our results could also represent within-colony
356 variation in these genes. That is, most cells in a colony contain the intact *tcp* operon (as
357 indicated by their detection by PCR and Nanopore sequencing) but a minority could contain
358 deletions, detectable only by deep short-read sequencing. Such fine-scale variation in *tcp*
359 could be a topic for future investigation. For the purposes of our study, we refrain from
360 drawing firm conclusions regarding natural selection acting on TCP within patients, and we
361 urge caution in interpretation of pangenome variation from short-read data alone.

362
363 While short-read Illumina sequencing is highly accurate, it seldom allows genomes to be
364 completely assembled. In contrast, long-read sequencing produces reads with a lower
365 individual accuracy, but helps achieve closed genome assemblies with a clearer determination
366 of a gene's presence or absence. Of note, while none of our sequenced genomes contained
367 *tcp* deletions, they almost all contained frameshift mutations in at least one region of the *tcp*
368 operon. These frameshifts could lead to truncated genes that might be identified as 'absent' in
369 the pangenome. However, a more likely explanation is that these frameshifts are due to
370 sequencing errors. The frameshifts we detected always followed homopolymer repeats, which
371 are known to be error prone in Oxford Nanopore sequencing³¹. It is possible that the next
372 generation of more accurate Nanopore flow cells (R10) combined with multiple rounds of
373 genome polishing could resolve this issue in future studies.

374
375 In summary, we observed low within-patient diversity in *V. cholerae* O1 recovered from vomit
376 versus stool, consistent with prior studies examining only stool isolates. This indicates that *V.*

377 *cholerae* O1 genomes isolated from stool are likely to represent the population at the site of
378 active infection. If population bottlenecks occur between the upper and lower GI tract, they do
379 not appear to have a large effect on *V. cholerae* O1 genetic diversity and are not universal
380 across all patients. We did identify a modest reduction in genetic diversity, particularly in
381 pangenome diversity, in stool compared to vomit, consistent with a non-negligible role for
382 bottlenecks, which could be explored in larger cohorts or time-series studies. Finally, we
383 highlight that gene presence/absence observations based on short-read data should be
384 treated with caution and confirmed by long-read sequencing or other complementary
385 methods.

386

387 **Data Availability**

388 The sequencing data generated for all 200 isolates and 10 colony controls were deposited in
389 NCBI Genbank under BioProject PRJNA1046223.

390

391 **ACKNOWLEDGEMENTS**

392 We thank the patients of the International Centre for Diarrheal Disease Research, Bangladesh
393 (**icddr,b**) where these samples were collected, and the staff at the **icddr,b** for data entry and
394 sample collection. We thank Matthew Waldor and Brandon Sit for the contribution of strains.
395 The International Centre for Diarrheal Disease Research, Bangladesh (**icddr,b**) gratefully
396 acknowledges the government of the People's Republic of Bangladesh and Global Affairs
397 Canada. This work was supported by the National Institutes of Allergy and Infectious Diseases
398 (R01AI106878 to E.T.R. and F.Q., R01AI103055 to J.B.H. and R.L.; R01A1099243 to J.B.H.
399 and F.Q., K08AI123494 to A.A.W., and T32HD007233 to D.C.), Fogarty International Center
400 (D43TW005572 to T.R.B. and K43TW010362 to T.R.B.), the Government of the People's
401 Republic of Bangladesh (to the **icddr,b**), Global Affairs Canada (to the **icddr,b**), the Swedish
402 International Development Cooperation Agency (to the **icddr,b**), the Canadian Institutes of

403 Health Research (Project Grant to J.S. and postdoctoral fellowship 187858 to P.L.) and the
404 UK Department for International Development (to the icddr,b). We report no conflicts of
405 interest.

406

407 **REFERENCES**

408 1. World Health Organization = Organisation mondiale de la S. Weekly
409 Epidemiological Record, 2023, vol. 98, 38 [full issue]. Weekly Epidemiological
410 Record = Relevé épidémiologique hebdomadaire 2023;98(38):431-452.
411 (<https://iris.who.int/handle/10665/372986>).
412 2. Nelson EJ, Harris JB, Morris JG, Jr., Calderwood SB, Camilli A. Cholera
413 transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol
414 2009;7(10):693-702. (In eng). DOI: 10.1038/nrmicro2204.
415 3. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to
416 identify a pilus colonization factor coordinately regulated with cholera toxin.
417 Proceedings of the National Academy of Sciences of the United States of
418 America 1987;84(9):2833-7. (In eng). DOI: 10.1073/pnas.84.9.2833.
419 4. Khan AI, Rashid MM, Islam MT, et al. Epidemiology of Cholera in Bangladesh:
420 Findings From Nationwide Hospital-based Surveillance, 2014-2018. Clinical
421 infectious diseases : an official publication of the Infectious Diseases Society of
422 America 2020;71(7):1635-1642. (In eng). DOI: 10.1093/cid/ciz1075.
423 5. Dunmire CN, Chac D, Chowdhury F, et al. Vibrio cholerae Isolation from Frozen
424 Vomitus and Stool Samples. Journal of clinical microbiology 2022:e0108422. (In
425 eng). DOI: 10.1128/jcm.01084-22.
426 6. Larocque RC, Harris JB, Dziejman M, et al. Transcriptional profiling of Vibrio
427 cholerae recovered directly from patient specimens during early and late stages
428 of human infection. Infection and immunity 2005;73(8):4488-93. (In eng). DOI:
429 10.1128/iai.73.8.4488-4493.2005.

430 7. Abel S, Abel zur Wiesch P, Chang H-H, Davis BM, Lipsitch M, Waldor MK.
431 Sequence tag-based analysis of microbial population dynamics. *Nature methods*
432 2015;12(3):223-226, 3 p following 226. DOI: 10.1038/nmeth.3253.

433 8. Levade I, Terrat Y, Leducq J-B, et al. *Vibrio cholerae* genomic diversity within
434 and between patients. *Microbial Genomics* 2017;3(12). DOI:
435 10.1099/mgen.0.000142.

436 9. Levade I, Khan AI, Chowdhury F, et al. A Combination of Metagenomic and
437 Cultivation Approaches Reveals Hypermutator Phenotypes within *Vibrio*
438 *cholerae*-Infected Patients. *mSystems* 2021;6(4):e0088921. DOI:
439 10.1128/mSystems.00889-21.

440 10. Madi N, Cato ET, Sayeed MA, et al. Phage predation is a biomarker for disease
441 severity and shapes pathogen genetic diversity in cholera patients. *Microbiology*,
442 2023/6 2023. (<http://biorxiv.org/lookup/doi/10.1101/2023.06.14.544933>
443 <http://dx.doi.org/10.1101/2023.06.14.544933>).

444 11. Hoshino K, Yamasaki S, Mukhopadhyay AK, et al. Development and evaluation
445 of a multiplex PCR assay for rapid detection of toxigenic *Vibrio cholerae* O1 and
446 O139. *FEMS Immunology & Medical Microbiology* 1998;20(3):201-207. DOI:
447 10.1111/j.1574-695X.1998.tb01128.x.

448 12. Grim CJ, Hasan NA, Taviani E, et al. Genome sequence of hybrid *Vibrio*
449 *cholerae* O1 MJ-1236, B-33, and CIRS101 and comparative genomics with *V.*
450 *cholerae*. *Journal of Bacteriology* 2010;192(13):3524-3533. DOI:
451 10.1128/JB.00040-10.

452 13. Seemann T. Snippy: rapid haploid variant calling and core SNP phylogeny. 2015
453 (<https://github.com/tseemann/snippy>).
454 14. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: New Models and
455 Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular
456 Biology and Evolution 2020;37(5):1530-1534. DOI: 10.1093/molbev/msaa015.
457 15. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2:
458 Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 2018;35(2):518-
459 522. (In eng). DOI: 10.1093/molbev/msx281.
460 16. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for
461 phylogenetic tree display and annotation. Nucleic Acids Research
462 2021;49(W1):W293-W296. DOI: 10.1093/nar/gkab301.
463 17. Li H. Aligning sequence reads, clone sequences and assembly contigs with
464 BWA-MEM. 2013. DOI: 10.48550/ARXIV.1303.3997.
465 18. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and
466 SAMtools. Bioinformatics (Oxford, England) 2009;25(16):2078-2079. DOI:
467 10.1093/bioinformatics/btp352.
468 19. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy
469 number alteration discovery in cancer by exome sequencing. Genome research
470 2012;22(3):568-576. DOI: 10.1101/gr.129684.111.
471 20. Robinson JT, Thorvaldsdottir H, Turner D, Mesirov JP. igv.js: an embeddable
472 JavaScript implementation of the Integrative Genomics Viewer (IGV).
473 Bioinformatics (Oxford, England) 2023;39(1):btac830. DOI:
474 10.1093/bioinformatics/btac830.

475 21. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome
476 assemblies from short and long sequencing reads. PLOS Computational Biology
477 2017;13(6):e1005595. DOI: 10.1371/journal.pcbi.1005595.

478 22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
479 assessing the quality of microbial genomes recovered from isolates, single cells,
480 and metagenomes. Genome research 2015;25(7):1043-1055. DOI:
481 10.1101/gr.186072.114.

482 23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics
483 (Oxford, England) 2014;30(14):2068-2069. DOI: 10.1093/bioinformatics/btu153.

484 24. Tonkin-Hill G, MacAlasdair N, Ruis C, et al. Producing polished prokaryotic
485 pangenomes with the Panaroo pipeline. Genome Biology 2020;21(1):180. DOI:
486 10.1186/s13059-020-02090-4.

487 25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads
488 using repeat graphs. Nature biotechnology 2019;37(5):540-546. (In eng). DOI:
489 10.1038/s41587-019-0072-8.

490 26. Sayeed MA, Bufano MK, Xu P, et al. A Cholera Conjugate Vaccine Containing O-
491 specific Polysaccharide (OSP) of *V. cholerae* O1 Inaba and Recombinant
492 Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory
493 and Lamina Proprial Responses against OSP and Is Protective in Mice. PLoS
494 neglected tropical diseases 2015;9(7):e0003881. (In eng). DOI:
495 10.1371/journal.pntd.0003881.

496 27. Chin C-S, Sorenson J, Harris JB, et al. The origin of the Haitian cholera outbreak
497 strain. *The New England journal of medicine* 2011;364(1):33-42. DOI:
498 10.1056/NEJMoa1012928.

499 28. Qadri F, Wenneras C, Albert MJ, et al. Comparison of immune responses in
500 patients infected with *Vibrio cholerae* O139 and O1. *Infection and immunity*
501 1997;65(9):3571-6.

502 29. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM.
503 Toxin, toxin-coregulated pili, and the *toxR* regulon are essential for *Vibrio*
504 *cholerae* pathogenesis in humans. *The Journal of experimental medicine*
505 1988;168(4):1487-92. (In eng).

506 30. Kaper JB, Morris JG, Jr., Levine MM. Cholera. *Clinical microbiology reviews*
507 1995;8(1):48-86.

508 31. Delahaye C, Nicolas J. Sequencing DNA with nanopores: Troubles and biases.
509 *PLoS one* 2021;16(10):e0257521. (In eng). DOI: 10.1371/journal.pone.0257521.

510 32. Weil AA, Khan AI, Chowdhury F, et al. Clinical outcomes in household contacts
511 of patients with cholera in Bangladesh. *Clinical infectious diseases : an official*
512 *publication of the Infectious Diseases Society of America* 2009;49(10):1473-9. (In
513 eng). DOI: 10.1086/644779.

514 33. Shapiro BJ, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S. Origins of
515 pandemic *Vibrio cholerae* from environmental gene pools. *Nature Microbiology*
516 2016;2:16240. DOI: 10.1038/nmicrobiol.2016.240.

517