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Abstract

Background: Factor V (FV) is a key molecular player in the coagulation cascade. FV
plasma levels have been associated with several human diseases, including

thrombosis, bleeding and diabetic complications. So far, two genes have been
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robustly found through genome wide association analyses to contribute in the inter-

individual variability of plasma FV levels: structural F5 gene and PLXDC2.

Methods: We used the underestimated Brown-Forsythe methodology implemented
in the Quicktest software to search for non-additive genetic effects that could
contribute to the inter-individual variability of FV plasma activity. QUICKTEST was
applied to 4 independent GWAS studies (LURIC, MARTHA, MEGA and RETROVE)
totaling 4,505 participants of European ancestry with measured FV plasma levels.
Results obtained in the 4 cohorts were meta-analyzed using a fixed-effect model.
Additional analyses involved exploring haplotype and genexgene interactions in

downstream investigations.

Results: We observed a genome-wide significant signal at PSKH2 locus, on
chr8g21.3 with lead variant rs75463553 with no evidence for heterogeneity across
cohorts (p = 0.518). Although rs75463553 did not show association with mean FV
levels (p = 0.49), it demonstrated a robust significant (p = 8.4 10°) association with
the variance of FV plasma levels. Further analyses confirmed the reported
association of PSKH2 with neutrophil biology and revealed that rs75463553 likely
interact with two loci, GRIN2A and POM121L12, known for their involvement in

smoking biology.

Conclusions: This comprehensive approach identifies the role of PSKH2 as a novel
molecular player in the genetic regulation of FV, shedding light on the contribution of

neutrophils to FV biology.
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Introduction

Factor V (FV) is a central protein of the coagulation cascade. By acting as a co-factor
for activated Factor X, FV facilitates the conversion of prothrombin to thrombin [1],
the latter converting then fibrinogen into fibrin, the main component of blood clots and
which also activates platelets. Mainly expressed in the liver, FV can also be stored
and released by platelets [2] which provide a surface for the coagulation reactions to
occur and which can contribute to amplify the coagulation process. There is natural
variability in FV levels and increased/decreased FV levels have been observed in
several conditions including mainly bleeding [3—6] and thrombotic disorders [7,8] but
also in infections [9], inflammation [10], pregnancy [11,12], hormone contraceptives

usage [13], and impaired liver dysfunction [14].

Understanding the exact sources of variability of FV levels is crucial for a better
identification of individuals at higher risk of clotting disorders and for better targeting
appropriate preventive and therapeutic strategies. Age, sex, smoking [15], obesity
[16] and to lesser extent medication use [17], are the main environmental variables
known to influence FV plasma levels. Genetic factors have also been demonstrated
to contribute to the inter-individual FV variability including single nucleotide
polymorphisms (SNPs) at F5 and PLXDC2 loci [18]. The implication of F5 SNPs in
the regulation of FV plasma levels dates back to the end of the 90s [19] where the
HR2 haplotype tagged by rs6027 was identified. More recently, the F5 rs4524 was
also shown to influence plasma FV levels independently of the rs6027 [18]. The first
genome wide association study (GWAS) on FV levels, based on ~1700 individuals
identified the PLXDC2 locus as a second genetic player in FV regulation [18].
Altogether, these three loci explain less than 15% of the variability in plasma FV

levels, suggesting that additional molecular determinants could be involved in its
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regulation. With the aim of characterizing novel genomic regulators of FV plasma
levels, we here deployed a large scale agnostic genome wide search for non-additive
genetic effects associated with FV plasma levels using the Brown-Forsythe (BF)
methodology implemented in the Quicktest software [20]. While initially developed for
detecting parental-of-origin effects (POE), this methodology can also detect loci
prone to gene x gene or gene x environment interactions, making it a valuable tool to
complement standard genome wide association analysis. POE is a specific kind of
genomic imprinting [21,22] and several studies suggested that such epigenetic
mechanisms could impact key genes of the coagulation cascade [23,24], including
PLXDC2 [25]. In this work, the BF methodology was applied to genome wide
genotype data available in 4 study populations totaling 4,505 individuals with

measured FV plasma levels.

Materials & Methods

This work builds on four independent study populations of unrelated individuals, all of
European ancestry, that are part of the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium [26] : the LUdwigshafen RIsk and
Cardiovascular Health (LURIC) study [27] composed of 1,833 individuals, the
MARseille THrombosis Association (MARTHA) study [28] composed of 1,011
patients with venous thrombosis (VT), the Multiple Environmental and Genetic
Assessment (MEGA) study [29] of 865 VT cases and the Riesgo de Enfermedad
TROmboembolica VEnosa (RETROVE) [30] composed of a sample of 398 VT cases
and of 398 controls. All participants were phenotyped for plasma FV activity and
genotyped for genome wide polymorphisms using high-throughput DNA arrays.
Genotype data were further imputed using different reference panels. Detailed

descriptions of the phenotype and genotype measurements are given in
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Supplementary Table S1 together with additional details on imputation and genotype

quality controls.

All participating studies were approved by the respective institutional Ethics
Committees. Written informed consent was obtained from all participants to be

included in such genetic investigations.

Statistical Analysis
The Brown-Forsythe methodology implemented in the Quicktest program

Standard GWAS are generally performed for detecting SNPs having additive allele
effects on a trait of interest. The statistical modeling can thus be expressed, in case

of a quantitative trait Y, as

EX|®)=a+B G (1)

with G={0,1,2} according to the number of tested alleles carried by an individual. This
model assumes the absence of POE for the tested allele while POE would imply that
the effect of the tested allele would depend on whether it has been inherited from the

father or from the mother. In that case, a POE model could be written as:

E(YIG) = a+5(Bn+8,)6 (2

where B, and By corresponds to the maternal and paternal effects, respectively, if
they are identifiable. In absence of family data, these effects cannot be distinguished

and therefore cannot be estimated. To solve this problem, Hoggart et al. [20]
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proposed an appealing methodology to allow the detection of POE in genotype data

of unrelated individuals only. By rewriting model (2) as

E(Y|G=0)=a
EY|G=1)=a+nrfy, +(1—-m)p,

EY|G=2)=a+ Py +B,

where © is a random variable following a Bernoulli distribution with parameter ¥2 (50%
of alleles coming from the paternal and 50% from the maternal transmission), they
observed that, in presence of POE, the phenotypic variance in heterozygous
individuals should be higher than the phenotypic variances in the two groups of

homozygotes:

Var(Y|G = 0) = Var(Y|G = 2) = o2
Var(Y|G =1) = 0% + %(ﬁm —Bp)z

They then proposed to use the Brown-Forsythe (BF) test [31], a robust version of the
Levene test, to test whether the phenotypic variance in heterozygote carriers of a
given SNP is significantly higher than the phenotypic variances observed in
homozygotes. They further showed that this BF test is equivalent to performing a
linear model where the absolute deviation of the phenotype from the intra-genotype
median is regressed on a binary variable indicating whether an individual i is

heterozygote or not at the tested j SNP.

lyij =¥l =u + Y]l(lndividual i is heterozygous for genotype j) T €
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A positive and significant value for the y regression coefficient associated to this

indicator variable is a sign for POE.

They implemented this BF framework in the Quicktest program

[https://wp.unil.ch/sga/program/quicktest/] that can easily be applied to large GWAS

genotype datasets to detect POE acting on a quantitative trait. Of note, as highlighted
by Hoggart et al, while the presence of POE can lead to significant BF test, the
inverse is not necessary true as a significant BF test can also be due to other
phenomena such as haplotype effects, gene x gene or gene X environment

interactions.

For the present work, all SNPs with imputation quality r*> 0.5, minor allele frequency
> 0.005, and a number of heterozygous individuals greater than 20, were tested
through the BF methodology in relation to FV activity. Analyses were adjusted for
age, sex, and genetically derived principal components. Additional adjustment on

case-control status was performed in RETROVE.

The Quicktest software was applied in each study and results were then meta-
analyzed using a fixed-effect meta-analysis as implemented In the GWAMA software

[32].

Heterogeneity across study populations was assessed by the Cochran’s Q statistic

and the 1 index.

Genome wide statistical significance was considered at BF p-values <5 108,

Search for gene x gene interactions
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To further investigate the possible source explaining each genome—wide significant
BF signal, we sought for SNPs that could modulate FV activity differentially according
to the heterozygote status at the lead SNP identified by the QuickTest analysis. For
this, in each contributing study population, we conducted a genome-wide interaction
analysis based on a linear model where FV activity were regressed for age, gender,
genetically derived principal components, the heterozygote status at the lead BF
SNP, any SNP, and an interaction term between the latter two. All SNPs with
imputation quality r* < 0.5 and minor allele frequency < 0.005 were excluded from the
analyses. These genome wide interaction analyses were conducted using Plink2

(www.cog-genomics.org/plink/2.0/') [33].

For each tested SNP, interaction terms were then meta-analyzed across the 4
studies using a fixed-effect meta-analysis as implemented in the GWAMA software

[32].

Results

In total, 4,505 individuals were studied in this work. A brief description of the general

characteristics of the four contributing studies is given in Table 1.

7,300,264 SNPs were tested in relation with FV activity through the BF framework. A
Manhattan plot summarizing the statistical findings is shown in Figure 1. The
associated Quantile-Quantile plot is given in Supplementary Figure S1. One locus,
chr8g21.3, reached the prespecified genome wide statistical threshold of 5 x 10,

The lead SNP was rs75463553 and its POE vy coefficient was 0.128+0.022 (p = 3.45

x 10%). As shown in Table 2, the POE y coefficients were very homogeneous across
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the 4 contributing studies as were the allele frequencies. We observed that the
variance in FV activity was higher in carriers of the G/T genotype compared to the
combined groups of G/G and T/T genotypes while no association with mean FV

levels was observed (p=0.49 in the combined 4 studies).

rs75463553 maps to an intronic region of the non-coding RNA LOC105375623,
downstream to SLC7A13 and upstream to ATP6VOD2. It is in strong linkage
disequilibrium (LD) with 6 other nearby SNPs with genome wide significant BF p-
value (Supplementary Figure S2 — Supplementary Table S2). These 6 SNPs
generate 3 haplotypes with frequency > 1%. None of them associated with mean FV
activity (Supplementary Table S3) suggesting that the detected BF signal was

unlikely due to LD effects between nearby SNPs.

By interrogating various online genomic resources, we observed that:

- 1s75463553 is an expression quantitative trait locus (eQTL) for LOC105375623 in
testis but also for nearby SLC7A13 (testis) and WWPL1 (cultured fibroblasts) genes

(https://gtexportal.org/home/snp/rs75463553). It is also moderately associated with

the expression of more distant genes on 8g21.3 such as RMDN1, CPNE3 and

NTAN1P2.

- rs75463553 also associated (p = 1.76 x 10®) with plasma levels of RMDN1 protein
in the Fenland study [34], but it was mainly a protein quantitative trait locus (pQTL) (p
= 2.92 x 103 for Carbonic anhydrase XIIl whose structural gene (CA13), located on

8021.2, is more than 1 Mb from rs75463553.

- While moderately associated (p = 5.9 x 10™") with whole blood DNA methylation
levels at CAl13 ¢cg0571334 CpG site in the GoDMC database

(http://mqgtldb.godmc.org.uk/index)  [35], rs75463553 demonstrated  strong
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associations with whole blood DNA methylation at several CpG sites at the PSKH2
locus (Supplementary Figure S3) such as cg00001099 (p = 5.4 x 10%%), cg26186954

(p = 7.54 x 10™® ) and cg20982735 (p = 1.13 x 107°7).

PSKH2 is located upstream ATP6V0OD2 gene and has been shown to harbor SNPs
associated with neutrophil count [36] whose expression has been shown to correlate
with that of F5 in individuals with inflammatory disorders [37]. We then investigated
the association of rs75463553 with neutrophil counts in LURIC, MARTHA and
RETROVE. We observed a trend for neutrophil counts being higher in homozygote
carriers of the rs75463553-T allele (Table 3). However, this association was mainly
observed in individuals with high platelets counts. As shown in Table 3, when the
combined sample was divided according to the median of platelets observed in the
global population, rs75463553-TT carriers with platelets count over the median
exhibited significantly (p = 0.0023) higher neutrophil count while no association (p =
0.59) was observed in the group of individuals with lower platelets. Surprisingly, we
further observed that the significant association was mainly restricted to smokers
(Table 4). However, no such interactive effects were observed on FV activity (data
not shown) suggesting that the complex relationship between rs75463553, platelets
and neutrophils count would unlikely explain the statistical BF signal observed on FV
activity. Consistent with this hypothesis is the observation that the effect of
rs75463553 on FV variability, as assessed by the BF methodology, still holds
according to platelets and smoking (Supplementary Table S4), except in smokers

with high platelet counts.
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Of note, in LURIC, MARTHA and RETROVE where neutrophils and platelets count
were measured, FV activity did not exhibit significant correlation with them

(Supplementary Table S5).

We then further explored whether the original detected BF signal could be explained
by the interaction of rs75463553 with other SNPs. The genome wide scan conducted
in the four contributing studies identified one genome wide significant (p = 2.6 10®)
interaction (Supplementary Table S6, Supplementary Figure S4). In heterozygous
carriers of the rs75463553-T allele, carrying the rs7190785-A allele at GRIN2A on
chromosome 16p13.2 was associated with increased FV activity (f =0.05+0.01, p =
2.52 10®). By contrast, no association was observed for the rs7190785 allele in
individuals with GG or TT genotypes at rs75463553.(f = -0.01 + 0.01, p = 0.22). This
phenomenon was consistent in LURIC, MARTHA and MEGA, but not in RETROVE
(Supplementary Table S7). It is worthy to note that a second interaction signal nearly
reached genome wide significance (p = 6.27 x 10®) mapping to POM121L12 locus
on chr7pl12.1 which, as GRIN2A, has been observed in several GWAS to associate

with smoking phenotypes [38—40].

Discussion

This work was motivated by the search of non-additive genetic effects that could
contribute to the inter individual variability of FV plasma activity. To achieve this
objective, we used an underestimated methodology, but with great potential, that

allows to leverage on existing GWAS data in a very efficient and quick way as it is
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implemented in the easy-to-use Quicktest software [20]. Even if the method was
initially proposed to detect POE effects, it also has potential to detect non-additive
genetic effects that could be due to gene x gene or gene x environment interactions.
Its application here provides evidence for the presence of gene x smoking interaction

in the modulation of FV plasma activity.

The application of this methodology on 4,505 individuals phenotyped for FV activity
and with GWAS data identified SNPs at the 8921.3 locus significantly associated with
the variability of FV activity. Using publicly available resources, we observed that the
lead SNP at this locus, rs75463553, associates with DNA methylation levels of this
locus, in particular with several CpG sites at the PSKH2 gene. PSKH2 encodes a
protein serine kinase about which, little is known. Some genetic studies have linked
PSKH2 SNPs with neutrophil [36,41] and myeloid leukocyte [36] counts whose role in
the coagulation and thrombotic pathways have been highly discussed in the literature
[42]. In our work, we did observe an association between rs75463553 and neutrophil
counts, but this association could not explain the genome-wide signal we detected.
We sought to investigate whether this signal could be caused by POE in a family
study but we were only able to assess this hypothesis in a sample of 21 families from
the GAIT1 study [43]. Unfortunately, only 26 informative meioses were available to
test for a differential paternal — maternal effect of the rs75463553 and no statistical
association was observed (p>0.50) (data not shown). Of note, PSKH2 was not
detected to be prone to POE using an alternative methodology based on sequencing
data and applied to several phenotypes, including neutrophil counts, from the
UKbiobank [44]. This would suggest that the signal we detected using the QuickTest
software could be due to other phenomena rather than POE. In line with this

hypothesis are the candidate gene x gene interactions we identified with two loci,
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GRIN2A and POM121L12, that have been proposed to be involved in smoking
phenotypes in previous GWAS [38-40]. Unfortunately, smoking status at the time of
blood sampling was not available in all contributing studies and it was then not
possible to assess whether the observed signal was due to complex interactions
between several polymorphisms and smoking. Similarly, our studies had very limited
information about additional environmental covariates that prevented us from
performing more exhaustive gene x environment interaction analyses and from
determining whether the PSKH2 locus statistical signal could underline such epistasis

phenomena.

In conclusion, this work provides strong statistical argument supporting the role of the
PSKH2 locus in the variability of FV activity. But more in-depth investigations are now
needed to characterize the exact underlying mechanisms. Besides, this work also
emphasizes how to leverage on existing large GWAS datasets to detect non additive
allele effects using the Brown-Forsyth methodology as implemented in the QuickTest
program which could explain part of the missing heritability still existing for most

complex phenotypes.
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Table 1 : Brief description of the studied populations

LURIC MARTHA MEGA RETROVE
N 1,833 1,011 865 796
% of VT cases 0% 100% 100% 50%
Age, years (SD) 62.3 (10.8) 47.6 (15.7) 47.6 (12.9) 54.4 (19.9)
Female sex, N (%) 537 (29%) 633 (63%) 444 (51%) 406 (51%)
Factor V (U/dL) 1.13 (0.22) 1.07 (0.23) 0.95 (0.19) 0.99 (0.20)
Platelets count 231.1(66.7)  256.4(68.9) NA 235.3 (62.4)
Neutrophil counts*  59.6 (9.46) 61.1(8.91) NA 58.1(9.7)

Smoking at 1,163 (65%) 167 (18%) NA 129 (16%)

sampling (%)
*percentage compared to total white blood cells. In LURIC, smoking status includes both active and
former smokers.

Table 2 : Association of rs75463553 with phenotypic mean and variance of FV activity

LURIC MARTHA MEGA RETROVE
N 1,833 1,011 865 796
Minor Allele 0.145 0.117 0.156 0.106
frequency (G/T)
Imputation r’ 0.980 0.960 0.975 0.982
N
GG 1338 779 614 635
GT 463 222 235 153
TT 32 10 16 8
FV activity means
GG 1.132 1.056 0.958 0.990
GT 1.142 1.097 0.946 0.998
TT 1.059 1.082 0.912 1.119
FV activity standard
deviation
GG 0.212 0.224 0.176 0.192
GT 0.228 0.264 0.217 0.220
TT 0.185 0.261 0.157 0.292
POE v effect 0.098+0.033 0.181+0.049 0.152+0.050 0.115+0.055
P 1.693 x 10°  1.042 x 10*  1.307 x 10°  1.913 x 10”

EAF: Estimated allele frequency

The POE y effects did not show any evidence for heterogeneity across cohorts (1°=0, P = 0.518)
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Table 3 : Association of rs75463553 with neutrophil counts in LURIC, MARTHA and RETROVE studies according platelets count.

All population Platelets<=230 Platelets>230
LURIC MARTHA RETROVE LURIC MARTHA RETROVE LURIC MARTHA RETROVE
GG 4.21 (1.54) 3.95(1.43) 3.93(1.54) 3.89(1.38) 3.62(1.24) 3.67(1.39)N= 4.60 (1.63) 4.13 (1.49) 4.19 (1.64)
N =1312 N =675 N =635 N =728 N =239 318 N =584 N =436 N =317
oT 4.17 (1.57) 4.08 (1.59) 3.93(1.64) 3.92 (1.52) 3.59 (1.52) 3.54 (1.33) 4.49 (1.58) 4.38 (1.56) 4.29 (1.82)
N =455 N =186 N =153 N =255 N=72 N=73 N =200 N=114 N =80
T 4.43 (2.11) 4.87 (2.79) 3.75(1.51) 3.71(0.94) 4.02 (0.94) 3.19(0.37) 5.68 (2.94) 5.24(3.30) 5.43(2.79)
N =33 N =10 N=8 N =21 N=3 N=6 N =12 N=7 N=2
B £SE B=0.26+0.27 =092+0.47 p=-016+0.35 P=-0.18+0.32 (=042+0.76 P=-0.24£0.35 B=1.09+0.48 PB=1.09+0.59 B=0.53%0.76
p* P=0.351 P =0.053 P =0.654 P =0.562 P =0.581 P =0.497 p=0.023 P=0.063 P =0.480
. B=+ 0.31+0.22 B=-0.137+0.25 B=+1.08+0.35
Combined p P=0.146 P =0.59 P =0.0023

* Association was tested using a linear model adjusted for age and sex under the assumption of recessive effect B
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Table 4 : Association of rs75463553 with neutrophil counts according to platelets counts and
smoking in LURIC, MARTHA and RETROVE studies combined.

Platelets<=230 Platelets>230
Non Smokers Smokers Non Smokers Smokers
rs75463553
GG/GT 3.59 (1.30) 4.04 (1.47) 4.1 (1.52) 4.77 (1.65)
N =945 N =741 N = 1044 N = 688
T 3.49 (0.83) 3.81(0.92) 4.19 (1.5) 6.97 (3.44)
N=16 N=14 N=11 N =10
B +SE B=-0.032+0.323 (=-0.227+0.394 B=+0.084+0.457 P=+2.17+0.538
p* P=0.921 P=0.564 P =0.853 P=6.0710"

* Association was tested using a linear model adjusted for age, sex and cohort under the assumption
of recessive TT effect
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Figure 1 : Manhattan plot of 4 studies of unrelated Europeans individuals for detecting POE in FV plasma
level (n=4,505).

Supplementary Material

Tables S1-S7

Figures S1-S4

23


https://doi.org/10.1101/2024.02.08.579474
http://creativecommons.org/licenses/by-nc-nd/4.0/

