

1 **Protective function and differentiation cues of brain-resident CD8+ T cells during immune
2 surveillance of chronic latent *Toxoplasma gondii* infection**

3

4 Rémi Porte 1, Marcy Belloy 1, Alexis Audibert 1, Emilie Bassot 1, Amel Aïda 1, Marine Alis 1, Romain
5 Miranda-Capet 1, Aurélie Jourdes 1, Klaas van Gisbergen 2, Frédéric Masson 1, Nicolas Blanchard 1

6

7 1 Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS,
8 Inserm, UPS, Toulouse, France

9 2 Physiology and Cancer Programme, Champalimaud Research, Champalimaud Foundation, Lisbon,
10 Portugal

11

12

13 **Abstract (249 words)**

14 Chronic *T. gondii* infection induces brain-resident CD8+ T cells (bTr) but their protective functions and
15 differentiation cues remain undefined. Here, we used a mouse model of latent infection by *T. gondii*
16 leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches,
17 we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during
18 chronic stage, indicating that CD8+ bTr are sufficient to prevent brain parasite reactivation. We
19 observed that the retention markers CD69, CD49a and CD103 are sequentially acquired by brain
20 parasite-specific CD8+ T cells throughout infection, and that a majority of CD69/CD49a/CD103 triple-
21 positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency.
22 This TP subset develops in a CD4+ T cell-dependent manner, and is associated with effective parasite
23 control during chronic stage. Conditional invalidation of TAP-mediated MHC class I presentation
24 showed that presentation of parasite antigens by glutamatergic neurons and microglia regulate the
25 differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses upon *T. gondii* latency vs.
26 encephalitis revealed that resistance to encephalitis is associated with the expansion of stem-like
27 subsets of CD8+ bTr.

28 In summary, parasite-specific brain-resident CD8+ T cells are functionally heterogeneous and
29 autonomously ensure parasite control during *T. gondii* latent infection. Their differentiation is
30 shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T
31 cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident
32 CD8+ T cells in order to enhance control of chronic brain infections.

33

34 **Introduction**

35 CD8+ T cells are key players of adaptive immune responses against infections, both through their
36 ability to kill cells infected by an intracellular pathogen and through their capacity to produce
37 cytokines (e.g. IFN- γ) that activate anti-pathogen responses in neighbouring cells. Upon cognate
38 antigen recognition, costimulation and cytokine signaling, naïve CD8+ T cells may differentiate into
39 short-lived effector cells (SLEC) that secrete effector molecules (e.g. IFN- γ and granzyme B), or into
40 memory precursor cells (MPC) (Belz and Kallies, 2010). MPC can give rise to 3 types of memory cells:
41 (i) central memory cells (Tcm) that have stem-like properties and remain mostly within lymphoid
42 organs, where they are poised for being recalled, (ii) effector memory cells (Tem) that navigate
43 between peripheral tissues and lymphoid organs, and are equipped to quickly produce cytokines and
44 cytotoxic factors upon restimulation, (iii) resident memory cells (Trm) that durably station within
45 non-lymphoid tissues, including the central nervous system (CNS), where they provide local
46 protective immunity against re-infection (Gebhardt et al., 2009; Heeg and Goldrath, 2023; Steinert et
47 al., 2015; van Gisbergen et al., 2021).

48 These principles have been established mostly based on settings in which the pathogen is eventually
49 cleared. The persistence of a pathogen beyond acute infection can profoundly perturb, or at the very
50 least complicate, this scenario. A famous illustration is the functional impairment (“exhaustion”)
51 observed in a fraction of virus-specific CD8+ T cells during systemic chronic viral infections such as
52 HIV (Day et al., 2006) or LCMV (Wherry et al., 2003) infections (Lan et al., 2023). How CD8+ Trm
53 differentiate in the context of tissue-restricted latent infections has been partially addressed with
54 HSV-2 in the skin and sensory ganglia (Park et al., 2023; Roychoudhury et al., 2020), or with Polyoma
55 virus in the brain (Mockus et al., 2018; Ren et al., 2020). Yet, the extent by which the Trm
56 compartment is shaped by the long-term cohabitation with pathogens that remain transcriptionally,
57 and “antigenically”, active throughout chronic infection (e.g. as in *Toxoplasma gondii* infection),
58 remains poorly understood.

59 Generally, CD8+ Trm do not express a single defining marker. Depending on the pathophysiological
60 context and tissue of residency, CD8+ Trm may upregulate all or a combination of surface molecules
61 involved in tissue retention, such as the C-type lectin CD69 (encoded by the Cd69 gene), the $\alpha 1$
62 integrin CD49a (Itga1 gene), and the αE integrin CD103 (Itgae gene). Typically, Trm also display
63 higher expression of transcription factors that simultaneously facilitate expression of the tissue
64 residency program and suppress circulatory-associated genes, such as RUNX3 (Runx3 gene) (Milner
65 et al., 2017; Zitti et al., 2023), BLIMP1 (Prdm1 gene) (Kragten et al., 2018), and HOBIT (Zfp683 gene)
66 (Mackay et al., 2016).

67 Although the requirements are expected to differ according to the tissue microenvironment (Heeg
68 and Goldrath, 2023), several general mechanisms underlie the differentiation and maintenance of
69 CD8+ Trm across tissues. They include local antigen recognition and TCR signal strength (Abdelbary
70 et al., 2023; Low et al., 2020; Maru et al., 2017; Sanecka et al., 2018), engagement of costimulatory
71 receptors such as ICOS (Peng et al., 2022), signaling by cytokines such as type I IFN and IL-12
72 (Bergsbaken et al., 2017), IL-15 (Mackay et al., 2015), TGF- β (Ferreira et al., 2020; Mackay et al.,
73 2015; Mani et al., 2019) and IL-21 (Ren et al., 2020; Tkachev et al., 2021), the latter illustrating the
74 key contribution of CD4+ T cell help (Frieser et al., 2022; Son et al., 2021; Vincenti et al., 2022) in
75 optimal CD8+ Trm differentiation. These cues are thought to induce a network of factors, chiefly
76 transcription factors, that both control expression of surface adhesion molecules and orchestrate the
77 metabolic adaptations of Trm to their specific site of residence (Reina-Campos et al., 2023). This
78 explains the phenotypical heterogeneity of Trm across different tissues. Interestingly, even within a
79 given tissue, an important diversity has been observed, potentially mirroring the different functional
80 subsets that comprise the circulating memory CD8+ T cell compartment (Heeg and Goldrath, 2023;
81 Milner et al., 2020; Park et al., 2023) (reviewed in (Konjar et al., 2022; Szabo, 2023)).
82 To this date, the extent of CD8+ Trm functional diversity, its underlying mechanisms and long-term
83 functional consequences have remained ill-defined in settings of tissue-restricted chronic infections.
84 To fill this gap, we have set-out to study the function, differentiation cues and heterogeneity of
85 brain-resident memory CD8+ T cells (bTrm) cells in the context of chronic cerebral infection by the
86 brain-persisting *Toxoplasma gondii* (*T. gondii*) parasite.
87 *T. gondii* is a foodborne, obligate intracellular, apicomplexan parasite, considered as the most
88 widespread and generalist zoonotic pathogen on earth as it is found at every latitude and is able to
89 infect all warm-blooded animals. Following infection, rapidly dividing *T. gondii* tachyzoites can
90 invade all nucleated cells and disseminate systemically within the host, inducing strong type I
91 immune responses. Several parasite effectors are secreted into host cells during acute infection,
92 thereby eliciting immune modulatory mechanisms and preventing clearance of the parasite (Hakimi
93 et al., 2017). When inside retinal, muscular or neuronal cells, tachyzoites may convert into
94 bradyzoites, which are contained within intracellular cysts. Encysted bradyzoite stages are
95 responsible for the long-term, chronic persistence of *T. gondii* in the CNS, a phase called latency.
96 Based on the ~30% worldwide seroprevalence of *T. gondii* in humans (Bigna et al., 2020), and on the
97 fact that ~2/3 of these exposed individuals display immunoglobulins specific for latent *T. gondii*
98 stages (Dard et al., 2021), it is estimated that more than 1.5 billion humans carry *T. gondii* cysts in the
99 brain. Beside the risk of congenital malformations which may occur in case of primary infection
100 during pregnancy, and beside the severe forms of toxoplasmosis caused by hypervirulent South

101 American strains of *T. gondii*, the most severe clinical manifestations of *T. gondii* infection are usually
102 restricted to individuals presenting with acquired immune suppression, with a specific association
103 with HIV/AIDS. In individuals previously exposed to *T. gondii*, defective cellular immune surveillance
104 resulting from AIDS may lead to parasite reactivation (i.e. bradyzoite to tachyzoite reverse
105 conversion) and uncontrolled tachyzoite replication, ultimately causing systemic disseminated
106 toxoplasmosis and/or, most frequently, *T. gondii* encephalitis (TE). TE clinical symptoms combine
107 headache, fever, neurological deficits and epileptic manifestations. Before the introduction of
108 effective antiretroviral therapy against HIV, TE was the most frequent inaugural manifestation of
109 HIV/AIDS in Europe. More than 13 million people worldwide are currently estimated to be co-
110 infected with HIV and *T. gondii*, with nearly 90% of them in sub-Saharan Africa, making TE the second
111 infectious cause of mortality among people living with HIV in Africa (Wang et al., 2017). Therefore,
112 TE is a global public health challenge that imposes a major burden on Africa (Vidal, 2019). Notably,
113 although the links remain mostly correlative for now (Johnson and Koshy, 2020; Laing et al., 2020),
114 mounting evidence suggests that *T. gondii* contributes to neuropsychological disorders in
115 immunocompetent individuals (Burgdorf et al., 2019), and that it worsens cognitive decline upon
116 aging (Bayani et al., 2019; Nimgaonkar et al., 2016).

117 Up to now, most of the knowledge generated about immune surveillance of *T. gondii* in the brain, is
118 based on mouse models. Resident neuroimmune cells such as microglia and astrocytes play an
119 important role, for example through IL-1 α production by microglia (Batista et al., 2020), and IL-33
120 and CCL2 release by astrocytes, which are important to mobilize other immune cells (Orchanian et
121 al., 2024; Still et al., 2020). Innate immune cells recruited from the periphery, such as monocytes
122 (Biswas et al., 2015) and type 1 innate lymphoid cells (ILC1) (Steffen et al., 2022), are also implicated,
123 with ILC1 being an early source of IFN- γ in response to cerebral infection. IFN- γ is indeed a critical
124 cytokine for *T. gondii* restriction in the CNS. Accordingly, STAT1-mediated signaling in astrocytes
125 (Hidano et al., 2016) and microglia (Cowan et al., 2022) is required for optimal parasite containment
126 in the brain.

127 In part owing to their ability to produce IFN- γ , CD4+ (i.e. Th1) and CD8+ T lymphocytes are
128 considered as major players in *T. gondii* restriction. This is well established in the context of acute
129 infection (Nishiyama et al., 2020), which aligns with the observation that perforin, a key component
130 of CD8+ T cell cytotoxicity appears dispensable during acute infection (Denkers et al., 1997). The
131 respective contributions of IFN- γ and cytotoxic factors are not yet fully clarified during chronic
132 infection but perforin-dependent CD8+ T cell cytotoxicity was proposed to play a prominent role in
133 limiting brain parasite burden (Denkers et al., 1997; Suzuki et al., 2010). In agreement, studies
134 comparing mouse strains that are differentially susceptible to TE indicated that CD8+ T cells are a

135 pillar of protective immunity during chronic infection. Efficient presentation of parasite-derived
136 antigens by molecules of the class I Major Histocompatibility Complex (MHC) (Blanchard et al., 2008;
137 Brown et al., 1995; Feliu et al., 2013), and more specifically MHC I presentation of tachyzoite-derived
138 antigens by infected, glutamatergic neurons of the CNS, drives effective parasite control in the early
139 stages of parasite brain invasion, resulting in low cyst burden at chronic stage (Salvioni et al., 2019).
140 Two pioneer studies (one in an encephalitis-susceptible (Landrith et al., 2017) and one in an
141 encephalitis-resistant (Sanecka et al., 2018) model) have reported the presence of brain CD8+ T cells
142 with a surface phenotype (e.g. CD103+) and a transcriptional profile that are consistent with tissue
143 residency. A subsequent study confirmed the presence in the brain of parasite-specific CD69+
144 CD103+ CD8+ T cells, which display a Trm signature and had been recently activated (Shallberg et al.,
145 2022). Active parasite replication was reported to have a limited impact on the persistence of
146 parasite-specific CD69+ CD103+ CD8+ bTrm during *T. gondii* encephalitis, suggesting that the
147 phenotype of such cells may be imprinted early post-brain invasion (Shallberg et al., 2022). Yet, as of
148 now, little is known about the protective role, functional diversity and differentiation cues of
149 parasite-specific CD8+ bTrm during *T. gondii* latency. Notably, the roles played by brain-specific
150 antigen-presenting cells such as neurons and microglia, remain unaddressed.
151 In this work, we have set-out to address the function, differentiation cues and transcriptional
152 heterogeneity of CD8+ bTrm using mouse models of chronic *T. gondii* infection. We have
153 accumulated evidence that brain-resident CD8+ T cells play a more prominent role than brain-
154 circulating CD8+ T cells in keeping parasites in check during latency. We also report that both
155 excitatory neurons and CX3CR1+ brain macrophages (including microglia), optimize the
156 differentiation of the brain-resident CD8+ T cell compartment. At last, by delineating the
157 transcriptional heterogeneity of parasite-specific CD8+ bTrm upon encephalitis and throughout early
158 vs. late latency, we identify stem-like T cell populations that are preferentially associated with long-
159 term parasite control.
160

161 **Results**

162 Latency is considered as the most frequent outcome in immunocompetent individuals exposed to *T.*
163 *gondii*. Upon infection with type II *T. gondii* strains, the susceptible C57BL/6 mice develop TE.
164 Hence, to be able to study *T. gondii*-specific CD8+ bTrm throughout latent infection, we infected
165 C57BL/6 mice with a *T. gondii* line derived from the type II Prugnaud (Pru) strain, modified to express
166 a model antigen (GRA6-OVA(Feliu et al., 2013; Salvioni et al., 2019)) that is efficiently processed and
167 presented by MHC class I molecules, thereby eliciting TE-protective CD8+ T cell responses in the brain
168 (Salvioni et al., 2019)) and leading to latent infection (**Fig. 1A**).

169 To first evaluate the respective contributions of circulating *vs.* brain-resident CD8+ T cells (bTr) in
170 immune surveillance of *T. gondii* infection during chronic stage, we took advantage of the differential
171 sensitivity of circulating and bTr to the depletion induced by systemic administration of an anti-CD8
172 antibody. Such a treatment was indeed reported to preferentially eliminate peripheral circulating
173 CD8+ T cells while largely preserving brain-resident T cells (Frieser et al., 2022; Steinbach et al.,
174 2016). Starting at ~1 month post-infection, we administered an anti-CD8 β antibody for 2 weeks, (**Fig.**
175 **1A**). This treatment depleted CD8+ T cells in the spleen (**Fig. 1B, 1C**) but, as expected, it had a limited
176 effect on CD8+ T cells from the brain (**Fig. 1B, 1D**). The only subset of CD8+ T cells that was
177 significantly reduced in the brain was the CD69/CD49a/CD103 triple-negative (TN) population, which
178 are most likely circulating cells (**Fig. 1E**). Two (2) weeks post-treatment, the anti-CD8 antibody
179 treatment led to splenomegaly (not shown) and to an increase in total splenocyte number (**Fig. 1F**),
180 potentially reflecting a higher parasite burden in the spleen. A recrudescence of *T. gondii* in the
181 spleen was indeed observed in ~40% (6 out of 16) treated animals (**Fig. 1G**). However, this anti-CD8
182 treatment did not alter parasite control in the brain (**Fig. 1H**), indicating that peripheral CD8+ T cells
183 are important for parasite control in the spleen but dispensable for parasite control in the brain
184 during latency, in turn suggesting that an anti-CD8-insensitive, brain-resident, CD8+ T cell
185 compartment is self-sufficient to limit reactivation during chronic stage.

186 In order to monitor the formation of brain-resident CD8+ T cells throughout infection in this model,
187 we isolated CD8+ T cells from the brain at different times post-infection (**Fig. 2A**), and used flow
188 cytometry to measure the surface expression of 3 tissue retention molecules (CD69, CD49a and
189 CD103) on both parasite (OVA)-specific CD8 α + T cells and total CD8 α + T cells (**Fig. 2B, 2C**). At both
190 chronic infection timepoints examined (d32pi and d76pi), the majority of total and parasite-specific
191 CD8+ T cells in the brain co-expressed CD69 and CD49a (i.e. belonged to the DP or TP subsets) (**Fig.**
192 **2D, 2E**), indicative of their likelihood to reside in the brain and, based on CD49a expression,
193 suggestive of a type 1/cytotoxic profile (Cheuk et al., 2017; Park et al., 2023). CD103 was largely
194 absent in the acute stage (d13pi) and was observed exclusively on cells already expressing CD69 and

195 CD49a. Accordingly, while few parasite-specific CD8+ T cells simultaneously expressed the 3
196 retention markers at d13pi, almost half of them acquired triple expression of CD69, CD49a and
197 CD103 (TP subset) at d32pi, a proportion which remained stable until d76pi (**Fig. 2E**). Notably, during
198 chronic stage, the proportion of TP cells was slightly higher among parasite (OVA)-specific CD8+ T
199 cells than among total CD8+ T cells, but overall, the kinetic evolution of these 3 markers was similar
200 for parasite-specific and total CD8+ T cells (**Fig. 2D, 2E**). Using a tdTomato-based reporter mouse for
201 Hobit (Homolog of Blimp-1 in T cells), a transcription factor typically associated with tissue residency
202 in T cells (Mackay et al., 2016; Parga-Vidal et al., 2021) (**Fig. 3A**), we observed that CD69+ CD49a+
203 CD8+ T cells, positive or not for CD103 (i.e. TP and DP subsets respectively), contain the highest
204 proportion of Hobit-tdTomato+ cells (**Fig. 3B, 3C**), showing that, in these settings, Hobit+ brain-
205 resident CD8+ bTrm comprise CD103-negative and CD103-positive cells. On this basis, we inferred (i)
206 that most DP and TP cells are *bona fide* (Hobit+) brain-resident T cells and (ii) that most TN cells (i.e.
207 CD69/CD49a/CD103 triple-negative) are T cells that are recirculating in the brain. Considering the
208 persistence of their cognate antigen throughout chronic stage, the ‘memory’ status of such OVA-
209 specific resident T cells may be questioned. Thus, we preferred to name them brain-resident T cells
210 (bTr) instead of brain-resident memory T cells (bTrm). Interestingly, compared to TN bTcirc, DP/TP
211 bTr displayed a higher percentage of ‘bi-functional’ cells able to co-express IFN- γ and granzyme B
212 upon PMA/ionomycin stimulation (**Fig. 3D-F**), showing that DP/TP bTr are endowed with a higher
213 effector potential than CD8+ bTcirc, further reinforcing the notion that DP/TP bTr play an important
214 role in brain parasite restriction.

215 To start deciphering the signals driving the formation of CD8+ bTr in this latent infection, we first
216 assessed the importance of cues provided by CD4+ T cells. Hence, we eliminated the CD4+ T cells
217 before *T. gondii* infection with an anti-CD4 depleting antibody and pursued the depletion throughout
218 chronic phase (**Fig. 4A**). As expected, there was a drop in the number of CD4+ T cells in the spleen
219 and brain at acute stage (d13pi) (**Sup. Fig. 1A, 1B, 1D**) but no major effect on the number of parasite
220 (OVA)-specific CD8+ T cells in these 2 organs (**Sup. Fig. 1C, 1E**), and no change in parasite
221 dissemination or access to the brain (**Sup. Fig. 1F, 1G**). This is in line with previous work with CD4
222 knock-out mice showing that CD4+ T cells are dispensable to resist acute *T. gondii* infection
223 (Schaeffer et al., 2009). At chronic stage (d33pi), the anti-CD4 treatment also reduced the proportion
224 and abundance of CD4+ T cells in the spleen (**Fig. 4B, 4D**) and the brain (**Fig. 4C, 4E**) without
225 negatively impacting the number of parasite (OVA)-specific CD8 T cells in the spleen (**Fig. 4F, 4H**) and
226 brain (**Fig. 4G, 4I**). Strikingly, in the brain, the absence of CD4+ T cells blocked the differentiation of
227 *T. gondii*-specific DP CD8+ T cells into TP cells (**Fig. 4J, 4K**) and reduced the proportion of granzyme B⁺
228 cells among DP/TP (CD69⁺ CD49a⁺) bTr (**Fig. 4L**). Concomitantly, CD4+ T cell-depleted mice displayed

229 a significantly higher parasite load in the brain (**Fig. 4M**), suggesting that among parasite-specific
230 CD8+ bTr cells, the CD4+ T cell-dependent cytotoxic subsets play a particularly important role in
231 parasite control.

232 We then wished to gain insights into the local mechanisms that control differentiation of parasite-
233 specific CD8+ bTr cells. Given the relevance of neurons and microglia during brain *T. gondii* infection,
234 we addressed to which extent MHC I presentation of parasite antigens by neurons or microglia,
235 regulates the differentiation of parasite-specific CD8+ bTr. To conditionally disrupt MHC class I
236 processing and presentation, we generated a new Cre/Lox system enabling cell type-specific
237 invalidation of the Tap1 gene, which encodes one subunit of the transporter associated with antigen
238 processing (TAP) (Tap1fl/fl) (**Sup. Fig. 2A**). TAP imports antigenic peptides in the endoplasmic
239 reticulum, where loading of the final antigenic peptides onto nascent MHC class I molecules takes
240 place. Therefore, TAP is a critical component of the MHC I pathway both for endogenous and for
241 exogenous antigens (i.e. cross-presentation) (Adiko et al., 2015; Mantel et al., 2021). In order to
242 target excitatory neurons and brain macrophages (including microglia), we used inducible Cre-
243 reporter systems based on the Camk2a (Casanova et al., 2001) and the Cx3cr1 (Parkhurst et al., 2013)
244 promoters, respectively. To validate the neuron-specific deletion of Tap1, we treated Tap1fl/fl x
245 Camk2a-CreER+ (TAP^{neuronKO}) and CreER— (TAP^{neuronWT}) mice with tamoxifen, and prepared genomic
246 DNA from neuronal vs. non-neuronal cell fractions (**Sup. Fig. 2B**). As expected, the Cre-recombined
247 locus was detectable only in neurons from tamoxifen-treated Cre+ mice (**Sup. Fig. 2C**). Contrary to
248 adult neurons, microglia is amenable for flow cytometry analysis, thus, in order to validate the
249 Tap1fl/fl x Cx3cr1-CreER model, we treated mice with tamoxifen, waited for one month to allow
250 replenishment of the CX3CR1+ monocyte compartment (**Sup. Fig. 2D**), infected the mice and
251 measured surface expression of H-2K^b and H-2D^b MHC I molecules by Facs on brain-isolated CD45lo
252 CD11b+ cells (comprising microglia and other brain macrophages), CD45hi CD11b+ cells (comprising
253 monocytes) and CD45hi CD11b- (comprising lymphocytes) (**Sup. Fig. 2E**). Expectedly as a
254 consequence of Tap1 invalidation, both the proportion of MHC I-positive cells and the intensity of
255 MHC I staining were drastically reduced in microglia/macrophages from tamoxifen-treated Cre+
256 animals compared to tamoxifen-treated Cre— mice. This was true for both the H-2K^b (**Sup. Fig. 2F-H**)
257 and H-2D^b (**Sup. Fig. 2I-K**) alleles of MHC I. Cre induction by tamoxifen had no effect on MHC I
258 expression in the 2 other cell types analyzed (monocytes and lymphocytes) (**Sup. Fig. 2F-K**). For the
259 sake of simplicity, we named Tap1fl/fl x Cx3cr1-Cre+ mice: TAP^{microgliaKO} and Cre— mice: TAP^{microgliaWT}.
260 After validating this model, we could evaluate the importance of TAP-dependent MHC I presentation
261 by neurons and microglia in the differentiation of parasite (OVA)-specific CD8+ bTr in the brain. Our
262 previous data had underscored the critical role of neuronal MHC I presentation for parasite control at

263 early chronic stage (Salvioni et al., 2019). We thus anticipated a different parasite burden between
264 TAP^{neuronKO} and TAP^{neuronWT} mice, potentially resulting in different amounts of neuroinflammation and
265 available antigen. To mitigate this confounding factor, we treated mice with an anti-parasitic drug
266 (pyrimethamine) during acute stage, late enough so as to not clear the parasite, but early enough so
267 as to equalize the brain parasite load at d33pi (**Fig. 5A, 5B**). We then quantified the percentage (**Fig.**
268 **5C**) and absolute number (**Fig. 5D**) of TN, SP, DP and TP subsets among parasite (OVA)-specific CD8+
269 T cell subsets at 33dpi. TAP invalidation in excitatory neurons led to a slight reduction in the
270 proportion of TP cells and a significant decrease in the abundance of DP & TP parasite (OVA)-specific
271 CD8+ T cells in the brain (**Fig. 5C, 5D**). Moreover, TAP^{neuronKO} mice had less bi-functional IFN-
272 γ +/granzyme B+ OVA-specific bTr (**Fig. 5E**). TAP invalidation in CX3CR1+ microglia/macrophages (**Fig.**
273 **5F, 5G**) affected the differentiation of CD8+ bTr as well, mostly also by reducing the TP population of
274 CD8+ bTr (**Fig. 5H, 5I**). However, it did not significantly affect the number of bi-functional IFN-
275 γ +/granzyme B+ OVA-specific CD8+ bTr at d33pi (**Fig. 5J**). In conclusion, presentation of parasite
276 antigens by excitatory neurons and by brain macrophages both positively regulate the formation of
277 CD8+ bTr, with a more pronounced effect on the TP subset. Moreover, the bi-functional effector
278 capacity of CD8+ bTr is enhanced by neuronal MHC I presentation.
279 At last, we decided to take advantage of this latent infection setting to identify subsets of brain-
280 resident CD8+ T cells that may be specifically associated with long-term parasite control and
281 resistance to TE. In order to perform a comparison with a context of susceptibility to TE, we used a
282 Pru-derived *T. gondii* line expressing another OVA-based model antigen (SAG1-OVA) that is more
283 poorly presented than GRA6-OVA and leads to less effective parasite control in the brain (Salvioni et
284 al., 2019; Schaeffer et al., 2009) (**Sup. Fig. 3A**). Whereas mice infected with *Tg*.GRA6-OVA parasites
285 regained weight following acute phase, mice infected with *Tg*.SAG1-OVA parasites developed a
286 more severe form of chronic infection with higher parasite load persisting in the brain following the
287 resolution of acute phase (**Sup. Fig. 3B, 3C**). Using these 2 models, we performed a longitudinal
288 single-cell RNA-seq analysis of parasite (OVA)-specific CD8+ T cells isolated from the brain at different
289 time points post-infection. We Facs-sorted OVA-specific CD8+ T lymphocytes from the brain at
290 'early' (52 days post-infection (dpi)) and 'late' (160dpi, ~5.5 months pi) chronic infection. For ethical
291 reasons, only latently infected mice, and not encephalitic mice, could be included at the late time
292 point. We Facs-sorted parasite-specific CD8+ T cells into CD103-negative and CD103-positive
293 populations (**Sup. Fig. 3D**) and subjected these cells to scRNA-seq processing with the 10x Genomics
294 platform. Following successive steps of quality control, the gene expression profiles of 6182 OVA-
295 specific CD8+ T cells pooled from the 3 conditions (i.e. early encephalitis d52pi, early latency d52pi,
296 late latency d160pi) were integrated with Seurat and included in subsequent analyses (**Sup. Fig. 3E**).

297 After projection on a Uniform Manifold Approximation and Projection (UMAP) plot, parasite-specific
298 CD8+ T cells partitioned in 13 clusters (**Fig. 6A, 6B**). Six (6) out of 13 clusters (clusters 0, 1, 2, 7, 8, 12
299 comprising 65 % of the dataset) had a positive enrichment score for at least one published Trm
300 signature and a negative enrichment score for circulating T cell signatures (**Fig. 6C**), confirming that a
301 majority of parasite-specific CD8+ T cells present in the brain during chronic stage indeed have a
302 resident transcriptional profile. Three (3) out of 13 clusters (clusters 3, 5 and 11 comprising 19 % of
303 the dataset) had a positive enrichment score for circulating T cell signatures and a negative
304 enrichment score for Trm signatures, and the 4 remaining clusters (clusters 4, 6, 9, 10 comprising 16
305 % of the dataset) displayed a mixed profile (**Fig. 6C**). Based on these analyses, we tagged cells within
306 these clusters respectively as resident (bTr), circulating (bTcirc) or mixed (bTmixed).
307 This first basic GSEA analysis indicated that parasite-specific CD8+ bTr span 6 clusters, and that they
308 are transcriptionally heterogeneous. As expected, the frequency of CD103-positive cells (based on
309 Facs sorting) tended to be lower in bTcirc clusters (#3, #5, #11), but CD103-positive cells did not
310 make up a distinct cluster of bTr (**Fig. 6D**). CD103-positive cells partitioned in bTr and non-bTr
311 clusters in variable proportions, emphasizing the notion that CD103 is not a universal marker of
312 tissue-resident T cells (Bergsbaken and Bevan, 2015; Bergsbaken et al., 2017; Ferreira et al., 2020;
313 Steinert et al., 2015). Additional GSEA for ‘functional’ gene signatures (**Fig. 6E**) and inspection of
314 individual marker genes (**Fig. 6F**) further underlined the marked diversity of *T. gondii*-specific CD8+
315 bTr and allowed to infer their functional status. We identified (i) “inflammatory effector” bTr cells
316 (cluster 0) that have recently been activated by the TCR and overexpress Tnf, Ifng and chemokine
317 genes, (ii) “stem-like” bTr cells (clusters 2, 8 & 12), which display lower expression of cytokine genes
318 and higher expression of genes associated with stemness in T cells (e.g. Cd27, Tcf7), which are
319 transcriptionally close to progenitor CD4+ T cells (Schnell et al., 2021) and which, especially for
320 cluster 2, overexpress Pdcd4, a translational repressor involved in the downregulation of IFN- γ
321 production in T cells (Lingel et al., 2017), (iii) “bi-functional” bTr cells (cluster 7), which have also been
322 recently TCR-activated, which display IFN-responsive signatures, and which simultaneously
323 overexpress Ifng and cytotoxicity-associated genes (e.g. Prf1 & Gzmb), indicative of a dual effector
324 activity and a potential implication in parasite containment. In addition, some bTr cells (grouped
325 within cluster 1) showed upregulation of Jun and Fos early response genes, as well as of many other
326 genes known to be affected by the cell isolation procedure (Crowl et al., 2022; van den Brink et al.,
327 2017). We called cells within this cluster “tissue-processing imprinted”. Remarkably, none of the 13
328 clusters upregulated the typical T cell exhaustion genes (e.g. Pdcd1 and Tox), confirming the absence
329 of T cell functional exhaustion, a feature that was previously reported in another model of latent *T.*
330 *gondii* infection using adoptively transferred parasite-specific CD8+ T cells (Chu et al., 2016). By

331 examining the temporal evolution of these 13 clusters (**Fig. 6G, 6H**), we noticed that the abundance
332 of “bi-functional” bTr cells (cluster 7) and of “tissue processing-imprinted” cells (cluster 1) was largely
333 similar across the conditions. Expectedly, we found that “inflammatory effector” bTr cells (cluster 0)
334 predominated during encephalitis and early latency, and decreased upon late latency. In contrast,
335 “stem-like” bTr cells (clusters 2, 8 & 12) inflated over time and were most abundant at late latency.
336 To confirm the existence and temporal evolution of such stem-like subsets, we used flow cytometry
337 to monitor the proportion of TCF1 (Tcf7 gene)/CD27 double-positive cells among CD69+ CD49a+
338 CD8+ bTr throughout early (d37pi) and late (d135pi) latency (**Sup. Fig. 4A, B, C**). This complementary
339 read-out confirmed that stem-like T cells indeed make up an increasing proportion of bTr, both
340 among parasite (OVA)-specific CD8+ T cells (**Sup. Fig. 4D**) and among total CD8+ T cells (**Sup. Fig. 4E**),
341 suggesting that they might be important contributors of long-term parasite control during latency.
342 The above data were obtained with endogenous CD8+ T cells specific for OVA-based model antigens
343 expressed by *T. gondii*. To confirm that CD8+ T cells specific for a natural parasite antigen display a
344 similar transcriptional diversity, we infected H-2L^d-transgenic C57BL/6 mice (B6.L^d (Salvioni et al.,
345 2019)) with Tg.GRA6-OVA and performed a new single-cell transcriptomic analysis of brain-isolated
346 CD8+ T cells at early latency (46 dpi) (**Sup. Fig. 5A**). In addition to OVA-specific CD8+ T cells, infection
347 of this B6.L^d transgenic mouse model with type II *T. gondii* elicits CD8+ T cells that recognize a
348 decameric antigenic peptide (HF10) that is naturally processed from the GRA6 protein of *T. gondii*
349 and is presented by H-2L^d MHC I (Blanchard et al., 2008; Salvioni et al., 2019). The analysis of 2715
350 total CD8+ T cells isolated from the brain revealed 9 clusters (**Sup. Fig. 5B, 5C**). GSEA with the same
351 resident vs. circulating T cell gene signatures as above (see Fig. 6) showed that half of such CD8+ T
352 cells (~49%, corresponding to clusters 0, 1, 3 & 8) could be defined as bTr based on their preferential
353 enrichment in Trm signatures, a quarter of the cells (~24%, corresponding to clusters 2 & 5) could be
354 defined as Tcirc based on their enrichment in circulating T cell signatures, and the rest (~27%,
355 clusters 4, 6, 7) had unclear and/or hybrid transcriptional profiles, and were tagged as bTmixed (**Sup.**
356 **Fig. 5D**). Thanks to barcoded (dCode) MHC class I dextramers loaded with the OVA-derived (K^b-OVA)
357 or GRA6-derived (L^d-GRA6) peptides, we used CITE-seq to retrospectively identify CD8+ T cells
358 specific for OVA or GRA6 in each cluster (**Sup. Fig. 5E, F**). Based on the overall abundance of L^d-
359 GRA6- vs. K^b-OVA-labelled T cells, the GRA6-specific response appeared subdominant compared to
360 the OVA-specific response. Nevertheless, T cells of both antigenic specificities distributed in all
361 clusters, with the exception of cluster 7, which corresponds to Pdcd1+ Tox+ exhausted T cells (**Sup.**
362 **Fig. 5G**). This indicated that T cell exhaustion does occur during latent *T. gondii* infection but not in
363 the parasite-specific compartment. As above, we plotted the average expression of the same set of
364 individual genes (**Sup. Fig. 5G**) and performed GSEA with the same functional gene signatures on

365 these 9 clusters (**Sup. Fig. 5H**). To help highlight the equivalence between clusters identified in this
366 new experiment and clusters from the former experiment performed with OVA-specific CD8+ T cells
367 (depicted in Fig. 6), we calculated the Spearman correlation coefficient between clusters of each
368 experiment, based on the log2 fold-change of all genes expressed by cells within each cluster (**Sup.**
369 **Fig. 5I**). This set of analyses allowed us to identify one subset of tissue processing-imprinted bTr cells
370 (cluster 3), one subset of Ifng+ Gzmb+ bi-functional bTr (cluster 8), one subset of TCR-activated
371 Runx3+ Pdcd4+ bTr (cluster 0), and two clusters of “stem-like” CD8+ T cells (one of bTr: cluster 1, and
372 one of bTmixed: cluster 4).
373 In conclusion, single-cell transcriptomic analyses of CD8+ T cells isolated from the brain confirmed
374 that a majority of parasite-specific CD8+ T cells display tissue-resident transcriptional profiles and
375 that they are refractory to functional exhaustion. In addition, these analyses unveiled the high
376 transcriptional diversity of parasite-specific CD8+ bTr cells, ranging from progenitor-like to bi-
377 functional effector phenotypes. They showed that long-term parasite control in the brain (i.e. late
378 latency) is associated with the expansion of TCF1+ CD27+ CD8+ bTr that display stem-like features.
379
380

381 **Discussion**

382 Through a combination of single-cell approaches, antibody-based T cell depletion strategies, and a
383 novel conditional KO model to cripple the MHC I antigen processing pathway in brain antigen-
384 presenting cells (APC), our work sheds light on 3 major unresolved questions during *T. gondii* latent
385 infection: 1) the role of brain-resident CD8+ T cells in parasite immune surveillance, 2) the cellular
386 cues that govern the differentiation of such brain-resident CD8+ T cells, and 3) their functional
387 diversity.

388 A key achievement of our work is to address how MHC I presentation of parasite antigens by
389 excitatory neurons and resident macrophages within the brain regulates the formation of CD8+ bTr.
390 While trafficking of activated CD8+ T cells into a tissue is mostly inflammation-driven, the
391 differentiation into Trm is thought to be mostly controlled by local cues. Studies have shown that
392 cognate antigen recognition within the tissue is a major driver of Trm differentiation and survival.
393 For example, antigen stimulation in the skin upon Vaccinia virus infection induces CD69 and
394 promotes skin retention of cognate CD8+ T cells (Khan et al., 2016). Antigen stimulation in the brain
395 upon VSV infection was reported to promote CD103 expression on CD8+ bTrm (Wakim et al., 2010).
396 Regarding the respective contributions of tissue APC, a pioneer study in the lung, in the context of
397 chronic LCMV infection, showed that although leading to different transcriptional responses, both
398 hematopoietic and non-hematopoietic APC of the lung were able to reactivate lung CD8+ Trm upon
399 re-exposure to the virus (Low et al., 2020). This was in contrast to the lung-draining lymph nodes
400 where memory CD8+ T cells were strictly reliant on DC for their reactivation (Low et al., 2020). To
401 our knowledge, conditional KO approaches to genetically dissect the respective contributions of
402 tissue APC in resident T cell differentiation have never been used so far. The model implemented for
403 this study allowed cell type-specific conditional invalidation of TAP1, a critical component of MHC I
404 antigen processing, known to be important for presentation of the GRA6-derived antigenic peptide
405 (Blanchard et al., 2008). Neurons are the main target cells of *T. gondii* in the brain (Cabral et al.,
406 2016) and the only reservoir of parasite cysts during chronic stage (Melzer et al., 2010). Moreover,
407 our previous work showed that MHC I presentation of tachyzoite-derived antigens by excitatory
408 neurons during early chronic stage (~d30pi) drives resistance against TE, without affecting the
409 accumulation of CD8+ T cells in the CNS (Salvioni et al., 2019). Beside neurons, microglia are also
410 relevant host cells for *T. gondii* (Cabral et al., 2016) and their ability to respond to IFN- γ is
411 instrumental for optimal parasite control in the brain (Cowan et al., 2022). Based on this, we decided
412 to investigate the role of both types of APC in the formation of CD8+ bTrm using tamoxifen-inducible
413 Cre lines. Overall, our data show that MHC I presentation by neurons and microglia has modest but
414 clear effects on the differentiation of parasite-specific CD8+ bTr. In line with a former study of brain

415 CD8+ Trm upon viral infection showing a requirement for antigen recognition within the brain for
416 expression of CD103 on Trm (Wakim et al., 2010), we observed that TAP-dependent MHC I
417 presentation of *T. gondii*-derived antigens by both excitatory neurons and microglia promotes the
418 generation of TP (CD69+ CD49a+ CD103+) CD8+ bTr. An additional and intriguing result is that the
419 generation of bi-functional CD8+ bTr relied preferentially on the ability of T cells to recognize their
420 cognate antigen on the surface of excitatory neurons. These differential requirements may be linked
421 to the quantity of peptide-MHC complexes present on the surface of each APC type or, perhaps more
422 interestingly, on the parasite stage from which the antigen is processed (assuming that only neurons
423 could process and present bradyzoite-secreted GRA6-OVA). Whether, and to which extent, CD8+
424 bTrm differentiation is shaped by parasite effectors that may manipulate host responses in a stage-
425 specific manner, remains to be investigated.

426 A second critical finding of our work is to uncover the protective function of *T. gondii*-specific CD8+
427 bTr. While CD8+ T cells with a phenotypic and transcriptional profile reminiscent of Trm had been
428 previously reported in the brain of mice chronically infected with *T. gondii* (Landrith et al., 2017;
429 Sanecka et al., 2018), the function of these resident T cells had remained unstudied. Our C57BL/6-
430 based infection model mimicking latent infection provided a well-suited context to examine the
431 functional role of CD8+ bTr. Up to now, no genetic model allowing a targeted elimination of brain-
432 resident T cells has been published. Our attempts to use the Hobit-tdTomato-DTR model to
433 eliminate Hobit+ T cells via diphtheria toxin (DT) injection failed for brain-resident cells. As described
434 previously (Parga-Vidal et al., 2021; Zundler et al., 2019), we confirmed that DT injection reduces Trm
435 numbers in the liver and the intestine, but this treatment was ineffective in the brain (not shown).
436 To overcome this limitation, we had to resort to using indirect approaches. Injection of anti-CD8
437 antibodies during chronic infection, which leaves intact the tissue-resident T cell compartment but
438 cripples the circulating CD8 T cells (Frieser et al., 2022; Steinbach et al., 2016), showed that
439 circulating CD8+ T cells are dispensable for optimal parasite control in the brain while they limit the
440 recrudescence of *T. gondii* in the spleen. Based on our current understanding of latent *T. gondii*
441 infection, the only reservoir of parasites during latency is the CNS. Hence, we assume that the
442 increased parasite load observed in the spleen upon CD8 T cell depletion is not linked to a local
443 (splenic) reactivation but rather due to the continuous escape of a few parasites (most likely
444 tachyzoites) from the CNS to the periphery, possibly through meningeal lymphatics (Kovacs et al.,
445 2022). We hypothesize that in the absence of peripheral CD8+ T cells, these 'escaped' tachyzoites
446 were poorly controlled and thus able to replicate, leading to their detectability by qPCR two weeks
447 post-depletion. The protective role of bTr was revealed as well when we depleted the CD4 T cell
448 compartment. The fact that, in mice, CD4+ T cells play a limited role in parasite restriction and are

449 not mandatory to survive acute stage (Schaeffer et al., 2009), allowed us to focus on the impact of
450 CD4+ T cells during chronic stage. In CD4+ T cell-depleted mice, we observed a strong blockade in
451 the differentiation of CD8+ bTr from the CD69+ CD49a+ double-positive (DP) into the CD69+ CD49a+
452 CD103+ triple-positive (TP) cells, correlating with an increase in brain parasite burden. This result
453 suggests that the CD4+ T cell-dependent subset of TP CD8+ bTr strongly contributes to keeping the
454 parasites in check in the brain. Noteworthy, our experimental set-up (in which CD4+ T cells are
455 depleted prior to infection) did not allow us to conclude if the CD4+ T cell-mediated parasite
456 restriction is set early at the time of parasite invasion and is durable, or if CD4+ T cell help is
457 constantly needed for optimal maintenance of the resident CD8+ T cell compartment. Regardless,
458 our data emphasizing the critical role of CD4+ T cells in maintaining effector function of CD8+ T cells
459 and in *T. gondii* control, appear in agreement and extend previous findings from the Khan laboratory,
460 who reported the importance of CD4+ T cells in maintaining the functionality of CD8+ T cells and
461 showed in a pioneer study that the IL-21 receptor is required for the control of *T. gondii* reactivation
462 in the brain (Moretto et al., 2017). At the time of their publication, the concept of resident T cells
463 was just emerging. Their findings might now be reinterpreted in the light of the importance of IL-21
464 for tissue-resident CD8+ T cell differentiation (Ren et al., 2020). Importantly, we think that our data
465 help understand the long known association between HIV/AIDS and parasite reactivation leading to
466 TE in humans (Nissapatorn, 2009). During HIV infection, HIV is known to infect and elicit death of
467 CD4+, not CD8+, T cells. Nevertheless, both the CD4+ and CD8+ T cell compartments display major
468 dysfunctions upon HIV infection (Fenwick et al., 2019). Such dysfunctions include not only the well-
469 studied state of functional exhaustion (Day et al., 2006) but also an impairment in Trm differentiation
470 and maintenance. Accordingly, it was reported that HIV-infected individuals presenting with a low
471 CD4+ T cell nadir (i.e. that have started anti-retroviral therapy at a late timepoint) display an
472 irreversible reduction and dysregulation of mucosal tissue-resident CD4+ and CD8+ T cells, leading to
473 weakened immune control of human papilloma virus (HPV) in the skin and increased development of
474 HPV-related cancer (Saluzzo et al., 2021). It is tempting to speculate that alterations of the CD4+ T
475 cell compartment during HIV/AIDS may also impair resident memory CD8+ T cells in the CNS, leading
476 to subpar *T. gondii* immune surveillance in the brain and TE development. Future studies examining
477 resident T cells in brain biopsies of TE patients could be helpful to address this question.
478 A third asset of our study is to solve an apparent paradox about T cell exhaustion during chronic *T.*
479 *gondii* infection. While T cell exhaustion has been observed in both CD4+ (Hwang et al., 2016) and
480 CD8+ T cells (Bhadra et al., 2011) during chronic infection in TE models, in a latent infection model, a
481 robust effector CD8+ T cell response was shown to be maintained over time without signs of
482 functional exhaustion (Chu et al., 2016). By tracking CD8+ T cells specific for 2 distinct parasite-

483 derived antigenic peptides in single-cell RNA-seq clusters, our CITE-seq analysis revealed that
484 parasite-specific CD8+ T cells are absent from the cluster containing exhausted CD8+ T cells (see
485 cluster 7 on Sup. Fig. 5). This indicated that functional exhaustion of CD8+ T cells does indeed occur
486 in the brain during latent infection, but not in the *T. gondii*-specific CD8+ T cells. It is likely that this
487 unexpected and original phenomenon had been overlooked so far, since the Khan study (Bhadra et
488 al., 2011) did not distinguish between bystander and parasite-specific CD8+ T cells. Understanding
489 the mechanisms that shield parasite-specific CD8+ T cells from exhaustion could offer new
490 therapeutic options to improve T cell functionality in contexts of tissue-restricted antigen persistence
491 such as chronic infections or cancer (Baessler and Vignali, 2024; Hashimoto et al., 2023).

492

493 Importantly, we provide evidence that parasite-specific CD8+ T cells stationed in the brain play an
494 essential and largely autonomous role in the restriction of *T. gondii* in the brain. This concept of
495 autonomous cellular compartment is in agreement with recent work showing that meningeal
496 lymphatic drainage from the brain supports the development of peripheral T cell responses against *T.*
497 *gondii* but is dispensable for immune protection of the brain (Kovacs et al., 2022). Notably however,
498 our work did not evaluate the importance of *T. gondii*-induced Trm in other tissues. Interrogating
499 how parasite-specific CD8+ Trm are formed in the small intestine, which is the typical entry site of
500 the parasite, and studying their implication as a first line of defense upon a new encounter with cysts
501 or oocysts, represent exciting avenues of future investigations.

502 At last, our study contributed to unveil the marked functional diversity of CD8+ bTr. We identified a
503 subset of cytokine/chemokine-producing cells that were recently activated by the TCR. This subset
504 represents the most prominent cluster at d52pi in the encephalitis and latency contexts, and it
505 subsides with time in the late latency condition. Cells within this cluster likely overlap with *T. gondii*-
506 specific Nur77-GFP+ CD8+ T cells undergoing secondary TCR engagement, which were described in a
507 recent study of the Hunter laboratory following adoptive transfer of TCR-transgenic OT-I CD8+ T cells,
508 and were observed in association with areas of tachyzoite replication in the brain (Shallberg et al.,
509 2022). Interestingly, among the bTr clusters that underwent recent TCR activation (see clusters 0, 7,
510 8 on Fig. 6), we found a “bi-functional” subset simultaneously overexpressing Ifng and cytotoxicity-
511 associated genes (e.g. Prf1 & Gzmb), leading us to suspect that these cells might play a predominant
512 role in parasite control. Testing their functional role will require the set-up of selective methods to
513 target resident subpopulations in the brain. An exciting finding of our transcriptomic analyses is the
514 discovery of bTr subsets which expand over time in the brain of latently infected mice and ultimately
515 represent more than one-third of the parasite-specific CD8+ T cells at 5.5 months pi (see clusters 2, 8,
516 12 on Fig. 6 and Sup. Fig. 4). These cells are transcriptionally close to stem-like (Tcf7+ Slamf6+) CD4+

517 T cells that were found in the intestine and serve as a reservoir of extra-intestinal effector CD4+ T
518 cells with an encephalitogenic potential (Schnell et al., 2021). Based on the expression of genes
519 associated with T cell stemness, such as the transcription factor Tcf7, we hypothesize that such
520 progenitor CD8+ bTr may display an intrinsic self-renewal capacity and contribute to durably fuel the
521 pool of more effector brain-resident CD8+ T cells that are needed to circumvent parasite
522 reactivation. Interestingly, in a context of chronic systemic viral infection (LCMV), IL-33 signals have
523 been shown to control the expression of Tcf7, thereby promoting the expansion of stem-like
524 peripheral CD8+ T cells (Marx et al., 2023). Since IL-33 is released by oligodendrocytes and astrocytes
525 in the brain during *T. gondii* infection (Still et al., 2020), a similar pathway may be at play in the
526 maintenance of brain-resident progenitor T cell subsets. Adequate tools will need to be developed
527 to specifically interrogate the role of IL-33 signaling in the generation/maintenance of stem-like CD8+
528 bTr, and to determine if these cells could be a self-renewing reservoir of bTr. Altogether, our findings
529 suggest that any strategy aimed at boosting the CD8+ Trm compartment, could be useful to mitigate
530 the risk of parasite reactivation in immunocompromised individuals.

531

532 **Materials & Methods**

533 **Mice**

534 Animal care and use protocols were carried out under the control of the French National Veterinary
535 Services and in accordance with the current European regulations (including EU Council Directive,
536 2010/63/EU, September 2010). The protocol “APAFIS#25130-2020040721346790 v3” was approved
537 by the local Ethical Committee for Animal Experimentation registered by the “Comité National de
538 Réflexion Ethique sur l’Experimentation Animale” under no. CEEA122. C57BL/6J (B6) mice were
539 purchased from Janvier (France). H-2 L^d-transgenic C57BL/6J (B6.L^d), Hobit^{tdTomato-DTR} (Parga-Vidal et
540 al., 2021), Camk2a-CreER (Casanova et al., 2001) and Cx3cr1-CreER (Parkhurst et al., 2013) mice were
541 previously described. Tap1^{f/f} mice were obtained by crossing conditional-ready C57BL/6N-
542 Tap1^{tm2a(EUCOMM)Hmgu}/leg mice generated by the European Conditional Mouse Mutagenesis
543 Program(EUCOMM EM:09400 strain) with FlpO-deleter mice (C57BL/6-Tg(CAG-Flpo)1Afst/leg (Kranz
544 et al., 2010), EUCOMM EM:05149 strain) in order to achieve flippase-mediated excision of the LacZ
545 and Neomycin resistance cassette. All non-commercial mouse models were housed and bred under
546 specific pathogen-free conditions at the ‘Centre Regional d’Exploration Fonctionnelle et de
547 Ressources Experimentales’ (CREFRE-Inserm UMS006). Mice were experimentally infected between
548 8 and 12 weeks of age. All mice used in experiments were males. Number of mice and experimental
549 replicates are indicated in the respective figure legends.

550 **Human cell lines**

551 Male human Foreskin Fibroblasts (HFF) were purchased from ATCC (Hs27 ref # CRL-1634). HFF were
552 maintained in DMEM supplemented with 10% FCS (GIBCO ref # 10270106).

553 ***Toxoplasma gondii***

554 Mouse infections were done intra-peritoneally (i.p.) with tachyzoites of GFP+ type II Prugnaud (Pru)
555 *T. gondii*, expressing GRA6-OVA under the control of the endogenous GRA6 promoter (Pru.GRA6-
556 OVA (Salvioni et al., 2019)) or tachyzoites of tdTomato+ Pru *T. gondii* expressing SAG1-OVA
557 (Pru.SAG1-OVA (Schaeffer et al., 2009)). Tachyzoites were maintained *in vitro* by serial passages on
558 confluent monolayers of HFF using DMEM supplemented with 1% FCS (GIBCO). For mouse infections,
559 infected HFF were scraped, tachyzoites were released through a 23G needle, filtered through a 3 µm
560 polycarbonate hydrophilic filter (it4ip S.A.) and 200 tachyzoites were injected i.p. in 200µL PBS.

561 **Antibody-based T cell depletion**

562 To eliminate circulating CD8+ T cells during chronic phase, a depleting anti-CD8β mAb (rat IgG1,
563 Lyt3.2, clone 53-5.8, cat # BX-BE0223 from BioXcell) was injected i.p. for 2 weeks, starting at 34 and
564 36 days post-infection (dpi) (200 µg per mouse), and then once at d41pi and once at d48pi (100 µg
565 per mouse), before euthanasia at d50pi. To deplete CD4+ T cells, a depleting anti-CD4 mAb (rat

566 IgG2b, clone GK1.5, cat # BX-BP0003 from BioXcell) was injected i.p. at day 3 (200 µg per mouse) and
567 day 1 (100 µg per mouse) prior to infection, and then once weekly (100 µg per mouse) until
568 euthanasia at d13pi (acute phase analysis) or d33pi (chronic phase analysis). Control mice were
569 injected with the same amount of isotype control rat antibodies (rat IgG1, clone HRPN, cat # BX-
570 BE0088 from BioXCell and rat IgG2b, clone LTF-2, cat # BX-BP0090 from BioXCell respectively).

571 **Tamoxifen and pyrimethamine treatments**

572 Tamoxifen (Sigma-Aldrich, cat # T5648) was dissolved in corn oil at a concentration of 50 mg/mL, and
573 200 µl were administered twice *per os* two days apart (i.e. 9 and 7 days prior to infection of $\text{Tap1}^{\text{fl}/\text{fl}} \times$
574 CamK2a-CreER mice, or 32 and 30 days prior to infection of $\text{Tap1}^{\text{fl}/\text{fl}} \times \text{Cx3cr1-CreER}$ mice). A 10X
575 pyrimethamine (Sigma-Aldrich cat # 46706) solution (12,5 mg/mL) was prepared in DMSO (Sigma-
576 Aldrich cat # D2650) and stored at 4°C until diluted 10-fold in corn oil just before administration. A
577 dose of 12,5 mg/kg/day of pyrimethamine was administered daily *per os* for 5 days, starting at d10pi.

578 **Isolation of spleen and brain leukocytes**

579 Spleens and brains were collected in complete RPMI (GIBCO) supplemented with 10% vol/vol FCS
580 (GIBCO). Spleens were mashed through a 100 µm cell strainer (Falcon). Brains were homogenized
581 using a glass Potter and digested for 45 min at room temperature (RT) in Hanks' balanced salt
582 solution (HBSS) medium with collagenase D (1 mg/ml, Roche Diagnostics cat # 11088882001) and
583 deoxyribonuclease (DNase) I (20 µg/ml, Sigma-Aldrich cat # DN25). After digestion, cells were
584 suspended in 30% Percoll (GE Healthcare) and centrifuged at 1590g for 30 min without brake.
585 Myelin and debris were removed, brain leukocytes were recovered from the interface and further
586 used for experiments. Erythrocytes were lysed from brain and spleen cell suspensions using ACK
587 buffer (100 mM EDTA, 160 mM NH4Cl and 10 mM NaHCO3).

588 ***Ex vivo* T cell restimulation**

589 Brain or spleen cells were plated in a V-bottom 96 well plate and cultured in complete RPMI
590 supplemented with 0.05 µg/mL Phorbol 12-myristate 13-acetate (PMA), 1 µg/mL ionomycin and 3
591 µg/mL brefeldin A for 4h at 37°C, 5% CO₂. Cells were then washed once in complete RPMI before
592 performing flow cytometry stainings.

593 **Antibody stainings for flow cytometry and/or cell sorting**

594 To detect CD8+ T cells specific for the OVA-derived SIINFEKL peptide presented by H-2K^b, splenocytes
595 and brain leukocytes were incubated for 45 min at RT with PE-coupled SIINFEKL-loaded H-2 K^b
596 dextramers (Immudex, dilution 1:50 in complete RPMI).
597 For flow cytometry, following Fc receptor saturation (CD16/32, clone 93, dilution 1:50 in PBS,
598 Biolegend) and dead cell detection with Fixable Viability Stain 440UV (dilution 1:500 in PBS, BD
599 Horizon cat # 566332), cell suspensions were surface labelled for 30 min at 4°C with CD3 BV785

600 (clone 17A2, 1:50, BD Horizon), CD8 α BUV805 (clone 53-6.7, 1:800, BD Horizon), CD4 APC-Cyanine7
601 (clone GK1.5, dilution 1:100, BD Pharmingen) or CD4-AF700 [clone RM4-5, dilution 1:200, BD
602 Pharmingen], CD49a BUV737 (clone Ha31/8, dilution 1:400, BD OptiBuild), CD69 BUV615 (clone
603 H1.2F3, dilution 1:50, BD OptiBuild), CD103 BV510 (clone M290, dilution 1:200, BD Horizon), CD27
604 BV421 (clone LG.3A10, dilution 1:200, BD Optibuild ref 740028). Fluorochrome-coupled antibodies
605 were diluted in Brilliant Stain Buffer (BD Horizon). Intracellular IFN- γ BV421 (clone XMG1.2, 1:100,
606 BD Horizon), Granzyme B PE-Cyanine7 (clone NGZB, 1:200, eBioscience) and TCF1 AF488 (clone
607 C63D9, dilution 1:200, Ozyme) stainings were performed with Foxp3/Transcription Factor Staining
608 Buffer Set (eBioscience) following the manufacturer's protocol.
609 Before scRNA-seq, CD103-negative and CD103-positive subpopulations of K b -OVA dex+ CD8+ T cells
610 were separated by Facs-sorting. For CITE-seq, brain cell suspensions were incubated for 45 min at RT
611 with the following barcoded dextramers diluted in complete RPMI: K b -SIINFEKL (Immudex cat #
612 JD2163-PfBC, barcode fBC0074: CGGTCTTAGTCGCGC, dilution 1:50), L d -HPGSVNEFDF (Immudex cat #
613 JG5820-PfBC0301, barcode fBC0301: CGGCCTCGCGACGAC, dilution 1:50), control K b -SIYRYYGL
614 (Immudex cat # JD2164-PfBC, barcode fBC0068: TTGCGCGGCGTCGTA, dilution 1:50), and then
615 surface labelled for 30 min at 4°C with TotalSeq-C0182 anti-mouse CD3 (clone 17A2, dilution 1:50,
616 Biolegend, cat # 100263) and TotalSeq-C0002 anti-mouse CD8 α (clone 53-6.7, dilution 1:50,
617 Biolegend, cat # 100785) diluted in 'Facs buffer' (PBS, 2mM EDTA, 0.5% FCS).

618 Parasite load measurements

619 For cyst enumeration, 5 % of Potter-dissociated whole brain homogenate was labelled with
620 rhodamine-conjugated Dolichos Biflorus Agglutinin (Vector Laboratories RL-1032). Cysts were
621 counted using an inverted fluorescence microscope with a 20X objective. Quantification of parasite
622 DNA by qPCR was performed on genomic DNA extracted with DNEasy Blood & Tissue Kit (Qiagen)
623 from 5% of each brain homogenate and spleen cell preparation. As described earlier (Feliu et al.,
624 2013), a 529-bp repeat element in the *T. gondii* genome was amplified using the TOX9 and TOX11
625 primers. The number of parasite genome per μ g of tissue DNA was estimated by comparison with a
626 standard curve, established with a known number of Pru tachyzoites. The limit of quantification
627 corresponds to the highest dilution of the standard curve, above which concentrations can be
628 reliably extrapolated.

629 Single-cell RNA-sequencing and CITE-seq

630 Library preparations for 3' single-cell RNA-sequencing

631 Facs-sorted CD103-negative vs. CD103-positive CD8+ K b -OVA dex+ T cells from the different biological
632 conditions were obtained in two independent experiments. One experiment comprised an
633 encephalitis (Tg.SAG1-OVA-infected C57BL/6) and latency (Tg.GRA6-OVA-infected C57BL/6) group

634 analyzed at d52pi, and one comprised only the latency group analyzed at d160pi. To improve the
635 specificity of the sorting, the antibody panel contained the 3 following markers for a ‘dump’ gate:
636 NK1.1 CD19 MHCII. Single-cell libraries were generated immediately after Facs-sorting using the
637 Chromium Controller Instrument and Chromium Single Cell 3' Library & Gel Bead Kit v3 according to
638 the manufacturer’s protocol (10X Genomics).

639 **Library preparations for 5' single-cell RNA-sequencing (CITE-seq)**

640 CITE-seq dataset is derived from one experiment in which B6.L^d mice were infected with Tg.GRA6-
641 OVA and analyzed at d46pi. Brain-isolated CD8⁺ T cells were pooled from 4 mice and labeled with
642 TotalSeqC CD3 and CD8 α antibodies (Biolegend), and with PE-coupled dCODE K^b-OVA, L^d-GRA6 and
643 Kb-SIYRYYGL control dextramers, to enable retrospective identification of OVA-specific and GRA6-
644 specific cells among total CD8⁺ T cells. dCODE dextramer-positive CD8⁺ T cells were enriched by 2
645 successive magnetic sorting steps: one in which CD8⁺ T cells were enriched by negative sorting (using
646 Miltenyi Biotec 130-104-075 CD8 α + T cell isolation kit) and one in which PE (dex)+ cells were
647 enriched by positive sorting, using anti-PE microbeads (Miltenyi 130-048-801). Single-cell libraries
648 were generated immediately with Chromium Next GEM Single Cell 5' Kit v2 and 5' Feature Barcode
649 Kit according to the manufacturer’s protocol (10X Genomics).

650 For both 3' and 5' libraries, library size and quality were confirmed on a Fragment Analyzer (Agilent).
651 Libraries were sequenced on SP flowcell of Illumina NovaSeq in paired-end sequencing (2 x 150) and
652 a single 8 bp-long index.

653

654 **Quality control, dimensionality reduction, and clustering**

655 Cell Ranger software (10X Genomics) (Zheng et al., 2017) was used to perform alignments against
656 *Mus musculus* genome (GRCm38.98 for scRNA-seq and GRCm39.105 for CITE-seq), generating gene
657 expression matrices that were further analyzed with Seurat v4.3.0 (Hao et al., 2021) on R v4.2.2 (R
658 Core Team. R Foundation for Statistical Computing, 2022). A series of filters were applied to remove
659 doublets and low-quality or dying cells. Sample-specific filters were applied on number of genes
660 (nFeature), total number of UMI detected (nCount) and percent counts derived from mitochondrial
661 genes (percent.mt) within a cell. Cell clusters identified by clustifyr package (v1.10.0) (Fu et al., 2020)
662 as ‘non CD8⁺ T cells’ (e.g. regulatory T cells, macrophages or erythroblasts), as well as the marker
663 genes of these ‘contaminating’ clusters, were omitted from the final dataset. The final CITE-seq
664 dataset was obtained following supplementary filtration steps based on ADT expression, whereby
665 cells expressing aberrantly low levels of CD3 and CD8 α , cells positive for the control dCODE
666 dextramer loaded with the irrelevant SIYRYYGL peptide, and cells double positive for K^b-OVA and L^d-
667 GRA6 dextramers, were excluded.

668 Then, Seurat's integration pipeline for scRNA-seq dataset, and Seurat's SCTransform function were
669 chosen for normalizing the CITE-seq counts. Variable features were identified and selected
670 (VariableFeatures or FindVariableFeatures and SelectIntegrationFeatures for integration), following
671 by Seurat's integration functions for scRNA-seq. RunPCA was used to perform linear dimensional
672 reduction based on statistically significant principal components. FindNeighbors, FindClusters,
673 RunUMAP, and FindAllMarkers, FindMarkers functions were executed to infer and visualize cell
674 clusters, and look for differentially expressed genes.

675 /// Briefly, we choose Seurat's integration pipeline for scRNAseq dataset and SCTranform Seurat's
676 function for normalize CITEseq counts. RunPCA was used to perform linear dimensional reduction
677 based on statistically significant principal components, and FindNeighbors, FindClusters, RunUMAP,
678 and FindAllMarkers, FindMarkers functions were executed to infer and visualize cell clusters, and
679 look for differentially expressed genes. Functional enrichment analyses were performed with fgsea
680 package v1.24.0 using previously published (see list in figure legends) or publicly available 'functional'
681 gene signatures. Spearman's correlation matrix between clusters was constructed based on log2
682 fold-change for each gene by cluster, using the correlation computation from the Hmisc package
683 (function rcorr) v5.1-1.

684

685 **Statistical analyses**

686 Normality of all datasets was assessed with D'Agostino & Pearson test. If normal, a two-tailed
687 unpaired t-test was applied, if not, a Mann-Whitney test was chosen. Asterisks on graphs reflect
688 statistical significance according to the following standard intervals: **** p < 0.0001, *** p < 0.001,
689 ** p < 0.01, * p < 0.05.

690

691 **Figure legends**

692 **Figure 1. Peripheral CD8+ T cell depletion during latent *T. gondii* infection leads to recrudescence**
693 **of parasite in spleen but not in brain**

694 (A) Schematics of experimental workflow: C57BL/6 mice were infected with 200 tachyzoites of GRA6-
695 OVA-expressing *T. gondii* Pru. At chronic phase (d34pi), mice were administered with an anti-CD8 β
696 antibody or an isotype control, twice at d34pi & d36pi, and then once a week for 2 weeks until d50pi.
697 (B) Representative Facs plots showing effects of anti-CD8 β treatment in spleen and brain. Numbers
698 on plots show the percentage +/- s.d of CD8+ T cells out of single, live, CD3+ T cells. (C, D) Bar graphs
699 showing absolute number of CD8+ T cells in spleen (C) and brain (D) at d50pi. (E) Bar graph showing
700 the proportion of CD69/CD49a/CD103 triple-negative subset (circulating) among brain CD8+ T cells at
701 d50pi. (F) Bar graph showing total number of spleen cells at d50pi, reflecting the splenomegaly
702 associated with anti-CD8 depletion. (C, D, E, F) Each dot represents one mouse. Bars show the mean
703 \pm SD of N = 15 (isotype) vs. 16 (anti-CD8 β) mice per group, pooled from 3 independent experiments.
704 Mann-Whitney tests between isotype-treated and anti-CD8-treated groups. (G) Spleen parasite
705 burden measured by qPCR on genomic DNA extracted from spleen. Each dot represents one mouse
706 with N = 15 (isotype) vs. 16 (anti-CD8 β) mice per group, pooled from 3 independent experiments.
707 Dotted line indicates the limit of quantification. Parasite DNA was detectable in 6 out of 16 anti-
708 CD8 β -treated mice, vs. 0 out of 15 isotype-treated control mice (p=0.0177, Fisher exact test). (H)
709 Brain parasite burden measured by qPCR on genomic DNA extracted from brain. Each dot represents
710 one mouse with N = 15 (isotype) vs. 16 (anti-CD8 β) mice per group, pooled from 3 independent
711 experiments. (C, F) Mann-Whitney test between isotype-treated and anti-CD8 β -treated groups. (D,
712 E, H) Unpaired t-test between isotype-treated and anti-CD8 β -treated groups.

713

714 **Figure 2. Kinetics of CD69, CD49a and CD103 surface expression on brain-isolated CD8 α + T cells**
715 **during *T. gondii* infection.** (A) Schematics of experimental workflow: C57BL/6 mice were infected
716 intra-peritoneally with 200 tachyzoites of GRA6-OVA-expressing *T. gondii* Pru. Brain-isolated cells
717 were analyzed by flow cytometry at acute (d13pi) and chronic (d32pi and d76pi) stages. (B, C) Gating
718 strategy to analyze surface expression of CD69, CD49a and CD103 on total CD8+ vs. *T. gondii*-specific
719 (dex K b -OVA+) CD8+ T cells from the brain by flow cytometry. Numbers on Facs plots show the
720 percentage +/- s.d of each subset (TN: CD69- CD49a- CD103-, SP: CD69+ CD49a- CD103-, DP: CD69+
721 CD49a+ CD103-, TP: CD69+ CD49a+ CD103+) out of K b -OVA-specific CD8+ T cells or out of total CD8+
722 T cells, as indicated. (D, E) Graphs represent the percentage of each subset out of parasite (OVA)-
723 specific CD8+ T cells (D) or out of total CD8+ T cells (E). Bars show mean \pm SD of N = 17 mice at d13pi
724 (pooled from 3 experiments), N = 12 mice at d32pi (pooled from 3 experiments), N = 10 mice at d76pi

725 (from 1 experiment). Two-way ANOVA with Tukey's multiple comparison test applied on the 3
726 groups, for every subset.

727

728 **Figure 3. Expression of Hobit, IFN- γ and granzyme B in brain-isolated CD8+ T cells during *T. gondii***
729 **latent infection.** (A) Schematics of experimental workflow: Hobit-tdTomato reporter mice were
730 infected intra-peritoneally with 200 tachyzoites of GRA6-OVA-expressing *T. gondii* Pru, and analyzed
731 at chronic stage (d93pi). (B) Gating strategy to analyze proportion of Hobit-tdTomato+ cells out of
732 each CD8+ T cell subset (TN: CD69- CD49a- CD103-, SP: CD69+ CD49a- CD103-, DP: CD69+ CD49a+
733 CD103-, TP: CD69+ CD49a+ CD103+). Red numbers on dot plots show the percentage +/- s.d. of
734 tdTomato+ cells out of each CD8+ T cell subset. (C) Graph showing the percentage of tdTomato+
735 cells out of each subset among parasite (OVA)-specific CD8+ T cells (left part) or among total CD8+ T
736 cells (right part). Bars show mean \pm s.d. of N = 5 mice from one experiment, representative of two.
737 Kruskall-Wallis with Dunn's multiple comparison test used to compare each subset to the TN
738 reference. (D) Schematics of experimental workflow: C57BL/6 mice were infected intra-peritoneally
739 with 200 tachyzoites of GRA6-OVA-expressing *T. gondii* Pru, and analyzed at chronic stage (d33pi).
740 (E) Gating strategy to analyze proportion of cells co-expressing IFN- γ and granzyme B (so-called "bi-
741 functional") following *ex vivo* PMA/ionomycin restimulation. Shown are representative IFN-
742 γ /granzyme B Facs plots of TP K^b-OVA dextramer+ CD8+ T cells, restimulated or not with
743 PMA/ionomycin, stained intracellularly or not for IFN- γ and granzyme B, as indicated. Numbers on
744 plots show the percentage of bi-functional cells out of the parental TP K^b-OVA dextramer+ CD8+ T
745 cells. (F) Graph showing the percentage of bi-functional cells following PMA/ionomycin stimulation
746 and intracellular staining, out of each subset from parasite (OVA)-specific CD8+ T cells (left part) or
747 from total CD8+ T cells (right part). Bars show mean \pm s.d. of N = 10 mice from one experiment,
748 representative of 3. Kruskall-Wallis with Dunn's multiple comparison test used to compare each
749 subset to the TN reference.

750

751 **Figure 4. CD4+ T cells drive the differentiation of TP and cytotoxic parasite-specific brain-resident**
752 **CD8+ T cells, thereby optimizing brain parasite control upon chronic stage**

753 (A) Schematics of experimental workflow: C57BL/6 mice were administered with an anti-CD4
754 depleting antibody at day -3 and -1 before infection with 200 tachyzoites of GRA6-OVA-expressing *T.*
755 *gondii* Pru. Injection of anti-CD4 antibody was repeated at d5pi and maintained once per week
756 onwards, until chronic stage. (B, C) Representative contour plots of CD4/CD8 staining after gating on
757 single, live, CD3+ T cells from spleen (B) or brain (C). Numbers on Facs plots show the percentage +/-
758 s.d. of CD4+ T cells out of CD3+ T cells. (D, E) Bar graph showing absolute number of CD4+ T cells in

759 spleen (D) and brain (E) at d33pi. (F, G) Representative contour plots of K^b-OVA dextramer staining
760 after gating on single, live, CD3+ CD8+ T cells from spleen (F) or brain (G). Numbers on dot plots
761 show the percentage +/- s.d of K^b-OVA dextramer+ T cells out of CD8+ T cells. (H, I) Bar graph
762 showing absolute number of parasite (OVA)-specific CD8+ T cells in spleen (H) and brain (I) at d33pi.
763 (D, E, H, I) Each dot represents one mouse. Bars represent the mean \pm SD of N = 9 vs. 10 mice per
764 group, pooled from 2 independent experiments with between 4 and 5 mice per group in each
765 experiment. (D, E) Mann-Whitney test between isotype-treated and anti-CD4-treated groups. (H, I)
766 Unpaired t-test between isotype-treated and anti-CD4-treated groups. (J) Representative contour
767 plots showing surface expression of CD69, CD49a and CD103 on OVA-specific (K^b-OVA dextramer+)
768 CD8+ T cells isolated from the brain. Numbers on Facs plots show the percentage +/- s.d. of each
769 subset (TN: CD69- CD49a- CD103-, SP: CD69+ CD49a- CD103-, DP: CD69+ CD49a+ CD103-, TP: CD69+
770 CD49a+ CD103+) out of K^b-OVA-specific CD8+ T cells. (K) Graph showing the percentage of each
771 subset out of parasite (OVA)-specific CD8+ T cells. Bars show mean \pm SD of N = 9 vs. 10 mice per
772 group, pooled from 2 independent experiments with between 4 and 5 mice per group in each
773 experiment. Mann-Whitney test performed for SP and unpaired t-tests performed for TN, DP, TP
774 between isotype-treated and anti-CD4-treated groups. (L) Bar graph showing the percentage of
775 granzyme B+ cells out of Tcirc (TN, left) or bTr (DP plus TP, right) parasite (OVA)-specific CD8+ T cells.
776 Bars show the mean +/- s.d. of N = 9 vs. 10 mice per group, pooled from 2 independent experiments
777 with between 4 and 5 mice per group in each experiment. Mann-Whitney test performed for the TN
778 subset and unpaired t-test performed for the DP+TP subsets, between isotype-treated and anti-CD4-
779 treated group. (M) Brain parasite burden measured by qPCR on genomic DNA extracted from brain.
780 Dotted line indicates the limit of quantification. Line shows mean of N = 9 vs. 10 mice per group,
781 pooled from 2 independent experiments with between 4 and 5 mice per group in each experiment.
782 Mann-Whitney test performed to compare isotype-treated and anti-CD4-treated group.
783

784 **Figure 5. TAP-mediated MHC I antigen presentation by excitatory neurons and CX3CR1+ brain
785 macrophages fine-tune the differentiation of parasite-specific brain-resident CD8+ T cells.**

786 (A) Schematics of experimental workflow: Tap1fl/fl X Camk2aCreER+ (TAP^{neuronWT}) and Camk2aCreER-
787 (TAP^{neuronKO}) mice were treated with tamoxifen, infected one week later with 200 tachyzoites of
788 GRA6-OVA-expressing *T. gondii* Pru, and treated from d10pi to d14pi with an anti-parasitic drug
789 (pyrimethamine) to avoid excessive parasite burden in TAP^{neuronKO} mice due to defective MHC I
790 neuronal presentation (Salvioni et al., 2019). (B) Brain parasite burden measured by qPCR on
791 genomic DNA extracted from brain at d33pi. Mann-Whitney test between TAP^{neuronWT} and TAP^{neuronKO}
792 groups. (C) Graph showing the percentage of each subset (TN: CD69- CD49a- CD103-, SP: CD69+

793 CD49a- CD103-, DP: CD69+ CD49a+ CD103-, TP: CD69+ CD49a+ CD103+) out of parasite (OVA)-
794 specific CD8+ T cells. Unpaired t-tests performed for each subset between TAP^{neuronWT} and TAP^{neuronKO}
795 groups. (D) Graph showing the absolute number of parasite (OVA)-specific CD8+ bTr cells in each
796 subset. Unpaired t-tests performed for each subset between TAP^{neuronWT} and TAP^{neuronKO} groups. (E)
797 Graph showing the absolute number of parasite (OVA)-specific CD8+ bTr cells (i.e. DP & TP) co-
798 expressing IFN- γ and granzyme B following PMA/ionomycin stimulation, i.e. bi-functional cells.
799 Unpaired t-test performed between TAP^{neuronWT} and TAP^{neuronKO} groups. (B, C, D, E) Outliers were
800 removed with ROUT method with max desired FDR (Q) set at 2% before applying the statistical tests.
801 Bars show mean \pm SD of N = 19 vs. 15 mice per group, pooled from 3 independent experiments. (F)
802 Schematics of experimental workflow: Tap1fl/fl X Cx3cr1CreER+ (TAP^{microgliaWT}) and Cx3cr1CreER-
803 (TAP^{microgliaKO}) mice were treated with tamoxifen, infected one month later with 200 tachyzoites of
804 GRA6-OVA-expressing *T. gondii* Pru, and treated from d10pi to d14pi with an anti-parasitic drug
805 (pyrimethamine) to avoid differential parasite burden between the two genotypes. (G) Brain
806 parasite burden measured by qPCR on genomic DNA extracted from brain at d33pi. Bars show the
807 mean of N = 23 vs. 15 mice per group, pooled from 3 independent experiments. Mann-Whitney test
808 between TAP^{microgliaWT} and TAP^{microgliaKO} group. (H) Graph showing the percentage of each subset out
809 of parasite (OVA)-specific CD8+ T cells. (I) Graph showing the absolute number of parasite (OVA)-
810 specific CD8+ bTr cells in each subset. (J) Graph showing the absolute number of parasite (OVA)-
811 specific CD8+ bTr cells (i.e. DP & TP) co-expressing IFN- γ and granzyme B following PMA/ionomycin
812 stimulation, i.e. bi-functional cells. (G, H, I, J) Outliers removed with ROUT method with max desired
813 FDR (Q) set at 2%. Bars show mean \pm SD of N = 23 vs. 15 mice per group, pooled from 3 independent
814 experiments. For all datasets, normality was assessed with D'Agostino & Pearson test. If normal, a
815 two-tailed unpaired t-test was applied, if not, a Mann-Whitney test was chosen.
816

817 **Figure 6. Longitudinal single-cell RNA-seq analysis of brain-isolated *T. gondii*-specific CD8+ T cells**
818 **in encephalitis and latency infection models.** (A) Uniform Manifold Approximation and Projection
819 (UMAP) plot of 6182 brain-isolated OVA-specific CD8+ T cells pooled from 3 conditions: early
820 encephalitis (d52pi, 4 mice pooled), early latency (d52pi, 6 mice pooled) and late latency (d160pi, 10
821 mice pooled), partitioned in 13 clusters using Seurat-embedded Louvain clustering algorithm. (B) Bar
822 graph showing the proportion of each cluster within entire dataset. (C) GSEA using tissue-resident T
823 cell gene signatures (from (Mackay et al., 2013), (Milner et al., 2017), (Low et al., 2020), (Landrith et
824 al., 2017), (Wakim et al., 2012)) vs. circulating T cell gene signatures (from (Milner et al., 2017) and
825 (Low et al., 2020)). Each cluster is colored and tagged as 'resident' (bTr, orange) or 'circulating'
826 (bTcirc, green), based on the enrichment scores of resident vs. circulating T cell signatures. Clusters

827 showing positive enrichment with both types of signatures (hybrid profile) were designated as
828 'bTmixed' (black-colored text). (D) Bar graph showing the proportion of CD103-positive cells (based
829 on Facs-sorting) among each cluster. (E) GSEA using previously published and/or public 'functional'
830 gene signatures including: recent TCR activation (Low et al., 2020), imprinting of tissue dissociation
831 procedure (van den Brink et al., 2017), stem-like CD4+ T cells (Schnell et al., 2021), short-lived
832 effector cells (SLEC) (Joshi et al., 2007), mitochondrial translation (Reactome pathway
833 knowledgebase (Gillespie et al., 2022)), oxidative phosphorylation (KEGG pathway database
834 (Kanehisa et al., 2017)), type I and type II IFN responses (Mostafavi et al., 2016), proliferation (Clarke
835 et al., 2019). (F) Dot plot showing average expression (color intensity) and percentage of gene-
836 expressing cells (dot size) per cluster for a panel of individual genes. Boxes around the dots and
837 annotations below the cluster number highlight upregulated genes of interest of every cluster. (G)
838 UMAP separately showing cells from the 3 experimental conditions. (H) Bar graph showing the
839 proportion of each cluster per condition, normalized with respect to the total number of cells
840 analyzed per condition. Annotations below the cluster number indicate the inferred cell 'identity'.
841

842 **Sup. Figure 1 (related to Figure 4). CD4+ T cell depletion does not alter expansion of parasite-
843 specific CD8+ T cells and parasite dissemination in spleen and brain during acute stage**

844 (A) Schematics of experimental workflow: C57BL/6 mice were administered with an anti-CD4
845 depleting antibody at day -3 and -1 before infection with 200 tachyzoites of GRA6-OVA-expressing *T.*
846 *gondii* Pru. Injection of anti-CD4 antibody was repeated at d5pi and d12pi until analyses of T cell
847 responses and parasite burden at acute stage (d13pi). (B) Bar graph showing the absolute number of
848 CD4+ T cells in spleen at d13pi. (C) Bar graph showing the absolute number of parasite (OVA)-specific
849 CD8 α + T cells in spleen at d13pi. (D) Bar graph showing the absolute number of CD4+ T cells in brain
850 at d13pi. (E) Bar graph showing the absolute number of parasite (OVA)-specific CD8+ T cells in brain
851 at d13pi. (B, C, D, E) Each dot represents one mouse. Bars show the mean \pm SD of N = 9 vs. 10 mice
852 per group, pooled from 2 independent experiments with between 4 and 5 mice per group in each
853 experiment. Mann-Whitney test between isotype-treated and anti-CD4-treated groups. (F, G)
854 Parasite burden measured by qPCR on genomic DNA extracted from spleen (F) or brain (G). Each dot
855 represents one mouse. Dotted line indicates the limit of quantification. Data pooled from 2
856 independent experiments with between 4 and 5 mice per group in each experiment. Mann-Whitney
857 test between isotype-treated and anti-CD4-treated group.

858
859 **Sup. Figure 2 (related to Figure 5). Validation of Cre-mediated conditional invalidation of Tap1
860 gene in brain neurons and microglia/macrophages.**

861 (A) Schematics of floxed Tap1 allele: exon 4 of Tap1 gene (on chromosome 17) was flanked with 2
862 LoxP sites. PCR with 5' arm F (#317) and 3' arm R (#319) primers should produce a 1657-bp amplicon
863 with the floxed (targeted) allele and a 765-bp amplicon with the post-Cre (recombined) allele. (B)
864 Experimental workflow to validate Tap1 recombination in neurons following tamoxifen treatment.
865 Tap1^{fl/fl} X Camk2aCreER+ and – mice were treated with tamoxifen and infected one week later. At
866 d19pi, neuronal (N) and non-neuronal cells (Other, O) were magnetically sorted from the whole
867 brain, and genomic DNA was extracted. (C) PCR using 5' arm F (#317) and 3' arm R (#319) primers.
868 The 765 bp-long amplicon corresponding to the Cre-recombined allele is detected only in neuronal
869 cell fraction from tamoxifen-treated Camk2a-Cre+ mice. (D) Experimental workflow to validate Tap1
870 recombination in brain-resident microglia/macrophages by measuring MHC I expression by flow
871 cytometry. Tap1^{fl/fl} X Cx3cr1CreER+ and – mice were treated with tamoxifen and infected after one
872 month, to allow renewal of the CX3CR1+ circulating monocytes as described in (Parkhurst et al.,
873 2013). (E) At acute stage (d8pi), a phase during which inflammation and MHC I expression levels are
874 maximal in the brain, mononuclear cells were isolated from the brain and stained with CD45 and
875 CD11b to identify monocytes (CD45hi CD11b+), lymphocytes (CD45hi CD11b-), and brain-resident
876 microglia and macrophages (CD45lo CD11b+). (F-K) Cells were stained with antibodies directed
877 against H-2K^b and H-2D^b MHC I molecules. (F, I) Representative histograms depicting surface
878 expression of H-2K^b (F) and H-2D^b (I) on CD45low CD11b+ brain-resident microglia and macrophages,
879 CD45hi CD11b- lymphocytes and CD45hi CD11b+ monocytes. (G, H) Graphs showing the intensity of
880 H-2K^b staining (G) and the proportion of H-2K^b-positive cells (H) among the indicated sub-population.
881 (J, K) Graphs showing the intensity of H-2D^b staining (J) and the proportion of H-2D^b-positive cells (K)
882 among the indicated sub-population. (G, J, H, K) Each dot represents one mouse. Data from one
883 experiment. Cre+ and Cre- groups were compared with Mann-Whitney test.
884

885 **Sup. Figure 3 (related to Figure 6). Experimental workflow for single-cell RNA-seq analysis of**
886 **parasite (OVA)-specific CD8+ T cells in encephalitis and latency infection models.** (A) Schematics of
887 experimental workflow: C57BL/6 mice were infected intra-peritoneally with 200 tachyzoites of GRA6-
888 OVA- vs. SAG1-OVA-expressing *T. gondii* Pru, inducing respectively latency (red/brown) or
889 encephalitis (blue). (B) Body weight monitored throughout infection, normalized with pre-infection
890 value for each experimental group. Graph shows mean ± SD of N = 5 uninfected mice, N = 9
891 Tg.GRA6-OVA-infected mice, N = 8 Tg.SAG-OVA-infected mice. Two-way ANOVA with Tukey's
892 multiple comparison test applied on the 3 groups. Asterisks indicate statistical significance of the
893 comparison between each infected group and the uninfected group. Results from one experiment
894 representative of 3 independent experiments. (C) Brain parasite burden measured by qPCR on

895 genomic DNA extracted from the brain. Each dot represents one mouse, results pooled from 4
896 experiments with Tg.SAG1-OVA-infected mice performed at 4 distinct timepoints and from 8
897 experiments with Tg.GRA6-OVA-infected mice performed at 8 distinct timepoints. (D) Gating
898 strategy applied to Facs-sort CD103-negative and CD103-positive parasite (OVA)-specific CD8+ T cells
899 isolated from the brain. A first gate was applied to select live, NK1.1-negative CD19-negative MHCII-
900 negative cells, a second gate to select CD3+ CD8 α + T cells, a third gate to select OVA-specific CD8+ T
901 cells thanks to SIINFEKL-loaded H-2K b dextramers (dex K b -OVA). OVA-specific CD8+ T cells were
902 ultimately separated between CD103-positive (all CD69+) and CD103-negative (including CD69+ and
903 CD69- cells). (E) Flow cytometry dot plots showing CD69/CD103 labelings of Facs-sorted OVA-specific
904 CD8+ T cells in the indicated conditions: early encephalitis (d52pi, 4 mice pooled), early latency
905 (d52pi, 6 mice pooled) and late latency (d160pi, 10 mice pooled). In each condition, CD103-negative
906 and CD103-positive cells were Facs-sorted and processed for scRNA-seq analysis. Percentages on the
907 plots show the proportion of cells in each quadrant out of the parental OVA-specific CD8+ T cells.
908 Numbers below the Facs plots indicate the cell number recovered for each category, following
909 successive steps of quality control and contaminant exclusion performed with Seurat and clustifyr
910 packages.

911

912 **Sup. Figure 4 (related to Figure 6). A TCF1/CD27 double-positive ‘stem-like’ CD8+ bTr sub-**
913 **population expands over time throughout *T. gondii* latent infection.** (A) Schematics of
914 experimental workflow: C57BL/6 mice were infected intra-peritoneally with 200 tachyzoites of GRA6-
915 OVA-expressing *T. gondii* Pru, and analyzed at 2 time points during chronic stage: early (d37pi) and
916 late latency (d135pi). (B, C) Facs plot of TCF1/CD27 stainings after gating on parasite (OVA)-specific
917 CD8+ bTr (CD69+ CD49a+) (B) or total CD8+ bTr (CD69+ CD49a+) (C). Numbers on Facs plots show
918 the percentage +/- s.d. of the TCF1+ CD27+ subset out of OVA-specific (B) vs. total CD8+ (C) bTr cells.
919 (D, E) Graph showing the percentage of TCF1+ CD27+ double-positive ‘stem-like’ cells out of parasite
920 (OVA)-specific CD8+ bTr (D) or out of total CD8+ bTr (E). (D, E) Bars show mean \pm s.d. of N = 4 mice,
921 from one experiment. Mann-Whitney test between early and late latency group.

922

923 **Sup. Figure 5 (related to Figure 6). CITE-seq analysis of brain-isolated total and *T. gondii*-specific**
924 **CD8+ T cells upon latent infection of H-2L d -expressing mice.** (A) Schematics of experimental
925 workflow: H-2L d -transgenic C57BL/6 mice (B6.L d) were infected intra-peritoneally with 200
926 tachyzoites of GRA6-OVA-expressing *T. gondii* Pru. (B) Uniform Manifold Approximation and
927 Projection (UMAP) plot of 2715 total CD8+ T cells isolated from the brain at early latency (d46pi, 4
928 mice pooled), partitioned in 9 clusters using Seurat-embedded Louvain clustering algorithm. (C) Bar

929 graph showing the proportion of each cluster within entire dataset. (D) GSEA using tissue-resident T
930 cell gene signatures (from (Mackay et al., 2013), (Milner et al., 2017), (Low et al., 2020), (Landrith et
931 al., 2017), (Wakim et al., 2012)) vs. circulating T cell gene signatures (from (Milner et al., 2017) and
932 (Low et al., 2020)). Each cluster is colored and tagged as ‘resident’ (bTr, orange) or ‘circulating’
933 (bTcirc, green), based on enrichment scores of resident vs. circulating T cell signatures. Clusters
934 showing positive enrichment with both types of signatures (hybrid profile) were designated as
935 ‘bTmixed’ (black-colored text). (E) Bar graph showing the proportion of L^d-GRA6-specific CD8+ T
936 cells, i.e. cells specific for the endogenous parasite antigen GRA6, among each cluster, as computed
937 using CITE-seq with barcoded L^d-GRA6 dextramers. (F) Bar graph showing the proportion of K^b-OVA-
938 specific CD8+ T cells among each cluster, as computed using CITE-seq with barcoded K^b-OVA
939 dextramers. (G) Dot plot showing average expression (color intensity) and percentage of gene-
940 expressing cells (dot size) per cluster for a panel of selected genes. Boxes around the dots highlight a
941 selection of upregulated genes of interest. (H) GSEA using previously published and/or public
942 ‘functional’ gene signatures including: recent TCR activation (Low et al., 2020), imprinting of tissue
943 dissociation procedure (van den Brink et al., 2017), stem-like CD4+ T cells (Schnell et al., 2021), short-
944 lived effector cells (SLEC) (Joshi et al., 2007), mitochondrial translation (Reactome pathway
945 knowledgebase (Gillespie et al., 2022)), oxidative phosphorylation (KEGG pathway database
946 (Kanehisa et al., 2017)), type I and type II IFN responses (Mostafavi et al., 2016), proliferation (Clarke
947 et al., 2019). (I) Correlation matrix between clusters of OVA-specific CD8+ T cells from infected
948 C57BL/6 mice (see Fig. 6) and clusters of CD8+ T cells from infected B6.L^d mice, constructed using
949 Hmisc package (rcorr function) to determine Spearman’s correlation between cluster pairs, taking
950 into consideration the log2 fold-change of all genes per cluster.

951

952

953 **ACKNOWLEDGEMENTS:**

954 We thank R. Balouzat, R. Ecalard, F. Chaboud, E. Debon, M.A. El Manfaloti, S. Negroni, J. Leblond, S.
955 Fresse, M. Lulka from ANEXPLO-CREFRE UMS006 for ethical care of our models, F. Martins & E.
956 Lhuillier from Genotoul GeT-Santé for expert assistance on scRNA-seq, S. Allart, S. Lachambre, L.
957 Lobjois, F. L'Faqih-Olive, V. Duplan-Eche, A.-L. Iscache, H. Garnier from the microscopy and flow
958 cytometry core facilities of Infinity for technical help. This work was supported by institutional grants
959 from Inserm, PIA PARAFRAP Consortium (ANR-11-LABX0024 to NB), PIA ANINFIMIP equipment (ANR-
960 11-EQPX-0003 to NB), "Agence Nationale pour la Recherche" (ANR-18-CE15-0015 MICCHROB to NB ;
961 ANR-19-CE15-0008 TRANSMIT to FM and NB ; ANR-22-CE14-0053 NINTENDO to NB), "Fondation pour
962 la Recherche sur le Cerveau" AAP2021 to NB, ANRS0366 to NB. MB was supported by "Fondation
963 Vaincre Alzheimer (FVA)".

964

965 **Contributions:**

966 RP, MB, AA, FM, NB designed experiments. RP, MB, AmA, EB, AIA, MA, RMC, AJ performed
967 experiments. RP, MB, AIA, EB, AmA, MA, FM, NB analyzed experiments. KvG generated the Hobit-
968 tdTomato mouse model and provided expert advice. MA & NB carried out bioinformatic analyses.
969 NB wrote the manuscript. All authors read, edited, and approved the final manuscript.

970

971 **Corresponding author**

972 Correspondence to Nicolas Blanchard (nicolas.blanchard@inserm.fr)

973

974 **ETHICAL DECLARATIONS**

975 The authors declare no competing interests.

976

977 **References**

978 Abdelbary, M., Hobbs, S.J., Gibbs, J.S., Yewdell, J.W., and Nolz, J.C. (2023). T cell receptor signaling
979 strength establishes the chemotactic properties of effector CD8(+) T cells that control tissue-
980 residency. *Nat Commun* **14**, 3928.

981 Adiko, A.C., Babdor, J., Gutierrez-Martinez, E., Guermonprez, P., and Saveanu, L. (2015). Intracellular
982 Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation. *Front Immunol* **6**,
983 335.

984 Baessler, A., and Vignali, D.A.A. (2024). T Cell Exhaustion. *Annu Rev Immunol*.

985 Batista, S.J., Still, K.M., Johanson, D., Thompson, J.A., O'Brien, C.A., Lukens, J.R., and Harris, T.H.
986 (2020). Gasdermin-D-dependent IL-1alpha release from microglia promotes protective immunity
987 during chronic *Toxoplasma gondii* infection. *Nat Commun* **11**, 3687.

988 Bayani, M., Riahi, S.M., Bazrafshan, N., Ray Gamble, H., and Rostami, A. (2019). *Toxoplasma gondii*
989 infection and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on
990 observational studies. *Acta Trop* **196**, 165-171.

991 Belz, G.T., and Kallies, A. (2010). Effector and memory CD8+ T cell differentiation: toward a molecular
992 understanding of fate determination. *Curr Opin Immunol* **22**, 279-285.

993 Bergsbaken, T., and Bevan, M.J. (2015). Proinflammatory microenvironments within the intestine
994 regulate the differentiation of tissue-resident CD8(+) T cells responding to infection. *Nat Immunol* **16**,
995 406-414.

996 Bergsbaken, T., Bevan, M.J., and Fink, P.J. (2017). Local Inflammatory Cues Regulate Differentiation
997 and Persistence of CD8(+) Tissue-Resident Memory T Cells. *Cell reports* **19**, 114-124.

998 Bhadra, R., Gigley, J.P., Weiss, L.M., and Khan, I.A. (2011). Control of *Toxoplasma* reactivation by
999 rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade. *Proceedings of the National
1000 Academy of Sciences of the United States of America* **108**, 9196-9201.

1001 Bigna, J.J., Tochie, J.N., Tounouga, D.N., Bekolo, A.O., Ymele, N.S., Youda, E.L., Sime, P.S., and
1002 Nansseu, J.R. (2020). Global, regional, and country seroprevalence of *Toxoplasma gondii* in pregnant
1003 women: a systematic review, modelling and meta-analysis. *Sci Rep* **10**, 12102.

1004 Biswas, A., Bruder, D., Wolf, S.A., Jeron, A., Mack, M., Heimesaat, M.M., and Dunay, I.R. (2015).
1005 Ly6C(high) monocytes control cerebral toxoplasmosis. *J Immunol* **194**, 3223-3235.

1006 Blanchard, N., Gonzalez, F., Schaeffer, M., Joncker, N.T., Cheng, T., Shastri, A.J., Robey, E.A., and
1007 Shastri, N. (2008). Immunodominant, protective response to the parasite *Toxoplasma gondii* requires
1008 antigen processing in the endoplasmic reticulum. *Nat Immunol* **9**, 937-944.

1009 Brown, C.R., Hunter, C.A., Estes, R.G., Beckmann, E., Forman, J., David, C., Remington, J.S., and
1010 McLeod, R. (1995). Definitive identification of a gene that confers resistance against *Toxoplasma* cyst
1011 burden and encephalitis. *Immunology* **85**, 419-428.

1012 Burgdorf, K.S., Trabjerg, B.B., Pedersen, M.G., Nissen, J., Banasik, K., Pedersen, O.B., Sorensen, E.,
1013 Nielsen, K.R., Larsen, M.H., Erikstrup, C., et al. (2019). Large-scale study of *Toxoplasma* and
1014 Cytomegalovirus shows an association between infection and serious psychiatric disorders. *Brain
Behav Immun* **79**, 152-158.

1015 Cabral, C.M., Tuladhar, S., Dietrich, H.K., Nguyen, E., MacDonald, W.R., Trivedi, T., Devineni, A., and
1016 Koshy, A.A. (2016). Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite
1017 *Toxoplasma gondii*. *PLoS pathogens* **12**, e1005447.

1018 Casanova, E., Fehsenfeld, S., Mantamadiotis, T., Lemberger, T., Greiner, E., Stewart, A.F., and Schutz,
1019 G. (2001). A CamKIIalpha iCre BAC allows brain-specific gene inactivation. *Genesis* **31**, 37-42.

1020 Cheuk, S., Schlums, H., Gallais Serezal, I., Martini, E., Chiang, S.C., Marquardt, N., Gibbs, A.,
1021 Detlofsson, E., Introini, A., Forkel, M., et al. (2017). CD49a Expression Defines Tissue-Resident CD8(+)
1022 T Cells Poised for Cytotoxic Function in Human Skin. *Immunity* **46**, 287-300.

1023 Chu, H.H., Chan, S.W., Gosling, J.P., Blanchard, N., Tsitsiklis, A., Lythe, G., Shastri, N., Molina-Paris, C.,
1024 and Robey, E.A. (2016). Continuous Effector CD8(+) T Cell Production in a Controlled Persistent
1025 Infection Is Sustained by a Proliferative Intermediate Population. *Immunity* **45**, 159-171.

1027 Clarke, J., Panwar, B., Madrigal, A., Singh, D., Gujar, R., Wood, O., Chee, S.J., Eschweiler, S., King, E.V.,
1028 Awad, A.S., *et al.* (2019). Single-cell transcriptomic analysis of tissue-resident memory T cells in
1029 human lung cancer. *J Exp Med.*

1030 Cowan, M.N., Kovacs, M.A., Sethi, I., Babcock, I.W., Still, K., Batista, S.J., O'Brien, C.A., Thompson, J.A.,
1031 Sibley, L.A., Labuzan, S.A., *et al.* (2022). Microglial STAT1-sufficiency is required for resistance to
1032 toxoplasmic encephalitis. *PLoS pathogens* **18**, e1010637.

1033 Crowl, J.T., Heeg, M., Ferry, A., Milner, J.J., Omilusik, K.D., Toma, C., He, Z., Chang, J.T., and Goldrath,
1034 A.W. (2022). Tissue-resident memory CD8(+) T cells possess unique transcriptional, epigenetic and
1035 functional adaptations to different tissue environments. *Nat Immunol* **23**, 1121-1131.

1036 Dard, C., Swale, C., Brenier-Pinchart, M.P., Farhat, D.C., Bellini, V., Robert, M.G., Cannella, D., Pelloux,
1037 H., Tardieu, I., and Hakimi, M.A. (2021). A brain cyst load-associated antigen is a *Toxoplasma gondii*
1038 biomarker for serodetection of persistent parasites and chronic infection. *BMC biology* **19**, 25.

1039 Day, C.L., Kaufmann, D.E., Kiepiela, P., Brown, J.A., Moodley, E.S., Reddy, S., Mackey, E.W., Miller,
1040 J.D., Leslie, A.J., DePierres, C., *et al.* (2006). PD-1 expression on HIV-specific T cells is associated with
1041 T-cell exhaustion and disease progression. *Nature* **443**, 350-354.

1042 Denkers, E.Y., Yap, G., Scharton-Kersten, T., Charest, H., Butcher, B.A., Caspar, P., Heiny, S., and Sher,
1043 A. (1997). Perforin-mediated cytolysis plays a limited role in host resistance to *Toxoplasma gondii*. *J
1044 Immunol* **159**, 1903-1908.

1045 Feliu, V., Vasseur, V., Grover, H.S., Chu, H.H., Brown, M.J., Wang, J., Boyle, J.P., Robey, E.A., Shastri,
1046 N., and Blanchard, N. (2013). Location of the CD8 T Cell Epitope within the Antigenic Precursor
1047 Determines Immunogenicity and Protection against the *Toxoplasma gondii* Parasite. *PLoS pathogens*
1048 **9**, e1003449.

1049 Fenwick, C., Joo, V., Jacquier, P., Noto, A., Banga, R., Perreau, M., and Pantaleo, G. (2019). T-cell
1050 exhaustion in HIV infection. *Immunol Rev* **292**, 149-163.

1051 Ferreira, C., Barros, L., Baptista, M., Blankenhaus, B., Barros, A., Figueiredo-Campos, P., Konjar, S.,
1052 Laine, A., Kamenjarin, N., Stojanovic, A., *et al.* (2020). Type 1 T(reg) cells promote the generation of
1053 CD8(+) tissue-resident memory T cells. *Nat Immunol* **21**, 766-776.

1054 Frieser, D., Pignata, A., Khajavi, L., Shlesinger, D., Gonzalez-Fierro, C., Nguyen, X.H., Yermanos, A.,
1055 Merkler, D., Hoftberger, R., Desestret, V., *et al.* (2022). Tissue-resident CD8(+) T cells drive
1056 compartmentalized and chronic autoimmune damage against CNS neurons. *Sci Transl Med* **14**,
1057 eabl6157.

1058 Fu, R., Gillen, A.E., Sheridan, R.M., Tian, C., Daya, M., Hao, Y., Hesselberth, J.R., and Riemony, K.A.
1059 (2020). *clustifyr*: an R package for automated single-cell RNA sequencing cluster classification.
1060 *F1000Research* **9**, 223.

1061 Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., and Carbone, F.R. (2009). Memory
1062 T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes
1063 simplex virus. *Nat Immunol* **10**, 524-530.

1064 Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C.,
1065 Matthews, L., Gong, C., *et al.* (2022). The reactome pathway knowledgebase 2022. *Nucleic Acids Res*
1066 **50**, D687-D692.

1067 Hakimi, M.A., Olias, P., and Sibley, L.D. (2017). *Toxoplasma* Effectors Targeting Host Signaling and
1068 Transcription. *Clin Microbiol Rev* **30**, 615-645.

1069 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J.,
1070 Darby, C., Zager, M., *et al.* (2021). Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
1071 3587 e3529.

1072 Hashimoto, M., Ramalingam, S.S., and Ahmed, R. (2023). Harnessing CD8 T cell responses using PD-1-
1073 IL-2 combination therapy. *Trends in cancer*.

1074 Heeg, M., and Goldrath, A.W. (2023). Insights into phenotypic and functional CD8(+) T(RM)
1075 heterogeneity. *Immunol Rev.*

1076 Hidano, S., Randall, L.M., Dawson, L., Dietrich, H.K., Konradt, C., Klover, P.J., John, B., Harris, T.H.,
1077 Fang, Q., Turek, B., *et al.* (2016). STAT1 Signaling in Astrocytes Is Essential for Control of Infection in
1078 the Central Nervous System. *MBio* 7.

1079 Hwang, S., Cobb, D.A., Bhadra, R., Youngblood, B., and Khan, I.A. (2016). Blimp-1-mediated CD4 T cell
1080 exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. *J Exp Med* 213, 1799-1818.

1081 Johnson, H.J., and Koshy, A.A. (2020). Latent Toxoplasmosis Effects on Rodents and Humans: How
1082 Much is Real and How Much is Media Hype? *MBio* 11.

1083 Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso, D.R., Hagman, J., Gapin, L., and Kaech, S.M. (2007).
1084 Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded
1085 expression of T-bet transcription factor. *Immunity* 27, 281-295.

1086 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives
1087 on genomes, pathways, diseases and drugs. *Nucleic Acids Res* 45, D353-D361.

1088 Khan, T.N., Mooster, J.L., Kilgore, A.M., Osborn, J.F., and Nolz, J.C. (2016). Local antigen in
1089 nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. *J Exp
1090 Med* 213, 951-966.

1091 Konjar, S., Ficht, X., Iannacone, M., and Veldhoen, M. (2022). Heterogeneity of tissue resident
1092 memory T cells. *Immunol Lett* 245, 1-7.

1093 Kovacs, M.A., Cowan, M.N., Babcock, I.W., Sibley, L.A., Still, K., Batista, S.J., Labuzan, S.A., Sethi, I.,
1094 and Harris, T.H. (2022). Meningeal lymphatic drainage promotes T cell responses against *Toxoplasma
1095 gondii* but is dispensable for parasite control in the brain. *eLife* 11.

1096 Kragten, N.A.M., Behr, F.M., Vieira Braga, F.A., Remmerswaal, E.B.M., Wesselink, T.H., Oja, A.E.,
1097 Hombrink, P., Kallies, A., van Lier, R.A.W., Stark, R., *et al.* (2018). Blimp-1 induces and Hobit maintains
1098 the cytotoxic mediator granzyme B in CD8 T cells. *Eur J Immunol*.

1099 Kranz, A., Fu, J., Duerschke, K., Weidlich, S., Naumann, R., Stewart, A.F., and Anastassiadis, K. (2010).
1100 An improved Flp deleter mouse in C57BL/6 based on Flpo recombinase. *Genesis* 48, 512-520.

1101 Laing, C., Blanchard, N., and McConkey, G.A. (2020). Noradrenergic Signaling and Neuroinflammation
1102 Crosstalk Regulate *Toxoplasma gondii*-Induced Behavioral Changes. *Trends in immunology* 41, 1072-
1103 1082.

1104 Lan, X., Zebley, C.C., and Youngblood, B. (2023). Cellular and molecular waypoints along the path of T
1105 cell exhaustion. *Science immunology* 8, eadg3868.

1106 Landrith, T.A., Sureshchandra, S., Rivera, A., Jang, J.C., Rais, M., Nair, M.G., Messaoudi, I., and Wilson,
1107 E.H. (2017). CD103+ CD8 T Cells in the *Toxoplasma*-Infected Brain Exhibit a Tissue-Resident Memory
1108 Transcriptional Profile. *Front Immunol* 8, 335.

1109 Lingel, H., Wissing, J., Arra, A., Schanze, D., Lienenklaus, S., Klawonn, F., Pierau, M., Zenker, M.,
1110 Jansch, L., and Brunner-Weinzierl, M.C. (2017). CTLA-4-mediated posttranslational modifications
1111 direct cytotoxic T-lymphocyte differentiation. *Cell death and differentiation* 24, 1739-1749.

1112 Low, J.S., Farsakoglu, Y., Amezcuia Vesely, M.C., Sefik, E., Kelly, J.B., Harman, C.C.D., Jackson, R.,
1113 Shyer, J.A., Jiang, X., Cauley, L.S., *et al.* (2020). Tissue-resident memory T cell reactivation by diverse
1114 antigen-presenting cells imparts distinct functional responses. *J Exp Med* 217.

1115 Mackay, L.K., Minnich, M., Kragten, N.A., Liao, Y., Nota, B., Seillet, C., Zaid, A., Man, K., Preston, S.,
1116 Freestone, D., *et al.* (2016). Hobit and Blimp1 instruct a universal transcriptional program of tissue
1117 residency in lymphocytes. *Science* 352, 459-463.

1118 Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica,
1119 P., Mueller, S.N., Stefanovic, T., *et al.* (2013). The developmental pathway for CD103(+)CD8+ tissue-
1120 resident memory T cells of skin. *Nat Immunol* 14, 1294-1301.

1121 Mackay, L.K., Wynne-Jones, E., Freestone, D., Pellicci, D.G., Mielke, L.A., Newman, D.M., Braun, A.,
1122 Masson, F., Kallies, A., Belz, G.T., *et al.* (2015). T-box Transcription Factors Combine with the
1123 Cytokines TGF-beta and IL-15 to Control Tissue-Resident Memory T Cell Fate. *Immunity* 43, 1101-
1124 1111.

1125 Mani, V., Bromley, S.K., Aijo, T., Mora-Buch, R., Carrizosa, E., Warner, R.D., Hamze, M., Sen, D.R.,
1126 Chasse, A.Y., Lorant, A., *et al.* (2019). Migratory DCs activate TGF-beta to precondition naive CD8(+) T
1127 cells for tissue-resident memory fate. *Science* **366**.

1128 Mantel, I., Sadiq, B.A., and Blander, J.M. (2021). Spotlight on TAP and its vital role in antigen
1129 presentation and cross-presentation. *Mol Immunol* **142**, 105-119.

1130 Maru, S., Jin, G., Schell, T.D., and Lukacher, A.E. (2017). TCR stimulation strength is inversely
1131 associated with establishment of functional brain-resident memory CD8 T cells during persistent viral
1132 infection. *PLoS pathogens* **13**, e1006318.

1133 Marx, A.F., Kallert, S.M., Brunner, T.M., Villegas, J.A., Geier, F., Fixemer, J., Abreu-Mota, T., Reuther,
1134 P., Bonilla, W.V., Fadejeva, J., *et al.* (2023). The alarmin interleukin-33 promotes the expansion and
1135 preserves the stemness of Tcf-1(+) CD8(+) T cells in chronic viral infection. *Immunity*.

1136 Melzer, T.C., Cranston, H.J., Weiss, L.M., and Halonen, S.K. (2010). Host Cell Preference of
1137 *Toxoplasma gondii* Cysts in Murine Brain: A Confocal Study. *J Neuroparasitology* **1**.

1138 Milner, J.J., Toma, C., He, Z., Kurd, N.S., Nguyen, Q.P., McDonald, B., Quezada, L., Widjaja, C.E.,
1139 Witherden, D.A., Crowl, J.T., *et al.* (2020). Heterogenous Populations of Tissue-Resident CD8(+) T
1140 Cells Are Generated in Response to Infection and Malignancy. *Immunity* **52**, 808-824 e807.

1141 Milner, J.J., Toma, C., Yu, B., Zhang, K., Omilusik, K., Phan, A.T., Wang, D., Getzler, A.J., Nguyen, T.,
1142 Crotty, S., *et al.* (2017). Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours.
1143 *Nature* **552**, 253-257.

1144 Mockus, T.E., Shwetank, Lauver, M.D., Ren, H.M., Netherby, C.S., Salameh, T., Kawasawa, Y.I., Yue, F.,
1145 Broach, J.R., and Lukacher, A.E. (2018). CD4 T cells control development and maintenance of brain-
1146 resident CD8 T cells during polyomavirus infection. *PLoS pathogens* **14**, e1007365.

1147 Moretto, M.M., Hwang, S., and Khan, I.A. (2017). Downregulated IL-21 Response and T Follicular
1148 Helper Cell Exhaustion Correlate with Compromised CD8 T Cell Immunity during Chronic
1149 Toxoplasmosis. *Front Immunol* **8**, 1436.

1150 Mostafavi, S., Yoshida, H., Moodley, D., LeBoite, H., Rothamel, K., Raj, T., Ye, C.J., Chevrier, N., Zhang,
1151 S.Y., Feng, T., *et al.* (2016). Parsing the Interferon Transcriptional Network and Its Disease
1152 Associations. *Cell* **164**, 564-578.

1153 Nimgaonkar, V.L., Yolken, R.H., Wang, T., Chang, C.C., McClain, L., McDade, E., Snitz, B.E., and
1154 Ganguli, M. (2016). Temporal Cognitive Decline Associated With Exposure to Infectious Agents in a
1155 Population-based, Aging Cohort. *Alzheimer disease and associated disorders* **30**, 216-222.

1156 Nishiyama, S., Pradipta, A., Ma, J.S., Sasai, M., and Yamamoto, M. (2020). T cell-derived interferon-
1157 gamma is required for host defense to *Toxoplasma gondii*. *Parasitol Int* **75**, 102049.

1158 Nissapatorn, V. (2009). Toxoplasmosis in HIV/AIDS: a living legacy. *Southeast Asian J Trop Med Public
1159 Health* **40**, 1158-1178.

1160 Orchanian, S.B., Still, K., Harris, T.H., and Lodoen, M.B. (2024). Deficiency in astrocyte CCL2
1161 production reduces neuroimmune control of *Toxoplasma gondii* infection. *PLoS pathogens* **20**,
1162 e1011710.

1163 Parga-Vidal, L., Behr, F.M., Kragten, N.A.M., Nota, B., Wesselink, T.H., Kavazovic, I., Covill, L.E.,
1164 Schuller, M.B.P., Bryceson, Y.T., Wensveen, F.M., *et al.* (2021). Hobit identifies tissue-resident
1165 memory T cell precursors that are regulated by Eomes. *Science immunology* **6**.

1166 Park, S.L., Christo, S.N., Wells, A.C., Gandolfo, L.C., Zaid, A., Alexandre, Y.O., Burn, T.N., Schroder, J.,
1167 Collins, N., Han, S.J., *et al.* (2023). Divergent molecular networks program functionally distinct CD8(+)
1168 skin-resident memory T cells. *Science* **382**, 1073-1079.

1169 Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., 3rd, Lafaille, J.J., Hempstead, B.L., Littman,
1170 D.R., and Gan, W.B. (2013). Microglia promote learning-dependent synapse formation through brain-
1171 derived neurotrophic factor. *Cell* **155**, 1596-1609.

1172 Peng, C., Huggins, M.A., Wanhainen, K.M., Knutson, T.P., Lu, H., Georgiev, H., Mittelsteadt, K.L.,
1173 Jarjour, N.N., Wang, H., Hogquist, K.A., *et al.* (2022). Engagement of the costimulatory molecule ICOS
1174 in tissues promotes establishment of CD8(+) tissue-resident memory T cells. *Immunity* **55**, 98-114
1175 e115.

1176 Reina-Campos, M., Heeg, M., Kennewick, K., Mathews, I.T., Galletti, G., Luna, V., Nguyen, Q., Huang,
1177 H., Milner, J.J., Hu, K.H., *et al.* (2023). Metabolic programs of T cell tissue residency empower tumour
1178 immunity. *Nature*.

1179 Ren, H.M., Kolawole, E.M., Ren, M., Jin, G., Netherby-Winslow, C.S., Wade, Q., Shwetank, Rahman,
1180 Z.S.M., Evavold, B.D., and Lukacher, A.E. (2020). IL-21 from high-affinity CD4 T cells drives
1181 differentiation of brain-resident CD8 T cells during persistent viral infection. *Science immunology* 5.

1182 Roychoudhury, P., Swan, D.A., Duke, E., Corey, L., Zhu, J., Dave, V., Spuhler, L.R., Lund, J.M., Prlic, M.,
1183 and Schiffer, J.T. (2020). Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-
1184 infected cells. *J Clin Invest* 130, 2903-2919.

1185 Saluzzo, S., Pandey, R.V., Gail, L.M., Dingelmaier-Hovorka, R., Kleissl, L., Shaw, L., Reininger, B.,
1186 Atzmuller, D., Strobl, J., Touzeau-Romer, V., *et al.* (2021). Delayed antiretroviral therapy in HIV-
1187 infected individuals leads to irreversible depletion of skin- and mucosa-resident memory T cells.
1188 *Immunity* 54, 2842-2858 e2845.

1189 Salvioni, A., Belloy, M., Lebourg, A., Bassot, E., Cantaloube-Ferrieu, V., Vasseur, V., Blanie, S., Liblau,
1190 R.S., Suberbielle, E., Robey, E.A., *et al.* (2019). Robust Control of a Brain-Persisting Parasite through
1191 MHC I Presentation by Infected Neurons. *Cell reports* 27, 3254-3268 e3258.

1192 Sanecka, A., Yoshida, N., Kolawole, E.M., Patel, H., Evavold, B.D., and Frickel, E.M. (2018). T Cell
1193 Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103(+)
1194 Memory Status of CD8 T Cells in the Brain. *Front Immunol* 9, 1290.

1195 Schaeffer, M., Han, S.J., Chtanova, T., van Dooren, G.G., Herzmark, P., Chen, Y., Roysam, B., Striepen,
1196 B., and Robey, E.A. (2009). Dynamic imaging of T cell-parasite interactions in the brains of mice
1197 chronically infected with *Toxoplasma gondii*. *J Immunol* 182, 6379-6393.

1198 Schnell, A., Huang, L., Singer, M., Singaraju, A., Barilla, R.M., Regan, B.M.L., Bollhagen, A., Thakore,
1199 P.I., Dionne, D., Delorey, T.M., *et al.* (2021). Stem-like intestinal Th17 cells give rise to pathogenic
1200 effector T cells during autoimmunity. *Cell* 184, 6281-6298 e6223.

1201 Shallberg, L.A., Phan, A.T., Christian, D.A., Perry, J.A., Haskins, B.E., Beiting, D.P., Harris, T.H., Koshy,
1202 A.A., and Hunter, C.A. (2022). Impact of secondary TCR engagement on the heterogeneity of
1203 pathogen-specific CD8+ T cell response during acute and chronic toxoplasmosis. *PLoS pathogens* 18,
1204 e1010296.

1205 Son, Y.M., Cheon, I.S., Wu, Y., Li, C., Wang, Z., Gao, X., Chen, Y., Takahashi, Y., Fu, Y.X., Dent, A.L., *et*
1206 *al.* (2021). Tissue-resident CD4(+) T helper cells assist the development of protective respiratory B
1207 and CD8(+) T cell memory responses. *Science immunology* 6.

1208 Steffen, J., Ehrentraut, S., Bank, U., Biswas, A., Figueiredo, C.A., Holsken, O., Dusdau, H.P., Dovhan,
1209 V., Knop, L., Thode, J., *et al.* (2022). Type 1 innate lymphoid cells regulate the onset of *Toxoplasma*
1210 *gondii*-induced neuroinflammation. *Cell reports* 38, 110564.

1211 Steinbach, K., Vincenti, I., Kreutzfeldt, M., Page, N., Muschawecckh, A., Wagner, I., Drexler, I.,
1212 Pinschewer, D., Korn, T., and Merkler, D. (2016). Brain-resident memory T cells represent an
1213 autonomous cytotoxic barrier to viral infection. *J Exp Med* 213, 1571-1587.

1214 Steinert, E.M., Schenkel, J.M., Fraser, K.A., Beura, L.K., Manlove, L.S., Iggyarto, B.Z., Southern, P.J., and
1215 Masopust, D. (2015). Quantifying Memory CD8 T Cells Reveals Regionalization of
1216 Immunosurveillance. *Cell* 161, 737-749.

1217 Still, K.M., Batista, S.J., O'Brien, C.A., Oyesola, O.O., Fruh, S.P., Webb, L.M., Smirnov, I., Kovacs, M.A.,
1218 Cowan, M.N., Hayes, N.W., *et al.* (2020). Astrocytes promote a protective immune response to brain
1219 *Toxoplasma gondii* infection via IL-33-ST2 signaling. *PLoS pathogens* 16, e1009027.

1220 Suzuki, Y., Wang, X., Jortner, B.S., Payne, L., Ni, Y., Michie, S.A., Xu, B., Kudo, T., and Perkins, S.
1221 (2010). Removal of *Toxoplasma gondii* cysts from the brain by perforin-mediated activity of CD8+ T
1222 cells. *Am J Pathol* 176, 1607-1613.

1223 Szabo, P.A. (2023). Axes of heterogeneity in human tissue-resident memory T cells. *Immunol Rev*
1224 316, 23-37.

1225 Tkachev, V., Kaminski, J., Potter, E.L., Furlan, S.N., Yu, A., Hunt, D.J., McGuckin, C., Zheng, H., Colonna,
1226 L., Gerdemann, U., *et al.* (2021). Spatiotemporal single-cell profiling reveals that invasive and tissue-

1227 resident memory donor CD8(+) T cells drive gastrointestinal acute graft-versus-host disease. *Sci
1228 Transl Med* 13.

1229 van den Brink, S.C., Sage, F., Vertesy, A., Spanjaard, B., Peterson-Maduro, J., Baron, C.S., Robin, C.,
1230 and van Oudenaarden, A. (2017). Single-cell sequencing reveals dissociation-induced gene expression
1231 in tissue subpopulations. *Nat Methods* 14, 935-936.

1232 van Gisbergen, K., Zens, K.D., and Munz, C. (2021). T-cell memory in tissues. *Eur J Immunol* 51, 1310-
1233 1324.

1234 Vidal, J.E. (2019). HIV-Related Cerebral Toxoplasmosis Revisited: Current Concepts and Controversies
1235 of an Old Disease. *Journal of the International Association of Providers of AIDS Care* 18,
1236 2325958219867315.

1237 Vincenti, I., Page, N., Steinbach, K., Yermanos, A., Lemeille, S., Nunez, N., Kreutzfeldt, M., Klimek, B.,
1238 Di Liberto, G., Egervari, K., *et al.* (2022). Tissue-resident memory CD8(+) T cells cooperate with CD4(+)
1239 T cells to drive compartmentalized immunopathology in the CNS. *Sci Transl Med* 14, eabl6058.

1240 Wakim, L.M., Woodward-Davis, A., and Bevan, M.J. (2010). Memory T cells persisting within the brain
1241 after local infection show functional adaptations to their tissue of residence. *Proc Natl Acad Sci U S A*
1242 107, 17872-17879.

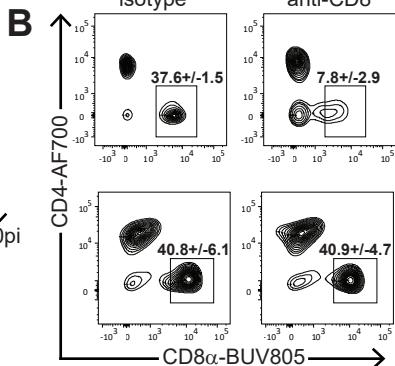
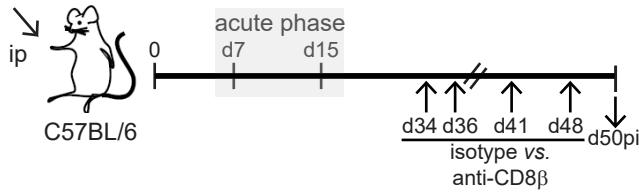
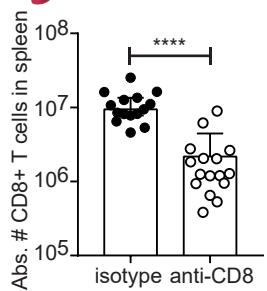
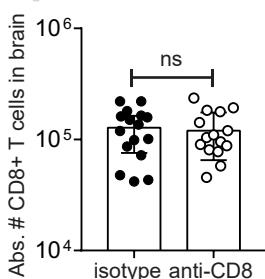
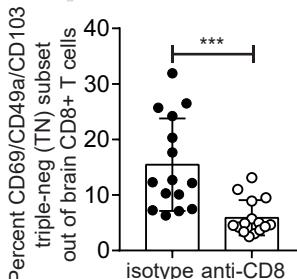
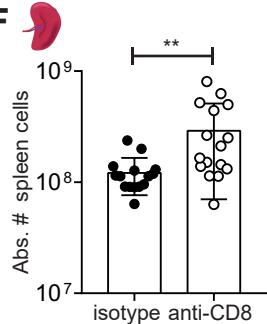
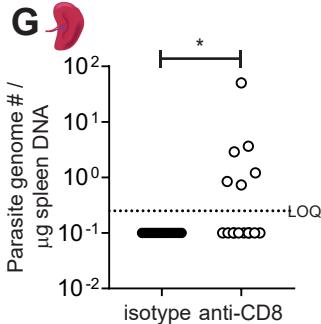
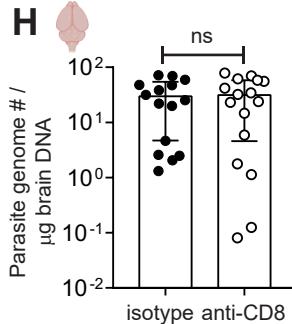
1243 Wakim, L.M., Woodward-Davis, A., Liu, R., Hu, Y., Villadangos, J., Smyth, G., and Bevan, M.J. (2012).
1244 The molecular signature of tissue resident memory CD8 T cells isolated from the brain. *J Immunol*
1245 189, 3462-3471.

1246 Wang, Z.D., Wang, S.C., Liu, H.H., Ma, H.Y., Li, Z.Y., Wei, F., Zhu, X.Q., and Liu, Q. (2017). Prevalence
1247 and burden of *Toxoplasma gondii* infection in HIV-infected people: a systematic review and meta-
1248 analysis. *The lancet HIV* 4, e177-e188.

1249 Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R., and Ahmed, R. (2003). Viral
1250 persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages
1251 of functional impairment. *J Virol* 77, 4911-4927.

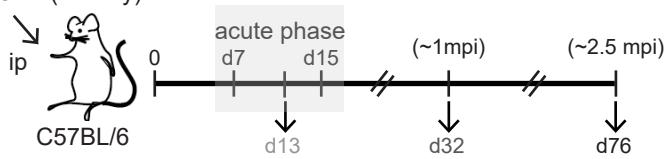
1252 Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D.,
1253 McDermott, G.P., Zhu, J., *et al.* (2017). Massively parallel digital transcriptional profiling of single
1254 cells. *Nat Commun* 8, 14049.

1255 Zitti, B., Hoffer, E., Zheng, W., Pandey, R.V., Schlums, H., Perinetti Casoni, G., Fusi, I., Nguyen, L.,
1256 Karner, J., Kokkinou, E., *et al.* (2023). Human skin-resident CD8(+) T cells require RUNX2 and RUNX3
1257 for induction of cytotoxicity and expression of the integrin CD49a. *Immunity* 56, 1285-1302 e1287.









1258 Zundler, S., Becker, E., Spocinska, M., Slawik, M., Parga-Vidal, L., Stark, R., Wiendl, M., Atreya, R.,
1259 Rath, T., Lepkes, M., *et al.* (2019). Hobit- and Blimp-1-driven CD4(+) tissue-resident memory T cells
1260 control chronic intestinal inflammation. *Nat Immunol* 20, 288-300.

1261
1262

Figure 1


A

Tg.GRA6-OVA (latency)

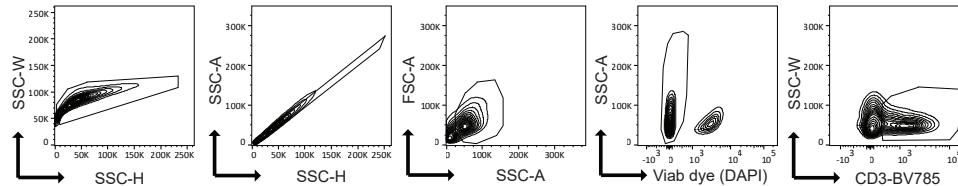
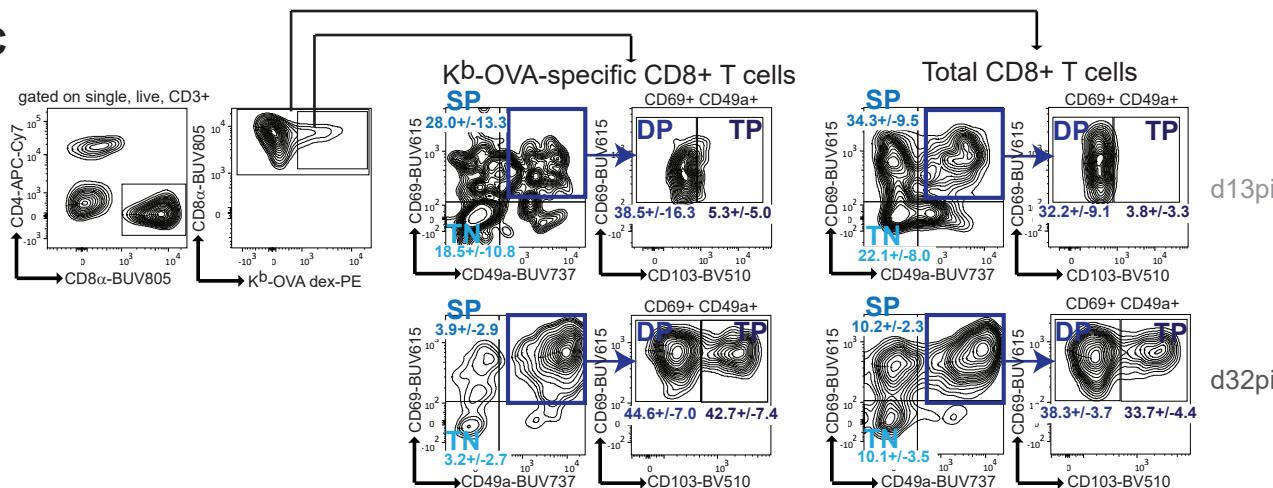
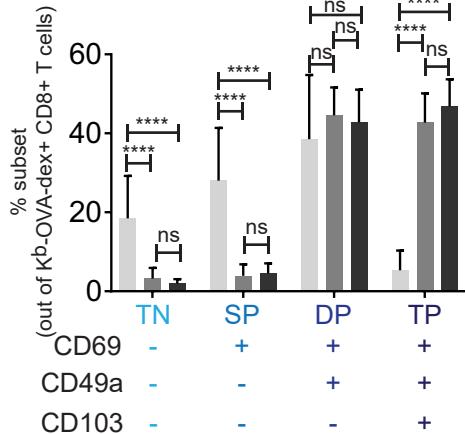
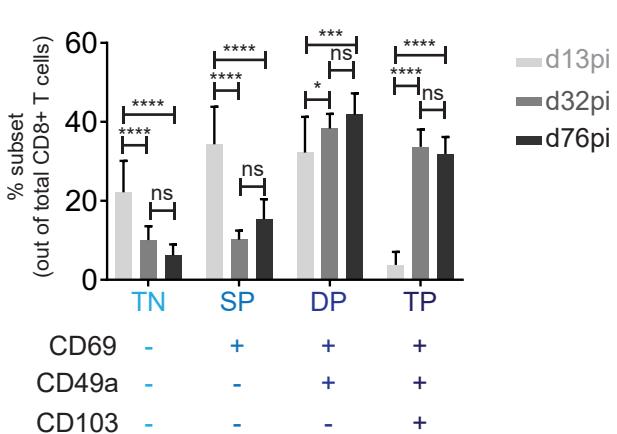
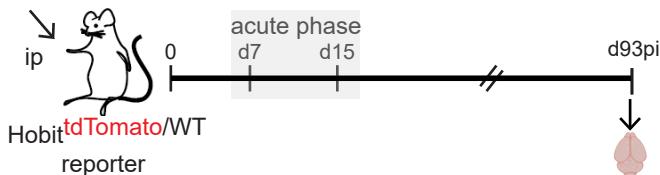
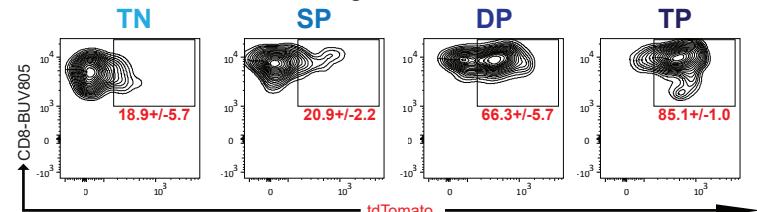
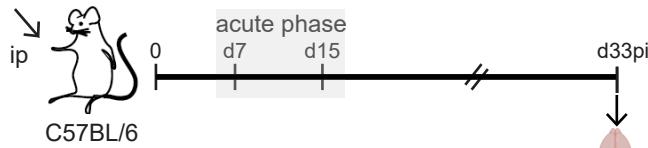
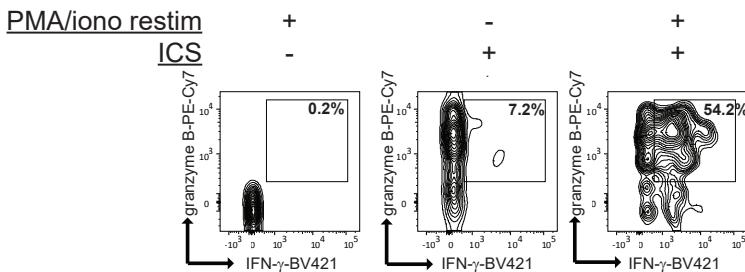
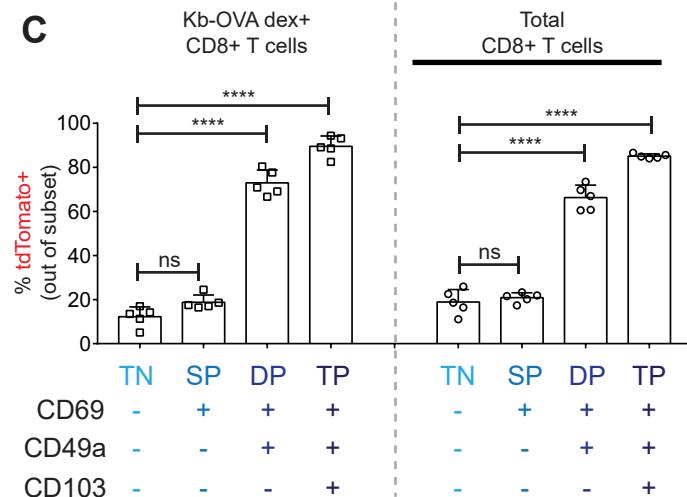
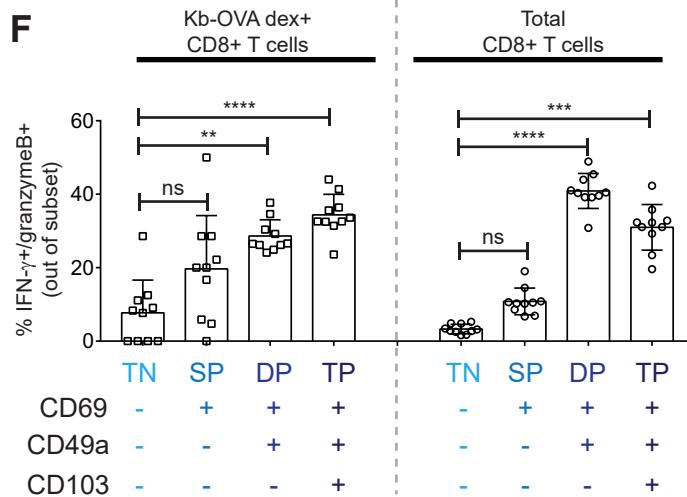

C**D****E****F****G****H**

Figure 2


A *Tg.GRA6-OVA* (latency)


B


C

D Kb-OVA-specific CD8+ T cells

E Total CD8+ T cells

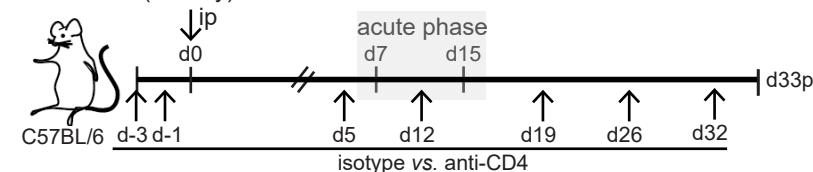
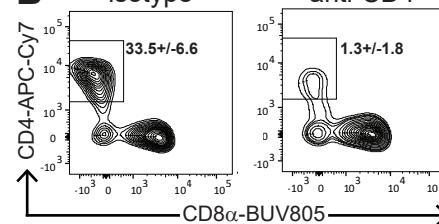
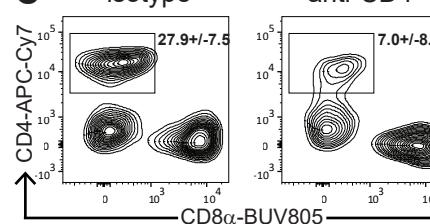
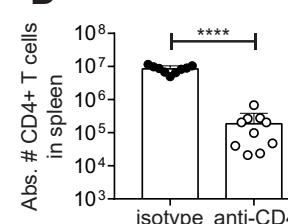


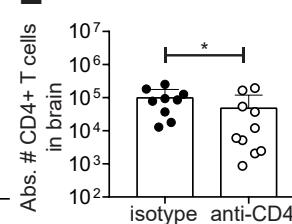
Figure 3**A** *Tg.GRA6-OVA* (latency)**B** Gated on single, live, CD8+ T cells**D** *Tg.GRA6-OVA* (latency)**E** Analysis of bi-functional (IFN- γ + granzyme B+) cells after in vitro restimulation and gating on single, live, CD8+, Kb-OVA dex+, TP T cells**C****F**

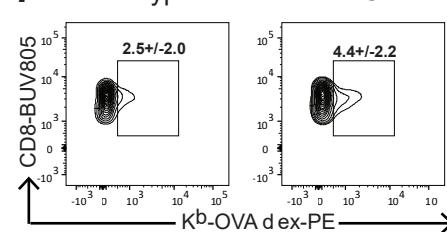

Figure 4

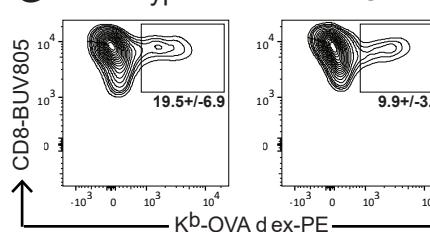
Tg.GRA6-OVA
(latency)

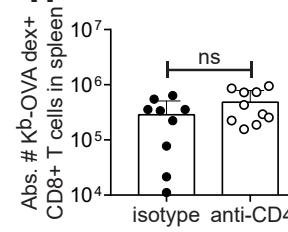

A

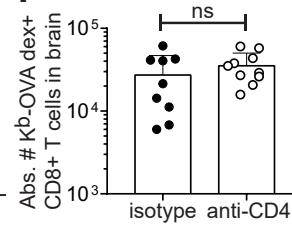

B

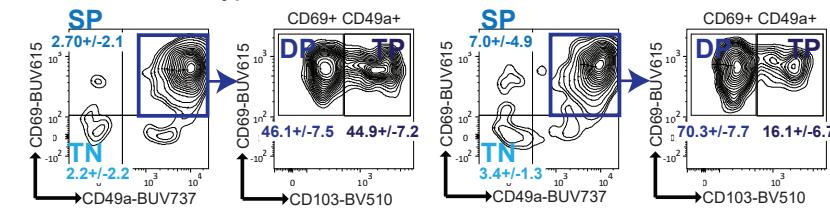

C

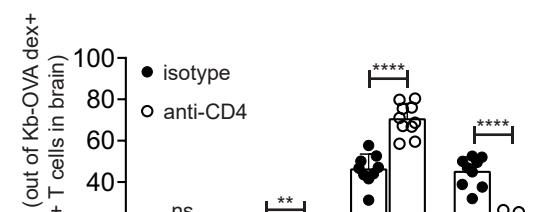

D

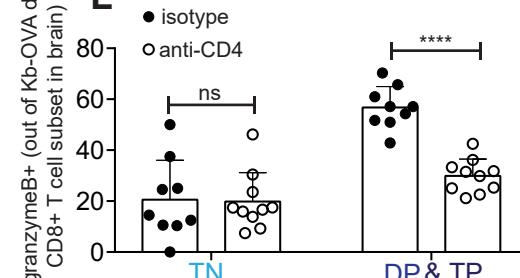

E

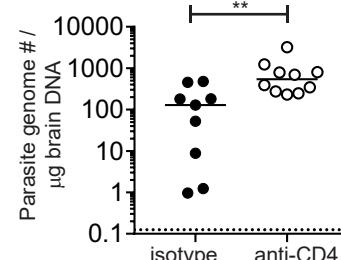

F


G

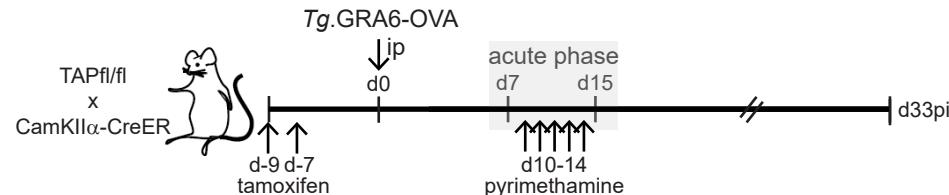

H


I


J


K

L


M

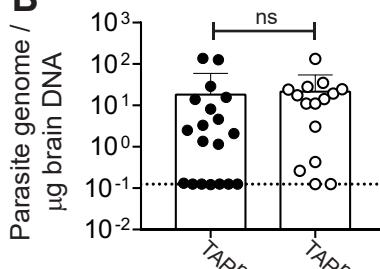
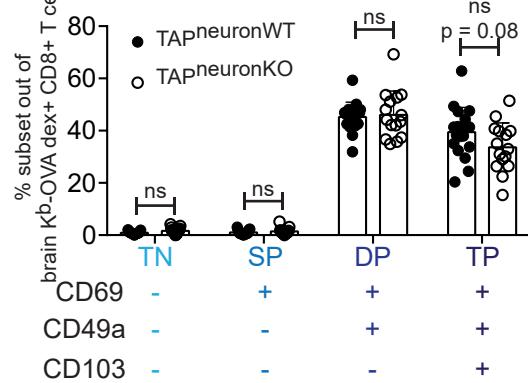
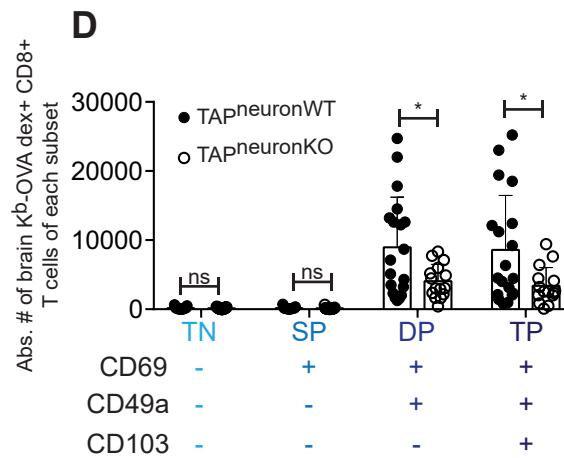
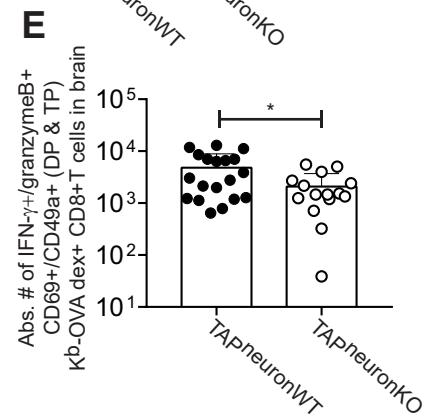

CD69	-	+	+	+
CD49a	-	-	+	+
CD103	-	-	-	+

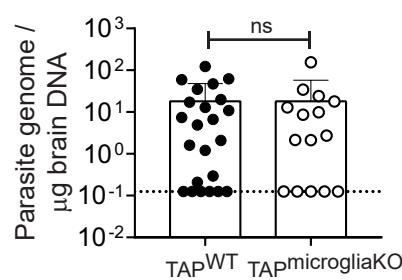
Figure 5

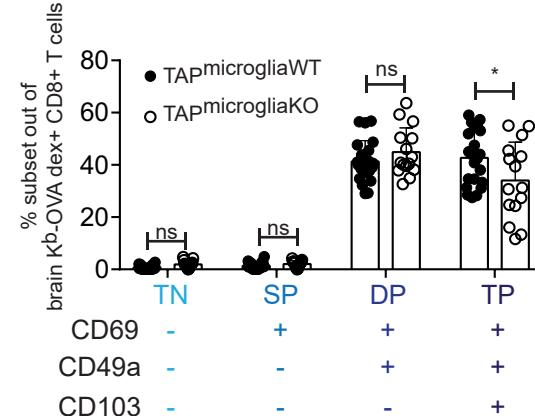

A

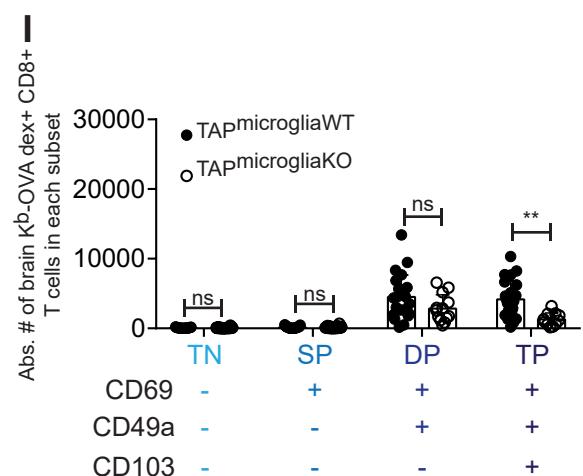

B

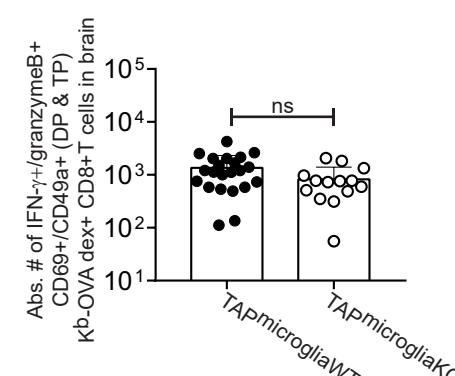

C

D

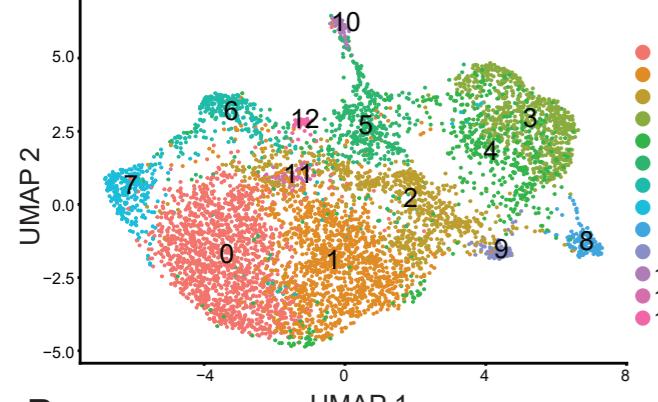

E


F


G


H

I



J

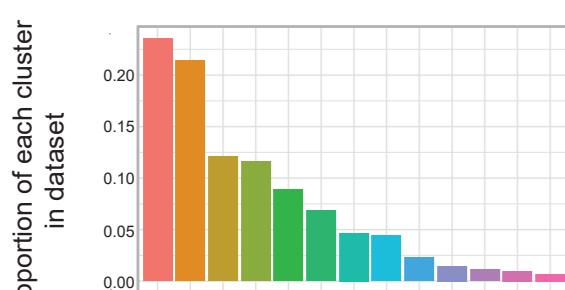
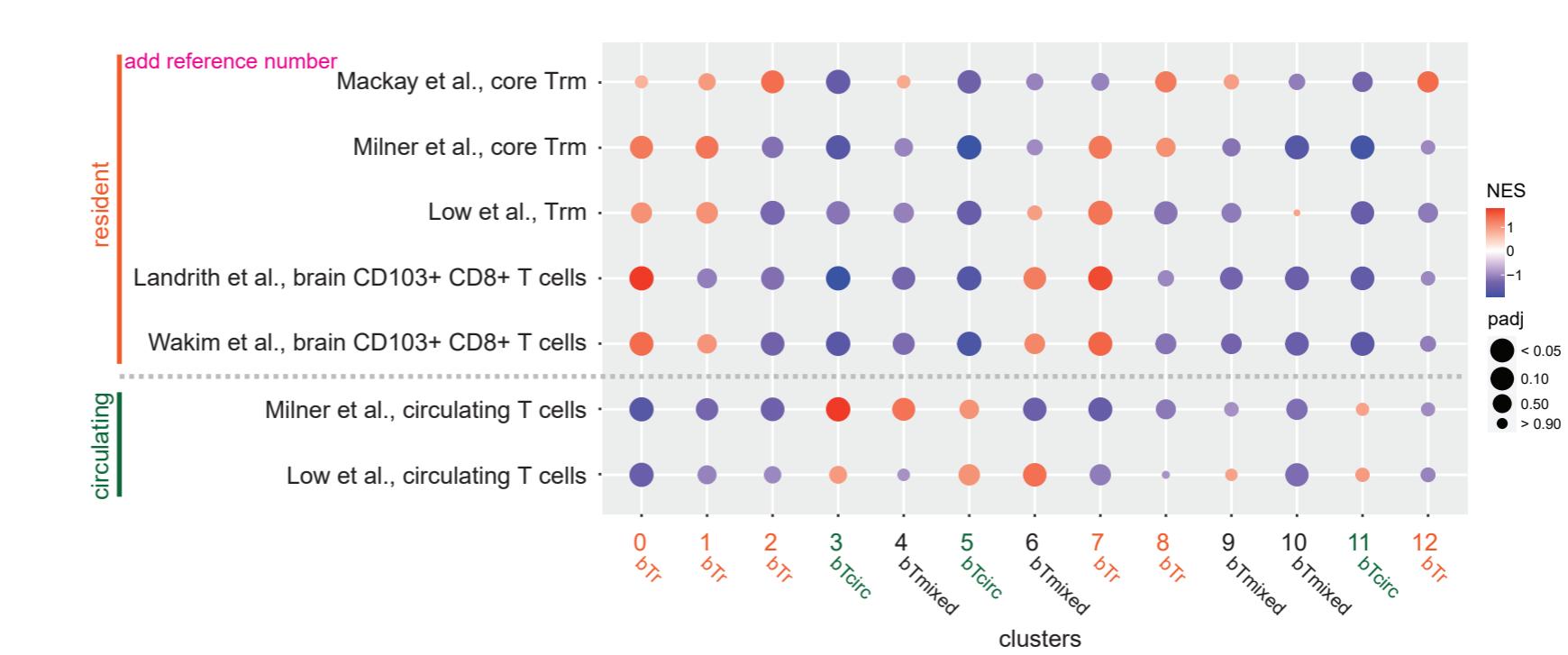
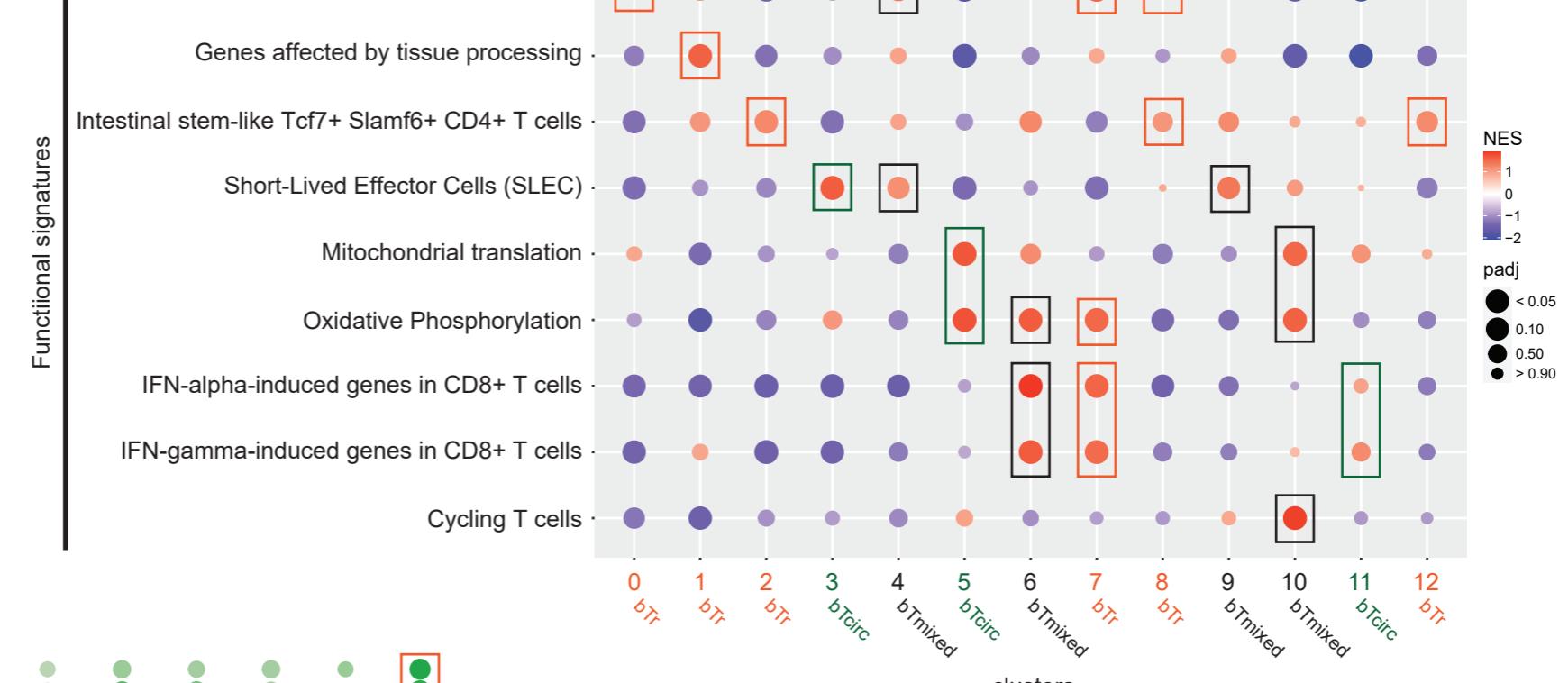
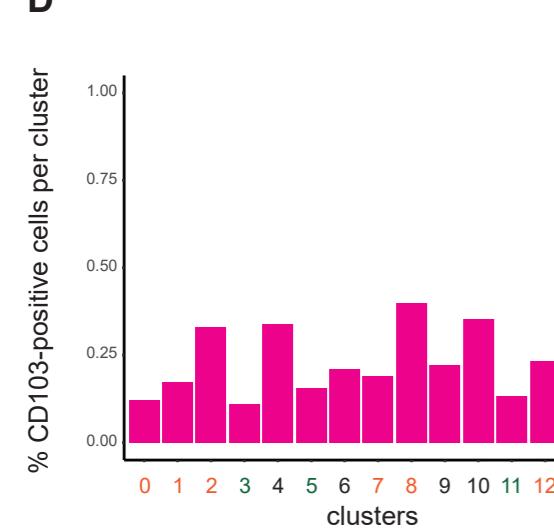


Figure 6

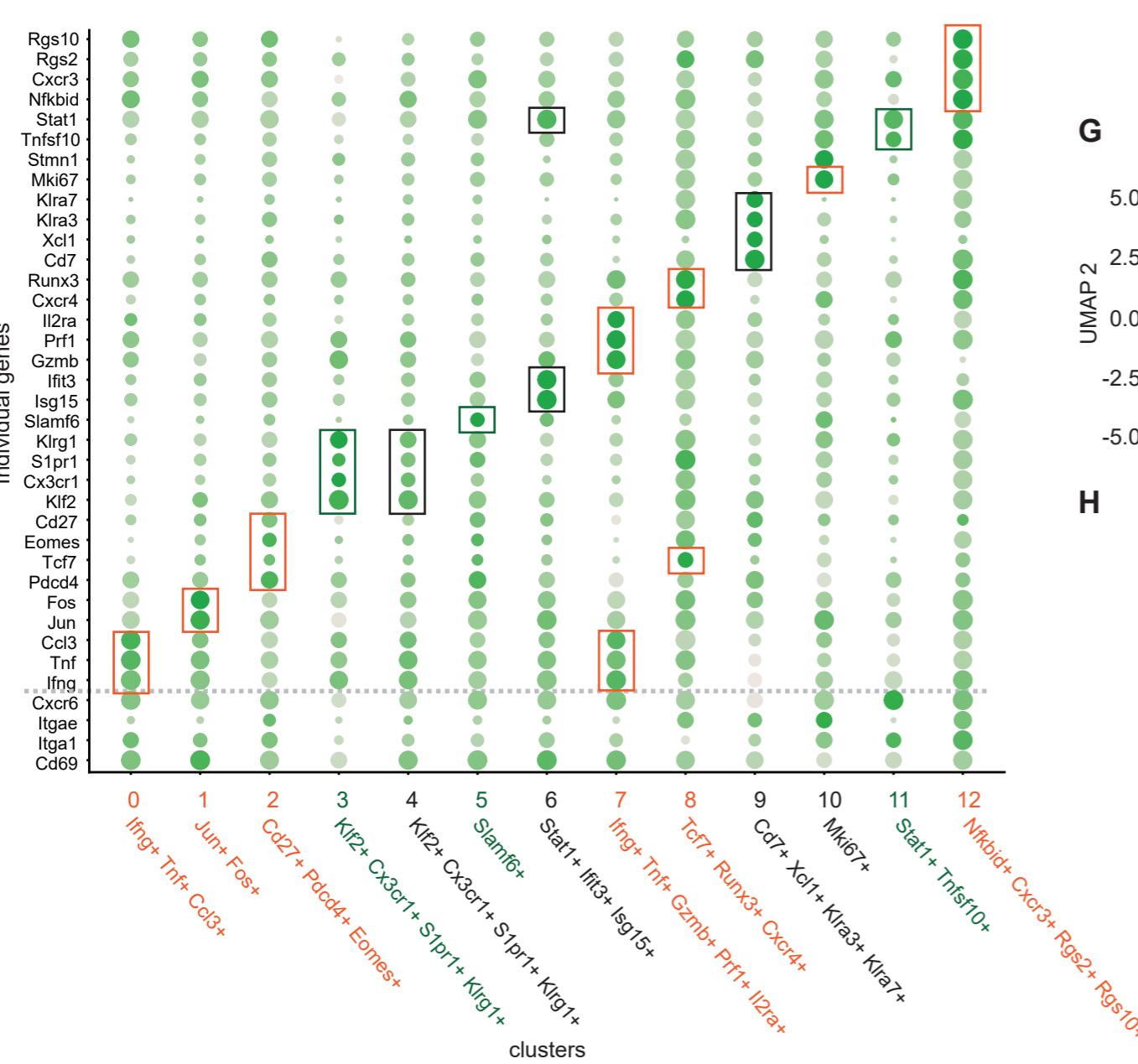
A 6182 parasite (OVA)-specific CD8+ T cells



B

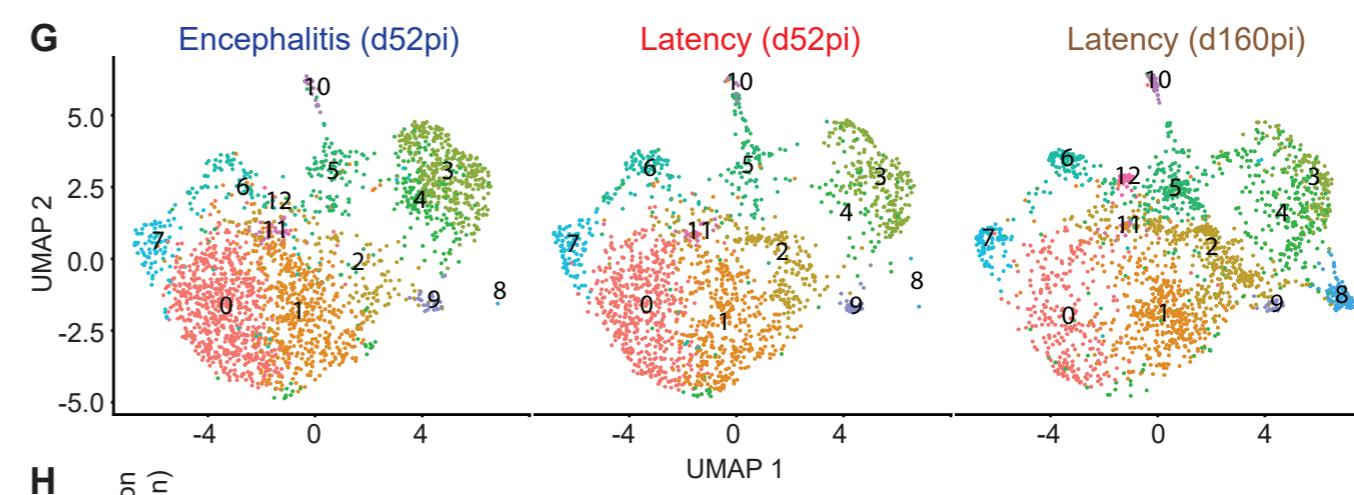



bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.08.579453>; this version posted February 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. It is made available under aCC-BY-NC-ND 4.0 International license.

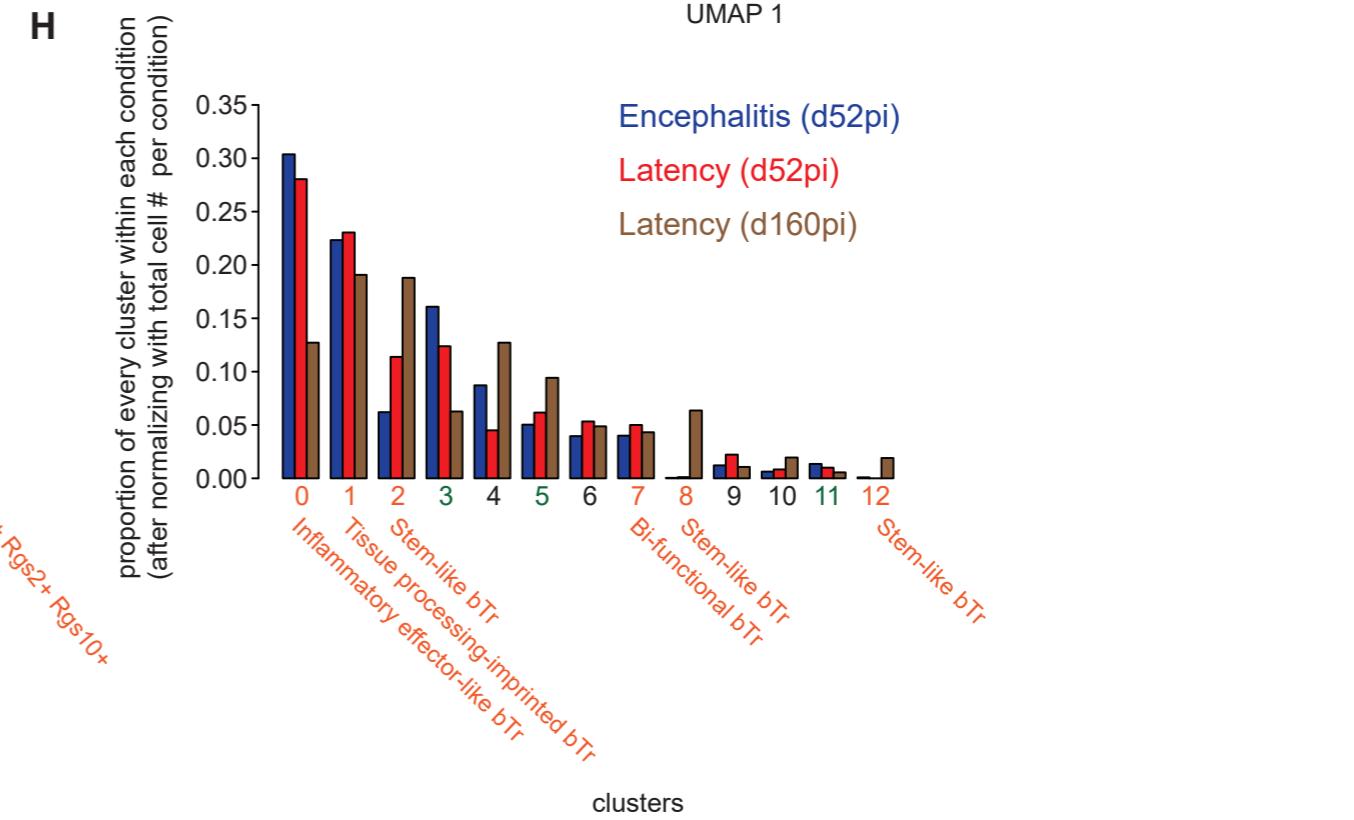

C GSEA with resident vs. circulating T cell signatures

D

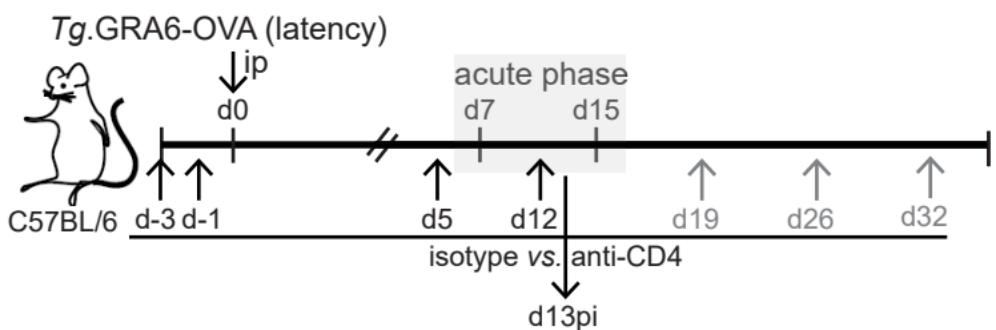
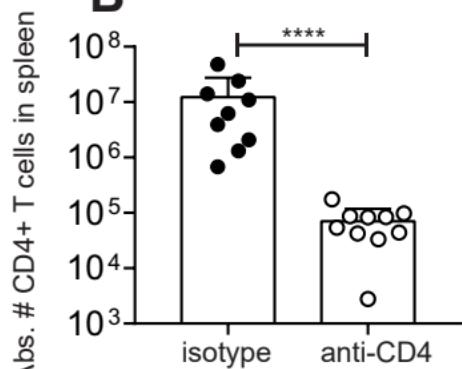
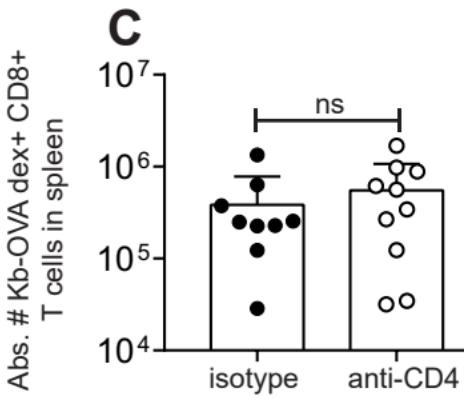
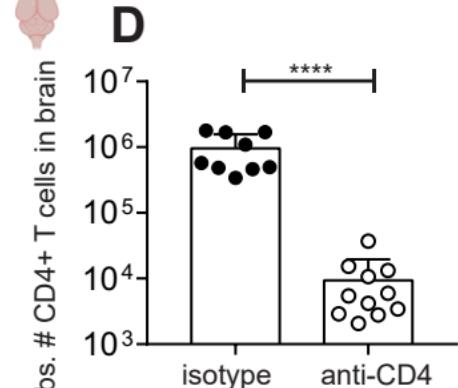
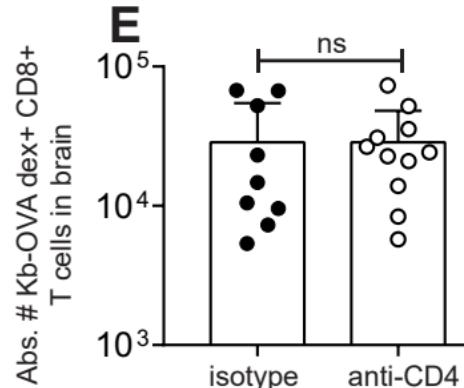
F

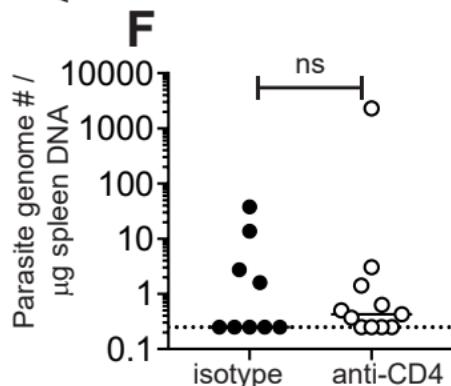
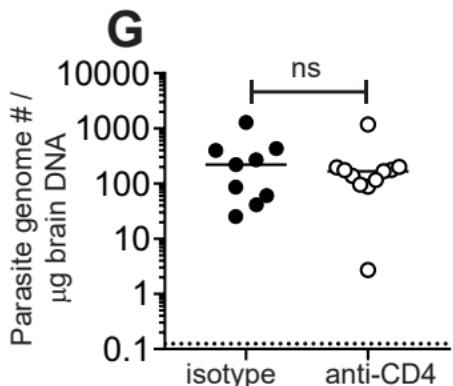


Percent Expressed Average Expression


0 25 50 75 100

-2 -1 0 1 2

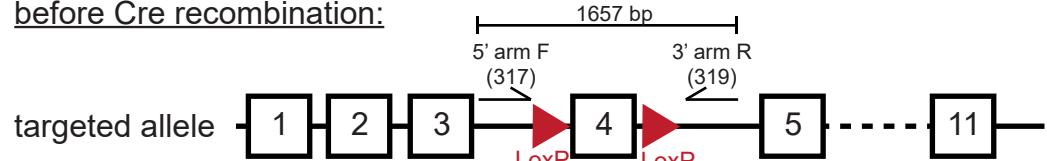





G Encephalitis (d52pi)



H Encephalitis (d52pi) Latency (d52pi) Latency (d160pi)

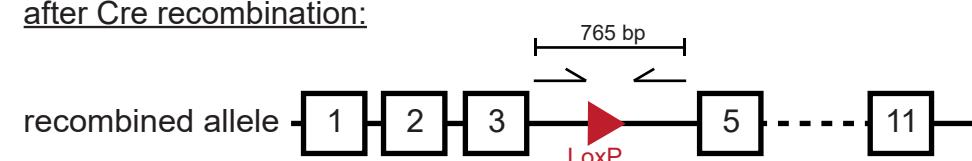
Sup Figure 1 (related to figure 4)

A**B****C****D****E**

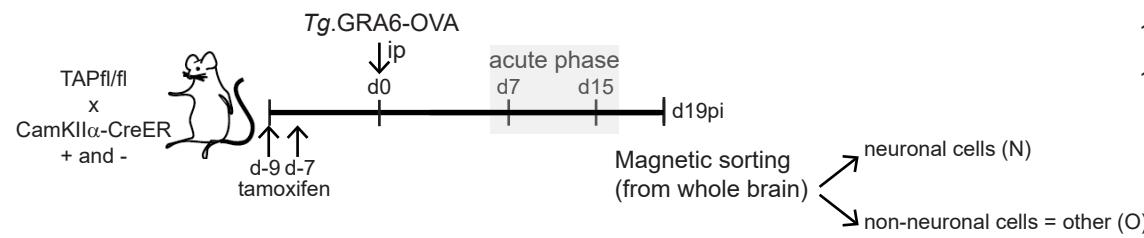
Parasite genome # /
μg spleen DNA

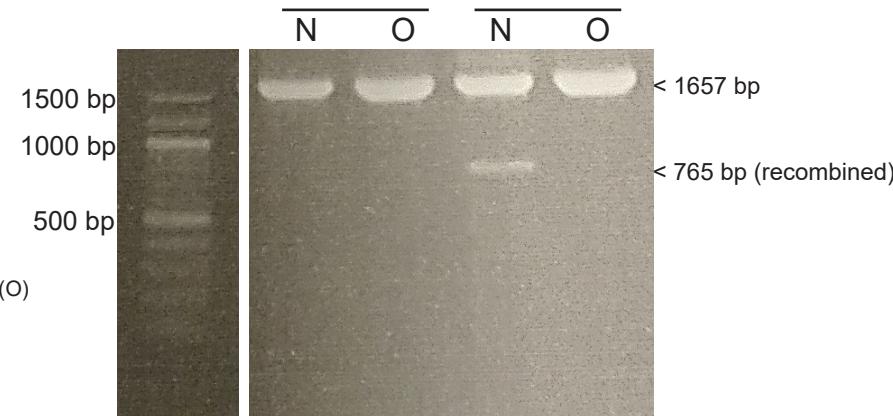

F**G**

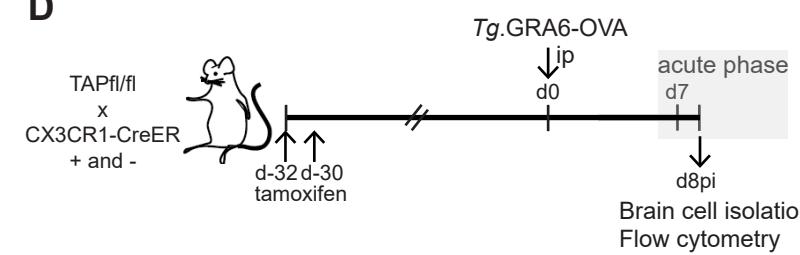
Sup Figure 2 (related to figure 5)

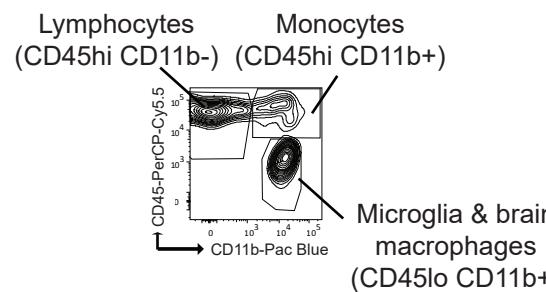

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.08.579453>; this version posted February 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A Schematics of floxed LoxP cassette

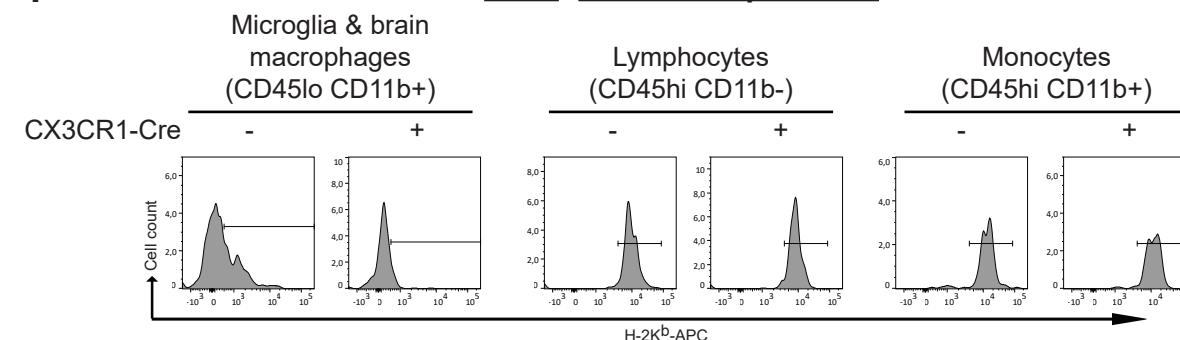

before Cre recombination:


after Cre recombination:

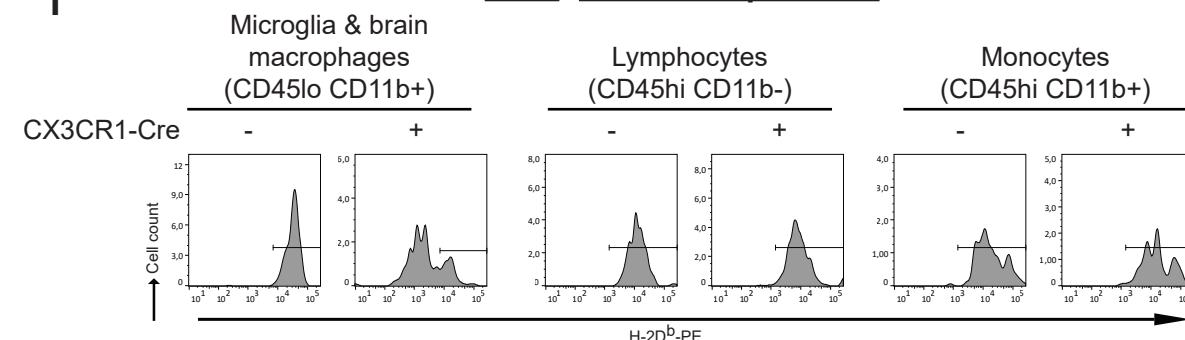

B


C CamKIIα-Cre

D

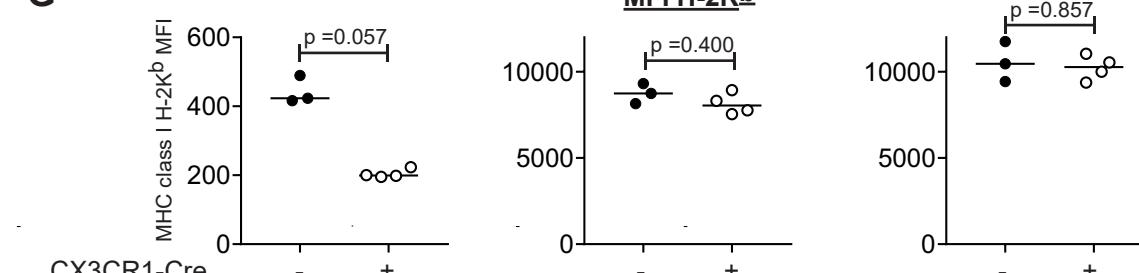


E gated on single, live cells



F

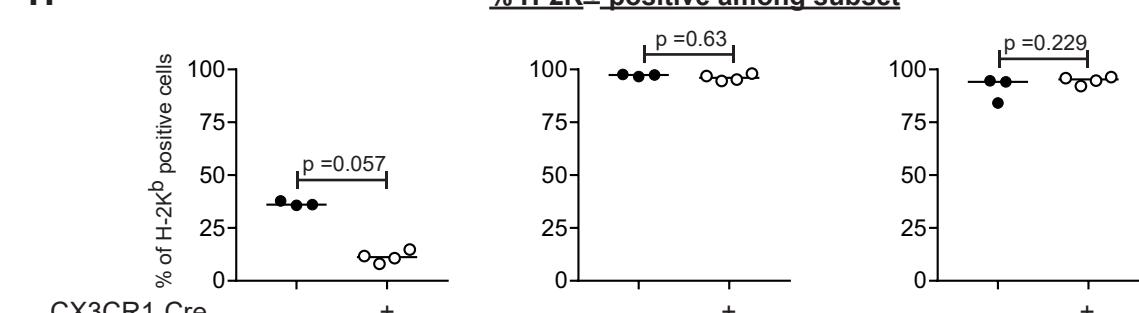
H-2K^b surface expression



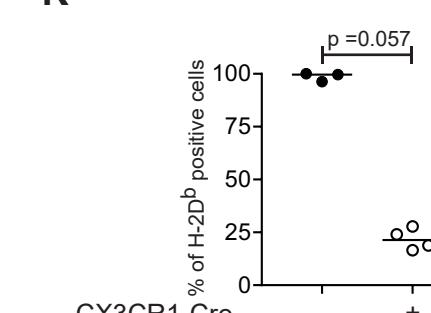
H-2D^b surface expression

G

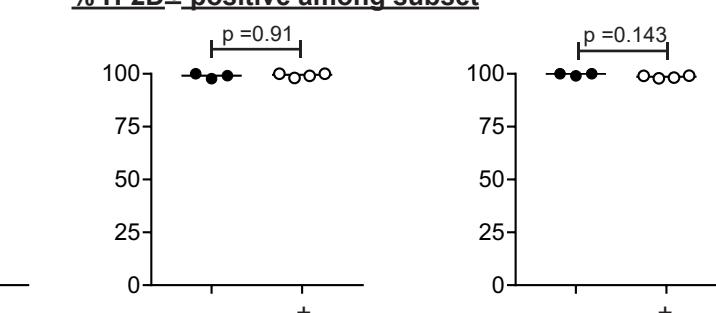
MFI H-2K^b



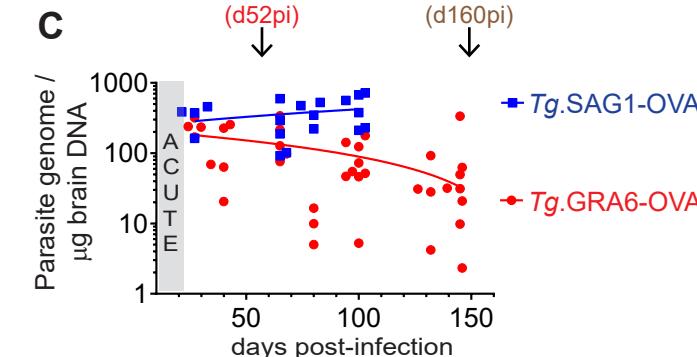
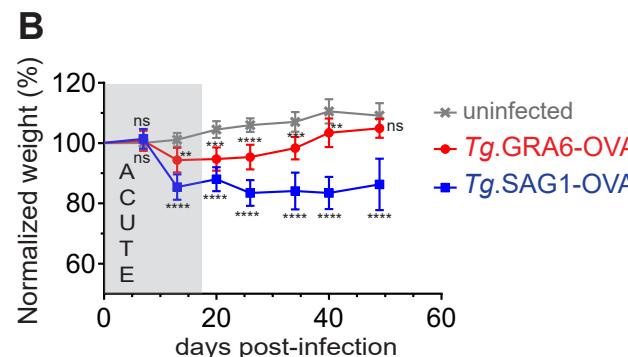
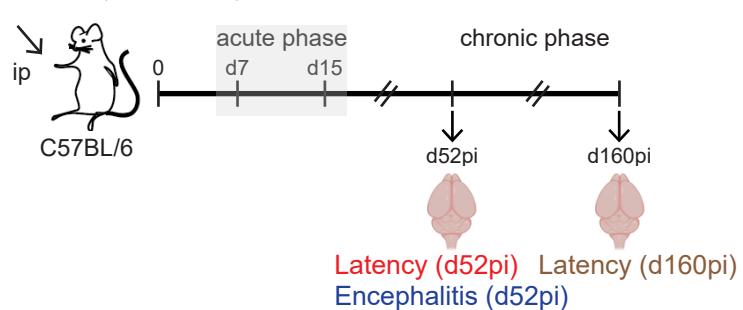
J



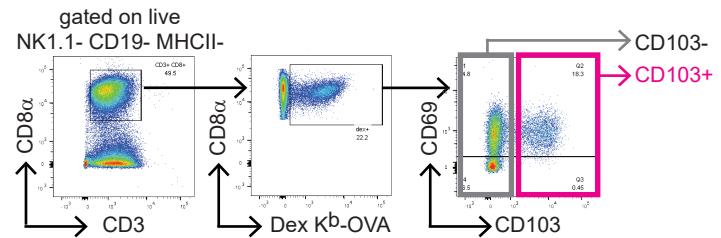
H


% H-2K^b-positive among subset

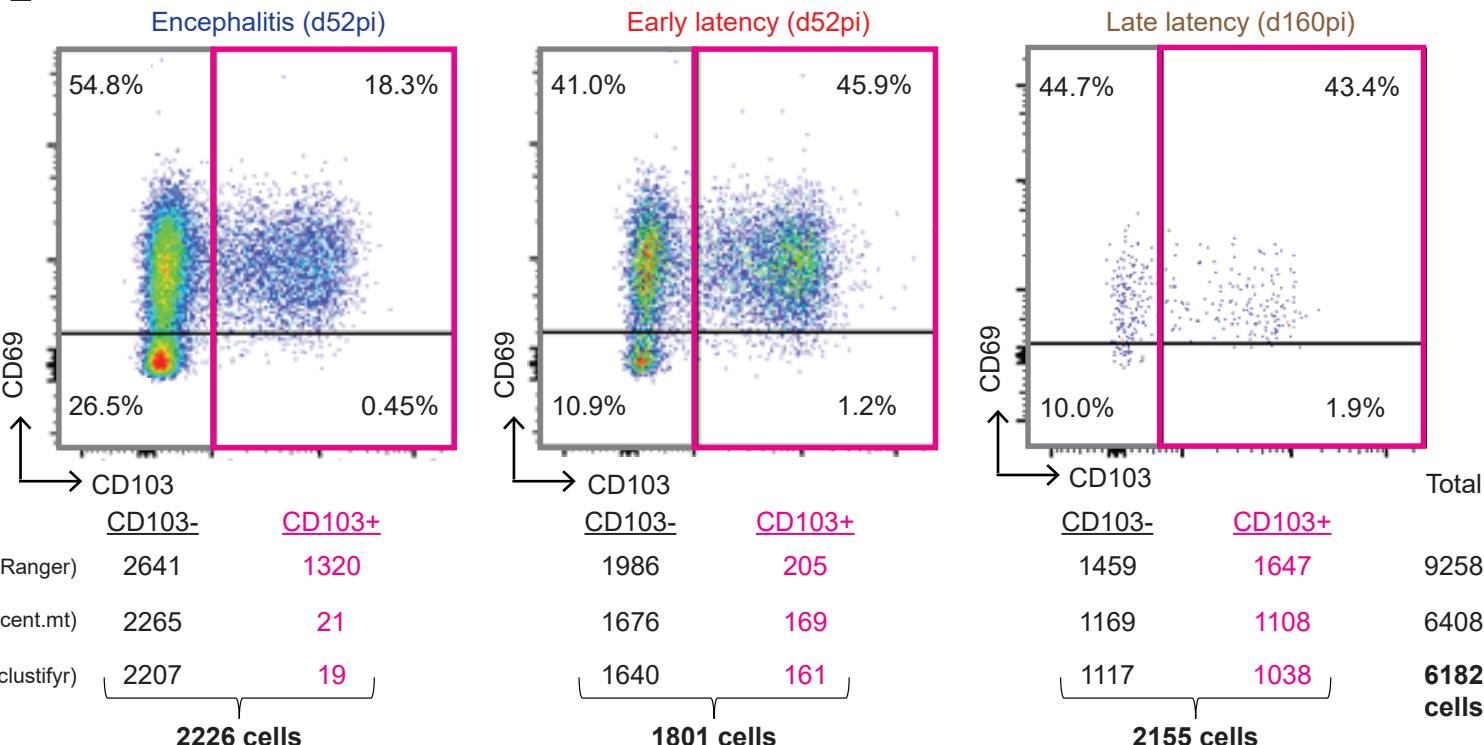
K

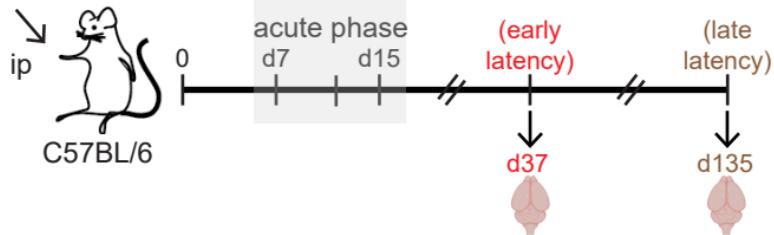
% H-2D^b-positive among subset



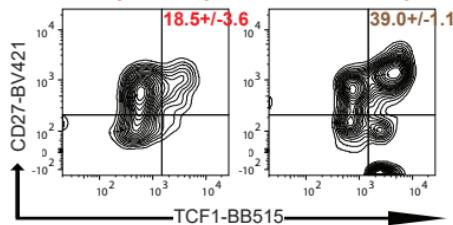
Sup Figure 3 (related to Figure 6)


A *Tg.GRA6-OVA* (latency)
Tg.SAG1-OVA (encephalitis)

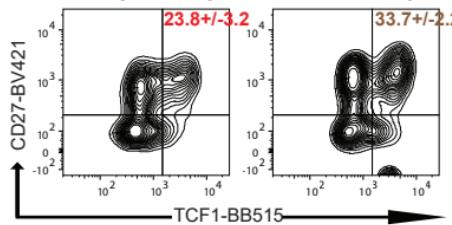
D Facs sorting of CD103-neg and CD103-pos OVA-specific CD8+ T cells from brain

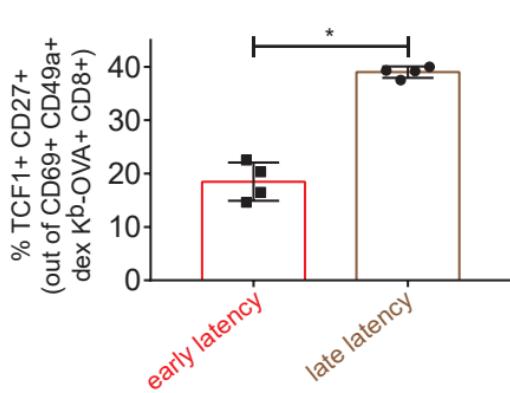


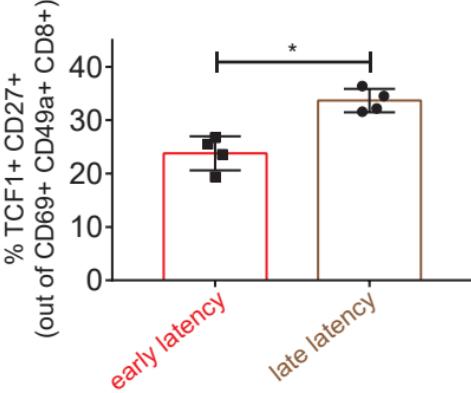
E



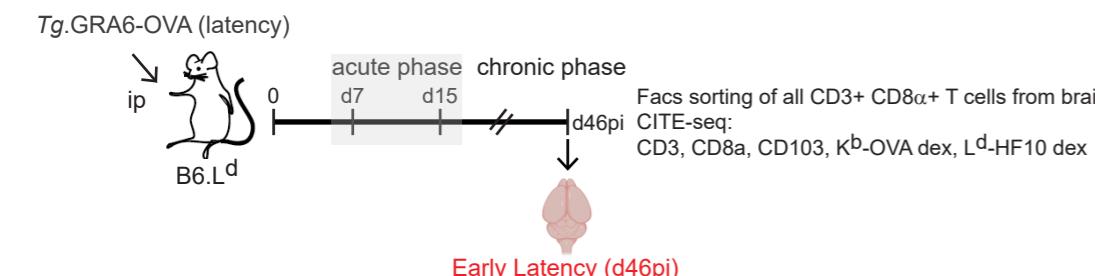
Sup Figure 4 (related to Fig 6)


A *Tg.GRA6-OVA* (latency)

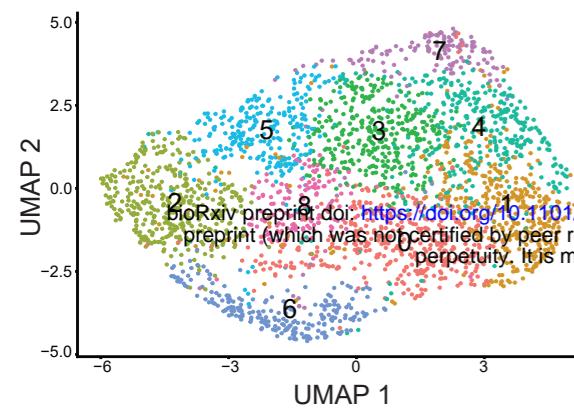

B gated on single, live, CD69+ CD49a+ K^b-OVA dex+ CD8+ early latency late latency


C gated on single, live, CD69+ CD49a+ CD8+ early latency late latency

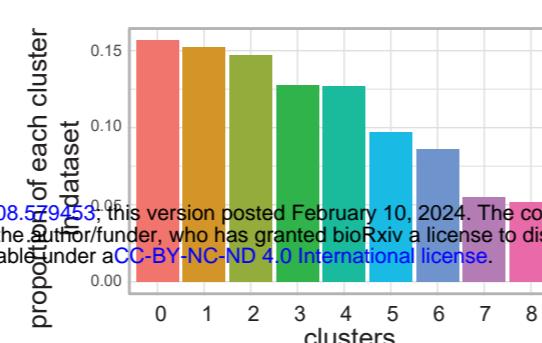
D K^b-OVA-specific CD8+ bTr



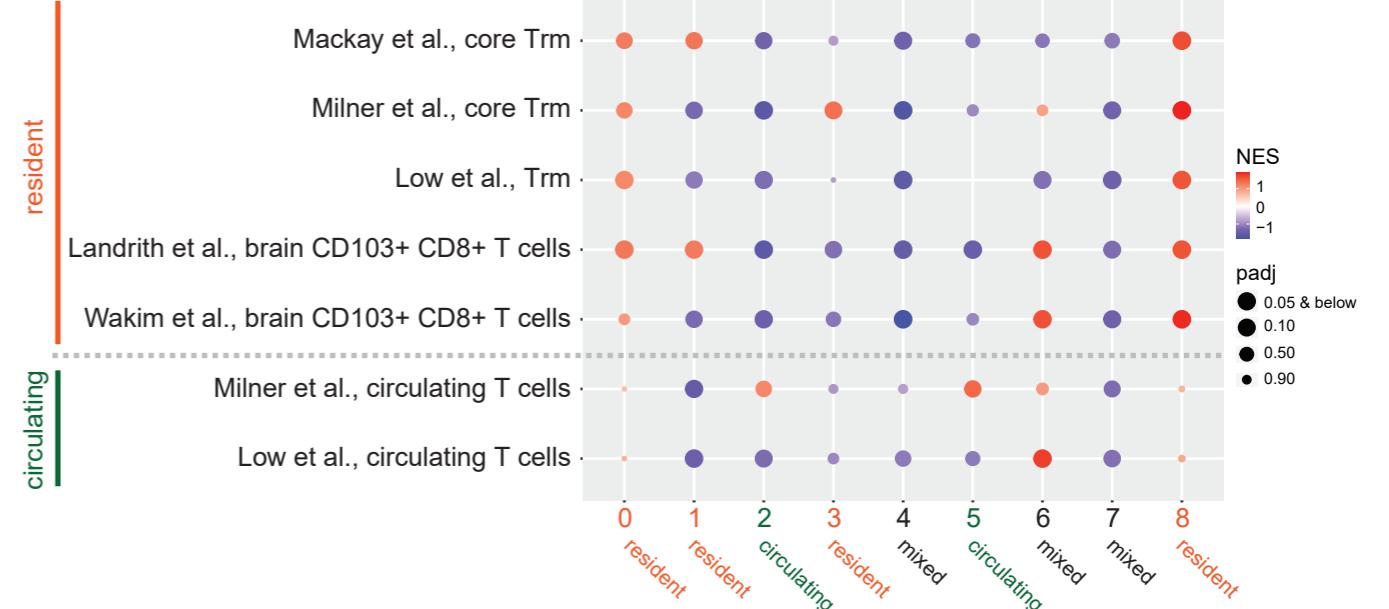
E CD8+ bTr



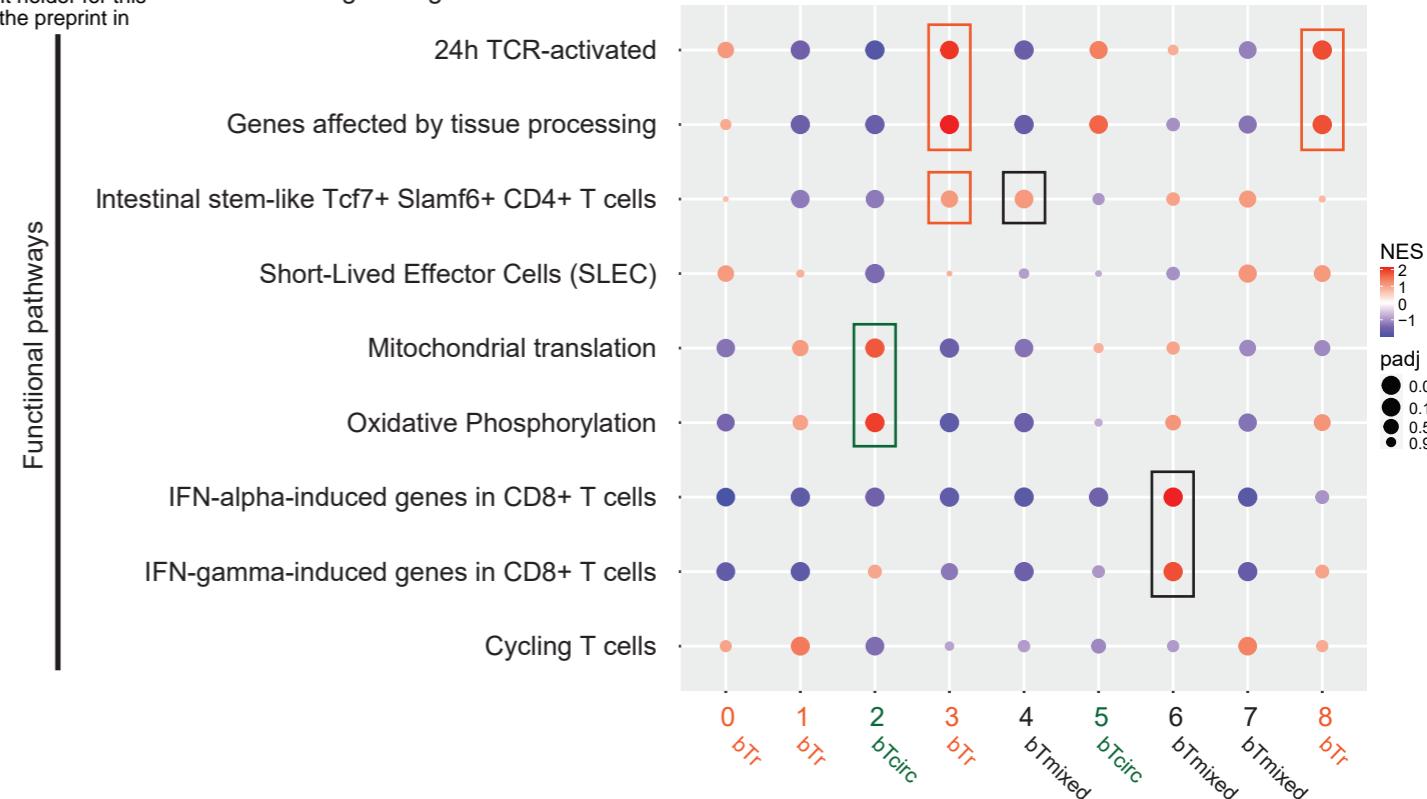
Sup Figure 5 (related to Figure 6)


A

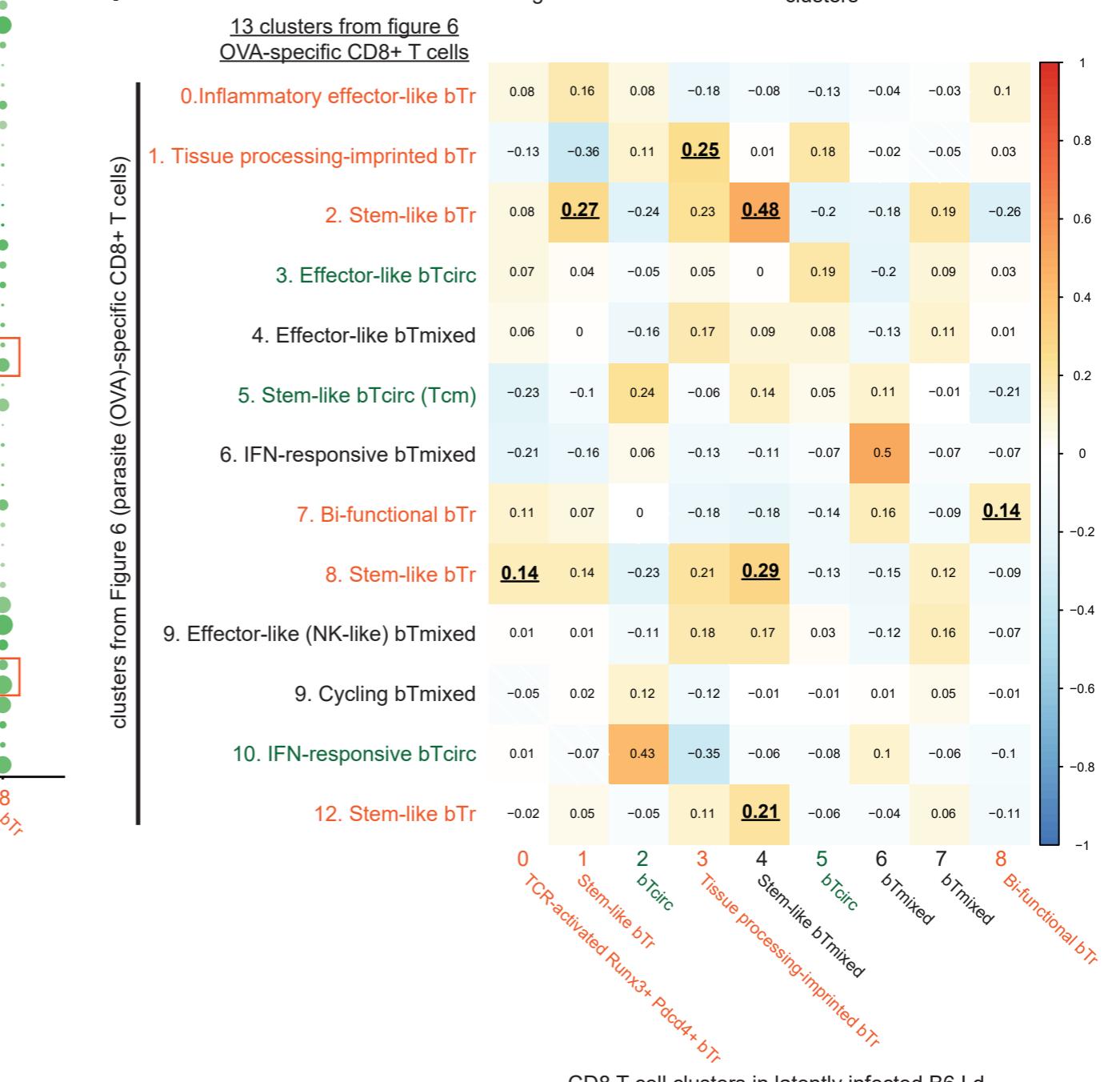
B 2715 total CD8+ T cells



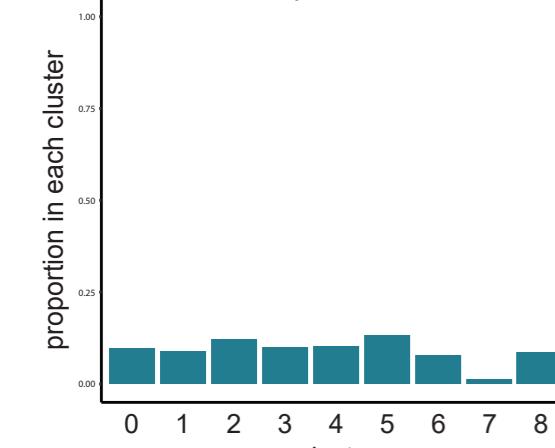
C


D

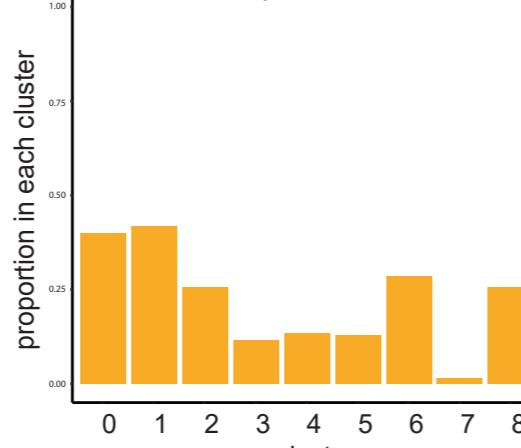
GSEA with resident vs. circulating T cell signatures

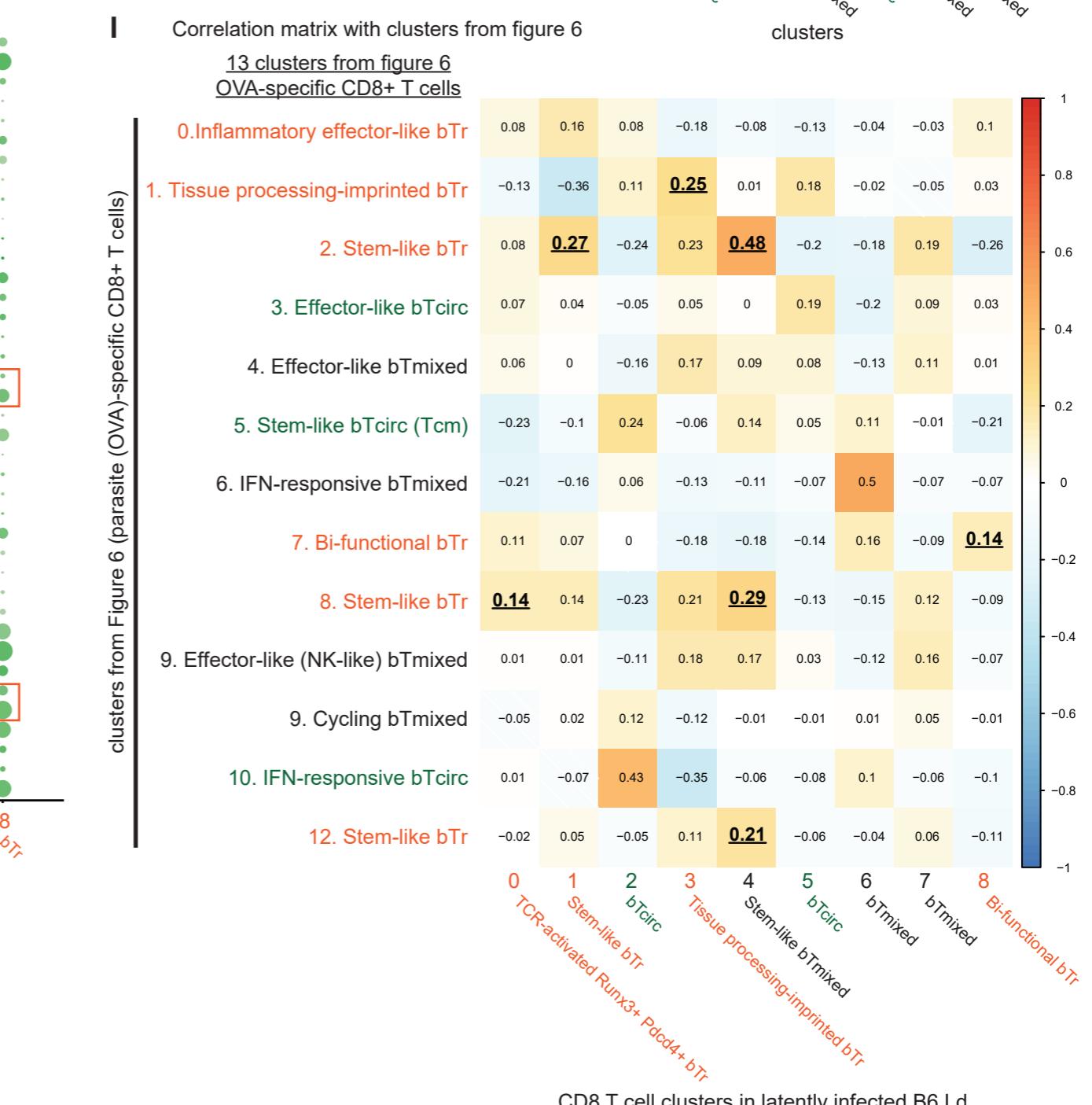
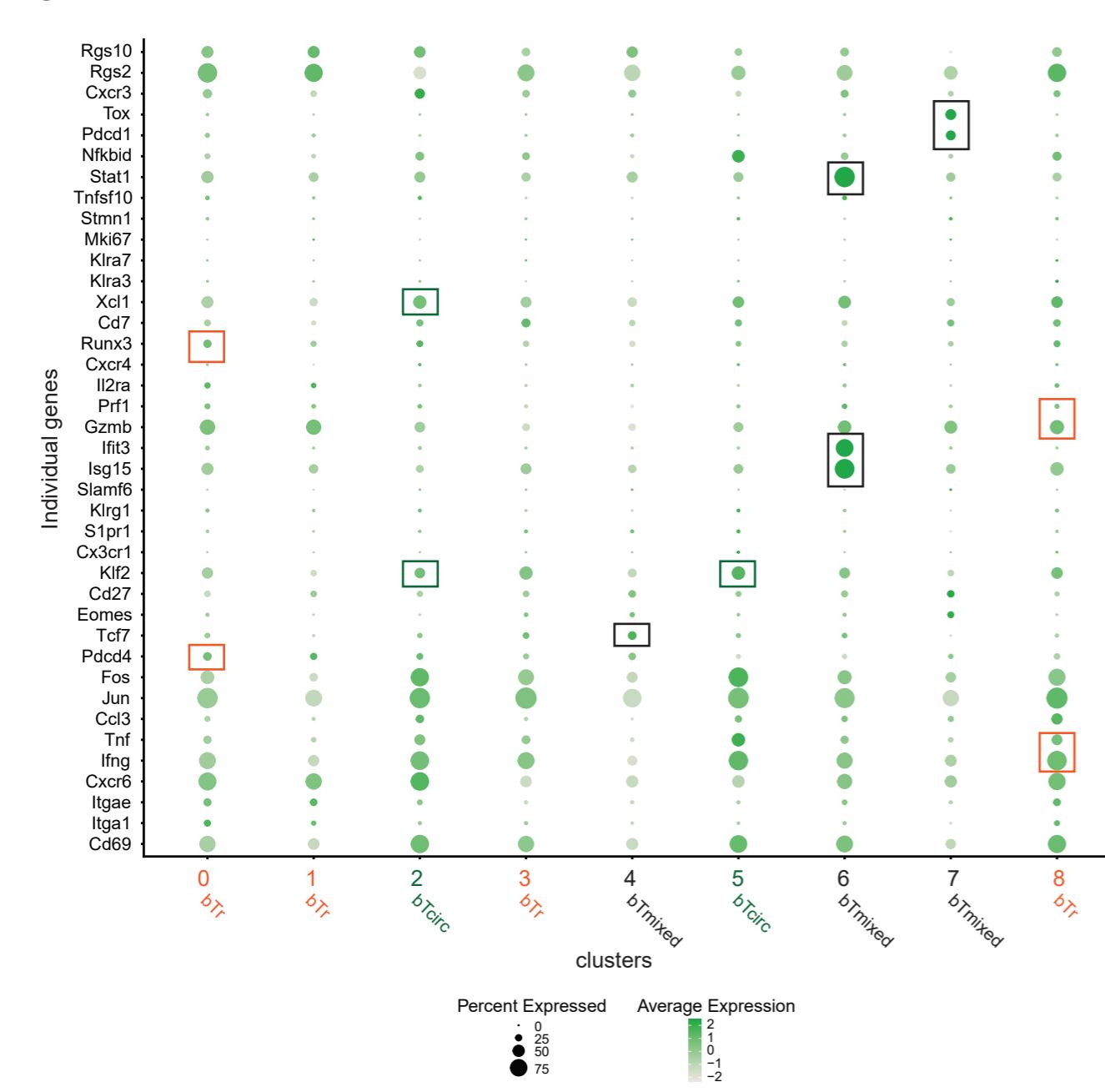

H

GSEA with functional gene signatures



I


Correlation matrix with clusters from figure 6



E L^d-GRA6-specific CD8+ T cells

F Kb-OVA-specific CD8+ T cells

G

