

1 **Title: Degradation of indole-3-acetic acid by plant-associated microbes**

2
3 Lanxiang Wang ^{a,b,1}, Yue Liu ^{a,c,1}, Haoran Ni ^{a,1}, Wenlong Zuo ^a, Haimei Shi ^a, Weixin Liao ^a,
4 Hongbin Liu ^a, Yang Bai ^e, Hong Yue ^f, Ancheng Huang ^g, Jonathan Friedman ^h, Tong Si ^a,
5 Yinggao Liu^c, Mo-Xian Chen^{b*}, Lei Dai^{a*}

6
7 ^a CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic
8 Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
9 Shenzhen 518055, China.

10 ^b National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and
11 Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of
12 Guizhou University, Guiyang, 550025, China.

13 ^c National Key Laboratory of Wheat Improvement, College of Life Science, Shandong
14 Agricultural University, Taian, Shandong, China.

15 ^d Guangdong Provincial Key Laboratory of Seed and Seedling Health Management
16 Technology, Shenzhen Noposion Agrochemical Co., Ltd, Shenzhen, China.

17 ^e State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology,
18 The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.

19 ^f State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest
20 A&F University, Yangling, Xianyang, 712100, Shaanxi, China.

21 ^g Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education
22 Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School
23 of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong,
24 518055, China.

25 ^h Institute of Environmental Sciences, Hebrew University, Rehovot, Israel.

26

27 ¹ These authors contributed equally to this work.

28 * Corresponding authors:

29

30 Dai Lei, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of
31 Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of
32 Sciences, Shenzhen 518055, China. Email: lei.dai@siat.ac.cn

33 Chen Mo-Xian, National Key Laboratory of Green Pesticide, Key Laboratory of Green
34 Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine
35 Chemicals of Guizhou University, Guiyang, 550025, China. Email:
36 cmx2009920734@gmail.com

37

38

39

40

41

42

43

44 **ABSTRACT**

45 Plant-associated microbiota affect plant growth and development by regulating plant
46 hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can
47 be produced by various plant-associated bacteria. However, the prevalence of
48 microbes with the capacity to degrade IAA in the rhizosphere has not been
49 systematically studied. In this study, we analyzed the IAA degradation capabilities of
50 bacterial isolates from the roots of *Arabidopsis* and rice. Using genomics analysis and
51 *in vitro* assays, we found that 21 out of 189 taxonomically diverse bacterial isolates
52 possess the ability to degrade IAA. Through comparative genomics and
53 transcriptomic assays, we identified iac-like or iad-like operon in the genomes of
54 these IAA degraders. Additionally, the regulator of the operon was found to be highly
55 conserved among these strains through protein structure similarity analysis. Some of
56 the IAA degraders could utilize IAA as their sole carbon and energy source. *In planta*,
57 most of the IAA degrading strains mitigated *Arabidopsis* seedling root growth
58 inhibition (RGI) triggered by exogenous IAA. Importantly, we observed increased
59 colonization preference of IAA degraders from soil to root according to the frequency
60 of the biomarker genes in metagenome-assembled genomes (MAGs) collected from
61 different habitats, suggesting that there is a close association between IAA degraders
62 and IAA-producers. In summary, our findings further the understanding of the
63 functional diversity and roles of plant-associated microbes.

64

65 **KEYWORDS**

66 Indole-3-acetic acid, degradation, iac-like operon, iad-like operon, MarR

67

68 INTRODUCTION

69 Indole-3-acetic acid (IAA) is a typical auxin naturally produced by plants, playing a
70 crucial role in various aspects of plant growth and development, such as cell division,
71 elongation, and differentiation [1-4]. IAA is primarily synthesized in developing plant
72 tissues and highly concentrated in the root's apical part, where the organizing
73 quiescent center accumulates a distinct IAA concentration gradient [5, 6]. Additionally,
74 cells in the root apex exhibit a highly active capacity for IAA synthesis [6]. Alongside
75 root cell exfoliation and other transportation strategies, considerable levels of IAA
76 were detected in root exudates [7-9].

77

78 The surface and internal parts of plants are colonized by millions of commensal
79 microorganisms, collectively known as the plant-associated microbiome [10]. Among
80 these habitats, the root is one of the most critical, with numerous studies suggesting
81 that root exudates, such as plant hormones, significantly influence the structure and
82 function of the root-associated microbiome (predominantly the rhizosphere
83 microbiome) [11-13]. Over millions of years of coexistence with their hosts, microbes
84 have evolved multiple strategies for colonization, including the ability to synthesize
85 and catabolize plant-specific metabolites, such as IAA [14]. It is estimated that 80% of
86 commensal microorganisms isolated from the rhizosphere can produce IAA [15].
87 However, the proportion of the microbes possessing IAA degradation pathways in the
88 rhizosphere is unknown, not to mention the potential ecological roles of these
89 microbes in their habitats.

90

91 Two main pathways for IAA consumption among aerobic bacteria have been
92 characterized (Supplementary Figure 1). The gene cluster *iacABCDEFGHIR*

93 (hereafter iac-like operon), responsible for IAA catabolism into catechol, was
94 identified in *Pseudomonas putida* 1290, *Paraburkholderia phytofirmans* PsJN,
95 *Acinetobacter baumannii*, *Enterobacter soli* and *Caballeronia glathei* [16-22]
96 (Supplementary Figure 2). In contrast, the IAA degradation locus
97 *iadABCDEFGHIJKLMNR* (hereafter iad-like operon), resulting in anthranilate as the
98 end-product, was identified in *Variovorax paradoxus* CL14, *Achromobacter* and
99 *Bradyrhizobium japonicum* [23-27] (Supplementary Figure 2). Moreover, among
100 these components, heterologous expression and gene knock-out experimental
101 validations suggested that *iacAE* or *iadDE* are necessary for IAA bio-transformation in
102 *C. glathei* and *V. paradoxus*, respectively [22, 24]. Besides genes encoding enzymes
103 responsible for IAA catabolism, there are components responsible for regulating
104 operon expression in the cluster. The current studies on expression regulation of the
105 operon suggest that most of the iac-like and iad-like operons contain a MarR (multiple
106 antibiotic resistance regulator) family regulator [21, 24, 28]. The crystal structure of
107 *iadR* and its binding properties were recently determined in *V. paradoxus*, which
108 deciphered the operon expression regulation mechanism [24].

109
110 Here, through combining comparative genomics, transcriptomics, with *in vitro*
111 degradation assay, we systematically evaluated the IAA degradation capacity among
112 189 bacterial strains which were isolated from *Arabidopsis* (*Arabidopsis thaliana*) and
113 rice (*Oryza sativa*) roots. We predicted the IAA-degrading candidates based on the
114 presence of *iacAE* and *iadDE* in their genomes, followed with experimental validation
115 using the Salkowski method [29] combining with Liquid chromatography-mass
116 spectrometry (LC-MS) analysis. We identified 21 strains belonging to 7 genera,
117 including two previously unreported genera, *Sphingopyxis* and *Curvibacter*, that

118 typically exhibit *bona fide* IAA degradation activity. All IAA degrading strains carry the
119 iac-like or iad-like operon, and the transcriptomic results show that iac and iad gene
120 clusters were upregulated by IAA stimulation. Moreover, the MarR family regulator
121 was present in the operon of all genera with high similarity in their protein structures
122 expect for *Pseudomonas*, which had a putative two-component regulatory system in
123 their iac-like operon. Furthermore, in subsequent assays, we found that some of the
124 IAA degraders could utilize IAA as their sole carbon and energy source. *In planta*, our
125 results demonstrated that exogenous IAA-induced primary root growth inhibition (RGI)
126 was disrupted by most of the IAA degraders, suggesting an important role of IAA
127 degraders in the rhizosphere for host plant growth and development. Finally, by
128 analyzing metagenome-assembled genomes (MAG) and whole genome sequences
129 (WGS) of microbial isolates from different habitats, we found that the prevalence of
130 IAA degraders is positively correlated with naturally occurring IAA resources.

131

132 **Results**

133 **Genomic analysis and experimental validation were employed to screen for IAA 134 degraders**

135 Previous reports have identified two types of aerobic auxin catabolic gene clusters in
136 microbes, known as iac-like and iad-like operons [24]. Key genes *iacAE* and *iadDE*
137 play essential roles in IAA degradation [22, 24]. To systematically evaluate IAA
138 degradation capabilities in bacterial commensals isolated from *Arabidopsis* and rice
139 root, we profiled loci containing genes homologous to *iacAE* and *iadDE* by scanning
140 189 bacterial genomes from our laboratory collection (Figure 1, Supplementary
141 Table1). A total of 21 strains concurrently containing *iacA* and *iacE*, or *iadD* and *iadE*,
142 were identified as IAA-degrading candidates. Among these, four strains belonging to

143 *Pseudomonas*, five to *Acinetobacter*, and one to *Curvibacter*, show high amino acid
144 sequence identity to the reported iacA and iacE (identity > 60%). Additionally, four
145 strains belonging to *Variovorax* and three to *Achromobacter*, exhibit high amino acid
146 sequence identity when compared to experimentally validated iadD and iadE. A strain
147 belonging to *Sphingopyxis* harbours medium amino acid identity to the iadD and iadE
148 (identity between 40% to 60%). Interestingly, the genomes of three *Sphingomonas*
149 strains contain both iacAE and iadDE with medium amino acid identity (Figure 1),
150 (Supplementary Table2).

151
152 To validate the predicted results, we tested the IAA degradation capability among the
153 137 *Arabidopsis* root bacterial isolates and 6 IAA-degrading candidates from rice
154 collections by using the Salkowski reaction method. After 72' hours incubation,
155 bacterial growth and the percentage of IAA degradation of the strains were measured
156 and calculated. A total of 32 out of 143 strains displayed considerable IAA
157 degradation efficiency, such that over 30% of the IAA content were consumed
158 (Supplementary Figure 3A). Among them, 21 IAA-degrading candidates possessing
159 iacAE or iadDE, consumed over 50% of the IAA content in the medium after 72- hour
160 incubation (Supplementary Figure3B). To further detect the consumption of IAA by
161 the IAA-degrading candidates, the supernatant of the culture was analyzed by a
162 highly accurate analytical approach of LC-MS. The specific peak of the IAA was
163 undetectable in these IAA-degrading candidates cultures, suggesting that IAA was
164 degraded by these strains (Supplementary Figure 3C). Ultimately, 21 IAA degraders
165 belonging to seven genera were confirmed through experimental validation, which
166 are consistent with the bioinformatics prediction.

167

168 **IAA degraders possess the iac/iad-like operon**

169 To clarify and characterize the IAA catabolism gene clusters in our screened IAA
170 degraders, we performed a BLASTp search using the amino acid sequences of the
171 full iac and iad operons obtained from previous reports against the genomes of 21
172 strains (Supplementary Figure 2, Supplementary Table 2). A complete iac-like or
173 iad-like operon was identified from the genome of all the IAA degraders except for
174 *Sphingopyxis*_Root154 (Figure 2A). Consistent with previous reports, strains from
175 *Achromobacter* and *Variovorax* possess the iad-like operon, and strains from
176 *Pseudomonas*, *Acinetobacter* and *Sphingomonas* contain the iac-like operon in their
177 genomes. For *Curvibacter*_SE9, and *Sphingopyxis*_Root154, two novel identified
178 IAA-degrading genera, a iac-like operon and a fragmented iad-like operon are
179 present in their genomes, respectively (Figure 2A). Additionally, aside from the
180 complete iac-like operon, two sets of fragmentary iad-like gene clusters were also
181 found in the genomes of strains from *Sphingomonas* (Supplementary Figure 4).
182 Intriguingly, there is another potential fragmented iad-like operon (iad-2) present in
183 the genome of *Sphingopyxis*_Root154, and this operon has the same gene cluster
184 arrangement with strains from *Sphingomonas* (Supplementary Figure 4).

185

186 To investigate the evolutionary relationships among different IAA degraders, we
187 constructed a phylogenetic tree using concatenated iacAE or iadDE amino acid
188 sequences. Intriguingly, strain organization in this tree differed substantially from the
189 phylogenetic relationships based on 16S rRNA sequences (Supplementary Figure 5).
190 *Curvibacter* was more closely related to *Acinetobacter* than to other Burkholderiales.
191 *Sphingomonas* and *Sphingopyxis*, both belonging to Sphingomonadales, appeared
192 on different branches. Moreover, *Sphingomonas* genomes contained iac-like operon,

193 while the *Sphingopyxis* genome harbored an iad-like operon (Figure 2A). These
194 results suggest that, evolution of microbes un-synchronized with some gene cluster
195 acquisition.

196

197 **The MarR family regulators exhibit high degree of structural conservation
198 among IAA-degrading strains**

199 In all IAA-degraders except *Pseudomonas*, both iac-like and iad-like operons contain
200 one or two MarR-family regulator (R) that are involved in the operon expression
201 regulation (Figure 2A). In contrast to previous reports [24], our four *Pseudomonas*
202 strains exhibited the involvement of a putative two-component regulatory system in
203 their iac-like operons (Figure 2A) . Upon comparison with the iac operon in the related
204 reference strain *Pseudomonas putida* 1290, it seems that the components of the
205 cluster may have been acquired from a distant genus, such as *Paraburkholderia*
206 *phytoviridis* (Supplementary Figure 2).

207

208 Generally, the MarR regulator acts as a negative transcriptional factor for the operon
209 since it binds to the upstream DNA region, inhibiting operon expression. Due to the
210 similar role of this protein in regulating iac and iad operon expression, we
211 hypothesized that they are homologous with high amino acid sequence identity. To
212 verify our hypothesis, multiple protein sequence alignment was performed using 21
213 potential MarRs identified from our 17 strains and six MarR reference proteins [24].
214 Consistent with previous reports, MarR regulators are diverse, as they have low
215 protein sequence identity (Supplementary Figure 6). The phylogenetic tree based on
216 the protein sequence of 27 MarRs demonstrated that iacR naturally separated from
217 iadR (Figure 2B), which is consistent with previous reports [30]. MarRs are relatively

218 conserved within a genus, while iacRs display more sequence diversity. It is worth
219 noting that three strains from *Sphingomonas* contain two iacRs in their iac operons,
220 respectively (Figure 2 and Supplementary Figure 6). Also, two MarRs were screened
221 from Root154_*Springopyxis* genome with low similarity, Root154_1 (gene_00256) and
222 Root154_2 (gene_00334) (Figure 2B, Supplementary Figure 6). In addition, except
223 for Root154_1 (gene_00256), other MarRs from Sphingomonadaceae were grouped
224 together and classified as iacR (Figure 2B).

225

226 To further elucidate the mechanism of functional conservation among MarRs, the
227 predicted protein structures of 21 hypothetical MarRs were generated using
228 AlphaFold2 [31] (Supplementary Figure 7). The protein structures of six referential
229 MarRs were retrieved from the PDB, and pairwise comparisons were performed
230 among the 27 MarRs using TM-align [32]. As shown in the heatmap, all pairwise
231 comparisons obtained a high TM score (all pairwise TM score > 0.5) [33] (Figure 2B),
232 suggesting that all MarRs displayed high similarity in their protein structures. In
233 addition, the IAA binding sites of MarRs also exhibited high conservation, especially
234 within a genus level (Figure 2B).

235

236 **lac- and iad-like operons were up-regulated by IAA**

237 To explore how iac- or iad-like operons were regulated by IAA, we examined the
238 transcriptomes of five strains in response to this compound. The strains selected for
239 RNA-seq were *Pseudomonas*_Root71, *Achromobacter*_Root170,
240 *Variovorax*_Root473, *Curvibacter*_SE9, and *Sphingopyxis*_Root154. They were
241 cultured with M9 minimal medium supplemented with IAA or glucose, and cells were
242 collected in specific time point (see method). Among them, *Curvibacter* and

243 *Sphingopyxis* were studied for IAA degradation activity for the first time. In total, 308,
244 151, 274, 871, and 220 differentially expressed genes (DEGs) were identified in these
245 five strains, respectively (Supplementary Table 3). Both iac-like and iad-like operon
246 were significantly upregulated by IAA, except for Root154 (Figure 3). Furthermore,
247 categorization of up- and down-regulated DEGs indicated that IAA treatment broadly
248 influenced many metabolism pathways (Supplementary Figure 8).

249

250 It has been reported that chemicals in root exudates may enhance plant-microbe
251 interactions through transcriptional regulation of bacterial motility [34]. Flagella are
252 organelles used by microbes for movement. Notably, in Root473 and Root154, genes
253 involved in flagellar biosynthesis, and chemotaxis proteins were upregulated by IAA
254 treatment when compared with glucose control, suggesting that for these two strains,
255 IAA might be more attractive than glucose. However, in SE9, genes encoding
256 flagellum-related DEGs and chemotaxis proteins were down-regulated by IAA
257 stimulation, indicating that IAA elicited different molecular responses in different
258 strains. Consistent with previous reports, catechol, the end-product of iac-pathway ,
259 will be further catalyzed by downstream enzymes, catABC [16, 20, 21]. Genes
260 involved in catechol pathway in Root71 and Root170 were up-regulated by IAA
261 treatment (Supplementary Table 3, highlighted).

262

263 **IAA can be utilized as the carbon source**

264 To evaluate the utilization of IAA by the IAA degraders, *in vitro* assay were preformed
265 among the screened 21 IAA degraders. The IAA degradation efficiency and bacterial
266 growth of the strains were carried out in M9 minimal medium with exogenous IAA.
267 Results showed that except for strains from *Sphingomonas* and *Sphingopyxis*, other

268 strains benefited from IAA as the sole carbon source and completely consumed IAA
269 within 72 hours (Figure 4A). Strains from *Acinetobacter* presented the maximum
270 degradation and growth rates, consuming IAA completely within 12 hours (Figure 4A
271 and B). Compared with strains from *Acinetobacter*, strains from *Pseudomonas*
272 displayed the equivalent IAA degradation efficiency and less biomass. Strains from
273 *Variovorax*, *Achromobacter*, and *Curvibacter*, which generally degraded IAA
274 completely within 60 hours, also showed extremely slow growth rate may suggest
275 that cell proliferation of these strains require more carbon and energy source. On the
276 other hand, strains from *Sphingomonas* only consumed partial IAA in the M9 minimal
277 medium, while *Sphingopyxis* barely utilized this compound under this condition of
278 culture. Combined with the transcriptome analysis, our results here suggest that IAA
279 triggered the expression of iac/iad operon and biotransformed this compound in the
280 medium, although the by-products of IAA degradation may not suitable for cell growth
281 as sole carbon and energy source.

282

283 **IAA degraders contribute to the regulation of plant root growth**

284 Auxin homeostasis in plant roots is achieved through local synthesis, polar transport,
285 and the contribution of IAA-producing/consuming microorganisms, which is crucial for
286 root growth. To clarify the biological role of the root isolates possessing IAA
287 degradation capability identified in this study, seven-day-old *Arabidopsis* seedlings
288 were transferred to 1/2 MS agar medium supplemented with 100nM IAA and
289 inoculated with the IAA degraders individually. After additional seven days of
290 inoculation, primary root elongation was measured. Primary root elongation was
291 suppressed when exogenous IAA was added to the medium (Figure 4C and E). In
292 mono-associations, normal primary root growth was observed when seedlings were

293 inoculated with strains from *Pseudomonas*, *Variovorax*, *Achromobacter*,
294 *Sphingomonas*, *Curvibacter*, and SB9, the only strain from *Acinetobacter* (hereafter
295 referred to as RGI-suppressive IAA degraders, while the rest are
296 RGI-non-suppressive IAA degraders) (Figure 4C and E, Supplementary Figure 9).
297 Consistently, a small range of fresh weight enhancement of shoots was observed in
298 these positive mono-associations (Figure 4D). On the other hand, the rest strains
299 from *Acinetobacter* inhibited primary root elongation, as well as shoot fresh weight
300 (Figure 4C and D). No significant effects on root growth or shoot fresh weight were
301 observed in *Sphingopyxis* treatment.

302
303 To further explore whether the restoration of RGI by RGI-suppressive IAA degraders
304 is directly related to auxin signaling in plants, the *Arabidopsis* auxin reporter line
305 *DR5::GFP* was treated with IAA and simultaneously inoculated with IAA degraders.
306 Fluorescence of the *DR5::GFP* induced by exogenous IAA remained stable in axenic
307 control at day 1 and day 3 post-inoculation. The GFP signal in *DR5::GFP* roots was
308 quenched at day 3 after inoculation with RGI-suppressive IAA degraders. Consistent
309 with the root elongation phenotype, RGI-non-suppressive IAA degraders, including
310 strains from *Sphingopyxis* and *Acinetobacter*, could not quench the root fluorescence
311 caused by exogenous IAA (Figure 4E, Supplementary Figure 9). Interestingly, SB9,
312 the RGI-suppressive IAA degrader from *Acinetobacter*, quenched the fluorescence at
313 day 3 (Supplementary Figure 9). To rule out the possibility that the phenomenon
314 observed in RGI-non-suppressive IAA degraders was not caused by failed
315 colonization, colonization of strains was investigated by calculating colony-forming
316 units (CFUs), which were further normalized to root fresh weight. After seven days of
317 inoculation, all strains successfully colonized roots, and exogenous IAA

318 supplementation had no significant effect on bacterial colonization (Supplementary
319 Figure 10 and 11).

320

321 **Catalogue of potential IAA-degrading bacteria from diverse habitats**

322 IAA degrading bacteria in the rhizosphere play an important role in maintaining auxin
323 homeostasis in roots to ensure normal plant growth and development [25].
324 Nevertheless, their distribution across various habitats remains limited. To ascertain
325 the distribution of IAA-degrading strains in different habitats, we analyzed a
326 large-scale survey of 11,586 high-quality MAGs (including 750 isolates) collected
327 from mammal gut, aquatic environment, soil and plants (Figure 5) (Supplementary
328 Table 4) [35-43]. The iacA/E and iadD/E were used as the biomarkers to screen the
329 genomes of the collections. We noted that no hits were identified in MAGs collected
330 from cold seeps or animal/human guts, which are reasonable since these habitats are
331 normally hypoxic, while the iac/iad pathways are aerobic (Supplementary Table 4) .
332 Furthermore, iac or iad-like operon is also absent in the facultative anaerobic
333 environment of the human oral [43]. In contrast, among the 692 MAGs collected from
334 human skin, five potential IAA degraders containing iac-like operon were identified
335 [43].

336 On the other hand, more potential IAA degraders were identified from environment
337 samples, especially plant-associated samples. 0.65% MAGs (2 out of 304) collected
338 from marine samples [43], and 1.63% MAGs (8 out of 492) collected from wastewater
339 samples were identified harboring iad-like operon [42]. In soil samples, 1.31% MAGs
340 (5 out of 382) were identified containing iac or iad-like operon [35, 42]. Within the
341 plant collections, 3.79% MAGs (5 out of 132) affiliated with Sphingomonadales and
342 Burkholderiaceae were identified as containing the iac or iad-like operon [42].

343 Furthermore, 7.60% MAGs (60 out of 789, containing 206 isolates) collected from
344 plant shoot [36, 38, 40] and 12.13% MAGs (66 out of 544, all are isolates) isolated
345 from plant root [40, 41] were found to harbor the IAA degradation operon. Overall,
346 there is a consistent increase in the frequency of potential IAA degraders from aquatic
347 to terrestrial environments, from soil to plants, and from plant shoots to roots.
348 Moreover, potential IAA degraders containing iac- or iad-like operon and belonging to
349 Burkholderiales were widely distributed across various habitats (Figure 5).

350

351 **DISCUSSION**

352 In this study, combining genomic analysis and experimental validation, we performed
353 a systematic screening of IAA degraders isolated from *Arabidopsis* and rice root. We
354 found that 21 strains belonging to 7 genera exhibit remarkable IAA degradation
355 activity. In addition to the previously reported *Pseudomonas*, *Achromobacter*,
356 *Variovorax*, *Acinetobacter*, and *Sphingomonas*, strains from *Sphingopyxis* and
357 *Curvibacter* also displayed outstanding IAA-degrading activity. The genomes of all
358 IAA degraders contain iac- or iad- like IAA degradation operon, and these operons
359 were upregulated by IAA treatment. By integrating protein sequence alignment with
360 protein structural similarity analysis, we revealed that the MarR family regulators are
361 structurally conserved within genus. *In vitro* assays suggested that the screened 21
362 strains are *bona fide* IAA degraders. However, only a subset of these strains directly
363 depleted exogenous IAA to maintain the host-plant root growth. Intriguingly, MAGs
364 analysis showed that IAA-degrading candidates naturally colonized plant-associated
365 habitats, which aligns with the notion that IAA degraders are prevalent in habitats
366 closely linked to IAA producers. Our findings revealed a key role of IAA degraders
367 inhabiting in plant and the underlying degradation mechanism.

368

369 Comparative genomics studies indicate that the gene clusters of IAA degraders were
370 probably acquired in a natural environment through a horizontal gene transfer
371 pathway, with selective loss, duplication, and rearrangement of IAA-degrading genes
372 during evolution. The gene cluster contains structural genes encoding enzymes
373 responsible for IAA degradation and a set of genes involved in gene expression
374 regulation and compound transportation, and the core components are highly
375 conserved. The structure and arrangement of the iad-like operon in *Variovorax* are
376 highly similar to that in *Achromobacter*, indicating that these two genera belonging to
377 Burkholderiales may have obtained the operon from the same ancestor/donor. In
378 contrast, *Curvibacter*, another genus belonging to Burkholderiales, possesses the
379 iac-like operon, suggesting the possibility that IAA degradation gene clusters were
380 obtained through horizontal gene transfer (Supplementary Figure 5). *Sphingomonas*
381 and *Sphingopyxis* are closely related and both belong to the Sphingomonadaceae. A
382 complete iac-like operon uniquely present in the genomes of strains from
383 *Sphingomonas*. Moreover, IAA-degrading gene cluster mining analysis showed that
384 two additionally fragmentary iad-like operons exist on *Sphingomonas* genomes, and
385 one of them has the same gene arrangement to the *Sphingopyxis* (Supplementary
386 Figure 4), suggesting the evolutionary homology of these two genera. Additionally,
387 although *Acinetobacter* and *Curvibacter* belong to different families, both genera have
388 iac-like operons and the operons have the similar gene arrangement, suggesting that
389 they may obtained the gene cluster from a closer donor (Figure 2A).

390

391 *IacR* and *iadR* are an essential component of the IAA-degrading gene cluster, and
392 functional studies suggest that it normally serves as an expression suppressor of the

393 operon. Recently, the protein crystal structure of *iadR* was resolved, and it was
394 confirmed that *iadR* binds to the upstream DNA sequence of *iadA* to inhibit *iad* locus
395 expression in *Variovorax paradoxus* CL14 [24]. The presence of IAA results in *iadR*
396 being released from the DNA binding site, further disinhibits the expression of the *iad*
397 operon. The MarR regulators have highly conserved protein structures despite having
398 highly differentiated protein sequences (Supplementary Figure 6 and 7, Figure 2B).
399 This may explain why different MarR regulators perform similar functions in regulating
400 operon expression. Similar to *Paraburkholderia phytofirmans* PsJN, LuxR and iacS
401 uniquely exist in the iac operons of four strains belonging to *Pseudomonas*,
402 suggested that a putative two-component regulatory system independently evolved or
403 obtained in this genus (Figure 2A) [20].

404

405 Plant growth requires multifaceted regulation, including but not limited to IAA
406 production and degradation by plant, as well as auxin regulation by plant-associated
407 microbiota [25]. It is estimated that 80% of rhizosphere commensal isolates possess
408 the capability of producing IAA [15]. While, based on our results, only 11.11% of the
409 isolates (21 out of 189 in this study) and 7.84% (131 out of 1465) of the
410 plant-associated MAGs (Supplementary Table 4) exhibit potential IAA-degrading
411 capability. The results of mono-association further reveal the biological role of IAA
412 degraders in manipulating IAA homeostasis in plants to maintain root growth.
413 However, not all IAA-degrading strains have the ability to reverse the severe inhibition
414 of root growth induced by excess IAA. Moreover, our mono-association results
415 showed that *Acinetobacter* has negative effects on plant growth (Figure 4,
416 Supplementary Figure 9), which is inconsistent with recent reports that *Acinetobacter*
417 can act as a plant growth-promoting rhizobacteria (PGPR) [44, 45]. In addition to

418 being a strong IAA-degrading bacterium, *Acinetobacter* is also one of many that
419 produce IAA and can thus sabotage plant physiology by adding to the endogenous
420 IAA pool in plants [46]. Given these contradictory traits, the biological function of
421 *Acinetobacter* for plants and the underlying mechanism need to be further studied.

422

423 Our large-scale MAGs analysis results suggested that the prevalence of
424 IAA-degrading taxonomy increased gradually from aquatic to terrestrial environments,
425 from soil to plants, and from plant shoots to roots (Figure 5). It is reasonable that
426 IAA-degrading bacteria may be recruited to utilize IAA as sources of carbon and/or
427 nitrogen, whereas plants and numerous plant-associated IAA-producing microbes
428 serve as natural sources of this compound.

429

430 Lastly, hormones may play a crucial role in mediating the interactions between hosts
431 and microbes. For instance, *Mycobacterium neoaurum* possessing the capability to
432 degrade testosterone was isolated from the fecal samples of testosterone-deficient
433 patients with impression. Further experiments revealed the potential association
434 between human gut microbes expressing 3 β -HSD and depressive symptoms
435 resulting from testosterone degradation [47]. Beyond IAA, other plant hormones have
436 been reported to be synthesized or metabolized by microbes. For examples,
437 rhizobacteria such as *Rhodococcus* sp. P1Y and *Novosphingobium* sp. P6W have
438 been reported to utilize abscisic acid (ABA), consequently stimulating plant growth
439 through an ABA-dependent mechanism [48]. We envision that investigations on
440 microbial metabolism of host hormones may offer novel insights into the
441 understanding of homeostasis, host physiology and the development of diseases.

442

443

444 **MATERIALS AND METHODS**

445 **Plant materials and bacterial strains**

446 *Arabidopsis thaliana* ecotype Columbia (Col-0) was obtained from laboratory stock.

447 The *Arabidopsis* auxin reporter transgenic line *DR5::GFP* was kindly provided by Prof.

448 Xugang Li (Shandong Agriculture University). The 137 bacterial commensals isolated

449 from *Arabidopsis* roots or soil were gifts from Prof. Paul Schulze-Lefert (Max Planck

450 Institute for Plant Breeding Research, Cologne, Germany)[40]. Detailed information

451 on individual strains can be found at At-RSPHERE (<http://www.at-sphere.com/>).

452

453 The 52 rice root-associated bacterial isolates analyzed in this study were retrieved

454 from our laboratory stock. In detail, rice root samples contain bulk soil were collected

455 in field and immediately delivered with ice to our lab. After removed the bulk soil, 10g

456 root samples contain rhizosphere soil were washed multiple times with sterilized

457 water until there is no obvious soil on root surface. The washings were mixed as the

458 rhizosphere sample. Rice roots were then grind with 10ml 1 × PBS buffer in a

459 sterilized mortar and filtered with sterilized gauze. Both samples were then spread on

460 the surface of 1/5TSB agar plates with series dilution. After incubation for 3 days at

461 25 °C, single colonies were randomly picked from the plates for twice purification. A

462 total of 207 isolates were identified at the species level by sequencing 16S rRNA

463 gene with the primers 27F (AGAGTTGATCCTGGCTCAG) and 1492R

464 (GGTTACCTTGTACGACTT). For whole genome sequencing, the genome DNA of

465 selected 72 strains were individually extracted using FastDNA Spin Kit for Soil (MP

466 Biomedicals, USA). Library preparation was performed using the Hieff NGS OnePot II

467 DNA Library Prep Kit (Yeasen, China) for Illumina with 50 ng DNA per sample. The

468 draft genomes were generated with the HiSeq Xten platform (Illumine, USA). Quality
469 control of the raw reads were filtered with fastp [49], followed with genome assembly
470 through Unicycler[50]. CheckM was used to estimate the quality of each genome,
471 including the numbers and N50 of the contigs, the contamination, and the
472 completeness[51]. Prokka was used to annotate the function of all assembled
473 genomes[52]. Taxonomy annotation of the isolates was performed using the Genome
474 Taxonomy Database Toolkit (GTDB-Tk)[53] with reference to GTDB release 207[54].
475 Isolates were assigned at the species level if the ANI to the closest GTDB-Tk
476 representative genome was $\geq 95\%$ and the aligned fraction was $\geq 60\%$. General
477 taxonomical information of these 189 strains is listed in Supplementary Table 1.

478

479 **Construction and modification of phylogenetic tree**

480 The phylogenetic trees were constructed using MUSCLE[55] for multiple sequence
481 alignment and MEGA[56] for tree construction. Specifically, Figure 1 was constructed
482 using the 16S rRNA from 189 strains; Figure 2A was constructed using the amino
483 acid sequences of key genes involved in IAA metabolism from 21 IAA-degraders;
484 Figure 2B was constructed using the amino acid sequences of 21 MarR proteins
485 discovered from the 17 IAA-degraders and 6 related templates. The generated
486 phylogenetic trees were further visually modified using iTOL[57].

487

488 **Identification of potential IAA-degraders**

489 Prokka[52] was used for functional annotation of isolates and MAGs derived from
490 different environments, meeting the criteria of genome completeness ($\geq 90\%$) and
491 contamination ($\leq 5\%$). Diamond[58] was employed for sequence alignment of
492 annotated genomes, using previously reported lacA and lacE or ladD and ladE

493 sequences as templates. The alignment filtering threshold was set at sequence
494 similarity (Identity) >50% and sequence coverage (Coverage) >60%. If both gene
495 combinations were simultaneously identified in a genome and determined to be
496 located in the same gene cluster (ladD adjacent to ladE; lacA with a distance less
497 than 7 Coding Sequences (CDS) from lacE), the strain was considered to possess
498 IAA degradation capability.

499

500 **Bacterial culture and screening of IAA degradation**

501 Individual bacteria from glycerol stock were incubated on 1/2 tryptic soy broth (TSB,
502 Sigma-Aldrich, USA) agar plates at 25°C for 5 days. A single colony of each strain
503 was then cultured in 1/2 TSB liquid medium at 25°C with 400 rpm shaking. When the
504 cell culture reached the exponential growth phase, the optical density of the culture
505 was measured at 600 nm (OD₆₀₀) using a SynergyTM H1 microplate reader (BioTek,
506 USA).

507

508 The bacterial culture was washed once with 1×PBS and then added to 1 mL of 1/2
509 TSB medium supplemented with or without 0.4 mM IAA (Sigma-Aldrich, USA) to
510 achieve a final OD₆₀₀ of 0.05. After 72 hours of incubation at 25°C with 400 rpm
511 shaking, the IAA content of each sample was measured using the Salkowski method
512 [29]. Briefly, 120 µL of Salkowski reagent was mixed with 60 µL supernatant of culture,
513 and the absorbance of the mixture was measured at 530 nm after 30 minutes of
514 incubation in the dark. The remaining IAA contents in the medium were then
515 calculated using IAA standard curves. The bacterial degradation rate was further
516 calculated as the IAA consumed divided by the initial IAA content in the culture.

517

518 **Validation of IAA degradation by LC-MS analysis**

519 To validate the IAA degradation results of the Salkowski method, cell cultures of
520 selected strains were further analyzed by LC-MS [29]. After 72 hours of incubation
521 with IAA, the cell cultures were collected to test the content of IAA in the medium. In
522 detail, the residual IAA of the cell cultures was extracted twice with ethyl acetate,
523 followed by volatilization, and the residue was further dissolved in 80% methanol.
524 After filtration, a 2 μ L sample was separated using a C18 column (Infinity Lab
525 Poroshell 120 EC-C18, 2.1 \times 50 mm, 2.7 μ m; Agilent, USA) connected to the Agilent
526 6470B triple quadrupole LC/MS (Agilent, USA). Solvent A (water supplemented with
527 0.1% formic acid) and solvent B (acetonitrile supplemented with 0.1% formic acid)
528 were used as mobile phases at a flow rate of 0.2 mL/min under a gradient elution: 0-2
529 min, 10% B; 2-8 min, 40% B; 8-11 min, 70% B; 11-15 min, 10% B. The quantification
530 of IAA extracted from culture and IAA standards was performed using the positive-ion
531 multiple reaction monitoring (MRM) method.

532

533 **Growth experiment with IAA as the sole carbon source**

534 Selected IAA degraders were individually cultured at 25°C with 400 rpm shaking in 1
535 mL M9 minimal salts medium (Sigma-Aldrich, USA), supplemented with 2 mM MgSO₄
536 and 0.1 mM CaCl₂. A 0.4 mM IAA solution was added to the culture as the sole
537 carbon source. OD₆₀₀ and IAA concentrations were measured at 7 time points: 0 h, 12
538 h, 24 h, 36 h, 48h, 60 h and 72h.

539

540 **RNA-seq and data analysis**

541 *Pseudomonas_Root71*, *Achromobacter_Root170*, *Variovorax_Root473*,
542 *Curvibacter_SE9*, and *Sphingopyxis_Root154* were grown in 1 mL M9 medium

543 supplemented with 1.712 mM glucose or 1 mM IAA. The initial OD₆₀₀ of the cultures
544 was 0.05, and they were incubated at 25°C with 400 rpm shaking. Cells from
545 *Pseudomonas*_Root71, *Achromobacter*_Root170, *Variovorax*_Root473,
546 *Curvibacter*_SE9, and *Sphingopyxis*_Root154 were collected for RNA-seq at 14 h, 16
547 h, 14 h, 48 h, and 20 h, respectively. Bacterial pellets were collected by centrifuging
548 the culture at 12,000 rpm for 10 min at 4°C. The pellets were stored at -80°C until
549 RNA extraction.

550

551 Further experiments including RNA extraction, library preparation and sequencing
552 were preformed at Magigene Co. Ltd using the Nova Seq6000 platform (Illumine,
553 USA). In detail, bacterial RNA samples were extracted using the Trizol followed with
554 quality control by Thermo NanoDrop One and Agilent 4200 Tape Station. Epicentre
555 Ribo-Zero rRNA Removal Kit was using to remove Ribosome RNA in the samples.
556 Library preparation was performed using the NEBNext Ultra Directional RNA Library
557 Prep Kit for Illumina (New England Biolabs; USA) with 1 µg total RNA per sample.
558 The raw data were processed with RNA-seq pipeline from nf-core (nf-core/rnaseq,
559 v3.11.1) [59], with trimming enabled. The clean reads were then mapped to the
560 reference genome of corresponding strain with STAR (v2.7.10a) [60]. Gene
561 quantification was subsequently done using Salmon (v1.5.2) [61]. Differentially
562 expressed genes (DEGs) were identified using DESeq2 (v1.36.0) [62] with
563 log2FoldChange ≥ 1 or ≤ -1 and adjusted *p*-value < 0.05 as cutoffs. Three biological
564 replicates of each sample were used to perform the transcriptome analyses.

565

566 **Plant experiments**

567 Strains selected for *in planta* assays were pre-cultured in 1/2 TSB at 25°C for 2-3
568 days until cloudy. On the day of inoculation, the bacterial culture was subcultured at a
569 1:3 ratio for an additional 5 hours. A 500 μ L aliquot of bacterial culture was
570 centrifuged at 6,500 \times g for 2 min. After washing twice with 1 \times PBS buffer, the
571 bacterial pellets were resuspended in 1 \times PBS buffer and adjusted to an OD₆₀₀ of 0.01.
572 A 100 μ L aliquot of bacterial suspension was then spread on half-strength Murashige
573 and Skoog (MS) (Sigma-Aldrich, USA) plates supplemented with or without 100 nM
574 IAA.

575
576 Arabidopsis seeds were surface-sterilized with 75% ethanol for 1 min, 20% bleach for
577 15 min, and rinsed 5 times with sterile distilled water. Seeds were sown evenly on 1/2
578 MS plates with 0.5% agar and 3% sucrose. After 2 days of stratification at 4°C in the
579 dark, seeds were vertically grown in a growth chamber under a 16-h dark/8-h light
580 regime at 22°C for 7 days. Ten seedlings were transferred to the prepared
581 half-strength MS plates containing IAA and IAA-degrading bacteria. The initial
582 position of the root tip was labeled, and after an additional 7 days of growth, the final
583 position of the root tip was labeled again. Pictures of the plates were captured with a
584 camera (Nikon, Japan), and the elongation of the primary root was measured using
585 ImageJ [63].

586
587 **Fluorescence microscopy**
588 GFP fluorescence in the roots of *DR5::GFP* transgenic lines was visualized using a
589 Ti2-E fluorescence microscope (Nikon, Japan) at 1 and 3 days after inoculation,
590 respectively. The experiment was performed in two independent replicates.

591

592 **Measurement of bacteria root colonization**

593 Colony-forming units (CFUs) were counted as previously described with minor
594 modifications [64]. Briefly, after 7 days of inoculation, roots were separated from
595 shoots using a sterile scalpel, taking care to avoid contamination between different
596 bacterial treatments. Two roots were placed in pre-weighed sterile tubes containing
597 metal beads, and the tubes were weighed again to obtain the fresh weight of the roots.
598 Root samples were then homogenized using a TissueLyzer (Shanghai Cebo, China)
599 at 30 Hz for 30 seconds. A 500 μ L aliquot of 1 \times PBS buffer was added to the tube,
600 and the samples were serially diluted in a sterile 96-well plate. A 5 μ L sample was
601 dropped onto a 1/2 TSB plate, and the plate was flipped sideways to allow the liquid
602 to flow evenly. Finally, the plates were placed at 25°C for two days until single
603 colonies appeared. The colonization ability of each strain on the root was calculated
604 according to the CFU count.

605

606 **ACKNOWLEDGEMENTS**

607 We gratefully acknowledge Prof. Paul Schulze-Lefert for sharing *Arabidopsis*
608 associated microbes. We gratefully acknowledge Prof. Xugang Li for providing
609 *Arabidopsis* auxin reporter transgenic line *DR5::GFP*.

610 The authors acknowledge the financial support from the National Natural Science
611 Foundation of China (No.32061143023), Guangdong Basic and Applied Basic
612 Research Foundation (No.2023A1515012006), Platform funding for Guangdong
613 Provincial Enterprise Key Laboratory of Seed and Seedling Health Management
614 Technology (2021B1212050011), Guizhou Provincial Basic Research Program
615 (Natural Science)-ZK[2023]-099, the Program of Introducing Talent to Chinese
616 Universities (111 Program, D20023), the Frontiers Science Center for Asymmetric

617 Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
618 [Qianjiaohe KY (2020)004].

619

620 **AUTHOR CONTRIBUTION**

621 LD and MXC designed and supervised the project. LXW and YL conducted the
622 experiments. HRN, WLZ and HBL performed the bioinformatics analysis. HMS and
623 WXL isolated the rice-associated microbes. HY provided the rice root samples. LXW
624 and YL wrote the manuscript. LD, MXC, YB, HY, ACH, JF, TS and YGL reviewed and
625 edited the manuscript. All authors approved the final manuscript.

626

627 **AVAILABILITY OF DATA AND MATERIALS**

628 The RNA-Seq data and Whole genome sequences of rice-associated isolates
629 generated in this study were deposited to the European Nucleotide Archive (ENA)
630 under the project accession PRJEB70882.

631

632 **DECLARATIONS**

633 **Ethics approval and consent to participate**

634 Not applicable.

635

636 **CONSENT FOR PUBLICATION**

637 Not applicable.

638

639 **DECLARATION OF INTERESTS**

640 The authors declare no competing interests.

641

642

643 **REFERENCE**

644

645 1. Vanneste, S., and Friml, J. (2009). Auxin: a trigger for change in plant development. *Cell* **136**, 1005-1016.

646 2. Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. *Annu Rev Plant* **61**, 49-64.

647 3. Woodward, A.W., and Bartel, B. (2005). Auxin: regulation, action, and interaction. *Ann Bot* **95**, 707-735.

648 4. Ross, J.J., O'Neill, D.P., Wolbang, C.M., Symons, G.M., and Reid, J.B. (2001). Auxin-Gibberellin Interactions and Their Role in Plant Growth. *Journal of Plant Growth Regulation* **20**, 346-353.

649 5. Ljung, K., Bhalerao, R.P., and Sandberg, G. (2001). Sites and homeostatic control of auxin biosynthesis in *Arabidopsis* during vegetative growth. *Plant J* **28**, 465-474.

650 6. Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G., and Ljung, K. (2009). An auxin gradient and maximum in the *Arabidopsis* root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. *Plant Cell* **21**, 1659-1668.

651 7. Lopes, L.D., Futrell, S.L., Bergmeyer, E., Hao, J., and Schachtman, D.P. (2023). Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. *FEMS Microbiol Ecol* **99**.

652 8. Lopez-Guerrero, M.G., Wang, P., Phares, F., Schachtman, D.P., Alvarez, S., and van Dijk, K. (2022). A glass bead semi-hydroponic system for intact maize root exudate analysis and phenotyping. *Plant Methods* **18**, 25.

653 9. Badri, D.V., and Vivanco, J.M. (2009). Regulation and function of root exudates. *Plant Cell Environ* **32**, 666-681.

654 10. Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., and Singh, B.K. (2020). Plant-microbiome interactions: from community assembly to plant health. *Nat Rev Microbiol* **18**, 607-621.

655 11. Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., et al. (2015). PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. *Science* **349**, 860-864.

656 12. Eichmann, R., Richards, L., and Schäfer, P. (2021). Hormones as go-betweens in plant microbiome assembly. *Plant J* **105**, 518-541.

657 13. Wang, L., Chen, M., Lam, P.Y., Dini-Andreote, F., Dai, L., and Wei, Z. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. *Microbiome* **10**, 233.

658 14. Tzipilevich, E., Russ, D., Dangl, J.L., and Benfey, P.N. (2021). Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. *Cell Host Microbe* **29**, 1507-1520.e1504.

659 15. Patten, C.L., and Glick, B.R. (1996). Bacterial biosynthesis of indole-3-acetic acid. *Can J Microbiol* **42**, 207-220.

686 16. Leveau, J.H., and Gerards, S. (2008). Discovery of a bacterial gene cluster for
687 catabolism of the plant hormone indole 3-acetic acid. *FEMS Microbiol Ecol* 65,
688 238-250.

689 17. Lin, G.H., Chen, H.P., Huang, J.H., Liu, T.T., Lin, T.K., Wang, S.J., Tseng, C.H., and Shu,
690 H.Y. (2012). Identification and characterization of an indigo-producing oxygenase
691 involved in indole 3-acetic acid utilization by *Acinetobacter baumannii*. *Antonie Van
692 Leeuwenhoek* 101, 881-890.

693 18. Scott, J.C., Greenhut, I.V., and Leveau, J.H. (2013). Functional characterization of the
694 bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. *J Chem
695 Ecol* 39, 942-951.

696 19. Shu, H.Y., Lin, L.C., Lin, T.K., Chen, H.P., Yang, H.H., Peng, K.C., and Lin, G.H. (2015).
697 Transcriptional regulation of the iac locus from *Acinetobacter baumannii* by the
698 phytohormone indole-3-acetic acid. *Antonie Van Leeuwenhoek* 107, 1237-1247.

699 20. Donoso, R., Leiva-Novoa, P., Zúñiga, A., Timmermann, T., Recabarren-Gajardo, G.,
700 and González, B. (2017). Biochemical and Genetic Bases of Indole-3-Acetic Acid
701 (Auxin Phytohormone) Degradation by the Plant-Growth-Promoting Rhizobacterium
702 *Paraburkholderia phytofirmans* PsJN. *Appl Environ Microbiol* 83.

703 21. Greenhut, I.V., Slezak, B.L., and Leveau, J.H.J. (2018). iac Gene Expression in the
704 Indole-3-Acetic Acid-Degrading Soil Bacterium *Enterobacter soli* LF7. *Appl Environ
705 Microbiol* 84.

706 22. Sadauskas, M., Statkevičiūtė, R., Vaitekūnas, J., and Meškys, R. (2020). Bioconversion
707 of Biologically Active Indole Derivatives with Indole-3-Acetic Acid-Degrading Enzymes
708 from *Caballeronia glathei* DSM50014. *Biomolecules* 10.

709 23. Jensen, J.B., Egsgaard, H., Van Onckelen, H., and Jochimsen, B.U. (1995). Catabolism
710 of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in *Bradyrhizobium
711 japonicum*. *J Bacteriol* 177, 5762-5766.

712 24. Conway, J.M., Walton, W.G., Salas-González, I., Law, T.F., Lindberg, C.A., Crook, L.E.,
713 Kosina, S.M., Fitzpatrick, C.R., Lietzan, A.D., Northen, T.R., et al. (2022). Diverse MarR
714 bacterial regulators of auxin catabolism in the plant microbiome. *Nat Microbiol* 7,
715 1817-1833.

716 25. Finkel, O.M., Salas-González, I., Castrillo, G., Conway, J.M., Law, T.F., Teixeira, P.,
717 Wilson, E.D., Fitzpatrick, C.R., Jones, C.D., and Dangl, J.L. (2020). A single bacterial
718 genus maintains root growth in a complex microbiome. *Nature* 587, 103-108.

719 26. Donati, A.J., Lee, H.I., Leveau, J.H., and Chang, W.S. (2013). Effects of indole-3-acetic
720 acid on the transcriptional activities and stress tolerance of *Bradyrhizobium
721 japonicum*. *PLoS One* 8, e76559.

722 27. Nascimento, F.X., Glick, B.R., and Rossi, M.J. (2021). Multiple plant hormone
723 catabolism activities: an adaptation to a plant-associated lifestyle by *Achromobacter
724 spp.* *Environ Microbiol Rep* 13, 533-539.

725 28. Deochand, D.K., and Grove, A. (2017). MarR family transcription factors: dynamic
726 variations on a common scaffold. *Crit Rev Biochem Mol Biol* 52, 595-613.

727 29. Gang, S., Sharma, S., Saraf, M., Buck, M., and Schumacher, J. (2019). Analysis of
728 Indole-3-acetic Acid (IAA) Production in *Klebsiellaby* LC-MS/MS and the Salkowski
729 Method. *Bio Protoc* 9, e3230.

730 30. Perera, I.C., and Grove, A. (2010). Molecular mechanisms of ligand-mediated
731 attenuation of DNA binding by MarR family transcriptional regulators. *J Mol Cell Biol
732* 2, 243-254.

733 31. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
734 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate
735 protein structure prediction with AlphaFold. *Nature* **596**, 583-589.

736 32. Zhang, Y., and Skolnick, J. (2005). TM-align: a protein structure alignment algorithm
737 based on the TM-score. *Nucleic Acids Res* **33**, 2302-2309.

738 33. Xu, J., and Zhang, Y. (2010). How significant is a protein structure similarity with
739 TM-score = 0.5? *Bioinformatics* **26**, 889-895.

740 34. He, D., Singh, S.K., Peng, L., Kaushal, R., Vílchez, J.I., Shao, C., Wu, X., Zheng, S.,
741 Morcillo, R.J.L., Paré, P.W., et al. (2022). Flavonoid-attracted *Aeromonas* sp. from the
742 *Arabidopsis* root microbiome enhances plant dehydration resistance. *Isme j* **16**,
743 2622-2632.

744 35. Seitz, V.A., McGivern, B.B., Daly, R.A., Chaparro, J.M., Borton, M.A., Sheflin, A.M.,
745 Kresovich, S., Shields, L., Schipanski, M.E., Wrighton, K.C., et al. (2022). Variation in
746 Root Exudate Composition Influences Soil Microbiome Membership and Function.
747 *Appl Environ Microbiol* **88**, e0022622.

748 36. Bandla, A., Pavagadhi, S., Sridhar Sudarshan, A., Poh, M.C.H., and Swarup, S. (2020).
749 910 metagenome-assembled genomes from the phytobiomes of three urban-farmed
750 leafy Asian greens. *Sci Data* **7**, 278.

751 37. Zhang, H., Wang, M., Wang, H., Chen, H., Cao, L., Zhong, Z., Lian, C., Zhou, L., and Li,
752 C. (2022). Metagenome sequencing and 768 microbial genomes from cold seep in
753 South China Sea. *Sci Data* **9**, 480.

754 38. Su, P., Wicaksono, W.A., Li, C., Michl, K., Berg, G., Wang, D., Xiao, Y., Huang, R., Kang,
755 H., Zhang, D., et al. (2022). Recovery of metagenome-assembled genomes from the
756 phyllosphere of 110 rice genotypes. *Sci Data* **9**, 254.

757 39. Xie, F., Jin, W., Si, H., Yuan, Y., Tao, Y., Liu, J., Wang, X., Yang, C., Li, Q., Yan, X., et al.
758 (2021). An integrated gene catalog and over 10,000 metagenome-assembled
759 genomes from the gastrointestinal microbiome of ruminants. *Microbiome* **9**, 137.

760 40. Bai, Y., Müller, D.B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski,
761 N., Münch, P.C., Spaepen, S., Remus-Emsermann, M., et al. (2015). Functional
762 overlap of the *Arabidopsis* leaf and root microbiota. *Nature* **528**, 364-369.

763 41. Wippel, K., Tao, K., Niu, Y., Zgadzaj, R., Kiel, N., Guan, R., Dahms, E., Zhang, P., Jensen,
764 D.B., Logemann, E., et al. (2021). Host preference and invasiveness of commensal
765 bacteria in the Lotus and *Arabidopsis* root microbiota. *Nat Microbiol* **6**, 1150-1162.

766 42. Nayfach, S., Roux, S., Seshadri, R., Udwary, D., Varghese, N., Schulz, F., Wu, D.,
767 Paez-Espino, D., Chen, I.M., Huntemann, M., et al. (2021). A genomic catalog of
768 Earth's microbiomes. *Nat Biotechnol* **39**, 499-509.

769 43. Coelho, L.P., Alves, R., del Río, Á.R., Myers, P.N., Cantalapiedra, C.P., Giner-Lamia, J.,
770 Schmidt, T.S., Mende, D.R., Orakov, A., Letunic, I., et al. (2022). Towards the
771 biogeography of prokaryotic genes. *Nature* **601**, 252-256.

772 44. Betoudji, F., Abd El Rahman, T., Miller, M.J., Ghosh, M., Jacques, M., Bouarab, K., and
773 Malouin, F. (2020). A Siderophore Analog of Fimsbactin from *Acinetobacter* Hinders
774 Growth of the Phytopathogen *Pseudomonas syringae* and Induces Systemic Priming
775 of Immunity in *Arabidopsis thaliana*. *Pathogens* **9**.

776 45. Xie, J., Yan, Z., Wang, G., Xue, W., Li, C., Chen, X., and Chen, D. (2020). A Bacterium
777 Isolated From Soil in a Karst Rocky Desertification Region Has Efficient
778 Phosphate-Solubilizing and Plant Growth-Promoting Ability. *Front Microbiol* **11**,
779 625450.

780 46. Lin, H.R., Shu, H.Y., and Lin, G.H. (2018). Biological roles of indole-3-acetic acid in
781 *Acinetobacter baumannii*. *Microbiol Res* 216, 30-39.

782 47. Li, D., Liu, R., Wang, M., Peng, R., Fu, S., Fu, A., Le, J., Yao, Q., Yuan, T., Chi, H., et al.
783 (2022). 3 β -Hydroxysteroid dehydrogenase expressed by gut microbes degrades
784 testosterone and is linked to depression in males. *Cell Host Microbe* 30,
785 329-339.e325.

786 48. Belimov, A.A., Dodd, I.C., Safronova, V.I., Dumova, V.A., Shaposhnikov, A.I., Ladatko,
787 A.G., and Davies, W.J. (2014). Abscisic acid metabolizing rhizobacteria decrease ABA
788 concentrations in planta and alter plant growth. *Plant Physiology and Biochemistry*
789 74, 84-91.

790 49. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
791 preprocessor. *Bioinformatics* 34, i884-i890.

792 50. Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: resolving
793 bacterial genome assemblies from short and long sequencing reads. *PLoS*
794 *computational biology* 13, e1005595.

795 51. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015).
796 CheckM: assessing the quality of microbial genomes recovered from isolates, single
797 cells, and metagenomes. *Genome research* 25, 1043-1055.

798 52. Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30,
799 2068-2069.

800 53. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2020). GTDB-Tk: a
801 toolkit to classify genomes with the Genome Taxonomy Database. (Oxford University
802 Press).

803 54. Zhou, C., Xu, Q., He, S., Ye, W., Cao, R., Wang, P., Ling, Y., Yan, X., Wang, Q., and
804 Zhang, G. (2020). GTDB: an integrated resource for glycosyltransferase sequences
805 and annotations. *Database* 2020.

806 55. Edgar, R.C. (2022). Muscle5: High-accuracy alignment ensembles enable unbiased
807 assessments of sequence homology and phylogeny. *Nat Commun* 13, 6968.

808 56. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular
809 Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35,
810 1547-1549.

811 57. Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and
812 new developments. *Nucleic Acids Res* 47, W256-w259.

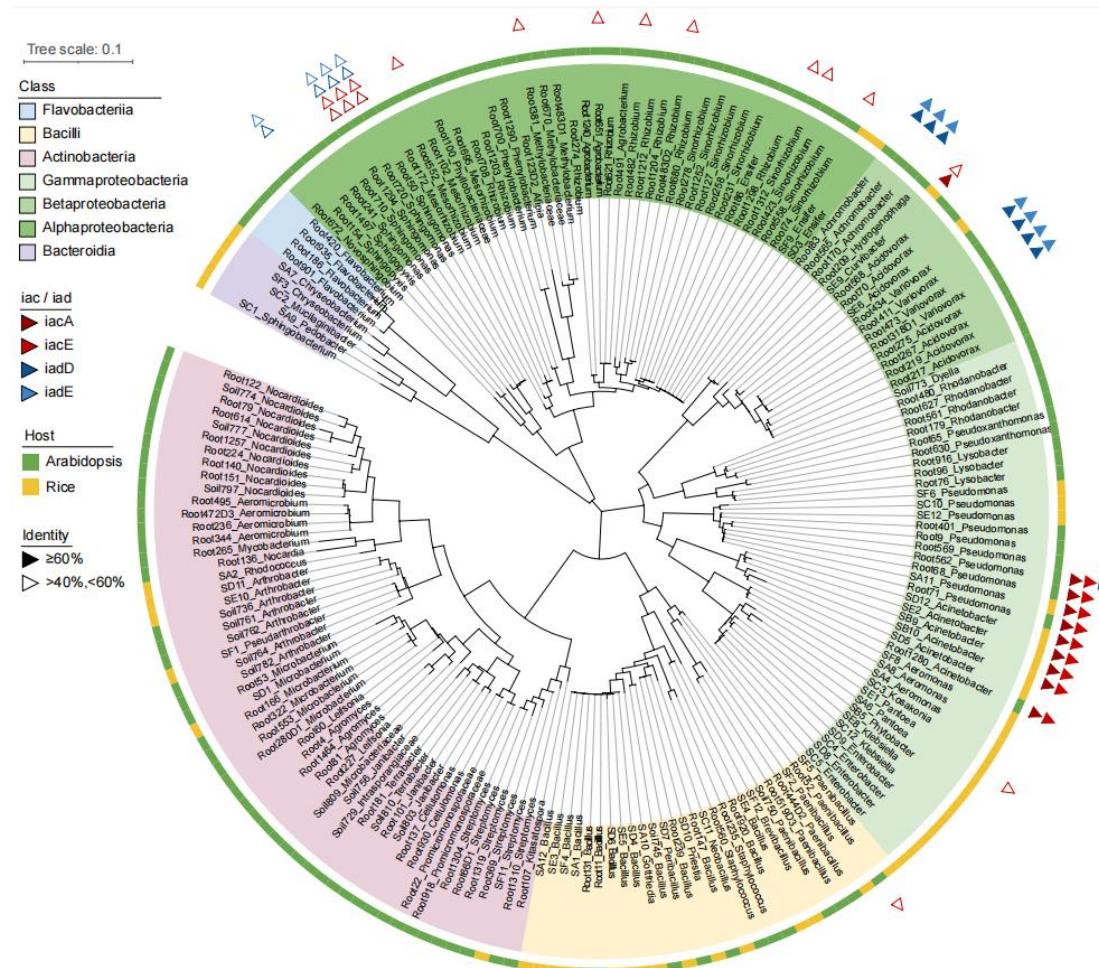
813 58. Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment
814 using DIAMOND. *Nat Methods* 12, 59-60.

815 59. Ewels, P.A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M.U., Di
816 Tommaso, P., and Nahnse, S. (2020). The nf-core framework for
817 community-curated bioinformatics pipelines. *Nat Biotechnol* 38, 276-278.

818 60. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
819 Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
820 *Bioinformatics* 29, 15-21.

821 61. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon
822 provides fast and bias-aware quantification of transcript expression. *Nat Methods* 14,
823 417-419.

824 62. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
825 and dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550.


826 63. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25
827 years of image analysis. *Nat Methods* 9, 671-675.

828 64. Ma, K.W., Ordon, J., and Schulze-Lefert, P. (2022). Gnotobiotic Plant Systems for
829 Reconstitution and Functional Studies of the Root Microbiota. *Curr Protoc* 2, e362.

830 65. Xu, S., Chen, M., Feng, T., Zhan, L., Zhou, L., and Yu, G. (2021). Use ggbreak to
831 effectively utilize plotting space to deal with large datasets and outliers. *Frontiers in*
832 *Genetics* 12, 2122.

833

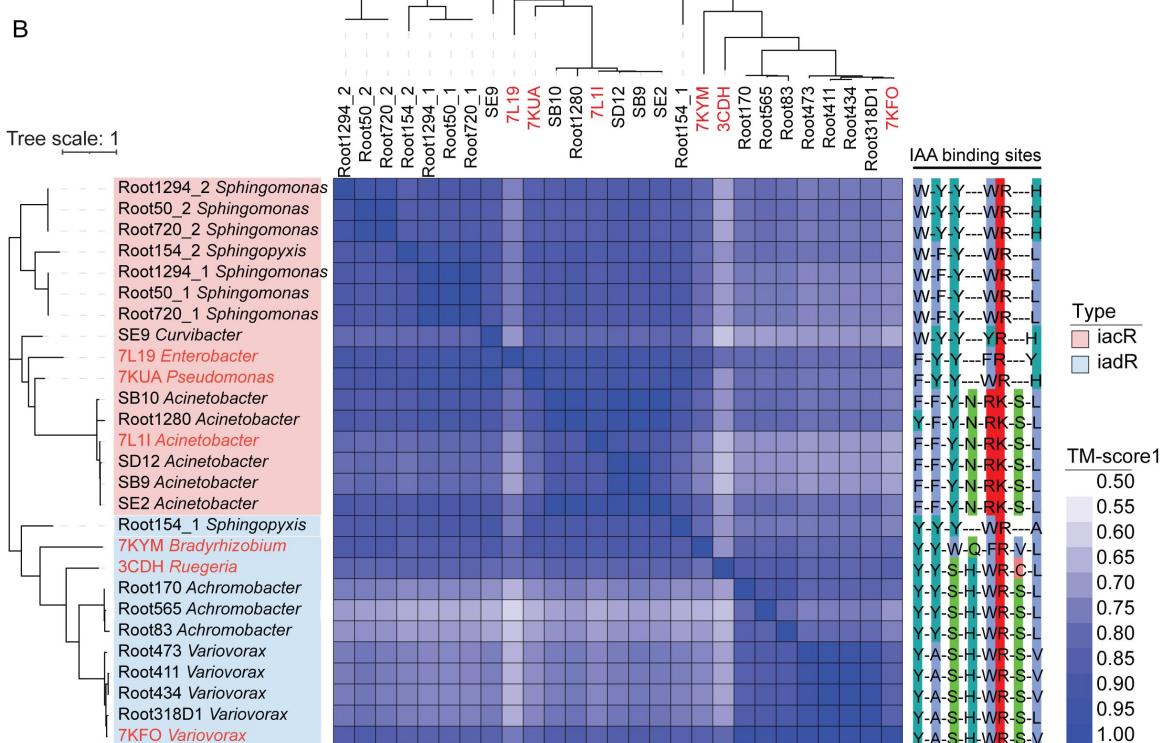
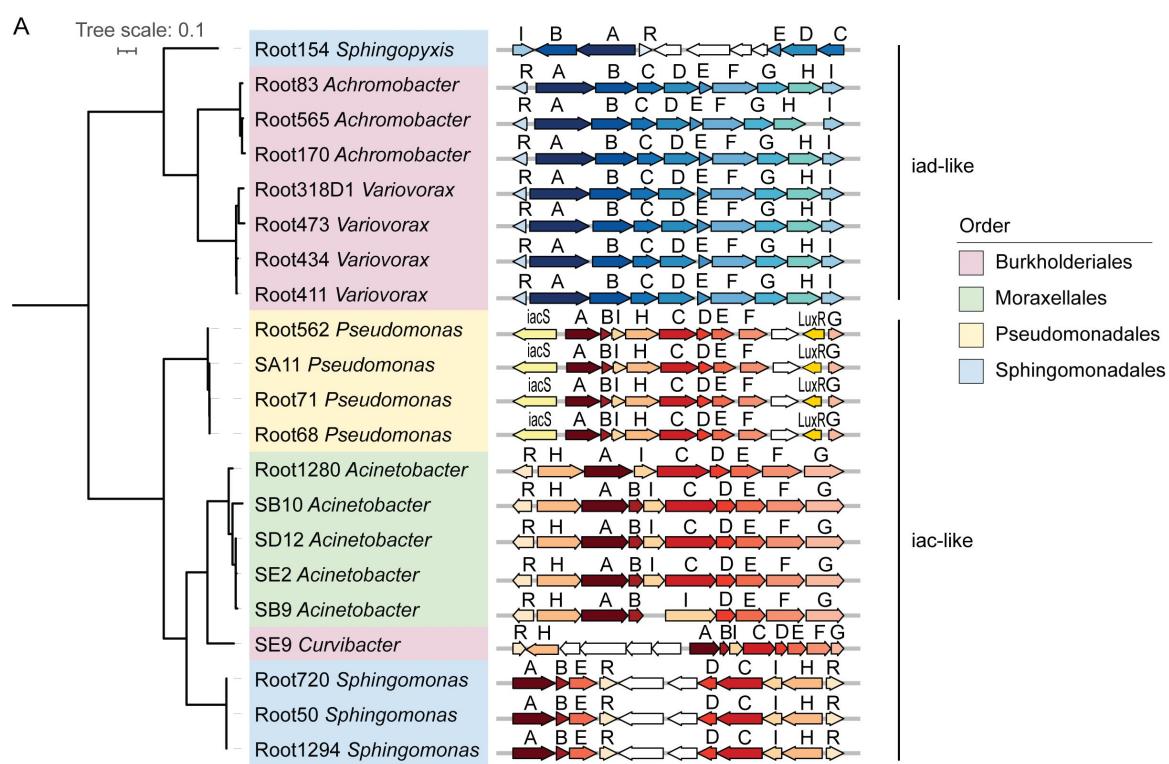
834

835

836 **Figure 1. Bacterial strains isolated from Arabidopsis and rice rhizosphere are**
837 **annotated for genes related to IAA degradation.** The 16S rRNA-based
838 phylogenetic tree of the 189 strains was generated with MEGA-X and visualized with
839 iTOL. Strains annotated to have iacA/E or iadD/E (over 40% identity and 60%
840 coverage with template amino acid sequences, see Methods) were labeled with
841 triangles.

842

843



844

845

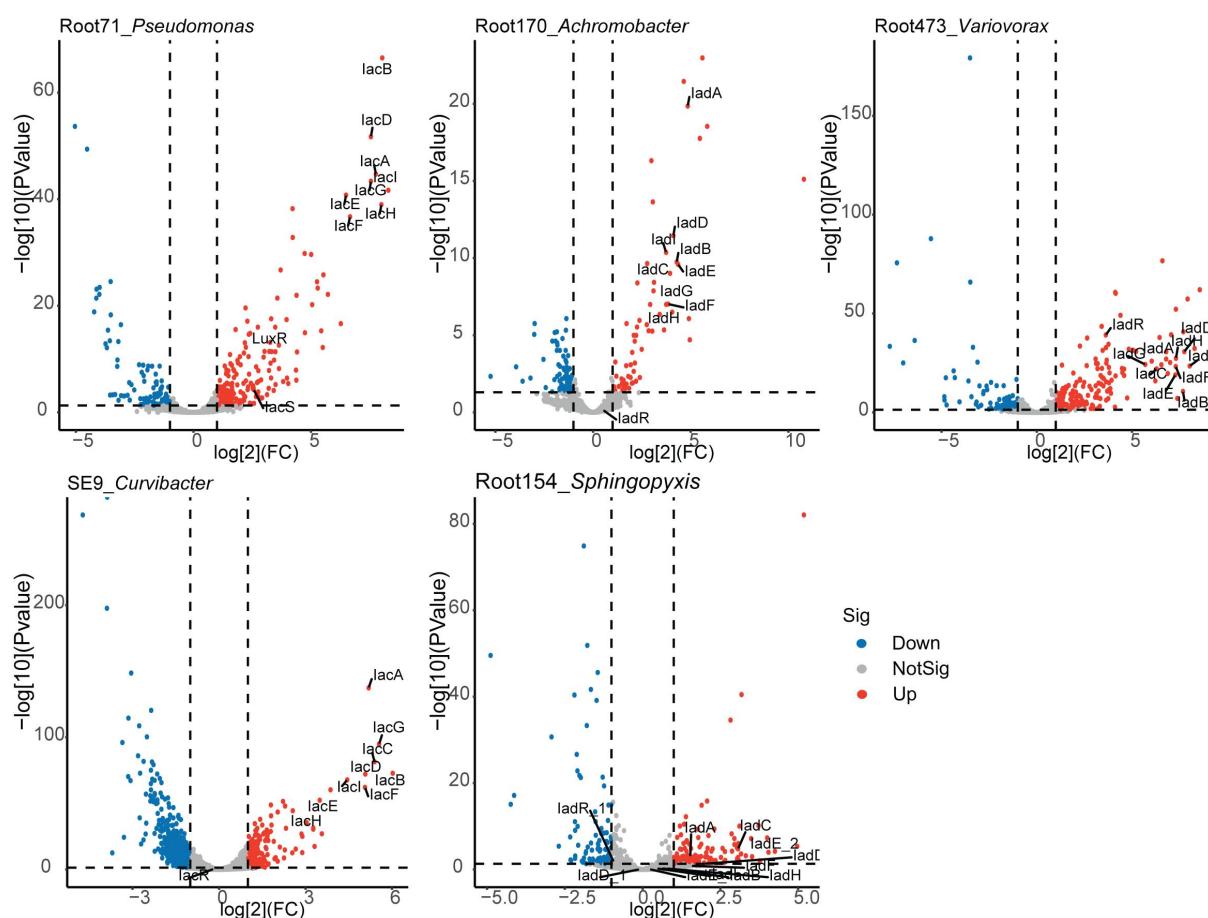
846

847

848

849

850

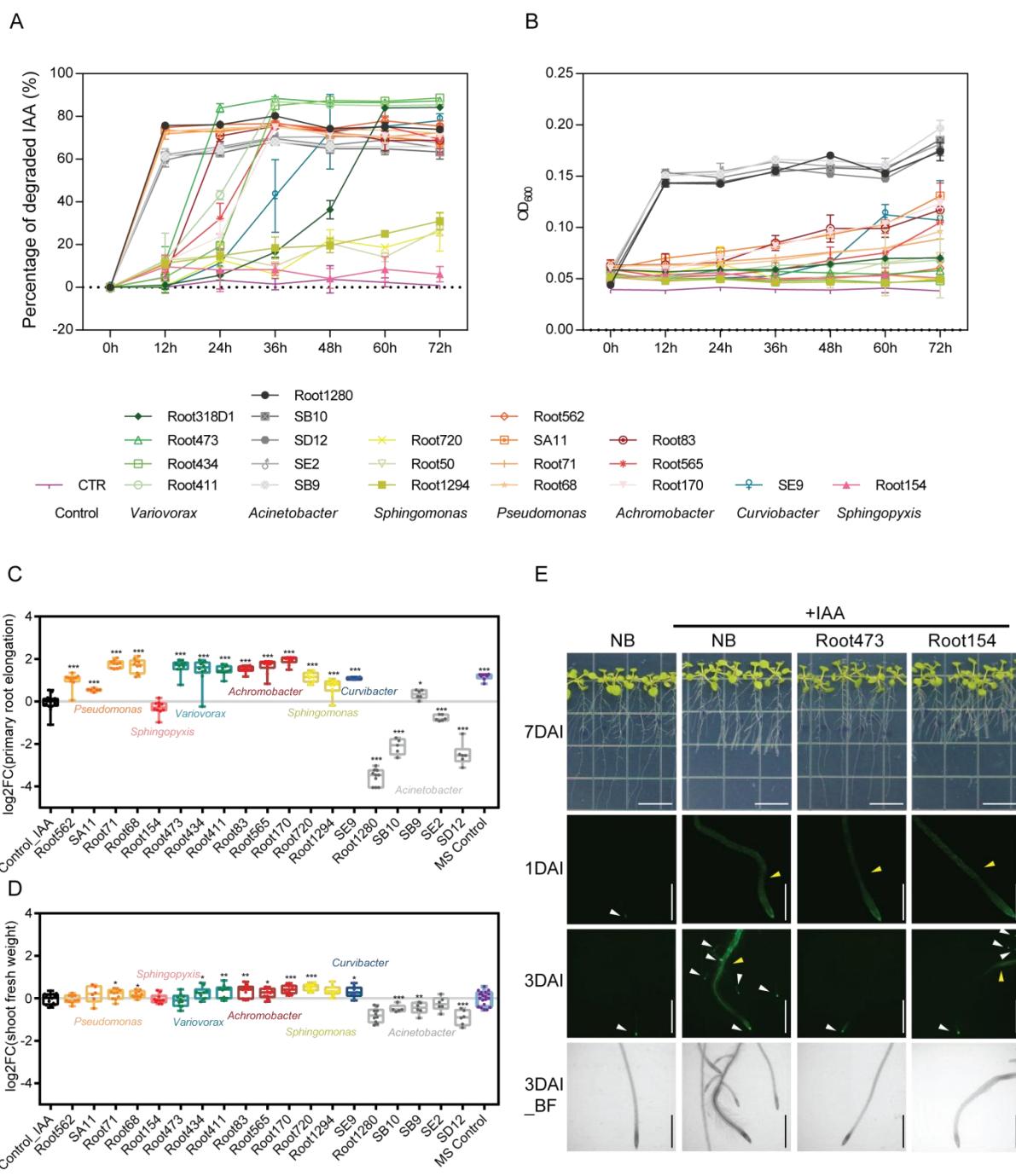

851

852 **Figure 2. Identification of gene clusters related to IAA degradation and the**
853 **corresponding MarR family regulators.** (A), Organization of *iac* and *iad* gene
854 clusters in 21 IAA-degrading strains. Phylogenetic tree constructed using the
855 concatenated *iacA* and *iacE* or *iadD* and *iadE* amino acid sequences. Gene
856 transcription directions are indicated by arrows. Letters above the red or blue arrows
857 indicate function genes in the cluster with high protein sequence identity compared to
858 the templates. White arrows indicate genes in this cluster with unknown function. (B),
859 Protein structures of *iacR* or *iadR* (all belong to MarR family) are highly conserved
860 among IAA-degrading strains. Heatmap of the protein structural similarity among 27
861 MarR family proteins displayed the TM1 score. *iacR* or *iadR* retrieved from 17
862 IAA-degrading strains in this study and 6 reference proteins which protein structures
863 and IAA binding sites have been identified. The phylogenetic tree was constructed
864 using the *iacR* or *iadR* amino acid sequences. The IAA binding sites of MarR were
865 conservatively distributed in *iacR* or *iadR*. Six MarR templates used in this analysis
866 (labeled in red) are 7L1I *Acinetobacter baumannii*, 7KUA *Pseudomonas putida*, 7L19
867 *Enterobacter soli* ATCC BAA-2102, 7KYM *Bradyrhizobium japonicum*, 3CDH
868 *Ruegeria pomeroyi* DSS-3, 7KFO *Variovorax paradoxus* CL14.

869

870

871

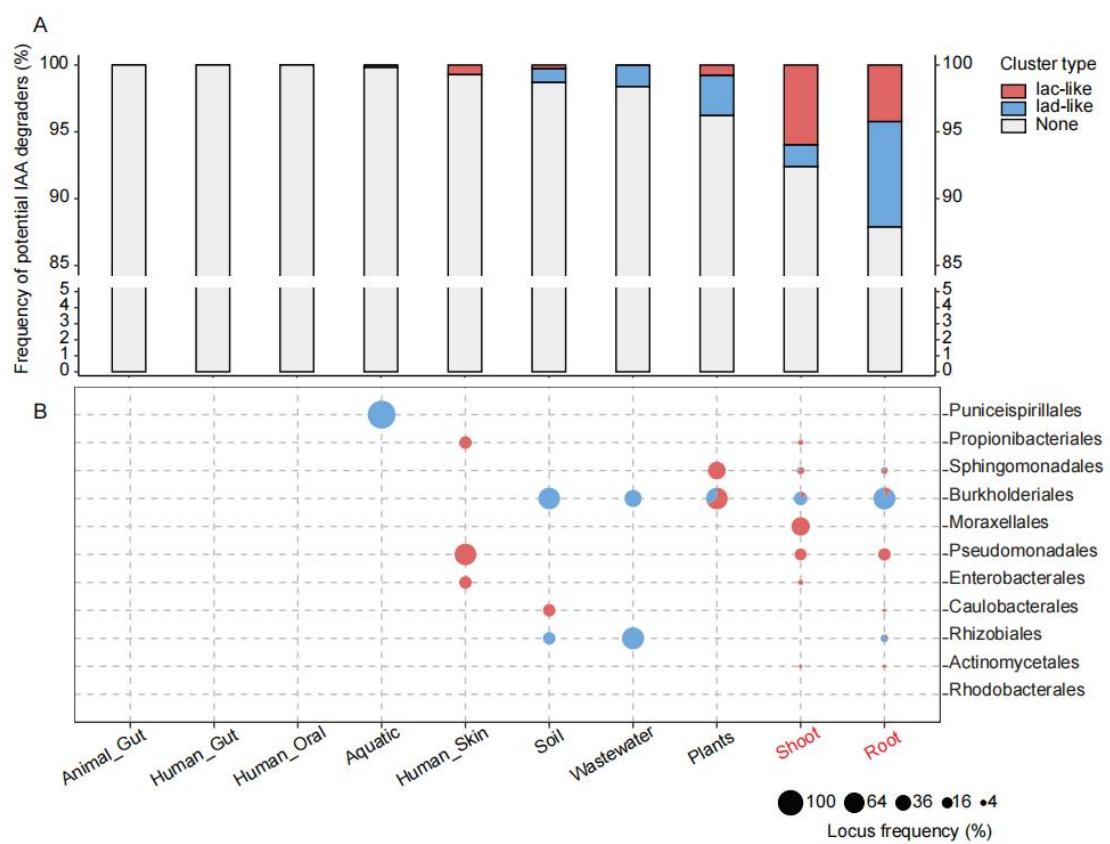


872

873 **Figure 3. RNA-seq reveals that the transcription of the iac-like or iad-like gene**
874 **cluster is induced by IAA.** The 5 selected strains for RNA-seq analysis were
875 cultured with M9 medium supplemented with either IAA or glucose as the sole carbon
876 source. The differential expression genes between IAA and Glucose treatments were
877 analyzed. Significantly up-regulated or down-regulated genes were identified with
878 $\log_2^{\text{FoldChange}} \geq 1$ or ≤ -1 and adjusted $p\text{-value} < 0.05$ as cutoffs. Three individual colony
879 of each strain were used to perform the transcriptome analyses.

880

881


884 **Figure 4. IAA-degrading strains can utilize IAA and suppress the IAA-induced**
885 **root growth inhibition.** (A), IAA consumed by IAA degraders *in vitro* and (B) their
886 growth as measured by OD₆₀₀ in M9 minimal medium supplemented with IAA as the
887 sole carbon source (n=4). (C), Except for strains from genus of *Sphingopyxis* and
888 *Acinetobacter*, IAA-induced root growth inhibition was suppressed by IAA-degrading

889 strains. Boxplot middle line, median log2 fold change of primary root elongation (vs
890 Control_IAA); box edges, 25th and 75th percentiles; whiskers, 1.5× the interquartile
891 range. Left to right n = 16, 10, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 10, 5, 6,
892 6, and 8 biological replicates. (D), Apart from *Acinetobacter*, strains inoculation have
893 no negative effects on shoot fresh weight. Boxplot middle line, median log2 fold
894 change of shoot fresh weight (vs Control_IAA); box edges, 25th and 75th percentiles;
895 whiskers, 1.5× the interquartile range. Left to right n = 17, 10, 10, 6, 10, 10, 10, 10, 10,
896 10, 10, 10, 10, 10, 10, 7, 9, 9, and 19 biological replicates. (E), Images of
897 representative Col-0 seedlings grown axenically (NB) or with IAA-degrading strain
898 inoculation. Upper panes show the representative images of seedlings grown on 1/2
899 MS agar plate supplemented with 100nM IAA at 7 days after inoculation with or
900 without strain. Bar = 1.4cm. The other planes show the representative primary root
901 images of *DR5::GFP* plants after inoculated with strain for 1 and 3 days. Bar = 1mm.
902 Write arrows show the GFP signal on root tips. Yellow arrows show the GFP signals
903 on root which were induced by exogenous IAA. BF, bright field. Significant differences
904 compared with control group were determined using Student's *t*-test: *P<0.05,
905 **P<0.01, ***P<0.001.

906

907

908

909

910 **Figure 5. The distribution of IAA-degrading bacterial strains across various**
911 **habitats. (A),** The frequency of potential IAA degraders whose genome contains *iacA*
912 and *iacE* or *iadD* and *iadE* in different habitats. IAA degradation types were labeled
913 with red or blue color. Ggbreak was applied in this analysis [65]. (B), IAA degradation
914 types are varied at bacterial order level. In total, 11,586 high quality MAGs and
915 isolates were analyzed in this study. Samples containing isolates were highlighted
916 with red color. All MAGs were $\geq 90\%$ complete, were $\leq 5\%$ contaminated and had a
917 quality score (completeness - $5 \times$ contamination) of ≥ 65 .

918
919