

1 Multimodal Hox5 activity generates motor neuron diversity

2 Ritesh KC¹, Raquel López de Boer¹, Minshan Lin¹, Lucie Jeannotte², Polyxeni Philippidou¹

- 3
- 4 1. Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
- 5 2. Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval,
- 6 Centre Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de
- 7 Québec-Université Laval (Oncology), Québec, Canada
- 8

9 Correspondence to: pxp282@case.edu

10 Abstract

11 Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such
12 as respiration and locomotion. Hox proteins are essential in generating the MN diversity
13 required for accomplishing these functions, but the transcriptional mechanisms that enable Hox
14 paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif
15 are not well understood. Here we show that Hoxa5 controls chromatin accessibility in all mouse
16 spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate
17 subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-
18 specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is
19 sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN
20 identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of
21 phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to
22 induce and maintain MN identity.

23

24

26 Introduction

27 The motor programs that mediate essential behaviors such as respiration and
28 locomotion rely on the establishment of distinct subtypes of motor neurons (MNs) during
29 development. MN diversity arises from the intersection of dorsoventral and rostrocaudal
30 signaling pathways that drive the combinatorial expression of unique sets of transcription factors
31 (TFs) that specify MN subtype identities along the spinal cord^{1,2}. Along the rostrocaudal axis,
32 members of the chromosomally-clustered *Hox* gene family are critical in specifying the identity
33 of segmentally-restricted MN subtypes³. Despite the well-described functions of *Hox* proteins in
34 MN specification, several questions remain regarding the mechanisms that different *Hox*
35 paralogs employ to induce distinct subtype identities at the transcriptional level and how *Hox*
36 protein divergent and convergent functions are mediated^{4,5}. For example, while several *Hox*
37 proteins have been shown to converge on common transcriptional targets to redundantly
38 promote limb-innervating Lateral Motor Column (LMC) identity⁶, it is less clear how a single *Hox*
39 paralog may promote multiple MN subtype identities.

40 *Hox* proteins bind DNA through their homeodomain, a 60 amino acid domain that
41 recognizes a short TA-rich DNA motif. Homeobox domains are highly similar amongst different
42 *Hox* proteins and do not appear to confer DNA-binding selectivity to individual paralogs⁷⁻¹⁰. This
43 contrasts with the unique functions of *Hox* proteins *in vivo*, which implies a stringent selectivity
44 of gene targets, giving rise to the *Hox*-specificity paradox^{11,12}. How do *Hox* proteins achieve their
45 unique functions given the apparent overlap in their DNA-binding motifs? One partial solution to
46 this paradox arises from the cooperative binding of *Hox* proteins to DNA with a family of
47 cofactors, known as the three aminoacid loop extension (TALE) homeodomain proteins¹³. *Pbx*
48 proteins, members of the TALE family of TFs, are essential mediators of *Hox* function in MNs
49 and mutations in *Pbx* genes recapitulate *Hox* mutant phenotypes¹⁴. While *Hox/Pbx* interactions
50 increase the specificity of the DNA-binding site, it is unlikely that this interaction alone accounts
51 for all the unique functions of individual *Hox* paralogs, as multiple *Hox* proteins are able to
52 interact with *Pbx* proteins, pointing to the existence of additional mechanisms that further
53 contribute to *Hox* specificity¹⁵.

54 At cervical levels of the spinal cord, *Hox5* paralogs have the ability to promote both
55 Phrenic Motor Column (PMC) and LMC identity^{6,16}. Mice lacking *Hox5* genes in MNs die at birth
56 from respiratory failure, largely due to progressive loss and disorganization of phrenic MNs, and
57 a dramatic loss in axon branching and synaptic contacts at the diaphragm¹⁶. Effects on limb-
58 innervating MNs are subtler, as *Hox5* mutant mice show grossly normal patterns of limb
59 innervation, with only a subset of motor pools adopting abnormal trajectories and targeting
60 inappropriate muscles¹⁷. The transcriptional mechanisms that underlie the ability of a single *Hox*
61 TF to induce two opposing MN identities are not well understood. *Hox5* proteins are the only
62 *Hox* paralogs that induce PMC-specific genes *in vivo*, while the ability to induce genes
63 expressed in LMC neurons is common with other *Hox* family members (Hox4-8). How do *Hox5*
64 proteins accomplish both unique and shared functions in MNs? One possibility is that this
65 distinction arises through different DNA-binding motifs which are highly *Hox5*-specific in PMC
66 genes but common for multiple *Hox* proteins in LMC genes. An example of this can be seen in
67 *Drosophila*, where the *Hox5* homolog Sex combs reduced (Scr), the only *Hox* protein that can
68 initiate salivary gland development, can bind cooperatively with the *Pbx* homolog Extradenticle
69 (Exd) to a unique sequence that other *Hox/Pbx* complexes are unable to bind¹⁸. Do *Hox5*
70 proteins act in a similar manner in phrenic MNs to bind *Hox5/Pbx* specific sites? While this
71 mechanism of action might account for the unique ability of *Hox5* proteins to induce PMC-

72 specific genes, it would fail to explain how these genes are restricted specifically to the PMC
73 given the co-expression of Hox5 and Pbx proteins in other MN populations in the cervical spinal
74 cord. An alternative hypothesis is that additional DNA-binding proteins contribute to the
75 selection of specific targets, either by forming a complex with Hox5/Pbx and altering the
76 preference for a binding site, or by differentially recruiting activators or repressors to the
77 transcriptional complex. In addition to Hox5 and Pbx proteins, PMC neurons also express the
78 POU-domain transcription factor (TF) Scip (Pou3f1, Oct6)^{16,19,20} while LMC neurons express the
79 TF FoxP1, which is required for the induction of Hox-dependent LMC-specific genes^{21,22}.
80 Therefore, one possibility is that, depending on the presence of either Scip or FoxP1,
81 Hox5/Pbx/Scip and Hox5/Pbx/FoxP1 complexes activate two non-overlapping sets of targets,
82 required for PMC and LMC specification respectively.

83 In addition to their canonical functions as TFs, Hox paralog activities can also diverge
84 based on their differential ability to open chromatin, a characteristic property of pioneer factors²³-
85²⁵. For example, Hox13 pioneer activity is essential for initiating developmental programs
86 required for the generation of limb digits and external genitalia in mammals^{26,27}. During in vitro
87 MN specification, Hox TFs exhibit differential abilities to bind and open inaccessible chromatin²⁸.
88 Hox5 proteins may partly act by promoting the opening of chromatin that is actively-transcribed
89 in specific MN columns. The ability of Hox proteins to alter chromatin state might also contribute
90 to the stable maintenance of subtype-specific MN identity after the downregulation of Hox
91 proteins at postnatal stages.

92 Here, we utilize Assay for Transposase-Accessible Chromatin using sequencing (ATAC-
93 seq) from isolated mouse embryonic MNs to show that Hox5 TFs possess the ability to open
94 chromatin associated with all three major columns of MNs in the cervical spinal cord and
95 engage TALE co-factors to directly bind and regulate subtype-specific genes. We identify a
96 paralog-specific interaction of Hoxa5 with Scip and show that heterologous expression of Hoxa5
97 and Scip is sufficient to suppress alternative MN identities. We also demonstrate that phrenic
98 MN identity is stable after Hox5 downregulation and identify Klf TFs as potential downstream
99 regulators of phrenic MN maintenance. Our data identify multiple modes of Hox5 action that
100 converge to induce and maintain MN identity.

101

102 **Results**

103 **Hoxa5 regulates cervical MN chromatin accessibility**

104 Spinal MNs are generated from a highly restricted common progenitor domain in the
105 ventral neural tube. As MNs begin to differentiate and exit the cell cycle, they are
106 topographically organized in a stereotypical fashion as discrete motor columns which exhibit
107 distinct transcriptional profiles and subtype-specific molecular markers by embryonic day
108 (e)12.5. Cervical levels of the spinal cord contain MNs that can be divided into three major
109 subtypes: Phrenic Motor Column (PMC) neurons which innervate the diaphragm to regulate
110 breathing, Lateral Motor Column (LMC) neurons that project to the upper limbs, and Medial
111 Motor Column (MMC) neurons that project to dorsal axial muscles to control posture (Fig. 1a).

112 To gain insights into the transcriptional programs that regulate MN specification and
113 diversity, we performed ATAC-seq to identify regions of actively-transcribed open chromatin in
114 cervical MNs. We used *Choline Acetyltransferase (CHAT)::GFP* transgenic reporter mice, which
115 express GFP in ventrally located *Isl1/2+* MNs, to sort MNs from the cervical spinal cord at e12.5,
116 when motor columns have acquired their distinct identities (Fig. 1b, S1a). We generated ATAC-

117 seq biological replicates with a mean of 107M unique paired-end mapped reads per sample and
118 identified 85,866 peaks of transposase accessible chromatin that were distributed across both
119 intronic and exonic regions, with about 23% being located in promoters (1kb upstream or
120 downstream of the transcriptional start site (TSS), including peaks at the *ChAT* promoter and
121 the pan-MN TFs, *Isl1* and *Mnx1* (*Hb9*) (Fig. 1c, S1b). Next, we used HOMER²⁹ to perform de
122 novo motif search using ATAC-seq peaks to find the relative abundance of sequence-specific
123 TF consensus motifs. We identified the enrichment of CTCF motifs along with known MN
124 markers such as *Isl1* and *Ebf1*, as well as prominent homeobox recognition motifs such as *Evx2*
125 and *Hoxc9* (Fig. 1d).

126 To identify chromatin accessibility regions that correspond to distinct MN columnar
127 subtypes (PMC, LMC and MMC), we compared our ATAC-seq generated peaks to column-
128 enriched genes identified by scRNA-seq³⁰. We employed a graph-based clustering approach,
129 Seurat³¹, to identify the expression of differential genes. We assigned columnar identities based
130 on the average expression of key MN marker genes in distinct clusters. For example, MN
131 clusters exhibiting high expression of *Foxp1* and *Aldh1a2* were combined and assigned as
132 LMC. Similarly, MNs exhibiting high expression of *Mecom* and *Lhx3* were combined and
133 assigned as MMC. With this approach, however, we were unable to confidently identify a
134 phrenic MN cluster, likely due to the fact that PMC neurons are a rare population that may not
135 form a distinct cluster in embryonic scRNA-seq data. Therefore, we instead utilized a list of
136 genes known to be selectively enriched in phrenic MNs by *in situ* hybridization^{19,32}. We then
137 assigned ATAC-seq peaks to the gene of their nearest TSS and intersected genes associated
138 with ATAC-seq peaks with column-enriched genes (Table S1).

139 To identify unique regulators of each MN subtype we performed motif analysis restricted
140 to column-enriched genes. Our analysis identified prominent Hox motifs in the regulatory
141 regions of MNs belonging to all three columns, indicating the predominant role of Hox TFs in
142 MN specification (Fig. 1e). At cervical levels of the spinal cord, Hox5 paralogs (*Hoxa5*, *Hoxb5*
143 and *Hoxc5*) are the major Hox proteins expressed³³. While Hox5 proteins have been implicated
144 in both PMC and LMC development^{6,16,17,33}, we were surprised to identify Hox motifs in MMC
145 neuron-enriched genes, as MMC development is thought to be Hox-independent^{21,22}. We
146 confirmed that both PMC and LMC neurons express high levels of *Hoxa5* and *Hoxc5*, while also
147 detecting *Hoxa5* and *Hoxc5* expression in MMC neurons at lower levels (Fig. 1f)¹⁶. *Hoxb5* is not
148 expressed in MN populations at e12.5 (Fig. S1c). To test whether *Hoxa5* regulates chromatin
149 accessibility, we performed ATAC-seq on sorted *Hoxa5*-deleted (*Hoxa5*^{flox/flox}; *Olig2::Cre*,
150 referred to as *Hoxa5*^{MNΔ}) cervical MNs. Principal component analysis (PCA) showed a high
151 degree of concordance between replicates, with *Hoxa5* deletion accounting for the majority of
152 variance (Fig. S1d).

153 To define chromatin accessibility changes induced by the loss of *Hoxa5*, we performed
154 differential analysis using DESeq2. We identified a total of 3337 and 2721 peaks that were
155 either gained or lost in *Hoxa5*^{MNΔ} MNs, respectively (q-value <0.01, $\pm 2x$) (Fig. 1g). To test
156 whether *Hoxa5* differentially alters chromatin accessibility at promoter or enhancer regions, we
157 analyzed the distribution of differential ATAC-seq peaks at proximal (≤ 2000 kb) and distal
158 (> 2000 kb) regions from an annotated TSS. While the majority of peaks that are gained or lost in
159 *Hoxa5*^{MNΔ} MNs are distributed at distal enhancers, there is a higher percentage of peaks with
160 decreased accessibility in *Hoxa5*^{MNΔ} MNs located at promoter regions, suggesting that *Hoxa5*
161 may have a different impact on chromatin accessibility at proximal and distal regulatory
162 elements (Fig. 1h).

163 To identify molecular pathways impacted by chromatin changes after Hoxa5 loss, we
164 performed GO term enrichment analysis using the nearest annotated neighboring genes for
165 individual chromatin accessibility peaks. We found that genes with altered accessibility are
166 associated with developmental processes such as axonogenesis, neurogenesis, regionalization,
167 axon guidance, dendrite development, synapse organization and cell adhesion, consistent with
168 the phenotypes observed in Hox5^{MNΔ} mice (Fig. S1e)^{16,32}. Altogether, these results suggest that
169 Hox5 TFs regulate MN-specific gene expression programs partly by altering the MN chromatin
170 landscape.

171 To define the TFs that are enriched in differentially accessible regions and thus may, in
172 addition to Hoxa5, control MN gene regulatory programs, we performed footprinting analysis in
173 control and Hoxa5^{MNΔ} ATAC-seq peaks, using TOBIAS³⁴ with motifs from the Jasper
174 databases³⁵. This computational approach uses transposase insertion sites to identify motifs
175 that are protected from transposition, hence likely bound by a TF. Differential footprinting
176 analysis showed that motifs for Klf TFs (Klf5, Klf15, Klf10) showed a higher footprinting score in
177 control peaks, whereas motifs for homeobox TFs such as Lhx showed a higher footprinting
178 score in Hoxa5^{MNΔ} peaks. The high occurrence of Klf motifs in control peaks suggests that
179 Hoxa5-mediated chromatin reorganization may expose previously-inaccessible Klf binding sites.
180 Overall, the differential footprints found between control and Hoxa5^{MNΔ} MNs support the idea
181 that Hoxa5 may regulate the binding ability of downstream TFs.

182 **Hoxa5 and Pbx1 modules directly control MN genes**

183 To understand how Hoxa5 induces distinct MN subtype identities, we wanted to identify
184 direct Hoxa5 transcriptional targets in the spinal cord. Since TALE cofactors cooperatively bind
185 chromatin with Hox proteins and are essential for many Hox actions, we also investigated
186 targets of Pbx1, which is strongly expressed in all cervical MN columns¹⁴. To identify both
187 unique and shared transcriptional targets of Hoxa5 and Pbx1, we performed chromatin
188 immunoprecipitation followed by sequencing (ChIP-seq) from e12.5 mouse cervical spinal cord
189 chromatin, and identified a total of 3494 Hoxa5 peaks and 15764 Pbx1 peaks. To understand if
190 Hoxa5 and Pbx1 co-regulate a subset of cis regulatory elements, we intersected Hoxa5 with
191 Pbx1 peaks and found that 34% of Hoxa5 (1186) peaks co-occur with Pbx1 peaks (Fig. 2g). The
192 majority of Pbx1 peaks were not bound by Hoxa5, indicating that many Pbx functions are likely
193 Hoxa5-independent³⁶. Notably, we also identified a significant portion of Hoxa5 peaks not bound
194 by Pbx1 indicating either that other Pbx proteins, such as Pbx3, may form distinct complexes
195 with Hoxa5, or suggesting Pbx-independent Hoxa5 DNA binding. Further analysis of the
196 genomic distribution of Hoxa5 and Pbx1 bound regions showed that the majority of Hoxa5
197 peaks were located within the promoter region of annotated genes, while Pbx1 peaks were
198 distributed between promoters, intronic and intergenic regions (Fig. 2a-b, 2d-e). Regions co-
199 occupied by both Hoxa5 and Pbx1 are predominantly associated with promoter regions, mostly
200 mirroring Hoxa5 peak distribution (Fig. 2h). GO term enrichment analysis revealed that the
201 peaks bound by either Hoxa5 or Pbx1 or both are associated with genes that regulate
202 axonogenesis, pattern specification process, regionalization, and migration of neurons (Fig. 2k,
203 S2a-b), consistent with known Hoxa5/Pbx1 functions in MNs. To investigate whether certain
204 DNA motifs were enriched in the Hoxa5-bound, Pbx1-bound, and combined Hoxa5-Pbx1 bound
205 sites, we applied HOMER de novo motif search. Surprisingly, the top motifs identified in Hoxa5-
206 bound sites were not canonical Hox motifs, but were instead enriched for Neurod1 and E2F2
207 consensus binding sequences, while Pbx1-bound sites were enriched for Hox, Pbx and Meis
208 motifs. A previously established Hox-Pbx composite motif (Fig. 2j) was identified in the top
209 enriched motifs in all Hoxa5-bound, Pbx1-bound, and Hoxa5-Pbx1 shared peaks (Fig 2c, 2f, 2i).
210

211 Next, we associated Hoxa5, Pbx1 and Hoxa5-Pbx1 intersected peaks to the major MN
212 column genes (Fig. 2l). Our analysis identified that more than 75% of PMC and MMC genes
213 show enrichment of either Hoxa5 or Pbx1 or both, underscoring the overarching function of Hox
214 and Pbx-mediated transcriptional programs in these MN populations. In contrast, we found that
215 a significant portion of LMC genes (36%) do not show enrichment of either Hoxa5 or Pbx1, likely
216 reflecting Hox-downstream programs that regulate MN pool identity. Assessment of TF motifs
217 present in Hoxa5-bound PMC, LMC, and MMC genes using HOMER revealed enrichment of
218 distinct motifs for each column, indicating that the specific cellular context in each MN subtype
219 might alter Hoxa5 binding specificity (Fig. 2m). De novo motif analysis of Pbx1-bound peaks in
220 all motor columns revealed enrichment of motifs for the TALE cofactors Meis1 and Meis2. This
221 suggests that Pbx1 may bind specific motor column loci in a Hoxa5-independent manner, in a
222 complex with other TALE factors such as Meis1 and Meis2. Together, these results suggest that
223 Hoxa5 and Pbx1 either individually or collaboratively target cis-regulatory modules that
224 orchestrate different aspects of MN development.

225 **Scip cooperates with Hox/Pbx programs to induce PMC identity**

226 We found that Hoxa5 and Pbx1 directly bind and regulate genes that are essential for
227 MN specification and development in multiple motor columns in the cervical spinal cord.
228 However, it is unclear how these TFs can induce specific MN identities given their broad
229 expression pattern. We previously showed by retrograde labeling that the expression of Scip, a
230 POU domain TF, is restricted to PMC neurons and that overexpression of FoxP1, which is
231 required for the establishment of LMC identity^{21,22}, suppresses Scip expression¹⁶. We next
232 asked whether context-specific functions of Hoxa5 are achieved via interactions or cooperativity
233 with other MN-specific TFs, such as Scip.

234 To test whether Hoxa5 and Scip associate with each other during PMC specification, we
235 created tagged constructs (Fig. 3a) and performed protein co-immunoprecipitation (co-IP)
236 assays using transiently transfected 293T cells. As a control experiment, we also looked at the
237 interaction between Hoxa5 and Pbx1, which has been previously established^{37,38}. The co-elution
238 of Hoxa5 and Pbx1 and Hoxa5 and Scip in the same IP fraction, suggests that these proteins
239 can form a complex (Fig. 3b, c). The hexapeptide (YPWM) domain of Hox proteins is critical for
240 their interaction with Pbx cofactors^{37,39,40}. To test whether the same domain is required for the
241 Hoxa5 interaction with Scip, we mutated the YPWM domain of Hoxa5 to AAAA
242 (Hoxa5^{YPWM>AAAA}, fig.3a) and performed co-IP assays. While we found a decreased association
243 of Hoxa5^{YPWM>AAAA} with Pbx1 as expected, we did not find any changes in its interaction with
244 Scip, suggesting that the Hoxa5-Scip interaction is independent of the hexapeptide motif. These
245 data support a model where Hoxa5, Pbx1, and Scip form a complex to induce phrenic-specific
246 programs and both Pbx1 and Scip bind to Hoxa5 through non-competitive interactions.

247 To understand whether the Hoxa5 interaction with Scip is paralog-specific, we tested the
248 ability of Scip to interact with Hoxc9, a Hox paralog required for the generation of thoracic
249 respiratory MN subtypes that is ~36% identical to Hoxa5⁴¹. We found that Hoxc9 does not form
250 a complex with Scip (Fig. 3g), suggesting that Scip does not broadly associate with Hox
251 proteins, but rather exhibits paralog-dependent specificity. Due to the absence of a canonical
252 hexapeptide motif, Hoxc9 also shows decreased interaction with Pbx1 (Fig. 3f)⁴⁰.

253 Outside of the homeodomain and the YPWM motif, N-terminal domains of Hox protein
254 sequences diverge substantially. To identify the region of Hoxa5 necessary for complex
255 formation with Scip, we serially deleted the N-terminal end of Hoxa5 and created three HA-
256 tagged N-terminal deletion constructs: HA-Hoxa5-ΔN30, HA-Hoxa5-ΔN86 and HA-Hoxa5-

257 Δ N144 (Fig. 3h) and performed co-IP experiments. 293T cells were co-transfected with
258 expression constructs encoding HA-tagged Hoxa5 deletion constructs and V5-tagged Scip. Pull-
259 down experiments with an antibody against the V5 epitope showed that HA-Hoxa5- Δ N86 and
260 HA-Hoxa5- Δ N144 do not co-IP with Scip (Fig. 3i), suggesting aminoacids 30-86 at the N-
261 terminal region of Hoxa5 are essential for complex formation with Scip.

262 To test whether the Hoxa5/Scip interaction can also be observed in vivo, we prepared
263 whole tissue lysate from the cervical spinal cord of e12.5 mouse embryos and performed co-IP.
264 Similar to transiently transfected 293T cells, we were able to IP Hoxa5 using a goat anti-Scip
265 antibody. Further probing the blot with a rabbit-anti-Scip antibody, we were also able to detect
266 Scip in the same IP fraction (Fig. 3j). However, we were unable to detect Hoxa5 or Scip in
267 whole-cell lysate, likely due to lower endogenous expression.

268 To test if Hoxa5 and Scip expression is sufficient to suppress LMC identity, we co-
269 electroporated constructs expressing mouse Hoxa5 and Scip under a pCAGGs promoter in
270 chicken embryos, which lack phrenic MNs. We found that the overexpression of Hoxa5 and Scip
271 did not affect the number of MNs generated, as electroporated cells still expressed normal
272 levels of Isl1/2, but suppressed the expression of Foxp1 (Fig. 3k). Our data collectively indicate
273 that Hoxa5 and Scip cooperate to induce phrenic and suppress limb-innervating MN identity.

274 **Postnatal maintenance of phrenic MN identity**

275 Our data revealed mechanisms that control the establishment of embryonic phrenic
276 MNs, largely through transcriptional programs mediated by Hox5 and Scip proteins. However, it
277 is not clear whether expression of these two TFs is continuously required for phrenic MN
278 maintenance at postnatal and adult stages. Since a number of Hox proteins show maintained
279 expression at postnatal stages in brachial MNs⁴², we evaluated the expression of Hoxa5 and
280 Scip at different stages. Both Hoxa5 and Scip were strongly expressed in phrenic MNs at
281 postnatal day (P)5.5, but their expression became weaker at P10.5 and undetected by P16.5
282 (Fig. 4a).

283 During development, Hox5 proteins control the expression of phrenic-specific cell
284 adhesion molecules, such as *ALCAM*, *Negr1* and *Pcdh10*³². To test whether Hox5 downstream
285 genes are downregulated in a similar temporal fashion as Hoxa5 or are maintained postnatally,
286 we performed in situ hybridization for a pan-MN marker *Vesicular Acetylcholine Transporter*
287 (*VAcT*), *Alcam*, *Negr1*, and *Pcdh10*. Surprisingly, we observed maintained expression of these
288 genes at P16.5, despite Hoxa5 downregulation, suggesting that additional gene regulatory
289 mechanisms may control the maintenance of these early Hox5 target genes (Fig. 4a). In order
290 to explore potential maintenance factors of phrenic MN identity downstream of early Hox/Pbx
291 programs, we intersected Hoxa5 and Pbx1-enriched ChIP-seq peaks and differential ATAC-seq
292 peaks with a curated list of mouse TFs^{43,44}. We selected several TFs that either showed
293 particularly high enrichment in ChIP-seq or ATAC-seq datasets or have known functions in MN
294 development for further downstream analysis by in situ hybridization. This analysis identified a
295 number of TFs, including Ebf and Tshz factors, Neurod1, Onecut2, and Stat3. However, we did
296 not observe phrenic-specific enrichment of these TFs at e12.5 (Fig. S3a). We also identified
297 several Klf family members in our intersected dataset and previously noticed that the
298 footprinting score of multiple Klf TFs was reduced in Hoxa5-deficient ATAC-seq peaks (Fig. 1i),
299 suggesting Hoxa5 may regulate both the expression and DNA-binding of Klf family members.
300 We tested Klf expression at e12.5 and found that Klf5, Klf6 and Klf16, but not Klf3, Klf7, or
301 Klf15, are highly expressed in phrenic MNs (Fig. 4b, S3b). We also found that Klf5, Klf6, and

302 Klf16 expression is maintained in phrenic MNs at 1 month of age (Fig. 4c). Together these
303 findings suggest that a subset of Klf TFs show continuous expression from embryonic to
304 postnatal phrenic MNs and may regulate a gene regulatory network required for phrenic MN
305 identity maintenance (Fig. 4d).

306

307 Discussion

308 Combinatorial TF expression and changes in chromatin accessibility underlie the
309 development, diversification and maturation of MN subtypes⁴⁵. Hox proteins are at the core of
310 early transcriptional programs that diversify MNs along the rostrocaudal axis of the spinal cord³.
311 At cervical levels of the spinal cord, MN columns show a differential requirement for Hox5
312 proteins- PMC neurons are largely dependent on Hox5 proteins for their survival and
313 specification, LMC neurons show an intermediate requirement for the axonal pathfinding of a
314 subset of pools, while MMC neurons appear to be resistant to Hox5 loss. Here, we sought to
315 address how Hox5 proteins can serve multiple functions in the development and specification of
316 distinct MN subtypes. We find that Hox5 paralogs exert their functions through altering
317 chromatin states and associating with MN-specific co-factors. Our findings provide insights into
318 how Hox5 proteins can selectively control both PMC and LMC properties. The high incidence of
319 Hox motifs in open chromatin and Hoxa5 binding in MMC-associated genes is surprising, given
320 the lack of overt MMC phenotypes in Hox5 mutants. While MMC columnar identity is thought to
321 be Hox-independent, it is possible that Hox-mediated transcriptional programs may contribute to
322 MMC properties downstream of columnar identity, similar to LMC neurons.

323 Several Hox proteins exert their functions partially through their ability to reorganize
324 chromatin, a characteristic of pioneer factors²⁵. We identify Hoxa5 as an additional family
325 member that exhibits pioneer activity. It is unclear why Hox paralogs differ in their abilities to
326 alter chromatin state. Despite substantial redundancy among Hox proteins in limb-innervating
327 MN development, both Hoxa5 and Hoxc9 have unique abilities to induce phrenic and
328 preganglionic/hypaxial MN identities, respectively^{16,41}, and these distinct functions may partly
329 arise from their ability to bind and open inaccessible chromatin, consistent with the idea that
330 increased selectivity may be associated with lower chromatin accessibility^{24,25,28}. Given the
331 absence of domains that indicate an intrinsic ability of Hox proteins to remodel chromatin, it is
332 likely that this property arises from their interactions with additional binding partners²⁵. Both Oct
333 and Klf family members have known pioneer activity⁴⁶, indicating that the ability of Hoxa5 to
334 recruit these TFs could mediate its chromatin remodeling activity.

335 Our data indicate that Hoxa5 has the differential ability to recruit Scip (Pou3f1/Oct6) and
336 that this interaction is mediated by sequences at the N-terminal domain of the protein, which are
337 the most divergent among Hox paralogs and thus likely to mediate paralog-specific protein
338 interactions^{47,48}. The ability of Hoxa5 to interact with this novel binding partner may have led to
339 the emergence of phrenic MN identity in mammals, as avian species express Hox5, but not
340 Scip, with similar rostrocaudal boundaries in the spinal cord. In mouse embryonic stem cell
341 (ESC)-derived MNs, co-expression of Hoxa5 and Scip induces a transcriptional profile
342 corresponding to phrenic MNs¹⁹. Here, we show that Hoxa5 and Scip co-expression is also
343 sufficient to suppress LMC identity, revealing that the Hox5/Scip complex has a dual role in
344 inducing phrenic and suppressing limb MN programs. Similarly, we previously found that
345 combinatorial expression of Hoxa5 and FoxP1 suppresses phrenic MN identity¹⁶, indicating that
346 cross-repressive interactions ensure the right balance of phrenic and limb-innervating MNs at
347 cervical levels of the spinal cord. Interestingly, FoxP1 and Scip expression domains overlap at

348 more caudal levels of the brachial spinal cord that are devoid of Hoxa5 expression, indicating
349 that Hoxa5 is specifically required for Scip/FoxP1 cross-repression. Motif analysis of ATAC-seq
350 and ChIP-seq data indicates a different top motif for Hoxa5 binding in PMC neurons, although
351 this analysis is limited by the small number of known phrenic-specific genes. One possibility is
352 that the interaction of Hoxa5 with Scip can bias its binding preferences to regulatory regions on
353 phrenic-specific targets, suggesting conserved strategies for Hox binding selectivity⁴⁹⁻⁵¹. Future
354 experiments utilizing scRNA-seq, scATAC-seq and CUT&RUN from isolated phrenic MNs will
355 further test this possibility.

356 The transcriptional programs that control MN maturation and maintenance are just
357 beginning to emerge. In *C. elegans* MNs, terminal selectors are necessary for inducing and
358 maintaining cholinergic transmission and other core features of MN identity throughout the
359 lifetime of the animal⁵²⁻⁵⁴. In mammalian serotonergic neurons, an adult stage transcriptional
360 program maintains their synaptic connectivity and protects axons from neurotoxic injury⁵⁵. It is
361 unclear whether mammalian MNs express maintenance factors that safeguard their integrity in
362 adulthood, and whether these factors are broadly expressed in all MNs or are unique to specific
363 MN subtypes. We find that a subset of Klf TFs are induced and maintained in phrenic MNs after
364 downregulation of early Hox transcriptional programs, suggesting that they may act to maintain
365 phrenic MN properties. Despite convergence of transcriptional programs in the majority of MN
366 subtypes as they progress from development to adulthood, phrenic MNs appear to sustain their
367 unique identity, as they form a distinct cluster in adult scRNA-seq data⁵⁶. While Klf6 is broadly
368 expressed in all adult MNs⁴⁵, Klf5 and Klf16 expression appears to be more restricted,
369 suggesting phrenic-specific functions. In addition to phrenic MNs, Klf5 is also expressed in
370 hypaxial MNs in the thoracic spinal cord, indicating a conserved role in respiratory MN
371 populations^{19,57}. Klf family members differentially regulate the intrinsic ability of CNS axons to
372 regenerate⁵⁸, raising the possibility that specific family members may be broadly involved in
373 neuroprotection or degeneration in adulthood.

374 375 **Methods**

376 **Mouse genetics**

377 The *loxP*-flanked *Hoxa5*⁵⁹, *Olig2::Cre*⁶⁰, and *ChAT(BAC)-eGFP* (*ChAT::GFP*)⁶¹ lines
378 were generated as previously described and maintained on a mixed background. Mouse colony
379 maintenance and handling was performed in compliance with protocols approved by the
380 Institutional Animal Care Use Committee of Case Western Reserve University. Mice were
381 housed in a 12-hour light/dark cycle in cages containing no more than five animals at a time.

382 **Immunohistochemistry and in situ hybridization**

383 In situ hybridization and immunohistochemistry were performed as previously
384 described^{16,32}, on tissue fixed for 2 hours in 4% paraformaldehyde (PFA) and cryosectioned at
385 16µm. Postnatal mice (P5.5-P16.5) were perfused with a solution of phosphate-buffered saline
386 (PBS) and 4% PFA, followed by a 2-hour post-fixation at 4°C. In situ probes were generated
387 from e12.5 cervical spinal cord cDNA libraries using PCR primers with a T7 RNA polymerase
388 promoter sequence at the 5' end of the reverse primer. All probes generated were 750-1000bp
389 in length. The following antibodies were used: guinea pig anti-Hoxa5, guinea pig anti-Hoxc5³³,
390 rabbit anti-Hoxb5¹⁶, guinea pig anti-FoxP1²², goat anti-Scip (1:5000; Santa Cruz Biotechnology,
391 RRID:AB_2268536), mouse anti-Islet1/2 (1:1000, DSHB, RRID:AB_2314683), rabbit anti-
392 Lhx3⁶², rabbit anti-Klf6 (1:1000, Santa Cruz Biotechnology, Cat# SC-7158) and goat anti-ChAT

393 (1:200, Millipore, RRID:AB_2079751). Images were obtained with a Zeiss LSM 800 confocal
394 microscope and analyzed with Zen Blue, ImageJ (Fiji), and Imaris (Bitplane).

395 **MN dissociation and fluorescence-activated cell sorting**

396 C2-C6 cervical spinal cords were dissected from e12.5 embryos in a *ChAT::GFP*
397 background in ice cold PBS and collected in PBS. After spinning down, the pellets were
398 dissociated with Papain Dissociation System (Worthington, Cat# LK003176) following the
399 manufacturer's instructions. Briefly, tissue was enzyme digested for 30 min at 37°C with DNase
400 (117 units/mL) and gently triturated. The single cell solution was centrifuged and then
401 resuspended in PBS with 1% BSA and DNase. Dissociated cells were filtered through a 70 µm
402 filter and subjected to fluorescence-activated cell sorting (FACS) on a BD Aria-SORP digital cell
403 sorter with 85 µm nozzle to enrich for GFP positive cells. The cells were collected in a microtube
404 containing 100 µL of PBS with 1% BSA.

405 **ATAC-seq library preparation**

406 Bulk ATAC-seq for each condition was performed with at least two biological replicates
407 as previously described⁶³ and scaled down to half. Briefly, 25,000 FAC-sorted cells were
408 centrifuged at 500 g for 6 min in a chilled centrifuge to form a pellet. The pellet was washed
409 once in 25 µL of ice cold PBS, resuspended in 25 µL of cold lysis buffer (10 mM Tris-HCl, pH
410 7.4, 10 mM NaCl, 3 mM MgCl₂, 0.1% Igepal CA-630) and centrifuged at 500 g for 10 min at
411 4°C. The cell pellet was resuspended in transposition reaction mix (12.5 µL TD-Buffer, 1.25 µL
412 Tn5, 11.25 µL water) (Nextera DNA Library Prep Kit, Illumina, Cat# 15028212) and incubated for
413 30 min at 37°C. Immediately following the transposition reaction, purification was carried out
414 using mini elute PCR Purification Kit (Qiagen, Cat# 27104). The appropriate number of
415 amplification cycles was determined using qPCR reaction as described⁶³. The PCR cycles were
416 carried out with Illumina Nextera adapter primers using the NEBNext High Fidelity 2x Master
417 Mix (NEB, Cat# M0541S) using the following PCR program: (1) 5 min at 72°C, (2) 30 s at 98°C,
418 (3) 10 s at 98°C, (4) 30 s at 63°C, (5) 1 min at 72°C, and (6) repeat steps 3–5 with total cycles
419 <12. Final PCR products were cleaned using PCRClean Dx beads (Aline Biosciences, Cat# C-
420 1003) and assessed for quality using a Bioanalyzer. The libraries were sequenced on an
421 Illumina NextSeq 550 (paired-end 75 bp) at the Genomics Core Facility at Case Western
422 Reserve University.

423 **ATAC-seq data processing and analysis**

424 ATAC-seq data were processed using the standardized uniform Encyclopedia of DNA
425 Elements (ENCODE) pipeline from the ENCODE consortium⁶⁴. Briefly, FastQC (v0.11.9) was
426 used to check the pre-alignment read quality. FASTQ files from ATAC-seq reads were mapped
427 to UCSC mm10 with Bowtie2 (v2.3.4.3). All unmapped reads, non-uniquely mapped reads, PCR
428 duplicates and ChrM reads were removed using Samtools (v1.9). Peaks were called using
429 MACS2 (v2.2.4) with parameters “--nomodel --shift 37 --ext 73 --pval 1e-2 -B --SPMR --call-
430 summits”. Peaks overlapping with the blacklist region defined by ENCODE were removed using
431 Bedtools (v2.29.0). Next, replicated peaks in each condition were intersected using Bedtools
432 (intersect) to identify open chromatin regions overlapping by at least 1bp and defined as
433 replicated peaks. Replicated peaks were annotated in R using the ChIPseeker package
434 (v1.36.0), which assigns each peak to the nearest gene transcriptional start site (TSS). To
435 identify differential peaks, FeatureCounts was used to obtain count data from the resulting
436 ATAC-seq BAM files. Count data for all replicates and experimental conditions were combined
437 into a single count matrix in R. The consensus peaks were identified as the peaks that were
438 present in at least two samples. The count matrix was subsequently used to identify

439 differentially expressed genes with the R package DEseq2⁶⁵. PCA was performed using
440 plotPCA function within DEseq2 on Variance Stabilizing Transformation (VST)-transformed
441 data. Proximal and distal peaks were defined by associating differential ATAC-seq peak
442 distances to annotated TSS (ChIPseeker). Peaks that were at least 2.0 kb away from the
443 annotated TSS were assigned as distal ATAC-seq peaks, while all others were assigned as
444 proximal. To visualize the ATAC-seq signal in the UCSC genome browser, samples were
445 normalized to 1x genomic coverage, also known as Reads per Genome Coverage (RPGC).

446 **Motif analysis**

447 HOMER (v4.10) was used to perform de novo motif enrichment²⁹. Motif analysis on
448 ChIP-seq data was performed using a fixed 200 bp window around the peak center. Motif
449 analysis on ATAC-seq data was performed using a fixed 500 bp window around the peak center
450 on differentially accessible chromatin. In both cases, the HOMER findMotifsGenome.pl
451 command was used to perform de novo analysis against background sequences generated by
452 HOMER that match the GC content. The top-scoring motifs, along with their p-value and
453 enrichment, are shown.

454 **Footprinting analysis**

455 To analyze footprinting signatures in ATAC-seq data the TOBIAS package³⁴ was used.
456 All replicates from each condition were merged into one .bam file using bedtools. Peaks were
457 called using MACS2 with parameters "--nomodel --qvalue 0.01 --keep-dup all". Peak files were
458 associated with motifs from JASPAR CORE Vertebrates collection 2022⁶⁶. Merged BAM files
459 were processed using ATACorrect to correct for Tn5 bias. Footprint scores were calculated
460 using FootprintScores, and differential footprinting analysis was performed using BINDetect.

461 **Go enrichment**

462 The enrichGO function from the clusterProfiler (v4.8.2) package was used to perform
463 GO term analysis of enriched biological processes and generate the graphs with maximum of
464 500 genes set for each category. The top ten significant GO terms were plotted and ordered by
465 the number of gene counts in each category.

466 **Single cell RNA-sequencing (scRNA-seq) reanalysis**

467 The filtered matrix output from the Cell Ranger pipeline for rostral samples was obtained
468 from the Gene Expression Omnibus repository with accession code GSE183759³⁰. Seurat
469 package (v4.4.0) was used to perform quality filtering, normalization, dimensionality reduction,
470 and cell clustering. Briefly, cells were evaluated for quality, and those with gene counts between
471 1000 and 5300, UMI counts below 30500, and mitochondrial counts under 10% were kept for
472 further analysis. After filtering, 5460 cells were retained for downstream analysis. The resulting
473 digital data matrices were then processed using a SCT transformation⁶⁷ to perform
474 normalization, scaling, and identification of variable features with mitochondrial reads regressed
475 out. MNs were separated by the expression of common MN markers such as *Mnx1* or
476 cholinergic markers such as *ChAT* or *Slc18a3* or *Slc5a7*. Only the cells expressing MN markers
477 were considered for downstream analysis leading to a total of 5011 cells. To identify cell
478 clusters, Uniform Manifold Approximation and Projection (UMAP) was used with the first 30
479 principle components. Cells were clustered using FindClusters function (resolution = 0.3) and
480 visualized using UMAP. Cell identities were assigned using known markers. Clusters that were
481 close to each other in UMAP space expressing LMC (*FoxP1*, *Aldh1a2*) and MMC (*Mecom*,
482 *Lhx3*) markers were merged to create a new cluster ID and defined as LMC and MMC clusters.
483 Furthermore, conserved markers for LMC and MMC clusters were generated by using

484 Findconservedmarker function with logFC thresholds of 0.25. To identify ATAC-seq peaks
485 associated with MN clusters in the cervical spinal cord, the conserved marker genes obtained
486 from scRNA-seq for LMC and MMC were intersected with the genes associated with the ATAC-
487 seq peaks.

488 **ChIP-sequencing (ChIP-seq)**

489 e12.5 mouse cervical spinal cords were dissected and flash frozen in liquid nitrogen. The
490 tissue samples, along with antibodies, rabbit anti-Hoxa5³³ and rabbit anti-Pbx1 (Cell Signaling
491 Technology, RRID:AB_2160295) were sent to Active Motif for chromatin isolation and
492 sonication, ChIP assay, library preparation, library QC, Next-Generation sequencing on the
493 Illumina platform and analysis. In brief, 75-nucleotide sequence reads generated by Illumina
494 sequencing (NextSeq 500) were mapped to the mm10 genome using the BWA algorithm with
495 default settings. Alignments that were uniquely mapped to the genome and had no more than
496 two mismatches were retained for subsequent analysis. PCR duplicates were further removed.
497 Peaks were called using MACS2 using the default p-value cutoff. Peak filtering was performed
498 by removing ChIP-seq peaks aligned to the blacklist genome as defined by ENCODE. Peaks
499 were annotated in R with the ChIPseeker package, which assigns each peak to the nearest
500 gene's TSS.

501 **Plasmid construction for co-immunoprecipitation (co-IP) and electroporation**

502 To create expression vectors for co-IP experiments, RNA extracted from mouse spinal
503 cord was converted to cDNA and used to amplify Hoxa5, Pbx1, and Scip using custom
504 oligonucleotides with HA, Myc, and V5-tags. PCR amplified products and cloning vector
505 (pcDNA3.1) were digested to create compatible sites for ligation and transformed into NEB10
506 beta competent bacteria (NEB, Cat# C3019H). To create plasmids for chick electroporation,
507 mouse Hoxa5 and Scip cloned into the pcDNA3.1 vector were used to amplify Hoxa5 and Scip
508 and inserted into pCAG-tdTomato (Addgene, Cat #83029), a vector with the chick β-actin
509 promoter/CMV enhancer. The complete length of cloned plasmids was sequenced at Eurofins
510 and verified by mapping to the respective mRNAs using the UCSC mouse reference genome.

511 **Co-immunoprecipitation (co-IP) assays**

512 HEK293 cells were transfected using Lipofectamine 3000 (Invitrogen, Cat# L3000008)
513 according to the manufacturer's instructions. After 48 hours, cells were washed once in ice cold
514 PBS and harvested in 1X RIPA buffer (Cell Signaling, Cat# 9806). Co-IP assay was carried out
515 using protein A/G PLUS-Agarose beads (Santa Cruz, Cat# 2003). Briefly, 600 µg of total cell
516 lysate was precleared with 20 µl of agarose beads for 30 min. For co-IP, 200 µg of precleared
517 protein was incubated with 2 µg of anti-HA (Cell Signaling Technology, Cat# 5017,
518 RRID:AB_10693385, fig. 3b-e), anti-V5 (Santa Cruz Biotechnology, Cat# sc-271944,
519 RRID:AB_10650278, fig. 3g, 3i) or anti-Myc (Cell Signaling Technology, Cat# 2276,
520 RRID:AB_331783, fig. 3f) and incubated for 1 hour on a rocker at 4°C. To conjugate beads with
521 the antibodies bound to the protein, 20 µl of agarose beads were added and incubated at 4°C
522 overnight. Protein complex bound beads were washed 3 times with RIPA and 2 times with PBS
523 and the pellet was resuspended in 40 µl of 1x sample buffer and boiled for 3 minutes. 25 µL of
524 the immunoprecipitated aliquots and 5% of total lysate (input control) were run on a standard
525 SDS-PAGE gel. The gels were then transferred onto a PVDF membrane (BioRad, Cat#
526 1620177) using a wet transfer system and blocked by incubation with 3% BSA in TBST (TBS
527 with 0.1% Tween-20). Membranes were probed with anti-HA, anti-V5, anti-Myc or anti-Scip
528 (Santa Cruz Biotechnology, RRID:AB_2268536). Blotted membranes were scanned using
529 Odyssey infrared imaging system (Li-COR).

530 For in vivo co-IP, cervical tissue from e12.5 mouse embryos was washed once in ice
531 cold PBS and homogenized in RIPA buffer (60 μ L/embryo) using a disposable pestle. The lysate
532 was incubated at 4°C for 30 min and then clarified by spinning down at 4°C for 10 min at 10,000
533 RPM. 200 μ g of precleared lysate was incubated with 2 μ g of goat anti-Scip (Santa Cruz
534 Biotechnology, RRID:AB_2268536) and incubated for 1 hour on a rocker at 4°C. To conjugate
535 beads with the antibodies bound to the protein, 20 μ l of agarose beads were added and
536 incubated at 4°C overnight. Protein complex bound beads were washed 5 times in PBS and the
537 pellet was resuspended in 40 μ l of 1x sample buffer and boiled for 3 minutes. 20% of total lysate
538 was used as input control for running a standard SDS-PAGE western blot. After transfer, the blot
539 was blocked and probed with rabbit anti-Hoxa5, washed, and re-probed with rabbit anti-Scip
540 (RRID:AB_2631304).

541 **In Ovo Electroporation**

542 Electroporation was performed by introducing a DNA solution into the lumen of the
543 neural tube of specific pathogen-free (SPF) chicken embryos (AVS Bio, Cat#10100326) at
544 Hamburger-Hamilton stages 14-16⁶⁸ using 5 \times 50 msec pulses at 25V, with electrodes placed
545 horizontally across the longitudinal axis of the embryo to achieve unilateral electroporation of
546 the desired construct mixture. The DNA solution was composed of the relative ratios of each
547 construct diluted in TE buffer with 0.5% Fast Green to aid injection visualization. The construct
548 concentrations were adjusted to obtain a final ratio of 2:2:1 for Hoxa5:Scip:EGFP in which the
549 total DNA electroporated per egg was 1.1 μ g/ μ l. Electroporated embryos were incubated at 37°C
550 for 3 days and analyzed at stages 25-26.

551 **Statistics and reproducibility**

552 The programs used for data analysis such as MACS2 for peak calling, DEseq2 for
553 differential analysis, Homer for motif- enrichment analysis, clusterprofiler for GO term
554 enrichment analysis, and Tobias for footprinting score analysis use algorithms that provide their
555 own p values, q values, and/or FDR. The data was primarily analyzed in R (v 4.3.1) and the R
556 scripts used for data analysis are freely available upon request. For electroporation
557 experiments, data are represented in violin plots to show overall frequency distribution of all the
558 individual data points, with dashed lines representing the median value and dotted lines
559 representing the two quartile lines. P-values were calculated using a one-way ANOVA. p < 0.05
560 was considered to be statistically significant, where * p< 0.05.

561 **Data availability**

562 All sequencing data produced for this study will be available at the Gene Expression
563 Omnibus (GEO) upon publication.

564 **Code availability**

565 The R scripts used for data analysis are freely available from the corresponding author,
566 PP, upon request.

567

568 **References**

- 569 1 Catela, C., Shin, M. M. & Dasen, J. S. Assembly and function of spinal circuits for motor
570 control. *Annu Rev Cell Dev Biol* **31**, 669-698, doi:10.1146/annurev-cellbio-100814-
571 125155 (2015).
- 572 2 Shirasaki, R. & Pfaff, S. L. Transcriptional codes and the control of neuronal identity.
573 *Annu Rev Neurosci* **25**, 251-281, doi:10.1146/annurev.neuro.25.112701.142916 (2002).
- 574 3 Philippidou, P. & Dasen, J. S. Hox genes: choreographers in neural development,
575 architects of circuit organization. *Neuron* **80**, 12-34, doi:10.1016/j.neuron.2013.09.020
576 (2013).
- 577 4 Rezsohazy, R., Saurin, A. J., Maurel-Zaffran, C. & Graba, Y. Cellular and molecular
578 insights into Hox protein action. *Development* **142**, 1212-1227, doi:10.1242/dev.109785
579 (2015).
- 580 5 Zandvakili, A. & Gebelein, B. Mechanisms of Specificity for Hox Factor Activity. *J Dev
581 Biol* **4**, doi:10.3390/jdb4020016 (2016).
- 582 6 Lacombe, J. *et al.* Genetic and functional modularity of Hox activities in the specification
583 of limb-innervating motor neurons. *PLoS Genet* **9**, e1003184,
584 doi:10.1371/journal.pgen.1003184 (2013).
- 585 7 Noyes, M. B. *et al.* Analysis of homeodomain specificities allows the family-wide
586 prediction of preferred recognition sites. *Cell* **133**, 1277-1289,
587 doi:10.1016/j.cell.2008.05.023 (2008).
- 588 8 Gehring, W. J. *et al.* Homeodomain-DNA recognition. *Cell* **78**, 211-223 (1994).
- 589 9 Berger, M. F. *et al.* Variation in homeodomain DNA binding revealed by high-resolution
590 analysis of sequence preferences. *Cell* **133**, 1266-1276, doi:10.1016/j.cell.2008.05.024
591 (2008).
- 592 10 Affolter, M., Slattery, M. & Mann, R. S. A lexicon for homeodomain-DNA recognition. *Cell*
593 **133**, 1133-1135, doi:10.1016/j.cell.2008.06.008 (2008).
- 594 11 Mann, R. S., Lelli, K. M. & Joshi, R. Hox specificity unique roles for cofactors and
595 collaborators. *Curr Top Dev Biol* **88**, 63-101, doi:10.1016/S0070-2153(09)88003-4
596 (2009).
- 597 12 Hueber, S. D. *et al.* Comparative analysis of Hox downstream genes in Drosophila.
598 *Development* **134**, 381-392, doi:10.1242/dev.02746 (2007).
- 599 13 Slattery, M. *et al.* Cofactor binding evokes latent differences in DNA binding specificity
600 between Hox proteins. *Cell* **147**, 1270-1282, doi:10.1016/j.cell.2011.10.053 (2011).

- 601 14 Hanley, O. *et al.* Parallel Pbx-Dependent Pathways Govern the Coalescence and Fate of
602 Motor Columns. *Neuron* **91**, 1005-1020, doi:10.1016/j.neuron.2016.07.043 (2016).
- 603 15 Carnesecchi, J. *et al.* Multi-level and lineage-specific interactomes of the Hox
604 transcription factor Ubx contribute to its functional specificity. *Nat Commun* **11**, 1388,
605 doi:10.1038/s41467-020-15223-x (2020).
- 606 16 Philippidou, P., Walsh, C. M., Aubin, J., Jeannotte, L. & Dasen, J. S. Sustained Hox5
607 gene activity is required for respiratory motor neuron development. *Nat Neurosci* **15**,
608 1636-1644, doi:10.1038/nn.3242 (2012).
- 609 17 Catela, C., Shin, M. M., Lee, D. H., Liu, J. P. & Dasen, J. S. Hox Proteins Coordinate
610 Motor Neuron Differentiation and Connectivity Programs through Ret/Gfralpha Genes.
611 *Cell Rep* **14**, 1901-1915, doi:10.1016/j.celrep.2016.01.067 (2016).
- 612 18 Joshi, R. *et al.* Functional specificity of a Hox protein mediated by the recognition of
613 minor groove structure. *Cell* **131**, 530-543, doi:10.1016/j.cell.2007.09.024 (2007).
- 614 19 Machado, C. B. *et al.* Reconstruction of phrenic neuron identity in embryonic stem cell-
615 derived motor neurons. *Development* **141**, 784-794, doi:10.1242/dev.097188 (2014).
- 616 20 Bermingham, J. R., Jr. *et al.* Tst-1/Oct-6/SCIP regulates a unique step in peripheral
617 myelination and is required for normal respiration. *Genes Dev* **10**, 1751-1762 (1996).
- 618 21 Rousso, D. L., Gaber, Z. B., Wellik, D., Morrisey, E. E. & Novitch, B. G. Coordinated
619 actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of
620 spinal motor neurons. *Neuron* **59**, 226-240, doi:10.1016/j.neuron.2008.06.025 (2008).
- 621 22 Dasen, J. S., De Camilli, A., Wang, B., Tucker, P. W. & Jessell, T. M. Hox repertoires for
622 motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. *Cell*
623 **134**, 304-316, doi:10.1016/j.cell.2008.06.019 (2008).
- 624 23 Beh, C. Y. *et al.* Roles of cofactors and chromatin accessibility in Hox protein target
625 specificity. *Epigenetics Chromatin* **9**, 1, doi:10.1186/s13072-015-0049-x (2016).
- 626 24 Porcelli, D., Fischer, B., Russell, S. & White, R. Chromatin accessibility plays a key role
627 in selective targeting of Hox proteins. *Genome Biol* **20**, 115, doi:10.1186/s13059-019-
628 1721-4 (2019).
- 629 25 Paul, R., Peraldi, R. & Kmita, M. The pioneering function of the hox transcription factors.
630 *Semin Cell Dev Biol* **152-153**, 85-92, doi:10.1016/j.semcd.2022.11.013 (2024).
- 631 26 Desanlis, I. *et al.* HOX13-dependent chromatin accessibility underlies the transition
632 towards the digit development program. *Nat Commun* **11**, 2491, doi:10.1038/s41467-
633 020-16317-2 (2020).

- 634 27 Amandio, A. R., Lopez-Delisle, L., Bolt, C. C., Mascrez, B. & Duboule, D. A complex
635 regulatory landscape involved in the development of mammalian external genitals. *Elife*
636 **9**, doi:10.7554/eLife.52962 (2020).
- 637 28 Bulajic, M. *et al.* Differential abilities to engage inaccessible chromatin diversify
638 vertebrate Hox binding patterns. *Development* **147**, doi:10.1242/dev.194761 (2020).
- 639 29 Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of
640 systems-level datasets. *Nat Commun* **10**, 1523, doi:10.1038/s41467-019-09234-6
641 (2019).
- 642 30 Liau, E. S. *et al.* Single-cell transcriptomic analysis reveals diversity within mammalian
643 spinal motor neurons. *Nat Commun* **14**, 46, doi:10.1038/s41467-022-35574-x (2023).
- 644 31 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
645 e3529, doi:10.1016/j.cell.2021.04.048 (2021).
- 646 32 Vagnozzi, A. N. *et al.* Phrenic-specific transcriptional programs shape respiratory motor
647 output. *Elife* **9**, doi:10.7554/eLife.52859 (2020).
- 648 33 Dasen, J. S., Tice, B. C., Brenner-Morton, S. & Jessell, T. M. A Hox regulatory network
649 establishes motor neuron pool identity and target-muscle connectivity. *Cell* **123**, 477-
650 491, doi:10.1016/j.cell.2005.09.009 (2005).
- 651 34 Bentsen, M. *et al.* ATAC-seq footprinting unravels kinetics of transcription factor binding
652 during zygotic genome activation. *Nat Commun* **11**, 4267, doi:10.1038/s41467-020-
653 18035-1 (2020).
- 654 35 Schoch, C. L. *et al.* NCBI Taxonomy: a comprehensive update on curation, resources
655 and tools. *Database (Oxford)* **2020**, doi:10.1093/database/baaa062 (2020).
- 656 36 Bobola, N. & Sagerstrom, C. G. TALE transcription factors: Cofactors no more. *Semin
657 Cell Dev Biol* **152-153**, 76-84, doi:10.1016/j.semcdcb.2022.11.015 (2024).
- 658 37 Chang, C. P. *et al.* Pbx proteins display hexapeptide-dependent cooperative DNA
659 binding with a subset of Hox proteins. *Genes Dev* **9**, 663-674, doi:10.1101/gad.9.6.663
660 (1995).
- 661 38 Chan, S. K., Jaffe, L., Capovilla, M., Botas, J. & Mann, R. S. The DNA binding specificity
662 of Ultrabithorax is modulated by cooperative interactions with extradenticle, another
663 homeoprotein. *Cell* **78**, 603-615, doi:10.1016/0092-8674(94)90525-8 (1994).
- 664 39 Phelan, M. L., Rambaldi, I. & Featherstone, M. S. Cooperative interactions between
665 HOX and PBX proteins mediated by a conserved peptide motif. *Mol Cell Biol* **15**, 3989-
666 3997, doi:10.1128/MCB.15.8.3989 (1995).

- 667 40 Knoepfler, P. S. & Kamps, M. P. The pentapeptide motif of Hox proteins is required for
668 cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA
669 binding by Pbx1. *Mol Cell Biol* **15**, 5811-5819, doi:10.1128/MCB.15.10.5811 (1995).
- 670 41 Jung, H. *et al.* Global control of motor neuron topography mediated by the repressive
671 actions of a single hox gene. *Neuron* **67**, 781-796, doi:10.1016/j.neuron.2010.08.008
672 (2010).
- 673 42 Catela, C., Chen, Y., Weng, Y., Wen, K. & Kratsios, P. Control of spinal motor neuron
674 terminal differentiation through sustained Hoxc8 gene activity. *eLife* **11**,
675 doi:10.7554/eLife.70766 (2022).
- 676 43 Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **175**, 598-599,
677 doi:10.1016/j.cell.2018.09.045 (2018).
- 678 44 Hammelman, J., Patel, T., Closser, M., Wichterle, H. & Gifford, D. Ranking
679 reprogramming factors for cell differentiation. *Nat Methods* **19**, 812-822,
680 doi:10.1038/s41592-022-01522-2 (2022).
- 681 45 Patel, T. *et al.* Transcriptional dynamics of murine motor neuron maturation in vivo and
682 in vitro. *Nat Commun* **13**, 5427, doi:10.1038/s41467-022-33022-4 (2022).
- 683 46 Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency
684 reprogramming factors' initial engagement with the genome. *Cell* **151**, 994-1004,
685 doi:10.1016/j.cell.2012.09.045 (2012).
- 686 47 Baeza, M. *et al.* Inhibitory activities of short linear motifs underlie Hox interactome
687 specificity in vivo. *eLife* **4**, doi:10.7554/eLife.06034 (2015).
- 688 48 Dard, A. *et al.* Human HOX Proteins Use Diverse and Context-Dependent Motifs to
689 Interact with TALE Class Cofactors. *Cell Rep* **22**, 3058-3071,
690 doi:10.1016/j.celrep.2018.02.070 (2018).
- 691 49 Sanchez-Higueras, C. *et al.* In vivo Hox binding specificity revealed by systematic
692 changes to a single cis regulatory module. *Nat Commun* **10**, 3597, doi:10.1038/s41467-
693 019-11416-1 (2019).
- 694 50 Feng, S. *et al.* Transcription factor paralogs orchestrate alternative gene regulatory
695 networks by context-dependent cooperation with multiple cofactors. *Nat Commun* **13**,
696 3808, doi:10.1038/s41467-022-31501-2 (2022).
- 697 51 Bridoux, L. *et al.* HOX paralogs selectively convert binding of ubiquitous transcription
698 factors into tissue-specific patterns of enhancer activation. *PLoS Genet* **16**, e1009162,
699 doi:10.1371/journal.pgen.1009162 (2020).

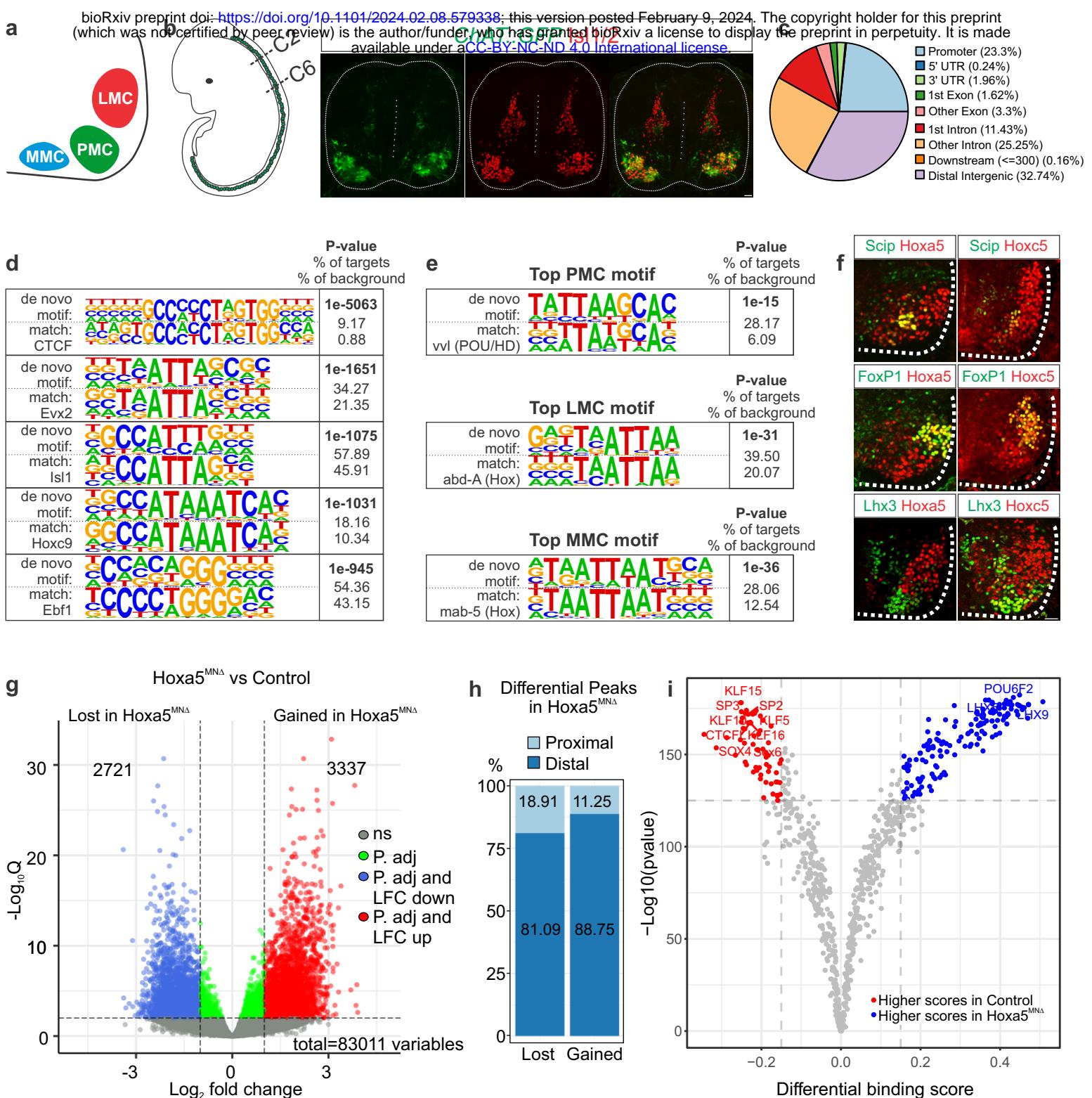
- 700 52 Li, Y. *et al.* Establishment and maintenance of motor neuron identity via temporal
701 modularity in terminal selector function. *eLife* **9**, doi:10.7554/eLife.59464 (2020).
- 702 53 Feng, W. *et al.* A terminal selector prevents a Hox transcriptional switch to safeguard
703 motor neuron identity throughout life. *eLife* **9**, doi:10.7554/eLife.50065 (2020).
- 704 54 Hobert, O. & Kratsios, P. Neuronal identity control by terminal selectors in worms, flies,
705 and chordates. *Curr Opin Neurobiol* **56**, 97-105, doi:10.1016/j.conb.2018.12.006 (2019).
- 706 55 Kitt, M. M. *et al.* An adult-stage transcriptional program for survival of serotonergic
707 connectivity. *Cell Rep* **39**, 110711, doi:10.1016/j.celrep.2022.110711 (2022).
- 708 56 Alkasasi, M. R. *et al.* Single nucleus RNA-sequencing defines unexpected diversity of
709 cholinergic neuron types in the adult mouse spinal cord. *Nat Commun* **12**, 2471,
710 doi:10.1038/s41467-021-22691-2 (2021).
- 711 57 Wang, W., Cho, H., Lee, J. W. & Lee, S. K. The histone demethylase Kdm6b regulates
712 subtype diversification of mouse spinal motor neurons during development. *Nat
713 Commun* **13**, 958, doi:10.1038/s41467-022-28636-7 (2022).
- 714 58 Moore, D. L. *et al.* KLF family members regulate intrinsic axon regeneration ability.
715 *Science* **326**, 298-301, doi:10.1126/science.1175737 (2009).
- 716 59 Tabaries, S., Lemieux, M., Aubin, J. & Jeannotte, L. Comparative analysis of Hoxa5
717 allelic series. *Genesis* **45**, 218-228, doi:10.1002/dvg.20292 (2007).
- 718 60 Dessaud, E. *et al.* Interpretation of the sonic hedgehog morphogen gradient by a
719 temporal adaptation mechanism. *Nature* **450**, 717-720, doi:10.1038/nature06347 (2007).
- 720 61 Tallini, Y. N. *et al.* BAC transgenic mice express enhanced green fluorescent protein in
721 central and peripheral cholinergic neurons. *Physiol Genomics* **27**, 391-397,
722 doi:10.1152/physiolgenomics.00092.2006 (2006).
- 723 62 Tsuchida, T. *et al.* Topographic organization of embryonic motor neurons defined by
724 expression of LIM homeobox genes. *Cell* **79**, 957-970, doi:10.1016/0092-
725 8674(94)90027-2 (1994).
- 726 63 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
727 Transposition of native chromatin for fast and sensitive epigenomic profiling of open
728 chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* **10**, 1213-1218,
729 doi:10.1038/nmeth.2688 (2013).
- 730 64 Landt, S. G. *et al.* ChIP-seq guidelines and practices of the ENCODE and modENCODE
731 consortia. *Genome Res* **22**, 1813-1831, doi:10.1101/gr.136184.111 (2012).

- 732 65 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
733 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-0550-8
734 (2014).
- 735 66 Castro-Mondragon, J. A. *et al.* JASPAR 2022: the 9th release of the open-access
736 database of transcription factor binding profiles. *Nucleic Acids Res* **50**, D165-D173,
737 doi:10.1093/nar/gkab1113 (2022).
- 738 67 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
739 seq data using regularized negative binomial regression. *Genome Biol* **20**, 296,
740 doi:10.1186/s13059-019-1874-1 (2019).
- 741 68 Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the
742 chick embryo. *J Morphol* **88**, 49-92 (1951).
- 743

744 **Acknowledgements**

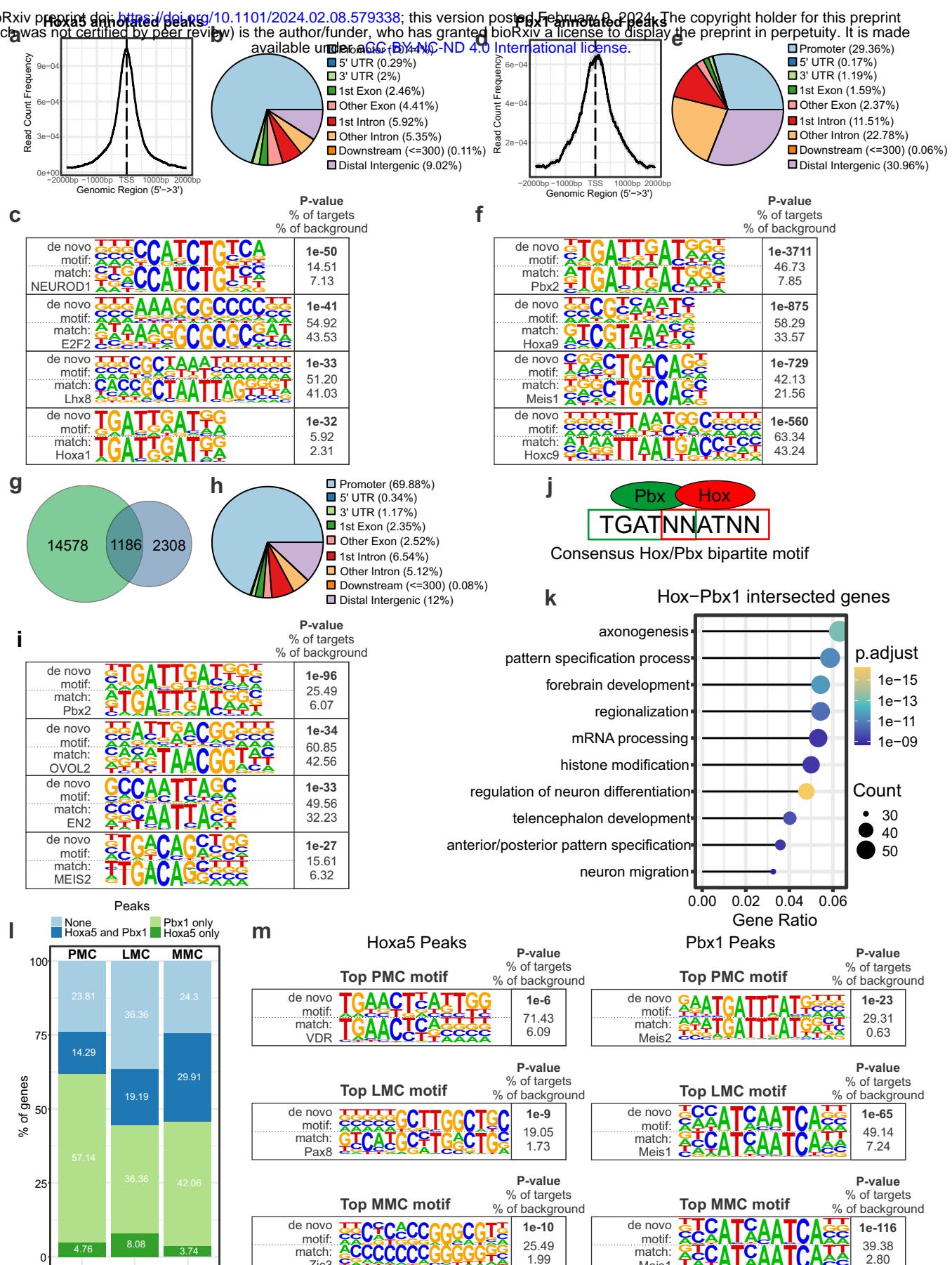
745 We thank Heather Broihier, Evan Deneris, Britton Sauerbrei, Ashleigh Schaffer and
746 Helen Miranda for discussions and comments on the manuscript. We thank Clay Spencer and
747 Evan Deneris for assistance and helpful discussions on bioinformatics analysis, Ayana Sawai,
748 Jeremy Dasen and Lynn Landmesser for in ovo-electroporation protocols, Jeremy Dasen for
749 Hox5, FoxP1 and Lhx3 antibodies and Ganapati Mahabaleshwar for the Klf6 antibody. We also
750 thank the Cytometry and Imaging core at Case Comprehensive Cancer Center (P30CA043703)
751 for assistance with FACS and Active Motif for assistance performing ChIP-sequencing. This
752 work was funded by NIH R01NS114510 to PP, F31NS120699 and T32GM008056 to RKC. PP
753 is the Weidenthal Family Designated Professor in Career Development.

754 **Author contributions**


755 RKC and PP conceived and designed the study, RKC, RLB, ML and PP performed
756 experiments and analyzed data, LJ provided *Hoxa5 floxed* mice, RKC, RLB and PP wrote the
757 paper with input from all authors.

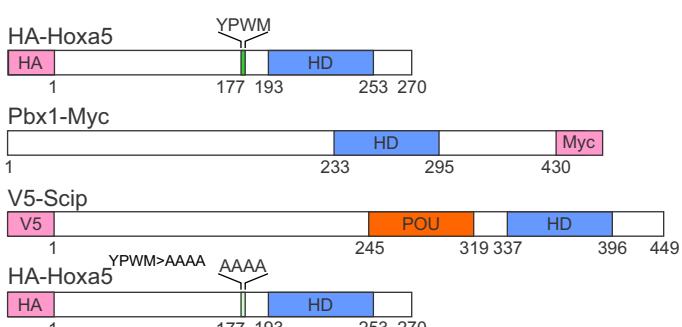
758

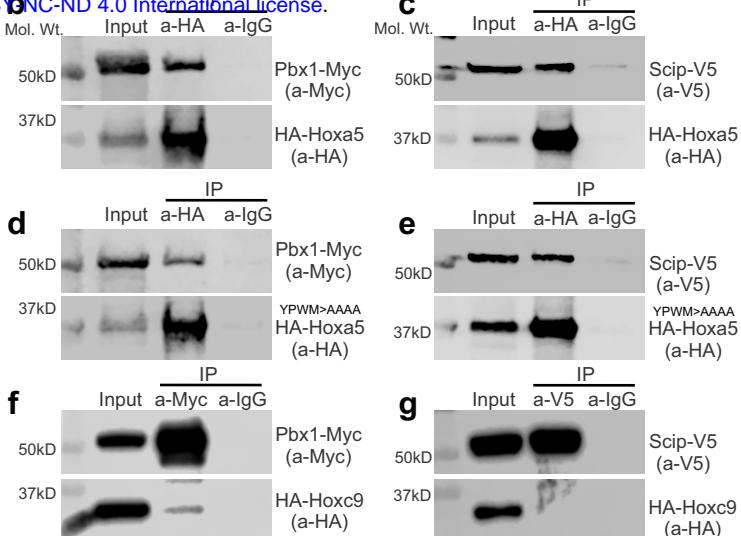
759 **Competing interests**


760 The authors declare no competing interests.

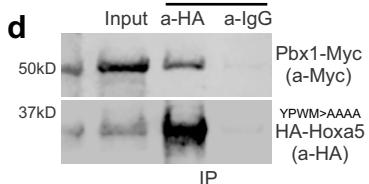
761

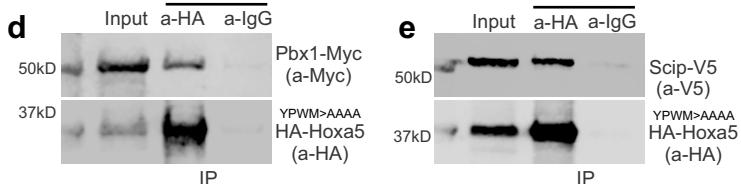
Figure 1. Hoxa5 contributes to chromatin accessibility in cervical motor neuron (MN) subtypes.

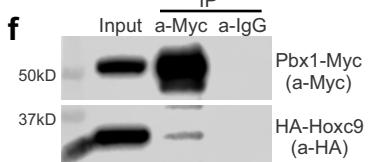

a) MN subtypes at cervical levels of the spinal cord. Phrenic Motor Column (PMC) neurons innervate the diaphragm, Lateral Motor Column (LMC) neurons project to limb muscles, and Medial Motor Column (MMC) neurons innervate axial muscles. **b)** ChAT::GFP reporter mice label MNs in green, as seen by co-localization with the MN-specific transcription factor (TF) Isl1/2 (red). We used fluorescence activated cell sorting (FACS) to isolate GFP+ MNs from spinal cervical levels C2-C6 for Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analyses. Scale bar= 50 μ m. **c)** Distribution of ATAC-seq peak location relative to the nearest transcription start site (TSS). **d)** HOMER output of top motifs enriched in ATAC-seq peaks. Both the de novo motif (top) and the best matched known TF motif (bottom) are shown, along with p-value and prevalence. **e)** Top HOMER motif identified for motor column-specific genes after either intersection with scRNA-seq data (LMC and MMC) or examination of known column-specific genes (PMC). De novo motifs match known Hox motifs for all columns. **f)** Hox5 paralog expression in cervical motor columns. Both PMC (Scip+) and LMC (FoxP1+) neurons show high expression levels of Hoxa5 and Hoxc5. MMC (Lhx3+) neurons express low levels of both Hoxa5 and Hoxc5, while Hoxb5 is not expressed in MNs (Fig. S1c). Scale bar= 100 μ m. **g)** Volcano plot showing differential chromatin accessibility between control and Hoxa5^{MNA} MNs, determined by DESeq2, with fold change cutoff of 2-fold and significance cutoff of FDR < 0.01. 3337 peaks were significantly gained, while 2721 peaks were significantly lost in Hoxa5^{MNA} MNs. **h)** Distribution of differential ATAC-seq peaks in Hoxa5^{MNA} MNs. Volcano plot showing the TOBIAS differential binding score on the x-axis and -log10(p value) on the y-axis; each dot represents one TF. **i)** Comparison of TF activities between control and Hoxa5^{MNA} MNs. Volcano plot showing the TOBIAS differential binding score on the x-axis and -log10(p value) on the y-axis; each dot represents one TF.

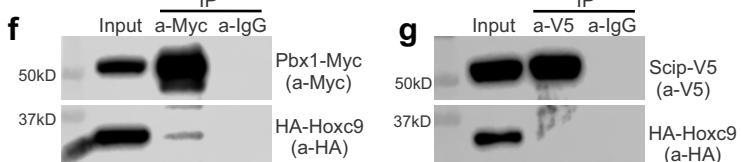

Figure 2. Direct regulation of MN-specific genes by Hoxa5 and Pbx1.

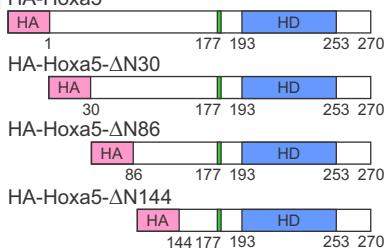
a, d) Average distribution around the TSS of Hoxa5 (**a**) and Pbx1 (**d**) target genes. **b, e)** Pie chart illustrating peak location relative to the nearest TSS for Hoxa5 (**b**) and Pbx1 (**e**) enriched peaks. The distribution of Hoxa5-bound peaks is enriched in promoters compared to Pbx1. **c, f)** HOMER output of top motifs enriched in Hoxa5 (**c**) and Pbx1 (**f**)-bound peaks. **g)** Overlap of Hoxa5 and Pbx1 enriched peaks. **h)** Pie chart illustrating peak location relative to the nearest TSS for Hoxa5 and Pbx1 enriched peaks. **i)** HOMER output of top motifs enriched in Hoxa5- and Pbx1-bound peaks. **j)** Consensus Hox/Pbx bipartite motif. **k)** Gene ontology (GO) enrichment analysis of biological pathways of genes with Hoxa5-Pbx1 intersected ChIP-seq peaks. Top 10 significant GO enrichment pathways shown based on the gene counts in each category. **l)** Analysis of column-specific genes for Hoxa5 and Pbx1 binding. **m)** Top HOMER motif identified for Hoxa5 and Pbx1 enriched peaks in motor column-specific genes.

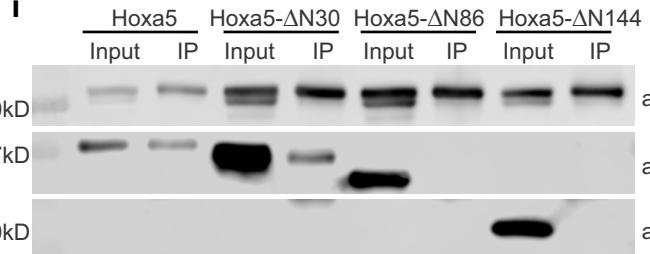

a

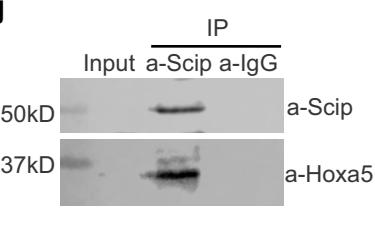

c

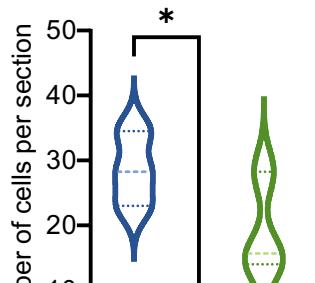
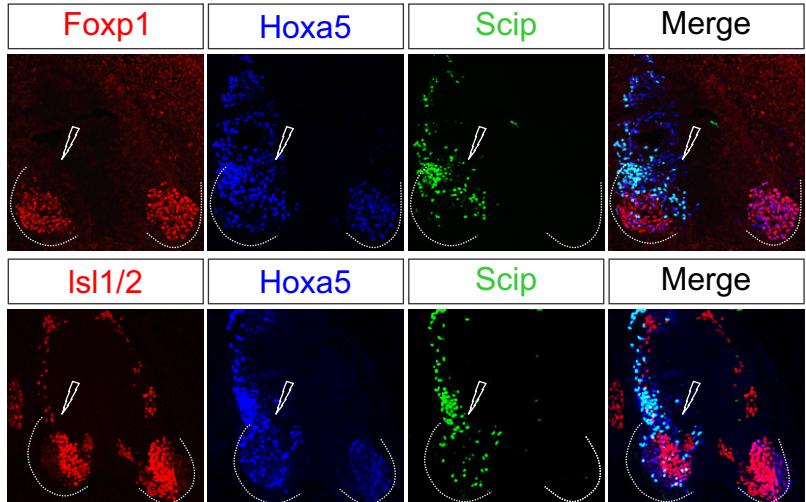

d

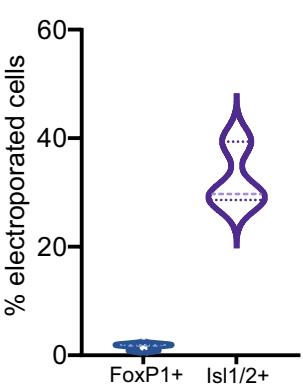

e


f

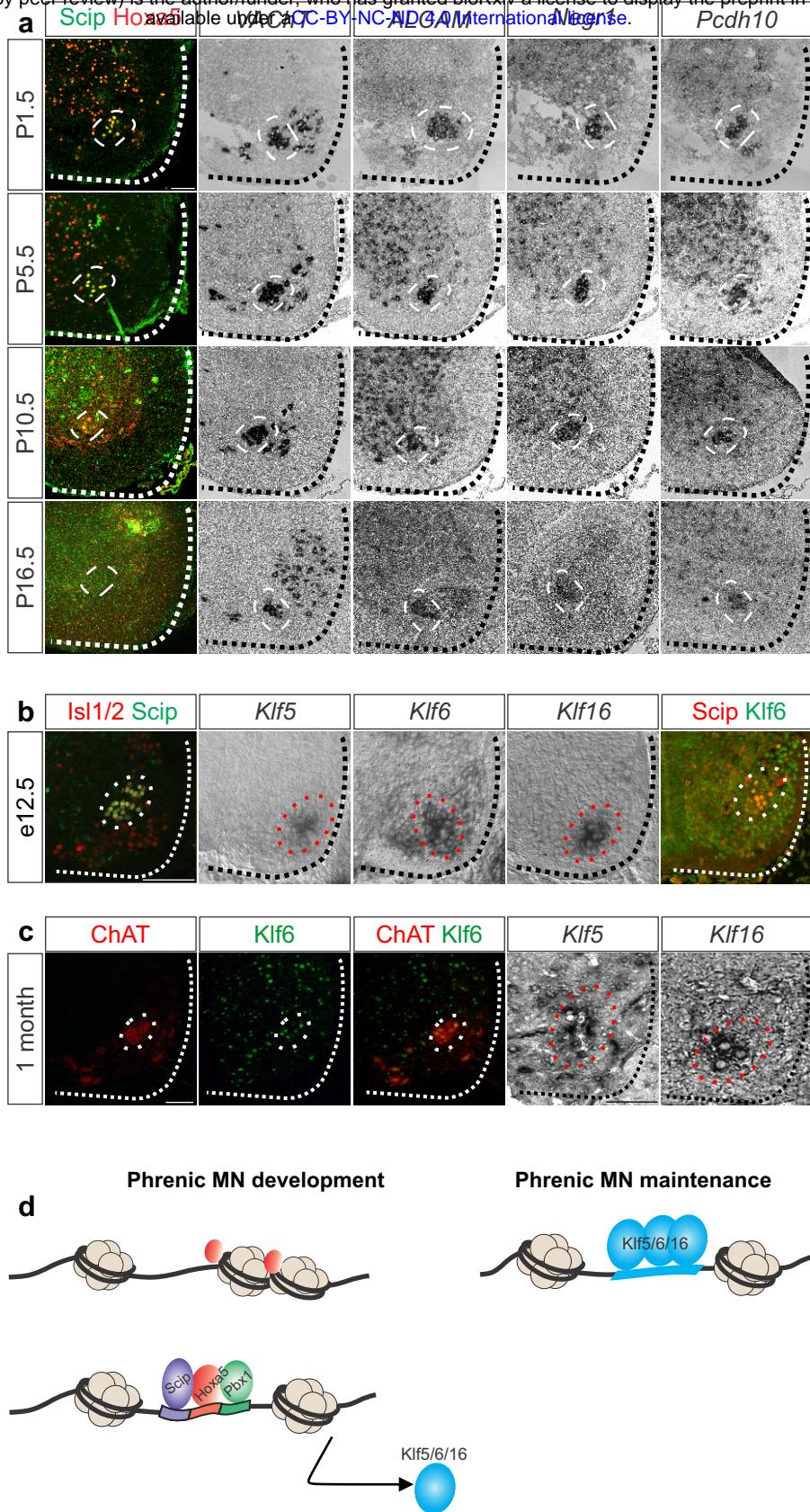

g


h

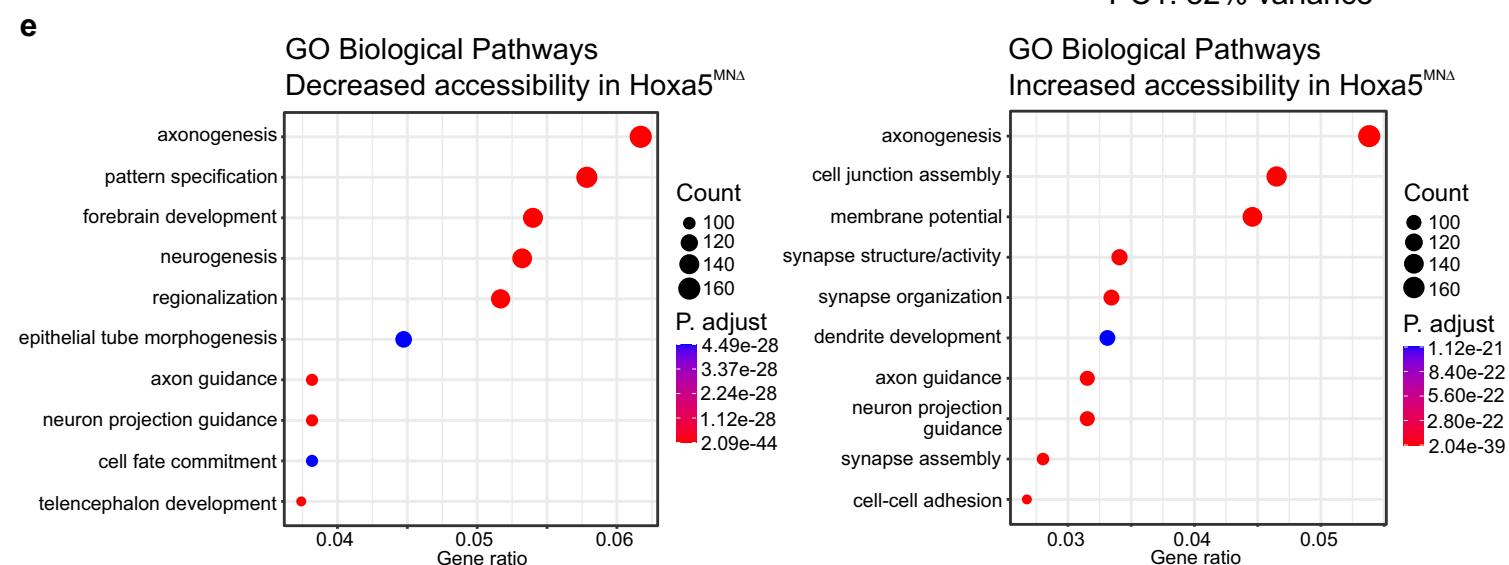
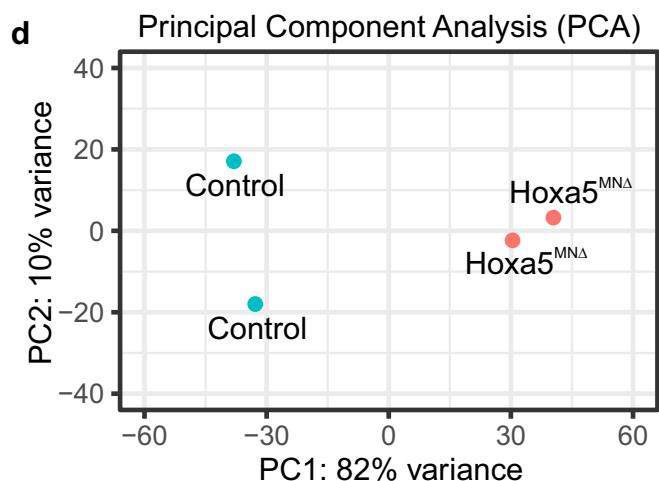
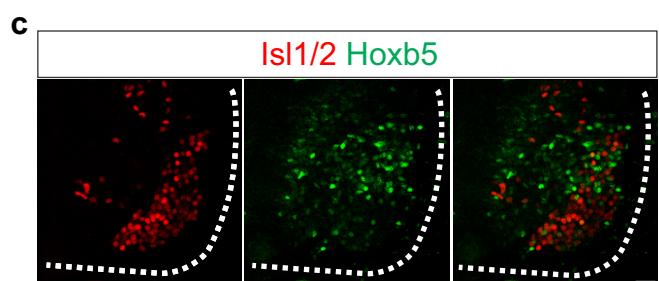
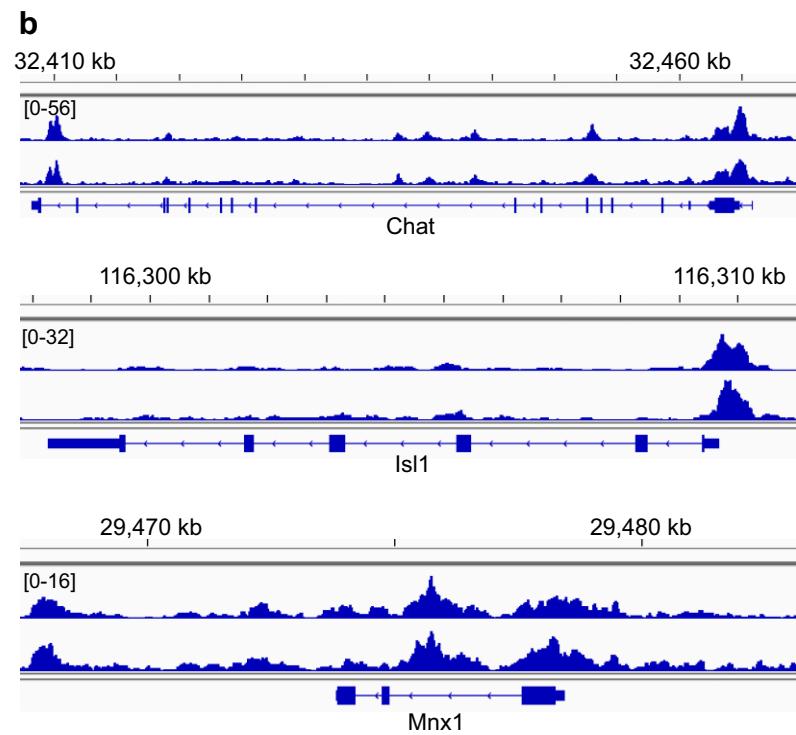
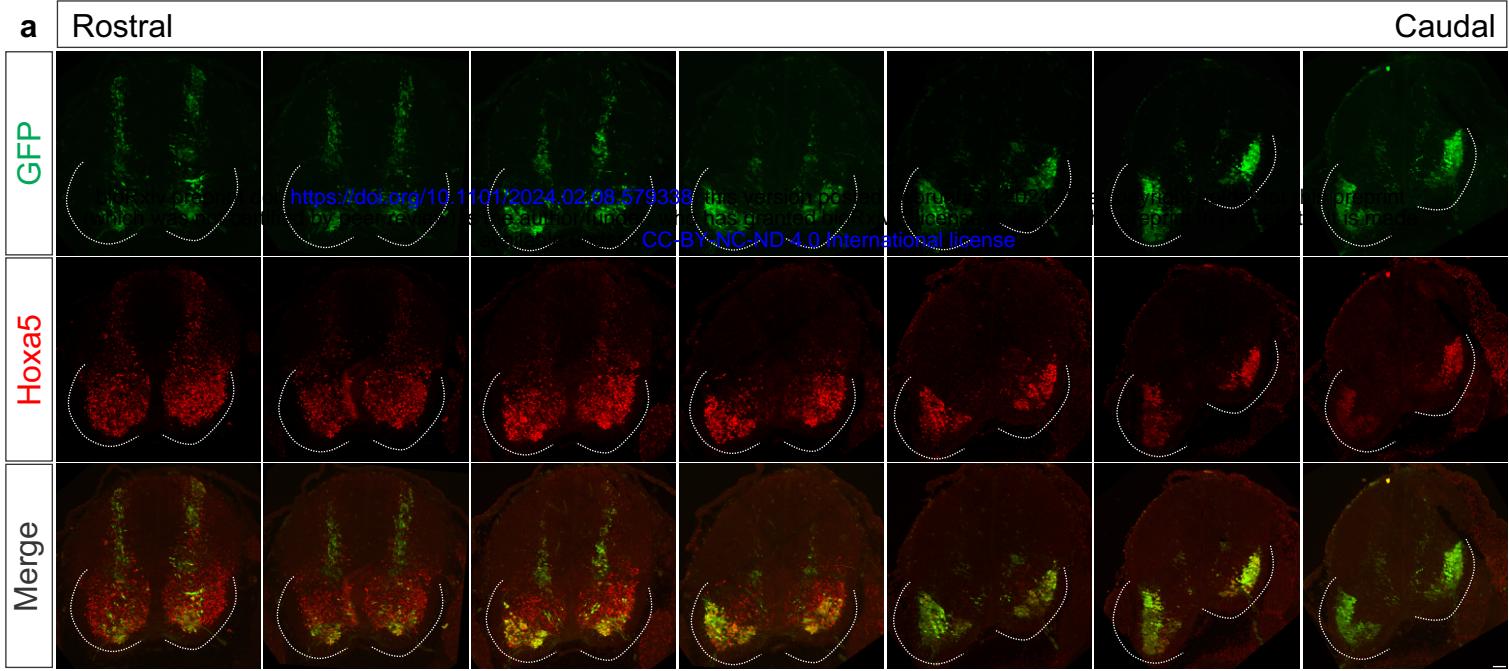


i


j

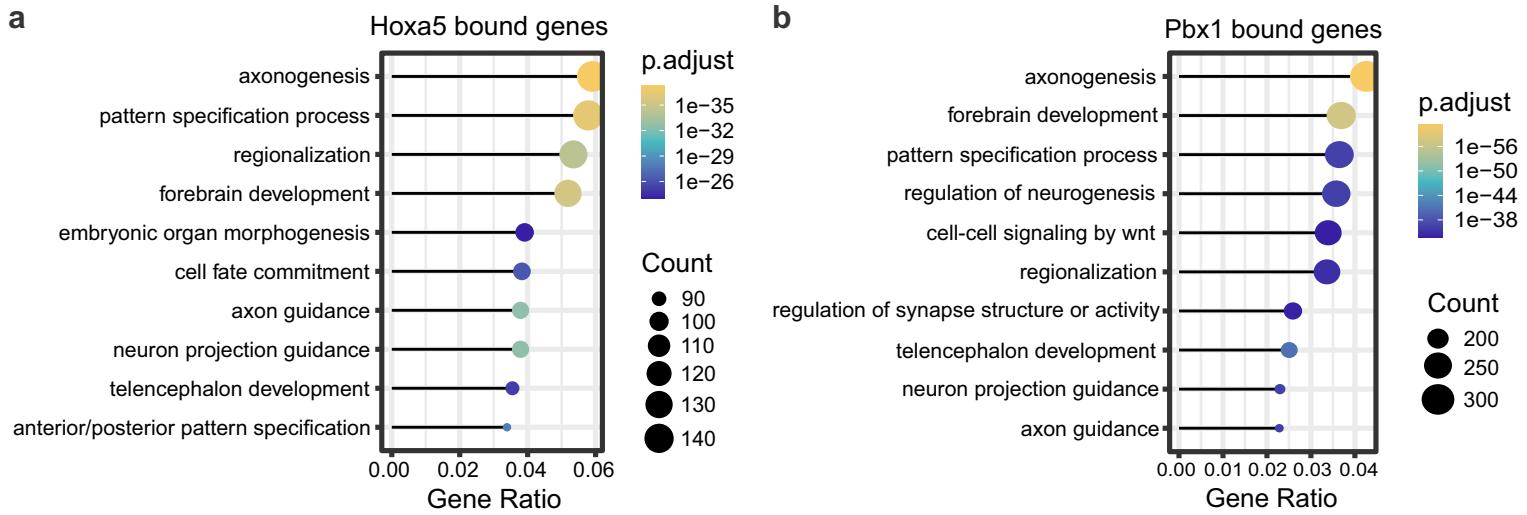
k



■ Hoxa5+FoxP1 (non-electroporated)
■ Hoxa5+Scip+FoxP1 (electroporated)
■ Hoxa5+Scip (electroporated)

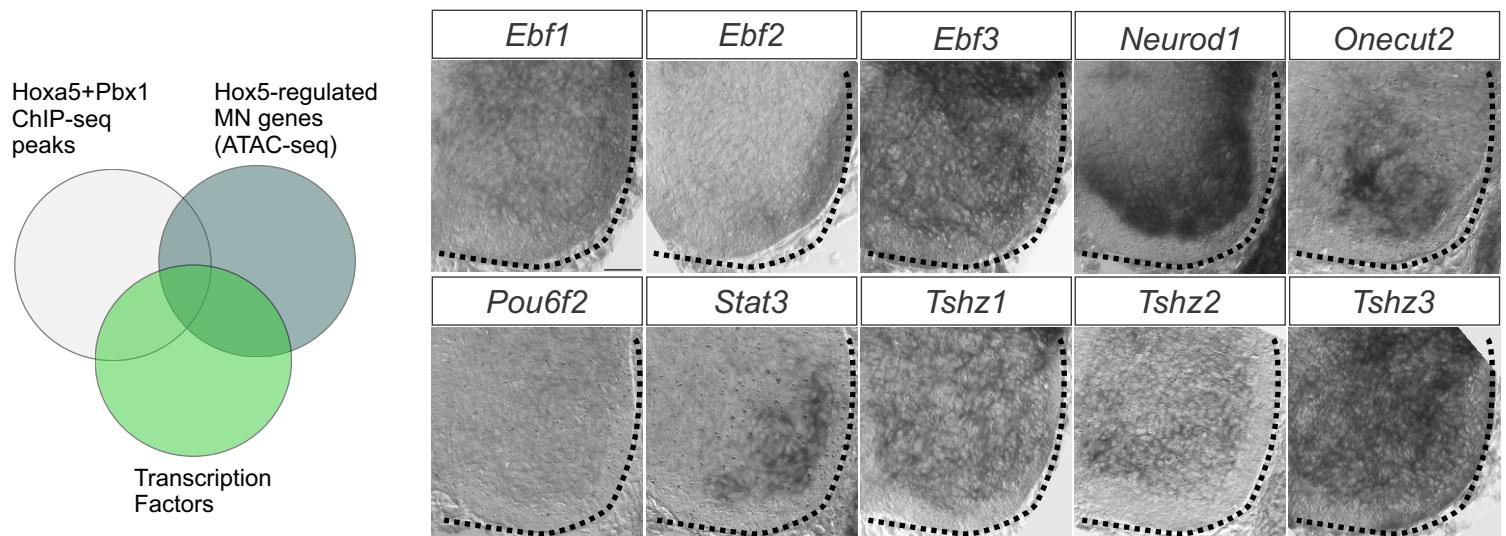





Figure 3. Paralog-specific Hoxa5/Scip interaction promotes PMC identity.

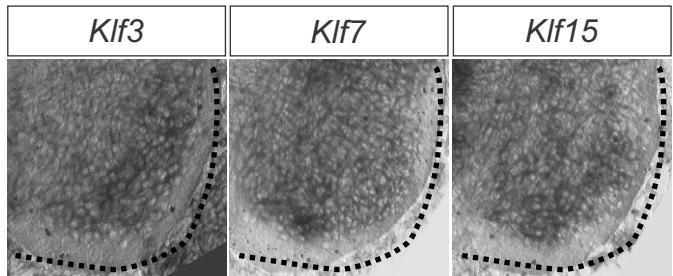
a) Overview of tagged constructs used for co-immunoprecipitation (co-IP) in transiently transfected 293T cells. **b-c)** HA-Hoxa5 co-immunoprecipitates with Pbx1-Myc and V5-Scip. **d-e)** HA-Hoxa5^{YPWM>AAAA} co-immunoprecipitates with V5-Scip (e) while co-immunoprecipitation with Pbx1-Myc (d) is reduced. **f-g)** HA-Hoxc9 does not interact with V5-Scip (g) and weakly interacts with Pbx1-Myc (f). **h)** Overview of Hoxa5 N-terminal serial truncation constructs. **i)** Transiently transfected 293T cells with HA-Hoxa5 N-terminal serial deletion constructs and Scip-V5 were subjected to co-immunoprecipitation assay using antibodies against V5. Hoxa5 and Δ N30 Hoxa5 co-immunoprecipitate with V5-Scip, while Hoxa5- Δ N86 and Hoxa5- Δ N144 do not. **j)** Scip and Hoxa5 co-immunoprecipitation from whole cell lysate of e12.5 embryonic spinal cord tissue. **k)** Co-electroporation of Hoxa5 and Scip in chick embryos leads to a reduction in the number of FoxP1 positive cells in the cervical spinal cord, but does not affect overall MN identity, as seen by Isl1/2 expression (n=3), p= 0.0256. Scale bar= 50 μ m.


Figure 4. Maintenance of phrenic MN identity at postnatal stages.

a) Expression of Hoxa5, Scip, *VACHT*, *ALCAM*, *Negr1* and *Pcdh10* in postnatal phrenic MNs. MNs are shown inside the dashed white line. Hoxa5 and Scip are downregulated after P10.5, while *in situ* hybridization shows sustained expression of phrenic-specific genes *Alcam*, *Negr1*, and *Pcdh10*. **b-c)** Expression of *Klf5*, *Klf6* and *Klf16* in phrenic MNs at e12.5 (**b**) and 1 month (**c**). **d)** Proposed model of phrenic MN specification and maintenance. Hoxa5 can bind to inaccessible chromatin and forms a complex with Pbx1 and Scip to induce PMC-specific genes, including Klf factors, which may act to maintain phrenic MN properties in adulthood. Scale bar= 100 μ m.

Figure S1. Hoxa5 contributes to chromatin accessibility in cervical MN subtypes.


a) Rostral to caudal distribution of e12.5 *ChAT*::GFP+ MNs (green) at spinal cervical levels, within the boundaries of Hoxa5 expression (red), sorted for ATAC-seq analysis. **b)** Genome browser views of ATAC-seq signals from two *ChAT*::GFP+ control samples at three MN-specific genes: *ChAT*, *Isl1* and *Mnx1*. **c)** *Hoxb5* (green) is not expressed in MNs (*Isl1/2* in red) at cervical spinal cord levels. **d)** Principal component analysis (PCA) for control and Hoxa5-deleted MNs reveals changes in the accessible chromatin landscape of cervical MNs after Hoxa5 deletion. **e)** Gene ontology (GO) enrichment analysis of biological pathways of genes with changes in chromatin accessibility in $\text{Hoxa5}^{\text{MNA}}$ MNs. Top 10 significant GO enrichment pathways shown based on the gene counts in each category. Scale bar= 50 μ m.


Figure S2. Direct regulation of MN-specific genes by a Hoxa5/Pbx1 complex.

a-b) Gene ontology (GO) enrichment analysis of biological pathways of genes with Hoxa5 (a) and Pbx1 (b) ChIP-seq peaks. Top 10 significant GO enrichment pathways shown based on the gene counts in each category.

a

b

Figure S3. A transcription factor code for phrenic MN maintenance.

a) In order to identify transcription factors acting downstream of Hoxa5 and Scip in phrenic MNs, we intersected Hoxa5 and Pbx1-enriched ChIP-seq peaks, differential ATAC-seq peaks between control and *Hoxa5^{MNA}* MNs and a transcription factor dataset. Several TFs were identified but did not show phrenic-specific expression by in situ hybridization. **b)** *Klf3*, *klf7* and *klf15* were not enriched in phrenic MNs at e12.5. Scale bar= 50 μ m.

LMC-enriched genes

MMC-enriched genes

PMC-enriched genes

Snhg6	Cadm2	Cplx1	Kcnb2	Dhrs1	Pcdh7	Cdh9
Epha4	Pcp4	Kcnd2	Khdrbs2	Kctd12	Nwd2	Cdh10
Cdh7	Epb41l3	Tspan12	Igfbp5	Lifr	Apbb2	Pcdh11x
Lypd1	Rit2	Ptn	Ecel1	Laptm4b	Slc10a4	Pcdh10
Atp2b4	Syt4	Tmem176b	Adora1	Nell2	Adgrl3	Ptn
Brinp3	Onecut2	Npy	Lhx4	Copz1	Epha5	Hoxa5
Rgs4	Grp	Skap2	Mgst3	Uts2b	Cplx1	Hoxa1
Tagln2	Tszh1	Snca	Rxrg	Lsamp	Sdk1	Alcam
Akap12	Scd2	Reep1	Atp2b1	Epha3	Rasl11a	Negr1
Mrpl54	Sorcs1	FoxP1	Lin7a	Ncam2	Snx10	Plxnc1
Socs2	C1ql3	Ret	Rab3ip	Ezr	Hoxa9	Vwc2l
Nudt4	Lrp1b	D930028M14Rik	Grip1	Clic1	Creb5	Vwc2
Csrp2	Stk39	Fxyd7	Bcl11a	Ppp2r2b	Cyp26b1	Edil3
Nefh	Itga6	Ldha	Kcnip1	Sema6a	Rassf4	Mmd2
Vstm2a	Ppp1r1c	Nr2f2	Ebf1	Vim	Cd9	Synpr
Pank3	Map1a	Rgs10	Rasgef1c	Nacc2	Ntf3	Pappa
Lhx1	Gatm	Inpp5f	Sar1b	Lhx3	Nell1	Hs6st2
Lhx1os	Ctxn2	Ifitm2	Sez6	Neurod1	Slco3a1	Klf5
Nme2	Tpd52	Cend1	Bcas3	Lrrc4c	Cbln1	Zbtb7c
Etv4	Anxa5	Zdhhc2	Ngfr	Mpped2	Crnde	Lsamp
Rac3	Pcdh10	Mt3	Pitpnc1	Scg5	Irx5	Ptprt
Hpcal1	Trim2	Tppp3	Sox9	Myt1	Maf	
Dtnbp1	Crabp2	Nrp1	Churc1	Mecom	Gria4	
Enc1	S100a11	Ntm	Cplx2	Sertm1	Aplp2	
Cartpt	Camk2d	Anxa2	Ube2ql1	Fbxw7	Aw551984	
Pnoc	Negr1	Aldh1a2	Med10	Rhoc	Cadm1	
Lgals1	Dab1	Polr2m	Irx1	Lmo4	Megf11	
Prph	Hpca	Clstn2	Gm17750	Ddah1	Foxb1	
Hoxc5	Ywhah	Tenm1	Pik3r1	Epha7	Prss35	
Hoxc4	Atp8a1	Arhgap36	Rgs7bp	Brinp1	Gria3	
Smug1	Gabrg1	Pcdh19	Il6st	Ptprd	Hprt	
Abat			Isl1	Camk2n1	Fgf13	
			Rarb	Casz1	Sema3c	
			Slc18a3			

Table S1. Column-specific MN genes with ATAC-seq peaks.

Intersection of scRNA-seq data with ATAC-seq data to identify accessible chromatin regions in LMC- and MMC-expressed genes. For PMC peaks we used a list of previously identified PMC-specific genes.