

1 **Development of an improved blood-stage malaria vaccine targeting the essential RH5-
2 CyRPA-RIPR invasion complex**

3
4 Barnabas G. Williams^{1,2,3,#}, Lloyd D. W. King^{1,2,3,#}, David Pulido³, Doris Quinkert^{1,2,3}, Amelia M. Lias^{1,2,3},
5 Sarah E. Silk^{1,2,3}, Robert J. Ragotte^{1,3}, Hannah Davies^{1,2,3}, Jordan R. Barrett^{1,2,3}, Kirsty McHugh^{1,2,3},
6 Cassandra A. Rigby^{1,2}, Daniel G. W. Alanine^{1,3}, Lea Barfod³, Michael W. Shea³, Li An Cowley^{1,3},
7 Rebecca A. Dabbs³, David J. Pattinson³, Alexander D. Douglas³, Oliver R. Lyth^{1,3}, Joseph J. Illingworth³,
8 Jing Jin³, Cecilia Carnrot⁴, Vinayaka Kotraiah⁵, Jayne M. Christen⁵, Amy R. Noe^{5,6}, Randall S. MacGill⁷,
9 C. Richter King⁷, Ashley J. Birkett⁷, Lorraine A. Soisson⁸, Katherine Skinner^{1,2,3}, Kazutoyo Miura⁹,
10 Carole A. Long⁹, Matthew K. Higgins^{1,2}, and Simon J. Draper^{1,2,3,10,*}.

11
12 ¹ Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford,
13 OX1 3QU, UK.

14 ² Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford,
15 Oxford, OX1 3QU, UK.

16 ³ The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ,
17 UK.

18 ⁴ Novavax AB, Kungsgatan 109, SE-753 18 Uppsala, Sweden.

19 ⁵ Leidos Life Sciences, Frederick, MD, USA.

20 ⁶ Current affiliation: Latham BioPharm Group, Elkmere, MD, USA.

21 ⁷ Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA.

22 ⁸ USAID, 1300 Pennsylvania Ave. NW, Washington, DC 20004, USA.

23 ⁹ Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA.

24 ¹⁰ NIHR Oxford Biomedical Research Centre, Oxford, UK.

25 [#] These authors contributed equally to this work.

26 ^{*} Correspondence: simon.draper@bioch.ox.ac.uk

27 This research was funded in part by the UK Medical Research Council (MRC) [Grant numbers:
28 MC_PC_17167 and MR/N013468/1]. For the purpose of Open Access, the author has applied a CC BY
29 public copyright licence to any Author Accepted Manuscript (AAM) version arising from this
30 submission.

31 **ABSTRACT**

32 In recent years, reticulocyte-binding protein homologue 5 (RH5) has emerged as a leading blood-
33 stage *Plasmodium falciparum* malaria vaccine antigen. The most advanced blood-stage vaccine
34 candidate in a Phase 2b clinical trial, RH5.1/Matrix-M™, is based on a full-length soluble protein-
35 with-adjuvant formulation. RH5 interacts with cysteine-rich protective antigen (CyRPA) and RH5-
36 interacting protein (RIPR) to form an essential heterotrimeric “RCR-complex”. Here, we investigated
37 whether a vaccine candidate based on the ternary RCR-complex could substantially improve upon
38 the leading clinical candidate RH5.1/Matrix-M™ in preclinical studies. Using a panel of monoclonal
39 antibodies (mAbs) we confirm that parasite growth-inhibitory epitopes on each antigen are exposed
40 on the surface of the RCR-complex and that mAb pairs binding to different antigens can function
41 additively or synergistically to mediate parasite growth inhibition activity (GIA) *in vitro*. However,
42 immunisation of rats with the RCR-complex consistently fails to outperform RH5.1 alone. We show
43 this is due to immuno-dominance of RIPR coupled with the inferior potency of anti-full length RIPR
44 polyclonal IgG antibodies as compared to the anti-RH5 and anti-CyRPA response. To address this, we
45 identified the growth-inhibitory antibody epitopes of RIPR are clustered within C-terminal EGF-like
46 domains of RIPR. A fusion of these EGF domains to CyRPA, called “R78C”, combined with RH5.1,
47 provided a new vaccination strategy that improves upon the levels of *in vitro* GIA seen with RH5.1
48 alone. Superiority of the combination antigen vaccine candidate was achieved by the induction of a
49 quantitatively higher, but qualitatively similar, polyclonal antibody response that demonstrated
50 additive GIA across the three antigen targets. These preclinical data justified the advancement of the
51 RH5.1+R78C/Matrix-M™ combination vaccine to a Phase 1 clinical trial.

52 INTRODUCTION

53 The deadliest form of human malaria is caused by the apicomplexan parasite *Plasmodium*
54 *falciparum*; transmitted by the bite of the female *Anopheles* mosquito. Malaria deaths declined
55 steadily for more than a decade, but recently increased to 608,000 in 2022 with 55,000 additional
56 deaths linked to the COVID-19 pandemic¹. Therefore, the development of safe, effective, and
57 durable malaria vaccines remains a global public health priority². Two malaria vaccines, RTS,S/AS01
58 and R21/Matrix-M™, have now received World Health Organisation (WHO) prequalification for use
59 in young children³. Both are similar in design, targeting the circumsporozoite protein (CSP) on the
60 pre-erythrocytic sporozoite-stage of the parasite and induce antibodies that prevent infection of the
61 liver. However, when a single sporozoite slips through this protective net of immunity then
62 productive infection is initiated and, following liver-stage development, merozoites emerge into the
63 blood where they undergo exponential growth leading to clinical disease. Indeed, development of a
64 vaccine that can effectively block merozoite invasion into host red blood cells (RBC) may provide a
65 second layer of protection against clinical disease, death, and onward transmission when combined
66 with the existing vaccines that target CSP in a multi-stage approach², achieving higher and more
67 durable efficacy than each vaccine alone.

68
69 Merozoites invade RBCs through a complex interplay of host-parasite receptor-ligand interactions.
70 Redundancy of these invasion pathways and substantial strain-to-strain variation of other blood-
71 stage antigen targets^{4,5} hindered blood-stage vaccine development efforts for many years. The
72 discovery that *P. falciparum* reticulocyte-binding protein homologue 5 (RH5) is highly conserved,
73 forms an essential interaction with basigin (BSG/CD147) on the human erythrocyte⁶⁻⁹, and is
74 susceptible to vaccine-induced broadly neutralising antibodies^{10,11} has led to a renewed vigour in this
75 field of research. Clinical trials of the first vaccine candidates targeting the full-length RH5 molecule
76 have since demonstrated the induction of cross-strain growth-inhibitory antibodies¹², and
77 significantly reduced the growth rate of *P. falciparum* in the blood of healthy adults following
78 vaccination and controlled human malaria infection¹³. Moreover, highly promising RH5 vaccine
79 candidate immunogenicity in African infants, a critical target population for *P. falciparum* malaria
80 vaccines, has since been reported¹⁴. Here, levels of *in vitro* growth inhibition activity (GIA) achieved
81 using purified total IgG against *P. falciparum* blood-stage parasites greatly exceeded those observed
82 in adult vaccinees from non-endemic countries; moreover, these levels of GIA in vaccinated infants
83 were now reaching levels previously defined as protective¹⁵, and mechanistically correlated¹⁶, in
84 non-human primates. The current leading vaccine candidate, soluble recombinant protein RH5.1¹⁷
85 formulated with Matrix-M™ adjuvant, has since entered Phase 2b field efficacy testing in West
86 Africa (ClinicalTrials.gov NCT04318002 and NCT05790889).

87
88 RH5 is delivered to the apical surface of *P. falciparum* merozoites along with cysteine-rich protective
89 antigen (CyRPA)¹⁸ and RH5-interacting protein (RIPR)¹⁹, with which it forms an essential
90 heterotrimeric complex (RCR-complex)^{8,20}. Like RH5, the components of the RCR-complex appear to
91 poor targets of naturally acquired malaria immunity and thus highly conserved²⁰. Structurally RH5
92 forms a diamond-like architecture composed of two three-helical bundles, with BSG binding across
93 the tip of RH5⁶. CyRPA forms a 6-bladed β-propeller (6BBP) structure^{21,22} that bridges the base of the
94 RH5 helical diamond and the N-terminal core domain of RIPR^{23,24}. Most recently, two further protein
95 components have been shown to bind the RCR, *Plasmodium* thrombospondin-related apical
96 merozoite protein (PTRAMP) and small cysteine-rich secreted protein (CSS). These form a disulfide-

97 linked heterodimer which bridges from the merozoite surface to the C-terminal tail of RIPR thereby
98 forming a pentameric complex (PCRCR)^{24,25}. The conserved and essential nature of these targets has
99 now raised the prospect of defining new and improved blood-stage vaccine candidates that target
100 this wider invasion complex as opposed to RH5 alone.

101

102 Encouragingly, as for RH5, studies in various animal models have consistently shown that vaccination
103 with the full-length CyRPA^{18,26-33} and RIPR^{19,30,34} antigens can induce functional growth-inhibitory
104 polyclonal antibodies. This work has been extended through study of monoclonal antibodies (mAbs)
105 that have identified antibody-susceptible epitope regions of these molecules including the top of the
106 RH5 helical diamond close to or overlapping with the BSG-binding site^{6,35,36}, as well as blades 1 and 2
107 of the CyRPA 6BBP^{22,37}. In contrast, detailed information regarding the location of potent epitopes
108 for RIPR is lacking. In addition, vaccine-induced polyclonal antibodies and/or mAbs against RH5,
109 CyRPA and/or RIPR have been reported to show additive or synergistic functional growth inhibition
110 against *P. falciparum* using *in vitro* assays or *in vivo* using humanised mouse challenge
111 models^{18,21,27,28,30,31,36-38}; however, this has not been systematically analysed. Nevertheless, these
112 data suggest a multi-antigen vaccine candidate strategy could achieve significantly higher efficacy
113 and/or durability via induction of a more potent growth-inhibitory antibody response. Here, we
114 therefore sought to investigate whether a vaccine candidate based on the ternary RCR-complex
115 could improve upon the leading clinical candidate vaccine RH5.1/Matrix-M™.

116 **RESULTS**

117 **Reconstitution of the RCR-complex *in vitro*.**

118 To study the function of the RCR-complex, we produced all three full-length antigens as soluble
119 recombinant proteins, each with a C-terminal four amino acid C-tag for purification³⁹. RH5 and RIPR
120 were expressed using a *Drosophila* S2 cell platform⁴⁰, while CyRPA was expressed from mammalian
121 HEK293 cells⁴¹. Following purification of each protein, we sought to reconstitute *in vitro* all possible
122 binary complexes as well as the ternary complex by incubating these proteins in equimolar ratios.
123 We were only able to reconstitute the binary combinations of RH5+CyRPA and RIPR+CyRPA, as well
124 as the ternary RCR-complex, as analysed and purified by size exclusion chromatography (SEC). SEC
125 peaks, corresponding to intact complexes, dissociated into individual proteins under non-reducing
126 SDS-PAGE conditions (**Figure 1A-C**). We were unable to reconstitute the binary complex between
127 RH5 and RIPR (data not shown), in line with CyRPA acting as the central adaptor molecule within the
128 ternary RCR-complex^{23,24,42}. Having reconstituted the ternary RCR-complex we next sought to
129 characterise its interactions with a panel of mAbs against all three target antigens (**Table S1**).
130

131 **All *in vitro* growth inhibitory mAbs bind the ternary RCR-complex.**

132 We initially analysed a panel of twenty RH5-specific mAbs which, as we have previously shown, can
133 be used to identify seven distinct epitope patches around the RH5 molecule^{6,36} (**Table S1**). The
134 brown, blue, and red epitope patches are clustered around the diamond tip of RH5, overlapping with
135 or very close to the basigin binding site^{35,36}. The orange, yellow, and purple epitope patches are
136 located around the bottom of the RH5 diamond, overlapping with or very close to the RH5-CyRPA
137 interaction site^{23,24,36,37}. The final green epitope patch, which includes non-growth inhibitory
138 antibodies that can ‘potentiate’ or synergise with other growth inhibitory antibodies, is found within
139 a central region of the RH5 diamond structure, close to the site where the disordered N-terminal
140 region joins the structured region of the RH5 molecule³⁶.
141

142 We previously reported the ability of each anti-RH5 mAb to mediate *in vitro* GIA against 3D7 clone *P.*
143 *falciparum* parasites³⁶. Screening at high concentration confirmed that the mAbs binding epitope
144 patches close to or overlapping with the basigin binding site demonstrate strong GIA. However, no
145 GIA was detected for the mAbs that bound the other epitope patches (**Figure S1A**). To extend this
146 work, we now explored the relationship between epitope accessibility and the GIA exhibited by
147 antibodies that bind to all three antigens within the RCR-complex. Here we expanded our panel of
148 mAbs to include a set of anti-CyRPA mAbs^{37,43}, and a set of novel mouse derived anti-RIPR mAbs that
149 displayed a spectrum of GIA (**Table S1, Figure S1B,C**).
150

151 We first incubated each mAb with the pre-formed RCR-complex before analysis by SEC. These data
152 allowed us to identify and define two mAb “types”: Type I antibodies were those that could form a
153 stable quaternary complex when incubated with the pre-formed RCR-complex, whereas Type II
154 antibodies were unable to bind the pre-formed RCR-complex (**Figure 1D-E, S1D-H**). When analysed
155 by SEC, the quaternary complex formed by Type I mAbs and the RCR-complex was clearly seen as a
156 shift to a larger elution volume. However, the SEC trace of a Type II mAb and the RCR-complex
157 showed two distinct peaks, the first for the RCR-complex alone and a second for the unbound mAb.
158 We also confirmed these results by pull-down immunoprecipitation (**Figure 1F-G, S1D-H**). Here,
159 mAbs were incubated with the preformed RCR-complex; when a Type I mAb was used, both the mAb
160 and RCR-complex could be recovered using Protein G beads. However, when a Type II mAb was

161 used, only the mAb was recovered using Protein G beads. This analysis thus identified that all GIA-
162 positive mAbs, regardless of target antigen, are Type I, *i.e.*, their epitope is exposed in the RCR-
163 complex and they can bind to form a quaternary complex. In contrast, GIA-negative mAbs can be
164 either Type I or Type II (**Figure 1H, Table S1**). This conclusion is also supported by structural data that
165 are available for a subset of the anti-RH5^{6,36} and anti-CyRPA^{24,37} mAbs. Epitopes for mAbs with
166 known anti-parasitic growth-inhibitory properties are exposed on the formed RCR-complex, whilst
167 the epitopes of mAbs that do not inhibit parasite growth are often masked (**Figure 2**). No structural
168 data are currently available for anti-RIPR mAb complexes, however, it was notable this panel of
169 mAbs displayed the highest proportion (60%) of GIA-negative Type I antibodies, suggesting many
170 exposed epitopes on RIPR within the RCR-complex do not induce antibodies that can inhibit parasite
171 growth.

172

173 **Pairs of anti-RH5, -CyRPA, and -RIPR antibodies show inter-antigen synergistic GIA.**

174 Having assessed individual mAbs for GIA and having shown these epitopes are exposed within the
175 formed RCR-complex, we next sought to define the efficacy of different antibody combinations. We
176 have previously reported that specific combinations of anti-RH5³⁶ or anti-CyRPA³⁷ mAb clones show
177 “intra-antigen” synergistic GIA. Here, we undertook a comprehensive GIA analysis to evaluate “inter-
178 antigen” antibody interactions across the RCR-complex. We selected four anti-RH5 mAbs (R5.004,
179 R5.008, R5.011 and R5.016), three anti-CyRPA mAbs (Cy.003, Cy.007 and Cy.009), and one anti-RIPR
180 mAb (RP.012), as representative clones from the non-overlapping Type I epitope sites on each
181 antigen and tested these in pair-wise combinations for synergistic GIA using the Bliss definition of
182 additivity^{30,44}. Weak synergistic interactions were observed for the majority of mAb combinations
183 (**Figure 3A, S2**), however clear ‘hotspots’ of synergy were identified with combinations including the
184 anti-RH5 mAbs R5.008 and R5.011 (**Figure 3B**). We have previously reported the ability of the GIA-
185 negative R5.011 mAb to synergise with or “potentiate” anti-RH5 growth inhibitory antibodies³⁶.
186 Here, we identified that the GIA-positive clone, R5.008, could also synergise. When this mAb was
187 held at a constant concentration, the anti-RIPR mAb and all the anti-CyRPA mAbs tested in
188 combination showed synergy with a range of 2- to 5-fold improvement in GIA over the predicted
189 additivity under the test conditions. This was particularly pronounced with the weakly GIA-positive
190 mAb Cy.003 (**Figure 3B-C**). These data indicate that at least two anti-RH5 epitope specificities have
191 the potential to synergise with anti-CyRPA and anti-RIPR antibody responses, whilst the others
192 combine at least additively. Critically, no RH5 / CyRPA / RIPR mAb combination was shown to be
193 antagonistic, further supporting the rational for RCR-complex-based vaccine strategies.

194

195 **Immunisation with the RCR-complex leads to immune competition and a suboptimal 196 response.**

197 The above data suggested all growth-inhibitory epitopes are exposed on the formed RCR-complex,
198 and that antibody responses across the three antigens could act additively, if not synergistically. We
199 therefore hypothesised that *in vivo* immunisation with the formed RCR-complex could induce a
200 polyclonal antibody response that improves upon the use of single antigen vaccines. To investigate
201 this, we immunised cohorts of Wistar rats three times with full-length RH5, CyRPA, RIPR, pairwise
202 combinations, a mix of all three antigens, or the preformed RCR-complex; all vaccines were
203 formulated in Matrix-M™ adjuvant. Three approaches were used for the triple antigen “RCR”
204 immunisations: for two groups, the antigens were admixed in adjuvant at the point of
205 administration, and protein doses were either matched to the single antigen vaccines (“R+C+Ri”

206 group, *i.e.*, 2 µg RH5 + 20 µg CyRPA + 20 µg RIPR), or equimolar with the RCR-complex immunised
207 group (“R+C+Ri Equimolar” group, *i.e.*, 5.3 µg RH5 + 3.5 µg CyRPA + 11.1 µg RIPR); for the third
208 group, RH5, CyRPA, and RIPR were mixed and purified as the RCR-complex prior to mixing with
209 adjuvant and then immunisation.
210

211 We observed some increases in anti-RH5 responses after the third vaccine dose in rats, especially in
212 the mixed antigen groups. However, anti-RH5 IgG responses remained significantly lower in mixed
213 antigen groups as compared to immunisation with RH5 alone; apart from the RH5+CyRPA group
214 (**Figure 4A, S3A, Table S2A**). Similarly, anti-CyRPA IgG responses were significantly reduced by
215 between 2- and 10-fold after the third dose when co-immunising with a second or third antigen
216 (**Figure 4B, S3A, Table S2B**). In contrast, we observed that anti-RIPR IgG responses peaked at >1000
217 µg/mL after the first boost and did not increase further; moreover, these concentrations remained
218 relatively high for all groups, even when co-immunising with CyRPA and RH5 (**Figure 4C, S3A, Table**
219 **S2C**). Neither anti-RH5 nor anti-CyRPA responses approached the quantitative magnitude of the anti-
220 RIPR IgG response. These data suggest that full-length RIPR is immuno-dominant and can suppress
221 the antibody response against RH5 and CyRPA following co-immunisation.
222

223 Purified total IgG (measured in mg/mL) was subsequently tested for *in vitro* GIA (**Figure S3B**). To link
224 GIA observed with total purified IgG to the total vaccine-induced antibody response, the IgG
225 responses to each antigen in each purified total IgG sample (as measured by standardised ELISA in
226 arbitrary units) were converted to µg/mL by calibration free concentration analysis (CFCA)¹² (**Figure**
227 **S4A**) and then summed. We further validated this approach by developing an “RH5+CyRPA+RIPR”
228 standardised ELISA which independently measured the total combined antigen-specific response, in
229 arbitrary units (AU), in a single assay. The reported “RH5+CyRPA+RIPR” standardised ELISA AU, and
230 the summed µg/mL derived from individual standardised ELISAs converted by CFCA, significantly
231 correlated (**Figure S4B-C**), suggesting both assay formats give similar results. We therefore elected to
232 use the summed µg/mL method for reporting the total vaccine-induced response since this enabled
233 quantitative comparison between vaccine groups. We next replotted the GIA data versus total
234 antigen-specific IgG measured by ELISA and converted to µg/mL by CFCA to assess the overall
235 functional quality of the vaccine-induced antibodies (**Figure S3C**), and from these data interpolated
236 the GIA EC₅₀, *i.e.*, the concentration of total antigen-specific IgG needed to achieve 50 % GIA. No
237 antigen combination showed significantly improved overall GIA (measured at 1 mg/mL total purified
238 IgG), or an improved total antigen-specific GIA EC₅₀ versus RH5 alone; in fact, most antigen mixtures
239 lacking RH5 and containing CyRPA and/or RIPR performed significantly worse (**Figure 4D-E**). We thus
240 further analysed rats immunised with the single full-length antigens across a range of doses. This
241 confirmed a clear hierarchy of immuno-potency, with RH5 only requiring 64 µg/mL (95% CI: 50 – 89
242 µg/mL) antigen-specific rat IgG to achieve 50 % GIA, versus 183 µg/mL (95% CI: 165 – 204 µg/mL) for
243 CyRPA and 715 µg/mL (95% CI: 669 – 778 µg/mL) for RIPR (**Figure S4D-N**). These data suggested that
244 any potential for additivity or synergy, as highlighted by the mAb analyses, is almost certainly
245 ablated by the relatively poor overall immuno-potency exhibited by the anti-RIPR polyclonal IgG
246 response, which is further compounded by its relative immuno-dominance in the antigen
247 combination vaccines. Consequently, no new antigen combination could produce more GIA per µg of
248 total antigen-specific antibody than that achieved by RH5 immunisation alone.
249

250 **Growth-inhibitory antibody epitopes in RIPR lie within EGF-like domains 5-8.**

251 Considering these data, and in an attempt to improve immunologic outcomes, we further
252 investigated the antibody response to RIPR. This antigen was originally reported as a large 123 kDa
253 protein containing 10 epidermal growth factor-like domains (EGF)¹⁹, and a central polypeptide
254 cleavage site⁴⁵ which divides the molecule into N- and C-terminal halves. More recent data have
255 shown that structurally RIPR is divided into an N-terminal “RIPR core” region that spans up to EGF(4),
256 whilst EGF(5-10) are present within the C-terminal “RIPR tail” region²⁴ (**Figure 5A**). We initially
257 expressed a series of RIPR protein fragments spanning most of the full-length RIPR sequence in
258 HEK293 cells (**Figure S5A**). These were genetically fused to a monomeric Fc (monoFc) solubility
259 domain⁴⁶ to improve expression, which could subsequently be removed via use of tobacco etch virus
260 (TEV) protease to yield a final panel of recombinant RIPR fragments (**Figure S5B**). Unlike the full-
261 length RIPR protein, none of the RIPR fragments could be used to reconstitute the ternary RCR-
262 complex with RH5 and CyRPA (data not shown). To identify the regions of RIPR containing growth
263 inhibitory epitopes, six rabbits were immunised with full-length RIPR to generate a large pool of GIA-
264 positive anti-RIPR IgG (**Figure S5C**). We initially attempted to reverse the GIA of the anti-RIPR IgG by
265 the addition of 1 μ M of each RIPR protein fragment into the GIA assay. The only significant reversal
266 was seen with the full-length RIPR positive control and RIPR EGF(7-8), with some non-significant
267 reversal seen with two other proteins spanning RIPR EGF(5-6) or RIPR EGF(6-7) (**Figure S5D**). We
268 therefore focused our efforts on the RIPR EGF(5-8) region and, using titrations of multiple RIPR EGF
269 fragments, identified that only the RIPR EGF(5-8) protein was capable of complete GIA reversal
270 (**Figure 5B, S5E**). These data strongly suggest this region is the sole target of growth-inhibitory
271 antibodies in the induced polyclonal anti-RIPR IgG.

272
273 In light of these data, we hypothesised that the EGF(5-8) region of RIPR was not interacting with
274 other binding partners in line with GIA positive epitopes identified on RH5 and CyRPA. Initially we
275 investigated the interaction of full-length RIPR (RIPR-FL) with semaphorin-7A (SEMA7A), a proposed
276 binding partner of RIPR⁴⁷, however we could not detect any binding between these proteins. We
277 could, however, observe binding between another merozoite protein, MTRAP, and SEMA7A as
278 previously reported⁴⁸ (**Figure S6A**) and so we did not explore this interaction further. Subsequently,
279 the *P. falciparum* PTRAMP-CSS heterodimer has been reported as a binding partner of RIPR; this
280 interaction is mediated by the RIPR tail region, which includes EGF(5-8), and leads to the formation
281 of the pentameric PCRCR-complex^{24,25}. We therefore produced the PTRAMP-CSS heterodimer using a
282 baculovirus expression system as previously described²⁵ (**Figure S6C-D**) and confirmed RIPR-FL
283 binding to the PTRAMP-CSS heterodimer by SPR with a K_D value of 4.5 μ M (**Figure S6E**), highly similar
284 to two previous reports^{24,25}. However, we were unable to detect any binding between recombinant
285 RIPR EGF(5-8) and the PTRAMP-CSS heterodimer (**Figure S6F**), suggesting this region of four EGF-like
286 domains within the RIPR tail region is either insufficient or not required to mediate this interaction
287 and therefore likely to be exposed to neutralising antibodies.

288
289 We next sought to extend our GIA reversal data obtained using the polyclonal anti-RIPR rabbit IgG by
290 epitope mapping the eight novel anti-RIPR mouse mAbs (**Table S1**). Here, we could identify binding
291 regions within RIPR for 7/8 mAbs via dot-blot using the panel of RIPR protein fragments and a
292 peptide array ELISA (**Figure 5A, S5F,G**). Consistent with our previous data, only two of the eight
293 mAbs (RP.012 and RP.021; both Type I) showed GIA (**Figure 5C**) and both had epitopes within RIPR
294 EGF(5-8). In contrast, all the remaining mAbs bound elsewhere within the RIPR molecule and

295 accordingly were GIA-negative. Considering these data, we next immunised rats with either 20 µg
296 RIPR-FL or an equimolar amount of RIPR EGF(5-8) protein (3.97 µg). Both groups demonstrated
297 equivalent overall GIA activity (**Figure 5D**), however RIPR EGF(5-8) elicited significantly lower anti-
298 RIPR serum IgG serum responses (**Figure 5E**). Consequently, analysis of functional antibody quality
299 (*i.e.*, GIA per µg of anti-RIPR IgG) revealed a three-fold improvement, with RIPR EGF(5-8) lowering
300 the EC₅₀ value to 232 µg/mL (95% CI: 219 – 246 µg/mL), down from 715 µg/mL (95% CI: 669 – 778
301 µg/mL) for the anti-RIPR-FL IgG (**Figure 5F**).
302

303 **Design of RIPR(EGF)-CyRPA fusion protein vaccines.**

304 We hypothesised that replacing full-length RIPR with RIPR EGF(5-8) in an immunogen targeting the
305 wider RCR-complex could reduce the immuno-dominance of RIPR whilst maintaining all the known
306 Type I growth-inhibitory epitopes, at least one of which can also synergise with anti-RH5 antibodies.
307 A pilot immunogenicity study using various proteins that span EGF(5-8) showed that low doses of
308 these RIPR EGF domain proteins (<0.5 µg soluble antigen, equivalent to 2 µg full-length RIPR) were
309 not immunogenic for antibody induction, likely due to their relatively small size and/or lack of T cell
310 help at low dose. We initially rescued these IgG responses by arraying the RIPR EGF protein
311 fragments on hepatitis B surface antigen (HBsAg) virus-like particles⁴⁹ (VLPs) (**Figure S7A**). However,
312 as an alternative strategy, we sought to simplify future immunogen manufacturing, whilst
313 maintaining immunogenicity, by genetic fusion to CyRPA (**Figure S7B,C**). We were able to
314 successfully express RIPR EGF(7-8) and RIPR EGF(5-8), each fused to CyRPA, and termed these new
315 fusion proteins “R78C” and “R58C”, respectively (**Figure S7D**); both proteins reacted with a panel of
316 growth inhibitory anti-CyRPA mAbs suggesting correct conformation, in addition RP.012 could only
317 bind R58C in the same assay (**Figure S7E**). Furthermore, R58C could completely reverse the GIA from
318 anti-RIPR full-length and anti-CyRPA rabbit IgG (**Figure S7F,G**) showing that all growth inhibitory
319 epitopes from both RIPR and CyRPA are present in the R58C immunogen.
320

321 **Immunisation with R78C and RH5 gives improved GIA over RH5 alone.**

322 We next immunised groups of six rats with single soluble antigens (RH5, CyRPA, RIPR, RIPR EGF(7-8),
323 R78C or R58C), or a mixture of R78C and RH5, or R58C and RH5. In addition, a 20 µg RH5 group was
324 included to determine the effects of a higher RH5 dose. In the case of the mixtures, we assessed
325 admixing the two proteins at the time of immunisation, as well as pre-formed binary complexes
326 (**Figure S7H,I**), which we termed “RCR-78 mini” and “RCR-58 mini”. All constructs were administered
327 three times with 25 µg Matrix-M™ adjuvant. R78C and R58C immunogens were tested in separate
328 studies due to antigen availability. The total anti-RH5, -CyRPA, and -RIPR serum IgG responses were
329 measured by ELISA over time (**Figure 6A-F, S8A**). Encouragingly, following three doses, the anti-RH5
330 IgG response for all groups showed no significant reduction compared to RH5-only vaccinated
331 animals, and there was no added benefit of using a higher 20 µg dose of RH5 over a 2 µg dose
332 (**Figure 6A,B, Table S3A**). Following R78C vaccination, anti-CyRPA IgG responses were lower than
333 those observed in the CyRPA-only vaccinated animals, but this did not reach significance. There was
334 a significant reduction of the anti-CyRPA IgG response in the context of R58C and R58C+RH5
335 immunisation, as compared to the previous CyRPA-only vaccinated controls (**Figure 6C,D, Table**
336 **S3B**). As expected, RIPR protein gave the highest anti-RIPR IgG response, and minimal
337 immunogenicity was seen when immunising with soluble RIPR EGF(7-8) alone. However, all the R78C
338 and R58C groups alone, or in combination with RH5, showed comparable responses, albeit
339 significantly lower (5 to 10-fold) than those seen with full-length RIPR – consistent with antibodies

340 only being raised against a much smaller portion of this molecule (**Figure 6E,F, Table S3C**). From
341 these data we concluded that the new R78C and R58C fusion protein constructs substantially
342 reduced the immuno-dominance of R1PR, so that anti-RH5 IgG responses are unaffected by co-
343 immunisation, and that these provided an immunogenic framework to deliver the small EGF domain
344 targets of R1PR. The detrimental effect of co-immunisation on anti-CyRPA IgG responses was reduced
345 with R58C in combination with RH5, and eliminated with R78C in combination with RH5, confirming
346 that CyRPA is the least immunogenic antigen and that responses are sub-dominant when combined
347 with the other antigens.

348

349 Purified IgG from each rat was subsequently tested for GIA against *P. falciparum* 3D7 clone parasites
350 (**Figure 6G, S8B**). Animals immunised with soluble CyRPA, R1PR, R1PR EGF(7-8) and R58C performed
351 significantly worse than RH5 alone in terms of overall GIA achieved at 1 mg/mL total IgG. Vaccination
352 with 2 or 20 µg R78C also achieved a level of GIA that was lower than RH5 alone on average, which
353 reached significance for the 2 µg dose group. When the R78C and R58C antigens were combined
354 with RH5, the GIA from the R58C+RH5 combinations was comparable to RH5 alone. In contrast, the
355 chimeric construct R78C+RH5 significantly outperformed RH5 alone suggesting that the shorter R1PR
356 construct in R78C led to higher performance. The improvement seen here was also not due to the
357 higher dose of RH5 protein used in the RH5+R78C combination, given there was no difference
358 observed in the anti-RH5 IgG response or GIA at 1 mg/mL total IgG when using either 2 or 20 µg RH5.
359 Due to the superior performance of R78C over R58C when combined with RH5, further analyses
360 were performed for R78C only.

361

362 We next compared the antibody quantity and quality produced by the different vaccine candidates
363 across multiple studies to investigate why R78C in combination with RH5 was superior to both the
364 full RCR-complex and RH5 alone. We sought to explain these results by first looking at the antigen-
365 specific IgG response versus GIA (**Figure S8C**). This showed that the functional quality of CyRPA-,
366 R1PR-, and RCR-based vaccines is worse than RH5 alone (in terms of the GIA assay EC₅₀). However,
367 the quality of antibodies produced by R78C+RH5 vaccination maintained a similar overall functional
368 quality to RH5 (**Figure 6H**). In addition, there were higher levels of vaccine-induced antibodies in the
369 R78C+RH5 combination vaccine groups (**Figure 6I**) as compared to RH5 alone, with a reduction in the
370 proportion of anti-R1PR IgG as compared to RCR-complex immunised groups (**Figure 6J**). These data
371 suggest that the significant improvement in overall GIA is due to an increased quantity of total
372 antigen-specific antibody in the R78C+RH5 vaccine groups whilst maintaining high functional
373 potency.

374

375 **Anti-RH5, -CyRPA, and -R1PR IgG show additive GIA irrespective of immunisation 376 strategy.**

377 We finally sought to confirm whether the polyclonal antibodies raised against the three RCR-
378 complex antigens were acting additively or synergistically in the GIA assay. We initially combined
379 polyclonal total IgG from rats immunised with single immunogens, and tested combinations of i)
380 CyRPA and R1PR; ii) RH5, CyRPA and R1PR; and iii) RH5 and R78C. In all cases, the level of GIA
381 observed in the mixtures was highly comparable to the predicted level of GIA as defined by Bliss
382 additivity (**Figure 7A-C**). We also assessed for potential interactions in the context of antigen co-
383 immunisation by affinity purification of antigen-specific IgG from sera using single antigen (*i.e.*, RH5,
384 CyRPA or R1PR) affinity columns. Affinity-purified IgGs were then tested alone and combined. In all

385 cases, and regardless of whether the IgGs were raised by immunisation with single antigens, the
386 RCR-complex, or R78C+RH5, the test combinations showed levels of GIA that were equivalent to the
387 predicted additive (**Figure 7D-F**). Consequently, even though individual mAbs against these target
388 antigens could display synergistic GIA, the polyclonal IgGs raised by these immunogens and specific
389 formulations, consistently demonstrated additive GIA.

390 **DISCUSSION**

391
392 RH5 was first reported in 2011 to be a promising antigen target for inclusion in a future blood-stage
393 *P. falciparum* malaria vaccine^{9,10}. Since then, a number of vaccine candidates based on the RH5
394 antigen have entered clinical development^{12–14}, with the most advanced (RH5.1/Matrix-M™)
395 currently in a Phase 2b field efficacy trial. In parallel, a wealth of data have emerged surrounding the
396 immuno-biology of RH5 and its presentation on the merozoite surface as part of a wider invasion
397 protein complex^{20,24}. Here, we sought to investigate whether a vaccine candidate based on the
398 ternary RCR-complex could substantially improve upon the leading clinical candidate RH5.1/Matrix-
399 M™.

400
401 To guide this work, we initially explored the interaction of a panel of anti-RH5, -CyRPA and -RIPR
402 mAbs with the recombinant RCR-complex. These analyses allowed us to divide the mAb panel into
403 Type I (RCR-complex binding) or Type II (RCR-complex non-binding) clones and identified that all GIA-
404 positive mAbs are Type I regardless of target antigen, *i.e.*, they have epitopes that are exposed on
405 the surface of the formed RCR-complex. In contrast, GIA-negative mAbs could be either Type I or
406 Type II. These results are consistent with available structural data for a subset of the anti-RH5 and -
407 CyRPA mAb panels^{6,24,36,37}. They also strongly suggest that preventing RCR-complex formation is not
408 a mechanism of GIA and that this complex is likely formed within the parasite prior to any potential
409 surface exposure to antibodies.

410
411 Having previously observed that certain anti-RH5 and anti-CyRPA mAbs can show intra-antigen
412 synergistic GIA^{36,37}, we also explored the mAb panel for potential inter-antigen interactions using
413 pair-wise combinations and representative clones from non-overlapping Type I epitope sites on each
414 of the three antigens. As assessed by this GIA assay format, many combinations performed
415 additively, however, we identified a clear propensity for two out of the four anti-RH5 mAbs to
416 synergise with the anti-CyRPA and -RIPR clones. One of these mAbs, R5.011, has been reported
417 previously and represents an anti-RH5 human antibody specificity that shows minimal or no GIA
418 when tested alone but which can synergise in combination with other growth inhibitory antibodies
419 via reducing the speed of merozoite invasion³⁶. The second clone, R5.008, is itself GIA-positive, with
420 an epitope that overlaps the basigin binding site^{36,50,51}. Interestingly, recent live cell imaging has
421 confirmed the synergy of the R5.008+Cy.009 mAb combination and suggested that inactivation of
422 uninvaded parasites by these antibody combinations may function as a second inhibitory mechanism
423 alongside blockade of basigin receptor binding⁵². We did not observe inter-antigen synergy with
424 R5.016 unlike previous reports³⁸, highlighting the complexity of synergy between antibodies against
425 specific epitope regions of RH5 with anti-CyRPA and -RIPR clones. This remains an active area of
426 further investigation as high-resolution epitope maps of CyRPA and RIPR are generated.

427
428 Nevertheless, these data indicated that growth inhibitory antibody epitopes are exposed on the
429 formed RCR-complex and that antibody responses across the three antigens could act additively with
430 some specificities also showing synergy. We therefore initially focussed on vaccination strategies
431 using the formed RCR-complex, hypothesising that the polyclonal antibody response should be
432 improved, as compared to the use of single antigens, via the masking of Type II epitopes. However,
433 none of the vaccine candidates tested targeting the RCR-complex could outperform full-length RH5
434 (RH5.1) alone in terms of functional antibody induction in rats. This is consistent with another

435 recently reported study that attempted a similar strategy⁵³. Our quantitative analysis of the antibody
436 response to each antigen in µg/mL revealed this was due to both the immuno-dominance of RIPR
437 (over RH5 and especially CyRPA) coupled with the relatively poor immuno-potency of anti-RIPR
438 polyclonal IgG (in comparison to both anti-RH5 and -CyRPA polyclonal IgG). This latter observation
439 was also consistent with the relatively poor immuno-potency of the anti-RIPR mouse mAb panel and
440 the high proportion of GIA-negative clones within those classified as Type I.

441

442 We thus investigated the polyclonal antibody response to full-length RIPR in more depth. Here we
443 identified by systematic GIA reversal assays that all of the growth inhibitory antibodies raised by full-
444 length RIPR vaccination are located within an ~200 amino acid region of the RIPR tail corresponding
445 to EGF(5-8). Consistent with this result have been previous reports by others highlighting EGF(5-8) as
446 a target of growth-inhibitory antibodies in *P. falciparum*^{19,47,54}, along with our epitope mapping of
447 the two GIA-positive mAbs reported here (RP.012 and RP.021). Indeed, recent cryo-EM structural
448 data of RIPR²⁴ show that these EGF domains form part of the RIPR tail that extends out of the RIPR
449 core towards the parasite membrane, consistent with our definition of these as Type I epitopes that
450 are accessible to inhibitory mAbs within the context of the RCR-complex. We further showed that
451 immunisation with RIPR EGF(5-8) could induce comparable overall levels of GIA as full-length RIPR
452 with a three-fold improvement in the antigen-specific EC₅₀.

453

454 We accordingly designed two new constructs based on this information: R78C and R58C; whereby
455 we elected to fuse the small RIPR EGF domain region to CyRPA to maintain immunogenicity (as
456 opposed to using a VLP scaffold) to both simplify antigen production and maintain focus on the RCR-
457 complex antigenic components. Co-immunisation of these new constructs with RH5.1 reduced the
458 immuno-dominance of the RIPR component and focused the response on the most potent RIPR
459 epitopes, as anticipated, thereby maintaining the anti-RH5 IgG response, and reducing interference
460 with the sub-dominant anti-CyRPA IgG response. Notably, immunisation with the combination of
461 R78C and RH5.1 led to a significant improvement in overall GIA (as compared to RH5.1 alone). Our
462 analysis indicated this was due to an increase in the overall total quantity of antigen-specific IgG (in
463 the R78C+RH5.1 vaccinated rats) with similar functional potency (or quality) as compared to RH5.1
464 vaccination alone.

465

466 Finally, we demonstrated that the antigen-specific rat IgGs, induced by vaccination with the three
467 RCR-complex antigens, interact in an additive manner in the GIA assay. Consequently, although we
468 could define specific synergistic inter-antigen interactions with the mAb panels used here, we could
469 not replicate this with polyclonal IgG responses induced by vaccination. Potential reasons for this
470 could include species specificity of the induced antibody repertoire to each antigenic component;
471 much greater complexity of these interactions within polyclonal mixtures, and/or insufficient
472 induction of synergising antibody specificities within the polyclonal responses. Linked with this we
473 also found, somewhat surprisingly, the R58C vaccine candidate performed less well in combination
474 with RH5.1 (as compared to R78C). This may indicate the most effective anti-RIPR epitopes for
475 combination with RH5 and CyRPA lie within EGF(7-8), however the mechanism(s) by which such
476 antibodies function remains to be determined. Indeed, we could not detect any binding between
477 recombinant RIPR and SEMA7A as previously reported⁴⁸. Instead, recent structural data have shown
478 the RIPR tail region (spanning from EGF(5) to the end of the C-terminal domain [CTD]) interacts with
479 the PTRAMP:CSS heterodimer as part of the wider PCRCR-complex²⁴. However, our data indicate the

480 smaller EGF(5-8) region is either insufficient or not required to mediate this interaction, suggesting
481 that blockade of RIPR binding by these antibodies to PTRAMP:CSS on the merozoite surface is
482 unlikely; this is also in line with our data that show that blockade of RCR-complex formation is not an
483 inhibitory mechanism. Further studies with much larger panels of GIA positive anti-RIPR mAbs are
484 now required to fine map the most potent RIPR epitopes and determine the mechanism of inhibition
485 to antibody to provide a higher-resolution framework that could guide more focussed vaccine
486 design.

487

488 In conclusion, the combination of R78C+RH5.1 in Matrix-M™ adjuvant is the first vaccine candidate
489 based on the wider RH5 invasion complex to show a significant improvement in overall GIA as
490 compared to RH5.1/Matrix-M™ in preclinical studies. The R78C antigen has since completed
491 biomanufacture in line with current Good Manufacturing Practice (cGMP) and has now entered a
492 Phase 1a clinical trial in the United Kingdom (ClinicalTrials.gov NCT05385471) formulated either
493 alone or in combination with RH5.1 in Matrix-M™ adjuvant. This will be the first assessment in
494 humans of the safety and immunogenicity of a novel vaccine candidate targeting the wider RCR-
495 complex and will enable future studies to link human anti-CyRPA and anti-RIPR immune responses to
496 functional anti-parasitic and vaccine efficacy outcome measures.

497 MATERIALS AND METHODS

498 Recombinant protein expression and purification

500 The recombinant full-length RH5, CyRPA, RIPR, CSS, and PTRAMP protein sequences were all based
501 on the 3D7 clone *P. falciparum* reference sequence. RH5 encoded amino acids E26-Q526 as
502 published previously (and called “RH5.1”)¹⁷ and four mutations to remove N-linked glycosylation
503 sequons: T40A, T216A, T286A and T299A. CyRPA encoded amino acids D29-E362 with three
504 mutations to remove N-linked glycosylation sequons: S147A, T324A, and T340A³⁷. RIPR encoded
505 amino acids M1-N1086, with 12 mutations to remove N-linked glycosylation sequons: N103Q,
506 N114Q, N28Q, N334Q, N480Q, N498Q, N506Q, N526Q, N646Q, N647Q, N964Q, N1021Q. Each
507 protein construct included an N-terminal secretion signal and a C-terminal four-amino acid
508 purification tag¹⁷ (C-tag: EPEA).

509
510 RH5 and RIPR proteins were expressed as secreted protein by stable polyclonal *Drosophila* S2 cell
511 lines as previously reported^{17,40}. CyRPA protein were expressed as secreted protein by transient
512 transfection of HEK Expi293 cells (Thermo Fisher Scientific) following the manufacturer’s protocol
513 using ExpiFectamine™ (Thermo Fisher Scientific). All supernatants were harvested via centrifugation
514 and the proteins purified using CaptureSelect C-tag affinity matrix (Thermo Fisher Scientific) on an
515 ÄKTA Pure FPLC system (Cytiva). A further size exclusion chromatography (SEC) polishing step was
516 performed on a HiLoad 16/60 Superdex 200 pg column (GE Healthcare) in 20 mM Tris, 150 mM NaCl,
517 pH 7.4.

518
519 After purification of full-length RH5, CyRPA and RIPR, the RCR-complex was produced by mixing
520 equimolar concentrations of each protein and incubating for 30 min at room temperature (RT). The
521 assembled complex was then purified by SEC using an S200 16/600 column and ÄKTA Pure (Cytiva)
522 into Tris-buffered saline (TBS).

523
524 Recombinant SEMA7A and MTRAP were produced in and purified from HEK Expi293 cells as
525 described above for full-length CyRPA. The SEMA7A and MTRAP plasmids were a kind gift from
526 Gavin Wright⁴⁸ (Addgene plasmid #73115 and #47746). Plasmid #73115 was digested with NotI and
527 EcoRI to excise the SEMA7A sequence, before ligation into a modified pENTR4LP vector containing
528 an in-frame C-terminal C-tag. The MTRAP sequence was cloned form #47746 by PCR into a modified
529 pENTR4LP vector containing an in-frame C-terminal C-tag without any further solubility domain.

530
531 CSS, encoding amino acids G20-K290 with N-linked glycosylation sequons intact, and PTRAMP,
532 encoded amino acids C42-T309 with one mutation to remove an N-linked glycosylation sequon
533 (T197A), as previously reported²⁵ were subcloned into the dual promoter pOET5.1 transfer vector
534 (Oxford Expression Technologies). A biotin acceptor peptide (BAP) tag was included at the C-terminal
535 end of PTRAMP prior to the C-tag. The flashBAC gold™ system (Oxford Expression Technologies) was
536 used to recombinantly express the secreted PTRAMP-CSS heterodimer along with biotin ligase (BirA)
537 in Sf9 cells. The proteins were purified via CaptureSelect™ C-tag affinity matrix (Thermo Fisher
538 Scientific). A further SEC polishing step was performed on a HiLoad 16/600 Superdex 200 pg column
539 (GE Healthcare) in Dulbecco’s PBS (DPBS). Each protein was verified using SDS-PAGE, western blot
540 using ExtrAvidin® alkaline phosphatase (Sigma-Aldrich) to detect the BAP tag, liquid

541 chromatography-tandem mass spectrometry (LC-MS/MS), and intact mass analysis. Mass
542 spectroscopy was performed at the Centre for Medicines Discovery (CMD), University of Oxford.
543

544 RIPR protein truncations (unless otherwise stated) were cloned from the full-length RIPR gene
545 template by PCR (**Table S4**). Primers were designed with 3' BamHI and 5' KpnI sites flanking each
546 sequence and the fragment amplified using Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher
547 Scientific). Purified PCR product was digested with BamHI-HF and KpnI-HF (NEB) and ligated (Quick
548 Ligase, NEB) into a modified pENTR4-LP⁵⁵ vector containing the monomeric Fc (“monoFc”) solubility
549 domain⁴⁶ and a mouse IgG signal sequence. Proteins were expressed as secreted protein by transient
550 transfection of HEK Expi293 cells (Thermo Fisher Scientific) and purified via CaptureSelect™ C-tag
551 affinity matrix (Thermo Fisher Scientific). A further SEC polishing step was performed on a HiLoad
552 16/600 Superdex 200 pg column (GE Healthcare) in 20 mM Tris, 150 mM NaCl, pH 7.4. Each protein
553 was verified using SDS-PAGE, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and
554 intact mass analysis. Mass spectroscopy was performed at the Centre for Medicines Discovery
555 (CMD), University of Oxford.

556

557 The RIPR N-half fragment (**Table S5**) was generated using the 3D7 clone *P. falciparum* sequence with
558 N-linked glycosylation sequons left intact, the monoFc and C-tag. The RIPR N-half was produced in
559 HEK293F cells using the Expi293™ Expression System (Thermo Fisher Scientific) in the presence of 5
560 µM kifunensine (Abcam). Following affinity purification with CaptureSelect™ C-tag affinity matrix
561 (Thermo Fischer Scientific) the purified protein was dialysed overnight in TBS, with a 1:50 ratio of
562 purified protein to Endoglycosidase H (Endo H) (Promega). After treatment, the Endo H was
563 removed on a Superdex™ 200 Increase 10/300 GL size exclusion column (GE Healthcare).

564

565 To remove the monoFc on relevant proteins, 5 mg purified RIPR protein fragment was incubated
566 with TEV protease (Sigma/Promega) at a 1:10 v/v ratio overnight at 4 °C on a rolling mixer. The
567 sample was then centrifuged at 10,000 xg in a benchtop centrifuge before affinity purification using
568 a 1 mL CaptureSelect™ C-tag affinity matrix followed a Superdex™ 75 Increase 10/300 GL SEC
569 column (Cytiva).

570

571 To generate virus-like particle vaccines: hepatitis B surface antigen (HBsAg) fused to the SpyCatcher
572 peptide was incubated on ice with an equimolar ratio of RIPR EGF (5-8), (5-6), or (7-8) fused to the
573 SpyTag for 20 minutes to allow conjugation to occur. The mixture was then purified on a Superose 6
574 increase 10/300 GL column (Cytiva) to remove unconjugated RIPR protein.

575

576 The R78C and R58C fusion protein sequences were based on the full-length CyRPA and RIPR
577 sequences used above (**Table S6**). The R78C construct consists of amino acids D817-V897 of RIPR,
578 two GGSGS linkers, the SpyTag peptide⁵⁶, two GGGGS linkers, amino acids D29-E362 of CyRPA and
579 the C-tag at the C-terminus. R58C is the same construct except with amino acids P716-D900 of RIPR.
580 R78C and R58C were expressed as secreted protein by transient transfection of HEK Expi293 cells
581 (Thermo Fisher Scientific). Proteins were purified via CaptureSelect™ C-tag affinity matrix (Thermo
582 Fisher Scientific). A further SEC polishing step was performed on a HiLoad 16/60 Superdex 200 pg
583 column (GE Healthcare) in 20 mM Tris, 150 mM NaCl, pH 7.4. “R78C-mini” and “R58C-mini” vaccines
584 were produced by mixing equimolar concentrations R78C and RH5, or R58C and RH5, and incubating

585 for 30 min at room temperature (RT). The assembled complex was then purified by SEC using an
586 S200 16/600 column and ÄKTA Pure (Cytiva) into Tris-buffered saline (TBS).

587

588 **Antibody expression and purification**

589 Generation of anti-RH5 and anti-CyRPA recombinant and chimeric mAbs (**Table S1**) has been
590 previously described^{16,36,37,43,57}. These mAbs were transiently expressed in Expi293F HEK cells.
591 Cognate heavy and light chain-coding plasmids were co-transfected at a 1:1 ratio. Supernatants were
592 harvested via centrifugation. All mAbs were purified using a 5 mL Protein G HP column (Cytiva) on an
593 ÄKTA Pure FPLC system (Cytiva). Equilibration and wash steps were performed with PBS and mAbs
594 were eluted in 0.1 M glycine pH 2.7. The eluates were pH equilibrated to 7.4 using 1.0 M Tris HCl pH
595 9.0 and immediately buffer exchanged into DPBS and concentrated using an Amicon ultra centrifugal
596 concentrator (Millipore) with a molecular weight cut-off of 30 kDa.

597

598 Total IgG from rat serum was purified on drip columns packed with Pierce Protein G agarose resin
599 (Thermo Fisher Scientific). Pierce protein G IgG binding buffer (Thermo Fisher Scientific) was used to
600 dilute the serum 1:1 before loading as well as for equilibration and wash steps. Bound IgG was
601 subsequently eluted, neutralised and concentrated as for mAbs above.

602

603 **Analysis of mAb binding to the RCR-complex**

604 The three components of the RCR-complex were pre-incubated at equimolar amounts, equivalent to
605 30 µg RH5, for 20 minutes to allow the RCR-complex to form. An equimolar amount of test mAb was
606 then added and the sample incubated for 20 min. Each sample was then run on a Superdex 200
607 Increase size exclusion column (Cytiva). A 10 µL sample of each peak was collected and analysed on
608 a non-reducing SDS-PAGE gel to ascertain which proteins were present in each peak (NuPAGE™ 4 to
609 12%, Bis-Tris, 1.0-1.5 mm, midi Protein Gels (Invitrogen) run at 200 V for 45 min).

610

611 **RCR-complex and test mAb immunoprecipitation**

612 RH5, CyRPA and RIPR were mixed at an equimolar ratio and incubated for 30 min at RT to form the
613 RCR-complex. 40 µL 1 µM RCR-complex was then mixed with 100 µL mAb at 0.5 µM. A no-test mAb
614 control of 40 µL 1 µM RCR-complex with 40 µL TBS was included in each run. After 10 min incubation,
615 30 µL protein G resin was added to each tube followed by a final 10 min incubation. Each tube was
616 then washed 5 times with TBS pH 7.4 containing 10 % glycerol and 0.2 % Igepal C630. Following
617 washing, the resin was resuspended in 1X sample buffer and briefly incubated at 100 °C. A 10 µL
618 sample was then analysed on by non-reducing SDS-PAGE as described above.

619

620 **Assay of growth inhibition activity (GIA)**

621 GIA assays against 3D7 clone *P. falciparum* parasites were carried out over one blood-stage growth
622 cycle (~48 h) as previously described^{37,58}. Briefly: The assay was performed at indicated
623 concentrations of purified total IgG or mAb in duplicate wells and a biochemical measurement using
624 *P. falciparum* lactate dehydrogenase assay was used to quantify parasitaemia and define % growth
625 inhibition. To ensure consistency between experiments, in each case the activity of a negative
626 control mAb, EBL040⁵⁹, which binds to the Ebola virus glycoprotein, and three anti-RH5 mAbs with
627 well-characterised levels of GIA (2AC7, QA5, 9AD4)⁵⁷ were run alongside the test samples and used
628 for assay QC. Purified total IgG samples from immunised animals were pre-incubated with human
629 group O RhD-positive RBC to eliminate spurious GIA results caused by hemagglutination. Test

630 antibodies were buffer exchanged into incomplete parasite growth media (RPMI, 2 mM L-glutamine,
631 0.05 g/L hypoxanthine, 5.94 g/L HEPES) before performing the GIA assay.

632
633 To assess for synergistic GIA, pairs of mAbs or purified total IgGs were assessed by measuring: i) the
634 GIA of one test sample held at constant concentration to give approximately 20-40 % GIA; ii) the GIA
635 of a second test sample (either total IgG from serum or mAb) titrated typically across a four-fold
636 seven-step dilution curve; and iii) the GIA of the combination of the first sample held at a constant
637 concentration combined with the second sample across its dilution curve. The predicted Bliss
638 additivity was determined based on the measured activity from each antibody alone using formulas
639 previously described³⁰. Fold-increase was determined by dividing the observed GIA by the predicted
640 Bliss additivity.

641
642 For GIA-reversals, the experiment was carried out as above using a fixed amount of antigen-specific
643 IgG. In addition, purified full-length proteins or protein fragments were titrated into the assay with
644 the IgG at a defined concentration, typically between 0.5 and 20 μ M. Each protein was tested in the
645 absence of test IgG as a control.

646
647 All the blood donations and purchases at the University of Oxford for use in the GIA assay are
648 anonymised and covered under ethical approval from the National Services of Health (REC reference
649 18/LO/0415, protocol number OVC002).

650
651 **Standardised ELISAs**
652 ELISAs were performed against full-length RH5, CyRPA, or RIPR protein using standardised
653 methodology as previously described^{12,60}. AP-conjugated Anti-rat IgG (A8438, Sigma-Aldrich) was
654 used a secondary antibody. A standard curve and Gen5 ELISA software v3.04 (BioTek, UK) were used
655 to convert the optical density 405 nm (OD₄₀₅) of individual test samples into arbitrary units (AU).
656 These responses in AU are reported in μ g/mL following generation of a conversion factor by
657 calibration-free concentration analysis (CFCA) as reported previously¹². For the R+C+R ELISA, an
658 equimolar ratio of RH5, CyRPA, and RIPR was used to coat the ELISA plate, the same secondary
659 antibody and development conditions were used.

660
661 For endpoint ELISAs against R78C and R58C, Nunc™ MaxiSorp™ plates were coated with R78C or
662 R58C at 2 μ g/mL overnight. Plates were blocked with Blocker™ Casein (ThermoFisher). Primary
663 antibodies were diluted to 2 μ g/mL in PBS containing 1 mM CaCl. AP-conjugated anti-human IgG
664 (A3187, Sigma-Aldrich) was used as a secondary at 1:2000. Plates were developed with para-
665 Nitrophenylphosphate (pNPP) and measured at 405nm.

666
667 **Rabbit immunisations**
668 Rabbits were immunised in two cohorts. The first was performed by Cambridge Research
669 Biochemicals (CRB, Billingham, UK) in compliance with the UK Animals (Scientific Procedures) 1986
670 Act (ASPA). Four 16-week-old New Zealand white rabbits were immunised by the intramuscular (IM)
671 route with 20 μ g RIPR antigen formulated in complete Freund's adjuvant on day 0 and incomplete
672 Freund's adjuvant on days 14, 28, and 42. Pre-immunisation bleeds were taken at day -2 and final
673 bleeds were taken at day 56. The second study was performed by Noble Life Sciences (Woodbine,
674 MD, USA, which was AALACi accredited and OLAW assured) using 16-week-old New Zealand white

675 rabbits. Two rabbits were immunised IM with 50 µg RIPR antigen on days 0, 21 and 42 in Montanide
676 ISA720 adjuvant (Seppic). Pre-immunisation bleeds were taken at day 0 and final bleeds were taken
677 at day 64. Sera from both rabbit experiments were combined to for the reported analyses.

678

679 **Rat immunisation studies**

680 Rat immunisations were performed by Noble Life Sciences, Inc (Woodbine, MD, USA) using 8-12-
681 week-old female Wistar rats (150-200 g). Groups of 6 rats were immunised IM with antigen (2 µg
682 RH5, other antigens 20 µg unless otherwise stated) formulated in 25 µg Matrix-M™ adjuvant
683 (Novavax) on days 0, 28 and 56. Tail bleeds were taken on days -2, 14 and 42. Final bleeds were
684 taken at day 70.

685

686 **Purification of antigen-specific IgG**

687 Recombinant RH5, CyRPA, or RIPR protein were coupled to HiTrap NHS-Activated HP affinity
688 columns (Cytiva) using standard amine coupling protocols. Antigen-specific IgG was purified from
689 polyclonal total IgG purified from serum using each antigen column on an ÄKTA Pure FPLC system
690 (Cytiva). IgG was eluted in 0.1 M glycine, pH 2.7, followed by pH equilibration to 7.4 using 1.0 M Tris
691 HCl, pH 9.0, and immediately buffer-exchanged into incomplete parasite growth media (RPMI, 2 mM
692 L-glutamine, 0.05 g/L hypoxanthine, 5.94 g/L HEPES) and concentrated using an Amicon ultra
693 centrifugal concentrator (Millipore) with a molecular weight cut-off of 30 kDa.

694

695 **RIPR monoclonal antibody production**

696 Female 6-week-old BALB/c mice (N=4 per group) were immunised IM with 10 µg N-half RIPR or 13 µg
697 full-length RIPR protein formulated in AddaVax™ (Invivogen, France) on days 0, 14, 28 and 42.
698 Spleens were harvested on day 56 and processed using EasySep™ Mouse B Cell Isolation Kit
699 (StemCell). Hybridomas were generated by fusion of B cells with SP2/0 cells (ATCC: CRL-1581) using
700 ClonaCell™-HY Hybridoma Kit (StemCell) using the manufacturer's instructions. Successful
701 hybridomas were cultured in CELLline 1 L classic bioreactor flasks (Integra biosciences) in DMEM
702 (Sigma-Aldrich) supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 0.1 mg/mL streptomycin
703 and 10 % ultra-low IgG foetal bovine serum (Thermo Fisher Scientific). mAbs were purified using a 5
704 mL Protein G HP column as described above. Procedures on mice were performed in accordance
705 with the UK Animals (Scientific Procedures) Act Project Licence PPLs PA7D20B85 and PP7770851 and
706 were approved by the University of Oxford's Animal Welfare and Ethical Review Board.

707

708 **RP.012 monoclonal antibody production**

709 Five SJL mice were immunised by Precision Antibody with full-length RIPR protein prepared by
710 ExpreS²ion Biotechnologies, Denmark. Immunised mice were tested for titers by tail bleed ELISAs.
711 Additional boosts were performed until sufficiently high tail bleed titers were observed. Based on
712 titer data, a single mouse was selected for performing hybridoma fusions. Following fusions,
713 monoclonal hybridoma screening was performed using hybridoma culture supernatants. Selected
714 clone candidates were expanded for supernatant harvest and cryopreservation. Clone 3H7, now
715 called RP.012, was selected and taken forward for further testing.

716

717 **Surface plasmon resonance (SPR)**

718 SPR was carried out using the Biacore™ X100 machine and software. RIPR, SEMA7A, or PTRAMP-CSS
719 were immobilised onto separate CM5 Sensor Chips (Cytiva) using the standard amine coupling

720 protocol, yielding ~900 response units (RU) for each antigen. CyRPA was diluted in SPR buffer
721 (PBS+P20: 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 0.005 % surfactant P20
722 (Cytiva)) to yield a top concentration of 30 µM; SEMA7A was diluted to a final concentration of 20
723 µM; MTRAP to a final concentration of 30 µM; RIPR to a final concentration of 6 or 2 µM; and RIPR
724 EGF (5-8) to a final concentration of 4 µM. For each protein, a two-fold serial dilution series was then
725 prepared in the same buffer. Samples were injected for 180 s at 30µL/min before dissociation for
726 700 s. The chip was regenerated with a 30 s injection of 10 mM glycine pH 1.5, or 20mM NaAc 100
727 mM NaCl pH 4.0 for PTRAMP-CSS CM5 chips. Data were analysed using the Biacore X100 Evaluation
728 software v2.0.2, and the equilibrium dissociation constant (K_D) was determined from a plot of steady
729 state binding levels.

730

731 **Dot blots**

732 200 ng test protein was blotted onto a nitrocellulose membrane and allowed to dry. Dot blots were
733 then performed with the iBind™ Western Device (Thermo Fisher) with the test mAb diluted to 5
734 µg/mL and AP-conjugated goat anti-mouse IgG (A3562 Sigma-Aldrich) used as a secondary.

735

736 **RIPR peptide ELISA**

737 A set of sixty-two biotinylated 20-mer peptides of RIPR overlapping by 12 amino acids,
738 corresponding to amino acids D21-P247 and K364-S648 of RIPR, were synthesised (Mimotopes).
739 Peptides were resuspended in 1 mL Dimethyl sulfoxide and diluted to 5 µg/mL in DPBS for coating
740 streptavidin-coated 96-well plates (Pierce). Plates were washed with PBS + 0.05% Tween 20 and
741 then blocked with 200 µL Blocker™ Casein (Thermo Fisher). After washing, the test mAb was added
742 at an initial concentration of 2 µg/mL. AP-conjugated goat anti-mouse IgG (Thermo Fisher) was used
743 as a secondary and plates were developed with pNPP alkaline phosphatase substrate and optical
744 density read at 405 nm on an Infinite 50 plate reader (Tecan).

745

746 **Quantification and statistical analysis**

747 Data were analysed using GraphPad Prism versions 9.5.1 for Windows (GraphPad Software Inc.).
748 Statistical tests used and post-tests for multiple comparisons are reported in the Legends. In all
749 statistical tests, reported *P* values are two-tailed with *P*<0.05 considered significant.

750

751 **CONTACT FOR REAGENT AND RESOURCE SHARING**

752 Further information and requests for resources should be directed to and will be fulfilled by the Lead
753 Contact, Simon J. Draper (simon.draper@bioch.ox.ac.uk).

754

755 **ACKNOWLEDGEMENTS**

756 The authors are grateful for the assistance of Julie Furze, Penelope Lane, Wendy Crocker, Charlotte
757 Hague, Rebecca Ashfield, Jee-Sun Cho, Geneviève Labbé, Carolyn Nielsen, Martino Bardelli,
758 Francesca Donnellan, Gaurav Gupta, Yu Zhou, Yuanyuan Li, Sumi Biswas, Jenny Bryant and Lana
759 Strmecki (University of Oxford); Sally Pelling-Deeves for arranging contracts (University of Oxford);
760 Rod Chalk and Tiago Moreira (Centre for Medicines Discovery) for performing the mass spectroscopy
761 analysis; Alex Cook, Sam Chamberlain and Brendan Farrell (University of Oxford) for their helpful
762 discussions and SPR expertise; Ann-Marie Shorrocks (University of Oxford) for help with the
763 immunoprecipitation experiments; Adéla Nacer and Paul Bowyer (NIBSC, UK) for provision of
764 reagents; Jenny Reimer (Novavax); Ken Tucker, Timothy Phares and Cecille Browne (Leidos); and
765 Robin Miller (USAID).

766

767 This work was funded in part by the European Union's Horizon 2020 research and innovation
768 programme under a grant agreement for OptiMalVax (733273); the UK MRC Confidence in Concept
769 (CiC) Tropical Infectious Disease Consortium [MC_PC_17167]; and the Infectious Disease Division,
770 Bureau for Global Health, United States Agency for International Development (USAID), under the
771 terms of the Malaria Vaccine Development Program (MVDP) (AID-OAA-C-15-00071, for which Leidos,
772 Inc. was the prime contractor, and 7200AA20C00017, for which PATH is the prime contractor). The
773 GIA assays were supported in part by the Division of Intramural Research of the National Institute of
774 Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), and by an Interagency
775 Agreement (AID-GH-T-15-00001) between the USAID MVDP and NIAID, NIH. The opinions expressed
776 herein are those of the authors and do not necessarily reflect the views of USAID. This work was also
777 supported in part by the National Institute for Health Research (NIHR) Oxford Biomedical Research
778 Centre (BRC) and NHS Blood & Transplant (NHSBT; who provided material), the views expressed are
779 those of the authors and not necessarily those of the NIHR or the Department of Health and Social
780 Care or NHSBT. Cy.003, Cy.004, Cy.007, and Cy.009 were provided by Icosagen AS through the
781 Centre for AIDS Reagents repository at the National Institute for Biological Standards and Control,
782 UK. These mAbs were produced through the European Commission FP7 EURIPRED project (INFRA-
783 2012-312661), funded by the European Union's Seventh Framework Programme [FP7/2007-2013]
784 under Grant Agreement No: 312661-European Research Infrastructures for Poverty Related Diseases
785 (EURIPRED). BGW held a UK MRC PhD Studentship [MR/N013468/1]. RJR and JJI were funded by the
786 Wellcome Trust Infection, Immunology and Translational Medicine DPhil programme
787 [105399/Z/14/Z]; DGWA held a UK MRC iCASE PhD Studentship [MR/K017632/1]; ADD held a
788 Wellcome Trust Early Postdoctoral Research Training Fellowship for Clinicians [201477/Z/16/Z]; MKH
789 held a Wellcome Trust Investigator award [220797/Z/20/Z]; ADD and SJD are Jenner Investigators
790 and SJD held a Wellcome Trust Senior Fellowship [106917/Z/15/Z].

791

792

793 **AUTHOR CONTRIBUTIONS**

794 Conceived and performed experiments and/or analysed the data: BGW, LDWK, DP, DQ, AML, SES,
795 RJR, HD, JRB, KMc, CAR, LB, MWS, LAC, RAD, ADD, ORL, KMi, MKH, SJD.
796 Contributed reagents, materials, and analysis tools: RJR, DGWA, RAD, DJP, JJI, JJ, CC, VK, KMi, CAL.
797 Performed project management: JMC, ARN, RSM, CRK, AJB, LAS, KS.
798 Wrote the paper: BGW, SJD.

799

800 **CONFLICT OF INTEREST STATEMENT**

801 • SJD is an inventor on patent applications relating to RH5 or RCR-complex malaria vaccines
802 and antibodies and is a co-founder of and shareholder in SpyBiotech.

803 • AMM has an immediate family member who is an inventor on patent applications relating to
804 RH5 or R78C malaria vaccines and antibodies and is a co-founder of and shareholder in
805 SpyBiotech.

806 • BGW, LDWK, DP, DQ, AML, SES, JRB, KMc, DGWA, ADD, JJI, MKH are inventors on patent
807 applications relating to RH5 and/or RCR-complex malaria vaccines and/or antibodies.

808 • JJ is an inventor on patent applications relating to vaccines made using spontaneous amide
809 bond formation and is a co-founder of and shareholder in SpyBiotech.

810 • RAD is an inventor on patent applications relating to vaccines made using spontaneous
811 amide bond formation and shareholder in SpyBiotech.

812 • All other authors have declared that no conflict of interest exists.

813 **MAIN FIGURE LEGENDS**

814 **Figure 1 – Characterisation of mAb binding to the RCR-complex.**

815 (A) Size exclusion chromatograms demonstrating RCR-complex formation between RH5, CyRPA and
816 RIPR, and (B) demonstrating binary complex formation between RH5+CyRPA, and RIPR+CyRPA. (C)
817 Non-reducing SDS-PAGE gel assessing binary and ternary complex formation. Coloured sterisks on
818 chromatograms indicate which gel lanes correspond to the peaks in panels A and B. (D) Size
819 exclusion chromatogram showing representative example of complex formation analysis between
820 the RCR-complex and anti-RH5 mAb R5.016 [Type I, GIA-positive], and (E) anti-RH5 mAb R5.002
821 [Type II, GIA-negative]. (F) Non-reducing SDS-PAGE gel of co-immunoprecipitation of the pre-formed
822 recombinant RCR-complex without (-) or with (+) mAb R5.016 [Type I, GIA-positive] or (G) mAb
823 R5.002 [Type II, GIA-negative] bound to protein G agarose beads. Representative examples shown.
824 (H) Bar chart summarising the number of Type I and Type II mAbs for each antigen and whether
825 these mAbs show GIA.

827 **Figure 2 – Available structural data concur with classification of mAbs as Type I or Type II.**

828 (A) Crystal structure of RH5 (centre, red) with mAb epitope bins overlaid (coloured circles). Antibody
829 clusters were identified as Type I (left, yellow box) and Type II (right, grey box) depending on their
830 ability to bind to the RCR-complex. Anti-RH5 mAbs with available crystal structures of their Fab
831 bound to RH5 are underlined. The RH5 (red), CyRPA (blue), RIPR (green) and 9AD4 or R5.015 Fab
832 complex structures (left and right of centre, respectively) are a composite of published structures
833 (PDB: 4U0Q⁶, 7PHU³⁷, 6MPV²³ and 8CDD²⁴) that concur with Type I (gold) or Type II (grey) mAb
834 classification. (B) Crystal structure of CyRPA (centre, blue) with mAb epitope bins overlaid (coloured
835 circles). Antibody clusters were identified as Type I (left, gold circles) and Type II (right, grey circles)
836 depending on their ability to bind to the RCR-complex. Anti-CyRPA mAbs with available crystal
837 structures of their Fab bound to CyRPA are underlined. The RH5 (red), CyRPA (blue), RIPR (green)
838 and anti-CyRPA Fab (Cy.002, Cy.003, Cy.004, Cy.007) complex structures (left and right of centre,
839 respectively) are a composite of published structures (PDB: 7PI3³⁷, 7P17³⁷ and 6MPV²³) that concur
840 with Type I (gold) or Type II (grey) mAb classifications. The full RIPR structure has been excluded
841 from the Type II mAb illustrations for clarity.

843 **Figure 3 – Demonstration of synergistic inter-antigen GIA of mAbs targeting the RCR-complex.**

844 (A) Predicted growth inhibitory activity (GIA) based on Bliss additivity (red) compared to measured
845 GIA (dark blue) for a mAb combination where one was held at 30 % GIA (X-axis) and the other
846 measured at ~300 µg/mL (Y-axis); R5.011 was held at 2 mg/mL (not 30 % GIA) due to R5.011 alone
847 having no GIA activity. Complete dilution curves shown in **Figure S2**. Bar indicates the mean across
848 triplicate measurements. (B) Heat map summary of the fold improvement over Bliss additivity from
849 panel. (C) Synergy GIA analysis of anti-RH5 mAb R5.008 combined with anti-CyRPA mAb Cy.003 in a
850 1:1 mixture (i.e., 1 mg/mL = 1 mg/mL Cy.003 or 0.5 mg/mL Cy.003 + 0.5 mg/mL R5.008). Grey:
851 Cy.003 alone titration curve. Black: R5.008 alone titration curve Red: predicted Bliss additivity GIA
852 for a 1:1 mixture of Cy.003 and R5.008. Blue: measured data. Each data set fitted with a Richard's
853 five-parameter dose-response curve with no constraints. Individual data points are the mean of
854 triplicate wells in each experiment; N=2 independent experiments for R5.008 and N=3 for Cy.003
855 alone and Cy.003+R5.008 (1:1 mixture).

857 **Figure 4 – Immunisation with combinations of RH5, CyRPA and/or RIPR does not improve over**
858 **immunisation with RH5 alone.**

859 Wistar rats were immunised intramuscularly with soluble protein vaccines formulated in Matrix-M™
860 adjuvant on days 0, 28 and 56. A terminal bleed was taken on day 70 (post-third dose). Doses of 2 µg
861 RH5, and 20 µg CyRPA and RIPR antigen were used. For the “R+C+Ri” group, antigen doses were
862 matched to the single antigen vaccination groups (2 µg RH5 + 20 µg CyRPA + 20 µg RIPR). For the
863 “R+C+Ri Equimolar” group antigens were dose matched to the RCR-complex (5.3 µg RH5 + 3.5 µg
864 CyRPA + 11.1 µg). Day 70 serum IgG ELISA data (reported in µg/mL) shown against full-length (A)
865 RH5 (red), (B) CyRPA (blue), and (C) RIPR (green). Dotted line corresponds to median antigen-specific
866 IgG response from the relevant group of single antigen immunised animals. Summary of statistical
867 analysis related to these panels can be found in **Table S2**. (D) Single-cycle GIA assays were
868 performed using *P. falciparum* clone 3D7. Total IgG, purified from day 70 serum samples, was
869 titrated in the GIA assay (see **Figure S3B**). GIA at 1 mg/mL total purified IgG was interpolated for
870 each animal. Dotted line indicates median RH5 GIA. Significance determined by one-way ANOVA
871 with Dunnett’s multiple comparisons test versus RH5 group only, **** $p<0.0001$. (E) Data from (D)
872 were replotted against total antigen-specific IgG concentration in µg/mL as measured by ELISA in
873 each purified total IgG sample (see **Figure S3C**). Each dataset was fitted with a Richard’s five-
874 parameter dose-response curve with no constraints to ascertain the GIA assay EC₅₀. Dotted line
875 shows the median result for the RH5 only group for comparison. Individual and median group
876 responses (N=6 per group) are shown in all panels. Significance determined by one-way ANOVA of
877 log-transformed data with Dunnett’s multiple comparisons test versus RH5 group only. * $p<0.05$, **
878 $p<0.001$, *** $p<0.0001$, **** $p<0.0001$.

879

880 **Figure 5 – EGF-like domains 5-8 of RIPR contain growth-inhibitory antibody epitopes.**

881 (A) Schematic of the RIPR protein with the 10 EGF-like domains indicated as blue circles. Black
882 triangle indicates the putative Plasmeprin X (PMX) cleavage site⁴⁵ that splits the molecule into two
883 halves; with structurally determined core and tail regions²⁴ indicated by black bars. Anti-RIPR mAb
884 binding sites indicated as determined by dot-blot and peptide ELISA (**Figure S5F,G**); grey: GIA-
885 negative mAbs; red: GIA-positive mAbs, asterisk indicates Type I mAbs. Type I mAb RP.013 could not
886 be mapped, hence is not shown. (B) Antigen reversal single-cycle GIA assay using *P. falciparum* clone
887 3D7 and pooled anti-RIPR IgG from rabbits (see **Figure S5C**). Anti-RIPR full-length (FL) total purified
888 IgG was held at 3 mg/mL (grey bar) and the indicated RIPR EGF proteins were titrated in the assay
889 from 20 µM to 0.31 µM. Mean and standard deviation (SD) of triplicate wells shown. (C) Eight anti-
890 RIPR mAbs were titrated in a single-cycle GIA assay. GIA below the dotted line at 20 % is regarded as
891 negative, the dotted line at 50 % GIA is included for clarity. Points are mean of N=3 replicates, error
892 bars are SD. (D) Wistar rats (N=6/group) were immunised with RIPR FL (green) or RIPR EGF(5-8)
893 (purple) protein formulated in Matrix-M™ adjuvant. A single-cycle GIA assay was performed using *P.*
894 *falciparum* clone 3D7 and a titration of total IgG purified from day 70 serum samples. The data set
895 for each group was pooled and fitted with a Richard’s five-parameter dose-response curve with no
896 constraints. The dashed line shows 0 % GIA. Dotted lines show 20 % GIA and 50 % GIA for
897 comparison. (E) Day 70 serum IgG ELISA data (reported in µg/mL) against full-length RIPR for rats
898 immunised in (D). Dots represent individual animals and bars are median; *** $p<0.001$ by Mann-
899 Whitney test. (F) Data from (D) replotted against RIPR FL-specific IgG concentration in µg/mL as
900 measured by ELISA in each purified total IgG sample. The dashed lines show 0% GIA and dotted lines

901 show 20 % and 50 % GIA for ease of comparison. Each data set was fitted with a with a Richard's
902 five-parameter dose-response curve with no constraints and the EC₅₀ calculated.
903

904 **Figure 6 – Immunisation with combinations of RH5 and R78C improves on immunisation with RH5
905 alone.**

906 Wistar rats were immunised intramuscularly with soluble protein vaccines formulated in Matrix-M™
907 adjuvant on days 0, 28 and 56. A terminal bleed was taken on day 70 (post-third dose). Combination
908 (e.g., “R78C + RH5”) groups were given at equimolar ratios of 9 µg + 10 µg antigen respectively,
909 whereas “mini” groups (e.g. “RCR-78 mini”) were given as 20 µg of pre-formed complex. Day 70
910 serum IgG ELISA data (reported in µg/mL) shown against full-length (A,B) RH5 (red), (C,D) CyRPA
911 (blue), and (E,F) RIPR (green). Dotted line corresponds to median antigen-specific IgG response from
912 the reference group of single antigen immunised animals. Two separate studies are shown in
913 independent graphs. Summary of statistical analysis related to these panels can be found in **Table**
914 **S3.** (G) Single-cycle GIA assays were performed using *P. falciparum* clone 3D7. Total IgG, purified
915 from day 70 serum samples, was titrated in the GIA assay (see **Figure S8B**). GIA at 1 mg/mL total
916 purified IgG was interpolated for each animal. Dotted line indicates median GIA for RH5 alone group.
917 Individual and median group responses are shown. Data include all animals from previous studies
918 vaccinated in an identical manner with RH5, CyRPA or RIPR at the indicated dose. Significance
919 determined by one-way ANOVA with Dunnett’s multiple comparisons test versus RH5 only group, *
920 $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. (H) GIA EC₅₀ data from the indicated groups (from
921 data in **S8C**). Dotted line indicates median result for RH5 only immunised animals (2 µg dose) for
922 comparison. (I) Combined day 70 serum IgG ELISA data (summed in µg/mL) for all three antigens
923 across select vaccination groups receiving the same immunogens; 2 µg dose RH5 data shown.
924 Dashed line indicates median result for RH5 only immunised animals for comparison. (J) Summary of
925 data shown in (I) with the median contribution of each different antigen-specific IgG (in µg/mL)
926 displayed for each immunisation group. RH5 (2 µg): red; CyRPA: blue; RIPR: green. Dashed line
927 shows median result for the RH5 only group for comparison.
928

929 **Figure 7 – Anti-RH5, -CyRPA, and -RIPR polyclonal vaccine-induced IgG show additive GIA.**

930 Selected total IgG samples from rats vaccinated in **Figures 4 and 6** were titrated in a GIA assay using
931 *P. falciparum* clone 3D7. (A) Anti-RIPR total IgG was held at 2.5 mg/mL (not shown, ~40 % GIA) with
932 anti-CyRPA IgG titrated using a 5-fold dilution. Black: anti-CyRPA IgG alone; grey: Predicted Bliss
933 Additivity (PBA) of the titrated anti-CyRPA IgG with the held anti-RIPR IgG; orange: measured result.
934 (B) Anti-RIPR and anti-CyRPA total IgG each held at 0.5 mg/mL (not shown, ~30 % GIA) with anti-RH5
935 IgG titrated using a 5-fold dilution series. Black: anti-RH5 alone; grey: PBA of the titrated anti-RH5
936 IgG with anti-CyRPA and anti-RIPR IgG held; orange: measured result. (C) Anti-R78C total IgG was
937 held at 1 mg/mL (not shown, ~30 % GIA) with anti-RH5 IgG titrated using a 5-fold dilution series.
938 Black: anti-RH5 alone; grey: PBA of titrated anti-RH5 IgG with the held anti-R78C IgG; orange:
939 measured result. Mean of N=3 replicates, and SD shown. (D-F) Single point GIA assay of purified
940 antigen-specific IgG. Anti-RH5 (red), anti-CyRPA (blue), and anti-RIPR (green) each tested at a
941 concentration aimed to give ~20 % GIA. “C+Ri”: anti-CyRPA IgG + anti-RIPR IgG mix; “R+C+Ri”: anti-
942 RH5 + anti-CyRPA + anti-RIPR IgG mix. Antigen-specific IgG concentrations in each mix as per single
943 antigen GIA experiments. PBA in grey; measured result in orange; depleted: post-purification IgG at
944 0.5 mg/mL. Antigen-specific IgG purified from pooled sera from (D) single antigen immunised
945 animals; (E) animals immunised with the RCR-complex; and (F) animals immunised with R78C+RH5.

946 **REFERENCES**

- 948 1. WHO. *World Malaria Report 2023*. (2023).
- 949 2. Draper, S. J. *et al.* Malaria Vaccines: Recent Advances and New Horizons. *Cell Host Microbe* **24**, 43–56
950 (2018).
- 951 3. Moorthy, V., Hamel, M. J. & Smith, P. G. Malaria vaccines for children: and now there are two. *Lancet*
952 (2024) doi:10.1016/S0140-6736(23)02743-5.
- 953 4. Takala, S. L. *et al.* Extreme Polymorphism in a Vaccine Antigen and Risk of Clinical Malaria: Implications
954 for Vaccine Development. *Sci Transl Med* **1**, 2ra5-2ra5 (2009).
- 955 5. Cowman, A. F., Tonkin, C. J., Tham, W.-H. H. & Duraisingh, M. T. The Molecular Basis of Erythrocyte
956 Invasion by Malaria Parasites. *Cell Host Microbe* **22**, 232–245 (2017).
- 957 6. Wright, K. E. *et al.* Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking
958 antibodies. *Nature* **515**, 427–430 (2014).
- 959 7. Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major
960 role in the host tropism of *Plasmodium falciparum*. *Proc Natl Acad Sci U S A* **110**, 20735–20740 (2013).
- 961 8. Volz, J. C. *et al.* Essential Role of the PfRh5/PfRipr/CyRPA Complex during *Plasmodium falciparum*
962 Invasion of Erythrocytes. *Cell Host Microbe* **20**, 60–71 (2016).
- 963 9. Crosnier, C. *et al.* Basigin is a receptor essential for erythrocyte invasion by *Plasmodium falciparum*.
964 *Nature* **480**, 534–537 (2011).
- 965 10. Douglas, A. D. *et al.* The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-
966 strain neutralizing antibody. *Nat Commun* **2**, 601 (2011).
- 967 11. Bustamante, L. Y. *et al.* A full-length recombinant *Plasmodium falciparum* PfRH5 protein induces
968 inhibitory antibodies that are effective across common PfRH5 genetic variants. *Vaccine* **31**, 373–379
969 (2013).
- 970 12. Payne, R. O. *et al.* Human vaccination against RH5 induces neutralizing antimalarial antibodies that
971 inhibit RH5 invasion complex interactions. *JCI Insight* **2**, (2017).
- 972 13. Minassian, A. M. *et al.* Reduced blood-stage malaria growth and immune correlates in humans
973 following RH5 vaccination. *Med* **2**, 701–719 (2021).
- 974 14. Silk, S. E. *et al.* Superior antibody immunogenicity of a RH5 blood-stage malaria vaccine in Tanzanian
975 infants as compared to adults. *Med* **4**, 668–686 (2023).
- 976 15. Douglas, A. D. *et al.* A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage
977 *Plasmodium falciparum* Infection in Aotus Monkeys. *Cell Host Microbe* **17**, 130–139 (2015).
- 978 16. Douglas, A. D. *et al.* A defined mechanistic correlate of protection against *Plasmodium falciparum*
979 malaria in non-human primates. *Nat Commun* **10**, 1953 (2019).
- 980 17. Jin, J. *et al.* Production, quality control, stability, and potency of cGMP-produced *Plasmodium*
981 *falciparum* RH5.1 protein vaccine expressed in *Drosophila S2* cells. *npj Vaccines* **3.1** **3**, 32 (2018).
- 982 18. Reddy, K. S. *et al.* Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is
983 crucial for *Plasmodium falciparum* erythrocyte invasion. *Proc Natl Acad Sci U S A* **112**, 1179–84 (2015).

984 19. Chen, L. *et al.* An egf-like protein forms a complex with pfrh5 and is required for invasion of human
985 erythrocytes by plasmodium falciparum. *PLoS Pathog* **7**, (2011).

986 20. Ragotte, R. J., Higgins, M. K. & Draper, S. J. The RH5-CyRPA-Ripr Complex as a Malaria Vaccine Target.
987 *Trends Parasitol* **36**, 545–559 (2020).

988 21. Favuzza, P. *et al.* Structure of the malaria vaccine candidate antigen CyRPA and its complex with a
989 parasite invasion inhibitory antibody. *Elife* **6**, (2017).

990 22. Chen, L. *et al.* Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium
991 falciparum protein CyRPA. *Elife* **6**, (2017).

992 23. Wong, W. *et al.* Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. *Nature* **565**,
993 118–121 (2019).

994 24. Farrell, B. *et al.* Structure of the PfRCR complex which bridges the malaria parasite and erythrocyte
995 during invasion. *Nature* **1476**, (2023).

996 25. Scally, S. W. *et al.* PCRCR complex is essential for invasion of human erythrocytes by Plasmodium
997 falciparum. *Nat Microbiol* **7**, 2039–2053 (2022).

998 26. Dreyer, A. M. *et al.* Passive Immunoprotection of Plasmodium falciparum -Infected Mice Designates
999 the CyRPA as Candidate Malaria Vaccine Antigen . *The Journal of Immunology* **188**, 6225–6237 (2012).

1000 27. Bustamante, L. Y. *et al.* Synergistic malaria vaccine combinations identified by systematic antigen
1001 screening. *Proc Natl Acad Sci U S A* **114**, 12045–12050 (2017).

1002 28. Illingworth, J. J. *et al.* Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine
1003 Candidate Antigens. *Front Immunol* **10**, 1254 (2019).

1004 29. Tamborini, M. *et al.* Vaccination with virosomally formulated recombinant CyRPA elicits protective
1005 antibodies against Plasmodium falciparum parasites in preclinical in vitro and in vivo models. *npj
1006 Vaccines* **2020** *5:1* 5, 1–8 (2020).

1007 30. Azasi, Y. *et al.* Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth
1008 inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. *Sci Rep* **10**, 1–12 (2020).

1009 31. Singh, H. *et al.* Antibody Combinations Targeting the Essential Antigens CyRPA, RH5, and MSP-119
1010 Potently Neutralize Plasmodium falciparum Clinical Isolates From India and Africa. *J Infect Dis* **223**,
1011 1953–1964 (2021).

1012 32. Mian, S. Y. *et al.* Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) Elicits Detectable
1013 Levels of Invasion-Inhibitory Antibodies during Natural Infection in Humans. *Infect Immun* **90**, (2022).

1014 33. Tamborini, M. *et al.* The malaria blood stage antigen PfCyRPA formulated with the TLR-4 agonist
1015 adjuvant GLA-SE elicits parasite growth inhibitory antibodies in experimental animals. *Malar J* **22**, 210
1016 (2023).

1017 34. Ntege, E. H. *et al.* Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-
1018 interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. *Vaccine* **34**,
1019 5612–5622 (2016).

1020 35. Jamwal, A. *et al.* Erythrocyte invasion-neutralising antibodies prevent Plasmodium falciparum RH5
1021 from binding to basigin-containing membrane protein complexes. *Elife* **12**, (2023).

1022 36. Alanine, D. G. W. *et al.* Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-
1023 Neutralizing Antibodies. *Cell* **178**, 216–228 (2019).

1024 37. Ragotte, R. J. *et al.* Heterotypic interactions drive antibody synergy against a malaria vaccine
1025 candidate. *Nat Commun* **13**, 1–12 (2022).

1026 38. Knudsen, A. S. *et al.* Strain-Dependent Inhibition of Erythrocyte Invasion by Monoclonal Antibodies
1027 Against *Plasmodium falciparum* CyRPA. *Front Immunol* **12**, (2021).

1028 39. Jin, J. *et al.* Accelerating the clinical development of protein-based vaccines for malaria by efficient
1029 purification using a four amino acid C-terminal ‘C-tag’. *Int J Parasitol* **47**, 435–446 (2017).

1030 40. Hjerrild, K. A. *et al.* Production of full-length soluble *Plasmodium falciparum* RH5 protein vaccine using
1031 a *Drosophila melanogaster* Schneider 2 stable cell line system. *Sci Rep* **6**, 30357 (2016).

1032 41. Andersson, A. M. C., Buldun, C. M., Pattinson, D. J., Draper, S. J. & Howarth, M. SnoopLigase peptide-
1033 peptide conjugation enables modular vaccine assembly. *Sci Rep* **9**, (2019).

1034 42. Galaway, F. *et al.* P113 is a merozoite surface protein that binds the N terminus of *Plasmodium*
1035 *falciparum* RH5. *Nature Communications* **2017 8:1** **8**, 1–11 (2017).

1036 43. Nacer, A. *et al.* Expanding the Malaria Antibody Toolkit: Development and Characterisation of
1037 *Plasmodium falciparum* RH5, CyRPA, and CSP Recombinant Human Monoclonal Antibodies. *Front Cell*
1038 *Infect Microbiol* **12**, 901253 (2022).

1039 44. Williams, A. R. *et al.* Enhancing Blockade of *Plasmodium falciparum* Erythrocyte Invasion: Assessing
1040 Combinations of Antibodies against PfRH5 and Other Merozoite Antigens. *PLoS Pathog* **8**, e1002991
1041 (2012).

1042 45. Favuzza, P. *et al.* Dual Plasmeprin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria
1043 Parasite Life Cycle. *Cell Host Microbe* **27**, 642–658 (2020).

1044 46. Ishino, T. *et al.* Engineering a monomeric Fc domain modality by N-glycosylation for the half-life
1045 extension of biotherapeutics. *J Biol Chem* **288**, 16529–37 (2013).

1046 47. Nagaoka, H. *et al.* Antibodies against a short region of PfRipr inhibit *Plasmodium falciparum* merozoite
1047 invasion and PfRipr interaction with Rh5 and SEMA7A. *Sci Rep* **10**, 6573 (2020).

1048 48. Bartholdson, S. J. *et al.* Semaphorin-7A Is an Erythrocyte Receptor for *P. falciparum* Merozoite-Specific
1049 TRAP Homolog, MTRAP. *PLoS Pathog* **8**, e1003031 (2012).

1050 49. Marini, A. *et al.* A Universal Plug-and-Display Vaccine Carrier Based on HBsAg VLP to Maximize
1051 Effective Antibody Response. *Front Immunol* **10**, 500416 (2019).

1052 50. Wang, L. T. *et al.* Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-
1053 stage antigen RH5. *bioRxiv* 2023.10.04.560669 (2023).

1054 51. Barrett, J. R. *et al.* Analysis of the Diverse Antigenic Landscape of the Malaria Invasion Protein RH5
1055 Identifies a Potent Vaccine-Induced Human Public Antibody Clonotype. *bioRxiv* 2023.10.04.560576
1056 (2023).

1057 52. Weiss, G. E. *et al.* The dual action of human antibodies specific to *Plasmodium falciparum* PfRH5 and
1058 PfCyRPA: Blocking invasion and inactivating extracellular merozoites. *PLoS Pathog* **19**, e1011182
1059 (2023).

1060 53. Healer, J. *et al.* RH5.1-CyRPA-Ripr antigen combination vaccine shows little improvement over RH5.1 in
1061 a preclinical setting. *Front Cell Infect Microbiol* **12**, 1898 (2022).

1062 54. Healer, J. *et al.* Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion
1063 of *Plasmodium falciparum* into human erythrocytes. *Cell Microbiol* **21**, e13030 (2019).

1064 55. Sridhar, S. *et al.* Single-Dose Protection against Plasmodium berghei by a Simian Adenovirus Vector
1065 Using a Human Cytomegalovirus Promoter Containing Intron A. *J Virol* **82**, 3822–3833 (2008).

1066 56. Khairil Anuar, I. N. A. *et al.* Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access
1067 an oligomerization toolbox. *Nat Commun* **10**, 1734 (2019).

1068 57. Douglas, A. D. *et al.* Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5.
1069 *Journal of immunology* **192**, 245–58 (2014).

1070 58. Malkin, E. M. *et al.* Phase 1 clinical trial of apical membrane antigen 1: An asexual blood-stage vaccine
1071 for Plasmodium falciparum malaria. *Infect Immun* **73**, 3677–3685 (2005).

1072 59. Rijal, P. *et al.* Therapeutic Monoclonal Antibodies for Ebola Virus Infection Derived from Vaccinated
1073 Humans. *Cell Rep* **27**, 172-186.e7 (2019).

1074 60. Miura, K. *et al.* Development and characterization of a standardized ELISA including a reference serum
1075 on each plate to detect antibodies induced by experimental malaria vaccines. *Vaccine* **26**, 193–200
1076 (2008).

1077

Figure 1

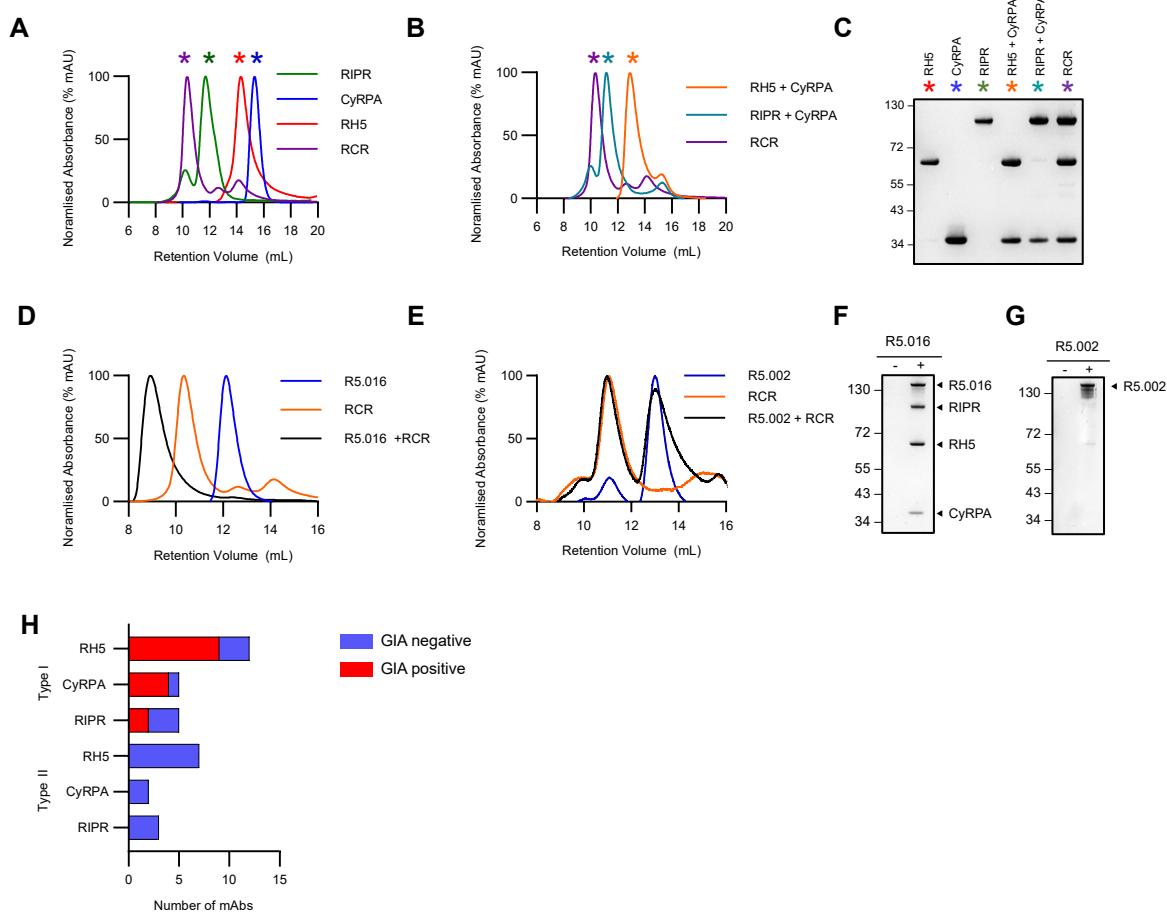
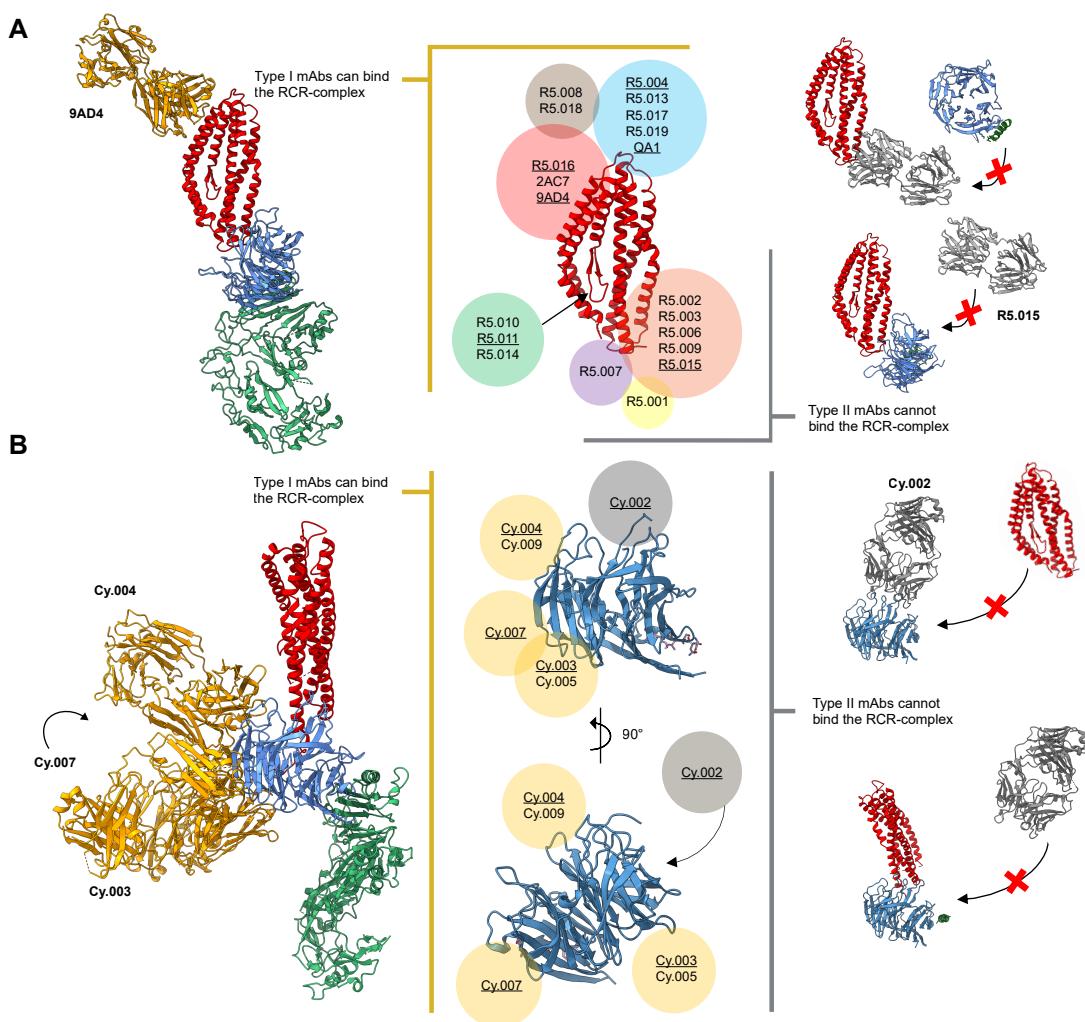



Figure 2

Figure 3

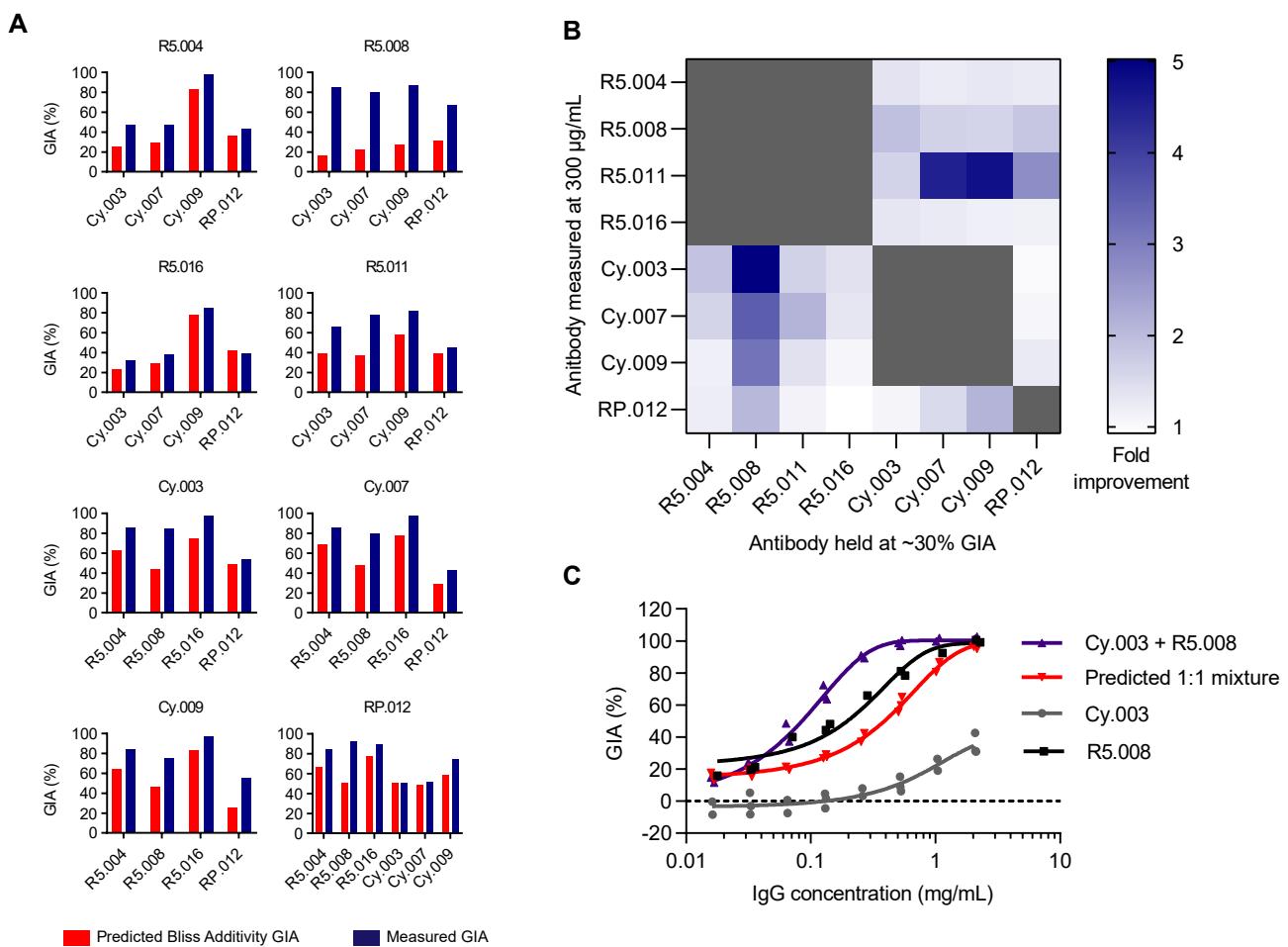


Figure 4

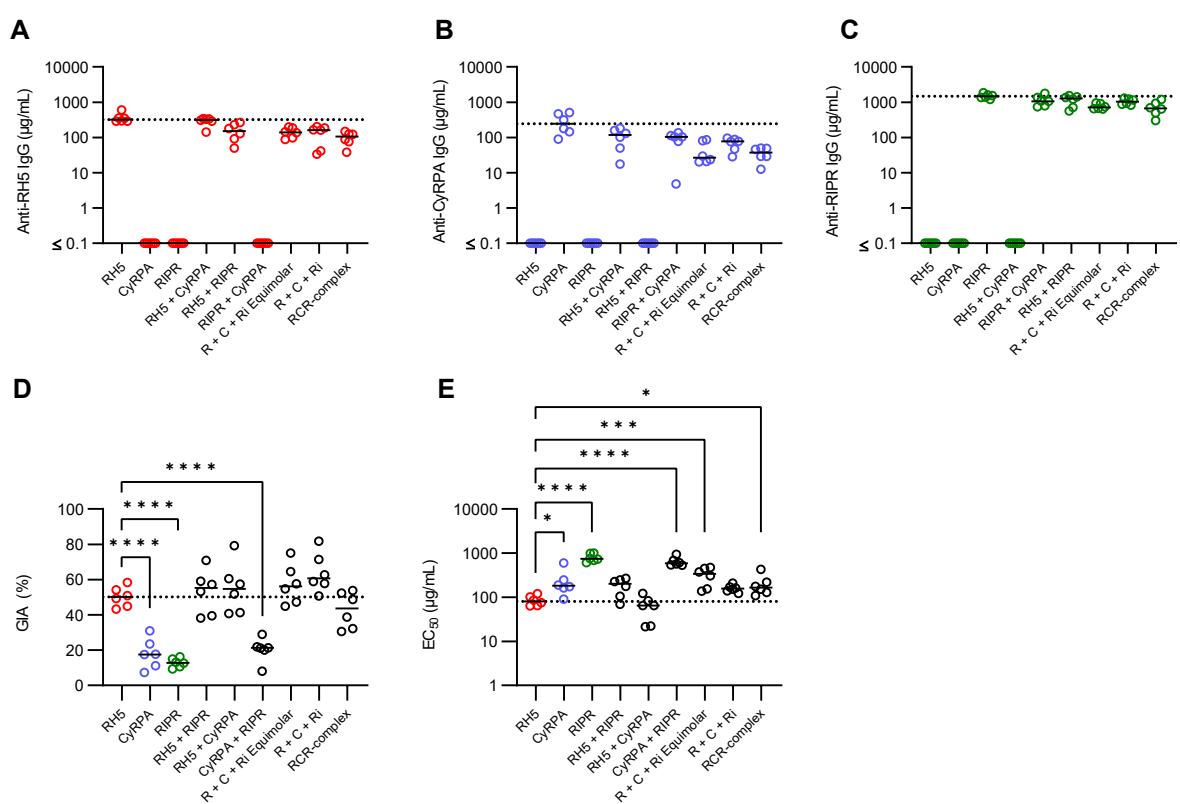
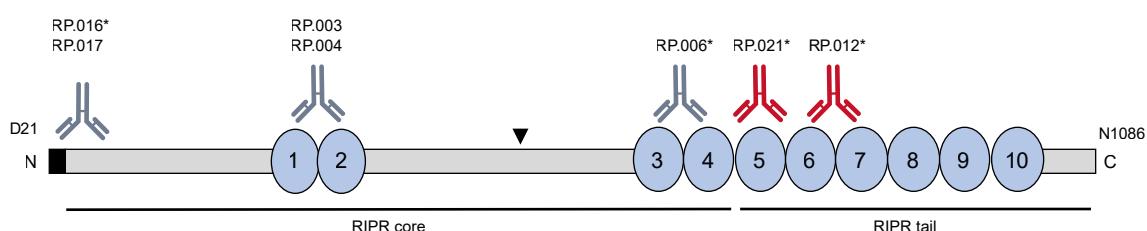
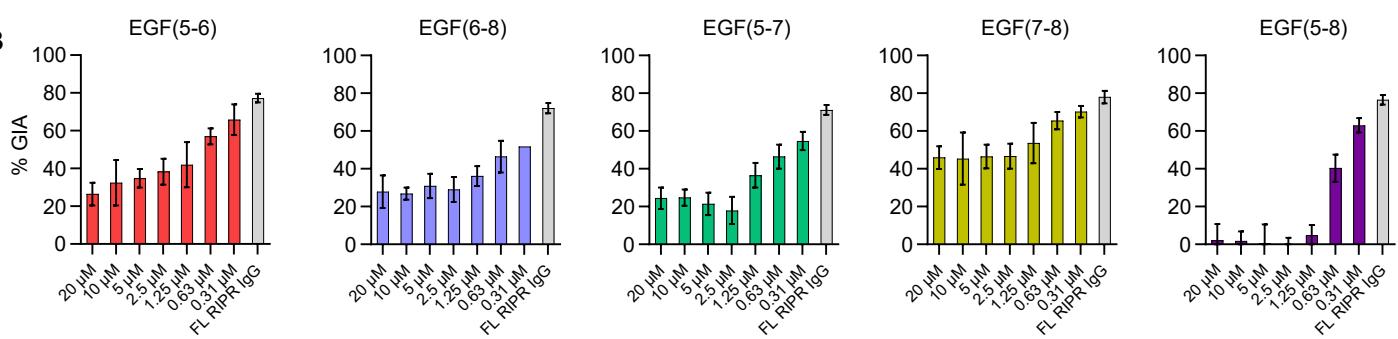
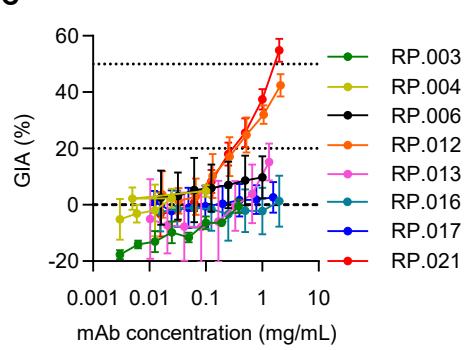
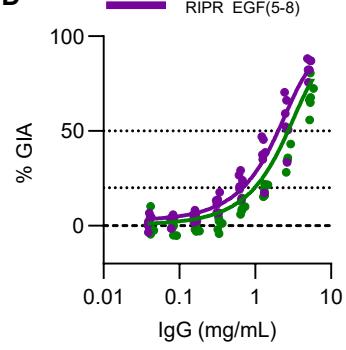
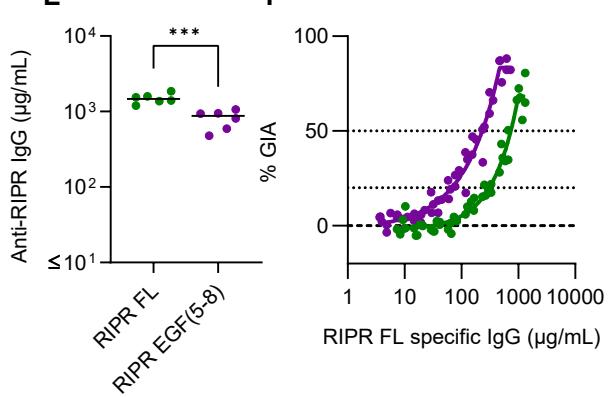
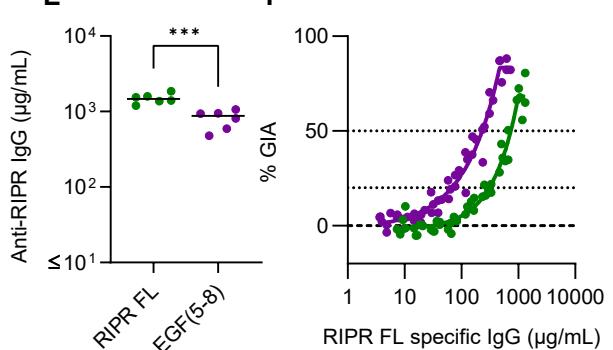




Figure 5


A


B


C


D

E

F

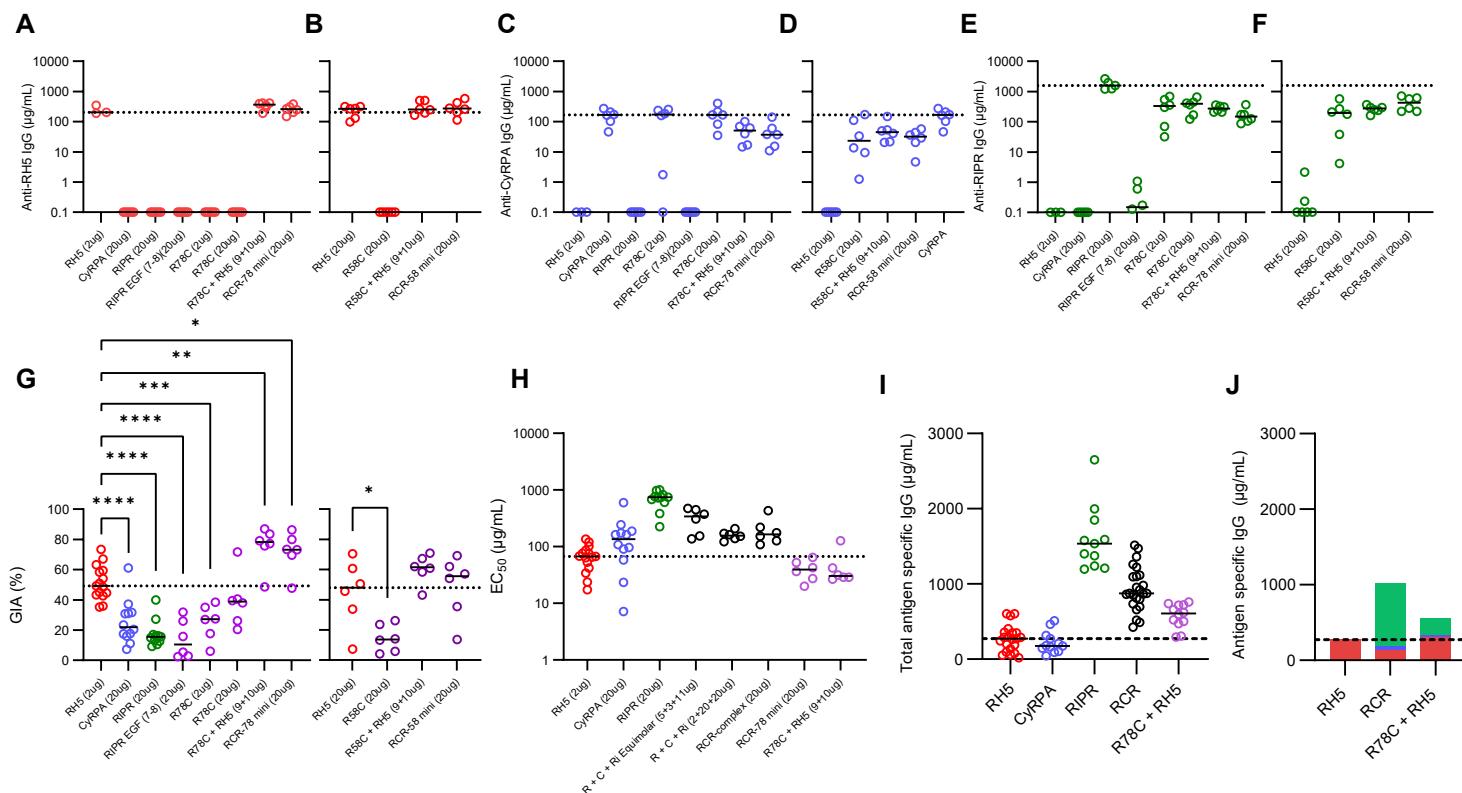



Figure 7

