

1 Local and global changes in cell density induce 2 reorganisation of 3D packing in a proliferating epithelium.

3 Vanessa Barone^{1,2*},, Antonio Tagua^{3*}, Jesus Á. Andrés-San Román³, Amro Hamdoun¹, Juan Garrido-
4 García³, Deirdre C. Lyons¹, Luis M. Escudero^{3, 4},.

5

6 * Co-first authors

7 Co-corresponding authors

8 1 Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA

9 2 Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, 93950, USA

10 3 Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and

11 Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla. 41013 Seville, Spain

12 4 Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain

13

14 **Running Title**

15

16 3D packing and proliferation

17

18 **Summary statement**

19

20 The study uses sea star embryogenesis as a model of a proliferating epithelium to highlight how cell
21 division induces 3D cell rearrangements during development.

22 **ABSTRACT**

23 Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells.
24 In curved epithelia, cells can intercalate along their own apicobasal axes adopting a shape named
25 “scutoid” that allows energy minimization in the tissue. Although several geometric and biophysical
26 factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid
27 formation in 3D epithelial packing remain poorly understood. Here we use live-imaging of the sea star
28 embryo coupled with deep learning-based segmentation, to dissect the relative contributions of cell
29 density, tissue compaction, and cell proliferation on epithelial architecture. We find that tissue
30 compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids.
31 Physical compression experiments identify cell density as the factor promoting scutoid formation at a
32 global level. Finally, the comparison of the developing embryo with computational models indicates
33 that the increase in the proportion of scutoids is directly associated with cell divisions. Our results
34 suggest that apico-basal intercalations appearing just after mitosis may help accommodate the new
35 cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell
36 rearrangements during development.

37 **Keywords:** sea star, echinoderm embryo, morphogenesis, 3D epithelial packing, scutoid,
38 computational modelling, deep-learning, AB-T1.

39

40

INTRODUCTION

41

42

43

44

45

46

47

48

49

50

Animal embryonic development is often driven by morphogenesis of epithelial tissues that form lumens, giving rise to hollow structures such as tubes or cysts that are the basis for further organogenesis (Guillot and Lecuit, 2013; Lecuit and Lenne, 2007, Navis and Bagnat, 2015). During these processes, epithelia become curved while maintaining their barrier function (Davidson, 2012; Pearl et al., 2017), which means that cell shape is adjusted so that the epithelium remains sealed and no openings or fractures occur (Gibson et al., 2006; Sánchez-Gutiérrez et al., 2016). Therefore, transformations in epithelial packing, i.e. the way in which epithelial cells are arranged in three dimensions, are crucial to the coupling of morphogenesis and function in curved epithelia (Gómez-Gálvez et al., 2021a; Lemke and Nelson, 2021).

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

In the example of monolayered epithelia, it has been traditionally assumed that cells have a prism shape and that curvature is achieved by prisms turning into frusta (i.e. truncated pyramids) (Davidson, 2012; Lecuit and Lenne, 2007; Pearl et al., 2017). Cells that are prisms or frusta have the same set of neighbours on their apical and basal sides (Schneider and Eberly, 2002). However, this is not always the case, as apico-basal intercalations can occur, i.e. neighbour exchanges that occur not in time, but in space, along the apicobasal axis of a cell - also known as apico-basal topological transition 1 (AB-T1) (Gómez-Gálvez et al. 2021; Gómez-Gálvez et al. 2018; Rupprecht et al. 2017; Sanchez-Corrales et al. 2018). Whenever an AB-T1 occurs, the four cells involved in the transition are no longer shaped as prisms or frusta; instead, they adopt another configuration, called scutoid, i.e. having different sets of neighbouring cells on their apical and basal surfaces (Gómez-Gálvez et al., 2022, 2021a, 2018; Lemke and Nelson, 2021; Lou et al., 2023; Mughal et al., 2018). AB-T1s occur frequently in curved epithelia (Honda et al., 2008; Sun et al., 2017; Xu et al., 2016), especially in tubular monolayered epithelia (Gómez-Gálvez et al. 2022; Gómez-Gálvez et al. 2018), allowing energetically favourable packing of cells in 3D (Gómez-Gálvez et al. 2022; Gómez-Gálvez et al. 2018). Based on this principle of energy minimization, AB-T1s are expected to form in any epithelium where the stresses acting on the apical and basal surfaces are anisotropic (Lou et al., 2023). This is the case in tissues with high curvature anisotropies, e.g. ovoids and tubes (Gómez-Gálvez et al., 2018; Mughal et al., 2018), or in areas with a large gradient of curvature where cells are laterally tilted (Lou et al., 2023; Rupprecht et al., 2017). In contrast, previous studies also suggest that geometrical cues should not induce AB-T1s in flat epithelia or in spherical epithelia, where the curvature is isotropic (do Carmo, 1976; Gómez-Gálvez et al., 2018; Lou et al., 2023).

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Despite those predictions, AB-T1s *have* in fact been observed in curved epithelia without pronounced anisotropy and in higher frequencies than expected considering only tissue geometry. Therefore, it has been proposed that scutoid formation may also be due to cell and tissue dynamics producing differential strain on the apical and basal surfaces of epithelial tissues (Gómez-Gálvez et al., 2018; Lou et al., 2023; Rupprecht et al., 2017). For example, cell divisions may temporarily alter the balance of forces acting on epithelial cells (Gómez et al., 2021; Ragkousi et al., 2017; Ragkousi and Gibson, 2014). Similarly, the strains acting on tissues undergoing morphogenesis may be different from those predicted according to geometry alone, for instance due to active cell movements within the tissue (Gómez-Gálvez et al., 2018; Sanchez-Corrales et al., 2018; Sun et al., 2017) or to pressure from outer structures (Lou et al., 2023; Rupprecht et al., 2017). Determining whether dynamic processes underlie scutoid formation, requires following those processes in time. Therefore, high-resolution time-lapse imaging coupled with precise image segmentation is pivotal (Arganda-Carreras et al., 2017; Falk et al., 2019; Haberl et al., 2018; Lee et al., 2020; Wolny et al., 2020). This approach allows one to obtain realistic information about cell conformations in 3D, how they change over time and how those

86 changes relate to other morphogenetic events such as cell division, tissue rearrangements or cell
87 deformation. Here, we introduce the sea star embryo (*Patiria miniata*) as a model for spheroid
88 epithelium dynamics, and we employ live imaging and machine learning segmentation algorithms to
89 analyse cell and tissue shapes with respect to cell division and tissue compaction.

90 *P. miniata* embryos are transparent (Arnone et al., 2015; Meyer and Hinman, 2022; Newman, 1922),
91 develop freely in sea water (Arnone et al., 2015; Meyer and Hinman, 2022; Newman, 1922) and can
92 be imaged live for extended periods of time (Barone and Lyons, 2022; Perillo et al., 2023; Swartz et
93 al., 2021). When fertilisation occurs, the fertilisation envelope is raised, the zygote undergoes
94 holoblastic cleavage and then develops into an approximately spherical blastula (Arnone et al., 2015;
95 Barone et al., 2022; Dan-Sohkawa, 1976; Kominami, 1983), with a blastocoel encircled by a
96 monolayered epithelium (Arnone et al., 2015; Barone and Lyons, 2022; Dan-Sohkawa, 1976;
97 Kominami, 1983). Interestingly, during cleavage stages sea star cells adhere loosely to each other
98 and line up against the fertilisation envelope, occupying all available space (Barone et al., 2022;
99 Barone and Lyons, 2022; Maruyama and Shinoda, 1990). At these stages, the epithelium is not
100 sealed, there are openings between the cells through which fluid can flow (Barone and Lyons, 2022;
101 Dan-Sohkawa and Satoh, 1978). However, cell division planes are perpendicular to the epithelial
102 surface, so that the tissue becomes thinner and expands laterally after each round of synchronous
103 cell division. Eventually, at around the 512-cell stage, closure is achieved and cells become
104 progressively more compacted, i.e. more tightly packed together. (Barone and Lyons, 2022; Dan-
105 Sohkawa and Satoh, 1978). Concomitantly, cell fate specification takes place, as different domains
106 of the embryo are established: vegetal pole cells inherit maternal determinants that induce
107 mesendodermal cell fates, while animal cells will develop into neuroectodermal cell types (Barone et
108 al., 2022; Cheatile Jarvela et al., 2016; Maruyama and Shinoda, 1990; Nakajima et al., 2004; Swartz
109 et al., 2021; Yankura et al., 2013; Zheng et al., 2022). Throughout cleavage and early blastula stages
110 the embryonic shape remains approximately spherical (Barone and Lyons, 2022; Dan-Sohkawa,
111 1976).

112 Therefore, the sea star embryo is a dynamic spheroidal epithelium, undergoing sealing, while cells
113 within it divide and differentiate. The combination of live imaging of sea star embryo development,
114 detailed image analysis and computational modelling, allows us to ask whether, and how,
115 morphogenesis and 3D epithelial packing are coupled.

116

117

118

RESULTS

119

Scutoids are induced upon global increase in cell density.

120

To identify factors that couple cell proliferation and epithelial packing, we analysed the shape and 3D connectivity of cells in sea star embryos (*Patiria miniata*), which develop into approximately spherical monolayered blastulae (**Fig. 1A-B, Movie 1**) (Arnone et al., 2015; Barone and Lyons, 2022). In the sea star embryo, early blastomeres adhere loosely to one another initially, with fluid flowing between the inside and outside of the embryo until about the 512-cell stage, when the epithelium closes to encircle the blastocoel (Barone et al., 2022; Barone and Lyons, 2022; Dan-Sohkawa and Satoh, 1978) (**Fig. 1A, Fig. S1, Movie 1**). Importantly, during blastulation, many of the cellular processes characteristic of dynamic epithelia can be readily observed: cells undergo several rounds of cell division reducing their volume, changing shape and cell-cell contact topology along the whole height of the cells (3D packing) (Farhadifar et al., 2007; Lemke and Nelson, 2021; Nelson, 2016). To determine how cellular characteristics vary during development we performed time-lapse imaging of wild-type (WT) sea star embryos expressing a membrane marker (mYFP) (**Fig. 1A-B**) and a nuclear marker (H2B-CFP) combined with a deep-learning based 3D segmentation program (**Fig. 1C, Fig. S2**, see **Materials and Methods**). To ensure accurate segmentation we limited our analysis to the portion of the imaged embryos with the highest signal/noise ratio (**Fig. 1C**, see **Materials and Methods**).

136

The presence of “scutoidal” cells is a good indicator of changes in 3D packing, as scutoids are formed every time an AB-T1 occurs and the 3D connectivity increases (Gómez-Gálvez et al. 2022; Gómez-Gálvez et al. 2018; Okuda et al. 2019). Therefore, we set out to identify whether scutoids are formed in this dynamic spheroidal epithelium (**Fig. S3**), when they are formed, and which cell behaviours may be related to scutoid formation. We identified scutoids as cells with a different configuration of neighbours in the apical and basal sides (**Fig. 1D**) (Gómez-Gálvez et al., 2021a, 2018). Interestingly, we were not able to detect scutoids before the 256-cell stage by visual inspection. At the 256-cell stage, the epithelium started to seal, and then, we observed an increase in the frequency of scutoids at subsequent stages (**Fig. 1E**). Given that tissue geometry has been previously implicated in the appearance of scutoids (Gómez-Gálvez et al., 2018; Mughal et al., 2018), we asked whether curvature anisotropy changing over time explains the observed trend in scutoid formation. We calculated the surface ratio anisotropy of the region and found that it does not increase significantly over time (**Fig. 1F**). This result suggests that, in the context of an isotropic region of a curved tissue, factors other than curvature anisotropy are responsible for scutoid formation. To identify such factors, we analysed other cellular characteristics during embryonic development. First, we confirmed that cell density approximately doubled when the embryo advanced to a new stage (**Fig. 1G**), meanwhile cell volume was approximately halved after each round of cell division (**Fig. 1H**). When analysing cell shape changes, we found that cells became less convex (**Fig. 1I, Fig. S4**). Importantly, given that sea star cells are not protrusive (**Movie 1**), loss of convexity is likely attributable to how tightly cells are packed together. (**Fig S4**) and indicates increased cell compaction. These changes are expected given that the tissue expands laterally and becomes thinner, as shown by reduced cell height and tissue surface ratio (**Fig. S3**), which may result in increased compaction.

158

Taken together, these results suggest that AB-T1s may be facilitated by increased cell density and/or compaction. To further investigate these possibilities, we mechanically compressed and live-imaged sea star embryos by embedding them in a transparent viscous gel (Polyethylene Glycol Diacrylate hydrogel, PEGDA) at the 1-cell stage (**Fig. 1A-B, Fig. S1, Movie 2**). This procedure confines the

162 embryo in a space that is smaller than usual, as normally embryonic cells occupy the entire space
163 provided by the fertilisation envelope (**Fig. 1A**). We called this condition: WT compressed (WT-comp).
164 Similarly to WT unperturbed embryos, we analysed the WT-comp at subsequent stages of
165 development. We observed that surface ratio anisotropy did not increase (**Fig. 1F**), cell density
166 doubled (**Fig. 1G**), cell volumes were halved (**Fig. 1H**), and cells became less convex (**Fig. 1I, Fig.**
167 **S4**). However, the comparison between WT and WT-comp at each developmental stage highlighted
168 interesting differences: compression induced a higher proportion of AB-T1s and their appearance at
169 an earlier stage (128-cell in WT-comp vs 256-cell in WT) (**Fig. 1E**). Concomitantly, WT-comp embryos
170 showed higher surface ratio anisotropy (**Fig. 1F**), higher cell density (**Fig. 1G**) and lower convexity
171 (**Fig. 1I**) than WT embryos. Cell volume was the only feature not altered by the compression (**Fig.**
172 **1H**). Importantly, we have found that compression does not impact the timing of development and the
173 synchronicity of cell divisions during the mitotic waves that occur between the 128- and 512-cell
174 stages (**Fig S5**). These experimental results suggested that the dynamics of scutoid formation are
175 linked to increase in cell density and tissue compaction.

176 **Regional differences in tissue compaction affect propensity of scutoid formation.**

177 During blastulation in the sea star embryo, several openings, located in different regions, close
178 progressively; (**Fig. 2A-B, Fig. S6, Movies 1, 3**). We investigated this phenomenon in more detail by
179 analysing separately the time-lapses where either the vegetal or the animal pole was imaged (**Fig.**
180 **2A, Fig. S6, Movies 1, 3**, see **Materials and Methods**). We observed that closure is delayed on the
181 animal pole: all openings are closed in vegetal poles of WT embryos by the 256-cell stage while they
182 close only at the 512-cell stage in animal poles (**Fig. 2B, Fig. S6**). We then asked whether this
183 asynchronous closure results in local differences in cell density and cell compaction that may induce
184 scutoid formation. When we measured cell density, we found that it is not significantly different
185 between animal and vegetal poles (**Fig. 2C**). However, using cell convexity as a measure of
186 compaction, we found that vegetal cells had lower convexity than animal cells (**Fig. 2D**). Interestingly,
187 scutoids appeared earlier and a higher proportion of cells acquired the scutoidal shape in the vegetal
188 pole compared to the animal pole of WT embryos (**Fig. 2E**).
189

190 These results suggested that, even though cell density was similar between poles, the presence
191 of an opening allowed animal cells to remain slightly less compacted for longer, therefore delaying
192 the formation of AB-T1s compared to the vegetal pole. In this scenario, the differences in the
193 propensities for scutoid formation between animal and vegetal cells would be lost if the opening in the
194 animal pole would be closed earlier. To test this hypothesis, we analysed compressed embryos (**Fig.**
195 **2F, Movies 2, 4**). We found that closure happens at the same time in animal and vegetal poles of
196 WT-comp embryos, with openings being closed in both poles before the 256-cell stage (**Fig. 2G**). Cell
197 density was similar between the two poles until the 512-cell stage, when it was higher in the vegetal
198 pole compared to the animal pole (**Fig. 2H**). Moreover, there was no significant difference in convexity
199 between animal and vegetal cells (**Fig. 2I**). Interestingly, there were no differences in the proportion
200 of animal and vegetal cells acquiring the scutoid shape at the 128- and 256-cell stages, when both
201 cell convexity and cell density were similar (**Fig. 2J**). At the 512-cell stage, however, when cell
202 convexity was not significantly different but cell density was higher in the vegetal pole, a higher
203 proportion of cells formed scutoids in the vegetal pole compared to the animal pole (**Fig. 2J**). While
204 we observed differences in surface ratio anisotropy and cell volumes between animal and vegetal
205 cells in a subset of the analysed stages, they did not correlate consistently with changes in the
206 proportion of scutoids (**Fig. S4**).
207

208 Taken together, these results show that differences in compaction between regions of the embryo
209 explain variation in the propensities for scutoid formation. Moreover, they show that compaction and
210 cell density can independently affect 3D packing, as differences in the proportion of scutoids between
211 regions with similar cell density can be explained by variation in compaction (WT) and, *viceversa*,
212 differences between similarly compact regions can be explained by variation in cell density (WT-
213 comp).

214 **Scutoid formation is temporally linked to cell divisions.**

215 Each stage of sea star development could be thought of as a steady state tissue characterised by
216 a specific shape, compaction and cell density, which could alone account for differences in AB-T1
217 propensity. Alternatively, the increment of AB-T1s observed during development can also be due to
218 dynamic factors. To discern between these two possibilities, we implemented spheroidal Voronoi
219 models that mimic the shape and number of cells of each real embryo (as detailed in **Materials and**
220 **Methods**). Briefly, we generated 3D Voronoi models for patches of epithelial cells corresponding to
221 our experimental segmented cells. This means a construction that imitates the tissue with the same
222 surface ratio anisotropy, cell density, and opening areas as in the embryos; but, importantly, without
223 dynamic components such as cell proliferation (**Fig. 3A**). Then, we used the same principle to
224 calculate the theoretical proportion of AB-T1s that should appear in both WT and WT-comp tissues.
225 We observed a higher number of scutoids in virtual compressed tissues when comparing them with
226 the WT constructions (**Fig. 3B**), showing that changes in cell density and tissue geometry can influence
227 the incidence of AB-T1s in the Voronoi model. However, we found that actual tissues presented a
228 higher amount of scutoids than their corresponding Voronoi models (**Fig. 3B**). This result suggests
229 that the appearance of scutoids is only partially due to changes in cell density/compaction altering the
230 position of cells relative to each other and to the shape of the tissue, i.e. to geometry. Other factors,
231 not accounted for in the model, can also induce AB-T1s.

232 In the sea star embryo, rounds of synchronous cell divisions are responsible for the increase in
233 cell density. Therefore, we used the time-lapses of the developing embryos to explore the relation
234 between the formation of scutoids and cell division. We tracked individual cells over time and asked
235 whether the formation of AB-T1s is temporally linked to cell division events within the epithelium (**Fig.**
236 **3C-F**). We analysed embryos between 128- and 512-cell stages and, for each scutoid detected, we
237 tracked the cell during the whole interphase, and recorded when that cell acquired a scutoidal shape
238 (scutoid onset) and when the AB-T1 transition was resolved (scutoid end) (**Fig. 3C-D**). In order to
239 compare the timing of scutoid formation and duration between different developmental stages and
240 different embryos, we normalised measurements over interphase duration, defined as the time
241 between the end of cytokinesis and mitotic rounding marking the beginning of the following cell
242 division (**Fig. S7, Materials and Methods**).

243 We tracked a total of 304 scutoid forming cells, of which 97 in WT embryos and 207 in WT-comp
244 embryos (**Fig. 3E-F**, **Fig. S7**), as expected due to the higher frequency of scutoids observed upon
245 compression (**Fig. 1E**). We found that the vast majority of scutoids in both conditions appeared shortly
246 after cell division (**Fig. 3E**), with more than 60% of all scutoids being formed before 15% of the
247 interphase time has elapsed, in both WT and WT-comp embryos (**Fig. 3E**, **Fig. S7**). This phenomenon
248 was observed consistently across embryos, as in most cases (4 out of 6 WT embryos and 5 out of 6
249 WT-comp embryos) the proportion of scutoids with onset after mitosis - defined as before 15% of the
250 interphase time - was higher than the proportion of scutoids with onset independent of mitosis -
251 defined as after 15% of the interphase time - (**Fig. 3F**). Interestingly, in both WT and WT-comp

252 embryos there was a steep decrease in scutoids onsets as the interphase progressed, with close to
253 no scutoids being formed in the second half of the interphase (**Fig. 3E, Fig. S7**). Notably, we did not
254 find a single cell that acquired the scutoidal shape twice within one interphase (**Fig. S7**). We observed
255 no fluctuations in the position of the transition point along the apicobasal axis that resulted in the
256 resolution and re-establishment of an AB-T1 among the same 4 cells. Instead, the apicobasal
257 transition is formed rapidly and then the transition point moves slowly toward either the basal side or
258 apical side until the AB-T1 is resolved and the scutoidal cells return to a frustum shape (**Fig 3C,D**).

259 Although scutoid onset was not altered, scutoid duration was increased in WT-comp embryos
260 compared to WT embryos (**Fig. S7**). Not only average scutoid duration (**Fig. S7**) but also the
261 proportion of scutoids that persisted through the second half of the interphase (**Fig. S7**) was higher
262 in WT-comp embryos. The results from the experimental and computational experiments show a
263 strong correlation between the formation of scutoids and cell division, suggesting a reorganisation of
264 3D cell packing as a response to maintain tissue homeostasis after the alteration induced by local
265 increases of cell density.

266

267

268

269

DISCUSSION

270 Elucidating the mechanisms involved in 3D packing is crucial to understand how tissues and
271 organs form during animal embryogenesis (Gómez-Gálvez et al., 2021a; Lemke and Nelson, 2021).
272 It has been previously proposed that AB-T1s are induced by i) curvature anisotropy (Gómez-Gálvez
273 et al., 2018; Mughal et al., 2018) ii) steep curvature gradients that can lead to cell tilting (Lou et al.,
274 2023; Rupprecht et al., 2017), and iii) cell migration and proliferation (Gómez-Gálvez et al., 2018).
275 From a biophysics point of view, the formation of scutoids is clearly related to the surface tension
276 parameters of the cells (Gómez-Gálvez et al., 2018; Mughal et al., 2018). In addition, Lou and
277 colleagues propose that, in cylinder and ellipsoidal geometries, the interplay between mechanics (e.g.
278 pressure, cell density and lateral tension) and cellular tilt is responsible for the appearance of
279 neighbour rearrangements along the apico-basal direction (Lou et al., 2023). However, distinguishing
280 the specific involvement of each factor affecting 3D packing has been challenging.

281 Here, we take advantage of the characteristic development of the sea star embryo, together with
282 its amenability to live imaging and mechanical manipulations, combined with deep learning-based
283 segmentation, to dissect the contributions of tissue compaction, cell density, and cell proliferation to
284 the formation of AB-T1s and the consequent 3D tissue rearrangement. Importantly, our experiments
285 and computational models discard a relevant contribution of curvature anisotropy, since the induction
286 of scutoids does not consistently correlate with increased tissue surface ratio anisotropy (**Fig. 1E-F**).
287 Instead, we find that scutoids form only once the epithelium is closed; then reorganisation of 3D
288 packing is dependent on the level of tissue compaction and on local and global changes in cell density.

289 In the sea star embryo, cells organise in a monolayered epithelium that is initially leaky. It is only
290 with subsequent rounds of oriented cell divisions that the epithelium becomes progressively more
291 compact. Three aspects of epithelial morphogenesis contribute to compaction, i.e. increased cell
292 density, epithelial closure, and cells becoming more tightly packed (**Fig. 4**).

293 Cell proliferation occurs initially in a loosely packed epithelium and, only at later stages, in the
294 context of a tightly packed tissue (**Fig. 4**). This phenomenon allows us to determine the relative
295 contributions of proliferation and compaction to scutoid formation. In addition, the timing and extent
296 of compaction is determined, at least in part, by how much space is available to the embryonic cells
297 while the tissue expands laterally due to cell divisions. Therefore, we can perform two types of
298 experiments: i) alter compaction by reducing such space, i.e. by mechanically compressing the
299 embryo; and ii) use computational methods to model 3D packing in the absence of proliferation.
300 Taking advantage of this model system and experimental approaches, we unravel the mechanisms
301 underlying changes in cell packing at three different scales: whole-embryo (**Fig. 1**), embryonic
302 domains (**Fig. 2**) and local proliferation (**Fig. 3**).

303 On a global scale, the analysis of the time-lapses shows that a significant amount of scutoids is
304 formed only when cells are sufficiently compacted (starting at 256-cell stage), and then increase
305 gradually in subsequent developmental stages (**Fig. 1E**). This implies that the increase in cell density
306 *per se* is not sufficient to drive AB-T1s. Our results indicate that it is the coupling of increase in cell
307 density with the space constraint of a compact epithelium that induces scutoid formation. This notion
308 is supported by experimentally reducing the available space by compressing the embryo. In this case,
309 sealing happens at the 128-cell stage, and so does the formation of scutoids.

310 On a second level, to address whether intrinsic factors may underlie scutoid formation, we took
311 advantage of a peculiarity of the sea star embryo that we discovered in the course of our studies, i.e.
312 sealing and compaction are heterogeneous. In fact, epithelial closure is delayed in the animal pole with
313 respect to the vegetal pole, resulting in lower compaction, even though cell density is similar (**Fig. 2B-C, Fig. S4**). The equally delayed appearance of scutoids in the animal pole indicates that tissue
314 closure is necessary for the reorganisation of 3D epithelial packing (**Fig. 2A-B, E**). This conclusion is
315 supported by our experimental setup: compression of the embryos synchronises closure, equalises
316 compaction and results in synchronous induction of scutoids, which is anticipated to the 128-cell stage
317 in both animal and vegetal poles of compressed embryos (**Fig. 2F-G, J**). In addition, our results show
318 that when both poles are sealed and cells are equally compacted, higher cell density in the vegetal
319 pole at the 512-cell stage results in higher proportion of scutoids (**Fig. 2H, J**). Therefore, this
320 experiment shows that, once the epithelium is closed, cell density and compaction can affect 3D
321 packing independently.

323 In this context, we propose that tissue compaction, measured here as reduced cell convexity, is a
324 proxy for the pressure acting between cells within a tightly packed proliferating epithelium. Taken
325 together, our results suggest that the extent of such pressure depends on the spatial constraints
326 acting on the tissue (imposed either by the fertilisation envelope in WT embryos or by the embedding
327 gel in compressed embryos) and, once the epithelium is closed, this pressure is combined with the
328 pressure generated by increases in cell density. This, in turn, results in higher compaction and induces
329 more AB-T1s. The balance of pressures acting on the tissue determines 3D packing.

330 Still, we find that the cells in the WT vegetal pole of the embryo are more compact and form more
331 scutoids than cells in the animal pole at the 512-cell stage (**Fig. 2B, D-E**). Given that the external
332 spatial constraints imposed by the fertilisation envelope are the same, these differences in compaction
333 are probably due to differences in the material properties of the embryonic domains. Recent studies
334 have shown that *in vivo* tissues undergo spatiotemporal transitions between fluid and solid states
335 which present different properties, i.e. stiffness, cell motion and propensity of cellular rearrangements
336 (T1 transitions) (Kuriyama et al., 2014; Mongera et al., 2018; Shellard and Mayor, 2023). Moreover,
337 local fluidization or stiffening can change the balance of pressures acting on neighbouring tissues and
338 ultimately drive morphogenesis (Barriga et al., 2018; Petridou et al., 2019). Conversely, cellular
339 connectivity is also a determinant of tissue viscosity and stiffness (Petridou et al., 2021; Petridou and
340 Heisenberg, 2019). Future studies, entailing direct measurements of cortical tension and viscosity in
341 different embryonic domains (Sugimura, Lenne and Graner, 2016), will be needed to establish the
342 relationship between AB-T1s and the physical properties of cells and tissues.

343 Finally, on a third level, the 3D epithelial packing comparison between real embryos and Voronoi
344 models suggests that even accounting for tissue shape, tissue compaction and cell density is not
345 sufficient to explain the high incidence of AB-T1s in a developing epithelium. Given that Voronoi
346 models assume steady state conditions (Gómez-Gálvez et al., 2021b; Sánchez-Gutiérrez et al.,
347 2016), while the sea star embryo is a highly dynamic proliferating tissue, we explore the role of local
348 increase of cell density in scutoid formation. We find that the vast majority of cells acquiring a scutoidal
349 shape do so shortly after cell division, both in WT and WT-comp embryos (**Fig. 3E-F**). We have shown
350 that compressing embryos causes scutoids to appear earlier in development, and causes more cells
351 to acquire the scutoidal shape. Yet, still, scutoids tend to form shortly after cell division in the
352 experimental embryos (WT-comp) (**Fig. 3E-F**) at the same ratio as that in WT (**Fig. S7**). We think that
353 this finding is in line with recent predictions from (Lou et al., 2023), who propose cell division as a
354 source of pressure on cells' lateral membranes that could induce scutoid formation. The tracking of

355 individual cells after cell division shows that through the interphase the epithelium slowly
356 accommodates and most scutoids are resolved into frusta (**Fig. S7**). In the compressed embryos,
357 additional forces exerted on the cells exacerbate the phenomenon, causing the scutoidal shape to be
358 maintained for longer periods of time (**Fig. S7**).

359 Altogether, we propose that, in the proliferating sea star embryo we have the combination of two
360 phenomena: i) rounds of cell divisions where there is an increase in cell density and that lead to
361 progressive tissue compaction and ii) the sudden local appearance of new cells after cell division,
362 creating the need to cope with new neighbours (**Fig. 4**). Therefore, the induction of AB-T1s in the sea
363 star embryo might be an efficient way to deal with the increasing pressures at local and global levels.
364 Interestingly, it has been previously observed that the “scutoidal” shape is better than prisms at
365 withstanding compression forces in an architectural context (Dhari and Patel, 2022). It is tempting to
366 speculate that a side effect of scutoid formation in tissues undergoing morphogenesis is that they can
367 better withstand compression.

368 Regarding future directions, our results add a new perspective on the regulation of 3D epithelial
369 organisation and lay the foundation to identify the molecular mechanisms allowing cells to form and
370 resolve AB-T1s in response to developmental changes.

371

372 **MATERIALS AND METHODS**

373

374 **Animal husbandry**

375 Adult *Patiria miniata* were purchased from Monterey Abalone Company (Monterey, CA) or South
376 Coast Bio-Marine LLC (San Pedro, CA) and held in free flowing seawater aquaria at a temperature
377 of 12-16°C. Sea star gametes were obtained as previously described (Hodin et al., 2019). Briefly,
378 ovaries and spermogonia were dissected via a small incision on the ventral side of adults. Sperm was
379 stored dry at 4°C while ovaries were fragmented to release oocytes in local filtered sea water (FSW).
380 Maturation of released oocytes was induced by incubating for 1h at 16°C in 3 µM 1-Methyladenine
381 (Fisher Scientific, 5142-22-3).

382 All embryos were raised in 0.22 µm - local filtered sea water (FSW) with the addition of 0.6 µg/ml
383 Penicillin G sodium salt (Millipore Sigma, P3032) and 2 µg/ml Streptomycin sulfate salt (Millipore
384 Sigma, S1277).

385 **mRNA injections**

386 mRNAs were synthesised with the mMessage mMachine SP6 Transcription Kit (Invitrogen,
387 AM1340). *Patiria miniata* immature oocytes were injected with mRNAs to label membranes (mYFP
388 100 ng/µl or MGFP, 400 ng/µl), and nuclei (H2B-CFP, 100 ng/µl or H2B-RFP, 400 ng/µl).

389 A subset of embryos were also injected with sp-ctnnb-RFP 800 ng/µl. Injected oocytes were
390 incubated at 16°C overnight, activated and fertilised.

391 **Live imaging and embryo compression**

392 *Patiria miniata* embryos expressing membrane and nuclear markers were mounted on a glass
393 bottom dish (MatTek, P35G-1.5-14-C). No medium was used to immobilise the embryos: the glass
394 bottom part of the dish was covered with a coverslip and sealed with vaseline. This creates a 500 µm
395 deep chamber in which capillarity prevents the embryos from moving, until they develop cilia (Barone
396 and Lyons, 2022). Additional FSW was added in the dish, to help with temperature control. Embryos
397 were incubated until the 4-cell stage and then imaged on an inverted Leica Sp8 confocal microscope
398 (20X objective, NA 0.7, 16°C controlled temperature).

399 Of the 6 embryos selected, 3 were oriented with the animal pole and 3 with the vegetal pole facing
400 the objective. Orientation of the embryo was determined based on the position of the polar bodies
401 and on the cleavage planes at 4- to 16-cell stages.

402 To achieve compression of developing embryos, 1-cell stage embryos were mounted in 3%
403 PEGDA (EsiBio, GS700) in FSW. This restricts the embryos into a smaller space than normal, as they
404 would otherwise occupy the entire fertilisation envelope. Embryos were otherwise imaged in the same
405 way as control embryos.

406 The acquired timelapses were deconvolved using the Lightning module of the LeicaX software.

407 **Scutoid tracking**

408 Scutoids were manually tracked using Fiji/ImageJ (Schindelin et al., 2012). Interphase for each cell
409 forming a scutoid was defined as the time between the end of cytokinesis and cell rounding, which
410 marks the beginning of the next cell division (**Fig. S7**). The time at which a cell adopted the scutoidal
411 shape (scutoid onset) and for how long the cell maintained the scutoidal shape (scutoid duration) was

412 recorded and normalised over interphase duration. Then, we classify scutoids into separate
413 categories based on scutoid start times.

414 **Normalization of developmental time**

415 To compare the duration of mitotic waves and dynamics of epithelial closure across embryos,
416 developmental time was normalized by the time elapsed between the beginning of the 128-cell stage
417 (relative time 0) and the end of 512-cell stage (relative time 1). Relative time 0 was defined as the
418 time when the first cell of the 64-cell stage embryo had divided and relative time 1 as the time when
419 the first cell of the 512-cell embryo had divided. Each stage was then split into a “mitotic wave” period,
420 which ends when at least 50% of the cells have divided, and an interphase period, which ends when
421 the first cell generated by the previous round of cell division divides again.

422 **3D cell segmentation and tissue/cell feature analysis**

423 For the automatic segmentation of 3D embryo stacks, we have followed a specific workflow
424 pipeline adapted from a previously performed procedure called CartoCell (Andrés-San Román et al.,
425 2023)

426 Training dataset was established from 3D Voronoi diagrams which was obtained combining the
427 centroids of the cell nuclei of the sea star embryo as seeds and making masks from the cellular
428 membranes to define the space to be filled. Custom Matlab scripts were used to calculate the nuclei
429 centroids and the application VolumeSegmenter from Matlab were used to curate the membrane
430 regions of the cells. The training dataset was composed of 14 time-points from 256-cells stage with
431 35 cells labelled of the same embryo development and was used as an input to a Deep Neural
432 Network (DNN) presenting an architecture based on residual connections (3D ResU-Net) (Franco-
433 Barranco et al., 2022).

434 Then, this model (M1) was tested with time points from other wildtype embryos even from other
435 stages (128- and 512-). Finally the output of this model was used as input to another segmentation
436 software, PlantSeg (Wolny et al., 2020), where through a watershed we obtain the labels of each of
437 the cells that compose the stacks. Then, the mislabelled cells were checked using custom Matlab
438 scripts. To improve predictions from wildtype and compressed embryos, a second model (M2) was
439 trained by revising 150 stacks. In total, 300 stacks were processed from 12 embryo movies, with half
440 belonging to wildtype embryos and the other half belonging to compressed ones. The segmented
441 samples were obtained from three different cell cycles (128-, 256- and 512-cell stages). Specifically
442 30 time points were obtained from the earliest stage (5 per embryo) and 60 time points were obtained
443 from each of the remaining two stages (10 per embryo and stage).

444 For each time point, we selected a subset of segmented cells for further analysis, i.e. the cells
445 whose centroid lay within 30 μm from the embryo surface closest to the objective.

446 Note that custom made Matlab scripts were used to extract the following 4 characteristics:

447 - Proportion of scutoids: Frequency of scutoidal cells among the selected cells. We quantified
448 the scutoidal cells marking the cells involved in AB-T1s, i.e., cells which exchange neighbours
449 between apical and basal surfaces.

450 - Cell density of the region (cells/ μm^2): Ratio between the selected cells and the sum of inner
451 basal areas they occupied.

452 - Average cell volume (μm^3): mean volume of individual cells. The volume is the measurement
453 of the number of voxels belonging to segmented cells.

454 - Cell convexity ratio: volume of the cell divided by the volume of the convex hull. The ratio
455 ranges from 0 to 1, with values closer to 1 indicating a highly convex cell, and values closer to
456 0 indicating the opposite.

457 - Opening areas (μm^2): Regions of the embryo not occupied by the cells. Once we extracted
458 the full projection of the image stacks, we used FIJI's polygon selection tool to quantify the
459 sum of all opening areas in each sample.

460 Note that for the following 4 characteristics, the samples segmented were 6 WT embryos and
461 5 WT-comp embryos.

462 - Embryo lengths (μm): To determine the dimensions of the embryo, the half embryo was
463 estimated using the FIJI's orthogonal view. The minor axis was measured by determining the
464 distance from the uppermost region to the midpoint of the half embryo using FIJI's straight line
465 tool. The major axes of the embryo were measured on a 2D slice that approximately
466 represented the midpoint of the embryo. These measurements were estimated using FIJI's
467 polygon selection tool.

468 - Tissue aspect ratio: Proportional relationship between the longest and shortest dimensions of
469 a tissue. It is calculated by dividing the length of the longest dimension by the length of the
470 shortest dimension. The aspect ratio provides information about the shape and elongation of
471 an object. A value of 1 indicates a perfectly circular or square shape, while values greater than
472 1 suggest elongation along the longest dimension.

473 - Major axes lengths ratio: Proportional relationship between the two major axes of oblate
474 spheroidal-shaped embryos.

475 - Average surface ratio anisotropy (or curvature anisotropy): Proportional relationship between
476 the radii of curvature along the two main axes, h and w (transversal and longitudinal
477 respectively) of the apical (R_a) and basal (R_b) surfaces. This relationship is characterised by
478 the differences between the two surface ratios (Gómez-Gálvez et al., 2018). The formula to
479 calculate the surface ratio anisotropy is as follows:

$$\left(\frac{R_a^h}{R_b^h} / \frac{R_a^w}{R_b^w} \right) - 1$$

480
481 Where h represents the axis of greatest curvature, w represents the axis of least curvature,
482 R_a refers to the outer apical radius and R_b is the inner basal radius. To obtain the value of
483 these parameters, we measured the two principal curvatures for each centroid of the selected
484 cells in the segmented region of both surfaces. By using the formulas to calculate the curvature
485 of a coordinate in an ellipsoid (Bektas, n.d.), we obtained the values for the principal curvatures

486 (k_h,k_w) and we computed the average value regarding the maximum and minimum radii of
487 curvature ($R=\frac{1}{k}$) for both apical and basal surfaces. A surface ratio anisotropy of 0 indicates a
488 tissue with an isotropic curvature, while values greater than 1 suggest a tissue with more
489 anisotropic curvature.

490 **Voronoi constructions**

491 We have used Matlab R2021a (Mathworks) as our computational tool to generate Voronoi
492 constructions based on each imaged sea star embryo, maintaining similar geometrical characteristics
493 of WT (n=150 time points, 6 embryos) and WT-comp datasets (n=150 time points, 6 embryos). These
494 constructions were obtained by applying a 3D Voronoi algorithm to correctly mimic the epithelial
495 packing (Voronoi 1908; Honda 1978). More specifically, we extracted the regions of the tissue that
496 had been segmented from each imaged embryo in the form of binarized masks. These masks defined
497 the bounding territory that the Voronoi cells could occupy in each construction. Then, we calculated
498 the coordinates of the 3D centroids of all segmented cells which were then used as Voronoi seeds.
499 The algorithm is based on tiling the space between these sets of Voronoi seeds by proximity,
500 occupying the entirely binarized mask given in each construction (Voronoi 1908; Honda 1978).

501 Once the Voronoi construction was generated, similar to our approach done with the embryos, we
502 selected a subset of Voronoi cells for further analysis, i.e. the cells whose centroid lay within 30 μ m
503 from the region that would correspond to the embryo surface closest to the objective.

504 **Delimitation of outer and inner layers and automatic detection of scutoids from segmented 505 regions**

506 The extraction of the outer and inner layers from the cellular segmented regions was performed
507 using a custom MATLAB code (see *data availability*), traversing the segmented region along the Z-
508 axis from top to bottom (outer) and bottom to top (inner) selecting the pixels corresponding to the first
509 labelled cells encountered in both scans.

510 The method for extracting the proportion of scutoids from the Voronoi constructions was adapted
511 from CartoCell (Andrés-San Román et al. 2023). After extracting the outer and inner layers, we
512 quantified the number of neighbours for each cell on both surfaces. To identify neighbours, we dilated
513 each cellular surface, identifying those labeled cells which overlapped with the dilation, thereby
514 obtaining the sets of neighbours for a specific cell on each layer. Finally, we identify scutoids as cells
515 that have different sets of neighbours on their apical and basal sides, as this situation can occur only
516 in the case of an AB-T1.

517 **Statistical analysis**

518 Statistical analyses were performed using GraphPad (Prism), as indicated in the figure captions.
519 Shapiro-Wilk test was applied for normality determined our use of either standard Student t-test,
520 ordinary one-way or two-way ANOVA tests (normally distributed data, equal variances) or non-
521 parametric U-Mann-Whitney and Kruskal-Wallis tests (not normally distributed data). Bonferroni
522 multiple comparisons correction was used to compare all features between WT and WT-comp
523 conditions (**Fig. 1E-I**, **Fig. 3B** and **Fig. S3**) or between animal and vegetal locations (**Fig. 2B-E**, **G-J**,
524 **Fig. S6**). Tukey multiple comparisons correction was used to compare WT surface ratio anisotropy
525 over time (**Fig. 1F**, **Fig. S6**). Dunn multiple comparisons correction was used to compare all the other
526 features over time (**Fig. 1E**, **G-I**, **Fig. 3B**, **Fig. S3**, **Fig. S6**). Student t-test was used to compare

527 scutoids onsets after mitosis and independent of mitosis (**Fig. 3D**) and the average time elapsed
528 between the beginning of the 128-cell stage and the end of 512-cell stage (**Fig. S5**). U-Mann-Whitney
529 test was used to compare the average scutoids onset and duration (**Fig. S7**). The details of the
530 statistical analyses for the different comparisons can be found on **Table S1**.

531 **Data availability**

532

533 All data used in our analysis have been deposited at Mendeley Data and are publicly available
534 at: <https://doi.org/10.17632/45v8xcb5mp>.

535 All original code used in our analysis is available at:

536 <https://github.com/ComplexOrganizationOfLivingMatter/seaStarProcessingSegmentation/releases/t>
537 ag/scutoidsProliferation2024.

538 Any additional information required to reanalyze the data reported in this paper is available from
539 the lead contact upon request.

540

541 **Author contributions**

542

543 Conceptualization: VB, AT, LME; Methodology: VB, AT, LME; Software: AT, JAS, JGG; Formal
544 analysis: AT, VB; Investigation: VB, AT; Resources: DCL, LME, AH; Data curation: AT, VB; Writing—
545 original draft: VB, AT; Writing—review & editing: VB, AT, DLC, LME; Visualization: AT, VB;
546 Supervision: DCL, LME; Project administration: VB, LME; Funding acquisition: VB, DCL, LME.

547

548 **Funding**

549

550 This work was supported by the Human Frontier Science Program [LT000070/2019] to VB; by a
551 National Institute of Health (NIH) Maximizing Investigators' Research Award (MIRA)
552 (1R35GM133673) to DCL; by the Spanish Ministry of Science and Innovation Ministry of Science
553 (PID2019-103900GB-I00) and Programa Operativo FEDER Andalucía 2014-2020 (US-1380953) to
554 LME. AT has been funded by a "Contrato predoctoral PIF" from Universidad de Sevilla. JGG was
555 funded by a "Contrato predoctoral para la formación de doctores" PRE2020-093682. LME and JAS
556 work was funded by the Junta de Andalucía (Consejería de Economía, Conocimiento, Empresas y
557 Universidad) grant PY18-631 co-funded by FEDER funds.

558

559 **Acknowledgements**

560

561 We would like to thank Pablo Vicente, Pedro Gómez-Gálvez and both the Lyons and Escudero
562 labs for helpful discussions on the project and comments on previous versions of the manuscript.
563 LME also wants to thank PIE-202120E047- Conexiones-Life network members for helpful input on
564 the work.

565

566

REFERENCES

567 Andrés-San Román JA, Gordillo-Vázquez C, Franco-Barranco D, Morato L, Tagua A, Vicente-Munuera P,
568 Palacios AM, Gavilán MP, Annese V, Gómez-Gálvez P, Arganda-Carreras I, Escudero LM. 2023.
569 CartoCell, a high-throughput pipeline for accurate 3D image analysis, unveils cell morphology patterns in
570 epithelial cysts. *bioRxiv*. doi:10.1101/2023.01.05.522724

571 Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H. 2017.
572 Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. *Bioinformatics*
573 **33**:2424–2426. doi:10.1093/bioinformatics/btx180

574 Arnone MI, Byrne M, Martinez P. 2015. EchinodermataEvolutionary Developmental Biology of Invertebrates 6.
575 Vienna: Springer Vienna. pp. 1–58. doi:10.1007/978-3-7091-1856-6_1

576 Barone V, Byrne M, Lyons DC. 2022. Lineage tracing shows that cell size asymmetries predict the dorsoventral
577 axis in the sea star embryo. *BMC Biol* **20**:179. doi:10.1186/s12915-022-01359-3

578 Barone V, Lyons DC. 2022. Live imaging of echinoderm embryos to illuminate evo-devo. *Front Cell Dev Biol*
579 **10**:1007775. doi:10.3389/fcell.2022.1007775

580 Barriga EH, Franze K, Charras G, Mayor R. 2018. Tissue stiffening coordinates morphogenesis by triggering
581 collective cell migration in vivo. *Nature* **554**:523–527. doi:10.1038/nature25742

582 Bektas S. 2017. Curvature of the Ellipsoid with Cartesian Coordinates. *Landsc. Archit. Reg. Plan.* **2**, 61–66.

583 Cheatle Jarvela AM, Yankura KA, Hinman VF. 2016. A gene regulatory network for apical organ neurogenesis
584 and its spatial control in sea star embryos. *Development* **143**:4214–4223. doi:10.1242/dev.134999

585 Dan-Sohkawa M. 1976. A “normal” development of denuded eggs of the starfish, *Asterina pectinifera*. *Dev
586 Growth Differ* **18**:439–445. doi:10.1111/j.1440-169x.1976.00439.x

587 Dan-Sohkawa M, Satoh N. 1978. Studies on dwarf larvae developed from isolated blastomeres of the starfish.
588 *Asterina pectinifera*. *J Embryol Exp Morphol* **46**:171–185.

589 Davidson LA. 2012. Epithelial machines that shape the embryo. *Trends Cell Biol* **22**:82–87.
590 doi:10.1016/j.tcb.2011.10.005

591 Dhari RS, Patel NP. 2022. On the crushing behaviour of scutoid-based bioinspired cellular structures. *Int J
592 Crashworthiness* **27**:945–954. doi:10.1080/13588265.2020.1866859

593 do Carmo MP. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.

594 Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm A, Deubner J, Jäckel Z, Seiwald K,
595 Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester
596 I, Brox T, Ronneberger O. 2019. U-Net: deep learning for cell counting, detection, and morphometry. *Nat
597 Materials and Methods* **16**:67–70. doi:10.1038/s41592-018-0261-2

598 Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F. 2007. The influence of cell mechanics, cell-cell
599 interactions, and proliferation on epithelial packing. *Curr Biol* **17**:2095–2104.
600 doi:10.1016/j.cub.2007.11.049

601 Franco-Barranco D, Pastor-Tronch J, González-Marfil A, Muñoz-Barrutia A, Arganda-Carreras I. 2022. Deep
602 learning based domain adaptation for mitochondria segmentation on EM volumes. *Comput Materials and
603 Methods Programs Biomed* **222**:106949. doi:10.1016/j.cmpb.2022.106949

604 Gibson MC, Patel AB, Nagpal R, Perrimon N. 2006. The emergence of geometric order in proliferating metazoan
605 epithelia. *Nature* **442**:1038–1041. doi:10.1038/nature05014

606 Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. 2021b. Mechanics and self-organization in tissue
607 development. *Semin Cell Dev Biol* **120**:147–159. doi:10.1016/j.semcd.2021.07.003

608 Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. 2021a. The complex three-

609 dimensional organization of epithelial tissues. *Development* **148**. doi:10.1242/dev.195669

610 Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Tagua A, Gordillo-Vázquez C, Andrés-San Román JA, Franco-
611 Barranco D, Palacios AM, Velasco A, Capitán-Agudo C, Grima C, Annese V, Arganda-Carreras I, Robles
612 R, Márquez A, Buceta J, Escudero LM. 2022. A quantitative biophysical principle to explain the 3D cellular
613 connectivity in curved epithelia. *Cell Syst* **13**:631–643.e8. doi:10.1016/j.cels.2022.06.003

614 Gómez-Gálvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letrán M, Valencia-Expósito A, Grima C,
615 Bermúdez-Gallardo M, Serrano-Pérez-Higueras Ó, Cavodeassi F, Sotillo S, Martín-Bermudo MD,
616 Márquez A, Buceta J, Escudero LM. 2018. Scutoids are a geometrical solution to three-dimensional
617 packing of epithelia. *Nat Commun* **9**:2960. doi:10.1038/s41467-018-05376-1

618 Gómez HF, Dumond MS, Hodel L, Vetter R, Iber D. 2021. 3D cell neighbour dynamics in growing
619 pseudostratified epithelia. *eLife* **10**. doi:10.7554/eLife.68135

620 Guillot C, Lecuit T. 2013. Mechanics of epithelial tissue homeostasis and morphogenesis. *Science* **340**:1185–
621 1189. doi:10.1126/science.1235249

622 Haberl MG, Churas C, Tindall L, Boassa D, Phan S, Bushong EA, Madany M, Akay R, Deerinck TJ, Peltier ST,
623 Ellisman MH. 2018. CDeep3M—Plug-and-Play cloud-based deep learning for image segmentation. *Nat
624 Materials and Methods* **15**:677–680. doi:10.1038/s41592-018-0106-z

625 Hodin J, Heyland A, Mercier A, Pernet B, Cohen DL, Hamel J-F, Allen JD, McAlister JS, Byrne M, Cisternas P,
626 George SB. 2019. Culturing echinoderm larvae through metamorphosis. *Materials and Methods Cell Biol*
627 **150**:125–169. doi:10.1016/bs.mcb.2018.11.004

628 Honda H, Nagai T, Tanemura M. 2008. Two different mechanisms of planar cell intercalation leading to tissue
629 elongation. *Dev Dyn* **237**:1826–1836. doi:10.1002/dvdy.21609

630 Kominami T. 1983. Establishment of embryonic axes in larvae of the starfish, *Asterina pectinifera*. *J Embryol
631 Exp Morphol* **75**:87–100.

632 Kuriyama S, Theveneau E, Benedetto A, Parsons M, Tanaka M, Charras G, Kabla A, Mayor R. 2014. In vivo
633 collective cell migration requires an LPAR2-dependent increase in tissue fluidity. *J Cell Biol* **206**:113–127.
634 doi:10.1083/jcb.201402093

635 Lecuit T, Lenne P-F. 2007. Cell surface mechanics and the control of cell shape, tissue patterns and
636 morphogenesis. *Nat Rev Mol Cell Biol* **8**:633–644. doi:10.1038/nrm2222

637 Lee CT, Laughlin JG, Anglivel de La Beaumelle N, Amaro RE, McCammon JA, Ramamoorthi R, Holst M,
638 Rangamani P. 2020. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in
639 realistic cellular geometries. *PLoS Comput Biol* **16**:e1007756. doi:10.1371/journal.pcbi.1007756

640 Lemke SB, Nelson CM. 2021. Dynamic changes in epithelial cell packing during tissue morphogenesis. *Curr
641 Biol* **31**:R1098–R1110. doi:10.1016/j.cub.2021.07.078

642 Lou Y, Rupprecht J-F, Theis S, Hiraiwa T, Saunders TE. 2023. Curvature-Induced Cell Rearrangements in
643 Biological Tissues. *Phys Rev Lett* **130**:108401. doi:10.1103/PhysRevLett.130.108401

644 Maruyama YK, Shinoda M. 1990. Archenteron-Forming Capacity in Blastomeres Isolated from Eight-Cell Stage
645 Embryos of the Starfish, *Asterina pectinifera*. (starfish/8-cell stage/isolation/cell lineage/archenteron
646 formation). *Dev Growth Differ* **32**:73–84. doi:10.1111/j.1440-169x.1990.00073.x

647 Meyer A, Hinman V. 2022. The arm of the starfish: The far-reaching applications of *Patiria miniata* as a model
648 system in evolutionary, developmental, and regenerative biology. *Curr Top Dev Biol* **147**:523–543.
649 doi:10.1016/bs.ctdb.2022.01.006

650 Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA, Carn EK, Serwane F, Lucio AA, Giammona
651 J, Campàs O. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. *Nature*
652 **561**:401–405. doi:10.1038/s41586-018-0479-2

653 Mughal A, Cox SJ, Weaire D, Burke SR, Hutzler S. 2018. Demonstration and interpretation of “scutoid” cells

654 formed in a quasi-2D soap froth. *Philos Mag Lett* **98**:358–364. doi:10.1080/09500839.2018.1552806

655 Nakajima Y, Kaneko H, Murray G, Burke RD. 2004. Divergent patterns of neural development in larval echinoids
656 and asteroids. *Evol Dev* **6**:95–104. doi:10.1111/j.1525-142x.2004.04011.x

657 Navis, A. and Bagnat, M. (2015) 'Developing pressures: fluid forces driving morphogenesis', Current opinion in
658 genetics & development, 32, pp. 24–30. doi:10.1016/j.gde.2015.01.010.

659 Nelson CM. 2016. On Buckling Morphogenesis. *J Biomech Eng* **138**:021005. doi:10.1115/1.4032128

660 Newman HH. 1922. Normal Versus Subnormal Development in the Patiria Miniata. *Biological bulletin* **43**:1–9.
661 doi:10.2307/1536687

662 Okuda S, Kuranaga E, Sato K. 2019. Apical Junctional Fluctuations Lead to Cell Flow while Maintaining
663 Epithelial Integrity. *Biophys J* **116**:1159–1170. doi:10.1016/j.bpj.2019.01.039

664 Pearl EJ, Li J, Green JBA. 2017. Cellular systems for epithelial invagination. *Philos Trans R Soc Lond B Biol
665 Sci* **372**. doi:10.1098/rstb.2015.0526

666 Perillo M, Swartz SZ, Pieplow C, Wessel GM. 2023. Molecular mechanisms of tubulogenesis revealed in the
667 sea star hydro-vascular organ. *Nat Commun* **14**, 2402. doi.org/10.1038/s41467-023-37947-2

668 Petridou NI, Corominas-Murtra B, Heisenberg C-P, Hannezo E. 2021. Rigidity percolation uncovers a structural
669 basis for embryonic tissue phase transitions. *Cell* **184**:1914–1928.e19. doi:10.1016/j.cell.2021.02.017

670 Petridou NI, Grigolon S, Salbreux G, Hannezo E, Heisenberg C-P. 2019. Fluidization-mediated tissue spreading
671 by mitotic cell rounding and non-canonical Wnt signalling. *Nat Cell Biol* **21**:169–178. doi:10.1038/s41556-
672 018-0247-4

673 Petridou NI, Heisenberg C-P. 2019. Tissue rheology in embryonic organization. *EMBO J* **38**:e102497.
674 doi:10.15252/embj.2019102497

675 Ragkousi K, Gibson MC. 2014. Cell division and the maintenance of epithelial order. *J Cell Biol* **207**:181–188.
676 doi:10.1083/jcb.201408044

677 Ragkousi K, Marr K, McKinney S, Ellington L, Gibson MC. 2017. Cell-Cycle-Coupled Oscillations in Apical
678 Polarity and Intercellular Contact Maintain Order in Embryonic Epithelia. *Curr Biol* **27**:1381–1386.
679 doi:10.1016/j.cub.2017.03.064

680 Rupprecht J-F, Ong KH, Yin J, Huang A, Dinh H-H-Q, Singh AP, Zhang S, Yu W, Saunders TE. 2017. Geometric
681 constraints alter cell arrangements within curved epithelial tissues. *Mol Biol Cell* **28**:3582–3594.
682 doi:10.1091/mbc.E17-01-0060

683 Sanchez-Corrales YE, Blanchard GB, Röper K. 2018. Radially patterned cell behaviours during tube budding
684 from an epithelium. *eLife* **7**. doi:10.7554/eLife.35717

685 Sánchez-Gutiérrez D, Tozluoglu M, Barry JD, Pascual A, Mao Y, Escudero LM. 2016. Fundamental physical
686 cellular constraints drive self-organization of tissues. *EMBO J* **35**:77–88. doi:10.15252/embj.201592374

687 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
688 Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-
689 source platform for biological-image analysis. *Nat Materials and Methods* **9**:676–682.
690 doi:10.1038/nmeth.2019

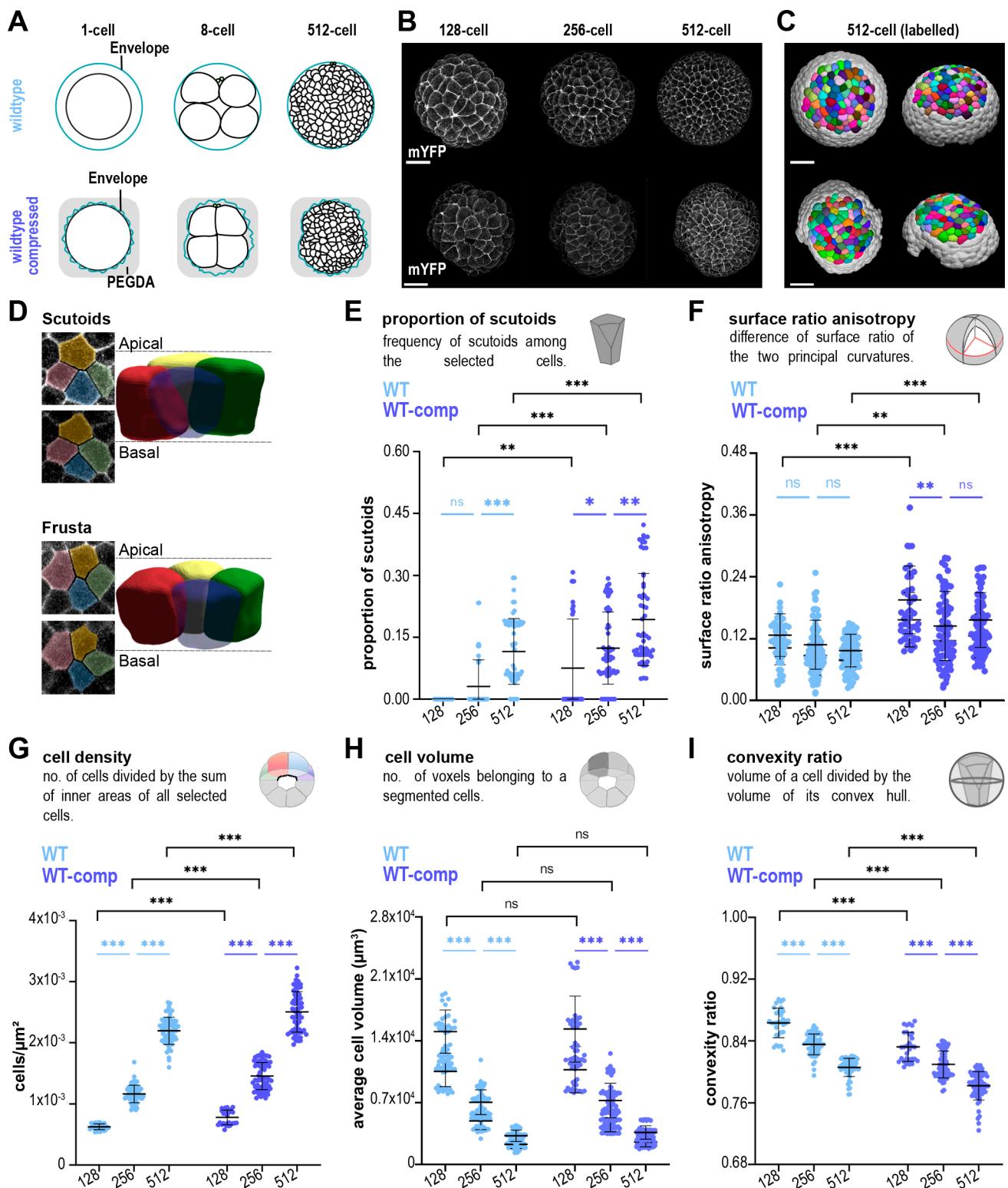
691 Schneider P, Eberly DH. 2002. Geometric Tools for Computer Graphics. Elsevier.

692 Shellard A, Mayor R. 2023. Sculpting with stiffness: rigidity as a regulator of morphogenesis. *Biochem Soc
693 Trans.* doi:10.1042/BST20220826

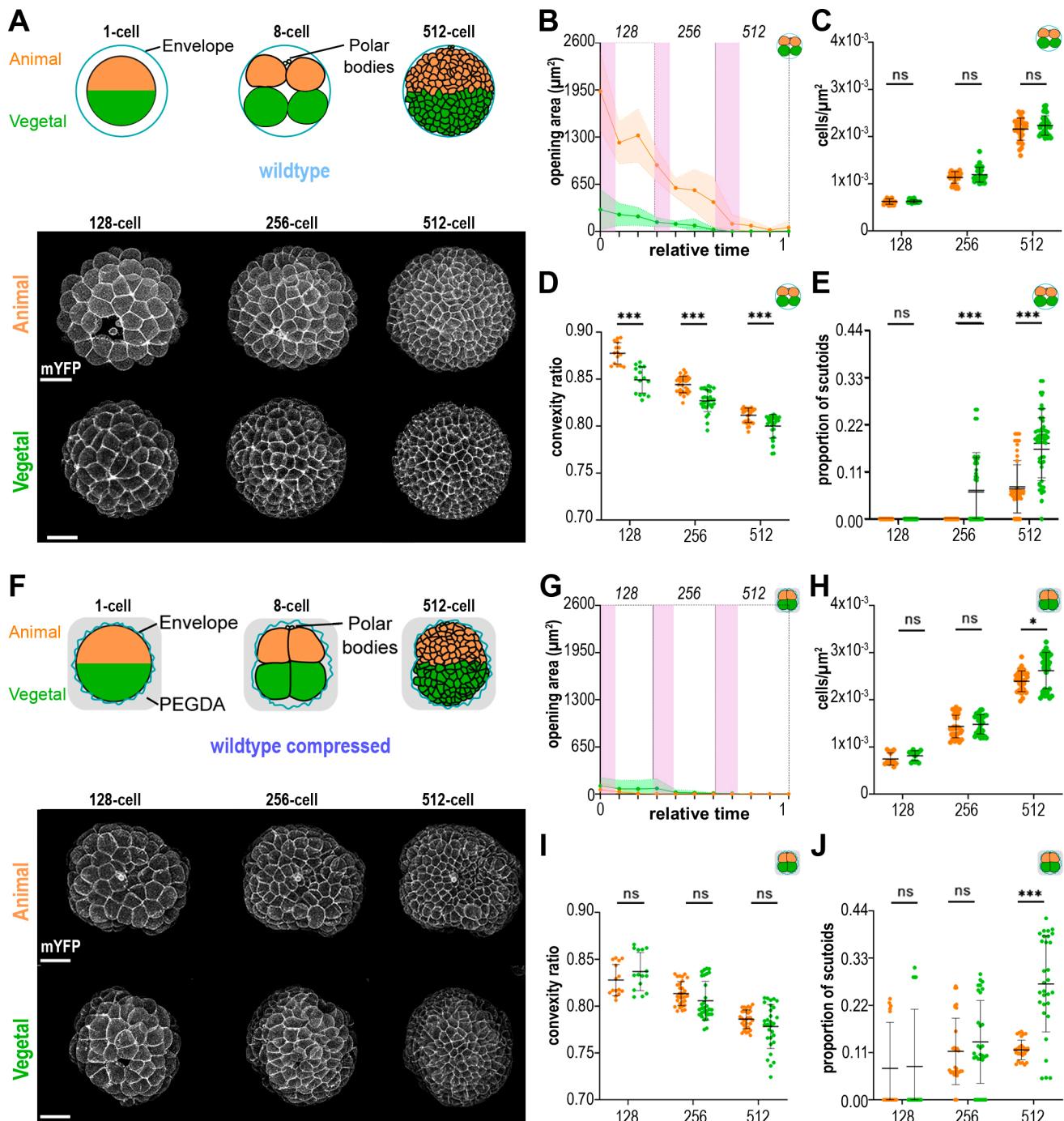
694 Sugimura, K., Lenne, P.-F. and Graner, F. (2016) 'Measuring forces and stresses in situ in living tissues',
695 Development , 143(2), pp. 186–196. doi:10.1242/dev.119776.

696 Sun Z, Amourda C, Shagirov M, Hara Y, Saunders TE, Toyama Y. 2017. Basolateral protrusion and apical

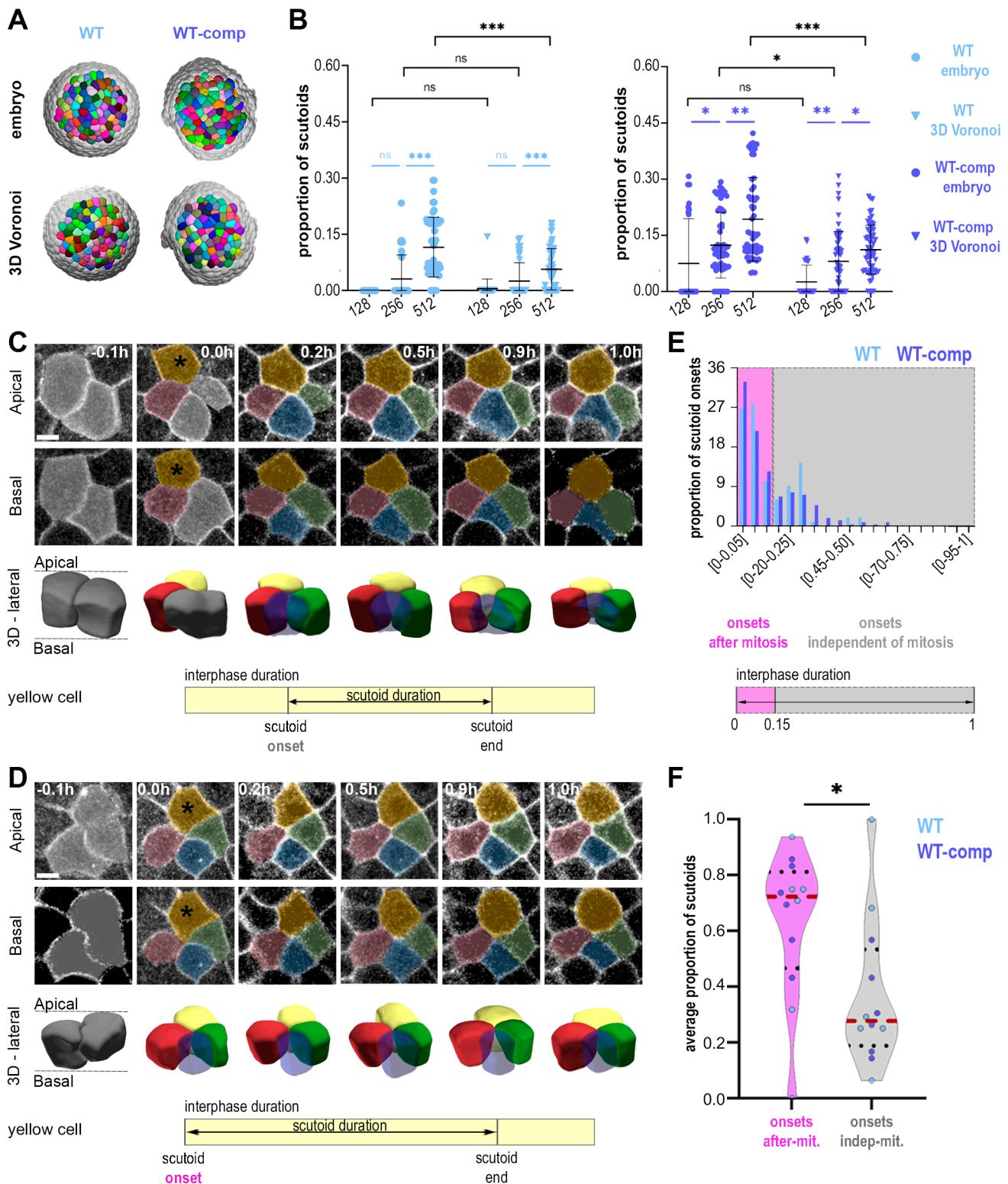
697 contraction cooperatively drive Drosophila germ-band extension. *Nat Cell Biol* **19**:375–383.
698 doi:10.1038/ncb3497


699 Swartz SZ, Tan TH, Perillo M, Fakhri N, Wessel GM, Wikramanayake AH, Cheeseman IM. 2021. Polarized
700 Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. *Curr Biol*
701 **31**:5633–5641.e4. doi:10.1016/j.cub.2021.10.022

702 Wolny A, Cerrone L, Vijayan A, Tofanelli R, Barro AV, Louveaux M, Wenzl C, Strauss S, Wilson-Sánchez D,
703 Lymbouridou R, Steigleder SS, Pape C, Bailoni A, Duran-Nebreda S, Bassel GW, Lohmann JU, Tsiantis
704 M, Hamprecht FA, Schneitz K, Maizel A, Kreshuk A. 2020. Accurate and versatile 3D segmentation of plant
705 tissues at cellular resolution. *eLife* **9**. doi:10.7554/eLife.57613


706 Xu B, Washington AM, Domeniconi RF, Ferreira Souza AC, Lu X, Sutherland A, Hinton BT. 2016. Protein
707 tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct. *Dev Biol* **412**:219–233.
708 doi:10.1016/j.ydbio.2016.02.029

709 Yankura KA, Koechlein CS, Cryan AF, Cheattle A, Hinman VF. 2013. Gene regulatory network for neurogenesis
710 in a sea star embryo connects broad neural specification and localized patterning. *Proc Natl Acad Sci U S*
711 **A** **110**:8591–8596. doi:10.1073/pnas.1220903110


712 Zheng M, Zueva O, Hinman VF. 2022. Regeneration of the larval sea star nervous system by wounding induced
713 respecification to the Sox2 lineage. *eLife* **11**. doi:10.7554/eLife.72983

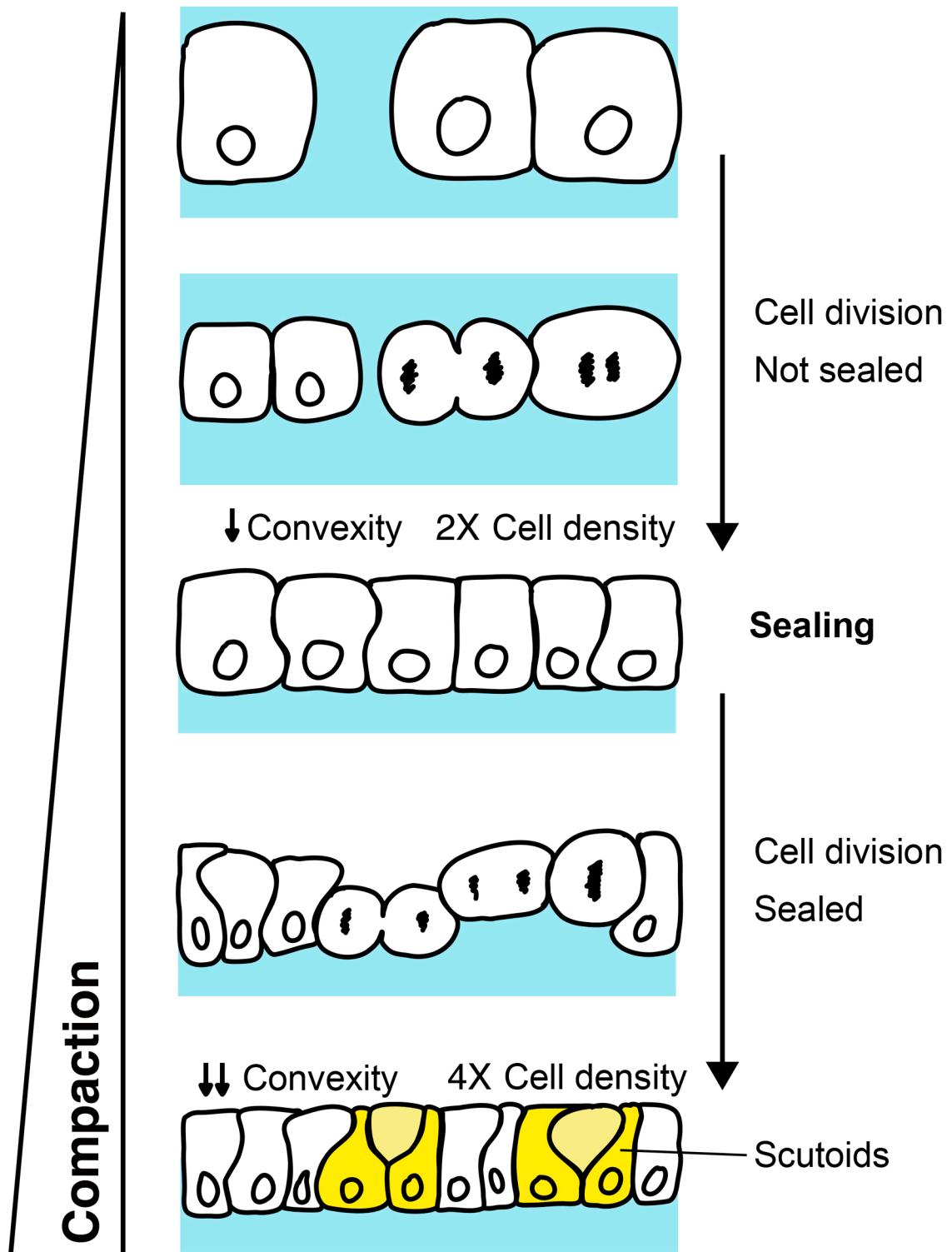

Figure 1. 3D segmentation of sea star embryos over time: cell packing and topological analysis at cellular level. **A)** Schematic representation of WT (top) and WT-comp (bottom) sea star embryos. **B)** Maximum projections of a representative WT sea star embryo (top) or WT-comp embryo (bottom) expressing the membrane marker mYFP at 128-, 256- and 512-cell stages. Scale bars, 50 μ m. **C)** Computer rendering of the segmented sea star embryo at 512-cell stage from a frontal (left) and lateral (right) perspective. **D)** 3D representation of 4-cell motif with scutoid (top) or frusta conformations (bottom). The apical and basal z-slices of the motives are shown. Quantifications of average scutoid frequency (**E**), surface ratio anisotropy (**F**), cell density (**G**), cell volume (**H**) and cell convexity (**I**) are shown. WT: n=150 timepoints, 6 embryos, 4 experiments. WT-comp: n=150 timepoints, 6 embryos, 5 experiments for all panels except in F, where n=125 timepoints, 5 embryos, 4 experiments. Mean \pm s.d. Statistical tests: Mann-Whitney tests with Bonferroni multiple comparisons correction (black) and Kruskal-Wallis tests with Dunn multiple comparisons correction, (blue) except in 1F where one-way ANOVA test with Tukey multiple comparison correction was used (light blue); ns: non-significant; *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001.

Figure 2. Asynchronous compaction and scutoid formation in the sea star embryo. A) (Top) Schematic representation of WT embryos highlighting animal and vegetal poles. (Bottom) Maximum projections of a representative animal pole and vegetal pole at 128-, 256- and 512-cell stages. Scale bars, 50 μ m. Quantifications of opening areas (**B**), cell density (**C**), cell convexity (**D**) and proportion of scutoids (**E**) are shown. WT animal: n= 75, 3 embryos, 3 experiments. WT vegetal: n= 75, 3 embryos, 2 experiments. **F)** (Top) Schematic representation of WT-comp embryos highlighting animal and vegetal poles. (Bottom) Maximum projections of a representative animal pole and vegetal pole at 128-, 256- and 512-cell stages. Scale bars, 50 μ m. Quantifications of opening areas (**G**), cell density (**H**), cell convexity (**I**) and proportion of scutoids (**J**) are shown. WT-comp animal: n= 75, 3 embryos, 2 experiments. WT-comp vegetal: n= 75, 3 embryos, 3 experiments. In (**B**) and (**I**) relative time 0 corresponds to the first cell division occurring at the 64-cell stage and relative time 1 corresponds to the first cell division occurring at the 512-cell stage. The pink areas denote the average duration of mitotic waves for each stage. Mean \pm s.d. Statistical test: Mann-Whitney tests with Bonferroni multiple comparisons correction; ns: non-significant; ***: p-value <0.001.

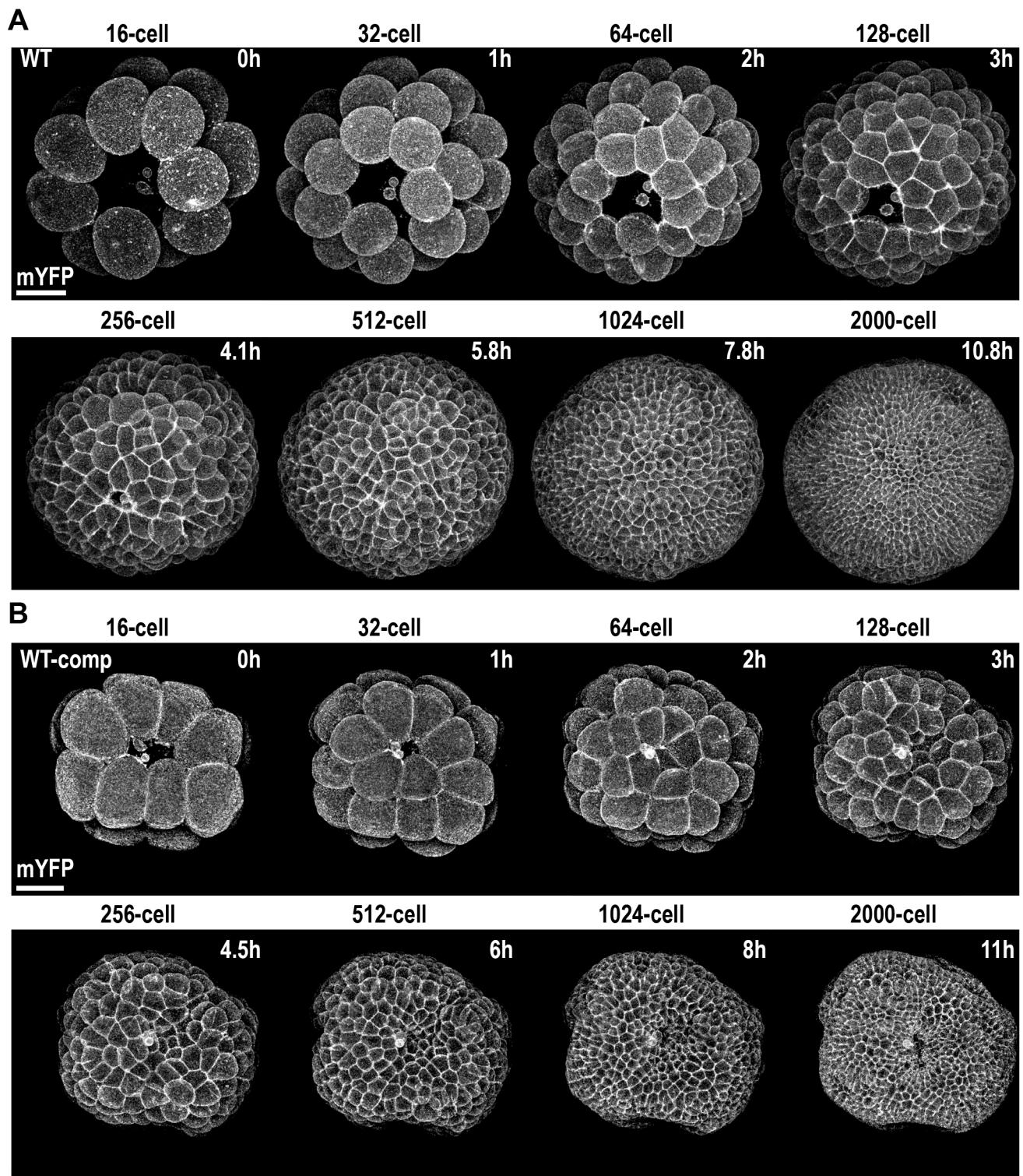


Figure 3. Single-cell tracking of scutoids relative to cell division. **A)** Computer rendering of 3D Voronoi models generated from WT and WT-comp embryos. **B)** Quantification of the proportion of scutoids. WT embryo: n=150 timepoints, 6 embryos, 4 experiments. WT 3D Voronoi: n=150 timepoints. WT-comp embryo: n=150 timepoints, 6 embryos, 5 experiments. WT-comp 3D Voronoi: n=150 timepoints. Mean \pm s.d. Statistical tests: Mann-Whitney tests (black) and Kruskal-Wallis tests (blue) with Bonferroni multiple comparisons correction; ns: non-significant; *: p-value <0.05 ; **: p <0.01 ; ***: p-value <0.001 . **C, D)** Representative scutoids whose onset is classified as independent (**C**) or after (**D**) mitosis. Scale bars, 10 μ m. Quantifications of the proportion of scutoids with onset after mitosis in the whole dataset (**E**) or per embryo (**F**) are shown. WT: 97 scutoids, 6 embryos, 4 experiments. WT-comp: 207 scutoids, 6 embryos, 5 experiments. Mean (red dotted line) \pm s.d (black dotted lines). Statistical test: two-tailed Student t-test. *: p-value <0.05 .

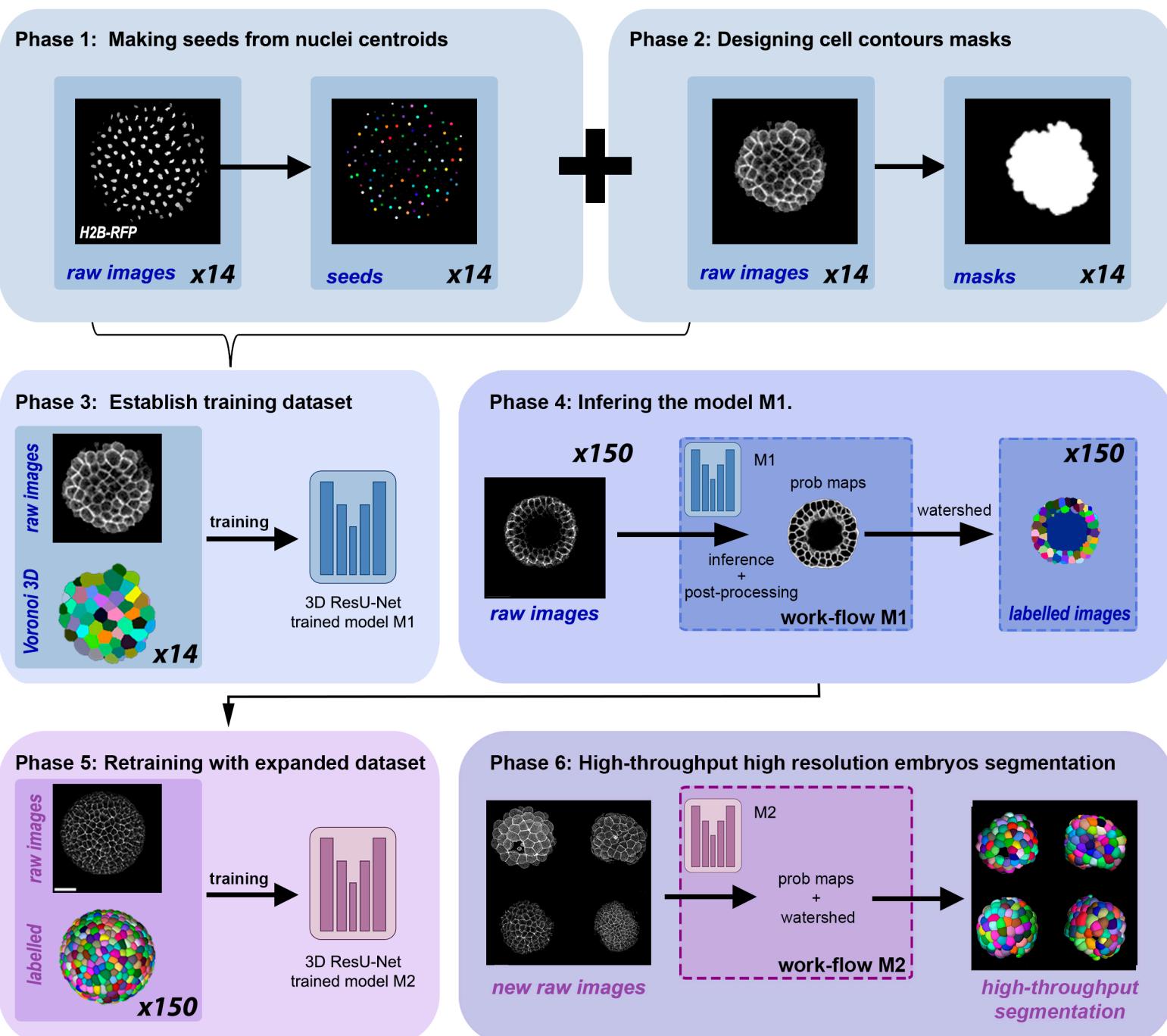
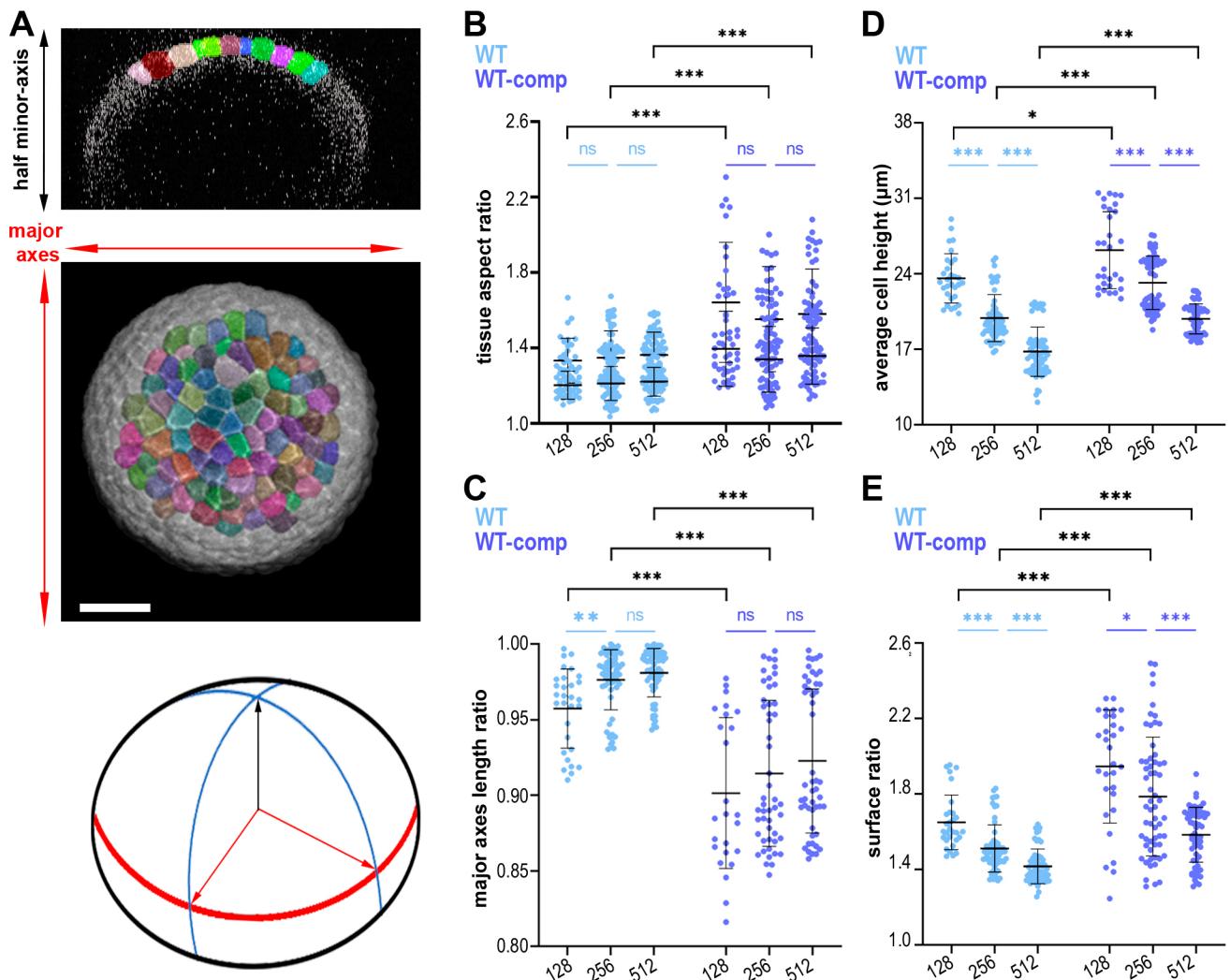
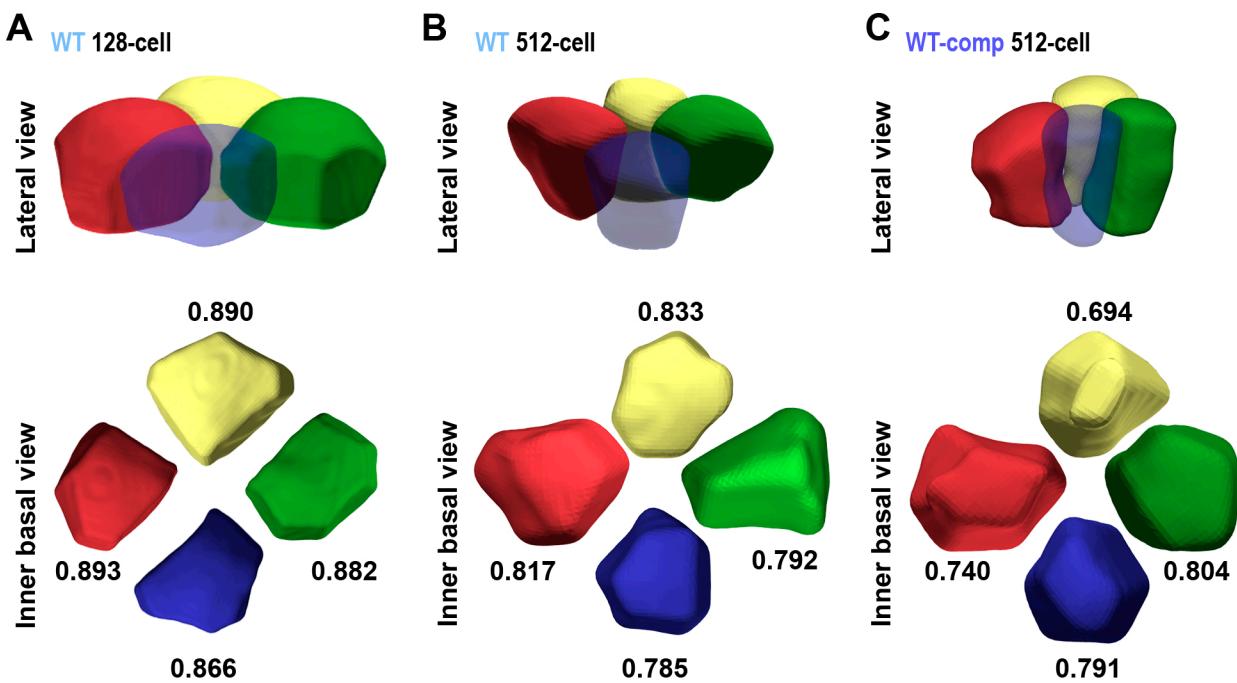
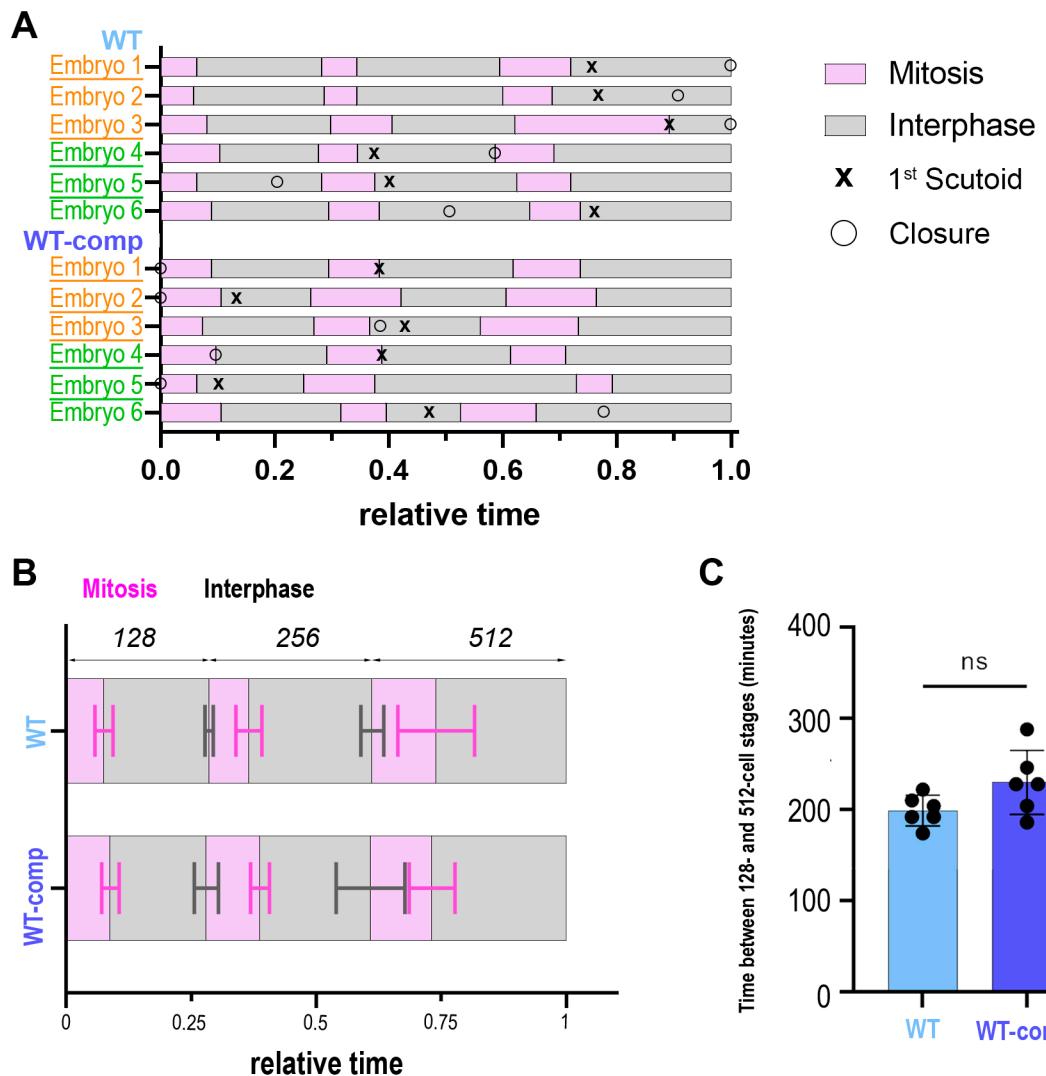
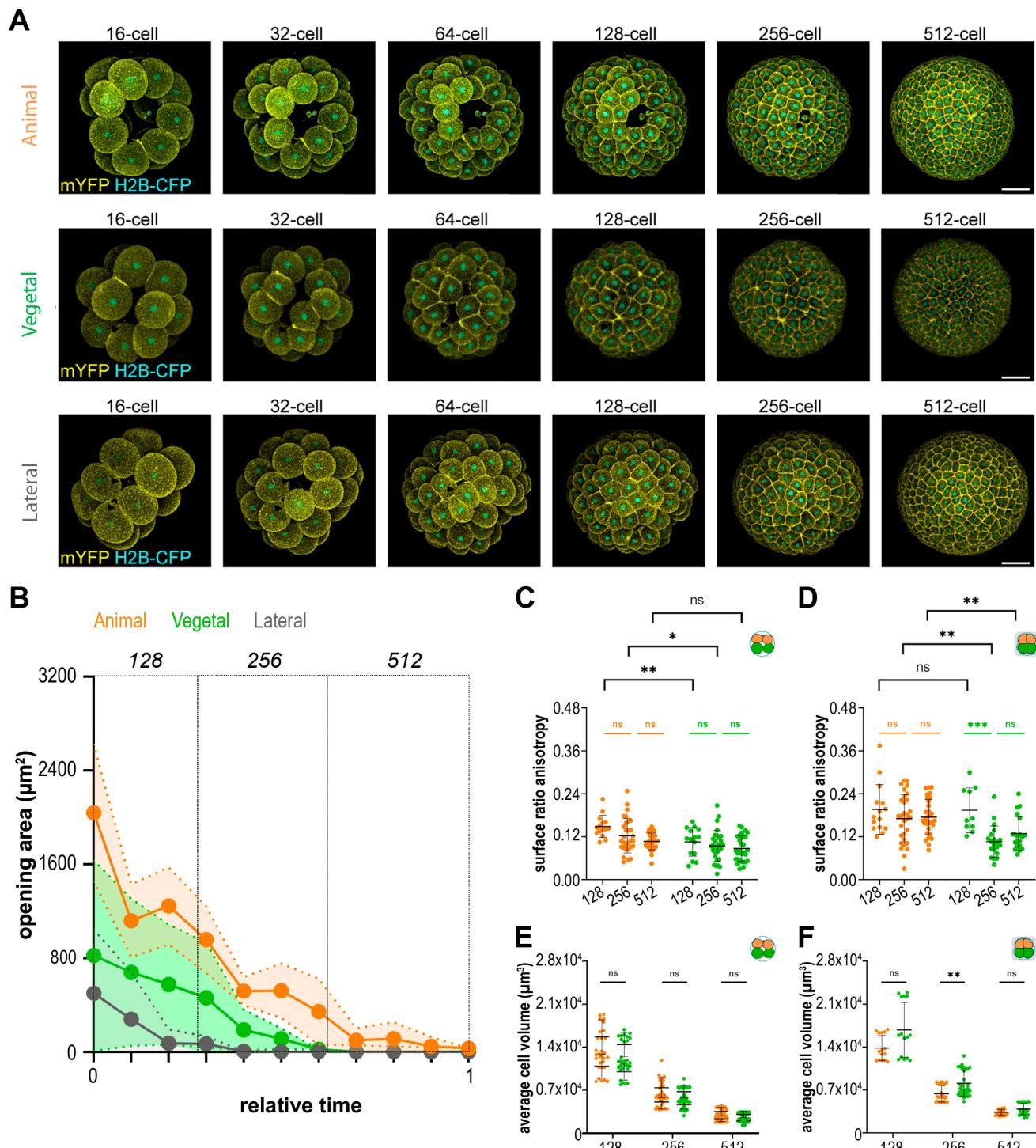


Figure 4. Relationship between compaction, cell density, convexity and the formation of scutoids. Schematic representation of the process of compaction in sea star embryos. Cell proliferation drives the lateral expansion of the epithelium via oriented cell divisions. Initially, cell divisions cause the reduction of interstitial space, until the epithelium is sealed. In this phase, when cells still have space to expand laterally, cell divisions do not drive the formation of AB-T1s. Once the epithelium is sealed, and cells are now confined, oriented cell divisions create lateral compression forces that result in lowered convexity and in cells adopting the scutoidal shape.


SUPPLEMENTARY FIGURES


Figure S1. *Patiria miniata* embryo development. Maximum projections of a representative WT sea star embryo (**A**) or WT-comp embryo (**B**) expressing the membrane marker mYFP at different stages from 16-cells to 2000-cells. Scale bars, 50 μ m.


Figure S2. Deep learning-based 3D segmentation. Workflow scheme showing the different steps followed to segment sea star embryos.


Figure S3. Shape of WT and WT-comp embryos at 128-, 256- and 512-cells. **A)** Orthogonal view (top) and maximum projection (centre) of a representative WT half embryo. (Bottom) Estimate of the complete shape. Scale bars, 50 μ m. Quantification of the tissue aspect ratio (**B**) and major axes length ratio (**C**) of the whole embryos. Quantification of the tissue average cell height (**D**) and surface ratio (**E**) of the segmented region. WT: n=150 time points, 6 embryos, 4 experiments. WT-comp: n=125 time points, 5 embryos, 4 experiments for B-C panels, n=150 time points, 6 embryos, 5 experiments for D-E panels. Mean \pm s.d. Statistical tests: Mann-Whitney tests with Bonferroni multiple comparisons correction (black) and Kruskal-Wallis tests (blue) with Dunn multiple comparisons correction; ns: non-significant; *: p-value <0.05; **: p-value <0.01 ***: p-value <0.001.

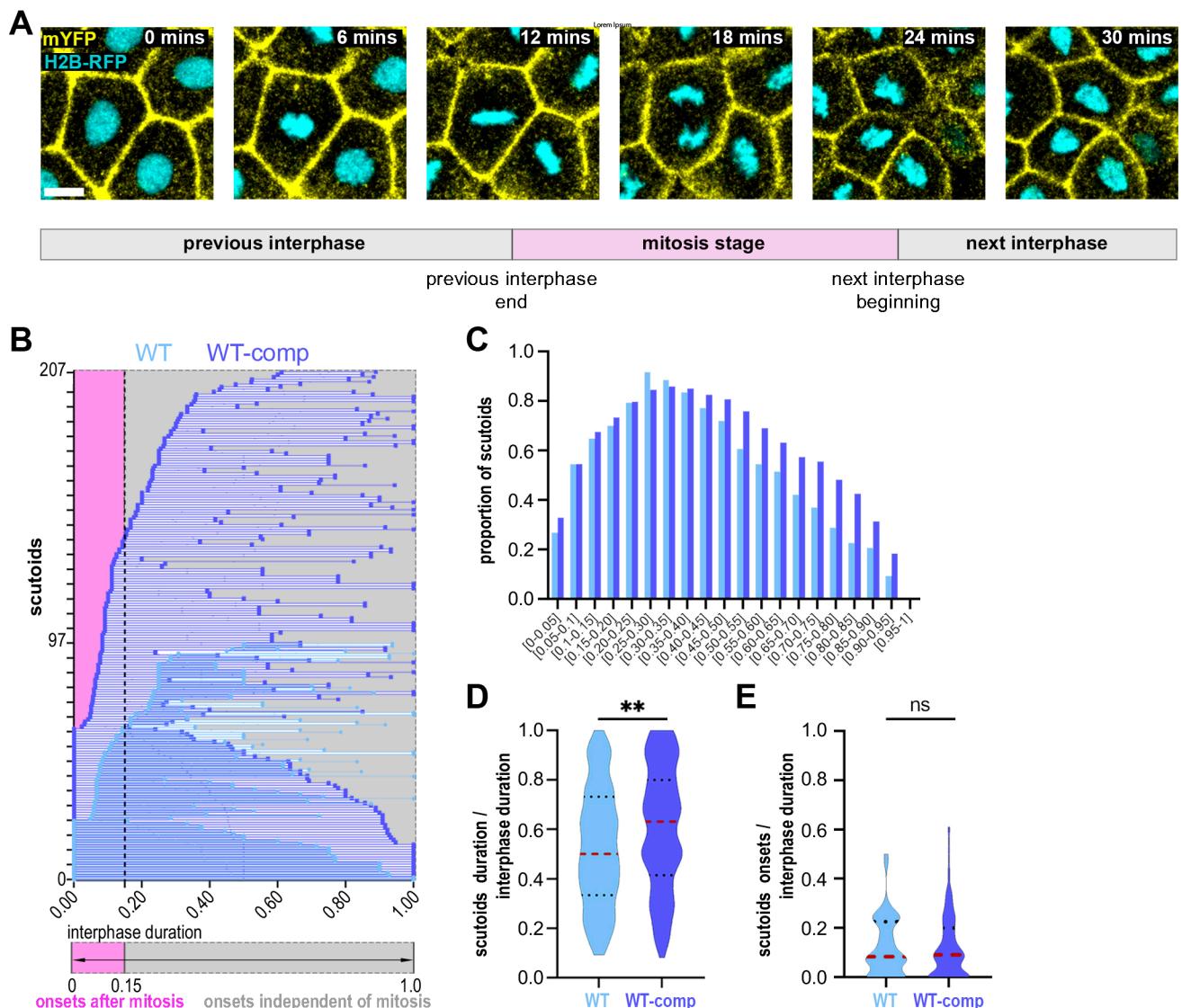

Figure S4. Cell compaction. 3D representation of 4-cell motives from a lateral (Top) and inner (Bottom) view from 128-cell WT embryo **(A)** 512-cell WT embryo **(B)** 128-cell stage **(C)** WT-comp embryo. In the inner view, the numbers displayed next to each cell indicate the individual value of the convexity ratio (see Materials and methods).

Figure S5. Single-cell tracking of division: analysis of cell proliferation rate per embryo. A) Quantification of mitosis and interphase time intervals per embryo showing the moment the tissue is completely sealed and the first cell adopting scutoidal shape. Quantification of the average time elapsed among each interphase and mitosis intervals (**B**) and between the beginning of the 128-cell stage and the end of 512-cell stage (**C**) in WT and WT-comp embryos. WT: n=150 time points, 6 embryos, 4 experiments. WT-comp: n=150 time points, 6 embryos, 5 experiments. Mean \pm s.d. Statistical tests: two-tailed Student t-test; ns: non-significant.

Figure S6. Opening areas and compaction. **A**) Maximum projections of representative WT sea star embryos expressing a membrane marker (mYFP) and nuclear marker (H2B-CFP) from an animal (top), vegetal (centre) or lateral (bottom) view. Scale bars, 50 μ m. **B**) Quantification of opening areas in animal, vegetal and lateral regions. WT animal: n= 6 embryos, WT vegetal: n= 5 embryos; WT lateral: n= 4 embryos; 5 experiments. Quantification of surface ratio anisotropy in both regions of WT (**C**) and WT-comp (**D**). Quantification of cell volume in both regions of WT (**E**) and WT-comp (**F**). WT animal: n= 75 time points, 3 embryos, 3 experiments. WT vegetal: n= 75 time points, 3 embryos, 2 experiments. WT-comp animal: n= 75 time points, 3 embryos, 2 experiments. WT-comp vegetal: n= 50 time points, 2 embryos, 2 experiments for C-D panels, n= 75 time points, 3 embryos, 3 experiments for E-F panels. Mean \pm s.d. Statistical tests Mann-Whitney tests with Bonferroni multiple comparisons correction (black) except in C where two-way ANOVA test with Bonferroni multiple comparisons correction was applied. Kruskal-Wallis tests with Dunn multiple comparisons correction (orange and green) except in C where one-way ANOVA tests with Tukey multiple comparisons correction was used; ns: non-significant; *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001.

Figure S7. Tracking of scutoids over time. **A)** Slices of a representative sea star embryo showing how we establish the beginning and end of an interphase when tracking scutoids. The embryo is expressing the membrane marker mYFP and the nuclei marker H2B-RFP. Scale bars, 10 μ m. Quantifications of the onsets and end of scutoids individually (**B**), the proportion of scutoids throughout the interphase (**C**), the average scutoids duration (**D**) and the average scutoids onset (**E**). WT: 97 scutoids, 6 embryos, 4 experiments and WT- comp: 207 scutoids, 6 embryos, 5 experiments. Mean (red dotted lines) \pm s.d. (black dotted lines). Statistical test: Mann Whitney tests; ns: non-significant; **: p-value <0.01.

SUPPLEMENTARY MOVIE LEGENDS

Movie 1. *Patiria miniata* WT embryo, vegetal view. Maximum projection of confocal time-lapse video of a WT embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (nCFP, cyan) imaged between the 32- and 2000-cell stages. Vegetal view. Scale bars, 50 μ m. Frame interval of 6 minutes, 7 fps.

Movie 2. *Patiria miniata* WT-comp embryo, vegetal view. Maximum projection of confocal time-lapse video of a WT-comp embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (nRFP, cyan) imaged between the 32- and 2000-cell stages. Vegetal view. Scale bars, 50 μ m. Frame interval of 6 minutes, 7 fps.

Movie 3. *Patiria miniata* WT embryo, animal view. Maximum projection of confocal time-lapse video of a WT embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (n-RFP, cyan) imaged between the 32- and 2000-cell stages. Animal view (note the polar bodies). Scale bars, 50 μ m. Frame interval of 6 minutes, 7 fps.

Movie 4. *Patiria miniata* WT-comp embryo, animal view. Maximum projection of confocal time-lapse video of a WT-comp embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (nRFP, cyan) imaged between the 32- and 2000-cell stages. Animal view (note the polar bodies). Scale bars, 50 μ m. Frame interval of 6 minutes, 7 fps.