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The study uses sea star embryogenesis as a model of a proliferating epithelium to highlight how cell 20 

division induces 3D cell rearrangements during development.  21 

ABSTRACT 22 

Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. 23 

In curved epithelia, cells can intercalate along their own apicobasal axes adopting a shape named 24 

“scutoid” that allows energy minimization in the tissue. Although several geometric and biophysical 25 

factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid 26 

formation in 3D epithelial packing remain poorly understood. Here we use live-imaging of the sea star 27 

embryo coupled with deep learning-based segmentation, to dissect the relative contributions of cell 28 

density, tissue compaction, and cell proliferation on epithelial architecture. We find that tissue 29 

compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. 30 

Physical compression experiments identify cell density as the factor promoting scutoid formation at a 31 

global level. Finally, the comparison of the developing embryo with computational models indicates 32 

that the increase in the proportion of scutoids is directly associated with cell divisions. Our results 33 

suggest that apico-basal intercalations appearing just after mitosis may help accommodate the new 34 

cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell 35 

rearrangements during development. 36 
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INTRODUCTION 40 

 41 

Animal embryonic development is often driven by morphogenesis of epithelial tissues that form 42 

lumens, giving rise to hollow structures such as tubes or cysts that are the basis for further 43 

organogenesis (Guillot and Lecuit, 2013; Lecuit and Lenne, 2007, Navis and Bagnat, 2015). During 44 

these processes, epithelia become curved while maintaining their barrier function (Davidson, 2012; 45 

Pearl et al., 2017), which means that cell shape is adjusted so that the epithelium remains sealed and 46 

no openings or fractures occur (Gibson et al., 2006; Sánchez-Gutiérrez et al., 2016). Therefore, 47 

transformations in epithelial packing, i.e. the way in which epithelial cells are arranged in three 48 

dimensions, are crucial to the coupling of morphogenesis and function in curved epithelia (Gómez-49 

Gálvez et al., 2021a; Lemke and Nelson, 2021).    50 

In the example of monolayered epithelia, it has been traditionally assumed that cells have a prism 51 

shape and that curvature is achieved by prisms turning into frusta (i.e. truncated pyramids) (Davidson, 52 

2012; Lecuit and Lenne, 2007; Pearl et al., 2017). Cells that are prisms or frusta have the same set 53 

of neighbours on their apical and basal sides (Schneider and Eberly, 2002). However, this is not 54 

always the case, as apico-basal intercalations can occur, i.e. neighbour exchanges that occur not in 55 

time, but in space, along the apicobasal axis of a cell - also known as apico-basal topological transition 56 

1 (AB-T1) (Gómez-Gálvez et al. 2021; Gómez-Gálvez et al. 2018; Rupprecht et al. 2017; Sanchez-57 

Corrales et al. 2018). Whenever an AB-T1 occurs, the four cells involved in the transition are no longer 58 

shaped as prisms or frusta; instead, they adopt another configuration, called scutoid, i.e. having 59 

different sets of  neighbouring cells on their apical and basal surfaces (Gómez-Gálvez et al., 2022, 60 

2021a, 2018; Lemke and Nelson, 2021; Lou et al., 2023; Mughal et al., 2018). AB-T1s occur frequently 61 

in curved epithelia (Honda et al., 2008; Sun et al., 2017; Xu et al., 2016), especially in tubular 62 

monolayered epithelia (Gómez-Gálvez et al. 2022; Gómez-Gálvez et al. 2018), allowing energetically 63 

favourable packing of cells in 3D (Gómez-Gálvez et al. 2022; Gómez-Gálvez et al. 2018). Based on 64 

this principle of energy minimization, AB-T1s are expected to form in any epithelium where the 65 

stresses acting on the apical and basal surfaces are anisotropic (Lou et al., 2023). This is the case in 66 

tissues with high curvature anisotropies, e.g. ovoids and tubes (Gómez-Gálvez et al., 2018; Mughal 67 

et al., 2018), or in areas with a large gradient of curvature where cells are laterally tilted (Lou et al., 68 

2023; Rupprecht et al., 2017). In contrast, previous studies also suggest that geometrical cues should 69 

not induce AB-T1s in flat epithelia or in spherical epithelia, where the curvature is isotropic (do Carmo, 70 

1976; Gómez-Gálvez et al., 2018; Lou et al., 2023).  71 

Despite those predictions, AB-T1s have in fact been observed in curved epithelia without pronounced 72 

anisotropy and in higher frequencies than expected considering only tissue geometry. Therefore, it 73 

has been proposed that scutoid formation may also be due to cell and tissue dynamics producing 74 

differential strain on the apical and basal surfaces of epithelial tissues (Gómez-Gálvez et al., 2018; 75 

Lou et al., 2023; Rupprecht et al., 2017). For example, cell divisions may temporarily alter the balance 76 

of forces acting on epithelial cells (Gómez et al., 2021; Ragkousi et al., 2017; Ragkousi and Gibson, 77 

2014). Similarly, the strains acting on tissues undergoing morphogenesis may be different from those 78 

predicted according to geometry alone, for instance due to active cell movements within the tissue 79 

(Gómez-Gálvez et al., 2018; Sanchez-Corrales et al., 2018; Sun et al., 2017) or to pressure from outer 80 

structures (Lou et al., 2023; Rupprecht et al., 2017). Determining whether dynamic processes underlie 81 

scutoid formation, requires following those processes in time. Therefore, high-resolution time-lapse 82 

imaging coupled with precise image segmentation is pivotal (Arganda-Carreras et al., 2017; Falk et 83 

al., 2019; Haberl et al., 2018; Lee et al., 2020; Wolny et al., 2020).  This approach allows one to obtain 84 

realistic information about cell conformations in 3D, how they change over time and how those 85 
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changes relate to other morphogenetic events such as cell division, tissue rearrangements or cell 86 

deformation. Here, we introduce the sea star embryo (Patiria miniata) as a model for spheroid 87 

epithelium dynamics, and we employ live imaging and machine learning segmentation algorithms to 88 

analyse cell and tissue shapes with respect to cell division and tissue compaction. 89 

P. miniata embryos are transparent (Arnone et al., 2015; Meyer and Hinman, 2022; Newman, 1922), 90 

develop freely in sea water (Arnone et al., 2015; Meyer and Hinman, 2022; Newman, 1922) and can 91 

be imaged live for extended periods of time (Barone and Lyons, 2022; Perillo et al., 2023; Swartz et 92 

al., 2021). When fertilisation occurs, the fertilisation envelope is raised, the zygote undergoes 93 

holoblastic cleavage and then develops into an approximately spherical blastula (Arnone et al., 2015; 94 

Barone et al., 2022; Dan-Sohkawa, 1976; Kominami, 1983), with a blastocoel encircled by a 95 

monolayered epithelium (Arnone et al., 2015; Barone and Lyons, 2022; Dan-Sohkawa, 1976; 96 

Kominami, 1983). Interestingly, during cleavage stages sea star cells adhere loosely to each other 97 

and line up against the fertilisation envelope, occupying all available space (Barone et al., 2022; 98 

Barone and Lyons, 2022; Maruyama and Shinoda, 1990).  At these stages, the epithelium is not 99 

sealed, there are openings between the cells through which fluid can flow (Barone and Lyons, 2022; 100 

Dan-Sohkawa and Satoh, 1978). However, cell division planes are perpendicular to the epithelial 101 

surface, so that the tissue becomes thinner and expands laterally after each round of synchronous 102 

cell division. Eventually, at around the 512-cell stage, closure is achieved and cells become 103 

progressively more compacted, i.e. more tightly packed together.  (Barone and Lyons, 2022; Dan-104 

Sohkawa and Satoh, 1978). Concomitantly, cell fate specification takes place, as different domains 105 

of the embryo are established: vegetal pole cells inherit maternal determinants that induce 106 

mesendodermal cell fates, while animal cells will develop into neuroectodermal cell types (Barone et 107 

al., 2022; Cheatle Jarvela et al., 2016; Maruyama and Shinoda, 1990; Nakajima et al., 2004; Swartz 108 

et al., 2021; Yankura et al., 2013; Zheng et al., 2022). Throughout cleavage and early blastula stages 109 

the embryonic shape remains approximately spherical (Barone and Lyons, 2022; Dan-Sohkawa, 110 

1976).  111 

Therefore, the sea star embryo is a dynamic spheroidal epithelium, undergoing sealing, while cells 112 

within it divide and differentiate. The combination of live imaging of sea star embryo development, 113 

detailed image analysis and computational modelling, allows us to ask whether, and how, 114 

morphogenesis and 3D epithelial packing are coupled.  115 

 116 

  117 
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RESULTS  118 

Scutoids are induced upon global increase in cell density. 119 

To identify factors that couple cell proliferation and epithelial packing, we analysed the shape and 3D 120 

connectivity of cells in sea star embryos (Patiria miniata), which develop into approximately spherical 121 

monolayered blastulae (Fig. 1A-B, Movie 1) (Arnone et al., 2015; Barone and Lyons, 2022). In the 122 

sea star embryo, early blastomeres adhere loosely to one another initially, with fluid flowing between 123 

the inside and outside of the embryo until about the 512-cell stage, when the epithelium closes to 124 

encircle the blastocoel (Barone et al., 2022; Barone and Lyons, 2022; Dan-Sohkawa and Satoh, 1978) 125 

(Fig. 1A, Fig. S1, Movie 1). Importantly, during blastulation, many of the cellular processes 126 

characteristic of dynamic epithelia can be readily observed: cells undergo several rounds of cell 127 

division reducing their volume, changing shape and cell-cell contact topology along the whole height 128 

of the cells (3D packing) (Farhadifar et al., 2007; Lemke and Nelson, 2021; Nelson, 2016). To 129 

determine how cellular characteristics vary during development we performed time-lapse imaging of 130 

wild-type (WT) sea star embryos expressing a membrane marker (mYFP) (Fig. 1A-B) and a nuclear 131 

marker (H2B-CFP) combined with a deep-learning based 3D segmentation program (Fig. 1C, Fig. 132 

S2, see Materials and Methods). To ensure accurate segmentation we limited our analysis to the 133 

portion of the imaged embryos with the highest signal/noise ratio (Fig. 1C, see Materials and 134 

Methods). 135 

The presence of “scutoidal” cells is a good indicator of changes in 3D packing, as scutoids are formed 136 

every time an AB-T1 occurs and the 3D connectivity increases (Gómez-Gálvez et al. 2022; Gómez-137 

Gálvez et al. 2018; Okuda et al. 2019). Therefore, we set out to identify whether scutoids are formed 138 

in this dynamic spheroidal epithelium (Fig. S3), when they are formed, and which cell behaviours may 139 

be related to scutoid formation. We identified scutoids as cells with a different configuration of 140 

neighbours in the apical and basal sides (Fig. 1D) (Gómez-Gálvez et al., 2021a, 2018).  Interestingly, 141 

we were not able to detect scutoids before the 256-cell stage by visual inspection. At the 256-cell 142 

stage, the epithelium started to seal, and then, we observed an increase in the frequency of scutoids 143 

at subsequent stages (Fig. 1E). Given that tissue geometry has been previously implicated in the 144 

appearance of scutoids (Gómez-Gálvez et al., 2018; Mughal et al., 2018), we asked whether 145 

curvature anisotropy changing over time explains the observed trend in scutoid formation. We 146 

calculated the surface ratio anisotropy of the region and found that it does not increase significantly 147 

over time (Fig. 1F). This result suggests that, in the context of an isotropic region of a curved tissue, 148 

factors other than curvature anisotropy are responsible for scutoid formation. To identify such factors, 149 

we analysed other cellular characteristics during embryonic development. First, we confirmed that cell 150 

density approximately doubled when the embryo advanced to a new stage (Fig. 1G), meanwhile cell 151 

volume was approximately halved after each round of cell division (Fig. 1H). When analysing cell 152 

shape changes, we found that cells became less convex (Fig. 1I, Fig. S4). Importantly, given that sea 153 

star cells are not protrusive (Movie 1), loss of convexity is likely attributable to how tightly cells are 154 

packed together. (Fig S4) and indicates increased cell compaction. These changes are expected 155 

given that the tissue expands laterally and becomes thinner, as shown by reduced cell height and 156 

tissue surface ratio (Fig. S3), which may result in increased compaction.  157 

Taken together, these results suggest that AB-T1s may be facilitated by increased cell density and/or 158 

compaction. To further investigate these possibilities, we mechanically compressed and live-imaged 159 

sea star embryos by embedding them in a transparent viscous gel (Polyethylene Glycol Diacrylate 160 

hydrogel, PEGDA) at the 1-cell stage (Fig. 1A-B, Fig. S1, Movie 2). This procedure confines the 161 
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embryo in a space that is smaller than usual, as normally embryonic cells occupy the entire space 162 

provided by the fertilisation envelope (Fig. 1A). We called this condition: WT compressed (WT-comp). 163 

Similarly to WT unperturbed embryos, we analysed the WT-comp at subsequent stages of 164 

development. We observed that surface ratio anisotropy did not increase (Fig. 1F), cell density 165 

doubled (Fig. 1G), cell volumes were halved (Fig. 1H), and cells became less convex (Fig. 1I, Fig. 166 

S4). However, the comparison between WT and WT-comp at each developmental stage highlighted 167 

interesting differences: compression induced a higher proportion of AB-T1s and their appearance at 168 

an earlier stage (128-cell in WT-comp vs 256-cell in WT) (Fig. 1E). Concomitantly, WT-comp embryos 169 

showed higher surface ratio anisotropy (Fig. 1F), higher cell density (Fig. 1G) and lower convexity 170 

(Fig. 1I) than WT embryos. Cell volume was the only feature not altered by the compression (Fig. 171 

1H). Importantly, we have found that compression does not impact the timing of development and the 172 

synchronicity of cell divisions during the mitotic waves that occur between the 128- and 512-cell 173 

stages (Fig S5). These experimental results suggested that the dynamics of scutoid formation are 174 

linked to increase in cell density and tissue compaction. 175 

Regional differences in tissue compaction affect propensity of scutoid formation. 176 

During blastulation in the sea star embryo, several openings, located in different regions, close 177 

progressively; (Fig. 2A-B, Fig. S6, Movies 1, 3). We investigated this phenomenon in more detail by 178 

analysing separately the time-lapses where either the vegetal or the animal pole was imaged (Fig. 179 

2A, Fig. S6, Movies 1, 3, see Materials and Methods). We observed that closure is delayed on the 180 

animal pole: all openings are closed in vegetal poles of WT embryos by the 256-cell stage while they 181 

close only at the 512-cell stage in animal poles (Fig.  2B, Fig. S6). We then asked whether this 182 

asynchronous closure results in local differences in cell density and cell compaction that may induce 183 

scutoid formation. When we measured cell density, we found that it is not significantly different 184 

between animal and vegetal poles (Fig. 2C). However, using cell convexity as a measure of 185 

compaction, we found that vegetal cells had lower convexity than animal cells (Fig. 2D). Interestingly, 186 

scutoids appeared earlier and a higher proportion of cells acquired the scutoidal shape in the vegetal 187 

pole compared to the animal pole of WT embryos (Fig. 2E).   188 

 189 

These results suggested that, even though cell density was similar between poles, the presence 190 

of an opening allowed animal cells to remain slightly less compacted for longer, therefore delaying 191 

the formation of AB-T1s compared to the vegetal pole. In this scenario, the differences in the 192 

propensities for scutoid formation between animal and vegetal cells would be lost if the opening in the 193 

animal pole would be closed earlier. To test this hypothesis, we analysed compressed embryos (Fig. 194 

2F, Movies 2, 4). We found that closure happens at the same time in animal and vegetal poles of 195 

WT-comp embryos, with openings being closed in both poles before the 256-cell stage (Fig. 2G). Cell 196 

density was similar between the two poles until the 512-cell stage, when it was higher in the vegetal 197 

pole compared to the animal pole (Fig. 2H). Moreover, there was no significant difference in convexity 198 

between animal and vegetal cells (Fig. 2I). Interestingly, there were no differences in the proportion 199 

of animal and vegetal cells acquiring the scutoid shape at the 128- and 256-cell stages, when both 200 

cell convexity and cell density were similar (Fig. 2J). At the 512-cell stage, however, when cell 201 

convexity was not significantly different but cell density was higher in the vegetal pole, a higher 202 

proportion of cells formed scutoids in the vegetal pole compared to the animal pole (Fig. 2J). While 203 

we observed differences in surface ratio anisotropy and cell volumes between animal and vegetal 204 

cells in a subset of the analysed stages, they did not correlate consistently with changes in the 205 

proportion of scutoids (Fig. S4).   206 

 207 
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Taken together, these results show that differences in compaction between regions of the embryo 208 

explain variation in the propensities for scutoid formation. Moreover, they show that compaction and 209 

cell density can independently affect 3D packing, as differences in the proportion of scutoids between 210 

regions with similar cell density can be explained by variation in compaction (WT) and, viceversa, 211 

differences between similarly compact regions can be explained by variation in cell density (WT-212 

comp). 213 

Scutoid formation is temporally linked to cell divisions.  214 

Each stage of sea star development could be thought of as a steady state tissue characterised by 215 

a specific shape, compaction and cell density, which could alone account for differences in AB-T1 216 

propensity. Alternatively, the increment of AB-T1s observed during development can also be due to 217 

dynamic factors. To discern between these two possibilities, we implemented spheroidal Voronoi 218 

models that mimic the shape and number of cells of each real embryo (as detailed in Materials and 219 

Methods). Briefly, we generated 3D Voronoi models for patches of epithelial cells corresponding to 220 

our experimental segmented cells. This means a construction that imitates the tissue with the same 221 

surface ratio anisotropy, cell density, and opening areas as in the embryos; but, importantly, without 222 

dynamic components such as cell proliferation (Fig. 3A). Then, we used the same principle to 223 

calculate the theoretical proportion of AB-T1s that should appear in both WT and WT-comp tissues. 224 

We observed a higher number of scutoids in virtual compressed tissues when comparing them with 225 

the WT constructions (Fig. 3B), showing that changes cell density and tissue geometry can influence 226 

the incidence of AB-T1s in the Voronoi model. However, we found that actual tissues presented a 227 

higher amount of scutoids than their corresponding Voronoi models (Fig. 3B). This result suggests 228 

that the appearance of scutoids is only partially due to changes in cell density/compaction altering the 229 

position of cells relative to each other and to the shape of the tissue, i.e. to geometry. Other factors, 230 

not accounted for in the model, can also induce AB-T1s.  231 

In the sea star embryo, rounds of synchronous cell divisions are responsible for the increase in 232 

cell density. Therefore, we used the time-lapses of the developing embryos to explore the relation 233 

between the formation of scutoids and cell division. We tracked individual cells over time and asked 234 

whether the formation of AB-T1s is temporally linked to cell division events within the epithelium (Fig. 235 

3C-F). We analysed embryos between 128- and 512-cell stages and, for each scutoid detected, we 236 

tracked the cell during the whole interphase, and recorded when that cell acquired a scutoidal shape 237 

(scutoid onset) and when the AB-T1 transition was resolved (scutoid end) (Fig. 3C-D). In order to 238 

compare the timing of scutoid formation and duration between different developmental stages and 239 

different embryos, we normalised measurements over interphase duration, defined as the time 240 

between the end of cytokinesis and mitotic rounding marking the beginning of the following cell 241 

division (Fig. S7, Materials and Methods).  242 

We tracked a total of 304 scutoid forming cells, of which 97 in WT embryos and 207 in WT-comp 243 

embryos (Fig. 3E-F, Fig. S7), as expected due to the higher frequency of scutoids observed upon 244 

compression (Fig. 1E). We found that the vast majority of scutoids in both conditions appeared shortly 245 

after cell division (Fig. 3E), with more than 60% of all scutoids being formed before 15% of the 246 

interphase time has elapsed, in both WT and WT-comp embryos (Fig. 3E, Fig. S7). This phenomenon 247 

was observed consistently across embryos, as in most cases (4 out of 6 WT embryos and 5 out of 6 248 

WT-comp embryos) the proportion of scutoids with onset after mitosis - defined as before 15% of the 249 

interphase time - was higher than the proportion of scutoids with onset independent of mitosis - 250 

defined as after 15% of the interphase time - (Fig. 3F).  Interestingly, in both WT and WT-comp 251 
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embryos there was a steep decrease in scutoids onsets as the interphase progressed, with close to 252 

no scutoids being formed in the second half of the interphase (Fig. 3E, Fig. S7). Notably, we did not 253 

find a single cell that acquired the scutoidal shape twice within one interphase (Fig. S7). We observed 254 

no fluctuations in the position of the transition point along the apicobasal axis that resulted in the 255 

resolution and re-establishment of an AB-T1 among the same 4 cells. Instead, the apicobasal 256 

transition is formed rapidly and then the transition point moves slowly toward either the basal side or 257 

apical side until the AB-T1 is resolved and the scutoidal cells return to a frustum shape (Fig 3C,D).  258 

Although scutoid onset was not altered, scutoid duration was increased in WT-comp embryos 259 

compared to WT embryos (Fig. S7). Not only average scutoid duration (Fig. S7) but also the 260 

proportion of scutoids that persisted through the second half of the interphase (Fig. S7) was higher 261 

in WT-comp embryos. The results from the experimental and computational experiments show a 262 

strong correlation between the formation of scutoids and cell division, suggesting a reorganisation of 263 

3D cell packing as a response to maintain tissue homeostasis after the alteration induced by local 264 

increases of cell density. 265 

 266 

 267 

  268 
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DISCUSSION  269 

Elucidating the mechanisms involved in 3D packing is crucial to understand how tissues and 270 

organs form during animal embryogenesis (Gómez-Gálvez et al., 2021a; Lemke and Nelson, 2021). 271 

It has been previously proposed that AB-T1s are induced by i) curvature anisotropy (Gómez-Gálvez 272 

et al., 2018; Mughal et al., 2018) ii) steep curvature gradients that can lead to cell tilting (Lou et al., 273 

2023; Rupprecht et al., 2017), and iii) cell migration and proliferation (Gómez-Gálvez et al., 2018). 274 

From a biophysics point of view, the formation of scutoids is clearly related to the surface tension 275 

parameters of the cells (Gómez-Gálvez et al., 2018; Mughal et al., 2018). In addition, Lou and 276 

colleagues propose that, in cylinder and ellipsoidal geometries, the interplay between mechanics (e.g. 277 

pressure, cell density and lateral tension) and cellular tilt is responsible for the appearance of 278 

neighbour rearrangements along the apico-basal direction (Lou et al., 2023). However, distinguishing 279 

the specific involvement of each factor affecting 3D packing has been challenging.  280 

Here, we take advantage of the characteristic development of the sea star embryo, together with 281 

its amenability to live imaging and mechanical manipulations, combined with deep learning-based 282 

segmentation, to dissect the contributions of tissue compaction, cell density, and cell proliferation to 283 

the formation of AB-T1s and the consequent 3D tissue rearrangement. Importantly, our experiments 284 

and computational models discard a relevant contribution of curvature anisotropy, since the induction 285 

of scutoids does not consistently correlate with increased tissue surface ratio anisotropy (Fig. 1E-F). 286 

Instead, we find that scutoids form only once the epithelium is closed; then reorganisation of 3D 287 

packing is dependent on the level of tissue compaction and on local and global changes in cell density. 288 

In the sea star embryo, cells organise in a monolayered epithelium that is initially leaky. It is only 289 

with subsequent rounds of oriented cell divisions that the epithelium becomes progressively more 290 

compact. Three aspects of epithelial morphogenesis contribute to compaction, i.e. increased cell 291 

density, epithelial closure, and cells becoming more tightly packed (Fig. 4).  292 

 Cell proliferation occurs initially in a loosely packed epithelium and, only at later stages, in the 293 

context of a tightly packed tissue (Fig. 4). This phenomenon allows us to determine the relative 294 

contributions of proliferation and compaction to scutoid formation. In addition, the timing and extent 295 

of compaction is determined, at least in part, by how much space is available to the embryonic cells 296 

while the tissue expands laterally due to cell divisions. Therefore, we can perform two types of 297 

experiments: i) alter compaction by reducing such space, i.e. by mechanically compressing the 298 

embryo; and ii) use computational methods to model 3D packing in the absence of proliferation. 299 

Taking advantage of this model system and experimental approaches, we unravel the mechanisms 300 

underlying changes in cell packing at three different scales: whole-embryo (Fig. 1), embryonic 301 

domains (Fig. 2) and local proliferation (Fig. 3).  302 

On a global scale, the analysis of the time-lapses shows that a significant amount of scutoids is 303 

formed only when cells are sufficiently compacted (starting at 256-cell stage), and then increase 304 

gradually in subsequent developmental stages (Fig. 1E). This implies that the increase in cell density 305 

per se is not sufficient to drive AB-T1s. Our results indicate that it is the coupling of increase in cell 306 

density with the space constraint of a compact epithelium that induces scutoid formation. This notion 307 

is supported by experimentally reducing the available space by compressing the embryo. In this case, 308 

sealing happens at the 128-cell stage, and so does the formation of scutoids.  309 
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On a second level, to address whether intrinsic factors may underlie scutoid formation, we took 310 

advantage of a peculiarity of the sea star embryo that we discovered in the course of our studies, i.e. 311 

sealing and compaction are heterogenous. In fact, epithelial closure is delayed in the animal pole with 312 

respect to the vegetal pole, resulting in lower compaction, even though cell density is similar (Fig. 2B-313 

C, Fig. S4). The equally delayed appearance of scutoids in the animal pole indicates that tissue 314 

closure is necessary for the reorganisation of 3D epithelial packing (Fig. 2A-B, E). This conclusion is 315 

supported by our experimental setup: compression of the embryos synchronises closure, equalises 316 

compaction and results in synchronous induction of scutoids, which is anticipated to the 128-cell stage 317 

in both animal and vegetal poles of compressed embryos (Fig. 2F-G, J). In addition, our results show 318 

that when both poles are sealed and cells are equally compacted, higher cell density in the vegetal 319 

pole at the 512-cell stage results in higher proportion of scutoids (Fig. 2H, J). Therefore, this 320 

experiment shows that, once the epithelium is closed, cell density and compaction can affect 3D 321 

packing independently.  322 

In this context, we propose that tissue compaction, measured here as reduced cell convexity, is a 323 

proxy for the pressure acting between cells within a tightly packed proliferating epithelium. Taken 324 

together, our results suggest that the extent of such pressure depends on the spatial constraints 325 

acting on the tissue (imposed either by the fertilisation envelope in WT embryos or by the embedding 326 

gel in compressed embryos) and, once the epithelium is closed, this pressure is combined with the 327 

pressure generated by increases in cell density. This, in turn, results in higher compaction and induces 328 

more AB-T1s. The balance of pressures acting on the tissue determines 3D packing.   329 

Still, we find that the cells in the WT vegetal pole of the embryo are more compact and form more 330 

scutoids than cells in the animal pole at the 512-cell stage (Fig. 2B, D-E). Given that the external 331 

spatial constraints imposed by the fertilisation envelope are the same, these differences in compaction 332 

are probably due to differences in the material properties of the embryonic domains. Recent studies 333 

have shown that in vivo tissues undergo spatiotemporal transitions between fluid and solid states 334 

which present different properties, i.e. stiffness, cell motion and propensity of cellular rearrangements 335 

(T1 transitions) (Kuriyama et al., 2014; Mongera et al., 2018; Shellard and Mayor, 2023). Moreover, 336 

local fluidization or stiffening can change the balance of pressures acting on neighbouring tissues and 337 

ultimately drive morphogenesis (Barriga et al., 2018; Petridou et al., 2019). Conversely, cellular 338 

connectivity is also a determinant of tissue viscosity and stiffness (Petridou et al., 2021; Petridou and 339 

Heisenberg, 2019). Future studies, entailing direct measurements of cortical tension and viscosity in 340 

different embryonic domains (Sugimura, Lenne and Graner, 2016), will be needed to establish the 341 

relationship between AB-T1s and the physical properties of cells and tissues. 342 

Finally, on a third level, the 3D epithelial packing comparison between real embryos and Voronoi 343 

models suggests that even accounting for tissue shape, tissue compaction and cell density is not 344 

sufficient to explain the high incidence of AB-T1s in a developing epithelium. Given that Voronoi 345 

models assume steady state conditions (Gómez-Gálvez et al., 2021b; Sánchez-Gutiérrez et al., 346 

2016), while the sea star embryo is a highly dynamic proliferating tissue, we explore the role of local 347 

increase of cell density in scutoid formation. We find that the vast majority of cells acquiring a scutoidal 348 

shape do so shortly after cell division, both in WT and WT-comp embryos (Fig. 3E-F). We have shown 349 

that compressing embryos causes scutoids to appear earlier in development, and causes more cells 350 

to acquire the scutoidal shape. Yet, still, scutoids tend to form shortly after cell division in the 351 

experimental embryos (WT-comp) (Fig. 3E-F) at the same ratio as that in WT (Fig. S7). We think that 352 

this finding is in line with recent predictions from (Lou et al., 2023), who propose cell division as a 353 

source of pressure on cells’ lateral membranes that could induce scutoid formation. The tracking of 354 
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individual cells after cell division shows that through the interphase the epithelium slowly 355 

accommodates and most scutoids are resolved into frusta (Fig. S7). In the compressed embryos, 356 

additional forces exerted on the cells exacerbate the phenomenon, causing the scutoidal shape to be 357 

maintained for longer periods of time (Fig. S7).  358 

Altogether, we propose that, in the proliferating sea star embryo we have the combination of two 359 

phenomena: i) rounds of cell divisions where there is an increase in cell density and that lead to 360 

progressive tissue compaction and ii) the sudden local appearance of new cells after cell division, 361 

creating the need to cope with new neighbours (Fig. 4). Therefore, the induction of AB-T1s in the sea 362 

star embryo might be an efficient way to deal with the increasing pressures at local and global levels. 363 

Interestingly, it has been previously observed that the “scutoidal” shape is better than prisms at 364 

withstanding compression forces in an architectural context (Dhari and Patel, 2022). It is tempting to 365 

speculate that a side effect of scutoid formation in tissues undergoing morphogenesis is that they can 366 

better withstand compression.  367 

Regarding future directions, our results add a new perspective on the regulation of 3D epithelial 368 

organisation and lay the foundation to identify the molecular mechanisms allowing cells to form and 369 

resolve AB-T1s in response to developmental changes. 370 

  371 
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MATERIALS AND METHODS 372 

 373 

Animal husbandry 374 

Adult Patiria miniata were purchased from Monterey Abalone Company (Monterey, CA) or South 375 

Coast Bio-Marine LLC (San Pedro, CA) and held in free flowing seawater aquaria at a temperature 376 

of 12-16°C. Sea star gametes were obtained as previously described (Hodin et al., 2019). Briefly, 377 

ovaries and spermogonia were dissected via a small incision on the ventral side of adults. Sperm was 378 

stored dry at 4°C while ovaries were fragmented to release oocytes in local filtered sea water (FSW). 379 

Maturation of released oocytes was induced by incubating for 1h at 16°C in 3 μM 1-Methyladenine 380 

(Fisher Scientific, 5142-22-3).  381 

All embryos were raised in 0.22 μm - local filtered sea water (FSW) with the addition of 0.6 μg/ml 382 

Penicillin G sodium salt (Millipore Sigma, P3032) and 2 μg/ml Streptomycin sulfate salt (Millipore 383 

Sigma, S1277). 384 

mRNA injections  385 

mRNAs were synthesised with the mMessage mMachine SP6 Transcription Kit (Invitrogen, 386 

AM1340). Patiria miniata immature oocytes were injected with mRNAs to label membranes (mYFP 387 

100 ng/μl or mGFP, 400 ng/μl), and nuclei (H2B-CFP, 100 ng/μl or H2B-RFP, 400 ng/μl).  388 

A subset of embryos were also injected with sp-ctnnb-RFP 800 ng/μl. Injected oocytes were 389 

incubated at 16°C overnight, activated and fertilised.  390 

Live imaging and embryo compression 391 

Patiria miniata embryos expressing membrane and nuclear markers were mounted on a glass 392 

bottom dish (MatTek, P35G-1.5-14-C). No medium was used to immobilise the embryos: the glass 393 

bottom part of the dish was covered with a coverslip and sealed with vaseline. This creates a 500 μm 394 

deep chamber in which capillarity prevents the embryos from moving, until they develop cilia (Barone 395 

and Lyons, 2022). Additional FSW was added in the dish, to help with temperature control. Embryos 396 

were incubated until the 4-cell stage and then imaged on an inverted Leica Sp8 confocal microscope 397 

(20X objective, NA 0.7, 16°C controlled temperature). 398 

Of the 6 embryos selected, 3 were oriented with the animal pole and 3 with the vegetal pole facing 399 

the objective. Orientation of the embryo was determined based on the position of the polar bodies 400 

and on the cleavage planes at 4- to 16-cell stages.  401 

To achieve compression of developing embryos, 1-cell stage embryos were mounted in 3% 402 

PEGDA (EsiBio, GS700) in FSW. This restricts the embryos into a smaller space than normal, as they 403 

would otherwise occupy the entire fertilisation envelope. Embryos were otherwise imaged in the same 404 

way as control embryos.  405 

The acquired timelapses were deconvolved using the Lightning module of the LeicaX software.  406 

Scutoid tracking  407 

Scutoids were manually tracked using Fiji/ImageJ (Schindelin et al., 2012). Interphase for each cell 408 

forming a scutoid was defined as the time between the end of cytokinesis and cell rounding, which 409 

marks the beginning of the next cell division (Fig. S7). The time at which a cell adopted the scutoidal 410 

shape (scutoid onset) and for how long the cell maintained the scutoidal shape (scutoid duration) was 411 
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recorded and normalised over interphase duration. Then, we classify scutoids into separate 412 

categories based on scutoid start times.  413 

Normalization of developmental time  414 

To compare the duration of mitotic waves and dynamics of epithelial closure across embryos, 415 

developmental time was normalized by the time elapsed between the beginning of the 128-cell stage 416 

(relative time 0) and the end of 512-cell stage (relative time 1). Relative time 0 was defined as the 417 

time when the first cell of the 64-cell stage embryo had divided and relative time 1 as the time when 418 

the first cell of the 512-cell embryo had divided. Each stage was then split into a “mitotic wave”  period, 419 

which ends when at least 50% of the cells have divided, and an interphase period, which ends when 420 

the first cell generated by the previous round of cell division divides again. 421 

3D cell segmentation and tissue/cell feature analysis 422 

For the automatic segmentation of 3D embryo stacks, we have followed a specific workflow 423 

pipeline adapted from a previously performed procedure called CartoCell (Andrés-San Román et al., 424 

2023) 425 

Training dataset was established from 3D Voronoi diagrams which was obtained combining the 426 

centroids of the cell nuclei of the sea star embryo as seeds and making masks from the cellular 427 

membranes to define the space to be filled. Custom Matlab scripts were used to calculate the nuclei 428 

centroids and the application VolumeSegmenter from Matlab were used to curate the membrane 429 

regions of the cells. The training dataset was composed of 14 time-points from 256-cells stage with 430 

35 cells labelled of the same embryo development and was used as an input to a Deep Neural 431 

Network (DNN) presenting an architecture based on residual connections (3D ResU-Net) (Franco-432 

Barranco et al., 2022).  433 

Then, this model (M1) was tested with time points from other wildtype embryos even from other 434 

stages (128- and 512-). Finally the output of this model was used as input to another segmentation 435 

software, PlantSeg (Wolny et al., 2020), where through a watershed we obtain the labels of each of 436 

the cells that compose the stacks. Then, the mislabelled cells were checked using custom Matlab 437 

scripts. To improve predictions from wildtype and compressed embryos, a second model (M2) was 438 

trained by revising 150 stacks. In total, 300 stacks were processed from 12 embryo movies, with half 439 

belonging to wildtype embryos and the other half belonging to compressed ones. The segmented 440 

samples were obtained from three different cell cycles (128-, 256- and 512-cell stages). Specifically 441 

30 time points were obtained from the earliest stage (5 per embryo) and 60 time points were obtained 442 

from each of the remaining two stages (10 per embryo and stage). 443 

For each time point, we selected a subset of segmented cells for further analysis, i.e. the cells 444 

whose centroid lay within 30 μm from the embryo surface closest to the objective. 445 

Note that custom made Matlab scripts were used to extract the following 4 characteristics: 446 

-    Proportion of scutoids: Frequency of scutoidal cells among the selected cells. We quantified 447 

the scutoidal cells marking the cells involved in AB-T1s, i.e., cells which exchange neighbours 448 

between apical and basal surfaces.  449 
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-    Cell density of the region (cells/µm2): Ratio between the selected cells and the sum of inner 450 

basal areas they occupied.  451 

-    Average cell volume (µm3): mean volume of individual cells. The volume is the measurement 452 

of the number of voxels belonging to segmented cells. 453 

-    Cell convexity ratio: volume of the cell divided by the volume of the convex hull. The ratio 454 

ranges from 0 to 1, with values closer to 1 indicating a highly convex cell, and values closer to 455 

0 indicating the opposite. 456 

-    Opening areas (µm2): Regions of the embryo not occupied by the cells. Once we extracted 457 

the full projection of the image stacks, we used FIJI's polygon selection tool to quantify the 458 

sum of all opening areas in each sample. 459 

Note that for the following 4 characteristics, the samples segmented were 6 WT embryos and 460 

5 WT-comp embryos. 461 

-   Embryo lengths (µm): To determine the dimensions of the embryo, the half embryo was 462 

estimated using the FIJI’s orthogonal view. The minor axis was measured by determining the 463 

distance from the uppermost region to the midpoint of the half embryo using FIJI's straight line 464 

tool. The major axes of the embryo were measured on a 2D slice that approximately 465 

represented the midpoint of the embryo. These measurements were estimated using FIJI's 466 

polygon selection tool.  467 

-    Tissue aspect ratio: Proportional relationship between the longest and shortest dimensions of 468 

a tissue. It is calculated by dividing the length of the longest dimension by the length of the 469 

shortest dimension. The aspect ratio provides information about the shape and elongation of 470 

an object. A value of 1 indicates a perfectly circular or square shape, while values greater than 471 

1 suggest elongation along the longest dimension. 472 

-    Major axes lengths ratio: Proportional relationship between the two major axes of oblate 473 

spheroidal-shaped embryos.  474 

-    Average surface ratio anisotropy (or curvature anisotropy): Proportional relationship between 475 

the radii of curvature along the two main axes, h and w (transversal and longitudinal 476 

respectively) of the apical (Ra) and basal (Rb) surfaces. This relationship is characterised by 477 

the differences between the two surface ratios (Gómez-Gálvez et al., 2018). The formula to 478 

calculate the surface ratio anisotropy is as follows: 479 

 480 

  Where ℎ represents the axis of greatest curvature, 𝑤 represents the axis of least curvature, 481 

Ra, refers to the outer apical radius and Rb is the inner basal radius.  To obtain the value of 482 

these parameters, we measured the two principal curvatures for each centroid of the selected 483 

cells in the segmented region of both surfaces. By using the formulas to calculate the curvature 484 

of a coordinate in an ellipsoid (Bektas, n.d.), we obtained the values for the principal curvatures 485 
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(kh,kw) and we computed the average value regarding the maximum and minimum radii of 486 

curvature (R= 
1

𝑘
) for both apical and basal surfaces. A surface ratio anisotropy of 0 indicates a 487 

tissue with an isotropic curvature, while values greater than 1 suggest a tissue with more 488 

anisotropic curvature. 489 

Voronoi constructions 490 

We have used Matlab R2021a (Mathworks) as our computational tool to generate Voronoi 491 

constructions based on each imaged sea star embryo, maintaining similar geometrical characteristics 492 

of WT (n=150 time points, 6 embryos) and WT-comp datasets (n=150 time points, 6 embryos). These 493 

constructions were obtained by applying a 3D Voronoi algorithm to correctly mimic the epithelial 494 

packing (Voronoi 1908; Honda 1978). More specifically, we extracted the regions of the tissue that 495 

had been segmented from each imaged embryo in the form of  binarized masks. These masks defined 496 

the bounding territory that the Voronoi cells could occupy in each construction. Then, we calculated 497 

the coordinates of the 3D centroids of all segmented cells which were then used as Voronoi seeds. 498 

The algorithm is based on tiling the space between these sets of Voronoi seeds by proximity, 499 

occupying the entirely binarized mask given in each construction (Voronoi 1908; Honda 1978).  500 

Once the Voronoi construction was generated, similar to our approach done with the embryos, we 501 

selected a subset of Voronoi cells for further analysis, i.e. the cells whose centroid lay within 30 μm 502 

from the region that would correspond to the embryo surface closest to the objective.  503 

Delimitation of outer and inner layers and automatic detection of scutoids from segmented 504 

regions 505 

The extraction of the outer and inner layers from the cellular segmented regions was performed 506 

using a custom MATLAB code (see data availability), traversing the segmented region along the Z-507 

axis from top to bottom (outer) and bottom to top (inner) selecting the pixels corresponding to the first 508 

labelled cells encountered in both scans.   509 

The method for extracting the proportion of scutoids from the Voronoi constructions was adapted 510 

from CartoCell (Andrés-San Román et al. 2023). After extracting the outer and inner layers, we 511 

quantified the number of neighbours for each cell on both surfaces. To identify neighbours, we dilated 512 

each cellular surface, identifying those labeled cells which overlapped with the dilation, thereby 513 

obtaining  the sets of neighbours for a specific cell on each layer. Finally, we identify scutoids as cells 514 

that have different sets of neighbours on their apical and basal sides, as this situation can occur only 515 

in the case of an AB-T1. 516 

Statistical analysis 517 

Statistical analyses were performed using GraphPad (Prism), as indicated in the figure captions. 518 

Shapiro-Wilk test was applied for normality determined our use of either standard Student t-test, 519 

ordinary one-way or two-way ANOVA tests (normally distributed data, equal variances) or non-520 

parametric U-Mann-Whitney and Kruskal-Wallis tests (not normally distributed data). Bonferroni 521 

multiple comparisons correction was used to compare all features between WT and WT-comp 522 

conditions (Fig. 1E-I, Fig. 3B and Fig. S3) or between animal and vegetal locations (Fig. 2B-E, G-J, 523 

Fig. S6). Tukey multiple comparisons correction was used to compare WT surface ratio anisotropy 524 

over time (Fig. 1F, Fig. S6). Dunn multiple comparisons correction was used to compare all the other 525 

features over time (Fig. 1E, G-I, Fig. 3B, Fig. S3, Fig. S6). Student t-test was used to compare 526 
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scutoids onsets after mitosis and independent of mitosis (Fig. 3D) and the average time elapsed 527 

between the beginning of the 128-cell stage and the end of 512-cell stage (Fig. S5). U-Mann-Whitney 528 

test was used to compare the average scutoids onset and duration (Fig. S7). The details of the 529 

statistical analyses for the different comparisons can be found on Table S1.  530 
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Data availability  531 

 532 

All data used in our analysis have been deposited at Mendeley Data and are publicly available 533 

at: https://doi.org/10.17632/45v8xcb5mp.  534 

All original code used in our analysis is available at: 535 

https://github.com/ComplexOrganizationOfLivingMatter/seaStarProcessingSegmentation/releases/t536 

ag/scutoidsProliferation2024.  537 

Any additional information required to reanalyze the data reported in this paper is available from 538 

the lead contact upon request. 539 
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Figure 1. 3D segmentation of sea star embryos over time: cell packing and topological analysis 

at cellular level. A) Schematic representation of WT (top) and WT-comp (bottom) sea star embryos. 

B) Maximum projections of a representative WT sea star embryo (top) or WT-comp embryo (bottom) 

expressing the membrane marker mYFP at 128-,256- and 512-cell stages. Scale bars, 50 μm. C) 

Computer rendering of the segmented sea star embryo at 512-cell stage from a frontal (left) and 

lateral (right) perspective. D) 3D representation of 4-cell motif with scutoid (top) or frusta 

conformations (bottom). The apical and basal z-slices of the motives are shown. Quantifications of 

average scutoid frequency (E), surface ratio anisotropy (F), cell density (G), cell volume (H) and cell 

convexity (I) are shown. WT: n=150 timepoints, 6 embryos, 4 experiments. WT-comp: n=150 

timepoints, 6 embryos, 5 experiments for all panels except in F, where n=125 timepoints, 5 embryos, 

4 experiments. Mean ± s.d. Statistical tests: Mann-Whitney tests with Bonferroni multiple comparisons 

correction (black) and Kruskal-Wallis tests with Dunn multiple comparisons correction, (blue) except 

in 1F where one-way ANOVA test with Tukey multiple comparison correction was used (light blue); 

ns: non-significant; *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001.  
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Figure 2. Asynchronous compaction and scutoid formation in the sea star embryo. A) (Top) 

Schematic representation of WT embryos highlighting animal and vegetal poles. (Bottom) Maximum 

projections of a representative animal pole and vegetal pole at 128- , 256- and 512-cell stages. Scale 

bars, 50 μm. Quantifications of opening areas (B), cell density (C), cell convexity (D) and proportion 

of scutoids (E) are shown. WT animal: n= 75, 3 embryos, 3 experiments. WT vegetal: n= 75, 3 

embryos, 2 experiments. F) (Top) Schematic representation of WT-comp embryos highlighting animal 

and vegetal poles. (Bottom) Maximum projections of a representative animal pole and vegetal pole at 

128- , 256- and 512-cell stages. Scale bars, 50 μm. Quantifications of opening areas (G), cell density 

(H), cell convexity (I) and proportion of scutoids (J) are shown. WT-comp animal: n= 75, 3 embryos, 

2 experiments. WT-comp vegetal: n= 75, 3 embryos, 3 experiments. In (B) and (I) relative time 0 

corresponds to the first cell division occurring at the 64-cell stage and relative time 1 corresponds to 

the first cell division occurring at the 512-cell stage. The pink areas denote the average duration of 

mitotic waves for each stage. Mean ± s.d. Statistical test: Mann-Whitney tests with Bonferroni multiple 

comparisons correction; ns: non-significant; ***: p-value <0.001.  
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Figure 3. Single-cell tracking of scutoids relative to cell division. A) Computer rendering of 3D 

Voronoi models generated from WT and WT-comp embryos. B) Quantification of the proportion of 

scutoids. WT embryo: n=150 timepoints, 6 embryos, 4 experiments. WT 3D Voronoi: n=150 

timepoints. WT-comp embryo: n=150 timepoints, 6 embryos, 5 experiments. WT-comp 3D Voronoi: 

n=150 timepoints. Mean ± s.d. Statistical tests: Mann-Whitney tests (black) and Kruskal-Wallis tests 

(blue) with Bonferroni multiple comparisons correction; ns: non-significant; *: p-value <0.05; **: 

p<0.01; ***: p-value <0.001. C, D) Representative scutoids whose onset is classified as independent 

(C) or after (D) mitosis  Scale bars, 10 μm. Quantifications of the proportion of scutoids with onset 

after mitosis in the whole dataset (E) or per embryo (F) are shown. WT: 97 scutoids, 6 embryos, 4 

experiments. WT-comp: 207 scutoids, 6 embryos, 5 experiments. Mean (red dotted line) ± s.d (black 

dotted lines). Statistical test: two-tailed Student t-test. *: p-value <0.05. 
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Figure 4. Relationship between compaction, cell density, convexity and the formation of 

scutoids. Schematic representation of the process of compaction in sea star embryos. Cell 

proliferation drives the lateral expansion of the epithelium via oriented cell divisions. Initially, cell 

divisions cause the reduction of interstitial space, until the epithelium is sealed. In this phase, when 

cells still have space to expand laterally, cell divisions do not drive the formation of AB-T1s. Once the 

epithelium is sealed, and cells are now confined, oriented cell divisions create lateral compression 

forces that result in lowered convexity and in cells adopting the scutoidal shape. 
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Figure S1. Patiria miniata embryo development. Maximum projections of a representative WT 

sea star embryo (A) or WT-comp embryo (B) expressing the membrane marker mYFP at different 

stages from 16-cells to 2000-cells. Scale bars, 50 μm. 
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Figure S2. Deep learning-based 3D segmentation. Workflow scheme showing the different steps 

followed to segment sea star embryos. 
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Figure S3. Shape of WT and WT-comp embryos at 128-, 256- and 512-cells. A) Orthogonal view 

(top) and maximum projection (centre) of a representative WT half embryo. (Bottom) Estimate of the 

complete shape. Scale bars, 50 μm. Quantification of the tissue aspect ratio (B) and major axes 

length ratio (C) of the whole embryos. Quantification of the tissue average cell height (D) and surface 

ratio (E) of the segmented region. WT: n=150 time points, 6 embryos, 4 experiments. WT-comp: n=125 

time points, 5 embryos, 4 experiments for B-C panels, n=150 time points, 6 embryos, 5 experiments 

for D-E panels. Mean ± s.d. Statistical tests: Mann- Whitney tests with Bonferroni multiple comparisons 

correction (black) and Kruskal-Wallis tests (blue) with Dunn multiple comparisons correction; ns: non-

significant; *: p-value <0.05; **: p-value <0.01 ***: p-value <0.001. 
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Figure S4. Cell compaction. 3D representation of 4-cell motives from a lateral (Top) and inner 

(Bottom) view from 128-cell WT embryo (A) 512-cell WT embryo (B) 128-cell stage (C) WT-comp 

embryo. In the inner view, the numbers displayed next to each cell indicate the individual value of the 

convexity ratio (see Materials and methods). 
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Figure S5. Single-cell tracking of division: analysis of cell proliferation rate per embryo. A) 

Quantification of mitosis and interphase time intervals per embryo showing the moment the tissue is 

completely sealed and the first cell adopting scutoidal shape. Quantification of the average time 

elapsed among each interphase and mitosis intervals (B) and between the beginning of the 128-cell 

stage and the end of 512-cell stage (C) in WT and WT-comp embryos. WT: n=150 time points, 6 

embryos, 4 experiments. WT-comp: n=150 time points, 6 embryos, 5 experiments. Mean ± s.d. 

Statistical tests: two-tailed Student t-test; ns: non-significant. 
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Figure S6. Opening areas and compaction. A) Maximum projections of representative WT sea star 

embryos expressing a membrane marker (mYFP) and nuclear marker (H2B-CFP) from an animal 

(top), vegetal (centre) or lateral (bottom) view. Scale bars, 50 μm. B) Quantification of opening areas 

in animal, vegetal and lateral regions. WT animal: n= 6 embryos, WT vegetal: n= 5 embryos; WT 

lateral: n= 4 embryos; 5 experiments. Quantification of surface ratio anisotropy in both regions of 

WT (C) and WT-comp (D). Quantification of cell volume in both regions of WT (E) and WT-comp 

(F). WT animal: n= 75 time points, 3 embryos, 3 experiments. WT vegetal: n= 75 time points, 3 

embryos, 2 experiments. WT-comp animal: n= 75 time points, 3 embryos, 2 experiments. WT-comp 

vegetal: n= 50 time points, 2 embryos, 2 experiments for C-D panels, n= 75 time points, 3 embryos, 

3 experiments for E-F panels. Mean ± s.d. Statistical tests Mann-Whitney tests with Bonferroni 

multiple comparisons correction (black) except in C where two-way ANOVA test with Bonferroni 

multiple comparisons correction was applied. Kruskal-Wallis tests with Dunn multiple comparisons 

correction (orange and green) except in C where one-way ANOVA tests with Tukey multiple 

comparisons correction was used; ns: non-significant; *: p-value <0.05; **: p-value <0.01; ***: p-value 

<0.001. 
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Figure S7. Tracking of scutoids over time. A) Slices of a representative sea star embryo showing 

how we establish the beginning and end of an interphase when tracking scutoids. The embryo is 

expressing the membrane marker mYFP and the nuclei marker H2B-RFP. Scale bars, 10 μm. 

Quantifications of the onsets and end of scutoids individually (B), the proportion of scutoids throughout 

the interphase (C), the average scutoids duration (D) and the average scutoids onset (E). WT: 97 

scutoids, 6 embryos, 4 experiments and WT- comp: 207 scutoids, 6 embryos, 5 experiments. Mean 

(red dotted lines) ± s.d. (black dotted lines). Statistical test: Mann Whitney tests; ns: non-significant; 

**: p-value <0.01. 
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SUPPLEMENTARY MOVIE LEGENDS 
 

Movie 1. Patiria miniata WT embryo, vegetal view. Maximum projection of confocal time-lapse video of a WT 

embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (n-CFP, cyan) imaged between 

the 32- and 2000-cell stages. Vegetal view. Scale bars, 50 μm. Frame interval of 6 minutes, 7 fps. 

 
Movie 2. Patiria miniata WT-comp embryo, vegetal view. Maximum projection of confocal time-lapse video 

of a WT-comp embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (nRFP, cyan) 

imaged between the 32- and 2000-cell stages. Vegetal view. Scale bars, 50 μm. Frame interval of 6 minutes, 

7 fps. 

 
Movie 3. Patiria miniata WT embryo, animal view. Maximum projection of confocal time-lapse video of a WT 

embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (n-RFP, cyan) imaged between 

the 32- and 2000-cell stages. Animal view (note the polar bodies). Scale bars, 50 μm. Frame interval of 6 

minutes, 7 fps. 

 
Movie 4. Patiria miniata WT-comp embryo, animal view. Maximum projection of confocal time-lapse video 

of a WT-comp embryo expressing a membrane marker (mYFP, yellow) and a nuclear marker (nRFP, cyan) 

imaged between the 32- and 2000-cell stages. Animal view (note the polar bodies). Scale bars, 50 μm. Frame 

interval of 6 minutes, 7 fps. 
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