

1 **An Atlas of Brain–Bone Sympathetic Neural Circuits**

2

3

4

5 Vitaly Ryu^{1,2}, Anisa Gumerova^{1,2}, Ronit Witztum^{1,2}, Funda Korkmaz^{1,2}, Hasni Kannangara^{1,2},

6 Ofer Moldavski^{1,2}, Orly Barak^{1,2}, Daria Lizneva^{1,2}, Ki A. Goosens^{1,3}, Sarah Stanley², Se-Min

7 Kim^{1,2}, Tony Yuen^{1,2} and Mone Zaidi^{1,2}

8

9

10

11 ¹Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at
12 Mount Sinai, New York, NY 10029

13 ²Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount
14 Sinai, New York, NY 10029

15 ³Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029

16

17

18 **Corresponding Authors:** Mone Zaidi [email: mone.zaidi@mssm.edu] and Vitaly Ryu [email:
19 vitaly.ryu@mssm.edu]

20

21

22 **Abbreviated Title:** Brain–bone SNS circuitry

23

24 **Conflict of Interest:** M.Z. consults for Gershon Lehmann, Guidepoint and Coleman groups.

25 T.Y. is a senior editor of *eLife*. None of the other authors have any conflicts.

26

27 **ABSTRACT**

28 There is clear evidence that the sympathetic nervous system (SNS) mediates bone
29 metabolism. Histological studies show abundant SNS innervation of the periosteum and bone
30 marrow—these nerves consist of noradrenergic fibers that immunostain for tyrosine
31 hydroxylase, dopamine beta hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that
32 send efferent SNS outflow to bone have not yet been characterized. Using pseudorabies (PRV)
33 viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow
34 sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain
35 nuclei, sub-nuclei and regions of six brain divisions, namely the midbrain and pons,
36 hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that
37 certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of
38 the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable
39 site-specific variation in the levels of central SNS outflow to bone. This comprehensive
40 compendium illustrating the central coding and control of SNS efferent signals to bone should
41 allow for a greater understanding of the neural regulation of bone metabolism, and importantly
42 and of clinical relevance, mechanisms for central bone pain.

43

44 **INTRODUCTION**

45 Elegant studies have suggested that increased sympathetic nervous system (SNS) tone
46 causes bone loss through a reduction in bone formation, which is coupled with increased bone
47 resorption (Elefteriou, 2018; Elefteriou *et al*, 2005; Takeda *et al*, 2002). It has also been shown
48 using leptin-deficient mice with a high bone mass that the anti-osteogenic actions of leptin are
49 mediated centrally by glucose-responsive neurons in the ventromedial hypothalamus through
50 peripheral SNS pathways (Ducy *et al*, 2000; Takeda *et al.*, 2002). Furthermore, both the
51 periosteum and the bone marrow are innervated richly by the SNS as evidenced by
52 immunoreactive tyrosine hydroxylase, dopamine beta hydroxylase, or neuropeptide Y fibers.
53 These latter SNS markers are associated mostly with the vasculature and SNS vesicular
54 acetylcholine transporter (VACHT), whereas vasoactive intestinal polypeptide (VIP)
55 immunoreactive fibers display mainly a parenchymal location (Francis *et al*, 1997; Hill & Elde,
56 1991; Hohmann *et al*, 1986; Martin *et al*, 2007). Despite these studies, the distribution of SNS
57 nerves within the mammalian skeleton and their connectivity to central neurons is far from being
58 completely understood.

59 Viral transneuronal tracing has become an established technology to define central SNS
60 outflow circuitry to peripheral organs. Bartha's K strain of the pseudorabies virus (PRV) is a
61 transneuronal tract tracer that provides the ability to map multi-synaptic circuits within the same
62 animal (Ekstrand *et al*, 2008; Enquist, 2002; Song *et al*, 2005a). Once in the host, PRVs are
63 endocytosed at axon terminal membranes after binding to viral attachment proteins, which act
64 as 'viral receptors'. Transported exclusively in a retrograde manner from the dendrites of the
65 infected neurons to axons, PRVs first make synaptic contact with neuronal cell bodies and
66 undergo self-amplification and thereafter continue their specific backward ascent (Curanovic &
67 Enquist, 2009). This results in an infection that progresses along the neuroaxis chain from the
68 periphery to higher CNS sites (Ekstrand *et al.*, 2008; Enquist, 2002; Song *et al.*, 2005a).

69 Utilizing this viral technology, we have previously shown postganglionic SNS innervation
70 of specific white and brown adipose tissue depots with the separate and shared central SNS
71 relay sites (Ryu & Bartness, 2014; Ryu *et al*, 2015). Moreover, we have established a direct
72 neuroanatomical connection between phosphodiesterase 5A (PDE5A)–containing neurons in
73 specific brain nuclei and bone, inferring a contribution of the central nodes to the bone–forming
74 actions of PDE5A inhibitors (Kim *et al*, 2020). A hierarchical circuit controlling SNS output to rat
75 femoral epiphyseal bone marrow has also been defined by identifying PRVs in ganglia and
76 paravertebral chain in the intermediolateral column of the lower thoracic spinal cord (Denes *et al*,
77 2005). In addition, neurons in C1, A5, A7 catecholaminergic cell groups and several other
78 nuclei of the ventrolateral and ventromedial medulla, periaqueductal gray, the paraventricular
79 hypothalamic nucleus, among other hypothalamic nuclei, as well as the insular and piriform
80 cortex comprise the known central network sending SNS outflow to bone marrow (Denes *et al.*,
81 2005). However, no studies have yet mapped the exact localization and organization of the
82 central SNS circuitry innervating the murine femur. The purpose of the present study was thus
83 to identify central SNS sites innervating bone and to investigate whether separate or/and shared
84 central SNS circuitries underpin the autonomic mediation of bone.

85

86 **METHODS**

87 **Mice**

88 Adult male mice (~3 to 4–month–old) were single–housed in a 12 h:12 h light:dark cycle
89 at 22 ± 2 °C with *ad libitum* access to water and regular chow. All procedures were approved by
90 the Mount Sinai Institutional Animal Care and Use Committee and were performed in
91 accordance with Public Health Service and United States Department of Agriculture guidelines.

92

93 **Viral injections**

94 To identify brain sites sending the SNS outflow to bone, we used a transsynaptic tracing
95 technique with a pseudorabies virus strain, PRV152. PRV152 expresses enhanced green
96 fluorescent protein (EGFP) under control of the human cytomegalovirus immediate-early
97 promoter. When injected into peripheral tissues, the virus travels exclusively in a retrograde
98 manner and localizes to central neurons, thus allowing the mapping of the entire periphery–
99 brain neuroaxis.

100 All virus injections were performed according to Biosafety Level 2 standards. Mice (N=6)
101 were anesthetized with isoflurane (2–3% in oxygen; Baxter Healthcare, Deerfield, IL) and the
102 right femur–tibia joint was exposed for a series of PRV152 microinjections (4.7×10^9 pfu/mL)
103 into five loci (150 nL/locus) evenly distributed across the bone metaphysis and periosteum
104 areas, which are known to be enriched with SNS innervation. The syringe was held in place for
105 60 seconds to prevent efflux of virus after each injection. Finally, the incision was closed with
106 sterile sutures and wound clips. Nitrofurozone powder (nfz Puffer; Hess & Clark, Lexington, KY)
107 was applied locally to minimize the risk of bacterial infection. Note that, as a control for viral
108 injection, we showed that no EGFP signal was detected when PRV152 was placed on the bone
109 surface rather than injected into the periosteum or metaphyseal bone. In addition, we found
110 PRV152–infected neurons in the intermediolateral cell column (IML) of the spinal cords,
111 suggesting specific bone–SNS ganglia–IML–brain route of infection, which is in concordance
112 with our previous findings where PRV152 individually infected the classic SNS spinal cord
113 neurons (Bamshad *et al.*, 1999; Ryu & Bartness, 2014; Ryu *et al.*, 2015).

114

115

116

117

118 **Histology**

119 Animals were sacrificed 6 days after the last PRV152 injection based on the progression
120 of both viruses to the brain in pilot studies (Ryu, V., unpublished observations). Mice were
121 euthanized with carbon dioxide and perfused transcardially with 0.9% heparinized saline
122 followed by 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS; pH 7.4). Brains
123 were collected and post-fixed in the same fixative for 3 to 4 hours at 4 °C, then transferred to a
124 30% sucrose solution in 0.1 M PBS with 0.1 % sodium azide and stored at 4 °C until sectioning
125 on a freezing stage sliding microtome at 25 µm. Sections were stored in 0.1 M PBS solution
126 with 0.1% sodium azide until processing for immunofluorescence.

127 For immunofluorescence, free-floating brain sections were rinsed in 0.1 M PBS (2 x 15
128 minutes) followed by a 30-minute blocking in 10% normal goat serum (NGS; Vector
129 Laboratories, Burlingame, CA) and 0.4% Triton X-100 in 0.1 M PBS. Next, sections were
130 incubated with a primary chicken anti-EGFP antibody (1:1000; Thermo Fisher Scientific, catalog
131 no. A10262) for 18 hours. Sections were then incubated in the secondary AlexaFluor-488-
132 coupled goat anti-chicken antibody (1:700; Jackson ImmunoResearch, catalog no. 103-545-155)
133 with 2% NGS and 0.4% Triton X-100 in 0.1 M PBS at room temperature for 2 hours. For
134 immunofluorescence controls, the primary antibody was either omitted or pre-adsorbed with the
135 immunizing peptide overnight at 4 °C resulting in no immunoreactive staining. Sections were
136 mounted onto slides (Superfrost Plus) and cover-slipped using ProLong Gold Antifade Reagent
137 (Thermo Fisher Scientific, catalog no. P36982). All steps were performed at room temperature.

138

139 **Quantitation**

140 Immunofluorescence images were viewed and captured using x10 and x20
141 magnification with an Observer.Z1 fluorescence microscope (Carl Zeiss, Germany) with

142 appropriate filters for AlexaFluor-488 and DAPI. The single-labeled PRV152 and DAPI images
143 were evaluated and overlaid using Zen software (Carl Zeiss, Germany) and ImageJ (NIH,
144 Bethesda, MD). We counted cells positive for SNS PRV152 immunoreactivity in every sixth
145 brain section using the manual tag feature of the Adobe Photoshop CS5.1 software, thus
146 eliminating the likelihood of counting the same neurons more than once. Neuron numbers in
147 the brain were averaged across each examined nucleus/sub-nucleus/region from all animals. A
148 mouse brain atlas (Paxinos and Franklin, 2007) was used to identify brain areas. For the
149 photomicrographs, we used Adobe Photoshop CS5.1 (Adobe Systems) only to adjust the
150 brightness, contrast and sharpness, to remove artifactual obstacles (i.e., obscuring bubbles)
151 and to make the composite plates.

152

153 **RESULTS**

154 **Validation**

155 Following PRV152 infections, mice remained asymptomatic until day 5 post-inoculation,
156 after which time, mice began to display symptoms of infection, including occasional loss of body
157 weight and decreased mobility, but most often an ungroomed coat. Mice were euthanized for
158 histological analyses when such symptoms became apparent. Four of six mice were equally
159 infected by PRV152 throughout the neuroaxis from the hindbrain to the forebrain and therefore
160 were included in the analyses. Two mice exhibited over-infection by PRV152, as evidenced by
161 widespread cloudy plaques surrounding the infected neurons; these mice were excluded from
162 the analysis. We also found PRV152-labeled neurons in the IML of the spinal cord in
163 accordance with our previous studies that defined SNS innervations of fat pads in the Siberian
164 hamster (Ryu & Bartness, 2014; Ryu *et al.*, 2015; Ryu *et al.*, 2017).

165 Unilateral PRV152 microinjection into the right femur appeared bilaterally in the brain
166 with almost no noticeable domination of the viral infection between the two hemispheres.
167 Likewise, prior studies on SNS and sensory innervations of various fat depots, utilizing the SNS
168 tract tracer PRV152 and sensory system tract tracer HSV-1 produced no ipsilateral differences
169 between the innervation patterns of SNS or sensory system with unilateral viral inoculation
170 (Bamshad *et al.*, 1999; Leitner & Bartness, 2009; Song *et al*, 2008; Vaughan & Bartness, 2012).

171 To validate the retrograde tract tracing methodology, we placed PRV152 at the same
172 titer on the bone surface, rather than injecting it into the periosteum or metaphysis. No EGFP
173 signal was detected in the PVH that is known to possess sympathetic pre-autonomic neurons
174 or in the RPa (Fig. 1A). By contrast, PRV152 injections into the periosteum or metaphysis
175 resulted in positive EGFP immunostaining in the PVH (Fig. 1B). In addition, we found PRV152–
176 infected neurons in the IML of the spinal cord, at T13–L2 levels (Fig. 1B), suggesting specific
177 bone–SNS ganglia–IML–brain route of infection; this is consistent with prior findings wherein
178 PRV152 individually infected the classic SNS spinal cord neurons (Bamshad *et al.*, 1999; Ryu &
179 Bartness, 2014; Ryu *et al.*, 2015).

180

181 **Viral Infections in The Brain**

182 We identified 87 PRV152–positive brain nuclei, sub–nuclei and regions within six brain
183 divisions, with the hypothalamus having the most PRV152–infected SNS neurons connecting to
184 bone (1177.25 ± 62.75), followed, in descending order, by midbrain and pons (1065 ± 22.39),
185 hindbrain medulla (495.25 ± 33.49), forebrain (237.5 ± 15.08), cerebral cortex (104.75 ± 4.64)
186 and thalamus (65.25 ± 7.78) (Fig. 2). Hypothalamic areas with the highest percentages of
187 PRV152–labeled neurons included the lateral hypothalamus (LH), PVH and dorsomedial
188 hypothalamus (DM) (Fig. 1B and Fig. 2; see Appendix for a glossary of brain nuclei, sub-nuclei
189 and regions). The LH and PVH also were among the regions with the highest absolute numbers

190 of infected neurons of the 25 PRV152-positive nuclei, sub-nuclei, and regions. In the midbrain
191 and pons, areas with the highest percentages and counts of PRV152-infected neurons included
192 the PAG, lateral PAG (LPAG) and pontine reticular nucleus, oral part (PnO), among 18 nuclei,
193 sub-nuclei, and regions. Single-labeled neurons were also notable in the hindbrain medulla,
194 where the raphe pallidus nucleus (RPa), RMg, and gigantocellular reticular nucleus (Gi) were
195 among 23 nuclei, sub-nuclei and regions, heavily represented by the largest percentages and
196 counts of PRV152-labeled neurons. The forebrain areas with the highest percentages and
197 numbers of PRV152-labeled neurons were the medial preoptic nucleus, medial part (MPOM),
198 bed nucleus of the stria terminalis (BST) and lateral septal nucleus, ventral part (LSV) among 15
199 PRV152-positive nuclei, sub-nuclei, and regions. In the cerebral cortex, there were only 3
200 regions containing PRV152-labeled neurons—namely, the primary somatosensory cortex,
201 hindlimb region (S1HL), secondary and primary motor cortex (M2 and M1, respectively). The
202 S1HL and M2 had both the highest percentages and numbers of PRV152-labeled neurons.
203 Finally, we detected 3 brain sites with PRV152-infected neurons within the thalamus. Among
204 the nuclei possessing the highest percentages and numbers of PRV152-labeled neurons were
205 the periventricular fiber system (pv) and precommisural nucleus (PrC).

206

207 **DISCUSSION**

208 Using transneuronal tract tracers, we (Ryu & Bartness, 2014; Ryu *et al.*, 2015; Ryu *et al.*,
209 2017) and others (Bamshad *et al.*, 1998; Bowers *et al.*, 2004; Shi & Bartness, 2001; Song &
210 Bartness, 2001) have documented postganglionic SNS innervation of white and brown adipose
211 tissue depots with the separate and shared central SNS nodes. Moreover, we have recently
212 established a direct neuroanatomical link between PDE5A-containing neurons in specific brain
213 sites and bone (Kim *et al.*, 2020). We report here, for the first time, a comprehensive atlas that
214 defines with remarkable precision the crosstalk between the SNS and bone. Notably, the

215 PRV152 neural tract tracer especially predominate in the PAG of the midbrain, LH of the
216 hypothalamus, RPa of the medulla, MPOM of the forebrain, S1HL of the cortex and pv of the
217 thalamus. Collectively, these data provide important insights into the distributed neural system
218 integrating SNS neural circuitry with bone.

219 Neuroanatomical and functional evidence in mice suggests that the SNS regulates bone
220 remodeling and bone mass (Ducy *et al.*, 2000; Francis *et al.*, 1997; Hill & Elde, 1991; Hohmann
221 *et al.*, 1986; Martin *et al.*, 2007; Takeda *et al.*, 2002). Furthermore, it is clear that leptin acts as
222 an anti-osteogenesis signal through glucose responsive neurons in the VMH *via* peripheral
223 SNS relay (Takeda *et al.*, 2002). These data are consistent with histological evidence, using
224 SNS markers in noradrenergic fibers, for a rich innervation of the periosteum and of bone
225 marrow (Francis *et al.*, 1997; Hill & Elde, 1991; Hohmann *et al.*, 1986; Martin *et al.*, 2007).
226 Likewise, dopamine-transporter-deficient mice with no rapid uptake of dopamine into
227 presynaptic terminals are osteopenic (Bliziotis *et al.*, 2000). Multisynaptic tract tracing has
228 identified limited hierarchical central circuitry controlling SNS innervation of rat femoral
229 epiphyseal bone marrow and bone (Denes *et al.*, 2005). Several SNS pathways from the
230 brainstem and the hypothalamus relay to femoral bone marrow and the femur through
231 preganglionic neurons in the lower thoracic and upper lumbar segments T4 to L1 of the IML and
232 postganglionic neurons in paravertebral chain ganglia at lumbar levels (Denes *et al.*, 2005).

233 Despite the fact that largely the same brain sites project to both the femur (our findings)
234 and bone marrow (Denes *et al.*, 2005), some sites display higher levels of PRV152 infectivity
235 than others—this suggests that separate site-specific SNS circuits may project to the femur and
236 femoral bone marrow. These overlapping SNS-innervating circuits to both sites include the
237 midbrain PAG, somatosensory cortex, forebrain MPOM, thalamic periventricular nucleus,
238 hypothalamic PVH and lateral hypothalamic nucleus (LA), and medulla RPa. The PAG receives
239 afferent fibers not only from the parabrachial nucleus and RPa (Mantyh, 1982), which contain

240 PDE5A-expressing neurons sending SNS outputs to bone (Kim *et al.*, 2020), but also from the
241 spinal cord (Pechura & Liu, 1986). We and others have previously shown that the PAG sends
242 SNS outflow to WAT in Siberian hamsters (Bamshad *et al.*, 1998; Nguyen *et al.*, 2014; Ryu &
243 Bartness, 2014; Song *et al.*, 2005b) and the laboratory rat (Adler *et al.*, 2012). Most notably, the
244 PAG is largely responsible for SNS responses and descending modulation of pain perception
245 (Baptista-de-Souza *et al.*, 2018; Benarroch, 2008; Calvino & Grilo, 2006). Therefore, this
246 midbrain node could receive sensory inflow relating to bone pain and provide SNS relay (Fig. 3).

247 We also find that two major nuclei in the hypothalamus—the PVH and LH—send SNS
248 efferents to bone. While the PVH, which is a home to major SNS pre-autonomic neurons,
249 sends SNS projections to the bone marrow (Denes *et al.*, 2005), we find that LH predominantly
250 innervates the femur. The functions of other hypothalamic SNS–bone feedback circuits are not
251 presently known. However, given that the LH, PVH and DM are main brain regions that send
252 SNS outflow to bone and also express leptin receptors (Flak & Myers, 2016), it is also possible
253 that the anti–osteogenic relay for leptin might originate from neurons in the LH PVH, and/or DM.

254 Consistent with a prior study (Denes *et al.*, 2005), the highest number of PRV152–
255 infected neurons was in the medulla was the RPa and RMg. While we have previously
256 established a contribution of PDE5A-containing neurons in the RPa to bone mass regulation
257 (Kim *et al.*, 2020), the functional role of the RMg in regulating bone remains unknown. Whereas
258 projections from the raphe nuclei, including the RPa, terminate in the dorsal horn of spinal gray
259 matter, where they regulate the release of enkephalins that inhibit pain sensation (Francois *et al.*,
260 2017), RMg neurons are involved in the central modulation of noxious stimuli (Fields *et al.*, 1991).
261 Thus, the RMg—PAG could be the part of the ascending hierarchical circuit relating to the
262 perception of bone pain. The importance of this circuit for the control of bone pain will require a
263 more comprehensive demonstration of its pervasiveness across and within the mammalian

264 species. Whether or not these findings can be extended to humans, they do provide important
265 actionable targets for pain treatment.

266 In all, our results provide compelling evidence for a brain—bone SNS neuroaxis, likely
267 part of coordinated and/or multiple redundant mechanisms that regulate bone metabolism
268 and/or nociceptive functions. Furthermore, we show that bone is not innervated by unique
269 neuron groups, but rather by overlapping SNS circuitry common to the control of other
270 peripheral targets, such as bone marrow and adipose tissues. We believe our comprehensive
271 atlas of the brain regions involved in coding and decoding SNS efferent signals to bone would
272 stimulate further research into bone pain and the neural regulation of bone metabolism.

273

274 **ACKNOWLEDGEMENTS**

275 Work at Icahn School of Medicine at Mount Sinai carried out at the Center for
276 Translational Medicine and Pharmacology was supported by R01 AG071870 to M.Z., T.Y., and
277 S.-M.K.; R01 AG074092 and U01 AG073148 to T.Y. and M.Z.; and U19 AG060917 and R01
278 DK113627 to M.Z.

279

280 **DATA AVAILABILITY**

281 Figure 2—source data 1 contains the numerical data used to generate the figures.

282

283 **FIGURE LEGENDS**

284 **Figure 1: PRV152 transneuronal viral tract tracing.** As a control for viral injection, no EGFP
285 signal was detected in the PVH, known to possess main sympathetic pre-autonomic neurons,
286 and the RPa, when PRV152 was placed on the bone surface. By contrast, PRV152 injections
287 into the periosteum or metaphyseal bone resulted in positive EGFP immunoreactivity in the PVH.
288 In addition, we found PRV152–infected neurons in the intermediolateral cell column (IML) of the
289 spinal cord at T13–L2 levels, suggesting specific bone–SNS ganglia–IML–brain route of
290 infection which are in concordance with our previous findings where PRV152 individually
291 infected the classic SNS spinal cord neurons. Also shown are representative microphotograph
292 illustrating PRV152 immunolabeling in the PAG (midbrain and pons), RPa (medulla), LH
293 (hypothalamus), MPOM (forebrain), S1HL (cerebral cortex), and pv (thalamus). PVH,
294 paraventricular hypothalamic nucleus; PAG, periaqueductal gray; RPa, raphe pallidus; LH,
295 lateral hypothalamus; MPOM, medial preoptic nucleus, medial part; S1HL, primary
296 somatosensory cortex, hindlimb region; pv, periventricular fiber system. Scale bar = 50 μ m.
297

298 **Figure 2: PRV152 immunolabeling in brain regions, sub-regions and nuclei.** Numbers of
299 PRV152–labeled neurons in brain regions, namely, hypothalamus, midbrain and pons, medulla,
300 forebrain, cerebral cortex and thalamus, as well as their sub-regions and nuclei, following viral
301 injections into bone.
302

303 **Figure 3: Diagrammatic outline of the SNS brain–bone neuroaxis relevant to pain.** The
304 central SNS brain–bone circuit starts in the hypothalamic paraventricular nucleus (PVH) known
305 to home SNS pre–autonomic neurons projecting to the SNS neurons of the periaqueductal gray
306 (PAG) in the midbrain. From the PAG the SNS outflow is further relayed to the raphe pallidus—
307 raphe magnus (RPa-RMg) neurons that are terminated in the dorsal horn of spinal gray matter,

308 where they regulate the release of enkephalins that inhibit pain sensation by attenuating
309 substance P (SP) release. In turn, opiates produce antinociception via the μ -opiate receptors, in
310 part, through modulation of responses to SP. Neurons in the RMg are involved in the central
311 modulation of noxious stimuli, therefore, the RMg—PAG could be the part of the ascending
312 hierarchical circuit relating to the perception of bone pain.

313

314 **REFERENCES**

315 Adler ES, Hollis JH, Clarke IJ, Grattan DR, Oldfield BJ (2012) Neurochemical characterization
316 and sexual dimorphism of projections from the brain to abdominal and subcutaneous
317 white adipose tissue in the rat. *J Neurosci* 32: 15913-15921

318 Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ (1998) Central nervous system
319 origins of the sympathetic nervous system outflow to white adipose tissue. *Am J Physiol*
320 275: R291-299

321 Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system
322 outflow to brown adipose tissue. *Am J Physiol* 276: R1569-1578

323 Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A
324 (2018) Interplay between 5-HT(2C) and 5-HT(1A) receptors in the dorsal periaqueductal
325 gray in the modulation of fear-induced antinociception in mice. *Neuropharmacology* 140:
326 100-106

327 Benarroch EE (2008) Descending monoaminergic pain modulation: bidirectional control and
328 clinical relevance. *Neurology* 71: 217-221

329 Bliziotes M, McLoughlin S, Gunness M, Fumagalli F, Jones SR, Caron MG (2000) Bone
330 histomorphometric and biomechanical abnormalities in mice homozygous for deletion of
331 the dopamine transporter gene. *Bone* 26: 15-19

332 Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ (2004) Sympathetic
333 innervation of white adipose tissue and its regulation of fat cell number. *Am J Physiol*
334 *Regul Integr Comp Physiol* 286: R1167-1175

335 Calvino B, Grilo RM (2006) Central pain control. *Joint Bone Spine* 73: 10-16

336 Curanovic D, Enquist L (2009) Directional transneuronal spread of alpha-herpesvirus infection.
337 *Future Virol* 4: 591

338 Denes A, Boldogkoi Z, Uhereczky G, Hornyak A, Rusvai M, Palkovits M, Kovacs KJ (2005)
339 Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant
340 pseudorabies virus. *Neuroscience* 134: 947-963

341 Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM,
342 Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central
343 control of bone mass. *Cell* 100: 197-207

344 Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpesviruses: molecular pathfinders
345 in nervous system circuits. *Trends Mol Med* 14: 134-140

346 Elefteriou F (2018) Impact of the Autonomic Nervous System on the Skeleton. *Physiol Rev* 98:
347 1083-1112

348 Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon
349 TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone
350 resorption by the sympathetic nervous system and CART. *Nature* 434: 514-520

351 Enquist LW (2002) Exploiting circuit-specific spread of pseudorabies virus in the central nervous
352 system: insights to pathogenesis and circuit tracers. *J Infect Dis* 186 Suppl 2: S209-214

353 Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits.
354 *Annu Rev Neurosci* 14: 219-245

355 Flak JN, Myers MG, Jr. (2016) Minireview: CNS Mechanisms of Leptin Action. *Mol Endocrinol*
356 30: 3-12

357 Francis NJ, Asmus SE, Landis SC (1997) CNTF and LIF are not required for the target-directed
358 acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. *Dev
359 Biol* 182: 76-87

360 Francois A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola
361 KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer
362 G (2017) A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by
363 GABA and Enkephalins. *Neuron* 93: 822-839 e826

364 Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive
365 nerves in the periosteum of the rat. *Cell Tissue Res* 264: 469-480
366 Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and
367 bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. *Science* 232:
368 868-871
369 Kim SM, Taneja C, Perez-Pena H, Ryu V, Gumerova A, Li W, Ahmad N, Zhu LL, Liu P, Mathew
370 M, Korkmaz F, Gera S, Sant D, Hadelia E, Ievleva K, Kuo TC, Miyashita H, Liu L,
371 Tourkova I, Stanley S *et al* (2020) Repurposing erectile dysfunction drugs tadalafil and
372 vardenafil to increase bone mass. *Proc Natl Acad Sci U S A* 117: 14386-14394
373 Leitner C, Bartness TJ (2009) Acute brown adipose tissue temperature response to cold in
374 monosodium glutamate-treated Siberian hamsters. *Brain Res* 1292: 38-51
375 Mantyh PW (1982) The ascending input to the midbrain periaqueductal gray of the primate. *J
376 Comp Neurol* 211: 50-64
377 Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW (2007) Organization of a unique net-
378 like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the
379 generation and maintenance of bone fracture pain. *Neurosci Lett* 427: 148-152
380 Nguyen NL, Randall J, Banfield BW, Bartness TJ (2014) Central sympathetic innervations to
381 visceral and subcutaneous white adipose tissue. *Am J Physiol Regul Integr Comp
382 Physiol* 306: R375-386
383 Pechura CM, Liu RP (1986) Spinal neurons which project to the periaqueductal gray and the
384 medullary reticular formation via axon collaterals: a double-label fluorescence study in
385 the rat. *Brain Res* 374: 357-361
386 Ryu V, Bartness TJ (2014) Short and long sympathetic-sensory feedback loops in white fat. *Am
387 J Physiol Regul Integr Comp Physiol* 306: R886-900
388 Ryu V, Garretson JT, Liu Y, Vaughan CH, Bartness TJ (2015) Brown adipose tissue has
389 sympathetic-sensory feedback circuits. *J Neurosci* 35: 2181-2190
390 Ryu V, Watts AG, Xue B, Bartness TJ (2017) Bidirectional crosstalk between the sensory and
391 sympathetic motor systems innervating brown and white adipose tissue in male Siberian
392 hamsters. *Am J Physiol Regul Integr Comp Physiol* 312: R324-R337
393 Shi H, Bartness TJ (2001) Neurochemical phenotype of sympathetic nervous system outflow
394 from brain to white fat. *Brain Res Bull* 54: 375-385
395 Song CK, Bartness TJ (2001) CNS sympathetic outflow neurons to white fat that express MEL
396 receptors may mediate seasonal adiposity. *Am J Physiol Regul Integr Comp Physiol* 281:
397 R666-672
398 Song CK, Enquist LW, Bartness TJ (2005a) New developments in tracing neural circuits with
399 herpesviruses. *Virus Res* 111: 235-249
400 Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ (2005b) Melanocortin-4 receptor
401 mRNA is expressed in sympathetic nervous system outflow neurons to white adipose
402 tissue. *Am J Physiol Regul Integr Comp Physiol* 289: R1467-1476
403 Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ (2008)
404 Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown
405 adipose tissue: neuroanatomical and functional evidence. *Am J Physiol Regul Integr
406 Comp Physiol* 295: R417-428
407 Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty
408 G (2002) Leptin regulates bone formation via the sympathetic nervous system. *Cell* 111:
409 305-317
410 Vaughan CH, Bartness TJ (2012) Anterograde transneuronal viral tract tracing reveals central
411 sensory circuits from brown fat and sensory denervation alters its thermogenic
412 responses. *Am J Physiol Regul Integr Comp Physiol* 302: R1049-1058

413

1 **Appendix:** Glossary of the brain nuclei, sub-nuclei and regions.

2

3 **Cerebral cortex**

4 M1 primary motor cortex
5 M2 secondary motor cortex
6 S1HL primary somatosensory cortex, hindlimb region

7 **Forebrain**

8 AVPe anteroventral periventricular nucleus
9 BST bed nucleus of the stria terminalis
10 BSTMA bed nucleus of the stria terminalis, medial division, anterior part
11 BSTMPL bed nucleus of stria terminalis, medial division, posterolateral part
12 BSTMV bed nucleus of the stria terminalis, medial division, ventral part
13 LPO lateral preoptic area
14 LSI lateral septal nucleus, intermediate part
15 LSV lateral septal nucleus, ventral part
16 MnPO median preoptic nucleus
17 MPOL medial preoptic nucleus, lateral part
18 MPOM medial preoptic nucleus, medial part
19 SFO subfornical organ
20 VMPO ventromedial preoptic nucleus
21 VOLT vascular organ of the lamina terminalis
22 VP ventral pallidum

23 **Thalamus**

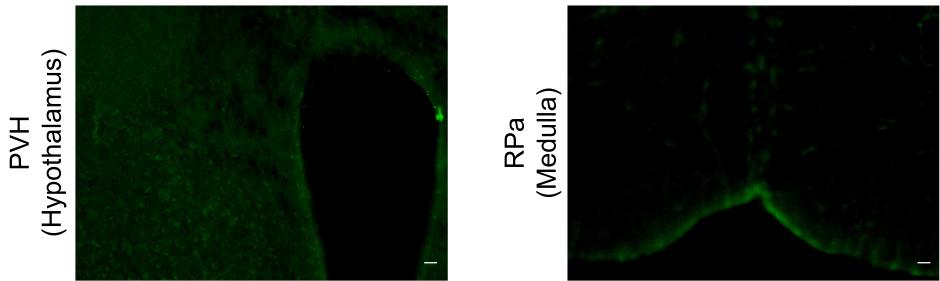
24 LHbL lateral habenular nucleus, lateral part
25 PrC precommissural nucleus
26 pv periventricular fiber system

27 **Hypothalamus**

28 AHP anterior hypothalamic area, posterior part
29 Arc arcuate hypothalamic nucleus
30 ArcLP arcuate hypothalamic nucleus, lateroposterior part
31 ArcMP arcuate hypothalamic nucleus, medial posterior part
32 BLA basolateral amygdaloid nucleus, anterior part
33 CeM central amygdaloid nucleus, medial division
34 DM dorsomedial hypothalamic nucleus
35 DMD dorsomedial hypothalamic nucleus, dorsal part
36 DMV dorsomedial hypothalamic nucleus, ventral part
37 LA lateroanterior hypothalamic nucleus
38 LH lateral hypothalamic area
39 MPA medial preoptic area
40 PaAP paraventricular hypothalamic nucleus, anterior parvicellular part
41 PaLM paraventricular hypothalamic nucleus, lateral magnocellular part
42 PaMM paraventricular hypothalamic nucleus, medial magnocellular part
43 PaMP paraventricular hypothalamic nucleus, medial parvicellular part
44 PaPo paraventricular hypothalamic nucleus, posterior part
45 PaV paraventricular hypothalamic nucleus, ventral part
46 PH posterior hypothalamic area
47 PVH paraventricular hypothalamic nucleus

48	SCh	suprachiasmatic nucleus
49	SChVL	suprachiasmatic nucleus, ventrolateral part
50	TC	tuber cinereum area
51	VMHC	ventromedial hypothalamic nucleus, central part
52	ZI	zona incerta

53 **Midbrain and pons**


54	CGPn	central gray of the pons
55	CnF	cuneiform nucleus
56	DLPAG	dorsolateral periaqueductal gray
57	DMPAG	dorsomedial periaqueductal gray
58	DMTg	dorsomedial tegmental area
59	DpMe	deep mesencephalic nucleus
60	DRD	dorsal raphe nucleus, dorsal part
61	DRI	dorsal raphe nucleus, interfascicular part
62	LC	locus coeruleus
63	LDTg	laterodorsal tegmental nucleus
64	LPGAG	lateral periaqueductal gray
65	Mo5	motor trigeminal nucleus
66	MPB	medial parabrachial nucleus
67	PAG	periaqueductal gray
68	PnO	pontine reticular nucleus, oral part
69	SubCV	subcoeruleus nucleus, ventral part
70	VLPAG	ventrolateral periaqueductal gray
71	VTA	ventral tegmental area

72 **Medulla**

73	7N	facial nucleus
74	DPGi	dorsal paragigantocellular nucleus
75	Gi	gigantocellular reticular nucleus
76	GiA	gigantocellular reticular nucleus, alpha part
77	GiV	gigantocellular reticular nucleus, ventral part
78	IRt	intermediate reticular nucleus
79	LPGi	lateral paragigantocellular nucleus
80	MVePC	medial vestibular nucleus, parvicellular part
81	NTS	nucleus of the solitary tract
82	Pr	prepositus nucleus
83	RMg	raphe magnus nucleus
84	ROb	raphe obscurus nucleus
85	RPa	raphe pallidus nucleus
86	SolC	nucleus of the solitary tract, commissural part
87	SolCe	nucleus of the solitary tract, central part
88	SolDL	solitary nucleus, dorsolateral part
89	SolDM	nucleus of the solitary tract, dorsomedial part
90	SolG	nucleus of the solitary tract, gelatinous part
91	SolI	nucleus of the solitary tract, interstitial part
92	SolIM	nucleus of the solitary tract, intermediate part
93	SolM	nucleus of the solitary tract, medial part
94	SolV	solitary nucleus, ventral part
95	SolVL	nucleus of the solitary tract, ventrolateral part

Figure 1

A Injection of PRV152 on the bone surface

B Injection of PRV152 into the periosteum or metaphysis

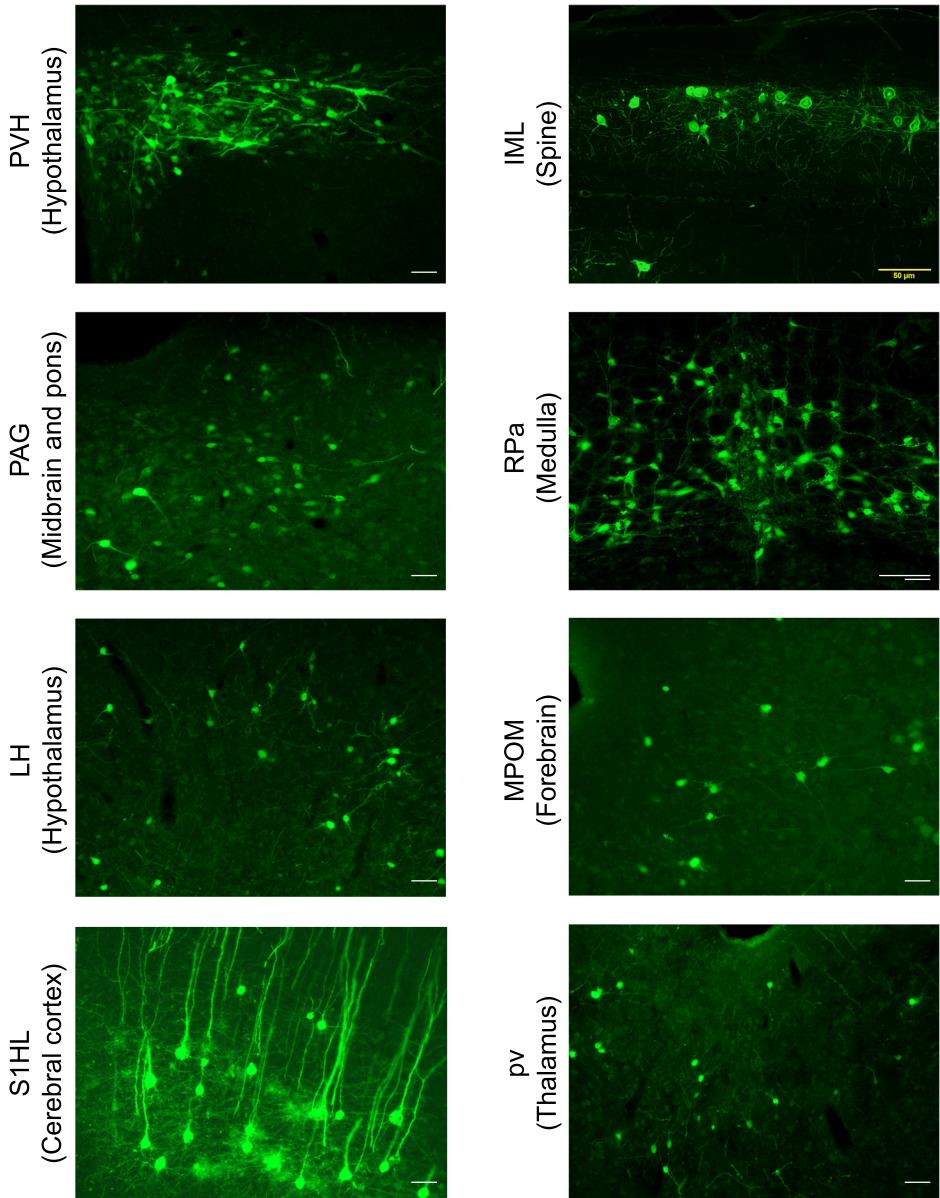


Figure 2

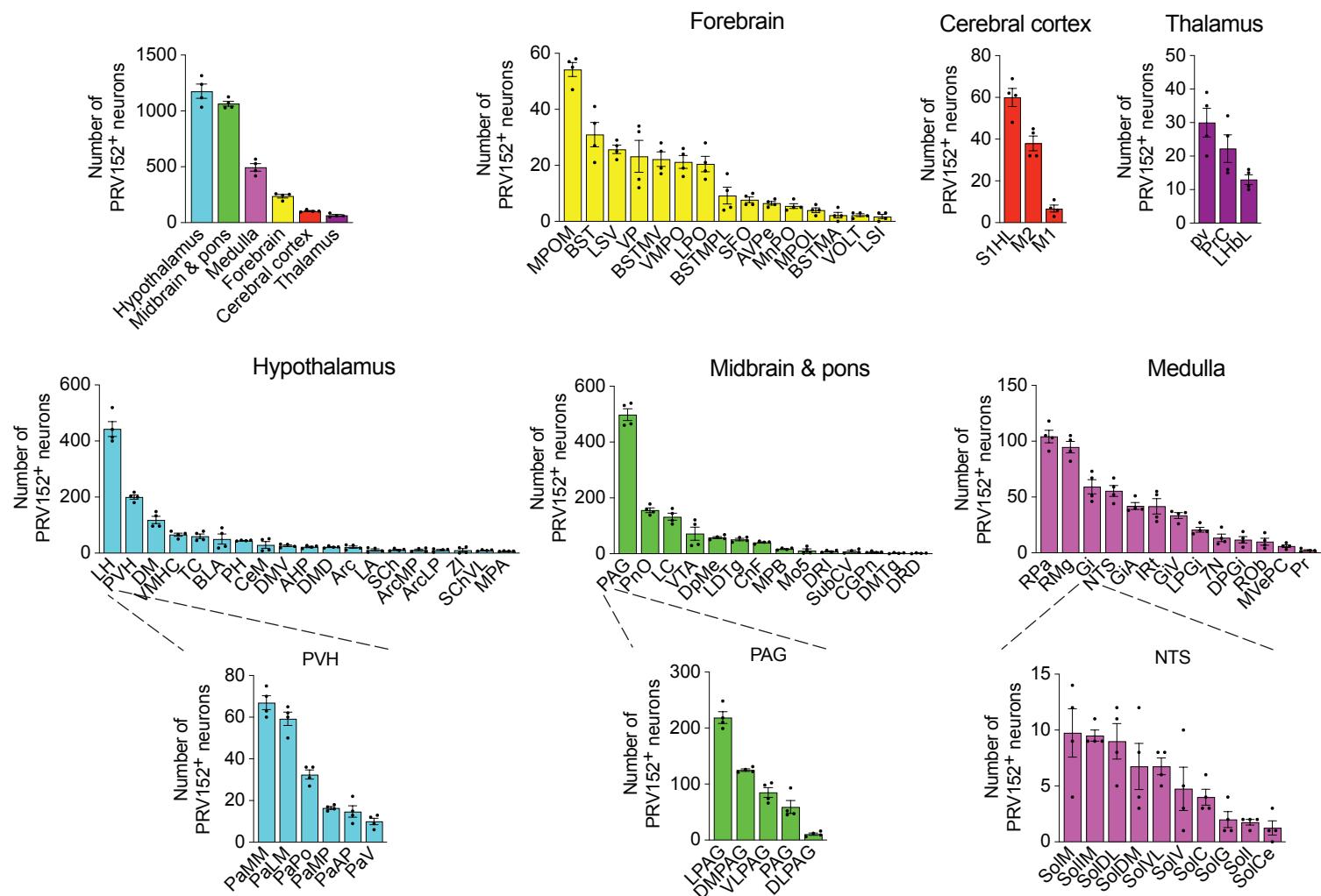
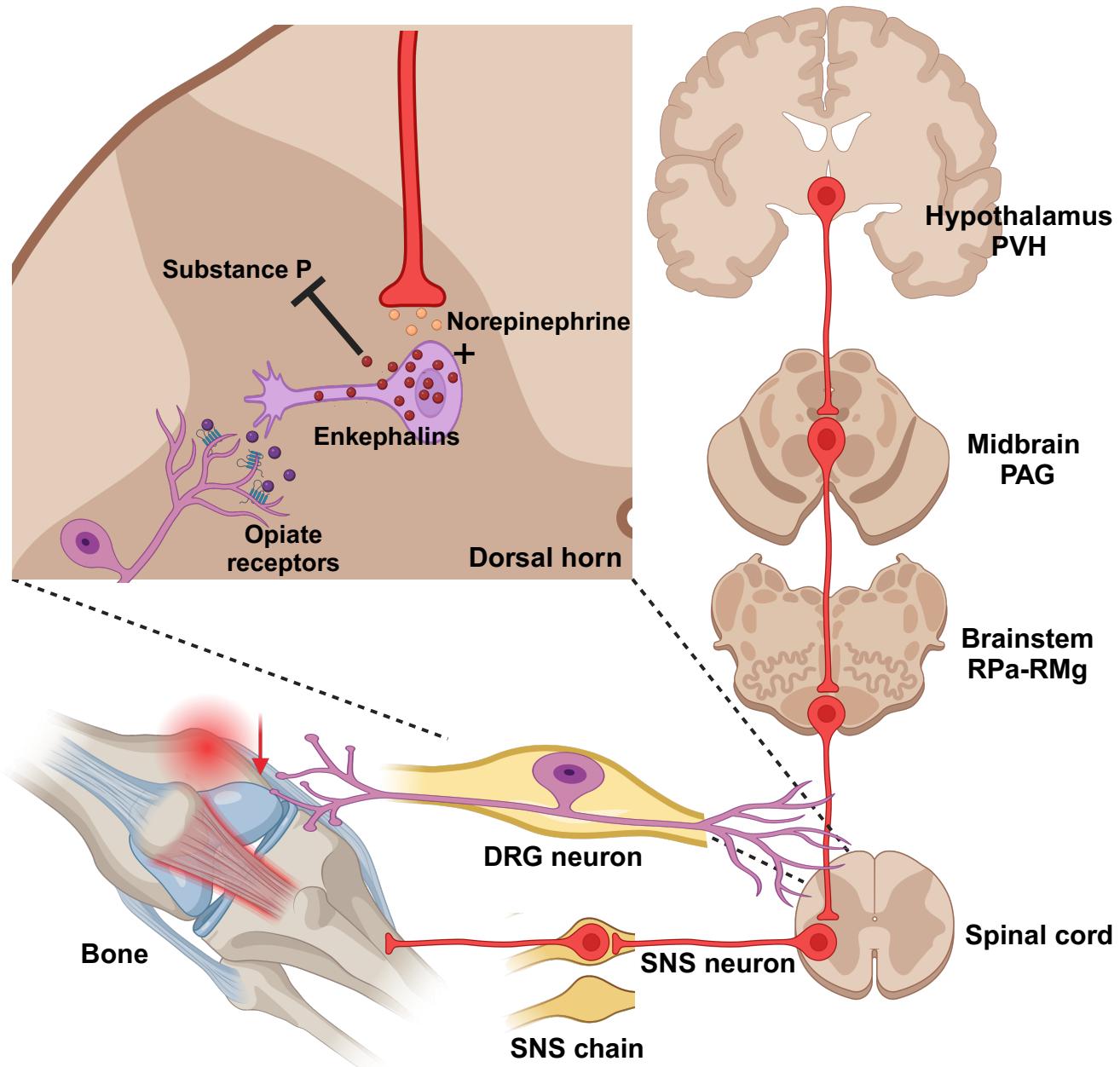



Figure 3

